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ABSTRACT

We apply Kirchhoff theory for the target strength of a rough, circular surface whose

roughness is characterized by a two-dimensional, isotropic power-law wavenumber spec-

trum, W 2 (X) = 1 2 X- pZ. Three nondimensional parameters are found that govern the tar-

get strength: C= icoa, 71- T 2 aP 2 - 4 , and PI = P2- I, where x. is the acoustic

wavenumber, a is the radius of the surface, and p 1 is the spectral exponent of the one-

dimensional power-law wavenumber spectrum. First, we discuss the general influence of

C, P 1, and Tj on the target strength. Following that are calculations of average target

strength of the ice/water interface of a submerged cylindrical block of ice, which are

compared with individual realizations of measured target strengths of ice blocks for fre-

quencies between 20 kHz and 80 kHz. Data and theory show that the (smooth surface)

form function for a finite surface does not describe the observed diffraction pattern.

Instead, the lobes of the pattern diminish and the nulls fill in - i.e., the total backscatter

becomes more incoherent - as frequency increases or as the large wavenumber com-

ponents of the roughness spectrum contribute more to the total acoustic return. These

comparisons also allowed us to infer the rough surface statistics of the ice surface and the

compressional sound speed structure within the skeletal zone of the ice. DTTC p~j 7.;: - -......
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INTRODUCTION

The goals of our research are twofold: to develop a theory for total backscatter

from rough, finite surfaces near normal incidence, and to use this theory to understand

the scattering of sound from undeformed, first-year arctic sea ice. Our analysis, based on

Kirchhoff theory, breaks down the backscatter into the product of two parts. One is a

"rough surface form function," which captures the effects on the backscatter due to the

rough, finite interface. The other is the reflection coefficient of the surface, which cap-

tures the material's intrinsic properties, such as its density and compressive sound speed

structure.

This work is of interest because existing models for high-frequency backscatter

from first-year arctic ice keels (Bishop et al., 1987) assume the keels are made up of a

collection of uncorrelated, rectangular ice blocks that are smooth, and whose individual

faces reflect energy back to the acoustic source. In nature, there are many examples of

rough, finite interfaces; thus study of the factors that determine the acoustic return from a

finite, rough object is also of general interest.

In this article, we review data that support the use of a rough-surface scattering

mechanism for individual blocks. We then develop a theory, based on the Kirchhoff

approximation, that addresses these observations.
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REVIEW OF EXPERIMENTS

Our study was motivated by observations of acoustic reflection from the bottom of

arctic ice blocks by Garrison et al. (1991). Figure 1 shows their generic experimental

setup. A cylindrical "block" was cored out of the ice sheet; a typical length was 1 m

and the diameter about 0.5 m. This block was submerged below the ice canopy, where it

was ensonified by a transducer suspended at the vertex of a triad of cables. The cables

were manipulated so that sound struck the block over a range of angles near normal

incidence. Acoustic returns from the ice block were calibrated by ensonifying a sub-

merged, flat, air-filled pan which had the same horizontal dimensions as the ice block and

had been lowered to the same depth as the lower face of the block.

These experiments resulted in measurements of the calibrated target strength of the

ice/water interface of several ice blocks near normal incidence. Their data were for the

acoustic return from the ice-bottom/water interface only; all other contributions to the

acoustic backscatter were time-gated out.

Figure 2 contains representative samples of the resulting data. The column on the I& -

left shows the acoustic return from the air-filled pan compared with what is essentially

the Fraunhoffer diffraction pattern for a rigid, circular plate. There are minor, near-field

corrections (a reduction in the strict Fraunhoffer beam pattern of less than 1 to 2 dB), but

these are relevant only at 80 kHz.
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The strong correlation between theory and experiment for the deterministic surface

represented by the air-filled pan (restricted to between ± 50 for 80 kHz) shows the

efficacy of the expermental method. It also shows that the source and scatterers were far

enough apart that the Fraunhoffer assumption holds.

The right-hand column of Fig. 2 shows individual realizations of the acoustic return

from a submerged ice block at several frequencies compared with the Fraunhoffer

diffraction pattern used in the air-pan observation. There were not enough realizations to

define average target strengths, but these are representative of the few individual realiza-

tions displayed by Garrison et al. (1991). Compared with the smooth-faced acoustic

return, the ice-block data show a reduction in the target strength of the return at normal

incidence, as well as a smoothing of the rigid-plate side-lobe structure. Both of these

trends become more pronounced as the acoustic frequency increases.

We explain these frequency-dependent variations in target strength, arguing that

both the rough surface of the ice and the sound speed variations within the ice contribute

to the target strength of a finite ice block.

THEORY

Consider the Kirchhoff approximation in the Fraunhoffer limit for the sound scat-

tered from a rough, finite shape ensonified by a point source. Tolstoy and Clay (1966)

developed this formula for an infinite surface and included a point-source beam pattern.
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We use their formula, but for a finite surface and omnidirectional sources.

Figure 3 shows the rectangular coordinate system. The angle between the incident

wave and the z-axis of the coordinate system is labeled 01, and that between the scattered

components and the z-axis is 00. The acoustic wavenumber is Ko = (0/c, where c = 1437

m/s for arctic conditions. The total scattered pressure is given by

P (o)iB _e iKO( r"o I + r";,, I)

21c rilo Ii i

x'A f xOR(Wohx +Phy-y)e 2 oi[a +Y+'(Y)]ddy;

2az ( sin81 cosI - sin8ocosxVo), (2)

23 ( sinO1 sinA1 - sinOosinVo ), (3)

2y- - ( cos0 1 + cos 0 ). (4)

The function h (x,y) defines the two-dimensional scattering surface. For back-

scatter, W0 = 0, 4f, = 7r , and 00 = 81. The constant B is the source level and R is the

reflection coefficient of the surface, based on the intrinsic impedance mismatch between

the ice and the water. We have modeled the ice as a fluid with equivalent compressional

sound speed and density. At normal incidence, only compressional waves enter the ice

from the water. We assume that the contributions to Green's theorem from the contours

along the sides of the block are negligible for the narrow range of angles considered.
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At this point, the standard procedure is to integrate by parts, generating an integral

with a more compact integrand and two boundary terms. For example, consider the fol-

lowing subintegral in Eq. (1) (with explicit boundary conditions chosen for didactic pur-

poses):

b b

Jathxe2 ix + h(xy) ]dx = e2i-ox[ hxe 2i ' (xhY) ]dr
a a

a 2iYo1a + (x-Y)]I ix=b

2iicoy X=a

f - t2 e2io[ ca + (xy)]dx . (5)
aY

Similar expressions can be obtained for the other two subintegrals. The boundary terms

are usually discarded for infinite surfaces by including a bounded beam whose surface

field goes to zero at large distances from the source. For a finite surface, the boundary

terms remain. In Appendix A we examine their contribution for a one-dimensional

(rather than two-dimensional) surface. We find that these boundary terms do not

significantly contribute to the total backscattered intensity for the parameter values

relevant to our problem.

Substitution of the remaining integral relations into Eq. (1) produces the standard

expression for the total backscattered pressure, P:

-iB ir

2n! Fio I riI
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SoR ( a2 + p2  ) f e [Ox + +1(x.y) dxdy (6)
y JA

The quantities x, 03, and y and the reflection coefficient R are functions of the

incident grazing angle ei. We restrict our attention to angles close to normal incidence

and will consider these angular functions to be constant. We can then re-write (6) as fol-

lows:

(7)

-iBf (Oi)rR ei,( o+ ) 
(8)Qx (00 e + (8)

where

f 2) + + (9)
Y

and

-A Je2i Y[ ax + Py + 0(xy) dxdy (10)

The expectation value of the square of the pressure is <PP >, where * denotes the

complex conjugate. The random variable that one averages over is the height of the

rough surface h (x,y). This expectation value can be written as

<PP*> = QQ* <EE'>. (11)

We define <EIE)'> as the "rough-surface form function" because it contains all the

information on the surface geometry and roughness (i.e., the extrinsic ice properties) and

controls the angular dependence of the acoustic return.
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<ee*> = ffA.'ffAe 2i [ acx -x') + Ry -Y I I< e I ra[ h (x,y) - h (x'.y')I>xyx'Y. (2<e> j~jA>dxdydx 'dy > (12)

The standard expectation-value manipulations start with assuming a Gaussian distri-

bution for rough-surface height. This allows one to write

< e2i. h(x,y)-h(X',y ] > = e-2.0-2D(r) (13)

Here,

D (r) E < [ h (r') - h (r' + r) ]2 > (14)

is called the structure function (Ishimaru, 1978). We define r - (x,y) and r' (x ,y').

The structure function gives the square of the average relative vertical displacement of a

surface between two points.

We have sparse data (Fig. 4) that are consistent with using a power law to describe

the one-dimensional wavenumber spectrum W1 of the ice surface. These high-

wavenumber data are taken from observations by Garrison et al. (1990) of the surface

deviation of an ice block (one not used for the acoustics experiment). They were

analyzed assuming that the roughness is isotropic. They represent the spectrum for one

piece of first-year arctic sea ice. As such, it can be considered a single realization of a

one-dimensional wavenumber spectrum, rather than an average spectrum. We use it as a

starting point for our theoretical analysis.

A rough surface whose wavenumber spectrum follows a power law can be

described as a stationary increment process, where h (r') - h (r' + r) is statistically sta-
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tionary. This implies that there is no well-defined rms height deviation of an infinite sur-

face with this kind of spectrum. The rough surface is characterized by a range of hor-

izontal length scales. Jackson et al. (1986) give a formalism that relates the structure

function to the two-dimensional, isotropic power-law wavenumber spectrum of the rough

surface, W2 (w). They further relate that to the one-dimensional wavenumber spectrum

W1 (x), based on work by Ishimaru (1978). Here, we will only quote the results.

If one measures the one-dimensional spectral amplitude r1, and exponent p 1 of the

one-dimensional spectrum

WI 1C¢) = 7l1 K-P , (15)

one can relate r and PI to the two-dimensional power law wavenumber spectrum

W 2 (K):

W 2 (K) - 712K - p  (16)

with

RP2
1"2--ll 2 (17)

It 1/2F(p 2 -

2

wherep 2 =P 1 + 1.

With this expression for W 2 in terms of 71, and p 1, we can solve for the structure

function
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D (r) - C 2r 12[ X 2 + y2 ]q, (18)

where X a-x - x', Y a-y -y ", and

C2  7r(2-q)2-27 (19)
q(1-q)F(l + q)

where q (P2/ 2 ) - 1.

We now have an expression for the rough-surface form function for Kirchhoff

theory in the Fraunhoffer approximation.

=eAHA + )Y )-2?he CI(X2 + y" dxdydx dy. (20)

We transform to a circular coordinate system, which reflects the symmetry of the

scatters considered.

-rcose ; =rsin ; -=r'cose' ;r'sin0 (21)
a a a

for r and r' between 0 and 1, and e and 0' between 0 and 27c.

We also nondimensionalize this integral expression, which produces three nondi-

mensional parameters,

-- .oa , (22)

2(q - 1) 2-4 p - 3  (23)

and p

We define - and Q as
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-- X-X
a = (24)a

and

b (25)

making use of the transformation from rectangular to circular coordinate systems as

described above. We can also nondimensionize the power-law spectrum:

W2 (Ka) --e( ica )P2 (26)

With these parameters, we write < PP * > as follows:

, [ BRf(i)Yo0 a2] 2

,1271 1 271

×f f f f e2i;( =+ a)-2n 2rc2( -2 + n2 )qrr'drdedr'dO" . (27)
0000

Removing the propagation factors and source level produces the target strength:

TS = IOlog(<PP* >) + 20log( r0 I W, I) - 20log(B). (28)

Remember that in these expressions ax, P3, and y are simply geometrical quantities.

Also, note that the rough-surface acoustic return is dependent on the size of the

object beyond the usual considerations of the area of the object and : the effects of the

size on the total backscatter also come in through the parameter 71.
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Analysis of the rough surface form function--effects of TI, Pl, and C near their

"observed" values

We will now show how the normalized form function given by the integral in

Eq. (27) varies with , i, and p 1 near the values suggested in Fig. 4. These parameters

are the normalized acoustic wavenumber, spectral amplitude, and the exponent of the

one-dimensional wavenumber spectrum, respectively.

Note that C is the standard nondimensional parameter from the problem of

diffraction through a circular aperture. It appears in both the oscillating and damping

exponentials in the integrand. For TI = 0 and a constant p 1, we will obtain the standard

oscillating form function, which is [Jo(X)IX]2 for round scatterers, where X = 2 sin0

(Goodman, 1968).

We first consider the angular dependence of the rough surface form function for a

constant but nonzero TI, a constant p 1, and increasing . The number of lobes will

increase as for a smooth square. However, the damping exponential in the integral of

(27), whose argument is proportional to 2, will reduce the amplitudes of the lobes and

fill in the valleys of the form-function pattern. The mathematical expression shows this

directly. We also demonstrate this smoothing out of the form function in Fig. 5, which

shows the near-norrr-a-incidence pattern for a fixed value of Ti and p I and a range of ,

all corresponding to the arctic experiments. By = 97, the lobe and valley patterns are

completely smoothed over.
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We now consider holding both and p 1 fixed and varying the spectral strength of

the rough surface via Tl (Fig. 6). This also leads to rough-surface form functions with

lobes and valleys that are smoothed over as 71 increases. As the surface roughness

increases, more energy is kicked out from the ice block away from normal incidence.

This is due to the damping term in the integral in Eq. (27), which is dependent on T1. For

increases in either or 7, the main lobe of the rough-surface form function tends to

widen and decrease in level.

Figure 7 shows the rough-surface form function for a range ofp 1, for fixed T1 and . i

The functional dependence of the rough-surface form function is more subtle than it

would first appear. The smallest value ofp 1 gives a net lower return than the larger two

values. This is due to the larger high frequency contributions to the rough surface at this

value of p 1. This increase in high frequency contributions for smaller p 1 occurs because

of the relatively shallow tilt of the power law spectrum, as well as a general increase in

the value of the spectral strength (Tix, within Ti) relative to the other two values of p1 for

a constant valu' of Ti. The case of PI = 1.8 is more coherent than that of PI = 2.8

because of the way the parameter P I works within Ti. Equation (23) shows that once

3 - p < 1 for increasing PI and a constant value of Tl, then T12 hence 71, has to increase

quickly relative to continued increases in p I in order to keep Ti constant. An increase in

the dimensional spectral strength produces a rougher surface, with an increase in the

strength of the wavenumber spectrum of the ice surface that more than compensates for
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the relative decrease in the high frequency components of the roughness spectrum as p 1

increases beyond 2.

Competing with the decrease in returns due to increased and r1 or (generally)

decreased p 1 will be a rise in target strength due to the ic2 dependence shown in Eq. (27).

The observed reduction of the reflection coefficient as frequency increases supports the

decrease in target strength (see below).

INITIAL COMPARISON OF THEORY AND DATA

To compare the theory [Eq. (28)] with the experimental data (Fig. 2), we describe

the reflection coefficient used. For a perfectly flat, infinite interface, it is well known

(Bass, 1958) that the acoustic return at normal incidence is a replica of the transmitted

pulse whose amplitude is affected by the reflection coefficient. For a rough interface, it

can be shown (Melton and Horton, 1970; McDonald and Spindel, 1971; Thorsos, 1984)

that if the beamwidth of the transmitter/receiver is larger than the angular width of the

normalized backscattering cross section, and if the pulse length is long enough so that

returns from all regions within the beamwidth overlap, the amplitude of the ensemble

average of the returns from the rough interface will be the same as the amplitude for the

equivalent flat interface. Thus an ensemble of returns meeting these conditions allows

determination of the intrinsic reflection coefficient R in Eq. (27). Figure 8 shows ampli-

tude reflection coefficients determined from ensemble measurements of normal-incident

scattering off the ice canopy. Only the data taken with the ITC 1042 transducer, which is
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omnidirectional, fulfill the transmitter/receiver conditions given above. The other data

were taken with directional transmitters/receivers, but the beamwidths were large enough

below 80 kHz that the values should not be affected significantly (Francois et al., 1989).

In evaluating our expression for the target strength, Eqs. (27) and (28), we will first use

the parameterization for R(f) shown as a dotted line in Fig. 8.

Our interpretation of the physics controlling the data in Fig. 8 is based on an

analysis begun by D. Winebrenner (personal communication, 199 1). His work, in its most

general form, is an extension of results presented by Brekhovskikh (1980), among others,

for reflection from a smooth interface backed by continuously varying, compressional

sound speed and density profiles. Winebrenner extended this by adding variable attenua-

tion and calculating the jump produced in the reflection coefficient by a discontinuity in

the sound speed and/or density profiles. Francois et al. (1989) and Mourad et al. (1990)

presented an unpublished analysis by Mourad and Winebrenner showing in detail the

case of constant ice density and no attenuation, which is equivalent to the formalism

presented by Brekhovskikh (1980). Figure 9 shows a hypothetical sound speed profile of

form

rCo if z <0c(z) = 2[ci -(c 1 )/2] + (c1 -ci)[I + tanh(8z)] ifz >0 (29)

for 5 = I0C m- 1. Here, co is the sound speed in the water, ci is the sound speed in the ice

at the ice/water interface, and c I is the bulk sound speed (i.e., the compressional-wave
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sound speed in the interior of the ice). The values used for these parameters are shown in

Fig. 10. Measurements of actual compressional-wave sound speed profiles are hard to r'G Io

come by because of the high porosity of the skeletal layer, which makes it difficult to

handle the ice while maintaining its in situ properties (Williams and Francois, 1991).

Bogorodskii et al. (1975, 1976) report large gradients in sound speed within the slushy

skeletal layer.

The theoretical, frequency-dependent reflection coefficient calculated for this sound

speed profile is given by the solid line in Fig. 10. For this calculation, we chose

Pice/Pwater = 0.95. The low frequency limit of this reflection coefficient is R = 0.43,

which can be shown by the thin-layer theory presented by Brekhovskikh (1980).

At low frequencies, the reflection coefficient is determined by the bulk impedance

mismatch between the ice and water; essentially, the skeletal layer is too thin to have a

significant effect on the apparent reflectance of the ice. At high frequencies, the sound

speed gradient is too weak to reflect acoustic energy back into the water; consequently,

the reflection coefficient is determined by the surface impedance mismatch. Because of

uncertainty about the sound speed gradient in the skeletal layer, more direct measure-

ments are needed to quantify the theory.

Using the equation for the reflection coefficient from Fig. 8 and the spectrum of

Fig. 4, we can make a comparison between theoretically predicted average returns and

measured individual realizations for a recently submerged ice block.
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Figure 11 shows this comparison as a function of incidence angle for the ice/water . 1

interface of submerged ice blocks. For 20 kHz, the model-data comparison is plausible,

including the minor smoothing of the lobes and valleys of the predicted average pattern

relative to the smooth surface result. However, there are much larger differences between

average predictions and the individual realizations for the 40 and 80 kHz data.

We have used our best guess at observed inputs for the theory, understanding that

the spectral inputs were particularly problematic, since they were obtained from an indi-

vidual realization of a piece of ice that was different from the one used for the acoustic

experiments. That comparison suggests the measured spectrum was too rough compared

with the spectrum from the ice block used for the acoustics experiments. We will there-

fore turn the analysis around, using the theory to predict spectral strengths and

exponents, and the sound speed structure within the skeletal layer of the ice used for the

acoustic experiment. We do so considering a wider range of parameter values, reflecting

a larger choice of rough surface wavenumber spectra and sound speed profiles. The

main difficulty with this approach is the fact that we only have predictions of average tar-

get strength and observations of individual realizations of target strength, a process that

becomes more random as frequency increases.
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SECOND COMPARISON: PREDICTION OF PHYSICAL PARAMETERS

USING EXPERIMENTAL DATA AND ENSEMBLE THEORY

Figure 12 shows the rough-surface form functions calculated for normal-incidence

backscatter from a block with a range of spectral strengths and exponents and over a

range of frequency (C with constant block size a = 0.29 m). The rate at which the form

function diminishes as frequency increases depends on both T1 and p 1. For example,

when there is a larger high-frequency component to the spectrum (large "r and small p I),

the rough-surface form function falls precipitously as f increases. (We shall see that in

this case the acoustic returns rapidly become incoherent for increasing frequency.)

Where there is a smaller high-frequency component to the rough surface spectrum (when

Tj is relatively small and p 1 is relatively large), the normal-incidence, rough surface form

function drops off more gently with increasing C. Also note that there are larger changes

in the rough-surface form function, hence in target strength, at large frequencies com-

pared with small frequencies. This means that the large frequency results will be more

sensitive to the shape of the rough surface spectrum than the low frequency results and

will therefore be a better indicator of the rough surface statistics.

Figure 12 can be used to develop an estimate of the target strength of large blocks

of ice, in concert with Eq. (28), if one has a good estimate of T1I (hence T12) and p 1 . Cal-

culate rj with these values and the radius of the piece of ice in question. Then, read the

normal incidence value of the form function from Fig. 12, extrapolating where necessary.
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Use this value in combination with the appropriate multiplicative factors in Eq. (27) to

calculate the target strength at normal incidence.

Figure 13 shows the predicted average target strength at 20 kHz, for a range ofp I '

and i l , using the average reflection coefficient listed in Fig. 8. The return is less coherent

for small pi and large 7I than for large PI and small TI. (Comparing the case ofpI = 2.8

versus p 1 = 2.95 shows the effect we discussed earlier-Fig. 7.) The best fit of the pred-

ictions with the individual realization is centered on values of p I and rl that suggest a

surface smoother than the one measured by Garrison et al. As shown here and in Fig. 12,

this low frequency case does not let us adequately bound the rough surface statistics.

This is not surprising, since the observed target strength at 20 kHz appears to be made up

primarily of coherent acoustic energy, as evidenced by its coherent angular structure.

Figure 14 shows the target strength as a function of incidence angle and a range of - 'V

P I and Tl, for 80 kHz. As predicted from Fig. 12, there is a large range in level and struc-

ture of the target strength for this high frequency case and these different parameter

values. The cases of small p 1 and large r" completely lose their angular structure com-

pared with the large p 1 and small 71 cases. With an increase in p 1 for a fixed Ti up

through p I = 2.8, the normal incidence return increases and the return from outlying

angles decreases -- all while the target strength becomes more coherent. This same trend

occurs for a decrease in Tj for fixed p 1. Comparing the case of p I = 2.8 vs p I = 2.95

shows the effect we discussed earlier (Fig. 7).
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To make the predicted averages come close to the individual realization of target

strength, we have chosen a reflection coefficient that is twice the parameterized value. In

doing so, we are assuming that the potential difference between the predicted average

level and the individual realization at normal incidence is determined entirely by the

actual sound speed structure within the ice via the reflection coefficient. We are also

assuming that the overall shape is controlled by the roughness statistics. Closer to the

truth is that the acoustic return at normal incidence is in part controlled by the inherent

variability between individual realizations of < PP* >.

The shapes of the average target strength suggest that a good choice of rough sur-

face spectrum parameters is PI = 2.8 and "q = 3.767.10-6, a smoother surface than the

values suggested by the single measurement of the spectrum we had at our disposal. Fig-
pm2.b

ure 15 shows the predicted, one-dimensional, rough surface spectrum, along with the

"observed" spectrum. (We recalculated our model for the edge-term contributions in the

Appendix for these new values ofp 1 and T1. The edge terms remained insignificant.)

Figure 16 shows our final comparison of predicted, average target strength vs indi-

vidual realizations of target strength, as a function of frequency. The predicted returns

are more coherent than our earlier ones. This seems more in line with the structure of the

individual returns shown by Garrison et al. (1991). Note that the low and mid frequency

reflection coefficient values we used are eerily consistent with the average values picked

out by the recursion relation shown in Fig. 8. This suggests that the average sound speed
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within the bulk of the ice for this experiment was about equal to the average sound speed

associated with the average reflection coefficient, about 3800 m/s. However, we had to

use a reflection coefficient at 80 kHz that is double the value suggested by the recursion

relation, which predicts that R(40 kHz) > R(80 kHz). This change by a factor of two in

the reflection coefficient can simply be the result of the higher variability in overall level

of target strength at high frequencies than at low frequencies. It may also mark a change

in sound speed structure from that inferred from average reflection coefficients (Figs. 9

and 10).

Figure 17 shows our predicted compressional sound speed profile within the skeletal '

zone of the ice which produces the average normal incidence reflection coefficient

shown in Fig. 18 and is consistent with the reflection coefficients used in Fig. 16 in the

model/data comparisons. This sound speed profile is given by the following formula and

used in the same way as Eq. (29):

C) 
if z <1

C(Z) = I (C, + C2) - (C2 - Ci)COS( )] ifz 2 (30)
z2 Z, if z > z'

where z, is the top of the skeletal layer. This acoustic waveguide has sharper boundaries

than the profile shown in Fig. 9 and has a larger impedance mismatch at the ice/water

interface.
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The hypothetical reflection coefficient shown in Fig. 18 comes rather close to the

particular values needed in our target strength comparisons: (20 kHz, 0.2198); (40 kHz,

0.1683); and (80 kHz, 0.1942). What we find particularly encouraging about the profile

derived via this inversion procedure is that it has dimensions similar to that inferred from

the large batch of average reflection coefficients shown in Figs. 9 and 10. We predict an

acoustical thickness of the skeletal layer (defined as the thickness of the layer from the

ice/water interface to the point where the speed is 3500 m/s) to be 3-4 cm, based on both

data sets. This is in line with our recent in situ experimental measurements of sound

speed structure within the skeletal zone (Williams et al., 1992).

CONCLUSIONS

We applied the Kirchhoff approximation to the target strength of backscatter from

finite, rough surfaces at near-normal incidence and found it was a useful way to interpret

the acoustic returns from finite blocks of arctic sea ice. The analysis breaks up the mean

square acoustic return into intrinsic and extrinsic factors. The former represents the

effects of material properties of the ice on the acoustic backscatter through the reflection

coefficient at normal incidence; the latter represents the effects of the rough surface.

Three natural, nondimensional parameters are a product of the analysis: = ,0a, where

l,0 is the acoustic wavenumber id a is the radius of the ice block; r1 = rl2 aP24 , where

the constants T12 and P2 are the spectral amplitude and spectral exponent of the two-

dimensional, isotropic power law that describes the rough surface statistics; and
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P i = P 2 - 1, which is the one-dimensional spectral exponent.

We calculated 'rough-surface form functions," the counterpart of smooth-surface

form functions, for a range of 1", , and p I- We showed how the lobes and valleys of the

form functions are attenuated and filled in, respectively, as Tj or increases. The

behavior is a little more complicated with variations in P 1, due to its influence on the

dimensional spectral strength within Ti for constant "i.The net effect is that with an

increase in the higher frequency components of the roughness spectrum there are more

incoherent contributions to the target strength. These effects can produce a change of at

least 6 - 10 dB in backscatter at normal incidence when compared with the return from a

smooth, finite surface.

For the contribution to total backscatter from the intrinsic ice properties, we

sketched previous work on how the normal incidence reflection coefficient for the

ice/water interface depends on the sound speed profile created by the skeletal layer in the

ice. We showed how the variable sound speed structure within the ice can induce a

significant frequency dependence in the reflection coefficient, and thus in the back-

scattering strength. When these different physical mechanisms are combined, they result

in the theoretical expressions for average target strength given in Eqs. (27) and (28).

Using average values of the reflection coefficient and "observed" values of spectral

strength and exponent, we compared our theory with experimental data obtained by

Garrison et al. (1991) on backscatter from the natural ice/water interface of a submerged
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block of arctic sea ice. Our theory with these inputs gave poor predictions compared

with individual acoustic returns from ice blocks. It is important to realize that this

observed spectrum was not from the block used in the acoustic experiment.

We then turned the analysis around, using the comparisons of predicted average tar-

get strength with individual realizations of target strength of ice blocks to put bounds on

the surface roughness and reflection coefficient. We found that the rough surface statis-

tics inferred from this process described a smoother surface than the one shown in Fig. 4.

The frequency dependence of the reflection coefficient at normal incidence was largely

in line with average observations, especially at low frequencies. At high frequencies

(80 kHz), the comparison suggests that the sound speed profile within the individual ice

block used for the experiment is quantitatively similar to the one we have inferred from a

large set of average reflection coefficients---especially in its prediction for the acoustical

thickness of the skeletal layer, 3-4 cm. The big differences are that the inferred single

realization of ice/water interface sound speed is about 500 n/s higher than the predicted

average ice/water interface sound speed, and that the skeletal layer is a waveguide with

sharper boundaries. These changes may be due to the initial warming of the ice block

after its submergence and before the acoustic backscatter measurements were made.

However, at 80 kHz there is an unquantified, large variability in the observed target

strength as well as a rather incoherent predicted average target strength. Taken together,

they suggest potentially large variations among individual realizations of target strength
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at this frequency. Therefore, this inferred sound speed profile is not definitive: the factor

of two difference between average and implied reflection coefficient that motivated this

profile could easily be subsumed within this variability.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research (N00014-91-J-1647) and

Office of Naval Technology (N00039-91-C-0072). We would like to thank Darrell Jack-

son of the Applied Physics Laboratory, University of Washington, for his advice and

insight.

REFERENCES

Bass, R. (1958). "Diffraction effects in the ultrasonic field of a piston source,"

J. Acoust. Soc. Am. 30, 602-605.

Bishop, G. C., W. T. Ellison, and L. E. Mellberg (1987). "A simulation model for high-

frequency under-ice reverberation." J. Acoust. Soc. Am. 82, 275-286.

Bogorodskii, V.V., V. P. Gavrilo, A. V. Gusev, and V. A. Nikitin (1975). "Measurements

of the speed of ultrasonic waves in Bering Sea ice," Soy. Phys. Acoust. 21,

286-287.

Bogorodskii, V.V., V.P. Gavrilo, and V.A. Nikitin (1975). "Sound propagation in ice

crystallized from salt water," Sov. Phys. Acoust. 22, 158-159.



Mourad and Williams -27

Brekhovskikh, L. M. (1980). Waves in Layered Media (Academic, San Diego), 2nd ed.

Clay, C. S., and H. Medwin (1977). Acoustical Oceanography: Principles and Applica-

tions (Wiley, New York).

Francois, R.E., K.L. Williams, G.R. Garrison, P.D. Mourad, and T. Wen (1989). "Ice

keels I: Intrinsic physical/acoustic properties of sea ice and scattering from ice

blocks (U)," Navy J. Underwater Acoust. 39, 1203-1228.

Garrison, G.R., R.E. Francois, T. Wen, and W.J. Felton (1990). 'Acoustic reflections

from cylindrical blocks of arctic ice, 1988," Applied Physics Laboratory, Univer-

sity of Washington, Technical Report APL-UW TIP 88 5, S..attle.

Garrison, G.R., R.E. Francois, and T. Ven (1991). "Acoustic ieflections from arctic ice

at 15-300 kHz," J. Acoust. Soc. Am 90, 973-984.

Goodman, J. W. (1968). Introduction to Fourier Optics (McGraw Hill, New York).

Ishimaru, A. (1978). Wave Propagation and Scattering in Random Media (Academic,

New 'ork), Vol. 2.

Jackson, D. R., D. P. Winebrenner, and A. Ishimaru (1986). "Application of the compo-

site roughness model to high-frequency bottom backscattering," J. Acoust. Soc.

Am. 79, 1410-1422.

Melton, D. R., and C.W. Horton, Sr. (1970). "Importance of the Fresnel corrections in



Mourad and Williams .28

scattering from a rough surface. I. Phase and amplitude fluctuations," J. Acoust.

Soc. Am. 47, 290-298.

Mourad, P. D., K. L. Williams, R. E. Francois, and G. R. Garrison (1990). "Near-normal

incidence scattering from rough, finite surfaces: Kirchhofi theory and data com-

parison," presented at the 119 th meeting of the Acoustical Society of America,

Pennsylvania State University.

McDonald, J.F., and R.C. Spindel (1971). "Implications of Fresnel corrections in a

non-Gaussian surface scatter channel," J. Acoust. Soc. Am. 50, 746-757.

Thorsos, E. I. (1984). "Surface forward scattering and reflection," Applied Physics

Laboratory, University of Washington, Technical Report APL-UW 7-83, Seattle.

Tolstoy, I., and C. S. Clay (1966). Ocean Acoustics (McGraw-Hill, New York).

Williams, K.L., and R.E. Francois (1991). "Sea ice elastic moduli: Determination of

Biot parameters using in-field velocity measurements." J. Acoust. Soc. Am. (sub-

mitted).

Williams, K.L., G. R. Garrison, and P. D. Mourad (1992). "Arctic sea ice: experimental

examination of growing and newly submerged sea ice with acoustic probing of the

skeletal layer." (In preparation for J. Acoust. Soc. Am.)



APPENDIX

To examine the contribution of boundary terms of the form discarded in Eq. (1) to obtain Eq.

(6), we consider the one-dimensional function [compare with Eq. (5)]

f'(e, KCo, a, h) =-2 iK0e f+Yh()_a -Y e f Ye2IVczx+ yh() Idx, (A1)

0y -a -a -a

where the variables are as defined in the body of the article. Calculating the expectation value of

this expression gives

)--tl + t2 + t3 (A2)

where

tan2e -e-2 -D2o2)'7(3

tl 2, Le cos ( 4 Koaa)e (M)
j2L

(A4)
tan 0 a- D (a - _x2 D (-a -1') '

2 = OcOs0  sin [2KOa(a-x)]e2Ko 0 (a- dx+ fsin[2yoa(-a-x)]e dx

a-a -a

and
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We are considering backscattering here, where 0 = 00. Also, D1 is the one-dimensional structure

function which can be calculated using the one-dimensional spectrum in Eq. (15), giving

P 3- IDI(x) = r(3-pl) cos C)]t (x2) 2 (A6)

If the first term in Eq. (A l) is discarded, the expectation value in Eq. (A2) is equal to t3, a one-

dimensional version of the term retained in the body of this paper for our theory. Figure Al shows

the relative magnitude of tl, t2, and t3 as T11 is varied. The parameter values are as follows:

x=174.5, a--0.29, and p, = 1.8, which are representative of some of the values we used in this

article. For these near-normal angles, one sees that the boundary term contributions tl and t2 are

indeed small relative to t3 and can be discarded with negligible effect.



Figure Captions

FIG. 1. Elevation view of experimental arrangement for the ice-block experiment per-

formed by Garrison et al. (1991).

FIG. 2. Comparisons of the theoretical and measured target strengths of a circular, air-

filled pan (left panel) and of the theoretical return from a smooth circular disc and indivi-

dual returns measured from the bottom of a submerged cylinder of arctic sea ice (right

panel). Details are given by Garrison et al. (1991).

FIG. 3. Coordinate system for the theory (after Clay and Medwin, 1977).

FIG. 4. "Observed" one-dimensional spectrum of arctic sea ice. The straight-line fit

gives W 1 (,) 
= ri 1 i x P' for T Ih = 0.000168 and p 1 = 1.8.

FIG. 5. Comparison of theoretical calculations of rough-surface form functions (solid

line) and smooth-surface form functions (dotted line) for parameters close to those

observed: r = 1.2557 10- 5 , p1 = 1.8, a = 0.29 m. At f= 20kHz (a), the lobes of the

rough-surface pattern are reduced and the valleys are filled in compared with the

smooth-surface pattern. At 40 kHz (b), there is more smoothing of the rough-surface

form function as incoherent scattering processes become important. At 80 kHz (c), the

return is dominated by incoherent scattering, as evidenced by the absence of a beam
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pattern for the rough-surface case.

FIG. 6. Effect of Tj on the rough-surface form function, with other parameters held con-

stant: C = 24.295, pI = 1.8, f= 20 kHz, a = 0.29 m. This figure shows how an increase in

i", our nondimensional form of the one-dimensional spectral strength, causes a reduction

in the coherent return from a rough surface, as evidenced by the smoothing of the

coherent beam pattern.

FIG. 7. Effect of p 1 on the rough-surface form function, with other parameters held

constant: C = 24.295, TI = 1.2557 -10- 5 ,f= 20 kHz, a = 0.29 m. The general trend is that

for decreasing p I there is an increase in the incoherent contribution to the total back-

scatter, hence a reduction in total average backscatter and in its diffraction pattern. See

the text for details.

FIG. 8. Observations of average reflection coefficients for the ice/ocean interface, as

discussed by Garrison et al. (1990) and references within. The recursion relation (dashed

line) is given by R = 0.45 - 0.18logf, where f is in kilohertz (Francois et al., 1989). Sym-

bols refer to the different transducers used in the experiments.

FIG. 9. Hypothetical sound speed profile used to model the sound speed within the

skeletal layer, i.e., within the slushy ice/ocean interface of first-year arctic sea ice

(Garrison et al., 1991). This profile was chosen to be consistent with observations of
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sound speed within the skeletal layer and to produce a reflection coefficient consistent

with observations (Fig. 10).

FIG. 10. Theoretical reflection coefficient calculated for the sound speed profile shown

in Fig. 9. The parameter values used in Eq. (28) are noted. For low frequencies, the

reflection coefficient is determined by the bulk impedance mismatch (i.e., by the constant

value of the sound speed away from the interface). For high frequencies, the reflection

coefficient is determined by the discontinuity in sound speed at the ice/water interface.

For mid frequencies, there is a transition from one regime to the other.

FIG. 11. Average target strength (solid line) at 20, 40, and 80 kHz predicted by Eqs.

(27) and (28) compared with representative observations by Garrison et al. (1991). The

dotted line shows the smooth surface prediction, with the normal incidence value chosen

to match that of the rough surface predictions. Predicted target strength is displaced to

the left by 0.350 in the first two panels and by 0.200 in the bottom panel. Parameter

values used in the calcuiations are 71 = 3.7679 10-', p, = 1.8, a = 0.29 m, and those

noted in each panel. Both observations and theory show a well-defined beam pattern at

20 kHz, which disappears at higher frequencies. The theoretical predictions do not

succeed in producing predicted average target strengths that come plausibly close to the

individual realizations of target strength: the levels and shapes are too different.

FIG. 12. Predictions of the normal incidence rough-surface form function -- the
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integral in Eq. (27). We vary the frequency ( with a = 0.29 m, with the actual frequen-

cies noted on the figure) and nondimensional parameters p I (the spectral exponent of the

one-dimensional rough surface spectrum) and Tj (the nondimensional rough surface spec-

tral amplitude). The net result is that the rough-surface form function decreases with

combinations ofp 1 and ri that maximize the high wavenumber contributions to the rough

surface statistics, and especially quickly at large acoustic frequencies. In the text, we

describe a way to infer the target strength of large (round) ice block surfaces, given this

figure and knowledge of the rough surface statistics.

FIG. 13. A series of comparisons of predicted target strength at 20 kHz with an indivi-

dual realization of target strength. Predicted target strength is displaced to the left by

0.350 . The one-dimensional rough surface spectral exponent p I and nondimensional

spectral strength Ti are varied in the theory to infer candidate rough surface spectra that

would correspond with the observations of target strength. Constant parameters are = =

24.295 and a = 0.29 m. The reflection coefficient, 0.2128, is chosen from the parameteri-

zation in Fig. 8.

FIG. 14. As in Fig. 13, for 80 kHz, = 97.159, a = 0.29 m, and a reflection coefficient

of 0.1968, twice the value given by the parameterization of Fig. 8. Here the predicted

target strength is displaced to the left by 0.200. Unlike the 20 kHz case, these comparis-

ons of average target strength with an individual realization of target strength more
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strongly constrain plausible (p 1 ,TI) pairs.

FIG. 15. Data from one observation of the rough surface spectrum of a piece of unde-

formed arctic sea ice, its match with a one-dimensional rough-surface power law spec-

trum (the upper line) and our prediction of the one-dimensional rough-surface power law

spectrum based upon analysis of a different piece of ice.

FIG. 16. Final comparison of predicted average target strength (solid line) and indivi-

dual realizations of target strength (squares), as a function of frequency. The dotted line

shows the smooth surface diffraction pattern, with a normal incidence level set to match

the predictions. Predicted target strength is displaced to the left by 0.35' in the first two

panels, and by 0.200 in the bottom panel. The theoretical inputs are T, = 3.7679 •10-, pI

= 2.8, a = 0.29 m, and those noted on the figure. The reflection coefficients were chosen

to bring the normal incidence, average target strength prediction in line with the observa-

tions. The spectral strengths and exponents were chosen to match the trends in angular

dependence, specifically the smoothing of the smooth surface diffraction pattern with

increasing frequency.

FIG. 17. Predicted sound speed profile within the skeletal layer of the ice, chosen to

produce the hypothetical frequency-dependent reflection coefficient shown in Fig. 18

that matches the model inputs used in Fig. 16. This is a prediction, subject to the caveats

noted in the text, for the sound speed profile within the ice blocks used in the experiments
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of Garrison et al. (199 1). This profile has the same overall structure of the average sound

speed structure inferred in Fig. 10 from average reflection coefficients, especially the

acoustic thickness of the skeletal layer of the ice.

FIG. 18. Predicted frequency-dependent reflection coefficient consistent with the sound

speed structure shown in Fig. 17, calculated using the theory of Brekhovskikh (1980)

(see text for details).

FIG. Al. Comparison of the relative contributions of the boundary terms (tl,42) and

the term (t3) analogous to the one retained in Eq. (6). The parameter values used are as

follows: xo = 174.5, a = 029, and p I = 1.8, with "j chosen to bracket the value given in

Fig. 4.
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