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Abstract

One can extract both the existence and nature of resonances on elastic shells 1'- direct measurement of surface
vibrations or one may infer this information by examining various aspects of far field scattering via back scattered
echo's and residual bistatic angular distributions. The origin of the inferential method is contained in the
prodigious work of Uberall 1,2 over the past decades. In this study the later technique is taken and an analysis
for recently studied resonances is presented. Use is made of the recently formulated acoustic background for
elastic shells3 -5 which makes it possible to examine residual back scattered echo's characterized by pure
resonance effects. One observes the lowest order symmetric and antisymmetric model or Lamb resonances as well
as water borne and pseudo-Stoneley resonances 6 and the higher order Lamb modes Ai and Si where i=1,2,3...
Use of partial wave analysis will be made to investigate several relevant cases which infer the nature of the
resonances.

Introduction

A direct approach advocated by Hickling 7 to examine the nature of resonances pertains to measurement of the
vibrations on the surface of an object. Such measurements are generally not feasible especially for remote targets
so that a systematic method has been worked out thst enables researchers to infer information from certain features
fhrn the far field scattered signal. Our aim here is to discuss some of the methodology used to extract information
concerning resonances and in particular to discuss observations of recently studied phenomena. A discussion of a
resonance scattering theory in the time domain 8 ,9 is outlined since we will make use of it in what follows. The
torect acoustical background for an elastic shell has been developed 3 -5 and it now allows one to make proper use
of partial wave analysis to determine the nature of specific resonances alfd so a limited discussion of the new
ackground is presented here with examples. A partial wave analysis is then used to interpret the resonances. We

will focus on water borne resonances observed at coincidence frequency (pseudo-Stoneley resonances) both in the
trne and frequency domains and on other kinds of water borne waves that occur on elastic shells particularly at
higher frequencies. We will emphasize the pseudo-Stonely resonances which are narrow in ka space and occur
ver a limited frequency region about coincidence frequency, the point at which the flexural resonances begin to
mnifest themselves. The flexural resonances are very broad and fairly weak at inception though they become
1tOwer and increase in magnitude with increasing frequency. We illustrate, in addition, that there are also other

eaer bome waves that increase in importance with increasing frequency and are also more significant for lower
'Mtmial densities and thinner shells.

T e correct acoustical background for elastic shells
h several works Uberall and colleagues 1,2 determined that in the absence of a resonance an elastic solid behaves
4k' a rigid scatterer. This was referred to as the background for the elastic solid. Subsequently Uberall et.
l 0,11 employed that background for elastic shells although such a choice is not in general adequate. It has been
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demonstrated that for shells a rigid background is adequate for high frequencies while a soft background is

adequate for very thin shells at the lower frequency end.12, 1 3 However, for a large number of circumstances,
neither is adequate. The correct background for shells has recently been published3 -5 and is based on
implementing relevant conservation principles, use of entrained mass and a postulate that determines the surface
displacement on a shell in the absence of a resonance. We will demonstrate the effectiveness of the new

background for an Aluminum shell of 2% thickness calculated for a ka from 0 to 120. Fig. 1 a illustrat.., the back

scattered response for the shell. Fig. lb is the response minus a soft background which is a reasonabie

background for the very low frequency region but inadequate otherwise. Fig. lc is the response minus the rigid

background which is never very good in terms of isolating the resonances though it improves with increasing

frequency. Finally, the new background is illustrated in Fig. Id and is clearly very good through out the

frequency range. in the figures there is a large return centered about ka=72. This is the region about coincidence

frequency. In the next section we will use a partial wave analysis for a similar scatterer to show the presence of

two types of waves.
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Fig. Ic Backscatter minus rigid background. Fig. Id Backscatter minus new background.

Partial wave analysis

If one subtracts the correct background from the elastic response then by definition one is left with thl
resonance response. Resonances excited on bodies of canonical shape usually correspond to circumf
excited waves which for spheres have a unique wave number. To be sure, this fact can be obscured)3'
example, broadly overlapping partial waves; but none the less by plotting the residual partial wave
which is here referred to as a partial wave analysis-can be very revealing. There are two ways to perfoclti
wave analysis: one can fix the mode number N and plot the residual response with respect to ka. On the
hand one can fix ka and plot the partial wave form function with respect to mode number N. The fir
approaches is the most commonly used but it will be demonstrated that the second approach ofMN

powerful interpretative tool. The second approach will be referred to as a full partial wave analysis (rZ~

distinguish it from the first case and because it involves all the partial waves for any fixed value of kl
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examine back scatter signals from a 2.5% thick steel shell for ka=20 to 60. Fig. 2a illustrates mainly the regionabout coincidence frequency centered about ka=44. We can better understand what is happening be subtracting thenew background to leave Fig. 2b which illustrates a series of spikes as well as what appears to be an envelop ofsome sort. We can determine what is happening be performing a FPWA at one of the lower spikes at Ka=3 1, anintermediate value at ka=37 and a higher value at ka=51. The analysis is illustrated in Fig. 3a, 3b, and 3crespectively. In each of the figures we see the presence of two waves. In the lowest two cases we observe a sharpwell defined subsonic wave, and a weak broad sonic wave. Since we know that this takes place at aboutcoincidence we infer that the broad wave represents the inception of a flexural resonance. We know from
scattering from flat plates evacuated on one side and fluid loaded on the other that water bome waves (subsonic)exist at coincidence frequency and are referred to as Stoneley wavesl 5 . Thus we infer (in analogy with the flatplate case) that that subsonic sharp peak is associated with a Stoneley wave on a flat plate and thus is a pseudo-Stoneley resonance. We see from Fig. 3c that at some point the waves seem to merge but actually what happens isthat the pseudo-Stoneley wave dissipates as it reaches the speed of sound of the fluid and another type of waterborne wave begins to grow and to maintain prominence with increasing frequency. We will discuss the casebelow. We can also perform a study of the phase velocities of the two waves. The results are illustrated in Fig.4(associated with the pseudo-Stoneley resonance) and Fig. 5 (the phase velocity associated with a flexuralresonance). Note that the pseudo-Stoneley wave is of limited range and is mainly subsonic.
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Time Domain Resonance Scattering Theory

The partial wave series that emerges from normal mode theory for separable geometres can be represented in

distinct partial waves or modes. It has been shown1.2 that a representation due to a distinct modein) can be
written in the form

(r) 1 (r) (r)
2 2- n )nn

fn(e)= -e ( +e 'n Sin=n)w (I

1 (r)
where X = ka, X n is the nth resonance and (I)n the half -width

( ) h(2)'(W

Where . - h n(x)

Here, the factor 2n+ I is absorbed in the expansion coefficient. For the pulse form a continuous wave ( cw ) ping

is used which corresponds to a very broad frequency range. For each tune domain modal component one has tna:

S1 (r) I (r)
Re J "d= 27E(-)r SintXn s)e - n(2)R "tn _ixsd x  1 (r) tr . - )sF n_, (r)+ i .(r) X )F Xtn i 2

X-X, +(7)rn,

That is, at a resonance the time domain solution is simply the product of the half-width times a sinuosoidal
function times an exponential damping factor. From the time domain solution for a nest of resonances ( N-m for
a cw ping. one obtains the form

_ I (r)
p(s) 2,t __ ,, ,m(.),Sn(r )s ) s T(3)

n = m

The remaining contributions from backscatter ar small due to phase averaging.

It is assumed that calculations are performed in a resonance region for which the resonance widths are fairh
constant and the resonance spacing is fairly uniform8.9 . This assumption leads to the important expression

P(s) 2n2M (Sin (XTS) JCos(AzX s / 2 ))M e-r (4)

(r) I n + 2M
where Xave 2=  I

Here one sets n-m=2M. It is seen from the above expression that the half-width is associated with the decay of dK
response in the time domain solution. When the number of adjacent resonances (2M) sensed increases, the M
signal becomes more sharply defined and the envelope function (the beats) are more enhanced and clearly defield
Finally, for larger carrier frequencies, the signal is more oscillatory within the envelope.

Time Domain Back Scatter at Coincidence Frequency

Flexural waves do not yield resonances front fluid-loaded shells until the phase velocity of the flexural wavCil
about equal to the speed of sound in the ambient fluid. The value in frequency for which this happens is refc-l j
to as the coincidence frequency . however, some subsonic fluid-borne waves produce sharp 8,- 9,1415.

resonances below coincidence frequency. These waves are referred to as pseudo-Stoneley waves and the MeAtd
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resonances as pseudo-Stoneley resonances.8 , 15 The pseudo-Stoneley resonances are well defined in partial
wave space: they usually correspond to only one partial wave mode number and a very narrow half-width with a
dispersive phase velocity, which approaches the speed of sound in the fluid with increasing frequency. The
pseudo-Stoneley resonances diminish in significance at the point where the flexural resonances begin to dominate.
It can be determined that a phase change occurs in the pressure field in the transition region from subsonic to
supersonic. This change accounts for the envelope of the resonance curve at coincidence frequency where the
waves are in phase until coincidence and are out of phase afterwards. Our interest here is in examining the time
domain response, since one expects the conditions previously described to be partially met over a broad
frequency range and thus to yield a strong coherent response with a carrier frequency in the neighborhood of the
frequency at coincidence. Accordingly, the case of cw pings for two examples - for which coincidence
resonances are expected to arise - is examined. This is certainly suggested by the strong responses in Figs. 6b
and 7b at the ka values 113 and 87, respectively, for steel and WC. Further, in this analysis the Mindlin-
Timoshenko 16 thick plate theory is used to determine the value for which the flexural phase velocity will equal
the speed of sound in water. The phase and group velocities are determined from flat plate theory which proves to
be quite reliable in predicting the phase velocity for the curved surfaces of the spheres at coincidence frequency.

The time domain calculations are now examined. The first example is a steel shell of 1% thickness. In this case a
well-defined envelope (illustrated in Fig. 6a) with pronounced oscillations within the envelope is consistent with
Eq. 4. The enhancement due to the factor 2M is obvious. The group velocity can be obtained from the peak-to-
peak distance of the adjacent envelopes. The result leads to a value of 2.23 kin/sec. Both flexural and pseudo-
Stoneley resonances compete in this region. A mixture of pseudo-Stoneley waves, as well as flexural waves must
be leaking into the fluid. For flexural waves, the group velocity is 2.53 km / sec at coincidence frequency with a
range between 2.44 and 2.68 km / sec. over the ka range of 100-140, where the strong flexurals are significant. In
that range the phase velocity varies from 1.37 to 1.58 kin/sec. The values of the extracted group velocity does not
agree well with the flexural group velocity ; the discrepancy is 12%. This variation suggests that in the time
sequence the flexural resonances are of little importance for the time sequence presented here. The group velocity
of the pseudo-Stoneley waves for this case has been determined 14 to be 2.16 km / sec based on plate theory. The
phase velocity is in the range from 88% to 98% of the speed of sound in the fluid. This value of group velocity is
%ithin 3% of the extracted value from the time domain solution. Moreover the pseudo-Stoneley resonances have
very narrow widths while the flexural resonances are quite large. The conditions in the previous section would
indicate that the flexural resonances would rapidly dampen due to the large half-widths while the pseudo-Stoneley
resonances would attenuate slowly in time. Thus, based on the similarity of the extracted group velocity and that
of the pseudo-Stoneley wave and the conditions in the previous section on level widths, one may conclude that

I the time domain calculations in Fig. 6a represent pseudo-Stoneley resonances. A similar argument holds for WC
for Fig. 7a.

%+,p h V.ht% VS Ka Phase ,elocity VS ha

, ... ...

Fig. 4 Phase velocity for pseudo-Stoneley resonance. Fig. 5 Phase velocity for flexural resonance.

re Water borne Waves

'k above analysis dealt with pseudo-Stoneley waves. Therc is another phenomenon due to waves that have
414 velocities that correspond to about the speed of sound in water. They are not. however, sharply defined in
'tial wave space, nor are they associated with the flexural wave at coincidence frequency. They are associated

1Lh the density of the material, and the thickness ( really just the mass of the target ) and the frequency. Their
l Vmtance increases with frequency and they do not manifest themselves as sharp resonances in the form function
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but rather wash-out other resonances such as the SO and A0 resonances. Thus for light material and thin shells
such as Aluminum and at high frequency one does not observe sharp resonances due to this wash out effect. Figs.
8 and 9 illustrate this effect in partial wave space for Aluminum of 2.5%, and an Aluminum shell of 5% at a ka of
250. It is clear that there is a prominent contribution in each case corresponding to a phase velocity equal to the
speed of sound in water ( it is centered about 250 indicative of a slightly subsonic wave). The other peaks
correspond to the Lamb waves. Clearly, the effect is more pronounced for thinner (lighter materials) shells. In
Fig. 10 we illustrate a plot of the phase velocity of this wave for the 5% steel case. An extensive study of-this
phenomena is to be presented in a future work including the sensitivity to material properties and the overall effect
on the form function.

(b) (a)
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Fig. 6 Scattering from 1% steel shell a) Time domain,
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Fig. 7 Scattering from 1% WC shell a) Time domain,

Conclusions

We have used the new acoustic back ground for an elastic shell, partial wave analysis and a time domain version
of resonance scattering theory to discuss several interesting resonances recently under study. One can see how use
of these tools along with analogies with flat plate results enable one to infer the nature of such complicated
phenomena. The fact that several competing events can occur in the same frequency region perhaps renders the
direct measurement of surface vibrations less useful then an inferential approach. On the other hand an inference
does not guarantee that that inferred is always the correct interpretation.
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Fig. 9 Full partial Wave Analysis for 5% Aluminum Shell.

Piase \ elocity VS. Ka

) . a.- NJ i, ,

Fig. 10 Phase velocity for pure water borne resonance.
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