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Abstract

In this paper we introduce a family of integer polytopes and charac-
terize them in terms of forbidden submatrices. The two extreme cases
in this family arise when the constraint matrix is totally unimodu-
lar and balanced, respectively. This generalizes results of Truemper-
Chandrasekaran and Conforti-Cornu6jols.

For a 0,±I matrix A, let

pi(A) = number of I's in row i,
ni(A) = number of -I's in row i,
ti(A) = number of nonzeroes in row i.

Denote by p(A), n(A) and t(A) the vectors having components pi(A), ni(A)
and ti(A) respectively. We write d to denote a vector all of whose compo-
nents are equal to d. The matrix A is totally unimodular if every square
submatrix has determinant equal to 0, ± 1. The matrix A is minimally non-
totally unimodular if it is not totally unimodular, but every proper submatrix
has that property. Clearly, if - ), ±1 matrix is not totally unimodular, then
it contains a minimally non-totally unimodular submatrix.

Theorem 1 (Camion [1] and Gomory (cited in [1])) Let A be a 0, ±1 min-
imally non-totally unimodular matrix. Then A is square, det(A) = ±2, and
A- has only ±1 entries. Furthermore, each row and each column of A have
an even number of nonzeroes.

Let 'H be the class of minimally non-totally unimodular matrices. Recent
results of Truemper [5] (see also [6]), give a simple construction and several
characterizations of all matrices in . Let ," be the family of matrices that
can be obtained from the identity matrix by changing some +1's into -l's.

Theorem 2 The following two statements are equivalent for a 0, ±1 matrix
A and a nonnegative integral vector c.

(i) A does not contain a submatrix A' E 7-1 such that t(A') < 2c, where c' is
the subvector of c corresponding to the rows of A'.
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(ii) The polytope P(B,J,b) = {(x,s) : Bx + Js = b, 0 _< x < 1, s > O}
has integral vertices for all column submatrices B of A, all J E J and
all integral vectors b such that -n(B) < b < c - n(B).

Remark 3

" When 2c > t(A), Theorem 2 gives a characterization of totally unimod-
ular matrices which can be deduced from the Hoffman-Kruskal theorem

[3I-
" A 0, ±1 matrix A is balanced if, in every submatrix with two nonzero

entries per row and column, the sum of the entries is a multiple of four.
It is easy to see that A is balanced if and only if A does not contain
a submatrix A' E 7 with t(A') < 2. So, when c = 1 in Theorem 2,
we get a result of Conforti and Cornu6jols for 0, ±1 balanced matrices
(Theorem 3.3 in [2]).

" When A is a 0, 1 matrix, Theorem 2 reduces to a result of Truemper
and Chandrasekaran (Theorem 2 in [7]). Our proof is similar to that in
[7]. Note that, here, the veices of P(B, J, b) are restricted to have 0, 1
components xj whereas in Theorem 2 of [7], the vertices can be general
nonnegative integral vectors. But that difference is insignificant since,
when A is a 0, 1 matrix, one may duplicate columns of A to effectively
eliminate the upper bound of 1 on each xi.

Proof of Theorem 2: (i) =:> (ii). Assume the contrary and let A be a matrix
of smallest order satisfying (i) but not (ii) for some nonnegative vector c.
Then A has at least two rows and two columns and there exists a matrix J E
J such that P(A, J, b) has a nonintegral vertex (x, s) for some integral vector
b such that -n(A) < b < c-n(A). Furthermore, for every row submatrix A of
A, P(A, J, b) is an integer polytope, where J is the corresponding submatrix
of J and b is the corresponding subvector of b.

The vector x is obviously nonintegral. Furthermore s = 0, i.e. Ax = b,
otherwise by removing a row i with si > 0, we get that P(A, J, b) is a nonin-
teger polytope, a contradiction. All components of x are fractional, otherwise
let AF be the column submatrix of A corresponding to the fractional compo-
nents of x and AP be the column submatrix of A corresponding to the compo-
nents xj = 1. Let b = b-p(Ar)+n(AP). Then P(AF, J, bF) is a noninteger
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polytope and bF is an integral vector such that -n(AF) b< < c - n(AF),
contradicting the minimality of A. By similar reasoning, A must be square
and nonsingular. Since the vector x is fractional, A cannot be totally uni-
modular, and hence contains a square submatrix G = (gij) E 7R.

Let i be a row of G such that pi(G)+ni(G) > 2c and let A be a submatrix
of A obtained by deleting a row distinct from row i. Let b be the correspond-
ing subvector of b. The polytope {z : Az = b, 0 < z < 1} has precisely
two vertices, say z1 and z 2, since it is nonempty and A is nonsingular. By
the minimality of A, zi and z 2 are 0, 1 vectors. Furthermore, z1 + Z2 = 1
because x is a convex combination of z and z2 and all its components are
fractional.

For k = 1,2 define

L(k) = {j either gij = I and = 1 or gij = -1 and zk =0}.

Since z1 + z2 = 1, it follows that IL(1) + IL(2)j = pi(G) + ni(G) > 2c.
Assume w.l.o.g. that IL(1)I > c. Now this contradicts

IL(1)I = Egj + n,(G) < b, + n,(A) <_ c,

where the first inequality follows from Az 1 = b.

(ii) * (i). Let (A, c) satisfy (ii). Suppose A has m rows and contains
a kxk submatrix G E 'H such that t(G) _< 2c' where c' is the subvector
of c corresponding to the rows of G. Assume w.l.o.g. that the rows and
columns of G are indexed by 1,..., k and let B be the column submatrix of
A corresponding to the first k columns. Let

P p(G)-nd(G) for i=1,-, kbi 2"'

-ni(B) for i =k + 1,...,M.
By Theorem 1 pi(G) + ni(G) is even for i = 1,..., k and therefore b is

an integral vector. Furthermore -ni(B) _ bi : c - n1(B). Now P(B,-I,b)
has a fractional vertex (x,s), where xi = for i = 1,... ,k, xj = 0 for i =

k+1,... ,m, si = 0 for i = 1,, k, and si = pj(B)+',&(B) for i = k + 1,... ,mn.

Consider the polytope Q(A, c) = {x: Ax > c- n(A), 0 < x < 1}, where
A is a 0, ±1 matrix and c is a nonnegative integral vector. In propositional
logic, problems where clause i must be satisfied at least ci times correspond
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to integer programs max {wx: x E Q(A,c)n{O, 1}"}. See [4] for a survey of
the connections between propositional logic and integer programming. The

polytope Q(A, c) has integral vertices when A and c satisfy Condition (i) of

Theorem 2. Therefore the corresponding logic problems can be solved by
linear programming.
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