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Abstract

In this paper we introduce a family of integer polytopes and charac-
terize them in terms of forbidden submatrices. The two extreme cases
in this family arise when the constraint matrix is totally unimodu-
lar and balanced, respectively. This generalizes results of Truemper-
Chandrasekaran and Conforti-Cornuéjols.

For a 0,£1 matrix A, let

pi(A) = number of 1's in row i,
n;(A) = number of —1's in row 1,
ti(A) = number of nonzeroes in row .

Denote by p(A), n(A) and t(A) the vectors having components p;(A), n;(A)
and t;(A) respectively. We write d to denote a vector all of whose compo-
nents are equal to d. The matrix A is totally unimodular if every square
submatrix has determinant equal to 0,£1. The matrix A is minimally non-
totally unimodular if it is not totally unimodular, but every proper submatrix
has that property. Clearly, if > 9, £1 matrix is not totally unimodular, then
it contains a minimally non-totally unimodular submatrix.

Theorem 1 (Camion [1] and Gomory (cited in [1])) Let A be a 0,£1 min-
imally non-totally unimodular matriz. Then A is square, det(A) = £2, and
A~ has only :i:% entries. Furthermore, each row and each column of A have
an even number of nonzeroes.

Let H be the class of minimally non-totally unimodular matrices. Recent
results of Truemper [5] (see also [6]), give a simple construction and several
characterizations of all matrices in H. Let J be the family of matrices that
can be obtained from the identity matrix by changing some +1's into —1's.

Theorem 2 The following two statements are equivalent for a 0,41 matriz
A and a nonnegative integral vector c.

(i) A does not contain a submatriz A’ € H such that t(A’) < 2¢, where ¢’ is
the subvector of ¢ corresponding to the rows of A'.
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(ii) The polytope P(B,J,b) = {(z,s): Br+Js=b,0<z <1, s> 0}
has integral vertices for all column submatrices B of A, all J € J and
all integral vectors b such that —n(B) < b < ¢ —n(B).

Remark 3

o When 2c > t(A), Theorem 2 gives a characterization of totally unimod-
ular matrices which can be deduced from the Hoffman-Kruskal theorem

[3].

o A 0,%+1 matriz A is balanced if, in every submatriz with two nonzero
entries per row and column, the sum of the entries is a multiple of four.
It is easy to see that A is balanced if and only if A does not contain
a submatriz A’ € H with t(A’) < 2. So, when ¢ = 1 in Theorem 2,
we get a result of Conforti and Cornuéjols for 0, +1 balanced matrices
(Theorem 3.3 in [2]).

o When A is a 0,1 matriz, Theorem 2 reduces to a result of Truemper
and Chandrasekaran (Theorem 2 in [7]). Our proof is similar to that in
[7]. Note that, here, the ve~*ices of P(B, J,b) are restricted to have 0,1
components z; whereas in Theorem 2 of [7], the vertices can be general
nonnegative integral vectors. But that difference is insignificant since,
when A is a 0,1 matriz, one may duplicate columns of A to effectively
eliminate the upper bound of 1 on each z;.

Proof of Theorem 2: (i) = (ii). Assume the contrary and let A be a matrix
of smallest order satisfying (i) but not (ii) for some nonnegative vector c.
Then A has at least two rows and two columns and there exists a matrix J €
J such that P(A, J,b) has a nonintegral vertex (z, s) for some integral vector
bsuch that —n(A) < b < c—n(A). Furthermore, for every row submatrix A of
A, P(A,J,b) is an integer polytope, where J is the corresponding submatrix
of J and b is the corresponding subvector of b.

The vector z is obviously nonintegral. Furthermore s = 0, i.e. Az = b,
otherwise by removing a row i with s; > 0, we get that P(A, J,b) is a nonin-
teger polytope, a contradiction. All components of x are fractional, otherwise
let AF be the column submatrix of A corresponding to the fractional compo-
nents of z and A” be the column submatrix of A corresponding to the compo-
nents z; = 1. Let bF = b—p(AF)+n(AF). Then P(AF,J,bF) is a noninteger
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polytope and bF is an integral vector such that —n(AF) < b < ¢ — n(AF),
contradicting the minimality of A. By similar reasoning, A must be square
and nonsingular. Since the vector r is fractional, A cannot be totally uni-
modular, and hence contains a square submatrix G = (g;;) € H.

Let ¢ be a row of G such that p;(G)+n;(G) > 2¢; and let A be a submatrix
of A obtained by deleting a row distinct from row i. Let b be the correspond-
ing subvector of . The polytope {z : Az = b, 0 < 2 < 1} has precisely
two vertices, say 2! and z?, since it is nonempty and A is nonsingular. By
the minimality of A, 2! and 22 are 0,1 vectors. Furthermore, 2! + 22 = 1
because z is a convex combination of z! and 22 and all its components are

fractional.
For k = 1,2 define

L(k)={j: either g;; =1 and z}‘ =1lorgj=—1and zJ'-‘ = 0}.

Since z' + z2 = 1, it follows that |L(1)] + |L(2)| = p:(G) + ni(G) > 2¢;.
Assume w.l.o.g. that |L(1)] > ¢;. Now this contradicts

IL(1)] = X g2} +nlG) < b+ ni(A) < e,
3

where the first inequality follows from Az! = &.

(i1) = (i). Let (A,c) satisfy (ii). Suppose A has m rows and contains
a kxk submatrix G € M. such that {(G) < 2¢ where ¢’ is the subvector
of ¢ corresponding to the rows of G. Assume w.l.o.g. that the rows and
columns of G are indexed by 1,...,k and let B be the column submatrix of
A corresponding to the first & columns. Let

.__{ —pﬂg);—'"(g) fori=1,...k
Tl —ni(B) fori=k+1,...,m.

By Theorem 1 p;(G) + ni(G) is even for : = 1,...,k and therefore b is
an integral vector. Furthermore —n;(B) < b; < ¢; — ni(B). Now P(B,—1,b)
has a fractional vertex (z,s), where z; = % fore=1,...,k,z; = 0for: =
k+1,...,m,s;,=0fori=1,...,k,and s; = w fore=k+1,...,m.
a

Consider the polytope Q(A,c) = {z: Az > c—n(A), 0 <z <1}, where

Ais a 0,£1] matrix and c is a nonnegative integral vector. In propositional
logic, problems where clause i must be satisfied at least ¢; times correspond
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to integer programs maz {wr : = € @(A,c)N{0,1}"}. See [4] for a survey of
the connections between propositional logic and integer programming. The
polytope (A, c) has integral vertices when A and c satisfy Condition (i) of
Theorem 2. Therefore the corresponding logic problems can be solved by
linear programming.
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