PL-TR-92-2110(I)

DATA TO TEST AND EVALUATE THE PERFORMANCE OF NEURAL NETWORK ARCHITECTURES FOR SEISMIC SIGNAL DISCRIMINATION

Thomas J. Sereno, Jr. Gagan B. Patnaik

Science Applications International Corporation 10260 Campus Point Drive San Diego, California 92121

27 September 1991

Scientific Report No. 1 (Volume I)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 $(2, \frac{1}{2})$

PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

AD-A254 413

SPONSORED BY Defense Advanced Research Projects Agency Nuclear Monitoring Research Office ARPA ORDER NO. 5307

MONITORED BY Phillips Laboratory Contract No. F19628-90-C-0156

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ

Contract Manager Solid Earth Geophysics Branch Earth Sciences Division

JAMES F. LEWKOWICZ

Branch Chief Solid Earth Geophysics Branch Earth Sciences Division

DONALD H. ECKHARDT, Director Earth Sciences Division

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB, MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

REPORT DOC	REPORT DOCUMENTATION PAGE					
collection of information, including suggestions for re Davis Highway, Suite 1204, Arlington, VA 22202-4302	Inducing this burden, to Washington Headq , and to the Office of Management and Bu	uarters Services, Directorate fo dget, Paperwork Reduction Proj	roing this burden estimate or any other aspect or this r information Operations and Reports, 1215 Jefferson ect (0704-0188), Washington, DC 20503			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 27 September 1991	3. REPORT TYPE AN Scientific Rep	D DATES COVERED			
 4. TITLE AND SUBTITLE Data to Test and Evalua Network Architectures 6. AUTHOR(S) Thomas J. Sereno, Jr Gagan B. Patnaik 	te the Performance o for Seismic Signal D	f Neural iscrimination	5. FUNDING NUMBERS PE 61101E PR 9T10 TA DA WU AA Contract F19628-90-C-0156			
7. PERFORMING ORGANIZATION NAME Science Applications Int 10260 Campus Point Drive San Diego, CA 92121	(S) AND ADDRESS(ES) ernational Corporati	on	8. PERFORMING ORGANIZATION REPORT NUMBER SAIC-91/1236			
9. SPONSORING/MONITORING AGENCY Phillips Laboratory Hanscom AFB, MA 01731-50	NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER PL-TR-92-2110 (I)			
Contract Manager: James 11. SUPPLEMENTARY NOTES	Lewkowicz/GPEH					
12a. DISTRIBUTION/AVAILABILITY STAT Approved for publ Distribution unli	'EMENT ic release; mited		126. DISTRIBUTION CODE			

13. ABSTRACT (Maximum 200 words)

This report describes a data set that was developed to test and evaluate the performance of neural networks for automated processing and interprepation of seismic data. This data set may also be valuable for many other studies related to seismic monitoring of nuclear explosion testing at regional distance. It includes waveform and parametric data from 241 regional events recorded by the short-period elements of the NORESS and ARCESS arrays in Norway (33 channels/array). The waveform data are stored in SAC binary format, and the parametric data are stored in ASCII files. The event epicentral distances are 200-1800 km, and the event Lg magnitudes are approximately 1.5-3.2. Most of the events are mining explosions in western USSR, Sweden, and Finland. However, 18 of the events are earthquakes, and 22 are presumed underwater explosions. Detailed documentation has been developed for each event, and is included in eight separate database reports.

14. SUBJECT TERMS			15. NUMBER OF PAGES		
Neural networks	Regional	seismology	64		
Seismic database	-		16. PRICE CODE		
NORESS/ARCESS					
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT		
Unclassified	Unclassified	SAR			
NSN 7540-01-280-5500		S	tandard Form 298 (Rev. 2-89)		

Standard Form 298 (Rev. 2-89 Prescribed by ANSI Std. 239-18 298-102

Table of Contents

1. INTRODUCTION	1
1.1 Project Objectives	1
1.2 Current Status	1
1.3 Outline of the Report	2
2. DATA SET #1	3
2.1 NORESS/ARCESS Arrays	3
2.2 Regional Events	3
2.2.1 Selection Criteria	3
2.2.2 Event Description	8
2.3 Data Exchange Format	20
2.3.1 Parametric Data	20
2.3.2 Waveform Data	22
2.3.3 Database Reports	25
3. SUMMARY	35
ACKNOWLEDGMENTS	35
REFERENCES	37
	_

iii

Acces	sion For	1. A.						
NTIS	GRA&I							
DTIC	TAB							
Unann	ounced							
Justi	fleation							
By D1str	By Distribution/							
Aval	ladility (Codes						
diae A-1	Avail and Special	/0 F						

1. INTRODUCTION

1.1 Project Objectives

The objectives of this two-year study are:

(1) Assemble three data sets to be used to test and evaluate the performance of neural networks for automated processing and interpretation of seismic data (Table 1).

Table 1. Seismic Data Sets for the DARPA Neural Network Program

Data Set	Description
Data Set #1	Data from approximately 300 events to develop and train neural networks to perform seismic data processing and interpretation tasks such as automated phase association, onset time estimation, typical and atypical event recogni- tion, and event identification [LaCoss et al., 1990].
Data Set #2	Data from approximately 30 events to test the response of the neural networks to <i>novelty</i> signals. These data are recorded at the same stations as the events in Data Set #1, but are from different source types.
Data Set #3	Data from approximately 300 events to test the generality and adaptability of the neural networks. These events are recorded by stations in a different geologic environment than the stations used for Data Set #1.

These data sets are to be provided to a group at *MIT* Lincoln Laboratory who is developing and testing neural networks for the seismic application of the DARPA Neural Network Program.

(2) Evaluate the results of the neural network program in the context of monitoring nuclear explosion testing.

1.2 Current Status

Much of our effort during the first year of this project was on the development of Data Set #1. This data set consists of short-period waveforms and parametric data from 241 regional events recorded by the NORESS and ARCESS arrays in Norway. Data Set #1 also includes parametric data from 249 other events (e.g., arrival times, amplitudes, polarization attributes, etc) recorded at NORESS and ARCESS during a continuous 10-day period. The delivery of this data set to *MIT* Lincoln Laboratory was completed in March, 1991 (the total data volume is about 1.2 GBytes). Since their project began several months before ours, we also provided them with 3-

component waveform data recorded by the center element of the NORESS array from 73 regional events that we assembled under a separate DARPA contract. These data were delivered to *MIT* Lincoln Laboratory in March 1990.

We recently began to assemble Data Set #2 which will consist of about 30 earthquakes recorded at NORESS and ARCESS (only 18 of the 241 events in Data Set #1 are earthquakes). We expect to deliver this test data set to *MIT* Lincoln Laboratory in September, 1991. Data Set #3 will probably consist of events recorded by regional arrays in Germany, GERESS, and Finland, FINESA. Data from these arrays are currently being archived at the Center for Seismic Studies (CSS). We will assemble this data set during the second year of our project.

We have several concurrent efforts directed towards the evaluation of neural network techniques in the context of monitoring nuclear explosion testing. First, we plan to integrate the neural network developed by *MIT* Lincoln Laboratory for automated regional phase association into the *Intelligent Monitoring System (IMS)*. *IMS* is a DARPA-sponsored computer system for automated processing and interpretation of seismic data recorded by arrays and single stations [*Bache et al.*, 1990, 1991]. This system has been in operation at *CSS* since October, 1990 (its predecessor, the *Intelligent Array System*, has been in operation since October, 1989). The neural network developed by *MIT* Lincoln Laboratory assigns a regional phase identification (e.g., Pn, Pg, Sn, Lg, or Rg) to detections registered at array stations. We will integrate this neural network into *IMS*, and compare its performance to that of the current rule-based expert system using data recorded at NORESS and ARCESS. *MIT* Lincoln Laboratory sent us their software module in August, 1991. We are currently testing this module, and we will begin system integration within the next few weeks.

Another important problem in automated seismic data interpretation is initial phase identification (P or S) using data recorded by 3-component stations. We developed neural networks for this application, and trained and tested them on data recorded by the 3-component elements of the NORESS and ARCESS arrays, and on data recorded by the 3-component IRIS stations in the Soviet Union. This effort is described in detail in Volume II of this report [*Patnaik and Sereno*, 1991b]. We are integrating this neural network into *IMS*, and we will compare its performance to that of the rule-based system using data recorded by the IRIS stations.

1.3 Outline of the Report

This annual report is divided into two separate volumes. Volume I (this document) is a description of Data Set #1 that was provided to *MIT* Lincoln Laboratory for their neural network study. Volume II presents the results of our own neural network application to the problem of initial phase identification using polarization attributes derived from 3-component data [*Patnaik and Sereno*, 1991b].

The main technical section of Volume I is Section 2. Section 2.1 describes the NORESS and ARCESS arrays and instrumentation. Section 2.2 gives a description of the regional events in Data Set #1 (e.g., location, magnitudes, distances, and identification). The exchange format for waveform and parametric data is described in Section 2.3 and Appendix A. Section 3 summarizes Data Set #1.

2. DATA SET #1

Data Set #1 includes single-channel waveform data, beams, and parametric data from 241 regional events recorded by the NORESS and ARCESS arrays in Norway. The purpose for assembling this data set is to use it to develop and train neural networks to perform seismic data processing and interpretation tasks. However, this data set may also be useful for many other seismic research applications. Data Set #1 is available at *SAIC*, and the purpose of this report is to describe it in detail.

2.1 NORESS/ARCESS Arrays

The NORESS and ARCESS arrays in Norway include 25 short-period instruments in four concentric rings with a maximum diameter of 3 km (Figure 1). The array configuration and sampling rate were designed to enhance the detection of regional signals [*Mykkeltveit, et al.*, 1983; *Mykkeltveit and Ringdal*, 1988]. The radius of the inner ring (called the A-ring) is about 150 m. The radii of the B-, C-, and D-rings are 300 m, 700 m, and 1500 m, respectively. The number of sensors on the A-, B-, C-, and D-rings are 3, 5, 7, and 9, respectively. The individual station locations for the NORESS and ARCESS arrays are given in Table 2 (locations are given relative to the reference locations listed at the bottom of this table). Four of the 25 array elements are equipped with 3-component seismometers. These are the center element (A0), and three sensors on the C-ring (C2, C4, and C7). The rest of the array elements only have vertical-component seismometers.

The NORESS and ARCESS data are continuously recorded, and the short-period data are digitized at a rate of 40 samples/s. Figure 2 shows the short-period instrument response. This response applies to all elements of the NORESS and ARCESS arrays. The instrument response is approximately flat to velocity between 2 and 8 Hz. The digitization gain is 10⁵ digital counts/volt.

2.2 Regional Events

This section describes the events in Data Set #1. It gives the event locations, magnitudes, epicentral distances from NORESS and ARCESS, and identifications (e.g., explosion or earthquake).

2.2.1 Selection Criteria

Data Set #1 was developed to support the seismic application of DARPA'S Neural Network Program. The goal of this application is determine whether or not neural networks can improve upon current methods for seismic monitoring of nuclear explosion testing. The emphasis is on low yields, so the primary interest in on regional distances (< 20°). We used data from NORESS and ARCESS for Data Set #1 because these are prototype arrays for regional monitoring, and there is a large database of waveforms and parametric data archived at CSS. The NORESS and ARCESS data are continuously processed by *IMS*, and the results of the automated

Figure 1. The location and array geometry are plotted for the NORESS and ARCESS arrays (Figure provided by Frode Ringdal, NORSAR).

	NOR	ESS			ARC	ESS	
	Elevation	dnorth ¹	deast ¹		Elevation	dnorth ²	deast ²
Station	(km)	(km)	(km)	Station	(km)	(km)	(km)
NRA0	.3020	.0030	.0040	ARA0	.4030	.0010	0003
NRA1	.2910	.1460	.0490	ARA1	.4110	.1600	.0530
NRA2	.3110	1030	.1080	ARA2	.3920	1210	.0770
NRA3	.2960	0300	1430	ARA3	.4020	0300	1490
NRB1	.2990	.3210	.0700	ARB1	.4140	.3360	.0820
NRB2	.3150	.0300	.3340	ARB2	.3970	.0970	.2940
NRB3	.3140	2980	.1430	ARB3	.3760	2690	.1890
NRB4	.2990	2170	2280	ARB4	.3780	2250	2310
NRB5	.2890	.1630	2720	ARB5	.4050	.1580	2830
NRC1	.2990	.6870	.1090	ARC1	.3810	.6900	.0810
NRC2	.3390	.3410	.6030	ARC2	.3950	.3863	.6657
NRC3	.3520	2380	.6470	ARC3	.3760	214C	.6730
NRC4	.3110	6570	.2080	ARC4	.3770	6167	.2287
NRC5	.2990	5690	3960	ARC5	.3740	5380	2960
NRC6	.3030	0480	6870	ARC6	.3950	0810	6830
NRC7	.2750	.5480	4470	ARC7	.3620	.5300	4700
NRD1	.3050	1.4800	.1920	ARD1	.3950	1.4910	.1350
NRD2	.3720	1.0150	1.0980	ARD2	.3660	1.1430	.9720
NRD3	.4530	.0760	1.4930	ARD3	.3310	.1880	1.6510
NRD4	.3790	9010	1.1890	ARD4	.3710	8580	1.1810
NRD5	.3480	-1.4510	.3350	ARD5	.3510	-1.4940	.2330
NRD6	.3520	-1.3260	6810	ARD6	.4130	-1.3470	6130
NRD7	.3370	5660	-1.3680	ARD7	.4130	6070	-1.3600
NRD8	.3010	.4140	-1.3360	ARD8	.3680	.3920	-1.4430
NRD9	.2780	1.2570	8020	ARD9	.3590	1.1730	7780

Table 2. Station Locations

1. Relative to the reference location: 60.735°N, 11.541°E.

2. Relative to the reference location: 69.535°N, 25.506°E.

Figure 2. The short-period instrument response is plotted for NORESS and ARCESS.

system are reviewed by seismic analysts. The automated results, the analyst results, and comparisons between them are stored in an on-line relational database at CSS. Thus, these data provide an excellent opportunity to identify deficiencies in the current automated system, and to improve its performance.

MIT Lincoln Laboratory defined several goals for improving the automated monitoring system using neural network techniques. These include regional phase identification, onset time estimation, typical and atypical event detection, and event identification [LaCoss et al., 1990; LaCoss et al., 1991]. Based on these goals, they requested eight separate waveform databases for Data Set #1. These are listed as DB1-DB3 in Table 3. They also requested a separate parametric database (without waveforms) for 10 days of continuous operation. This is listed as DB9 in Table 3.

		Number o	of Events
Database	Description	Requested	Provided
DB1	High-Quality Regional Analyst-Corrected	50	50
DB2	High-Quality Regional Analyst-Accepted	50	20
DB3	Random Selection of Analyst-Corrected	50	50
DB4	Random Selection of Analyst-Accepted	50	N/A
DB5	Random Selection of Analyst-Rejected	25	N/A
DB6	Non-event (Noise) Detections	40	N/A
DB7	Teleseisms	25	N/A
DB8	Unusual Events	10	21
DB9	10-days of Parametric Data	N/A	249†
DB10	High-Quality Regional Analyst-Corrected	N/A	50
DB11	High-Quality Regional Analyst-Corrected	N/A	50

Table 3. Data Set #1

+ Waveforms were not provided.

Data Set #1 was developed on the basis of this request. It includes waveforms and parametric data from the *Intelligent Array System* (*IAS*) before and after analyst review (these data are described in the next section). *IAS* was the predecessor to *IMS*. It was specifically designed for the two-array network of NORESS and ARCESS, and it did not attempt to locate teleseismic events. *IMS* currently processes data from a network of four European arrays, and two 3-component stations in Poland (3component stations in the Soviet Union and China will also be added to this network). *IMS* locates both regional and teleseismic events, and its results are similar to those from *IAS* for events that are at regional distance from either NORESS or ARCESS.

We used data from *IAS* rather than the current *IMS* because *IMS* was not operational until November 1990, which was two months after the start of our contract. Also, the rules used in its knowledge-based system were modified frequently to improve performance until approximately April, 1991. However, results from *IAS* between October, 1989 and October, 1990 are archived at CSS. The only disadvantage of using the *IAS* data is that waveforms were not saved for all events. The criteria for saving waveforms varied slightly over time, but they were based primarily on the event location, number of detecting stations, and event magnitude. Because waveforms were saved for only selected events, we were not able to satisfy all the requests in DB1-DB8. Therefore, we added two additional databases, DB10 and DB11.

The criteria for selecting events for Data Set #1 varied for each database in Table 3. For all databases, we required event latitudes to be between 50° and 80°, and longitudes to be between -10° and 40° (e.g., regional distance from NORESS or ARCESS). We also required that the waveforms be saved on-line at CSS. For DB1, DB10, and DB11 we require "high-quality" events for which the results of the automated system were corrected in some way by an analyst (e.g., retiming a detection, renaming a phase, etc). We define "high-quality" as events detected at both arrays whose locations are constrained by at least 3 defining phases. In addition, for DB1 we required that all events be detected after January 1, 1990 to ensure that they were reviewed by the same (NORSAR) analyst. This constraint had to be relaxed to get enough events for DB10 and DB11. The same criteria were used for DB3 (random selection of analyst-corrected events) that were used for DB1, except there were no constraints on the number of detecting stations or the number of defining phases (e.g., the "high-quality" constraints).

The original request for DB2 was 50 high-quality events for which the results of the automated system were accepted by an analyst. There are very few of these events with waveforms saved in the IAS database, so we were forced to relax the high-quality constraint. Instead, we provided all analyst-accepted events with waveforms within our latitude and longitude bounds (20 events). Of course, this meant that there were no events to provide as DB4. The request for DB5 was for events that were formed by the automated system, and then rejected by an analyst. There are rejected events in the IAS database, but waveforms are not saved. Therefore, we could not provide DB5. DB6 and DB7 are requests for noise and teleseismic detections, respectively. A detection is labeled "N" for noise by IAS if the phase velocity estimated using a broadband f - k method is less than 2.8 km/s, and it is not associated with an event. Similarly, a detection is labeled "T" for teleseism by IAS if the estimated phase velocity is greater than 14 km/s, and it is not associated with a regional event. Using these definitions, there are 50 "teleseismic" detections and 142 "noise" detections in the other waveform databases in Table 3. However, these labels are based only on the estimate of phase velocity, and they have not been validated by an analyst.

The request for DB8 was for 10 unusual events. For this, we gathered data from multiple-event sequences that include two or more events with origin times that are within 60 s of each other. These events produce mixed signals (e.g., interleaved phases) at either NORESS or ARCESS, or both. This database consists of 21 events in 10 multiple-event sequences. The only other criteria applied to the selection of these data were the latitude and longitude bounds.

2.2.2 Event Description

Table 4 lists the 241 events in Data Set #1 for which waveforms were provided. The first column lists the *orid*, which is a unique positive integer that identifies each event in the CSS database [Anderson et al., 1990]. The second column lists the

orid	Database	Orig	in Time	Latitude	Longitude	ML	nsta ¹	ndef ²	Event Type
191531	DB1	90 01 24	16:21:47.014	72.27	-,57	2.09	2	3	quake
191546	DB1	90 01 25	05:09:37.277	75.27	25.91	2.39	2	3	quake (H)
191548	DB1	90 01 25	09:49:22.456	68.12	32.83	2.21	2	4	blast (H)
191552	DB1	90 01 25	12:02:30.661	59.47	28.41	2.31	2	5	blast (H)
191571	DB1	90 01 26	10:01:19.878	64.73	30.91	2.23	2	6	blast (H)
191576	DB1	90 01 26	12:04:55.867	59.40	28.58	2.17	2	5	blast (H)
191764	DBI	90 02 02	08:42:06.695	67.70	33.88	2.23	2	7	blast (H)
192008	DBI	90 02 08	14:31:39.935	59.50	26.57	2.32	2	6	blast (H)
191945	DBI	90 02 09	09:32:50.929	67.64	33.72	2.66	2	4	blast (H)
101054	DBI	90 02 09	12:27:59.740	60.96	29.54	2.33	2	4	blast
1 102003	DBI	90 02 14	10:16:05.013	61.70	31.37	2.19	2	6	blast (H)
102387	DBI	90 02 23	11.16:04.823	61.67	31.72	2.28	2	6	blast (H)
102300		90 02 23	12:05:06 429	61 13	29.10	2.89	2	5	blast (H)
102671		90 03 05	12:03:00:125	55 11	30.75	2.31	2	5	expl
192071	ופס	90 03 03	14.34.31 648	60.58	29.60	2.46	2	5	blast (H)
192705		00 03 23	12.01.52 778	50 31	29.00	2 19	2	6	blast (H)
193041		90 03 23	15.28.54 658	72 51	4 82	2.62	2	4	quake (H)
1930/8		90 03 24	22:21:05 640	54 30	13.73	2.52	2	5	quake
193185		90 03 28	12.41.10.653	54.35	13.60	2.50	2	4	expl
1932/9		90 04 02	13.41.10.033	50 22	28.30	2.02	2	4	blast (H)
19/408	DBI	90 04 09	12.02.20.267	50.60	28.50	1.05	2	4	blast (H)
19/4/4	DBI	90 04 09	13:02:30.307	J9.09	24.70	2.14	2	6	blast (H)
19/517	DRI	90 04 11	10:21:17.110	J9.20	23.30	2.14	2	6	blast (II)
197522	DBI	90 04 11	11:00:23.108	39.25	26.01	2.45	2	6	blast (II)
197535	DBI	90 04 11	12:48:42.043	69.33	33.41	2.57	2	5	blast (H)
197538	DB1	90 04 11	13:46:06.790	60.83	29.37	2,45	2	5 4	blast (II)
197576	DB1	90 04 12	11:03:37.894	63.08	28.13	1.89	2	0	Diast (H)
197579	DB1	90 04 12	12:09:06.463	69.21	35.28	2.78	2	5	blast (H)
197628	DB1	90 04 14	10:35:18.945	68.11	32.79	2.22	2	4	blast
197712	DB1	90 04 19	11:26:55.068	57.23	11.74	1.24	2	4	expl
197742	DBI	90 04 20	08:57:45.452	54.67	19.72	2.51	2	4	expl
197762	DB1	90 04 20	12:23:40.040	59.82	28.69	2.32	2	4	blast (H)
197764	DB1	90 04 20	13:29:55.864	61.87	30.98	2.36	2	5	blast (H)
197765	DB1	90 04 20	13:56:21.070	61.41	35.35	2.38	2	6	blast
197868	DB1	90 05 02	10:29:15.125	55.54	15.82	2.13	2	3	expl
198004	DB1	90 05 09	16:25:44.411	57.28	7.98	2.08	2	3	expl
198020	DB1	90 05 10	11:31:02.907	62.53	18.32	1.67	2	7	expl
198023	DB1	90 05 10	11:53:46.825	68.02	32.99	2.16	2	4	blast (H)
198052	DB1	90 05 11	17:06:24.382	65.84	25.37	1.42	2	5	blast (H)
198053	DB1	90 05 11	17:07:24.053	67.57	32.90	1.64	2	4	blast (H)
198143	DB1	90 05 15	13:14:50.488	59.37	28.67	2.33	2	6	blast (H)
198261	DB1	90 05 19	20:40:12.834	67.63	34.05	2.37	2	7	blast (H)
198271	DB1	90 05 20	10:23:37.742	55.94	16.27	2.13	2	4	expl
198303	DB1	90 05 21	11:30:47.309	58.74	18.81	2.54	2	6	expl
198384	DB1	90 05 22	09:39:22.879	59.57	22.60	1.43	2	6	blast
198447	DB1	90 05 23	13:37:47.510	69.29	34.85	2.34	2	5	blast (H)
198461	DB1	90 05 23	18:55:26.452	58.16	10.56	1.99	2	3	expl
198462	DBI	90 05 23	19:09:30.078	58.20	10.50	1.00	2	3	expl
198523	DB1	90 05 26	10:06:59.051	68.10	33.79	2.10	2	5	blast (H)
198526	DBI	90 05 26	11:13:00.712	67.62	30.96	2.23	2	6	blast (H)
198546	DB1	90 05 27	21:49:30.059	74.54	9.59	3.21	2	4	quake (H)
103776	DB2	89 10 03	12:29:34.655	63.67	24.92	1.64	2	3	expl

Table 4. Events With Waveforms in Data Set #1

orid	Database	Orig	gin Time	Latitude	Longitude	ML	nsta ¹	ndef ²	Event Type
105012	DB2	89 10 04	12:20:54.732	69.24	30.51	1.92	1	2	blast (H)
105364	DB2	89 10 04	19:19:44.234	69.12	30.23	.38	1	2	blast
117198	DB2	89 10 12	11:36:51.780	61.44	30.77	2.41	2	3	blast (H)
118906	DB2	89 10 13	11:25:12.799	77.70	33.39	2.62	1	2	quake
177958	DB2	89 11 21	12:54:42.373	59.67	11.53	.42	1	2	expl
184121	DB2	89 11 24	13:01:27.445	59.50	10.26	.96	1	2	expl
191018	DB2	90 01 07	06:25:03.393	67.62	34.05	.00	2	4	blast (H)
191049	DB2	90 01 11	10:10:01.214	59.50	27.77	.00	2	4	blast
191654	DB2	90 02 02	12:58:12.990	61.21	29.79	2.58	2	6	blast (H)
191749	DB2	90 02 07	07:54:16.686	68.59	25.69	.00	1	2	-
192034	DB2	90 02 15	09:48:04.238	67.98	32.96	.00	1	2	blast
192660	DB2	90 03 11	14:14:32.868	75.31	13.47	.00	2	3	quake
192764	DB2	90 03 14	13:06:13.586	59.59	10.07	.00	1	2	expl
193038	DB2	90 03 23	10:12:38.438	59.11	28.26	2.50	2	3	blast (H)
193094	DB2	90 03 27	13:27:03.441	78.49	9.56	2.58	1	2	quake
197366	DB2	90 04 07	05:23:43.882	76.86	25.05	2.27	1	2	quake (H)
198311	DB2	90.05.23	19:04:24:003	67.74	33.69	1.81	1	2	blast (H)
200143	DB2	90.06.01	12:01:24.068	67.34	34.13	2.15	1	2	blast (H)
200149	DB2	90.06.01	18.30.10.651	67.66	33.50	2.08	1	2	blast (H)
191520	DB3	90 01 24	12:01:54 714	59.64	28.33	2.33	2	6	blast
191526	DB3	90 01 24	12:56:48 450	61 32	28.91	2.54	2	3	blast (H)
101527	DB3	90 01 24	13-31-56 883	61.52	32.24	2.60	2	5	blast (H)
101593	DB3	90 01 24	16.22.03 849	75.10	23.41	1 94	1	2	anake
101670	203	90 01 20	12.02.05.045	59.27	28.41	2 32	2	Š	hisst (H)
101906	280	90 01 30	01.28.32 574	61 1)	26.45	2.52	2	6	anake
101011	283	90 02 04	11.30.32.374	50 33	20.55	2.32	2	6	hlast (H)
101055	283	90 02 08	17.24.47 925	64 78	30.97	2.39	2	6	blast (H)
101097	283	90 02 09	11.04.56 765	50 42	27 13	2.14	2	5	blast (H)
102102	DB3 280	90 02 15	11.24.30.703	50 31	27.13	2.54	2	5	blast (H)
192192		90 02 10	11.34.27.070	50.37	27.30	2.40	2	5	blast (II)
192195	2003	90 02 10	11.30.47.473	57.51	27.34	2.47	2	7	blast (H)
192199	283	90 02 10	12.30.13.032	60.03	29.10	2.01	2	6	blast (L)
192202	2003	90 02 10	12.33.04.283	67.64	23.47	2.51	2	7	blast (H)
192300	2023	90 02 23	10.27.19 170	50 97	19 22	2.72	2	5	Diast (n)
192430	200	90 02 24	19:37:10:179	57 51	10.33	2.93	2	5	expi
192402	2003	90 02 20	20.30.13.030	57.51	20.05	2.00	2	6	quake (II)
192333	נפט	90 02 28	13:30:42.490	50.42	29.03	2.37	2	0 6	blast (LD)
192534	נפע	90 03 01	11.01.56.012	39.42	21.00	2.31	2	6	Diasi (II)
192303	2002	90 03 02	11:01:30.012	07.04	24.08	2.43	2	נ ב	blast (FI)
19238/	UB3 2003	90 03 02	12:00:23.017	01.12 60 AC	27.20	2.34	2	0 6	blact (17)
192452	DBJ		10:47:04.178	57.43 60.40	21.92	2.21	2	נ ב	blast (H)
192454	DB3	90 03 00	11:52:58.664	39,49	21.20	2.39	2	0 2	Diast (H)
192092	DR3	90 03 07	10:24:51.491	07.01	34.03	3.20	1	2	Diasi (M)
192/91	DR3	90 03 14	08:51:32.961	39.30	33.93	2.03	1	4	-
192864	DR2	90 03 15	11:54:23.370	59.18	21.24	2.52	2	0	DIASI (H)
192887	DR3	90 03 16	10:33:27.409	6/.64	35.02	2.90	1	5	DIASL (H)
192926	DB3	90 03 20	1.5: 56: 59.973	59.23	26.94	2.03	2	0	DIASE (H)
192969	DR3	90 03 21	14:15:54.343	61.34	35.17	2.33	I	5	DIASL (H)
193024	DB3	90 03 22	13:21:51.699	60.88	29.10	2.39	2	6	blast
193034	DB3	90 03 23	08:30:23.057	67.60	33.91	2.70	2	7	blast (H)
193156	DB3	90 03 28	10:59:13.988	59.55	27.99	2.19	2	6	blast (H)
193166	DB3	90 03 28	12:00:05.599	59.14	26.89	2.38	2	5	blast (H)
193187	DB3	90 03 29	04:11:18.667	62.07	6.06	2.30	2	7	quake
193201	DB3	90 03 29	11:27:18.825	59.28	27.95	2.37	2	5	blast (H)

_

•

•

orid	Database	Orig	in Time	Latitude	Longitude	ML	nsta ¹	ndef ²	Event Type
193203	DB3	90 03 29	11:31:43.507	61.11	29.97	2.75	2	6	blast
193218	DB3	90 03 30	08:49:01.642	67.64	34.11	2.59	2	6	blast (H)
193222	DB3	90 03 30	10:39:03.617	59.24	27.27	2.23	2	6	blast (H)
193250	DB3	90 03 31	14:15:03.805	61.74	30.80	2.51	2	6	blast
193255	DB3	90 04 01	05:06:31.114	67.56	34.20	2.39	2	7	blast (H)
193266	DB3	90 04 02	09:57:29.106	61.13	30.74	2.12	2	4	blast (H)
193270	DB3	90 04 02	10:31:55.798	61.19	30.72	1.90	2	5	blast
193280	DB3	90 04 02	13:46:23.256	52.86	-4.77	2.61	2	4	quake
193281	DB3	90 04 02	14:03:34.589	54.34	19.77	2.12	2	4	expl
197381	DB3	90 04 03	14:16:33.314	58.28	19.06	1.45	2	3	expl
197382	DB3	90 04 03	14:24:33.159	58.38	19.25	2.61	2	5	expl
107408	DB3	90 04 06	09:45:33.118	59.38	27.44	1.91	2	4	blast (H)
107412	DB3	90 04 06	10:36:01.684	60.01	33.62	2.70	2	3	expl
107412	DB3	90.04.06	10:37:02.280	60.97	29.30	2.45	2	5	blast
107417	003	90.04.06	11:34:29.834	67.79	34.31	1.96	1	2	blast (H)
107432	003	90 04 06	12.20.36.430	64.72	30.85	2.09	2	5	blast (H)
106750	DBS	80 10 04	10.12.40 564	54.71	19.04	2.34	2	3	expl
106762		80 10 04	10.12.40.029	54 61	19.80	2.43	2	3	expl
1100/02	000	80 10 11	06.22.29 539	58 44	18.72	2.51	2	3	expl
119400	2000	80 10 11	06:23:18 152	59 19	18.65	2.46	2	3	expl
121012		89 10 11	14.55.52 442	70.04	23.62	00	1	2	expl
121016		80 10 20	14.55.54 385	70.10	23.56	.00	1	2	expl
121017		89 10 20	14.56.01 685	69.99	23.49	00	1	2	expl
151917		89 10 20	23.33.18 405	67.79	20.93	1.07	1	2	blast
152005		89 11 02	23.33.10.475	67.82	20.95	1 13	1	2	blast
190077		89 11 02	11.03.20.720	58.62	18.66	2 36	2	4	expl
1892//		80 11 21	11.03.57.400	58.68	18.55	2.36	ĩ	3	expl
189330		00 04 11	12.28.07 117	55 77	32.60	2.50	2	4	expl
19/333		90 04 11	12.30.07.117	54.20	30.05	2.09	$\tilde{2}$	5	expl
19/534		90 04 11	12.39.13.714	50.24	27.84	2.05	ĩ	6	blast (H)
19/393		90 04 13	10.10.000	67.16	33.06	2.33	ĩ	2	blast
19/394		90 04 13	10.19.41.000	67.63	33.45	213	2	5	blast (H)
197001		90 04 13	12.50.18 645	67.63	33 01	1 15	2	4	blast (H)
197002		90 04 13	00.58.53 558	59.27	27.95	2 02	$\tilde{2}$	4	blast (H)
197704		90 04 19	10.00.42 828	50.28	27.55	2.02	$\tilde{2}$	4	blast (H)
197/00		90 04 19	11.01.07 880	50 20	28.32	1 97	$\tilde{2}$	5	blast (H)
19/818		90 04 28	11.02.11 118	59.32	20.52	2 14	$\tilde{2}$	6	blast (H)
107520		90 04 20	15-11-20 929	59.21	26.93	2.90	$\overline{2}$	6	blast (H)
110709	DB10	89 10 02	07:40:36 455	59.81	21.86	2.57	$\overline{2}$	6	blast
110/00	DBIO	89 10 11	10.03.05 858	64 73	30.92	2.56	$\tilde{2}$	6	blast (H)
119051		80 10 11	12.20.51 001	61 54	34.63	2.50	$\tilde{2}$	4	blast (H)
123000		80 10 12	14.20.28 606	58.06	19.26	2.12	$\tilde{2}$	4	expl
123713		89 10 12	11.41.20 704	67.68	33 56	2.20	$\tilde{2}$	4	blast (H)
123721	DB10	89 10 13	12.00.25 804	64.83	30.50	2.11	2	6	blast (H)
125/28		89 10 13	10-21-15 181	50 20	27.28	2.62	$\tilde{2}$	ő	blast (H)
125589	עופע 10	07 10 10 90 10 14	12.44.02 741	60 A 1	30.00	2.02	2 2	š	blast (H)
123900	עופע	07 IV IO 90 10 17	12.44.02.741	50 27	25 20	2.02	2	6	blast (H)
12/401		07 IU I/ 20 10 17	1.J.W.+1.001 20.42.09 072	61.05	0 37	2.01	2	4	make (H)
120404		07 10 1/ 00 10 00	20.42.00.7/3	67 66	3 <u>4</u> 19	2.70	2	7	biast (H)
131802		89 IU 20	12.75.27 574	50 / 1	J-1.10 25 22	2.07	ົ້	, 5	hlast (H)
131911	עומע	80 10 20	15.25:32.370	50 55	25.22 26 A7	2.50	ź	ñ	hlast (H)
1340/8	0190	07 IU 24	12.10,33.104	57.33 57.33	20.47 20.46	2.57	2	4	expl
125510	010 חופע	07 10 24 20 10 74	10.03.03.191	57 27	11 60	2.17	2	5	expl

orid	Database	Orig	in Time	Latitude	Longitude	ML	nsta ¹	ndef ²	Event Type
135514	DB10	89 10 26	10:13:57.858	61.19	29.97	2.46	2	6	blast (H)
140720	DB 10	89 10 26	13:50:58.974	60.54	29.63	2.42	2	6	blast (H)
140725	DB10	89 10 26	14:38:21.700	61.56	31.54	2.42	2	6	blast (H)
140759	DB10	89 10 27	11:32:57.358	64.81	30.43	2.36	2	6	blast (H)
140775	DB10	89 10 27	12:50:43.185	69.45	30.88	2.65	2	6	blast (H)
140819	DB10	89 10 28	11:42:52.921	61.85	36.33	2.58	2	6	blast
147829	DB 10	89 11 01	12:25:41.306	59.16	28.09	2.66	2	6	blast (H)
147845	DB10	89 11 01	13:02:59.129	60.93	28.98	2.57	2	6	blast (H)
147846	DB10	89 11 01	13:26:10.027	60.88	29.34	2.68	2	5	blast
147858	DB10	89 11 01	15:59:34.987	61.90	30.79	2.54	2	6	blast (H)
152019	DB10	89 11 03	08:19:34.973	67.68	34.32	2.87	2	7	blast (H)
152059	DB10	89 11 03	13:20:49.061	61.60	25.29	2.35	2	5	blast
152097	DB10	89 11 04	07:39:08.699	67.89	32.30	2.28	2	5	blast
152109	DB10	89 11 04	10:05:21.280	64.78	30.44	2.70	2	6	blast (H)
152944	DB10	89 11 04	12:46:30.901	69.36	30.97	3.03	2	5	blast (H)
152996	DB10	89 11 05	11:05:54.398	59.4 5	27.11	2.22	2	6	blast (H)
153019	DB10	89 11 06	05:58:40.963	67.68	33.56	2.77	2	7	blast (H)
153033	DB10	89 11 06	11:59:14.428	63.09	28.24	2.26	2	6	blast (H)
155511	DB10	89 11 08	22:56:30.837	67.19	20.96	2.27	2	5	blast (H)
160154	DB10	89 11 09	13:28:18.765	59.32	25.21	2.30	2	5	blast (H)
161012	DB10	89 11 09	14:12:21.951	60.59	29.17	2.49	2	5	blast (H)
160940	DB10	89 11 10	07:06:14.404	65.03	26.41	2.02	2	6	quake (H)
160944	DB10	89 11 10	10:42:14.172	59.43	27.27	2.38	2	6	blast (H)
161037	DB10	89 11 10	12:03:11.747	69.43	30.93	2.25	2	4	blast (H)
160949	DB10	89 11 10	12:40:38.302	54.96	16.40	2.46	2	5	expl
161041	DB10	89 11 10	13:43:38.951	59.58	25.36	2.12	2	4	blast (H)
161317	DB10	89 11 11	07:10:27.217	67.63	33.56	2.17	2	6	blast (H)
161049	DB10	89 11 11	08:41:27.120	67.64	33.97	2.52	2	7	blast (H)
172081	DB10	89 11 14	12:00:33.595	61.17	30.06	2.29	2	4	blast (H)
172095	DB10	89 11 14	14:47:22.230	59.48	26.50	2.76	2	6	blast (H)
172363	DB10	89 11 15	12:08:12.985	63.29	27.74	2.15	2	6	blast (H)
175063	DB 10	89 11 16	12:35:06.559	58.93	18.71	2.04	2	5	expl
175305	DB10	89 11 16	14:55:49.832	59.53	27.14	2.24	2	5	blast (H)
177371	DB10	89 11 17	11:00:01.966	64.80	30.72	2.08	2	6	blast (H)
107824	DB11	89 09 29	08:23:16.393	67.53	33.58	2.61	2	5	blast (H)
107849	DB11	89 09 29	12:02:26.738	60.97	29.31	2.87	2	6	blast (H)
107883	DB11	89 09 29	12:30:30.804	61.32	28.77	2.42	2	6	blast (H)
107888	DB11	89 09 29	12:54:34.980	69.40	30.86	2.26	2	3	blast (H)
107890	DB11	89 09 29	13:00:00.756	59.47	26.80	2.54	2	6	blast (H)
107914	DB11	89 09 29	14:13:34.956	59.5 3	24.96	2.30	2	4	blast (H)
108561	DB11	89 09 30	13:10:08.696	67.63	29.84	2.49	2	4	blast (H)
105219	DB11	89 10 03	11:56:42.915	64.16	23.67	2.15	2	4	expl
106770	DB11	89 10 04	11:27:41.636	61.58	30.33	2.29	2	5	blast (H)
106780	DB11	89 10 04	13:16:20.806	55.79	16.75	2.30	2	4	expl
107868	DB11	89 10 05	11:49:15.124	59.46	23.86	2.17	2	4	blast
108213	DB11	89 10 05	14:48:27.340	59.59	26.47	2.54	2	6	blast (H)
111577	DB11	89 10 06	09:05:55.448	67.59	35.01	2.71	2	4	blast (H)
111585	DB11	89 10 06	10:16:39.153	64.77	31.20	2.44	2	5	blast (H)
111787	DB11	89 10 06	11:12:39.704	59.43	27.13	2.71	2	6	blast (H)
111946	DBII	89 10 06	11:42:14.650	67.64	29.85	2.26	2	3	blast (H)
112156	DB11	89 10 06	12:01:19.638	63.24	27.59	2.12	2	7	blast (H)
115620	DB11	89 10 09	16:20:14.188	67.08	21.24	2.02	2	4	blast (H)
116470	DB11	89 10 10	13:25:58.927	59.02	25.52	2.81	2	5	blast (H)

orid	Database	Orig	in Time	Latitude	Longitude	ML	nsta ¹	ndef ²	Event Type
190865	DB11	89 10 17	14:55:04.120	59.55	26.78	2.56	2	5	blast (H)
133590	DB11	89 10 23	13:28:47.537	61.85	31.12	2.44	2	6	blast (H)
140713	DB11	89 10 26	12:59:05.936	59.67	28.22	2.26	2	5	blast (H)
140826	DB11	89 10 27	15:10:30.505	67.72	33.83	2.12	2	4	blast (H)
190881	DB1 1	89 11 16	13:17:56.963	61.10	29.06	2.33	2	4	blast (H)
177383	DB11	89 11 17	08:24:54.337	67.67	34.15	2.75	2	7	blast (H)
177438	DB11	89 11 18	11:26:46.268	61.86	30.83	2.59	2	6	blast (H)
178839	DB11	89 11 20	12:57:57.410	59.40	27.07	2.24	2	5	blast (H)
189367	DB11	89 11 21	13:05:42.979	61.27	29.78	2.28	2	6	blast (H)
189479	DB11	89 11 24	10:00:34.632	64.84	30.67	2.33	2	4	blast (H)
189461	DB11	89 11 24	12:04:08.162	67.63	34.10	2.91	2	7	blast
189469	DB11	89 11 24	16:02:09.780	66.95	21.66	2.35	2	5	blast (H)
189655	DB11	89 11 25	11:11:45.657	68.07	33.52	2.27	2	7	blast (H)
189658	DB11	89 11 25	12:37:40.038	67.62	30.20	2.37	2	5	blast (H)
192440	DB11	90 02 25	10:00:26.090	59.50	6.83	2.29	2	5	quake (H)
197524	DB11	90 04 11	11:13:08.723	59.17	27.37	2.29	2	6	blast (H)
197580	DB11	90 04 12	12:12:15.582	61.02	28.98	2.18	2	5	blast (H)
197596	DB11	90 04 13	10:47:07.274	58.80	28.33	2.33	2	4	blast
197639	DB11	90 04 14	15:15:22.056	70.02	34.43	2.08	2	6	expl
197671	DB11	90 04 18	10:12:54.031	59.29	27.89	2.03	2	6	blast (H)
197674	DB11	90 04 18	11:39:32.142	59.02	27.74	2.39	2	4	blast (H)
197700	DB11	90 04 19	08:05:27.018	69.16	34.64	2.45	2	6	blast (H)
197741	DB11	90 04 20	08:38:51.774	67.61	33.73	2.51	2	7	blast (H)
197747	DB11	90 04 20	09:57:37.358	58.90	27.16	2.32	2	6	blast (H)
197820	DB11	90 04 28	12:02:02.118	67.98	33.76	2.03	2	5	blast (H)
197825	DB11	90 04 28	14:37:06.044	59.51	26.46	2.23	2	6	blast (H)
197876	DB11	90 05 02	12:05:59.365	57.74	11.72	3.83	2	4	expl
198017	DB11	90 05 10	11:02:46.221	59.33	27.22	2.29	2	6	blast (H)
198039	DB11	90 05 11	11:11:46.391	59.29	27.80	2.33	2	5	blast
198272	DB11	90 05 20	10:27:07.366	68.04	10.95	2.80	2	5	quake (H)
198353	DB11	90 05 21	12:50:39.845	58.30	28.11	2.39	2	4	blast

The number of detecting stations.
 The number of defining phases (number of phases used to locate the event).

database name from Table 3. The rest of the columns list the event origin time, latitude, longitude, Lg magnitude (M_L), number of detecting stations, number of defining phases, and event type. Events that were identified in a regional bulletin produced by the University of Helsinki are indicated by "(H)" following the event type in Table 4. Other events were identified by Sereno [1991].

The event locations are plotted in Figure 3. Of the 241 events, 215 were recorded at both NORESS and ARCESS, and 221 had at least 3 defining phases. The epicentral distances are primarily between 200 and 1800 km (Figure 4). The Lg magnitude distribution is plotted in Figure 5. This magnitude is computed from the peak amplitude on a 2-4 Hz incoherent beam in the time window defined by group velocities of 3.0 and 3.6 km/s [Bache et al., 1991]. The magnitudes of the events in Data Set #1 are primarily between 1.5 and 3.2.

Most of the events in Data Set #1 were identified (mine blast or earthquake) in the regional bulletin produced by the University of Helsinki. The other events were either not identified by the University of Helsinki, or they were not in their bulletin. In either case, these events were identified by Sereno [1991] on the basis of location, origin time, S/P amplitude ratios, spectral variance, and past seismicity. Along with the identification of each of these events, Sereno [1991] gives a brief description of the basis for the identification and a subjective measure of confidence (high, medium, or low). Table 5 lists the number of earthquakes, mine blasts, underwater explosions, and other explosions for each of the waveform databases in Table 3. Events that are probable explosions and are located onshore (but not near known mines) are labeled "other explosions."

_	Number of Events							
Event Type	DB1	DB2	DB3	DB8	DB10	DB11	Total	
Earthquakes	5	4	5	0	2	2	18	
Mine Blasts	34	11	39	10	43	44	181	
Underwater Explosions	8	1	3	4	3	3	22	
Other Explosions	3	3	2	7	2	1	18	
Not Identified	0	1	1	0	0	0	2	
Total	50	20	50	21	50	50	241	

Table 5.	Event	Identification	for	Data	Set	#]	l

Figure 6 shows the locations of the presumed earthquakes, mine blasts, and other explosions (either underwater or onshore). Most of the earthquakes are located on the Mid-Atlantic Ridge, or near the west coast of Norway. The mine blasts are primarily in the northwestern USSR (e.g., Estonia, Leningrad, Kola Peninsula), northern Sweden, and Finland. Most of the underwater explosions are located in the Baltic Sea.

The locations of the 249 events in DB9 are shown in Figure 7. These events were recorded over a continuous 10-day period starting February 28, 1990. Data Set #1 does not include waveform data for these events, and the parametric data are described in the next section.

Events With Waveforms in Data Set #1

Figure 3. Epicenters are plotted for the 241 events with waveforms in Data Set #1.

Figure 5. A histogram of Lg magnitude is shown for events in Data Set #1. The mean M_L is 2.31, and the standard deviation is 0.42.

Event Identification - Data Set #1

Figure 6. This map shows the locations of earthquakes (circles), mine blasts (squares), and other explosions (asterisks) in Data Set #1.

Events With Only Parametric Data (DB9) - Data Set #1

Figure 7. Epicenters are plotted for the 249 events with only parametric data (DB9) in Data Set #1.

2.3 Data Exchange Format

This section describes the exchange format for Data Set #1. These data were provided to *MIT* Lincoln Laboratory on read/write optical disks, but they are also available on 9-track tapes in UNIX tar format. Database reports that include hard-copy displays and information for each event were also provided to *MIT* Lincoln Laboratory. For each event, these reports include a map showing station and event location, a listing of event origin and detection data, the standard waveform display that is provided to the *IAS* seismic analyst, and plots of each detecting and 3-component beam (described below). Separate reports were provided for DB1, DB2, DB3, DB8, DB9, DB10, and DB11 [*Patnaik and Sereno*, 1990a].

Data Set #1 includes parametric data generated by the automated IAS processing, and all changes made by seismic analysts. It also includes all available short-period waveform data recorded at NORESS and ARCESS when the same event is detected by both arrays. The parametric data are stored as ASCII files, and the waveform data are stored in the binary format used by SAC (Seismic Analysis Code). SAC is a widelyused interactive analysis software package that was developed by Joseph Tull at Lawrence Livermore National Laboratory. Section 2.3.1 briefly describes the parametric data. The formats of the ASCII data files are described in detail in Appendix A. The waveform data are described in Section 2.3.2. An example of the displays and data that are included in each database report is given in Section 2.3.3.

2.3.1 Parametric Data

Figure 8 shows the directory structure for Data Set #1 (directories are printed in bold-face type, and files are printed in italics). The top-level directory includes subdirectories for each of the databases listed in Table 3, and sub-directories for documentation and static data (e.g., data that are the same for all events). The documentation directory includes a description of the data exchange format, and a description of several minor enhancements that we made to SAC. The static data include beam recipe files (described below), the NORESS/ARCESS short-period instrument response, the travel-time tables for regional phases used in IAS, and the locations of the individual stations in each array.

The general directory structure for each database is shown in the middle of Figure 8. Each database directory includes up to four sub-directories, and two ASCII files. The *README* file gives information for a few specific events. The *ExpSys_Analyst.dbX* file summarizes corrections made by the analyst to the results of the automated processing (the variable X appended to a file name or directory stands for the database number). For example, it includes the distance between the locations determined by the expert system and the analyst, the difference in their origin times, and the number of phases that were added or retimed by the analyst (see Appendix A).

The ExpSys directory contains the results of the automated *IAS* processing. This includes the four files in Figure 8 with the prefix *IEB*, which stands for initial event bulletin. *IEB.orig* lists event origin data (latitude, longitude, depth, and origin time). *IEB.det* lists detection and association data such as phase identification, arrival time,

DIRECTORY STRUCTURE / DATA SET #1

Top-Level Directory

DB1 DB2 DB3 DB8 DB9 DB10 DB11 doc static

Database Directory

DBX

README ExpSys_Analyst.dbX	ExpSys IEB.orig IEB.det IEB.apma IEB.sbsnr	Analyst FEB.orig FEB.det FEB.distaz	EVID README EVID.dbX Helsinki orig Helsinkibul.dbX MSMP.dbX CEPPKS.dbX SPVAR.dbX	SAC oridXXXXX oridXXXXX oridXXXXX etc
			SFVAR.aDA	

SAC Waveform Directory

SAC/oridXXXXX

ARAO.se.sac	ARC4.se.sac	ARD9.sz.sac	NRC3_sz.sac	NRD8.sz.sac
ARAO.sn.sac	ARC4.sn.sac	NRA0.se.sac	NRC4_se_sac	NRD9.sz.sac
ARAO.sz.sac	ARC4.sz.sac	NRAO.sn.sac	NRC4_sn_sac	ARC.cbxxx.sac
ARA1.sz.sac	ARC5.sz.sac	NRAO.sz.sac	NRC4_sz.sac	ARC.cbxxx.sac
ARA2.sz.sac	ARC6.sz.sac	NRAI.sz.sac	NRC5.sz.sac	ARC.cbxxx.sac
ARA3.sz.sac	ARC7.se.sac	NRA2.sz.sac	NRC6.sz.sac	ARC.cbxxx sac
ARB1.sz.sac	ARC7.sn.sac	NRA3.sz.sac	NRC7.se.sac	ARC.cbxxx.sac
ARB2.sz.sac	ARC7.sz.sac	NRB1.sz.sac	NRC7.sn.sac	ARC.cbxxx.sac
ARB3.sz.sac	ARD1.sz.sac	NRB2.sz.sac	NRC7.sz.sac	ARC.cbxxx.sac
ARB4.sz.sac	ARD2.sz.sac	NRB3.sz.sac	NRD1.sz.sac	NOR.cbxxx.sac
ARB5.sz.sac	ARD3_sz.sac	NRB4.sz.sac	NRD2.sz.sac	NOR.cbxxx.sac
ARC1.sz.sac	ARD4.sz.sac	NRB5_sz.sac	NRD3.sz.sac	NOR.cbxxx.sac
ARC2.se.sac	ARD5.sz.sac	NRC1.sz.sac	NRD4.sz.sac	NOR.cbxxx.sac
ARC2.sn.sac	ARD6.sz.sac	NRC2.se.sac	NRD5 sz.sac	NOR.cbxxx.sac
ARC2.sz.sac	ARD7.sz.sac	NRC2.sn.sac	NRD6.sz.sac	
ARC3.sz.sac	ARD8.sz.sac	NRC2.sz.sac	NRD7.sz.sac	

Figure 8. The directory structure is described for Data Set #1.

azimuth and phase velocity estimated from f - k processing, amplitude, signal-to-noise ratio, and frequency. *IEB.apma* lists results from automated particle motion analysis [*Jurkevics*, 1988]. This includes estimates of rectilinearity, planarity, long- and shortaxis incidence angles, and horizontal-to-vertical power ratio for each detection. *IEB.sbsnr* gives signal and noise amplitudes measured on a standard set of six beams.

The Analyst directory contains parametric data after review by a seismic analyst. The files *FEB.orig* and *FEB.det* are similar to the corresponding files under ExpSys, but they include changes made by the analyst (the *FEB* prefix stands for final event bulletin). *FEB.distaz* lists the epicentral distance and station-to-event azimuth from NORESS and ARCESS for each event in *FEB.orig*. The Analyst directory does not include particle motion or standard-beam amplitude files since these attributes are not recalculated after analyst review.

The EVID directory contains the identification (e.g., earthquake or explosion) of each event in *FEB.orig.* This identification is based primarily on a regional seismic bulletin produced by the University of Helsinki. The *README* file gives information for a few specific events. *EVID.dbX* gives the identification of each event, *Helsinki.orig* gives the origin information from the Helsinki Bulletin, and *Helsinkibul.dbX* gives the complete unedited listing from Helsinki Bulletin. The other three files in this directory contain data that are relevant for event identification. *MSMP.dbX* lists regional *P*-wave magnitudes computed from the amplitude of *Pn* an *Pg*, and regional *S*-wave magnitudes is a possible discriminant (high values of $m_s - m_p$ indicate the event is an earthquake, low values are inconclusive). The two files called *CEPPKS.dbX* and *SPVAR.dbX* give the results of cepstral analysis, and are useful for identifying ripple-fired mining explosions [*Baumgardt and Ziegler*, 1987]. These data are described in Appendix A.

2.3.2 Waveform Data

The SAC sub-directory contains the NORESS and ARCESS waveform data in SAC format. There is a separate directory for each event. These directories are labeled as oridXXXXXX, where XXXXXX refers to the unique integer origin identification in *FEB.orig*. There are separate SAC data files for each short-period channel in the NORESS and ARCESS arrays (33 channels/array). These waveform data files are 7-minute segments that start 30 seconds before the theoretical *Pn* arrival time (based on the final event origin). The files are named as *station.channel.sac* where *station* is the station code for each array element (e.g., NRAO, NRA1, NRA2, etc), and *channel* is the channel code (*sz* is short-period vertical. *se* is short-period east, and *sn* is short-period north).

In addition to the single-channel waveforms, each directory includes several coherent beams in SAC format. Coherent beams are formed by steering the single-channel waveforms using a specified velocity and azimuth, stacking, and filtering over a specified frequency band. These files are named as *array.cbxxx.sac*, where *array* is either NCR for NORESS or ARC for ARCESS, cb stands for coherent beam, and xxx is the beam number in the first column of Table 6 (this table describes the beam set

	Velocity	Filter	Filter	Azimuth	Beam					
Beam	(km/s)	(Hz)	Order	(degrees)	Type ¹		Rin	g Subs	et	
201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.0-3.0	3	0.0	C	A0			С	D
202	~	1.5-3.5	3	0.0	С	A0			С	D
207	~	8.016.0	3	0.0	С	A 0	Α	B		
220	~	1.5-2.5	2	0.0	I	A0			С	1
221	~	2.0-4.0	3	0.0	Н	A0			С	
223	~	5.0-10.0	3	0.0	Н	A0			С	
225	~	3.5-5.5	3	0.0	I	A0			С	
226	~	3.5 -5.5	3	0.0	Н	A0			С	ļ
228	~	8.0-16.0	3	0.0	Н	A0			С	1
248	11.0	1.5-3.5	3	30.0	С	A 0			С	D
249	11.0	1.5-3.5	3	90.0	С	A0			С	D
250	11.0	1.5-3.5	3	150.0	С	A0			С	D
251	11.0	1.5-3.5	3	210.0	C	A 0			С	D
252	11.0	1.5-3.5	3	270.0	С	A0			С	D
253	11.0	1.5-3.5	3	330.0	C	A0			С	D
254	~	2.0-4.0	3	0.0	С	A 0			С	D
255	10.1	2.0-4.0	3	30.0	С	A 0			С	D
256	10.1	2.0-4.0	3	90-0	С	A0			С	D
257	10.1	2.0-4.0	3	12 .0	C	A0			С	D
258	10.1	2.0-4.0	3	210.0	С	A 0			С	D
259	10.1	2.0- 1 0	3	27.J.0	C	A0			C	D
260	10.1	2.0-4.6	3	330.0	C	A0		_	C	D
261	~	2.5-4.5	3	0.0	C	A0		B	C	
262	8.8	2.5-4.5	3	30.0	C	A0		B	C	D
263	8.8	2.5-4.5	3	90.0	C	A0		В	C	D
264	8.8	2.5-4.5	3	150.0	C	A0		В	C	D
265	8.8	2.5-4.5	3	210.0	C	A0		В	C	D
266	8.8	2.5-4.5	3	270.0	C	A0		В	C	D
267	8.8	2.5-4.5	3	330.0	C	AU		B	C	D
268	00 10 f	3.0-5.0	3	0.0	C	AU		В	C	D
269	10.5	3.0-5.0	3	30.0	C	AU		В	C	D
270	10.5	3.0-5.0	3	90.0	C	AU		В	C	D
271	10.5	3.9-5.0	3	150.0	C	AU		В	C	
272	10.5	3.0-5.0	5	210.0	C	AU		В	C	D
273	10.5	3.0-5.0	2	270.0	C	AU		B	Č	
214	10.5	3.0-5.0	3	330.0	C	AU		B	Č	וש
215	00	3.3-3.3	3	0.0	C	AU		B	C	
270	11.1	3.3-3.3	2	30.0	C C	AU		B	C	
211		3.3-3.3	2	90.0	C C	AU 40		ם מ	Č	
218		3.3-3.3	2	150.0		AU A0		ם מ	C	
219	11.1	3.3-3.3	2	210.0	C C	A0		ם ס	C	
260	11.1	3.3-3.3	2	270.0		AU A0		В р	Č	
201	11.1 m	3.3-3.3 A A A A	2	0.0		AU A0		d q	Č	
202 292	0.4	5.0-0.0 10.00	2	20.0		A0		a a	Ċ	
203 294	9.4 0.4	4.0-0.0 4.0. 9.0	2	30.0		A0		D D	C C	
204 285	7.4 Q /	<u>7.0−0.0</u> ፈቢ_ዩበ	2	150.0	č	Δ0 Δ0		D D	č	
20J 286	7.4 Q A	⊸.0-0.0 ፈቢ_ዩበ	2	210.0	Ċ	A0		D D	ĉ	
200	7.4 Q A	40-90	2	210.0	č	 ∆∩		P	Ċ	
207	9.4 Q <u>A</u>	40-80	2	330.0	Ċ			R	č	
400	2.9	7.0-0.0	<u>_</u>	0.000	U U	AV		<u>u</u>	<u> </u>	

Table 6. IAS Beam Deployment

[Velocity	Filter	Filter	Azimuth	Beam	ļ				
Beam	(km/s)	(Hz)	Order	(degrees)	Type ¹		Rin	g Subs	et	
289	00	5.0-10.0	3	0.0	C	A0		B	С	
290	10.4	5.0-10.0	3	30.0	С	A0		В	С	
291	10.4	5.0-10.0	3	90.0	С	A0		В	С	
292	10.4	5.0-10.0	3	150.0	С	A0		В	С	
293	10.4	5.0-10.0	3	210.0	С	A0		В	С	
294	10.4	5.0-10.0	3	270.0	С	A0		В	С	
295	10.4	5.0-10.0	3	330.0	С	A0		В	С	
296	9.9	8.0-16.0	3	30.0	С	A0	Α	В		
297	9.9	8.016.0	3	90.0	С	A0	Α	В		
298	9.9	8.0-16.0	3	150.0	С	A0	Α	В		
299	9.9	8.0-16.0	3	210.0	С	A0	Α	В		
300	9.9	8.0-16.0	3	270.0	С	A0	Α	В		
301	9.9	8.0-16.0	3	330.0	С	A0	Α	В		
302	15.9	1.5-3.5	3	80.0	С	A0			С	D
303	15.9	2.0-4.0	3	80.0	С	A0			С	D
304	15. 9	2.5-4.5	3	80.0	С	A0		В	С	D
305	15.9	3.0-5.0	3	80.0	С	A0		В	С	D
306	10.0	1.5-3.5	3	30.0	С	A0			С	D
307	10.0	2.0-4.0	3	30.0	С	A 0			С	D
308	10.0	2.5-4.5	3	30.0	С	A0		В	С	D
309	10.0	3.0-5.0	3	30.0	С	A0		B	С	D
310	~	1.0-2.0	2	0.0	I	A0			С	
312	~	2.0-4.0	3	0.0	I	A0			С	
313	00	2.0-3.0	2	0.0	I	A0			С	

1. C = Coherent, I = Incoherent (vertical channels), H = Incoherent (horizontal channels)

applied to NORESS and ARCESS during the operation of *IAS*). The detecting beam is defined as the standard beam in Table 6 with the highest *snr*. This beam is included for each detection that is associated with a final origin. However, if the detecting beam is incoherent, then it is replaced by a coherent beam that uses the same beam-forming parameters.

Coherent beams that are calculated using data from the four 3-component elements of each array are also included in Data Set #1. Three of these beams are calculated for each detection that is associated with a final event origin (one for each component; vertical, north-south, and east-west). These 3-component beams use the same beamforming parameters as the *detecting beam*, except that the array subset only includes the four 3-component elements. The number assigned to the beam formed from the vertical components is 200 plus the beam number of the *detecting beam*. Similarly, the numbers assigned to the beams formed from the north-south and eastwest components are 400 and 600 plus the beam number of the *detecting beam*, respectively.

2.3.3 Database Reports

This section gives an example of the displays and information that are included in the database reports provided to *MIT* Lincoln Laboratory [*Patnaik and Sereno*, 1991*a*]. This example is for a mining explosion in western USSR. Figure 9 is a map showing the locations of NORESS and ARCESS, and the event epicenter. Table 7 lists detection data before analyst review (e.g., the results of the automated *IAS* processing), and Table 8 lists detection data after analyst review. Figure 10 shows the dislay beams for ARCESS (this is the standard waveform display that is provided to the *IAS* seismic analyst). Figure 11 plots the detecting beam for Pn at ARCESS, and the 3-component beams (vertical, north-south, and east-west). Similarly, Figure 12 plots the beams for Sn at ARCESS. Beams are not included for Lg since this phase was added by the analyst (e.g., it was not detected by the automated processing). Figure 13 shows the display beams for NORESS, and Figure 14 shows the detecting and 3-component beams for Pn at NORESS. Beams were not computed for Sn and Lg phases at NORESS because they were added by the analyst. ORID=192093 90/02/14 10 16 5.013 LAT 61.70 LON 31.37 ML 2.2

Figure 9. This map shows the NORESS and ARCESS station locations, and the epicenter of an event in Data Set #1 (after analyst review).

AZIMUTE Q	154.9 1	165.11 3	87.06 1	164.96 2	251.01 3	34.05 3	181.13 3	176.52 1
VELO	7.7	7.5	10.9	4.6	3.7	6.3	3.2	3.0
SNR	8.58	4.23	10.76	4.74	5.24	2.55	4.88	2.46
FREQ.	6.7	Э.Э	4 .3	6.7	10.0	1.2	6.7	4.5
	163.9	61.5	155.8	107.5	99.5	954.5	49.2	131.0
PRASE	₿d		Pg	3				
IPRASE	Pg	PX	Pg	5	N S	PH	SK	SI
DD HR: MH: S3. MS	14 10:18:05.332	14 10:18:09.582	14 10:18:24.384	14 10:19:33.982	14 10:19:35.859	14 10:20:13.857	14 10:22:01.632	14 10:23:08.107
	0 02	002	0 02	0 02	0 02	0 02	0 02	0 02
CHANTD	292 9	272 9	275 9	294 9	296 9	310 9	301 0	225 9
CEM	ମ୍ମ	ମ୍ବ	ମ୍ମ	ନ୍କ	ମ୍ମ	qz	କ୍ଷ	ମ୍ଲ
STA STA	CAA0	LRA0	BUA O	RA0	BLAO	DAO	LEAO	UPAO
ARID	129358	129359 4	129363 1	129360 1	129364 b	129365 A	129366 1	129367 1
RORID	195318	7	195318	195319	7	7	7	7

.

Table 7. This table gives parametric detection and phase association data before analyst review for the event plotted in Figure 9. Two phases were associated with this event by the expert system (arid 129358 is labeled P_g at ARCESS, and arid 129363 is labeled P_g at NORESS).

a	-	m	-	~	m	١	m	I	I	m	-
AZIMUT	154.9	165.11	87.06	164.96	251.01	-	34.05	7	7	101.13	176.52
VELO	7.7	7.5	10.9	4.6	3.7	-1.0	6.3	-1.0	-1.0	3.2	3.0
SNR	8.58	4.23	10.76	4.74	5.24	7	2.55	7	7	4.88	2.46
	6.7	Э.З	6. 4	6.7	10.0	-1.0	1.2	-1.0	-1.0	6.7	4.5
2	163.9	61.5	155.8	107.5	99.5	-1.0	954.5	-1.0	-1.0	49.2	0.151
PEASE	Pa		Pn	Sn		Sn		3	2		
IPBASE	Pn	Px	Pn	3n	SK	Sn	Pz	2	3	S.r	Sa Sa
8	514	.582	.871	. 982	.859	.312	.857	.051	. 305	. 632	.107
M: 33	8:02	8:09	8:23	EE:6	£:35	0:04	0:13	0:26	1:05	2:01	3:08
	10:1	10:1	10:1	10:1	10:1	10:2	10:2	10:2	10:2	10:2	10:2
8	-		11	14	14	1	-	14	1		11
1 1	90 02	90 02	90 02	90 02	90 02	90 02	90 02	90 03	90 02	90 02	0 0
CENNID	292	272	275	294	296	7	310		1	301	225
CENI	କ୍	4	ମ୍ମ	43	ล	J	4	ı	ı	4	4
VES	NRA 0	UUN O	BU O	ULNO	GRA O	BU O	URA O		GUA O	URIO	LEA0
ALD	129358	129359	129363 1	129360	129364 1	130563	129365 1	130562 3	130564 1	129366 1	129367 1
LORID	92093	7	92093	5209 3	7	92093	7	92093	92093	7	7

The analyst made the following Table 8. This table gives parametric detection and phase association data after changes to the results of the expert system (see Table 7): analyst review for the event plotted in Figure 9.

- (1) Rename Pg at ARCESS to Pn, and retime.
- (2) Rename L_g at ARCESS to S_n , and associate it with this event.
- Add an L_g phase at ARCESS (signal processing is not recalled for phases that are added by analyst, so most of the detection fields are assigned N/A values). .
 - (4) Rename Pg at NORESS to Pn, and retime.
- (5) Add an Sn phase at NORESS.
 - (6) Add an Lg phase at NORESS.

The location determined by the expert system is about 250 km from the by location determined by the analyst for this event.

Figure 10. ARCESS display beams are plotted for the event in Figure 9. Associated Pn, Sn, and Lg phases are highlighted. The top beam is a 4-8 Hz coherent beam (steered to the event using a velocity of 8 km/s), and it is intended to emphasize Pn. The middle beam is a 2-4 Hz incoherent beam formed from horizontal components intended to emphasize Sn. The lowest beam is also a 2-4 Hz incoherent beam, but it is formed from vertical components. It is intended to emphasize L_g .

29

Figure 11. This figure shows the detecting beam for P_n at ARCESS in the top panel, and the beams formed from the 3-component array elements in the bottom panels (vertical, north-south, east-west).

9. Associ-Figure 13. NORESS display beams are plotted for the event in Figure ated Pn, Sn, and Lg phases are highlighted (see caption for Figure 10).

(THIS PAGE INTENTIONALLY LEFT BLANK)

3. SUMMARY

We developed a data set to test and evaluate the performance of neural networks for automated processing and interpretation of seismic data. This data set may also be valuable for many other studies related to seismic monitoring of nuclear It includes waveform and parametric data from 241 regional explosion testing. events recorded by the short-period elements of the NORESS and ARCESS arrays in Norway (33 channels/array). The waveform data are stored in SAC binary format, and the parametric data are stored in ASCII files. The event epicentral distances are Most of the 200-1800 km, and the event Lg magnitudes are approximately 1.5-3.2. events are mining explosions in western USSR, Sweden, and Finland. However, 18 of the events are earthquakes, and 22 are presumed underwater explosions. Detailed developed for each event, and is included in eight separate documentation has been The data and software are available at the Center for Seismic database reports. Studies.

ACKNOWLEDGMENTS

We thank Ann Suteau-Henson at the Center for Seismic Studies for sending us complete documentation on the automated particle motion analysis used in *IAS*. This research was funded by the Defense Advanced Research Projects Agency under Contract F19628-90-C-0156 and monitored by Phillips Laboratory.

(THIS PAGE INTENTIONALLY LEFT BLANK)

REFERENCES

- Anderson, J., W. Farrell, K. Garcia, J. Given, and H. Swanger, Center for Seismic Studies Version 3 Database: Schema Reference Manual, Tech. Rep. C90-01, Center for Seismic Studies, Arlington, VA., 1990.
- Bache, T., J. Anderson, D. Baumgardt, S. Bratt, W. Farrell, R. Fung, J. Given, A. Henson, C. Kobryn, H. Swanger, J. Wang, Intelligent Array System, *Final Tech. Rep.* SAIC-90/1437, Sci. Appl. Int. Corp., San Diego, Calif., 1990.
- Bache, T., S. Bratt, J. Given, T. Schroeder, H. Swanger, and J. Wang, The Intelligent Monitoring System Version 2, *Quarterly Tech. Rep.* #6 SAIC-91/1137, Sci. Appl. Int. Corp., San Diego, Calif., 1991.
- Baumgardt, D., and K. Ziegler, Spectral evidence for source multiplicity in explosions Semiannu. Tech. Rep. SAS-TR-87-01, Ensco, Inc., Springfield, VA, AFGL-TR-87-0045, ADA187363, 1987.
- Jurkevics, A., Polarization analysis of three-component array data, Bull. Seismol. Soc. Am., 78, 1725-1743, 1988.
- LaCoss, R., R. Cunningham, S. Curtis, and M. Seibert, Artificial neural networks for seismic data interpretation, Semiannu. Tech. Rep. ESD-TR-91-058, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, ADA239673, 1990.
- LaCoss, R., S. Curtis, R. Cunningham, and M. Seibert, Seismic phase and event labeling using artificial neural networks, Paper presented at the 13th Annual PL/DARPA Seismic Research Symposium, Keystone, CO, 8-10 October, 1991.
- Mykkeltveit, S., K. Astebol, D. Doornbos, and E. Husebye, Seismic array configuration optimization, Bull. Seismol. Soc. Am., 73, 173-186, 1983.
- Mykkeltveit, S., and F. Ringdal, New results from processing of data recorded at the new ARCESS regional array, Sci. Rep. 2-87/88, NTNF/NORSAR, Kjeller, Norway, 1988.
- Patnaik, G., and T. Sereno, Data to test and evaluate the performance of neural network architectures for seismic signal discrimination – DARPA Data Set #1, Tech. Rep. SAIC-91/1274 (Vol. 1-7), Sci. Appl. Int. Corp., San Diego, Calif., 1991a.
- Patnaik, G., and T. Sereno, Neural Computing For Seismic Phase Identification, Annu. Tech. Rept. (Volume II) SAIC-91/1237, Sci. Appl. Int. Corp., San Diego, Calif.,

1991*b*.

- Sereno, T., Data to test and evaluate the performance of neural network architectures for seismic signal discrimination: Event identification - DARPA DataSet #1, *Tech. Rep. SAIC-91/1275*, Sci. Appl. Int. Corp., San Diego, Calif., 1991.
- Swanger, H., J. Given, and J. Anderson, IMS extensions to the Center Version 3 Database, *Quarterly Tech. Rep.* #5 SAIC-91/1138, Sci. Appl. Int. Corp., San Diego, Calif., 1990.
- Wahlström, R. and T. Ahjos, Magnitude determination of earthquakes in the Baltic Shield, Annales Geophysicae, 2, 553-558, 1984.

APPENDIX A: PARAMETRIC DATA EXCHANGE FORMAT

This appendix describes the parametric data files in Data Set #1 (Figure 2.8). These data were retrieved from the *IAS* relational database at the Center for Seismic Studies. Examples of each data file are given at the end of this section.

ExpSys Analyst.dbX

ExpSys_Analyst.dbX								
attribute	field	Storage	attribute					
name	no.	type	description					
eorid	1	i4	expert system origin id					
forid	2	i4	final origin id					
ddist	3	f4	distance between forid and eorid					
dtime	4	f4	origin time difference					
rprimp	5	i4	no. of renamed primary phases					
rsecondp	6	i4	no. of renamed secondary phases					
added	7	i4	no. of added phases					
retime	8	i4	no. of retimed phases					

Table A.1 ExpSys_Analy.	st.dbX Data File
-------------------------	------------------

Table A.1 describes the ExpSys_Analyst.dbX data file. This file summarizes the corrections made by an analyst to the results of the automated processing. All of the attributes in this table were extracted from the ex_an database table at CSS which is an IMS extension to the Center Version 3 Database [Swanger et al., 1991]. This file joins the ExpSys data files and the Analyst data files through the unique integer origin identifications, eorid and forid. The attributes have the following definitions:

- eorid: A unique positive integer which identifies an origin determined by the expert system.
- forid: A unique positive integer which identifies an origin determined (or validated) by a seismic analyst.
- *ddist:* The distance between the event location determined by the expert system and the event location determined by the analyst (in kilometers).
- dtime: The absolute value of the difference between the origin time estimated by the expert system and the origin time estimated by the analyst (in seconds).
- rprimp: Number of primary (P-type) phases that were renamed by an analyst.
- rsecondp: Number of secondary (S-type) phases that were renamed by an analyst.
- added: Number of phases that were added by an analyst. These are phases that were not detected by the automated system.
- *retime*: Number of phases that were retimed by an analyst.

There are cases in which fields 5-8 are zero, but the analyst and expert system solutions differ. This can happen if the analyst associates or disassociates a phase with the current event (the phase is not renamed, retimed, or added).

ExpSys

The ExpSys directory contains parametric data from the results of the automated processing (before analyst review). The files in this directory have the prefix *IEB* for initial event bulletin.

IEB.orig

IEB.orig							
attribute name	field no.	Storage type	attribute description				
eorid	1	i4	expert system origin id				
date	2	date	date (yy mm dd)				
time	3	time	time (hr:mm:ss.ms)				
lat	4	f4	estimated latitude				
lon	5	f4	estimated longitude				
depth	6	f4	estimated depth				

Table A.2 IEB.orig Data File

Table A.2 describes the *IEB.orig* data file. This file gives the event location and origin time determined by the expert system. The link between the expert system origin (*eorid*) and the final analyst-reviewed origin (*forid*) is given in the *ExpSys_Analyst.dbX* data file. All of the attributes in this file were extracted from the origin Version 3 database table at CSS [Anderson et al., 1991]. The attributes have the following definitions:

- eorid: A unique positive integer which identifies an origin determined by the expert system.
- date: Date in year-month-day format. This is converted from the Julian date format in the CSS database.
- time: Event origin time (GMT). This is converted from the epoch time in the CSS database.
- lat: Estimated event latitude. Latitudes are positive north of the equator.
- lon: Estimated event longitude. Longitudes are positive east of the Greenwich meridian.
- *depth*: Estimated source depth in kilometers. The depths of all events in Data Set #1 were constrained to 0.0 km.

Magnitudes are not calculated for the solutions determined by the expert system. They are calculated after analyst review (see FEB.orig). IEB.det

IEB.det									
attribute	field	Storage	attribute						
name	no.	type	description						
eorid	1	i4	expert system origin id						
arid	2	i4	arrival id						
sta	3	c6	station code						
chan	4	c8	channel code						
chanid	5	i4	channel id						
date	6	date	date (yy mm dd)						
time	7	time	time (hr:mm:ss.ms)						
iphase	8	c8	reported phase						
phase	9	c8	associated phase						
amp	10	f4	amplitude (nm)						
freq	11	f4	frequency						
snr	12	f4	signal-to-noise ratio						
velo	13	f4	observed phase velocity						
azimuth	14	f4	observed azimuth						
fkq	15	i4	f-k quality measure						

Table A.3 *IEB.det* Data File

Table A.3 describes the *IEB.det* data file. This file gives the detection and phase association data determined by the expert system. The attributes in this file were extracted from the **arrival** and **assoc** Version 3 database tables at CSS [Anderson et al., 1991]. The attributes have the following definitions:

- eorid: A unique positive integer which identifies an origin determined by the expert system.
- arid: A unique positive integer which identifies an arrival.
- sta: Code name given to a seismic station. Station codes for NORESS and ARCESS are NRA0 and ARA0, respectively.
- chan: Code name given to the data channel. Code names for Data Set #1 are zb and hb for beams formed from data recorded by vertical- and horizontalcomponent sensors, respectively.
- *chanid*: A unique positive integer which identifies the recording channel. For Data Set #1 this is equal to the *IAS* beam number in Table 2.5.
- *date:* Date in year-month-day format. This is converted from the Julian date format in the CSS database.
- time: Arrival time (GMT). This is converted from the epoch time in the CSS database.

- *iphase*: The name initially given to a seismic phase. In Data Set #1 (and in the *IAS* database at *CSS*) this is equal to the final phase identification (*phase*, see below) if it is associated with an event. Otherwise, it is the phase name assigned by the expert system during single-station processing. This is discussed in more detail below.
- phase: Name given to each associated phase (e.g., final phase identification after network processing).
- *amp*: This is zero-to-peak displacement amplitude measured on the detecting channel in nanometers. It is corrected for the instrument response at the dominant signal frequency (see *freq* below).
- freq: Dominant signal frequency in Hertz. This is equal to the reciprocal of the period, per, in the CSS Version 3 Database [Anderson et al., 1990].
- snr: Signal-to-noise ratio measured on the detecting channel. This is equal to the short-term-average amplitude (STAV) divided by the long-term-average amplitude (LTAV) immediately preceding the detection [Bache et al., 1990].
- velo: Phase velocity estimated using a broadband f-k method (km/s). This is equal to the reciprocal of the slowness, slow, in the IAS database at CSS.
- azimuth: Azimuth estimated using a broadband f k method (measured in degrees clockwise from north).
- fkq: Integer measure of the quality of the f-k spectrum. Possible values are 1-4, with the highest quality indicated by fkq = 1 [Bache et al., 1990].

The *IEB.det* file includes all detections in a 7-minute window starting 30 s before the theoretical Pn arrival time for each event (based on the final origin in *FEB.orig*). This includes phases that are associated with the event, those that are associated with a different event (e.g., mixed events), and those that are not associated with any event. If the detection is not associated with an event, then *eorid* is set to -1.

The possible values for *iphase* in Data Set #1 are Pn, Pg, Px, P, Sn, Lg, Sx, S, T, and N. Px and P are synonyms, as are Sx and S. These labels are used for P- and S-type phases for which the path from source to receiver is unknown (e.g., coda detections). The label T is assigned to detections with estimated phase velocities > 14 km/s (probable teleseisms). N is used if the phase velocity is < 2.8 km/s, or if fkq = 4 (probable "noise" detections). The final label assigned to phases that are associated with an event, phase, is Pn, Pg, Px, P, Sn, Lg, Sx, or S. This label is set to "-----" for detections that are not associated with a regional event.

The IAS definitions of *iphase* and *phase* are slightly different than the corresponding IMS definitions because IMS also detects and locates teleseismic events. For example, P stands for teleseismic P in the IMS database, and it is not synonymous with Px. Also, *iphase* is not equal to *phase* for associated detections. Instead, it is equal to the phase label that is assigned during single-station processing.

IEB.apma

IEB.apma					
attribute	field	Storage	attribute		
name	no.	type	description		
phase	1	c8	phase		
arid	2	i4	arrival id		
freq	3	f4	frequency		
snr	4	f4	signal-to-noise ratio		
amp3	5	f4	3-component amplitude		
rect	6	f4	rectilinearity		
plan	7	f4	planarity		
hvrat	8	f4	horizontal-to-vertical ratio		
hmxmn	9	f4	max-to-min horizontal ratio		
inang3	10	f4	short-axis incidence angle		
azimuth	11	f4	observed azimuth		
ema	12	f4	emergence angle		
ptime	13	f8	P phase extraction time		
stime	14	f8	S phase extraction time		
auth	15	c15	author		
commid	16	i4	comment id		

Table A.4 *IEB.apma* Data File

Table A.4 describes the *IEB.apma* data file. This file gives results from automated particle motion analysis. All attributes in this file were extracted from the **apma** database table at *CSS* which is an *IMS* extension to the Center Version 3 Database [*Swanger et al.*, 1991].

The method used in *IMS* for particle motion analysis was developed by *Jurkevics* [1988]. It computes the polarization ellipse within overlapping time windows by solving the eigenproblem for the covariance matrix. Data from the four 3-component sensors at NORESS and ARCESS are combined by averaging the individual covariance matrices before solving the eigenproblem. The covariance matrices are computed in the time domain for several frequency bands, and then normalized and averaged to obtain a wide-band estimate for each of the overlapping windows. The *IAS* implementation of this is described by *Bache et al.* [1990].

Several of the particle motion attributes are calculated from the time window with the maximum rectilinearity. These are called P-type attributes in the following description. Also, several attributes are calculated from the time window with maximum 3-component amplitude. The are called S-type attributes. The particle motion attributes have the following definitions:

- phase: Name given to each associated phase. This is currently not filled in the IAS database, so it is set to the N/A value of "-" for Data Set #1.
- arid: A unique positive integer which identifies an arrival.

- freq: Center frequency of the passbands with snr > 1.5 used in the averaging. The passbands are 1-2, 2-4, 4-8 and 8-16 Hz. For example, if all bands had snr > 1.5, then freq would be 8.5 Hz.
- snr: Average snr for frequency bands that contribute to the final polarization estimates. Each snr is the ratio of the maximum signal 3-component amplitude to the maximum pre-arrival noise 3-component amplitude (see amp3 below).
- amp3: Three-component amplitude measured from the time window with maximum rectilinearity (P-type attribute). amp3 is equal to the sum of the square roots of the eigenvalues (e.g., it is the sum of the amplitudes measured along the 3 axes of the polarization ellipsoid). It is called ampp in later versions of the IMS database.

rect Signal rectilinearity defined as:

$$rect = \left[1 - \frac{\lambda_3 + \lambda_2}{2\lambda_1}\right]^2$$

where λ_1 , λ_2 , and λ_3 are the eigenvalues such that $\lambda_1 > \lambda_2 > \lambda_3$. Later versions of *IMS* use the square root of this quantity. *rect* is a *P*-type attribute.

plan: Signal planarity defined as:

hvrat:

hmxmn:

$$plan = \left[1 - \frac{\lambda_3}{\lambda_2}\right]^2$$

Later versions of *IMS* use the square root of this quantity. Planarity is measured from the window with the maximum 3-component amplitude (S-type attribute). It is called *plans* in later versions of the *IMS* database. Horizontal to vertical power ratio defined as:

 $hvrat = \frac{c_3 + c_2}{2c_1}$

where c_1 , c_2 , and c_3 are the diagonal elements of the covariance matrix, and c_1 corresponds to the vertical component. *hvrat* is an S-type attribute. Maximum to minimum horizontal amplitude ratio defined as:

$$hmxmn = \sqrt{\frac{\lambda_1}{\lambda_2}}$$

where λ_1 and λ_2 are the maximum and minimum eigenvalues obtained by solving the 2-D eigensystem using the only the horizontal components. It is an S-type attribute.

- *inang3*: Incidence angle (measured from the vertical) of the eigenvector associated with the smallest eigenvalue. It is also called the short-axis incidence angle, and it is an S-type attribute.
- azimuth: Azimuth of the eigenvector associated with the largest eigenvalue. It is corrected by 180° to give an estimate of the station-to-event azimuth. azimuth is a P-type attribute.
- ema: Apparent incidence angle (measured from the vertical) of the eigenvector associated with the largest eigenvalue. It is also called the long-axis incidence angle, or the emergence angle. It is called *inangl* in later versions of the *IMS* database. It is a *P*-type attribute.
- *ptime*: Center of the time window with maximum rectilinearity. All *P*-type attributes are measured from this time window.
- stime: Center of the time with maximum 3-component amplitude. All S-type attributes are measured from this time window.
- auth: Author. This field is set to the N/A value of "-" for all arrivals in Data Set #1.
- commid: Comment identification. This attribute is set to the N/A value of -1 for arrivals in Data Set #1.

IEB.sbsnr

IEB.sbsnr				
attribute name	field no.	Storage type	attribute description	
arid	1	i4	arrival id	
chanid	2	i4	channel id	
stav	3	f4	short-term average	
ltav	4	f4	long-term average	

Table A.5 IEB.sbsnr Data File

Table A.5 describes the *IEB.sbsnr* data file. This file gives short-term average signal amplitudes (STAV) and long-term average noise amplitudes (LTAV) on up to six standard beams (these are beams 201, 207, 254, 282, 310, and 312 in Table 2.5). All attributes in this file were extracted from the sbsnr database table at CSS which is an *IMS* extension to the Center Version 3 Database [Swanger et al., 1991]. The attributes have the following definitions:

arid: A unique positive integer which identifies an arrival.

- *chanid*: A unique positive integer which identifies the recording channel. For Data Set #1 this is equal to the *IAS* beam number in Table 2.5.
- stav: Short-term average signal amplitude in digital counts [Bache et al., 1990].

ltav: Long-term average pre-signal amplitude in digital counts [Bache et al., 1990].

The *IEB.sbsnr* table includes the amplitudes on all six beams for detections that are associated with an event. However, only the amplitudes on beam 312 are saved for unassociated detections. Also, there are some cases where all beams could not be formed because of missing or bad data.

Analyst

The Analyst directory contains parametric data after review by a seismic analyst. The files in this directory have the prefix *FEB* for final event bulletin.

FEB.orig

FEB.orig				
attribute	field	Storage	attribute	
name	no.	type	description	
forid	1	i4	final origin id	
date	2	date	date (yy mm dd)	
time	3	time	time (hr:mm:ss.ms)	
lat	4	f4	estimated latitude	
lon	5	f4	estimated longitude	
depth	6	f4	estimated depth	
ml	7	f4	local magnitude	
nsta	8	i4	No. of recording stations	
ndef	9	i4	No. of defining phases	

Table	A.6	FEB.	orig	Data	File
-------	-----	------	------	------	------

Table A.6 describes the *FEB.orig* data file. This file gives the event location and origin time after analyst review of the expert system solution. The attributes in this file were extracted from the origin Version 3 database table at CSS [Anderson et al., 1991], and the ev_summary database table which is an *IMS* extension to the Center Version 3 Database [Swanger et al., 1991].

The first 6 attributes in this file have the same definitions as those described under *IEB.orig* except that the expert system origin identification is replaced with the final origin identification. The other three attributes have the following definitions:

- ml: Local Lg magnitude (see below). magnitude).
- nsta Number recording stations.
- ndef Number of defining phases (e.g., phases that are used to constrain the event location).

The local magnitude is referred to as the *IMS* Version 1 *MLg* by *Bache et al.* [1991]. It is computed from the peak amplitude on a 2-4 Hz incoherent beam in the time window defined by group velocities of 3.0 to 3.6 km/s. It is computed for each array contributing any associated phase to the location solution (i.e., this magnitude is computed even when there is no detected and identified Lg phase).

FEB.det

Table A.7	FEB.de	er Data File
-----------	--------	--------------

FEB.det				
attribute	field	Storage	attribute	
name	no.	type	description	
forid	1	i4	final origin id	
arid	2	i4	arrival id	
sta	3	сб	station code	
chan	4	c8	channel code	
chanid	5	i4	channel id	
date	6	date	date (yy mm dd)	
time	7	time	time (hr:mm:ss.ms)	
iphase	8	c8	reported phase	
phase	9	c8	associated phase	
amp	10	f4	amplitude (nm)	
freq	11	f4	frequency	
snr	12	f4	signal-to-noise ratio	
velo	13	f4	observed phase velocity	
azimuth	14	f4	observed azimuth	
fkq	15	i4	f-k quality measure	

Table A.7 describes the *FEB.det* data file. This file gives the detection and phase association data after analyst review of the automated processing. The attributes in this file were extracted from the **arrival** and **assoc** Version 3 database tables at CSS [Anderson et al., 1991].

The attributes in this file have the same definitions as those described under *IEB.det* except that the expert system origin identification is replaced with the final origin identification. Phases that were detected by the automated system appear in both *IEB.det* and *FEB.det* under the same unique arrival identification, *arid*. The only difference between the two files for these detections is that the time and/or phase label may have been changed by the analyst. All other parameters are the same in both files. Phases that are added by an analyst (that were not detected by the automated system) appear only in *FEB.det*. These phases have null values for fields 4-5 and 10-15 since signal processing is not recalled.

FEB.distaz

FEB.distaz				
attribute	field	Storage	attribute	
name	<u>no.</u>	type	description	
forid	1	i4	final origin id	
sta	2	c6	station code	
distance	3	f4	epicentral distance (km)	
scaz	4	f4	station-to-event azimuth	

Table A.8 FEB.distaz Data File

Table A.8 describes the *FEB.distaz* data file. This file gives the distance and station-to-event azimuth to NORESS and ARCESS for each event in *FEB.orig*. These were calculated from the locations of the center elements of each array, and the event locations in *FEB.orig*.

EVID

The EVID directory contains the identification (earthquake or explosion) of each event. This identification is based primarily on a regional seismic bulletin produced by the University of Helsinki [Sereno, 1991].

EVID.dbX

Table A.9	EVID.dbX	Data File
-----------	----------	-----------

EVID.dbX				
attribute	field	Storage	attribute	
name	<u>no.</u>	type	description	
forid	1	i4	final origin id	
evtype	2	c15	event type	

Table A.9 describes the EVID.dbX data file. This file contains the probable identification of each event in FEB.orig. The attributes have the following definitions:

- forid: A unique positive integer which identifies an origin determined (or validated) by a seismic analyst.
- evtype: Event type. This is earthquake, mine blast, or explosion (see Section 2.2 of this report). If the event type is followed by "(H)", then the event was identified in the Helsinki Bulletin. Otherwise, the event was identified by Sereno [1991].

Helsinki.orig

Helsinki.orig				
attribute name	field no.	Storage type	attribute description	
forid	1	i4	final origin id	
date	2	date	date (yy mm dd)	
time	3	time	time (hr:mm:ss.ms)	
lat	4	f4	estimated latitude	
lon	5	f4	estimated longitude	
depth	6	f4	estimated depth	
ml	7	f4	local magnitude	
evtype	8	c15	event type	

Table A.10	Helsinki.orig	Data File
------------	---------------	-----------

Table A.10 describes the *Helsinki.orig* data file. This file contains the origin data from the Helsinki Bulletin for the *IMS* events that were reported in that bulletin. The complete unedited listing from the Helsinki Bulletin is given for each event in *Helsinkibul.dbX*. Most of the attributes in this table were described previously. The others have the following definitions:

ml:	Local magnitude from ane Helsinki Bulletin. This du	uration-based	magni-
	tude is described by Wahlström and Ahjos [1984].		
evtype:	Event type determined by the University of Helsinki.	This is eithe	er man-

loc for manual location (these are mining explosions), *earthquake*, or an N/A value of "------" if the event type was not determined.

MSMP.dbX

		MS	MP.dbX								
attribute	ite field Storage attribute										
name	no.	type	description								
forid	1	i4	final origin id								
ml	2	f4	local magnitude								
mlp	3	f4	regional P-wave magnitude								
mls	4	f4	regional S-wave magnitude								
msmp	5	f4	mls - mlp								

Table A.11 MSMP.dbX Data File

Table A.11 describes the MSMP.dbX data file. This file lists regional P-wave magnitudes computed from Pn and Pg amplitudes, and regional S-wave magnitudes computed from Sn and Lg amplitudes. The difference between them, msmp, is a possible discriminant (high values of this difference indicate that the event is an earth-

quake, and low values are inconclusive). The first two attributes are described under *FEB.orig*. The others have the following definitions:

mlp:	Regional P-wave magnitude computed from Pn and Pg amplitudes [Bache
	et al., 1991; IMS Version 2 magnitudes].

mlp: Regional S-wave magnitude computed from Sn and Lg amplitudes [Bache et al., 1991; IMS Version 2 magnitudes].

msmp: The difference between *mls* and *mlp*.

CEPPKS.dbX

		CEP	PKS.dbX	
attribute	field	Storage	attribute	
name	<u>no.</u>	type	description	
forid	1	i4	final origin iu	
sta	2	c6	station code	
ptyp	3	c6	cepstral peak type code	
pkqf	4	f4	cepstral peak quefrency	

Table A.12 CEPPKS.ddX Data H	rile
------------------------------	------

Table A.12 describes the CEPPKS.dbX data file. This file gives the results of cepstral analysis and is useful for identifying ripple-fired mining explosions [Baumgardt and Zeigler, 1987]. The first two attributes were described previously. The others have the following definitions:

- *ptyp*: Consistent cepstral peak type. This is *FC-PHS* if consistent Fourier cepstral peaks are found across two or more phases for one array, and there is no peak in the noise cepstrum at this quefrency. Otherwise, it is "-" if no consistent cepstral peaks are found.
- *pkqf*: Quefrency of the consistent cepstral peak (in seconds). This is set to zero if there are no consistent peaks.

The best evidence for ripple-firing is consistent cepstral peaks across phases and arrays. These are identified in the *CEPPKS.dbX* file as peaks with the same quefrency at both arrays. Cepstral peaks that appear in only one phase at a given station are not reported as consistent peaks, even if there is no peak in the noise cepstrum at that quefrency.

SPVAR.dbX

		SPV	AR.dbX
attribute	field	Storage	attribute
name	no.	type	description
forid	1	i4	final origin id
arid	2	i4	arrival id
sta	3	c6	station code
phase	4	c8	associated phase
acoef	5	f4	"a" coefficient for non-linear trend
bcoef	6	f4	"b" coefficient for non-linear trend
ccoef	7	f4	"c" coefficient for non-linear trend
fmin	8	f4	min frequency
fmax	9	f4	max frequency
svar	10	f4	variance of detrended log spectrum

Table A.13 SPVAR.dbX Data File

Table A.13 describes the SPVAR.dbX data file. This file gives the variance of the detrended log spectrum for each phase that is associated with an event. The first four attributes were described previously. The others have the following definitions:

- (a,b,c)coef: Three coefficients of the quadratic trend of the log spectrum between frequencies *fmin* and *fmax*.
- fmin: Minimum frequency of a band with snr > 3 dB.
- fmax: Maximum frequency of a band with snr > 3 dB.
- svar: Variance of the detrended log spectrum between *fmin* and *fmax*.

Array-averaged spectra are computed for a 5-s window staring 0.3 s before each arrival. Noise spectra are calculated for a 5-s window starting 5.3 s before the first arrival. All spectra are corrected for the short-period NORESS/ARCESS instrument response. A log *snr* spectrum is calculated for each detection using the noise before the first arrival. A running mean (width = 0.75 Hz) is applied to this *snr* spectrum, and frequency bands *fmin* to *fmax* are determined such that the smoothed *snr* spectrum is > 3 db (only frequency bandwidths > 4 Hz are retained). A second-order polynomial is fit to the log signal spectra between *fmin* and *fmax* (the coefficients are *acoef*, *bcoef*, and *ccoef*), and this trend is removed. The variance of the detrended log spectrum is calculated and written to the table as *svar*.

Example Data Files

An example of each parametric data file is given in the next few pages for a mining explosion in western USSR.

.... Zapdys_Analyst.db]

-į Min Star 1 N111 19205 1

..... ILB. orly

N.126 1 201,52,101,00 00 101 101 101,102,00

::: 183. det

									HL				,					
•	1							, -			10:00.595 90 02 14 10:10:10.505 -	19:34.994 90 82 14 14:19:36 994 -	10:27.307 00 02 14 10:16:27.307 -	19:34.872 90 82 14 18:19:37.872 -	20:11.069 90 02 14 10:20:15.069 -	22:04.644 94 02 14 10:22:04.644 -	23:09.119 90 62 14 10:23:68.119 -	
ALIM11	154.9	165.11	20.70	N. 31	251.01	20.05	101.11	176.52		2 14 10:	2 14 10:	2 14 10:	2 14 10.	2 14 100	2 14 101	2 14 10:	1 10	
VELO		7.5	10.9		2.7		9.2	9.0	NIT MA	19. 14 10		1 06 90 0	7.02 90 9	15.25 90 0	1.57 90 0	0.35 90 0	H. 77 M	
ł	. 2	4.23	10.76	4.74	5.24	2.55		2.46	ALL LAUGH	154.57	148.07	250.3	100.25	257.41	314.49	239.66	316.96	
M		3.3	•••	6.7	10.0	1.2	6.7	4.5	KANG3	10.70	\$5.05	34.99	76.39	60.37	15.64	84.71	45.49	
ž	163.9	61.5	155.4	107.5	3.66	954.5	49.2	131.0		72	261	156	127	7	14	145	182	
Ĭ	N		Z	.3						1.1 27.	5.1 BM8.	1.666 1.2	.1. 1.6	1.035 2.	.1 100.	.506 2.1	1.307 1.1	
I PLAAE	332 79	502 P.K	24 25	1 2 200	859 B.E	657 P.K	632 S.E	107 SK	3		.111	. 22	.126	. 856	. 246	.229	•	
0 Mitmiss.	4 10:10:05.	4 19:18:89.	14 10:10:24.	4 10:10:33.	4 10:10:35.	4 16:20:13.	4 10:22:01.	4 10:23:08.		5.	.470	. 348	PCP.	-266	100	.748	EPC.	
1 MA AN ALL	292 96 02 1	272 90 92 1	275 99 92 1		~~~ N %?	310 50 52 1	1 20 M 100	225 90 02 1	ĵ	1249.2	2099.2	3677.2	077.5	1346.2	2486.5	1.7241	2052.2	
									H	2.13	2.07	2, 90 2	1.52	2.66	19.4	1.26	1.6	
CLEN	1	4	f 7	a 2	1	41 07	4	4	2	10.0	•.1	9.1		10.0	1.5	1.5	1.5	
14 GI 84	129350 AN	129359 44	129363 100	129366 ML	129354	129365 ADL	129366 ALL	129367 ARI	 A ¹⁰	129350	129359	129366	129363	129364	129365	129366	129367	
	195310	7	1912491	916591	7	7	7	7	PINE	,	,	,	,	,	•	,	,	

8 77777777

••••• Ĭ ġ :

LENN	101.73	16.79	17.15	12.32	404.35	86.95	N. N	135.14	18.01	23.62	25.72	356.32	116.16	H.27	16.39	26.56	1.12	102.01	152.75	122.92	105.01	143.21	89.26
stav	236.40	45.9	89. M	19.30	426.39	150.22	18° 31	192.66	59.76	N . J	76.8	6M.23	346.49	82.24	42.53	19.85	140.36	266.35	100.40	205.34	402.69	113.5	110.19
CIMILE	201	207	254	202	910	216	212	201	202	254	282	310	312	201	102	254	282	916	216	212	212	211	212
AID.	129354	129356	129350	129350	129350	129354	129359	129364	129360	129364	129346	129364	129368	129363	129363	129363	129363	129363	129363	129344	129365	129366	129367

•

٠

····· FLB. orig ·····

•

• NSTA NDEF ~ FORID YR MM DD HA:MM:55.MS LAT LAW DEFTH 192093 90 02 14 10:16:05.013 61.7003 31.3642 0000

..... FEB. det

				CHAMIN	1	2	201 - 202 - 200 - EX	TPHASE	PHASE	50	FNEQ	SWR	VELO	ALIMUTH O
		~ .												
		•							ł		- 7	A. 54	1.1	154.91
102001	120350	ARAD	Q.	262	20 06		10:10:01:01	-	2					
			1		00		10.10.00 542			61.5	.	£7.4	5.6	165.11 3
7	129255							5	1			35 01	• • •	0.1 0.1
TAACA T	131911	WEAD	4	275	90 02	2	10:10:23.871	5			;			
			1		0 00		10.19.11 902	5	30	107.5	6.7	4.74	4 4	164.96 2
192093	129300			K	2			1					•	10, 11
•			ţ	206	10 02	2	10:19:35.859	3 ×		5.66	10.0			C 10.167
ī			2				CIC 00.00.01	:	5	-1.0	-1.0	7	-1.0	; ;
192093	130563	ŝ	,	7	70 04		345 BA . A . A . A .							1 10 11
-	120165	ABAO	4	310	90 02		10:20:13.857	Pa		C. 106	1.2	· · · ·		
•			•				10.20.26 051		5	-1.0	-1.0	7	-1.0	; ;
192093	202021	2	•					5	5			Ĩ	•	
	110564	M B A O	,	7	90 02	-	10:21:05.305	3	3		·	1		-
C60761										49.2			3.2	101.13 3
7	129366	ANAO	9	100		-	764.10:22:01	24						
• •	110167		÷	225	0 03		10:23:00.107	SX		0.161	•••	2.40	9.F	1 76.011
7	107671		3											

····· FEB. distaz ·····

129367 ARAO

7

DISTANCE SEAT 910.76 160.13 1062.64 75.57 FORID STA 192093 ARAO 192093 MRAO

..... EVID. dbl

POMID Event ID 192093 mine blast (H)

..... Helsinki.orig

ML Event ID 0.00 manloc-HCl3 0000 DEPTH PORID YR MM DD HR:MM:58.MS LAT LAN 192093 90 02 14 10:16:11.000 61.9000 30.6000

..... Helsinkibul.dbl

MANUAL LOCATION FEB 14, 1990 H- 10 16 11 Lat- 61.9 M Low- 30.6 B HW USSR

***** [qp. 245N *****

NSM .3292436 ONID NL NLA NLA NLA 192093 2.19 1.9994484 2.3286922

····· CEPPKS.dbl ·····

ONID STA PTYP PROF 192093 AAAO FC-PHS .12500057 192093 NAAO -

***** Idb. RVVB *****

ACORF BCORF CCORF FMIN FNUX SVAN 27733228 -.01824861 .00002419 1.8149917 7.2607147 .00759755 .31048139 -.02354289 .00004131 1.8749917 7.2607147 .00759735 53 PHASE ONID ANID STA 1 192093 129360 ANAO 1 192093 130952 ANAO 1

DISTRIBUTION LIST

Prof. Thomas Ahrens Seismological Lab, 252-21 Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Keiiti Aki Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Shelton Alexander Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Dr. Ralph Alewine, III DARPA/NMRO 3701 North Fairfax Drive Arlington, VA 22203-1714

Prof. Charles B. Archambeau CIRES University of Colorado Boulder, CO 80309

Dr. Thomas C. Bache, Jr. Science Applications Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121 (2 copies)

Prof. Muawia Barazangi Institute for the Study of the Continent Cornell University Ithaca, NY 14853

Dr. Jeff Barker . Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

Dr. Douglas R. Baumgardt ENSCO, Inc 5400 Port Royal Road Springfield, VA 22151-2388

Dr. Susan Beck Department of Geosciences Building #77 University of Arizona Tuscon, AZ 85721 Dr. T.J. Bennett S-CUBED A Division of Maxwell Laboratories 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091

Dr. Robert Blandford AFTAC/IT, Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. G.A. Bollinger Department of Geological Sciences Virginia Polytechnical Institute 21044 Derring Hall Blacksburg, VA 24061

Dr. Stephen Bratt Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Lawrence Burdick Woodward-Clyde Consultants 566 El Dorado Street Pasadena, CA 91109-3245

Dr. Robert Burridge Schlumberger-Doll Research Center Old Quarry Road Ridgefield, CT 06877

Dr. Jerry Carter Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Eric Chael Division 9241 Sandia Laboratory Albuquerque, NM 87185

Prof. Vernon F. Cormier Department of Geology & Geophysics U-45, Room 207 University of Connecticut Storrs, CT 06268

Prof. Steven Day Department of Geological Sciences San Diego State University San Diego, CA 92182 Marvin Denny U.S. Department of Energy Office of Arms Control Washington, DC 20585

Dr. Zoltan Der ENSCO, Inc. 5400 Port Royal Road Springfield, VA 22151-2388

Prof. Adam Dziewonski Hoffman Laboratory, Harvard University Dept. of Earth Atmos. & Planetary Sciences 20 Oxford Street Cambridge, MA 02138

Prof. John Ebel Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167

Eric Fielding SNEE Hall INSTOC Cornell University Ithaca, NY 14853

Dr. Mark D. Fisk Mission Research Corporation 735 State Street P.O. Drawer 719 Santa Barbara, CA 93102

Prof Stanley Flatte Applied Sciences Building University of California, Santa Cruz Santa Cruz, CA 95064

Dr. John Foley NER-Geo Sciences 1100 Crown Colony Drive Quincy, MA 02169

Prof. Donald Forsyth Department of Geological Sciences Brown University Providence, RI 02912

Dr. Art Frankel U.S. Geological Survey 922 National Center Reston, VA 22092 Dr. Cliff Frolich Institute of Geophysics 8701 North Mopac Austin, TX 78759

Dr. Holly Given IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Dr. Jeffrey W. Given SAIC 10260 Campus Point Drive San Diego, CA 92121

Dr. Dale Glover Defense Intelligence Agency ATTN: ODT-1B Washington, DC 20301

Dr. Indra Gupta Teledyne Geotech 314 Montgomery Street Alexanderia, VA 22314

Dan N. Hagedon Pacific Northwest Laboratories Battelle Boulevard Richland, WA 99352

Dr. James Hannon Lawrence Livermore National Laboratory P.O. Box 808 L-205 Livermore, CA 94550

Dr. Roger Hansen HQ AFTAC/TTR Patrick AFB, FL 32925-6001

Prof. David G. Harkrider Seismological Laboratory Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Danny Harvey CIRES University of Colorado Boulder, CO 80309 Prof. Donald V. Helmberger Seismological Laboratory Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Eugene Herrin Institute for the Study of Earth and Man Geophysical Laboratory Southern Methodist University Dallas, TX 75275

Prof. Robert B. Herrmann Department of Earth & Atmospheric Sciences St. Louis University St. Louis, MO 63156

Prof. Lane R. Johnson Seismographic Station University of California Berkeley, CA 94720

Prof. Thomas H. Jordan Department of Earth, Atmospheric & Planetary Sciences Massachusetts Institute of Technology Cambridge, MA 02139

Prof. Alan Kafka Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167

Robert C. Kemerait ENSCO, Inc. 445 Pineda Court Melbourne, FL 32940

Dr. Max Koontz U.S. Dept. of Energy/DP 5 Forrestal Building 1000 Independence Avenue Washington, DC 20585

Dr. Richard LaCoss MIT Lincoln Laboratory, M-200B P.O. Box 73 Lexington, MA 02173-0073

Dr. Fred K. Lamb University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801 Prof. Charles A. Langston Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Jim Lawson, Chief Geophysicist Oklahoma Geological Survey Oklahoma Geophysical Observatory P.O. Box 8 Leonard, OK 74043-0008

Prof. Thorne Lay Institute of Tectonics Earth Science Board University of California, Santa Cruz Santa Cruz, CA 95064

Dr. William Leith U.S. Geological Survey Mail Stop 928 Reston, VA 22092

Mr. James F. Lewkowicz Phillips Laboratory/GPEH Hanscom AFB, MA 01731-5000(2 copies)

Mr. Alfred Lieberman ACDA/VI-OA State Department Building Room 5726 320-21st Street, NW Washington, DC 20451

Prof. L. Timothy Long School of Geophysical Sciences Georgia Institute of Technology Atlanta, GA 30332

Dr. Randolph Martin, III New England Research, Inc. 76 Olcott Drive White River Junction, VT 05001

Dr. Robert Masse Denver Federal Building Box 25046, Mail Stop 967 Denver, CO 80225

Dr. Gary McCartor Department of Physics Southern Methodist University Dallas, TX 75275

3

Prof. Thomas V. McEvilly Seismographic Station University of California Berkeley, CA 94720

Dr. Art McGarr U.S. Geological Survey Mail Stop 977 U.S. Geological Survey Menlo Park, CA 94025

Dr. Keith L. McLaughlin S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Stephen Miller & Dr. Alexander Florence SRI International 333 Ravenswood Avenue Box AF 116 Menlo Park, CA 94025-3493

Prof. Bernard Minster IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Brian J. Mitchell Department of Earth & Atmospheric Sciences St. Louis University St. Louis, MO 63156

Mr. Jack Murphy S-CUBED A Division of Maxwell Laboratory 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091 (2 Copies)

Dr. Keith K. Nakanishi Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Carl Newton Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335, Group ESS-3 Los Alamos, NM 87545

Dr. Bao Nguyen HQ AFTAC/TTR Patrick AFB, FL 32925-6001 Prof. John A. Orcutt IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Jeffrey Park Kline Geology Laboratory P.O. Box 6666 New Haven, CT 06511-8130

Dr. Howard Patton Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Frank Pilotte HQ AFTAC/TT Patrick AFB, FL 32925-6001

Dr. Jay J. Pulli Radix Systems, Inc. 2 Taft Court, Suite 203 Rockville, MD 20850

Dr. Robert Reinke ATTN: FCTVTD Field Command Defense Nuclear Agency Kirtland AFB, NM 87115

Prof. Paul G. Richards Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Mr. Wilmer Rivers Teledyne Geotech 314 Montgomery Street Alexandria, VA 22314

Dr. George Rothe HQ AFTAC/TTR Patrick AFB, FL 32925-6001

Dr. Alan S. Ryall, Jr. DARPA/NMRO 3701 North Fairfax Drive Arlington, VA 22209-1714 Dr. Richard Sailor TASC, Inc. 55 Walkers Brook Drive Reading, MA 01867

Prof. Charles G. Sammis Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Christopher H. Scholz Lamont-Doherty Geological Observatory of Columbia University Palisades, CA 10964

Dr. Susan Schwartz Institute of Tectonics 1156 High Street Santa Cruz, CA 95064

Secretary of the Air Force (SAFRD) Washington, DC 20330

Office of the Secretary of Defense DDR&E Washington, DC 20330

Thomas J. Sereno, Jr. Science Application Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121

Dr. Michael Shore Defense Nuclear Agency/SPSS 6801 Telegraph Road Alexandria, VA 22310

Dr. Matthew Sibol Virginia Tech Seismological Observatory 4044 Derring Hall Blacksburg, VA 24061-0420

Prof. David G. Simpson IRIS, Inc. 1616 North Fort Myer Drive Suite 1440 Arlington, VA 22209 Donald L. Springer Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Jeffrey Stevens S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Lt. Col. Jim Stobie ATTN: AFOSR/NL Bolling AFB Washington, DC 20332-6448

Prof. Brian Stump Institute for the Study of Earth & Man Geophysical Laboratory Southern Methodist University Dallas, TX 75275

Prof. Jeremiah Sullivan University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801

Prof. L. Sykes Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Dr. David Taylor ENSCO, Inc. 445 Pineda Court Melbourne, FL 32940

Dr. Steven R. Taylor Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335 Los Alamos, NM 87545

Prof. Clifford Thurber University of Wisconsin-Madison Department of Geology & Geophysics 1215 West Dayton Street Madison, WS 53706

Prof. M. Nafi Toksoz Earth Resources Lab Massachusetts Institute of Technology 42 Carleton Street Cambridge, MA 02142 Dr. Larry Turnbull CIA-OSWR/NED Washington, DC 20505

Dr. Gregory van der Vink IRIS, Inc. 1616 North Fort Myer Drive Suite 1440 Arlington, VA 22209

Dr. Karl Veith EG&G 5211 Auth Road Suite 240 Suitland, MD 20746

Prof. Terry C. Wallace Department of Geosciences Building #77 University of Arizona Tuscon, AZ 85721

Dr. Thomas Weaver Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335 Los Alamos, NM 87545

Dr. William Wortman Mission Research Corporation 8560 Cinderbed Road Suite 700 Newington, VA 22122

Prof. Francis T. Wu Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

AFTAC/CA (STINFO) Patrick AFB, FL 32925-6001

DARPA/PM 3701 North Fairfax Drive Arlington, VA 22203-1714

DARPA/RMO/RETRIEVAL 3701 North Fairfax Drive Arlington, VA 22203-1714

DARPA/RMO/SECURITY OFFICE 3701 North Fairfax Drive Arlington, VA 22203-1714

HQ DNA ATTN: Technical Library Washington, DC 20305

Defense Intelligence Agency Directorate for Scientific & Technical Intelligence ATTN: DTIB Washington, DC 20340-6158

Defense Technical Information Center Cameron Station Alexandria, VA 22314 (2 Copies)

TACTEC Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 (Final Report)

Phillips Laboratory ATTN: XPG Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: GPE Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: TSML Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: SUL Kirtland, NM 87117 (2 copies)

Dr. Michel Bouchon I.R.I.G.M.-B.P. 68 38402 St. Martin D'Heres Cedex, FRANCE Dr. Michel Campillo Observatoire de Grenoble I.R.I.G.M.-B.P. 53 38041 Grenoble, FRANCE

Dr. Kin Yip Chun Geophysics Division Physics Department University of Toronto Ontario, CANADA

Prof. Hans-Peter Harjes Institute for Geophysic Ruhr University/Bochum P.O. Box 102148 4630 Bochum 1, GERMANY

Prof. Eystein Husebye NTNF/NORSAR P.O. Box 51 N-2007 Kjeller, NORWAY

David Jepsen Acting Head, Nuclear Monitoring Section Bureau of Mineral Resources Geology and Geophysics G.P.O. Box 378, Canberra, AUSTRALIA

Ms. Eva Johannisson Senior Research Officer National Defense Research Inst. P.O. Box 27322 S-102 54 Stockholm, SWEDEN

Dr. Peter Marshall Procurement Executive Ministry of Defense Blacknest, Brimpton Reading FG7-FRS, UNITED KINGDOM

Dr. Bernard Massinon, Dr. Pierre Mechler Societe Radiomana 27 rue Claude Bernard 75005 Paris, FRANCE (2 Copies)

Dr. Svein Mykkeltveit NTNT/NORSAR P.O. Box 51 N-2007 Kjeller, NORWAY (3 Copies)

Prof. Keith Priestley University of Cambridge Bullard Labs, Dept. of Earth Sciences Madingley Rise, Madingley Road Cambridge CB3 OEZ, ENGLAND Dr. Jorg Schlittenhardt Federal Institute for Geosciences & Nat'l Res. Postfach 510153 D-3000 Hannover 51, GERMANY

Ŀ.

.

Dr. Johannes Schweitzer Institute of Geophysics Ruhr University/Bochum P.O. Box 1102148 4360 Bochum 1, GERMANY

Commander and Director USAE Waterways Experiment Station Attn: CEWES-IM-MI-R Alfrieda S. Clark, CD Dept/0597 3909 Halls Ferry Road Vicksburg, MS 39180-6199