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I. Introduction

Transatmospheric vehicle (National Aero-Space Plane) technology presents a
grand challange of the vest of this century and the next for aerospace science
and engineering communities [1]. iIn contrast to ballistic re-euntry vehicles
(space shuttles) piercing thrcugh the atmosphere nearly vertically, the trans-
atmospheric vehicle will remain in the dense leyer of the ataosphere for a
geod portion of fts flight, and hence the air near the aoving vehicle is heat-
ed to very high temperatures (aerodynamic heating). According to computational
fluid dynamic simulations of hypersonic 1ifting body, the skin temperature can
readily reach 2000°F and, in particular, the nose cone and external skin
panels near the jet efflux are estimated ¢o have temperatures over 3500°F [1].
At these high-temperature hypersonic flights, acousctic fatigue becomes a
sevare atructural problem because not cnly are the pressure fluctuations anti-
cipated in the range of 160-189 dB, but also the gkin panels can vibrate
chaotically about the thermally buckled posiiions whose amplitudes increase as
the square root of temperature above the criticel buckling temperature (oil-
canning effect) [2]. Realizing the importance of elevated temperatures on
acoustic fatigue, work has begun as early as in the 7C's to establish fatigue
failure criteria in a combined thermal-accustic environment (3].

Strictly speaking, sonic fatigue is a fluid-structure interaction probles
which requires simultaneous solution of the Navier-Stokes equations for
presgure and temperature together with the structural dynamic equations for
ensuing stress/strain distributions. Por large-amplitude deflections, the
shape of structures representing the fluid-structure interface is not known g
priort, and hence must be determined from simultaneous solution of the fluid
and structural equations. However, much progress has been made in the past by
decoupling the structural part of the problem from solving the Navier-Stokes
equations for pressure fluctuations. Following in this tracdition, we shall
in this report investigate dynamics of a piece of hypersonic vehicle structure
modelled by the so-cailed von Karman-Herramann-Chu plate equations subjected to
prescribed pressure fluctuations and temperature variations.

Although Bolotin [4] derived the basic plate/shell equations for large-
amplitude deflectfon subfected tc temperature variation in the late 50‘'s (Sec.
II), it is fair to say the role of thermal effects has not vet been elucidated
in its full generality. This is perhaps due to the complexity of noniinear
equations and, moreover, a wide variety of boundary and edge conditions that
one may impose on the plate. To exkibit the essential physics, we expand the
transverse displacement, Airy's stress function, and temperature distribution
in trigonometric functions, and thus obtain mcdal equations for both simply-
supported and clamped plates (Sec. III). Note that the original plate equa-
tions are partial differential equatiocns, whereas the modal equaticns are
ordinary differential equations. However, the price paid for this reduction




(Galerkin's procedure) is indeterminancy because the system of wmodal equations
is not closed becauge of nonlinearity. We shall therefore truncate the system
to obtain modal equations for the first four sven modes in Sec. IV, and there-
by permitting comparison with the previous formulations of Levy [6] and Paul
{6J. 1t i1s important to point out that after a suitable nondimensionalizatjion
the modal equations of simplv-supported and clamped plate can exhibit a simi-
lar form for the three temperature terms. The first is global thermal expan-
sion by urniform temperature, the second corresponds to local thermal expansion
by temperature variation over the plate, and the third term represents the
thermal moment owing to temperature gradient through the plate thickness.

Even for the low order modal equations, there are too many cubic terms for
us to readily ascertain the correctness of Galerkin's procednre carried out in
Sec. IV. We therefore demonstrate credibility of the modal equations by way
of constructing the Hamiltonian which embodies the kinetic and potential
{strain) energies of the plate being conserved in the absence of viscous damp-
ing (Sec. V). To proceed further, it is necessary to specify the temperature
variation over the plate and temperature gradient across the plate. We have
adopted in Sec. VI very simple, but nontrivial profiles for the temperature
variation and gradient to expedite the subsequent analysis.

Much insight into thermal terms can be gained by the prototype single-mode
equation shared by both the simply-supported and clamped plates (Sec. VII).
First of all, the uniform temperature and temperature variation represent a
kind of thermal stiffness, but they add negatively to the structural stiff-
ness. Hence, the combined thermal-structural stiffness remains positive when
the sum of uniform and local temperatures is less than the critical buckling
temperature (pre-buckling), whereas it becomes negative when the sum exceeds
the critical buckling temperature (post-buckling). In contrast, the tempera-
ture gradient across the plate gives rise to thermal moment, hence represent-
ing an additional loading, as already observed by Boley and Weiner [7]. There-
fore, this together with external pressure forces constitute the combined
thermal-applied forcing.

For the acoustic loading it is necessary to consider stochastic dynamic
formulation of the single-mode equation and estimate the mean square response
amplitude subjected to Gaussian random excitations [8]. Although the equi-
valent linearization technique [9) has proven useful for nonlinear structural
dynamic problems, it cannot be applied directly to the present problem because
the thermal moment appears as an additional time-independent forcing. This
therefore calls for an extension of the equivalent linearization to nonzero-
nean Gaussian excitations. The main thrust of this report (Sec. VIII) is to
show the growth of mean square displacement as the plate goes through thermal
buckling, the competing mechanical and thermal loading, and the effect of
various thermal terms on the extreme-fiber stress and strain tensor
components.



Noct detafiled information has been relegated to the appendices, for the
benefit of those readers who demand proot's. In any event, this report contains
a complete Galerkin formulation of simply-supported and clamped plates,
including the coabined stilfrnese and applied forcing terms.




1I. Plate Equations for Large~-Amplitude Displacement

Let us begin with the following strain-stress relations for a plate,
including the effect of thermal expansion aT

cx = é (o‘x— My) + a’l‘,
ey = g (04~ Hoy) + aT,
Exy" -lie Oxy’ (1)

where E is the modulus of elasticity and u Poisson's ratio. Besidea, T
denotes the local temperature of plate with the thermal expansion coefficient
a. In the absence of T, Eq. (1) is the usual linear relationships of tae
sirain tensor components LI and e, and stress tensor components Oxs ay.
and 0_.,. For a positive a, ralsing T would simply result in incrsased strain,
in co:¥;rlity with the intuitive notion of thermal expansion. By soiving Eq.
(1) for the stress tensor, the inverse relation is

E
x " g oxt pey = (1w)eT],
E
v " (1_”3)[831* pey, - (1+p)aT]},
Txy™ '(T%D' Exy (2)

1% is important to notice the negative sign for «T terms; hence, the stress
may in fact decrease as T is raised.
Following Bolotin [4], we decompose T into

T™x,y.2) = T(x,y) + z0(x,y), (3)

_. h/2
where T(x,y)=h 1fh'r(x.y,z)dz is the temperature averaged over the plate

thickness h. and 9(:.y) is the temperature gradient across h (Fig. 1). Note
that only the lirnear tenperature differential in z is included in Eq. (3);

any nonlinear temperzture variations are ignored according to the thin plate
theory. We shall first outline briefly derivation of the compatibility, trans-
verse displacement equation, and plate edge conditions.

Compatibility Equation

For the mean strain tensor t_, ¢, and =_  at the mid-piate; {.e.,

x' "y xy

T n“;h/' dz, T n"fh/' dz, and 7 h‘*fh/' dz, we have the following
PR e dz, ¢ = 3 , and s_ = s ' e e

X" “hip X V5 “h/e ¥ X" ha ™

expressions




w

-~ - . PR R v@,‘ Rt B T ‘F:‘—“\a:;g ALY T A,
. iz g ST %ﬁ%ﬁ?}ﬁ%‘% ; e
s e T TR A B AT S

= %g M %‘%g)"
R A8 1
Ty 338+ 3D + @MY, (4)

deduced from geometric considerations. The condition of strain compatibility
is obtained by eliminating u and v from Eq. (4) through cross differentiation

a“ex

Ty L. ghege @tm@l, @
+ - = - .
ay  oxt 5By V' Taxt oyt

Now, by averaging Eq. (1) over h we obtain the alternate expressions for the
mean strain tenscr

i - !!li (K- uNy) + o,
R I (Ny- uNy) + o,
Tay” B Myy- ()

Here, Noof o dz, Noof 2o dz, and N_.of 5. .d £ it length
ere, N_= ¢ dz, N = g.,dz, an = ¢,.,42z are forces per un

X<h/a X Yon/a ¥ XY “h/a ¥
of plate. They are often expressed by Airy's stress function F

2p ap a%r

which automatically satisfy the stress equilibrium at the mid-plate; i.e.,
aux/amuxy/ay-o and anxy/amnymy-o. Substituting £q. (6-7) into Bq. (5}
vields the compatibiiity condition
2, a 2 2
V¥ + Ehav®T = En[(E0L) - () @2Y)], (8)
[ %5; ax' 3?‘ ]
where v¢*= v29® i3 the biharmonic opeiator.

Transverse Displacement Equation

Next, we consider the balance equation for the shear forces and normal
loading q, on one hand, and for the shear forces and bending moments ny, and
n. and twisting moments 'xy"yx' on the other hand. Upon eliminating the
shear forces from such force balance equations, we obtain

2%, 2* 2t 2 2 2
axﬁ‘#;—;’*as%’+”x§—{!“uyg_f!*zu‘y%g-y+qn-°v (9)

relating the nunénts with the normal loading q,- We first express the moments
in terms of w




n = -nf &, %%, e,
ay®

X ax?
« -p[ 82w, , 3w
m, = -D[ ay? B and + a(1+p)0],
2w
ny= D-pigEES. (10)

where D=Eh®/12(1-2) is the flexural rigidity. We then include in q,the
inertial force, viscous damping, and external pressure p; i.e.,

2
qn=-ph§-t—:-pheg—{'-+p. (11)

where p is the cross-sectioneal mass density and ¢ the damping cvefficient.
Note that ph¢(3w/3t) has been introduced as a symbolic representation for
viscous damping. Ferhaps, a aore practical damping model would be ¢Dv* (3w/dt)
of Maekawa {10;. Upon inserting Egqs. (7)., (10) and (11) intoc Eq. (9), we
obtain the equation for transverse displacement consistent with the von Karman
type of large-amplitude deflecticn

2w aw_ _ vt (140)v30 - 22w 22F  2%w2?r 22w 92F (4,
pat‘”m“ P+ DV v alim) a2 3% 3y 08 20y 3wy

The pair of Eqs. (8) and (12) is that given by Eqs. (4.131) and (4.132) (in
which kx and ky are set to zero) of Bolotin [4], and also agrees in form with
Egs. (13.7.1) and (13.11.3) of Boley and Weiner [7].

Plate Edge Conditions

It must be pointed out that the compatibility is a statement about force
balances at the mid-plate. Hence, it implies certain constraints cn v and v,
which dictate the movement of plate edges. Let us assume that the sclution of

Eq. (8) is made up of the particular solution and a homog neous solution Fh of
v*r=0 which is given by

Py P
Fp = 5=+ 5 - Pyxy (13)

where integration contants Px. P_., and P_.  represeint the meabrane stresses.
As shown in Sec. II of Ref. [11], the immovable edge conditions of zero in-
plane displacement are

%;g; =0 and I:I:(gg)dxdy =0 at x=0, a,

QE- =0 and [2P@Y)axdy =0 at y=0. b, (14)

Here, the integrals of displacements along the plate edge are suppressed ir an




B T e e R e e e A - e

average sense. By combining Eqs. (4) and (68), we find appropriate expressiocns
for the integrands in terms of F and w

au Q__ 7 - law®
dx —ﬁaya axz @ ( )
iﬁ[a'l -p ay’J + ol - -(91') , (15)

as given by Bolotin's Eq. (4.140) in Ref [4]. On the other hand, the movable
edge conditions

2 2
%§§§ =0, Ib(g;g)dy =0, and u= constant at x=0, a,

Jo(Q—E;ox =0, and v= constant at y=0, b, (16)

ax?

3*F -0,
y

permit free movement of edges with zero inplane stress. Here, again, the
vanishing of inplane membrane stress is imposed by the integral constraint.
We shall be concerned in this report with the immovable edge conditions, and
thereby exhibit thermal buckling under general temperature distributions.

Stress Tensor

Rather than displacements, the stress and strain are the more physically
relevant quantifiers in structural analysis. We shail, therefore, present
here the stress components expressed in F and w, from which the strain compo-
nents can be recovered by Eq. (1). Let us begin with the folluwing cxpressions

e =0u_, 3%
x T 9x ax?
e =2V _ 3%
U A 4
Exy™ ’é[g- S'i} -z 3'%_ (a7

computed by assuming that surfaces which are parallel and normal to the mid-
plate remain so after heating. (Eq. (17) is identical to Eq. (12.2.1) of
Weiner and Boley [7] with the replacement 7xy =2 ) Let us insert Eq. (17)
into Eq. (3) to obtain

L -(—15;5—){[%% + p%-;-;] z[z:x: +p giys] -(lﬂt)a'l'}.
Cxy” TIAR 20y * 3 -2 g%'?}' (18)

XY'

iAo owm P



When the stress tensor is averaged over h, one finds that only the symmetric

terms survive and the odd (unsymmetric) terms drop out. Hence, we obtain from
Eg. (18)

2
«‘?rﬁ + [‘g—; .“—ﬁu Nx + (lm)a'Tl
2
30+ 38 - L0 ¢ (1,
%g + g_; - ﬂ%ﬁel Nyg- (19)

Now, substituting Eq. (19) back intoc Eq. (18) yilelds the stress tensor
expressed in F and w (with the use of Eq. (7))

.123%F _ _Ez_ (a%w ., 0°W) _ Ea20
" Byp (1-»‘)[::(‘ p;v;] »)

o~ 19 _ _Ez [gf‘_!#”g‘_n]_ z0

v By TGy Taxd -BY
2 2
xy™" b STY - TTe] 5" (20)

after circuitous substitutions.
in retropsect. the assumpticn that the derivatives 3n/3x, 3av/dy, a%w/a-8,

... are constant across the plate was essential in arriving at Eq. (18).
Obviously, this cannot be true in composite plates, as pointed out to me by
Steve Whitehouse. Furthermore, it is because of this assumptioa that the
nonlinear strain tensor (i.e., the terms (1:2){3w/2%}2, (i/2)(dw/2y)®, ard
{1/2)(3w/2x) {3w/dy) being incorporated into the right-hand sides of Eys £y
and éxy' respectively) also gives rise te the sume Eq. {20), as pointed out
to ae by Jay Lavraea.

Note that Eq. (20) is identical to Egqs. (29-31) of Choi and Vaicaitis [12]
when N: and Ny are set to zero in their equations. For later reference we
point out that ir Eq. (20) the first term is the membrane strees, the second
term the bending stress, and the third term represents the thermal stress
induced by temperature gradient across h.

Normalized Coordinates

it is convenient to acalg x and y Ry the respective sides a and b of the
plate (Fig 1). Introducing x=x/a and y=y/b and subaequently dropping the
karats, we have the pair of ccmpatibility and displacement equations (#=b/a)

R - R IR - e




»
|

I s p o D fgedtw , ,es. 2%, 2%w) . a(1+u)Df,02% LQ}"
Y2 uegi - 0 o [' axt ”‘ax‘"oy' " ay? ] - v (5% * 2y
. E2ra%w 2?7 , 22w %F _ a&i!_ Yol A 22)

*las2 3y Y 3  3my asz' (

together with the immovable edge conditions
;o;o{ [U M‘a—- + atPt - 55( )}dxdy =0,

;;,;{Eﬂ,eaxz - ,,g%}] s a1 - 1R% }dxdy -0, (23)

to be considered in the preseat investigation. And, the str:ss tenso:r now Las
the form

1 2%F _ __ Rz 2%\ _ Eaz0
WA e P14 ;["':x' e T

B % Pz (o*w 3%w) _ Eaze
%" po? axt b‘(l-p )[g-y—' ""ax‘] A-w)

2
Oxy™" ;%5 gi§7 b2 gii‘ (24)

Because of the coordingte normalization, it should e remembered henceforth
that x and y extend over (0,1).

®”

(m-*)

Boundary Conditions
Regides the edge conrtraints, we further assumz that the plate edges
undergo no tranaverse displacement

w(0,y)= w(i,y)= wix,0)= w(x,1)= Q. (25)

For a simply-supported plate the tangential components of the bending moment
being zero implies (Eq. (12.4.2) of Boley and Weiner {7])

"235 - ab‘(l-&p)@ = 0 at x=0, 1,

2w + ab®(1+u)e = 0 at y=0, 1. (26)

'

Since Eq. (26) is the inhomogeneous boundary conditions, the usual sine
2xpansion

wx,y) = B _ 0w G () (), (27)

where i&(x)-sin(-nx). cannot be used unless 6=0 around the plate edge. Then,




Eq. (26} degenerates to the homogeneous boundary conditions

2 2
2¥ . 9at x-0, 1 and ¥ . 0 at y=0, 1. (28)
ax? ayt
On the other hand, for a clamped plate we have (Eq. (12.3.1) of Boley and
Weiner {7]) an
" = " =

¥ . 0 at x=0, 1 and ¥ - 0 at y=0, 1, (29)
as given by Eq. (12.3.1) of Boley and Weiner [7)}, which are independent of the
temperature gradient. We may therefore continue to use the trigonocmetric
function expansion

wix,y) = S E_ wo b ()8 (V). (30}

where 0.(x)=cos(n+1)nx—cos(m-l)ax. as has already been applied to the thermal
buckling [68] and sonic fatigue [10] problems.
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II11. The Derivation of Modal Eguations

Using expansion Eqs. (2.27) and (2.30), one can reduce the set of partial
differential Eqs. (2.21-2.22) to ordinary differertial equations for '
However, cwing to the presence o! Airy's stress function, thiz reduction would
lead to an infinite set of modal equations. It is, therefore, necessary to
truncate the modal equations fovr practical computation -~ an ad hoc procedure
not dictated by the problem. For a simply-supported plate the introduction of
Eq. (2.27) into Eqs. (2.21-2.23) gives rise to the modal equations with
diagonal mass, damping, and stiffness matrices. On the other hand, Eq. (2.30)
will result in the mass, damping, and stiffness matrices which are nondiagonal
in the clamped-plate case. This is because ’m are not orthogonal and the form
of 0. changes after the second and fourth-order differentiations. The latter
simply restates that Y=§.(x)§n(y) is not an engenfunction of V*Y-AY=0. We
shall firs: present jin Sec. IIIa the modal equations for a simply-supported
plate, prior to the more coaplicated deriva- tion for the clamped plate in
Sec. Iilb.

A. Simply-Supported Plate
Expanding the particular solution of Eq. (2.8) in cosines, we write in
view of Eq. (2.13)
PRy Pt
n - X - — al
F e -12_ + Eh zpto "z:l-onqcoapnx cosqny, (1)
where Px and Py are integration constants for the homogeneous biharmonic
equation. Here. we have invoked ny-o in anticipation of a‘pfaxay-o. as
required by the immovable edge condition. Also, a similar expansion in
cosines is assumed for T [13]

T=t, + ¥ £ t_ _cospnx cosqny, (2)
p=¢c g=o P4

where to is constant temperature over the plate. Note that in Egs. (1-2) the
term for p=q=0 is excluded from the double sum. Instead of Eq. (2.27), let us
redefine the expansion by

wix,y) = B W ¥ (x)¥ (v), (3)
where v.své sin(mnrx) are the orthonormal eigenfunctions.

The compatibility With the use of Eq. (3) the right-hand side of Eq. (2.21)
can be expanded in a cosine series

(%%5—(&)(9:!) =x*s” ¥ € cosprx cosqny, (4)

ax® ay® p=o g=o P4
where epq is given by Eg. (A7) of Appendix A. Hence, after substituting Eqs.
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{(1-2) into Eq. (2.21), we collect the following coefficients with the use of
Eq. (4)
2
. ab®t . }PG .
PI 2 (Pat+q®) (B8 + /8
As pointed out in Appendix A, Spq congists of the nine sums Bx" B° of Levy
{5].

F

(5)

The displacement In parallel to Eq. (3), the 6 and p are also expanded by Y

[gg(:g;] ‘z:"oz:%[gﬂv-(an(y)' (6)

For the derivation of modal equations, it is convenient to put Eq. (2.22) in a
symbolic form
l!.1 + !2 + R, + R.- 0, (7)

R = phg—::i—' + pheg{- -
R, - Db"{p‘g-i';' + ao‘;a-x:-a‘!-v-; + %3{-] .
- ¢ 3
R~ a(1+p)nb“[ﬂ‘g—x§ + g—ﬁ]. .
R, -p‘b"[g-a—x‘;'g-g +§1y.!gfx-£ - zg:;—yg—é; .

where

We then introduce Egs. (1), (3), and (§) into Eq. (7), and sort out the com-
ponents for W.g, as in the Gelerkin procedure. Because of the orthogonality
S ;iiﬁjdx% ;_. one can write down at once

3w o
SoSs R ¥ (x)¥,(v)dxdy = ph—;—tf! + PhezE=® - Prg- (8)
&
S5t R ¥ (x)¥,(y)dxdy = %mm )% . (9)
S0 Repe(RI¥ (yhandy = - SLLBIDE g2:2, 2 (10)

On the other hand, the treatment for R‘ is complicated because of the product
term: in F and w. After some algebra, we obtain

&
SArL R ¥ (x)¥, (v)dxdy= - E%’;:(pxwt + Batetiu - %:_h $pq (Y Ppg)e (11)
as shown by Eq. (B5) of Appendix B. Here, we have indicated the explicit

dependence of 3,, on w_. and F__. Note that Eq. (i1} is still indeterminate
owing to the presence of constants Px and Py. which we shall evaluate under
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the immovable edge condition of Eq. (2.23). Remembering that p=q=0 is excluded
from the sums in Eqs. (1-2), we find that

P - Eh {2b‘[p’«(3")‘» + p«(g-)‘»] - (1+p)at}

(1-p*)
ppa«(g—)‘» + <<(g-)‘>>] - (1+p)at} {12)

Eh
P~ -
y (1_“3) ab‘[

where <<f>>-j; f;fdxdy is the average of f over the plate. After evaluating

<<(g-'§')‘>> and <<(%‘§-')3>>. and inserting P, and P, back into Eq. (11), we write
the final expression in the following fora

SoSs R (X)¥g(yiixdy = I + 1 + 1 +1, (13)
where

n®Ehat
I = ‘;;('1_—#‘;—' B2t + P)w,
I =~ M 3 (“ . __EP.Q_)'
T R Ty

gEn*Eh {
1 r* vt 2,4 agh 2.8 '
s 2b*(1-4*) (p“f‘.'nq * "‘E'nzg ) s (ﬂ:n:;"f g .,nl:‘ l“)}'"
I =- n*g2Eh

s ran P LY —'TLT)‘
4b (Bp*+ q*/p)

According to Eq. ("), by setting the sum of Eqs. (8-10} and (13) to zero we
obtain the modal equation for Yo of a simply-supported plate. Although it 1is
possible to consolidate Eq. (13) into a more compact form, we prefer to leave
it in the present form involving Sm and 89". 2or reecdability is more impor-
tant than compactness wh~n one attempts to enumerate the modal eguations.

B. Clamped Plate
Although it is most desired to expand w(x,y) by the orthonormal eigen-

functions of V'Y-AY=0 for the clamped-plate boundaries, the use of such eigen-
functions is indeed intractable for the derivation of modal equations, similar
to what we have done in Sec. IIla. Therefore, we shall be conteat here with
the use of 0. which may be expressed alternately by Q.(x)azs.(x). where
s.(x)-sin(unx)slnnx. Since }- are independent, we construct the orthonormal
functions % from S. by the Gram-Schmidt procedure [14]}. Since sl(x). s‘(x).

. are even functions of x and q.(x). s.(x).... are odd functions, one finds
that the orthonornalized«p.(x) also split into the even-shaped components

9, (x)=A873s (x). 9,4 (X)2 /24785, (x) £ AB718S, (x), ...

and the odd-shaped components
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9, (x)=2s_(x), ¢‘(x)&-\/56733‘(x)4\,47§sz(x) . e

As ait 1llustration, we have compared in Fig. 2 the primitive Q‘ and 0, with
the orthonormalized °, and 9y Summing up the even and odd components, we
have the followirg orthonormal bases

oy(x) = % a_,8,(x), (14)
where )

W73 0 o ) o o ]

0 2 0 0 0 0

718 o 2875 0 0 0

%1 ” o i3 o (J8F o o .

8735 0o 36735 © (M0/T O

o %% o (\A73 o B
L . . . . . . . . » * . J

is the lower triangular matrix. Hence, in contrast to Eq. (2.3G), the
orthonormal expansion for a clampad plate is given by

w(x.¥) = Zp. EnooYarfu (X, (¥)

= z:-oz:-‘oz?z?'nn‘li'njsi (x)84(y). (15)

Note that the second equality gives the working definition for iodal
expansion.

The compatibiiity Substituting Eqs. (1-2) and {15) into Eq. {2.21}, we obtain
by coliecting the ccefficients for p and q

ab®t
o] P (16)

r = ’
BT AEEE) (P EBP

where qu is given by Egq. (Ci2) of Appendix £. Ncte that qu is considerably
more complicated than 8pq (Appendix A) due to, in part, the use of orthonormal
bases. However, it presents no serious handicap in that both epq and qu are
too unwieldy for hand enumeration and hence, in any event, will have to be
enumerated dy symbolic manipulations on a computer {see, Appendix D).

To establish a contact with Paul's tabulated results (Appendix B of Ref.
{6])., we must remember that his analysis was based on the nonorthogonal
expansion of Eq. (2.30). However, note that Eq. (15) does reduce to Eq. (2.30)
under a; -6}. For instance, of the 30 quadratic terms listed in Eq. {D1) of
Appendix D, there are 10 teras which involve only the diagonal a;;. Hence,
with a(1,1)=a(8,3}=1 the 10 teras simplify to give
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2,279, saw' -46w W - Mnuwuuanuw”usn‘
~48u“uu oan“f“ueon' ~ZL0W, W - 80‘0:’. am

On the other hand, Paul presented the fnilowing met¢rix (the tabulation for
P=G and Q=% in Appendix B of Ref. [8])

[ 32 18 -32 -16
ﬂoa = § -84 16 64 -16
-32 -18 180 80
l 84 -16& -320 80,

to form F o by a’an R, where K is the culunn vector (w FPRL LI ) and T is
the transpoae. 1t jis casily checked that H & ﬂ is 1dentica1 tc Eq. (17).
Furtheraore, other comperents of ?pq can also he checked agairst Paul's tabu-
lated resultz in a comapietely anslogouz manner.

The displacemert In anciogy to Eq. (6), we let

e Rt o | L LRGN (18)

and carry out the Galerkin procedure. In view of [‘¢ Q dx=61. we have by
(OB AR 3
inupection

101 %, v,y
Solo R p(x)og(y)dxdy = Ph-szg- + Phtzr— - Ppg- (18)
For the biharmonic term we obtain after some algebra
2 p3 \ Dﬂ"
Sof o RO (x)o (vidxdy = b & (20)

whare R‘ is given by Eq. (ES5) of Appendix E. Similary, w2 h&ve for the
temperature-gradient tera

2
S35 By9p(x)eg (v)drdy= - S o, (21)
whers
o B et T acoran (D 00l 083 a1y 0

Here, the summation notation z;t(l)af(1)+f(-1) of Naekawa [10] was used to
consol idate 8 terms into the 2 terms of (2. Finally, the integral involving
R‘ is given by Eq. (F68) or Appendix ¥
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(22)

2 +
ict gfn 2 2 n*Eh
Jofo R p(X)0g(y)dxdy= - B¢ (Pyo d, +Pya”k,) - 233:__ Trs(Man Foq)-

To reander Eq. (22) coapletely detcrsinable, it is necessary to evaluate Px and

Py undev the immovable edge conditions. Using the <<(%¥)‘>> and <<(%¥)3>>
evaluated in Appendix G, we sgain rearrange Eq. (22) into linear and cubic
contributions

SiSe RO (X)pg(y)exdy = I + I+ I+ T, (23)
where
7 Ehat

. - e 0
S yeum (B30, 4,),
J = - ng2akh g (W, .__EBS__.)'
2 4b3 rs’ man (pzpa,,qz)

‘ -

3, ;‘ﬁi'('li‘:,) (B28,+ 12,)2, + (uby+ £722,)2,}.
J = - "—‘ﬂll b 4

(w, , ——2d———),
[ 4b‘ rs’ mn (gpa+ q’/ﬁ)‘

The modal equations for a clamped plate are obtained by assembling Eqs.
(19-21) and (23) according to Eq. (7).

For completeness, attempts were made in Appendix I to compare ’ra with the
corresponding formulas derived by Paul {68]. However, we can provide only a
partial comparison because the orthogonality of Eq. (14), which plays an
important role in our formulation, is completely absent in Paul'c formulation.
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IV. Lowest-Order Modal Equations of Even Mode Shape

The complexity of Eqs. (3.13) and (3.23) prevents us from seeing the
overall structure of modal egquations. Even more, it is very difficult to
assess the role played by each term and thereby demonstrate any inter-
relations among the terms of modal equations. To this end, we shall in tiis
section enumerate the lowest-order modal equations which include only the four
rodes W W Mo and L For a unified representation, however, it is
necessary to put the modal equations in dimensionless form. As in Ref. [15],
we tirst choose the length scale h, the time scale y=[phb*/x*D]*/2, and the
force scale (ph®/72). We then introduce the temperaiure scale T*, which will
be defined later for the simply-supported and clamped plates. Using these

scales, we form the dimensionleas mechanical variables

T =t/y, Ppg a(7a/phg)pra' W “Mpg/hs (1)
and thermal variables

To =t°/T‘. T =tpq/T’, 8. =h9rs/T‘. (2)

Pq

Because of the factor h, the Or' now represents temperature differential
rather than gradient across the plate.

A. Simply-Supported Plate

According to Eq. (3.7), the modal equation follows by equating the sum of
Eqs. (3.8-3.10) and (3.13) to zerc. For the simply-supported plate, the
appropriate T* is the critical buckling temperature T;-nah?(p’+1)/laab?(1*#).
at which the global thermal expansion cancels out the aechanical stiffness for
L {3.18]. Then, the dimensionless modal equations becomes

o%w W
af:s M4 55. - Prg + (B0 )3'\'“
{SSpP-1) {SSP-2) (SSP-3) (SSP-4)
P R e

(SSP-5a)

-3p2(1-p2)¥ _(w , ——BD— ),
PO e e o T

(SSP-5b)
T
(SSP-6) (8SP-17)
+1 2,92
- L s 6., ~ 0. (3)
(SSP-8)
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We may interpret the terms labeled by SSP (simply-supported plate) § ~ 8 as
follows: SSP-1 is the inertial term, SSP-2 represents viscous damping, SSP-3
is the external forcing, SSP-4 is the usual stiffness term, and terams SSP-5a
and 5b represent the cubic nonlinearity. Note that SSP-5a is contribution
fron the immovable edge conditions, whereas SSP-5b is derived froa the product
terms of w and F. Thermal effects are embodied by the last three terms. That
is, SSP-6 is the global thermal expansion owing to uniform temperature, SSP-7
is the local thermal expansion by temperature variation over the plate, and
SSP-8 represents the thermz] moment induced by temperature gradient acrcas the
plate.

Using the qu and ’rs tabulated in Appendices A and 8, respectively, Eq.
(3) for r and 8 =1 or 3 yields

Wog* YEW. - P+ a W+ (SSP-5) - (F3+1)T b W .

(1-p)8% (82+1) T £,1]
- £ 3 . ’rs(;E;£§;Z) - 3 b1g9rg= 0, (4)

where the overhead dot denotes 3/3r. No sum is implied in Eq. (4) by the
repeated indices, and

a, =(F*+1)%, a =(%+9)%, &, =(9%+1)%, a  -81(8%+1)°, (5)
b =(82+1), b, =(8%+8), b, =(96%+1), b =8(p?+1). (6)
The ’rs given by Eq. (B8) of Appendix B are
T
’u(pzpawa) =D Wt BW gt BNt BN,
T
’13(ﬂzpa+qz) = h W+ BW BN, BN,
T
’a:.(papa*qn) = ByW BNt DMyt By,
T
’33(;553355) = h Wt h Wt hgW, bWy (7)
where
h,=-2(T  +T, /B%), b =2T 4T, /{2 +1)-2T  +T, /(8%+4),

h,=2T, /A% -4T__/(B®+1)-2T, /B +T  /(46%+1),
h‘=~9'l‘“/(ﬁ‘+4) -9'r“/w’+1). h'--m(r'o/p‘vro./o).

h.--zs'r“/(p‘ +4)-zs'r“/w‘u)uer“/(p‘u)+4'r“/(p' +1),
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n1-1sr‘°/p'—aar.o/p’-aem;./(a‘+9)+9r../(4p‘+9). h,=-18(T +T, /98*%),

h,=18T,,-18T, -36T, /(98%+1)+0T, /(96%+4),  h  =-18(T +T, /A%).  (8)

Finally, the cusponents of SSP-S are

(38P-5),, = da, ":a t2a W, ':a +3°3":1 W *3"4':1 L9 +2ao"xa":a +2a M, “:a

20,0, W W, +2a W, W K, sagh WS +a WD W, +28, W W, W, APLPL P P
(SSP-S)“- ‘3"2:+2ao':zwaa"°s':z':a“o'xxw:a+2axo"u"xa'u“a1'31'::
"’xzw.' x'ss”s: ta , ":a "z‘u"u‘g: +3a:.s':s"as +2:1“W“H:‘ *
- - “
(Ssp 5)31 ae':x"zaa"a’."31“1"2:':3*“9';:":3"::*azo"u':a“u':xwu
"axa"u"u"aa "zau“:z Wu "“11":x *“xo‘:x "as "2‘19":1 ':a '
ot
(SSP-S)”s zaantawsa“?‘sthm"'o':t'u“u"u'u'u *2"1.":9'33“1:'::
*a“":‘+2a“¥:‘|'”+4auwz, ’ (8)
where the coefficients a,-a. involving # and s are listed in Appendix J.
When #=1 the expressions for a-a, simplify greatly and reduce to the
coefficients c‘ -c“ already used in Ref [15]). PFor r and >3, it is best to
carry out the tedious enumeration by a computer, and a sample listing of such

computer eaumeration for 2=1.2 and u%=0.1 is presented in Appendix K.

B. Clamped Plate

For the clamped plate, using T;-n'h‘ (B +262/3+1)/3t® (14u) (2 +1) as the
T*, the modal equations obtained from Eqs. (3.19-3.21) and (3.23) have the
dimensionless form in parallel to Bg. (3)

o%w au
rs rs
P tyt 3 - Py v (R (W) ],

(CP-1) (CP-2) (Cp-3) (CP-4)

+ B[ (FP R i )0y (1R 07008 ] - 380 (1-42)T (v,

_.._m__)
(#p®+ q*/8)®

%
- “‘(;‘-2%;3*“1‘0[ﬂ‘&,("m)"%"’m”rs
(CP-6)
_{1-u 2+26%/3+1) A . e _ )
(#2+1) (CP-1) (F*p*+q*)
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- 18%4262/341) 1y ()] - 0. (10)

3(p2+1) 2 mn’‘rs
(CP-8)

Because of the parallelism, Eq. (10) has exactly eight terms CP (clamped
plate) 1-8 with the same physical interpretation as SSP 1-8.

In reality, however, the enumeration of Eq. (10) would generate many more
terms than Eq. (3) because the terms CP-4, CP-6, and CP-8 are non-diagonal.
In any event, the lowest-order components for r and s=1 or 3 are given by

ﬁ‘ + 76“ + [anlrs* (CP—S)rs- 4(3. :;gi/?*l)'ro[paa3+ as]r
- (1-p)pP(p0+2p2/341) o _ (B ﬁgsu)[ 2] (11)
(8%+1) ﬂ‘p +q2 3(f+1) ~ 2'Ts

First, the components of CP-4 are
@1, = %ﬁ(pn e - %5‘?23‘3*1)"1( -:—/2%-(3‘»« 2w, + Lf-?-w“
- (y,zﬂ) + 18(g%s 16,3, 148),, +7§iw (pa+
(2,1, _ﬁ(pz+ , 128 2y - 18 1614845, %”2*1)"31 32 (3-5’+1)ﬁ,,
[2,],,= %%é"u- ;/S.E.z.(p% %'G')wu- %‘3—"3*1)"33* gé' %lp"' '5""’ gl)"a‘ (12)
Second, the components of CP-6 are
(620,+0,] = §(B2r1W - B - 860y

113'/5 3./5“

[FQQ:,*Q,]u’“ _333"1:* -3(p3+2) 13~ '3‘%5":3'

8, 8
[paaams]u" —Mﬁ"sz" 3(”34,1)"”_
[ﬂao’:w‘a]:s" %"u 3/5 Wait (p’+1)w (13)
Third, the components of CP-8 are also given by Eq. (13) but with "'m replaced
by Gun are

[aa 11 '5138 e, 3/5“ -3:8/%031

. 8 4
Rg1 4=~ "J?xx* 3(6%+200,, - ;}?eu'
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8, 8
[8,1,,=- I/gou" 5(2"“)93;-

(R, 19" -33-%36“- a—:%ou" 'gg(pad)su' (14)

—:/—5“33 ’

Fourth, the components CP-7 are
Tng
,“(p‘ghq’). RS LA LR A Y
T
’u(’apzﬂ{)' AL PR LR L

TEQ
’u(’a‘fma)' AR AR AN ST

T
’u(ﬂapaﬂlz)' AR LS AR TLe (15)

where g's are given by Eq. (F8) of Appendix F. For instance, we see that
g, =" 14.zzz(rog+'r”p‘3)/4 + 14.222(T0.+T.°ﬁ1)/16 + 14.222'1'“/4(;!%1)
- 7.111{1“(,3’«»4)‘%1“(4p’+1)")/4. (18)

and the remaining g's are expressed similarly. Lastiy, instead of the
analytical expressions, we preaent here the computer listing of CP-5 with the
coefficients evaluated for #=1.2 and p®=0.1

(CP-S)xxt 0.76804E+02xW(1,1)W(1,1)W(1,1)-0.14892E+03xW{1,1)W(1,1)W(1.3)
~0.18330E+03xW(1,1)W(1,1)W(3,1)+0.43305E+02x%{1,1)¥(1,1)W(3,3)
+0.38925E+03xW(1,1)W(1,3)W(1,3)+0.33102B+03xW(1,1)W(1,3)W(3,1)
-0.28888E+03xW(1,1)W(1,3)W(3,3)+0.55192E+03xW(1,1)W(3,1)W(3,1)
-0.36109E+03xW(1,1)W(3,1)W(3,3)+0.46008E+03xW(1,1)W(3,3)W(3,3)
~0.17082E+03xW(1,3)W(1,3}W(1,3)-0.42937E+03xWN(1,3)W(1,3)W(3,1)
+0.17620E+03xW(1,3)W(1,3)W(3,3)-0.45437E+03xW(1,3)W(3,1)W(3,1)
+0.88712E+03xW(1,3)W(3,1)W(3,8)-0.27129E+03xW(1,3)W(3,3)W(3,3)
-0.32645E+03xW{3,1)W(3,1)W(3,1)+0.35047E+03xW(3,1)W(3,1)W(3,3)
-0.54223E+03xW(3,1)W(3,3)¥(3,3)-0.92581E+01xW(3,3)W(3,3)N(3,3),

(CP-S)x’-—0.4984OB+02xﬂ(1.1)H(l.l)ﬂ(l.1)+0.38925£+03xﬂ(1.l)ﬁ(l.l)ﬂ(l.S)
+0.16551E+03xW(1.1)W(1,1)N(3,1)-0.14444E+03xW(1,1)W(1,1)¥(3,3)
-0.51247E+03xW(1,1)W(1,3)W(1,3)-0.85874E+03xW(1,1)W(1,3)W(3,1)
+0.35241E+03xW(1,1)W(1,3)W(3,3)-0.45437E+03xW(1,1)W(3,1)W(3,1)
+0.88712E+03x%W(1,1)W(3,1)W(3,3)~0.27120E+03xW(1,1)W(3,3)W(",3)
+0.14310E+04xW(1,3)W(1,3)W(1,3)+0.33868E+03xW(1,3)%(1,3)W(3,1)
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.16894E+04xW(1,3)W(1,3)W(3,3)+0.
.78637E+03xW(1,3)W(3,1)W(3,3)+0.
.18257E+03xW(3,1)W(3,1)W(3,1)-0.
.28530E+02xW(3,1)W(3,3)W{3,3)-0.

.61101E+02xW(1,1)W(2,1)W(1,1)+0.
.55192E+03xW(1,1)W(1,1)W(3,1)-0.
.42937E+03xW(1,1)W(1,3)W(1,3)-0.
.88712E+03xW(1,1)W{1,3)W(3,3)-0.
.TO094E+03xW(1,1)W(3,1)W(3,3)-0.
.11289E+03xW(1,3)W(1,3)W(1,3)+0.
.39318E+03xW{1,3)W(1,3)W(3,3)+0.
.15078E+04xW(1,3)¥%(3,1)W(3,3)-0.
.276T4E+04xW(3,1)W(3,1)W(3,1)-0.

.52367E+04xW(3,1)W(3,3)W(3,3)-0

.14435E+02xW(1,1)W(1,1)wW(1,1)-0.

.18055E+03xW(1,1)W(1,1)W(3,1)+0

17030E+04xW(1,3)W(3,1)W(3,1)
31710E+04xW(1,3)W(3,3)W(3,3)
75391E+03xW(3,1)W(3,1)N(3,3)
32311E+03xW(3,3)W(3,3)W(3,3},

16551E+03xW{1,1)W(1,1)W(1,3)
18055E+03xW(1,1)¥(1,1)W(3,3)
90874E+03xW(1,1)W(1,3)W(3,1)
97935E+03xW(1,1)W(3,1)W{3,1)
54223E+03xW(1,1)W(3,3)W(3,3)
17030E+04xW(1,3)W(1,3)N(3,1)
54770E+03xW(1,3)W(3,1)W(3,1)
28530E+02xW(1,3)W(3,3)W(3,3)
30167E+04xW(3,1)W(3,1)W(3,3)

.13402E+03x%(3,3)W(3,3)W(3,3),

14444E+03xW(1,1)W(1,1)W(1,3)

.46008F+03xW(1,1)W(1,1)W(3,3)
.17620E+03xW(1,1)W(1,3)W(1,3)+0.
.54259E+03xW(1,1)W(1,3)W(3,3)+0.
.10845E+04xW(1,1)W(3,1)W(3,3)-0.
.56313E+03xW(1,3)W(1,3)W(1,3)-0.
.31710E+04xW(1,3)W(1,3)W(3,3)-0.
.57T060E+02xW(1,3)W(3,1)W(3,3)-0.
.10062E+Gi4xW(3,1)}W(3,1)W(3,1)+0.
.40205E+03xW(3,1)W(3,3)W(3,3)+0.

88712E+03xW(1,1)W(1,3)W(3,1)
35047E+03xW(1,1)W(3,1)N(3,1)
27774E+02xW(1,1)W(3,3)W(3,3)
39318E+03xW(1,3)W(1,3)W(3,1)
75391E+03xW(1,3)W(3,1)W(3,1)
98934E+03xW(1,3)W(3,3)W(3,3)
52367E+04xW{3,1)W(3,1)W(3,3)
42215E+04xW(3,3)W(3,3)W(3,3).

(17)

This therefore completes apecification of Eq. (11) for r and s=1 or 3, which
clearly involves a lot more terms than Eq. (4) for the simply-supported plate.
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V. Hamiltoniane for The Modal Equations

Even for only four components of "rs' the modal eguations have a
bewildering number of constant, linear, and cubic terms. Hence, one cannot
help but wonder if the modal equations have included only those terms which
rightfully belong to them and left out none inadvertently. The purpose of
this sectior is tc show the internal consistency of modal equations. We do
this by way of constructing the Hamiltonians for simply-supported and clamped
plates, from which Egqs. (4.4) and (4.11) can be recovered by the Hamiltonian
equations of motion. Therefore, the readers who have suZficient faith in the
accuracy of Sec. IV may skip this section without loss in continuity.

A. Simply-Supported Plate

We define the column vectors n-(wt‘,wxs.w,t.w5,). I*(811.8‘,.9,‘.9,3).

P-(Pt‘.Pt’.P3‘,P”). the diagonal matrices

au 0 b 0

11
s‘. 33 a , 8§ = bxz b '
0 32 a 0 3% b

1 ha h h‘
s = h’ h' h"
7 h h '
(symm) ¢ 9
10

where h1 are given by Eq. (4.8). With the 4x4 unit matrix X Eg. (4.4) can
readily be pu: in matrix form

TN+ y¢IR - IF + S} + (SSP-5)__ - (F%+1)T S ¥

_ (1-p)b® (gt T (g2+1),
Lﬂj“‘t——)ﬁ,(ﬁ%‘l—‘-)" - g5, I = 0. (1)

except for the term SSP-5. In fact, one can also express SSP-5 in matrix

(ss9-5)rs-3p‘{2ssu~(1-»3)37[ (2)

- )
(#2p*+q®/p* )‘}}"'

Here, soa is a 4x4 dizgonal matrix with the elements

{U0B* 2873102+ (82410049872 )02 + (95%+10008 2 N2 +9(#3+20t8 W2, 1,
[(#2+100+0872 )":;*(’a +18p+818 )u:’quhsangp“ )u:1+9(p‘+1m+93" g, 1
(2 +10uep™2 )UT, < (98" +82u+0872 W] + (8187 +18p+872 )87 +0 (981004872103, ],
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OL(B*+2uv8 ™ W], + (8% +100498 72 W2, + (08 +10u+872)03, +0(8%s248 23, 1},

And, 81[.] denotes a symmetric matrix with the element hi'

In the absence of viscous damping, it is straightforward to deduce the
Hamiltonian for Eq. (1). To do this requires defining a column vector @ with
the components q W qz q, ' q, “;3' and a column vector P with the

conjugate variables p ﬁ P, pb st P, ﬂk’ Ignoring the SSP-2, the

Hamiitonian H of the siuply-supported plate is given by
- 1fgT T, _ T, _ {1-u)b +1) AT }
iy~ {075 0 - (a1 a5, - LB g s.,(-—m—ﬂa v
T, +1 T,
~utt--‘%—lns.t+ha. (3)

Here, h denotes contribution by the SSP-5, to be determined presently.
Although it is tempting to formally define h by premultiplying Eg. (2) by n '
the resulting quartic expression, though correct in fora, does not have the
correct coefficients. This is because the guartic form, unlike a quadratic
form, generate nonuniform numerical factors under differentiation. We shall
therefore deduce hn directly from Eq. (<£.9) [15]

by =a,q] o, qq, +2,00; 12,04, +a,Gq 1A, E 2 %Y 205,

8,0, G *8, .0, €, *a, GG q, 2,994, ‘8,0 8 Gq
+axaq:q4 +atl"¢q: +a11q: +a18q:qt alﬁq:q: a30 «t' (4)

It is simple to checked that Eq. (4.4) is recovered from the Hamiltonian
equations of motion

q;=3H/3vy, D;= -3H/3qy, {5)
when B:Hs is given by Eqs. (3-4).

BR. Clamped Plate
Similarly, Eq. (4.11) can also be put in matrix form

.o . Py
I+ XN - IF ¢ €M+ (cP-5),, - 4B +26° /3+1)y oCoF

(F2+1)
_ ;1-g)gf;g*+2g§za+1)c W - lé_mQZEL___lc T=0, (8)
1) "M«f 3 1)

where




r%-‘?(p‘%v’m bv L A ‘%w‘%) 2807
e deeage 2" 2 e g1y
3828864+ 186241) "32(18g2,y,)
(symm) gg(§1,e+§gpa
o 2 2= o | g & g
c,- 36%+2) o '3%3 . % :‘
§atey 2 (symn)

(syma) F£sta)

where g; are given by Eq. (4.15).

plate becomes

ncaé{PTIP

And, the contribution by CP-% deduced

h.= 0.
-0.
+0.

.14444E+03xq(?)q{1)q(2)q(4)

.180G5E+03xq{1)q(1)q(3)q(4)

.17082E+03xq(1)q(2)3(2)q(2)

.17620E+03xq(1)q(2)q(2)q(4)

.88712E+03xq(1)q(2)q(3)q(4)

.32645E+03xq(1)q(3)q(3)q(3)

.54223E+03xq(1)q(3}q(4)q(4)

.38776E+03xq(2)q(2)q{2)q(2)

.56313E+03xq(2)q(2)q{2)q({4)

.38318F+03xq(2)q(2)q(3)q(4)

.18257B+03x3(2)q{3)q(3)q(3)

+ oTc,a -

(82 +1)

.
- QTIF - +2

4
a(p *gffs"”ronTc.n

3+1

3(p2+1)

1920:E+02xq(1)q(1)q(1)q(1)
61101E+02xq(1)q(1)q{1)q(3)
19463E+03xq(1)q(1)q(2)q(2)

. T
- (l-g[gf(g +2§f(3+1[n1c (—2d
(82 +1)
T,
CI + h..

from Bg. (4.17) is

0.
+0.
+0.
.27596E+05xq{1)q{1)q(3)q(3)
.23004E+03xq(1)q(1)q(4)q(4)
.42937E+03xq(1)q(2)q(2)q(3)
.45437E+03xq(1)q{2)q(3)q{(3)
.27129E+03xq{1)q(2)q(4)q(4)
.35047E+03xq(1)q(3)q(3}q(4)
.92581E+01xq(1)q(4)gq(4)q(4)
.11289E+03xq(2)q(2)q(2)q{3)
.85149E+03xq{2)q(2)g(3)q(3)
.15853E+04xq(2)q(2)q(4)q(4)
.75391E+03xq(2)q(3)q(3)q(4)

49640E+02xq(1)q(1)q(1)q{(2)
14435E+02xq(1)q{1)q(1)q(4)
16351E+03xq{1)q(1)q(2)q(3)

W TS, oA T Tas Be® T ST - - - W e

Hence, the Hamiltonian Hc for the clamped

TR




-0.28530E+02xq{2)q(3)q(4)q(4) -0.32311E+03xg(2)q(4)q(4)q(4)
+0.69186E+03xq(3)q(3)q(3)q(3) -0.10062E+04xq(3)q(3)q(3)y(4)
+0.26183E+C4xq(3)q(3)qg(4)q(4) -0.13402E+03xq(3)q(4)q(4)q(4)
+0.10554E+04xq(4)q(4)q(4)q(4). (8}

Again, the Hamiltonian equations of motion rederive Eq. (4.11) when H-Hc.

Summing up, the existence of Hy and Hc strongly suggests the internal
consistency of modal equations for the simply-supported and clamped plates,
whereby no terms have been added or left out inadvertently. Unfortunately,
this does not prove the absclute correctness of the modal equations derived in
Sec. 1II. The reason is thut the Hemiltonians arec deduced, in part, from the
modal equations. Hence, errors that are consistent with the Hamiltonian
formulation can remain undetected.
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VI. Mid-Plate Temperature Variation and Gradient

To proceed further with the modal equations, it is necessary to specify
qu and 0.y which appear in Eqs. (4.4) and (4.11). Returning to Eq. (2.3),
we first split T(x.,y) into the uniforam temperature t, and temperature varia-
tion tv(x.y) over the plate

Tty ¢ ty(xy), (1)

as in Eq. (3.2). We then convert & to the corresponding temperature differen-
tial 6 (see, Eq. (4.2))
@ = ho. (2)

In view of Eqs. (1-2), we may put £q. (2.3) in the following form

T = to + t‘,(X.Y) + E(X.Y). (3)

where Z=z/h ranges over (1/2,-1/2). Since to will be assumed nonzero, we use
it as the main thermal parameter to express the magnitudes of t, and @

tv- thofv(X.y)- 0= J‘tofg(X.Y)- . (‘)
Here, the scaling factor &, defines the magnitude cvto of temperature varis-
tion whose profile over the plate is given by tv(x.v). Similarly, § to is the
magnitude of temperature gradient through the plate thickness and fz?x.y)
represents its distribution over the plate. Upon introducing Bq. (4) into Eq.
(3), we have the dimensiunless temperature T =T/T*

T Ty 4 (8T M (XY) + Z(8,T M (x.¥), (s)

where T* is T: for a simply-supported ylate and Tz for a clamped plate.
Pirst of all, for the temperature variation over the plate, we find by
comparing Eq. (8) with Bq. (3.2) that

(avTo)fv(x.y)- £ £ T_ cospnx cosgny, (6)

p=o g=o P4

which holds for both the simply-supported and clamped plates. Let us examine
two examples of fv(x.y) which are neither constant nor linear. As a first
example, we let tv-:innxclnay and find from Eq. (68) that
T - 168,T
P32 (p®-1)(a"-1)(1-67) (1-87)

. (p»q=0 excluded) (7)

Now, for the second example rv-ain“wxain‘ay. the sum of 8g. (8) reduces to a
finite sum (1/4)(1-cos2rx)(1-cosny). Hence, we have by inpsection
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T; = 'Tia' -cholt. T _= 0 (for other p and q). (8)

o™ Toa pq

Since the majority of T . is zero, Eq. (4.8) reduces to

Pq
T
h = [ig—q](np"), etc., (9)

for the simply-supported plate, and Eq. (4.16) gives rise to

T
g~ lﬁg[i}'ag]lw'% p}ﬂ]. etc., (10)
for the clamped plate (Note that the coefficient 14.222 in Eq. (4.18) is
128/9). And, the remaining h's and g's summarized in Appendix L, all have
simplified expressions.

Second, for the temperature gradient across the plate thickness we find
from Eqs. (3.6) and (3.18)

’ (8T, M (x.¥)= io f:oo“n.(x)nn(y). (11)
where the function T is ’h for a simply-supported plate and vn‘for the clamp-
ed plate case. Por maximal simplicity, we shall assume tgsslnnxsinny for the

aimply-supported plate and obtain

01‘- 6310/2 and O.n- 0 (for other m and n). (12)
Or: the other hand, fg-sln’axsin'ny gives rise to
8“- 362T0/8 and 0.n= ¢ (for other =» and n), {13)

for the clamped plate. Clearly, Ogn-0 for m=n#1 is generally not observed
under different f_. Using Eq. (12) the last term of Eq. (4.4) has a single
nonzero coaponent -(p‘+1)3czTo/24. And, similarly, BEq. (4.14) simplifies to

[a‘]“-(p‘lrl)cg’ro/z. R, 1,,02,1,,/8% =5 T //B, and [&,] =0 under Eq. (13).
The relationship between the sagnitudes ‘vjb and 6310 is shown sachema-
tically in FPig. 3. Although it appears at first sight that the tv(x.y) and
9(x,y) can be assigned arditrarily, thie is not the case when they have a
nonunifors distribution over the plate. First of all, we notice that a non-
unifora ©(x,y) cannot exist unless tv(x.y) is also nonuniform. That is, & =0
implies §_=C. What is then the maximum value of é_, denoted by (6g)lax' for a
given Gv? This cannot be answered, in generel, without knowing the profiles
f,(x,y) and f_(x,y). However, in the case of tv(x.v)-f‘(x.y) (1.e., fv-t¢-
sin®nxsin®ny gﬁr the clamped plate discussed), it is readily seen that
(62)-.xﬁ26v. Sunakawa and Uemuraz [13] have used a parabolic temperature




distribution for beth f,, and tg. and consequently prescribed (cg).ax-(4/3)6v.
which implies that the upper surface temperature is hnlf the lower surface
temperature (see, Eq. (42) in Ref [13]).

In view of the recent attempts {17,18] to generate various temperature
profiles by radiant heating, temperature variation profiles of the sort that
we have considered here do not appear at all unrealistic. On the other hand,
to the best of our knowledge no attempt has yet been made to either measure or
impose certain temperature gradient distribution through the plate thickness.
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VII. 3ingle-Mode Equation for th

Let us examine the simplest case of modal equation for Ht‘ when all other
"rs are absent. With Eqa. (6.9) and (6.12), Eq. (4.4) for the simply-
supported plate becomes after letting r=s=i

&;‘+7€;xt+(ﬁz+1)8 1-T°[1+ %(1-p)av]}wt‘+4,1'3 - [p .t 21"8*1)" ]_ 0, (1)

where a (s,8)= %[(1—p?)(ﬂ‘+1) + 2(p%+1+2up2)] as shown in Appendix J
Similarly, with the use of Eqs. (6.10) and (6.18), Bq. (4.11) for the clamped
plate reduces to

oy 16 ¢ - 1 S
W, 7eW, + 1860 e2® a0 1- 1 [ 1nde [1e )
+ 128 ‘u:‘- [P, %(p'+zp‘/3+1)agr°]- 0, (2)
where
3 -2 24117 -8 4 N 1 . 1 .
a, (n.8)=3%{ (B +87s20)4 (112 )3 [FL (824872 A e um.«“)‘]}

Here, (128/9)d‘(/371.1.2)-76.804 is the numerical cosfficient for W(1,1;*-term
in (CP-S)“ as given by Eq. {4.17). The eight terms ir Eqs. (4.4) and (4.11)
have been regrouped into five in Eqs. (1-2). In particular, note that the
third term of Bq. (1) is the combined stiffness which subsumes structural
stiffness (SSP-4), global thermal expansion by uniform temperature (SSP-6),
and local thermal expansion by temperature variation (SSP-7). And, the last
tera in Bq. (1) is the combined forcing of both the applied external pressure
(SS™-3) and thermal moment owing to temperature gradient across the plate
($sP-8). That the temperature gradient plays the role of external forcing has
aliready been observed by Boley and Weiner [7] and Sunakawa and Uemura {13].
In a parallel fashion, the combined stiffness and forcing terms in Eg. (2) are
giver. by the regrouping of terms in Eq. (4.11).

Since Eqs. (1-2) are qualitatively similar, we may present them in a
prototype form by denoting q-ilx s and f-Ps 1

G+ 8 v of(1-8)q + kg ~ £+ o, (3)

where o -(p‘u), 8=T, [1+ %(1—;4)6 . = 4a , o -2%(3'4»1)'6 ‘l‘ for the simply-

supported plate; and c: 15(5‘4»3‘/34-1), a-‘l‘ 1+ -5(1-,;)5 fn -;%—’-—)‘-ll
- 128 o f 1(ﬁ‘+2ﬂ'/3+1)6¢T for the clamped plate. Note further that y=v,

has been 1ntroduced The combined stiffness a‘(I-a) remains positive as long




m
1
u

#

as the thermal loading is weak (pre-buckling for s<1), whereas it becomas
negative under & strong thermal loading (post-buckling for s>1).

The Hamiltonian for Eq. (3) including the kinetic energy and potential
(strain) energy can be written down from Egqs. (5.3) and (5.7)

H '%I" +-2 o(l-!)d‘ +-‘Q . {a4)

As an illustration, we have showm in Pig. 4a the potential energy
U-in:(l-o)d'+§q‘ of a simply-supported plate for f~1 and p®=0.1, while incre-
menting s from 0 to 3. More visually, however, Fig. 4b depicts the potential
energy surface which is a single well potential for s<i, but develops
synmetric double-well potential as s beccaes larger than unity. Both Ty and
6VT° contribute to the parameter s. ¥e have ahown in Fig. 5 the threshold
boundary of thermal buckling (s=1), which intersects the To-axis at To-l and
approaches the 6v-axic asyaptotically.

A. Thermally Buckled NModal Amplitude
For the static problem, we retain cnly the terno which do not involve time
differentiation
«Q* + JH(1-8)Q - g = 0, (5)

where g-to+t is the combined forcing. Under a weak thermal loading, the
cowbined stiffness is positive, hence only one root of Eq. (5)

Y Y/ =y AR/ BT o

is real. Note that g must be nonzero in Eg. (8); otherwise, Q‘-o is the only
real root. Because of gnf0+!. the temperature gradient alone is sufficient to
sustain thermal buckling, even when there iz no external pressure jmposed. 1In
contrast, for a strong thermal loading the combined stiffness becomes nega-
tive, hence one aay either include [18] or exclude [8] the combined forcing in
computing the buckled amplitude. In the latter case, the thermally buckled
modal amplitude is

Q- two./ﬁ_:fm. (7)
B. Dynamic Considerations
In the pre-buckled state, qa'o is the equilibrium state of Eq. (3), and
corresponds to the location of single-well potential energy in Fig. 4. Note
wal Eq. (3) is a Duffing equation [19]. On the other hand, q,=0 becowmes
unstable in the post-buckled state. Hence, the stable egullibrium states are
now given by qo-Q.. which corresponas to the locaticns of double-well




potential energy (Fig. 4). We then rewrite Eq. (3)

"qregbd - ol (s-1)g ¢ xq? = £+ L, (8)

which is the so-called puckled deam equation originally investigated by Holmes
[20,21], the trajectory of which wanders in and out of the potential energy
wells in & chaotic fashion. By the change of variable

q=1Q +aq, (9)
we obtain from Eq. (8)

e L

G + o a0 + 200 (s-1)g & 3wQ,q* + xq® = £+, (10)

which now represents oscillation about q.. Comparing the linear stiffness
terws of Eqs. (3) and (10), Schneider [3] has concluded that the natural
frequency increases by the factor /2 after a thersal buckling. The dynamical
behavior of Eqs. (3) and (8) with respect to s will be investigated elsewhere.
At present, however, the more compelling need is to estimate the stochastic
response, for acoustic excitations will be used in the high-temperature sonic
fatigue test facility being constructed at the Structual Dynamics Branch
(WL/F1BG) .
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VIII. Response Estimation by the Equivalent Linearization Technique

Since fo is assumed constant, the combined forcing is a Gaussian process
superposed on a nonzero-mean level when f(t) is mean-zero Gaussian. The
equivalent linearizatjon as originally formulated by Caughey {22] and Bocten
[23] was built on the zer.-mean Gaussian excitation, Hence, it cannot be
applied directly to Eqs. (7.3) and (7.10) when r&#o. In Sec. Viiia, we re-
strict ourselves to fo-o and apply the equivalent linearization in its famil-
iar form. The case of 10#0 will be presented in Sec. VIIIb, after extending
the equivalent linearization technique to Gaussian forcing with a nonzero mean
{see, Appendix N).

A. Acoustic Loading
For s8<l1 let us denote by 9} 4n the amplitude of linearized Eq. (7.3).
Under ro-o the mean square amplitude is given by Eq. (M12) of Appendix M

”‘ff (00/1‘_3 ) '

< >
qﬁiﬂ ~ 66’:(1")

(1)
where < > is the statistical (time) average. Here, ﬁff(o) is the power
spectral density of Gaussian furcing expressed in angular frequency « (8].

Assuming that iff(u) is more or less flat around the sharp resonance peaks at
a&tuo/I-s, Eq. (1) has the alternate form

Eee

<qP > B —ar
11a 2¢3 (1-5)

(2)

using n,f(o)-gff(r)/zn. where £ is frequency. The argument of sz(f) is
suppressed, for € is zssumed a constant power spectral density. Now, fer
the full nonlinear Eq. (7.3) the mean square amplitude can be estimated by the
equivalent linearization technique

o3 (1-8) 12e<qt, >
= 0 1 — lin” _ 1}, 3
e S0 i 0

as given by Eq. (Mi8) of Appendix M. As expected, for a small x, i.e., weak
nonlinearity, Eq. (3) reduces to

<®> = <q§1n>, {4)

whereas, when the cubic nonlirnearity is dominant we find that

<> = “/<q31n>' (5)

Hence, <q®> increases more gradually as the square root of the magnitude of
forcing power spectral density in Eq. (S), rather than linearly in Eq. (4).
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As the ronthermazl (a=0) reference case, we have evaluated <qa o and <q’>
from Eqs. (2-3) for g=1, u®=0.1, and ¢=0.04, and presented in Fig. 6 the
maximum mean square displacements computed by

<(u.ax/h)’> = b<q§in> or b<g®>, (6)

where b=4 for a simply-supported plate and b=64/9 for a clamped plate. In

the figure, the straight lines originating fi'om the origin are the linear
input-output relation given by Eq. (2). In contrast, the mean square displace-
ment predicted by Eq. (3) increases more gradually due to the nonlirear energy
sharing provided by the equivalent linearization. For a given Zep: the simply-
supported plate has a larger mean square displacement than the corresponding
clamped plate, as already pointed out by Mei [11].

In the :hermal case (s>0), however, the maximum mean square displacement
does increase with s, as indicated by the three values of s=0, 0.5, and 0.9 in
Fig. 7. However, we notice that the increase is more pronounced in the clamp-
ed plate than in simply-suprorted plate. In both plate cases, the net thermal
contribution diminshes as Bee becomes large, which is suppcerted by

<> = / §§££; . (7)

obtained from Eqs. (2-3) in the limit as gpp - Eq. (7) states that the res-
ponse is essentially independent of thermal effects when acoustic excitatione
become very intense.

. Next, let us examine the pair of Egs. {7.9-7.10) for s>1. Now, denoting by
93 in the amplitude of linearized Eq. (7.1CG), we have in parallel to Eq. (2)

£ref

2 . (8
4eog(s—1) )

<’.11n> ®
The difference in nu. .cal factors of Egs. (2) and (8) is due to the /2
factor associated with the post-buckled natural frequency in Eq. (7.10). It
is simple to check that the equivalent linearlzgtion goes through just as in
the pre-buckled case, for the square term tanBq8 in BEq. (7.10) has no effect
under the Gaussian assumption. Hence, in analogy to Eq. (3) the mean square

amplitude is
- i / 6x <
P> = 3—£:-1[ 4§1n - 1 ) (9)

‘(s -1)

Because of Eq. (7.9). the total mean aquare amplitude is sum of the buckled
plate position and amplitude fluctuations

<> Q: + <&3>. (10)
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since Qz and & are statistically independent.

The total mean square displacement shown in Fig. 8 increases greatly with
8. Moreover, the increase is considerably more pronouned in a clamped plate
(Pig. 8(b)) than simply-supported plate (Fig. 8{a)). However, this rapid in-
crease is mainly due to the contribution of Q: in Eq. (10). Hence, tn separate
the contribution of Q: from that of <q®>. we presented in Fig. 9 the total
mean square displacement over the range of s=(0, 3) for a particular value of
gff=1. We see frgl the figure that not only does q: increase linearly with
(s-1), but also <q®> actually decreases steadily in the range o? s>1 from its
maximum value at s=1. The latter is predicted by the asymptotic form of E£q.
(8), <q®> « 1/s, as 8 4=, Hence, the mean square displacement falls off &s
1/s in the post-buckled state. This has been borne out by the Monte-Carlo
simulation of Choi and Vaicaitis [12], in which the amplitude of displacement
fluctuations is considerably small whenever the displacement and stress tiame-
histories jump off to thermally buckled positions.

The composite view of total mean square displacements is shown in Fig 10
over the forcing range of gffz(o. 5}. Notice that the clamped plate builds up
the total mean square displacement much more rapidly than a simply-supported
plate. However, this rapid buildup in the post-buckled state is mostly due to
the contribution of buckled plate displacement, as depicted in Fig. 11.

B. Combined Acoustic and Thermal Loading

The analysis of Sec. VIIIa was restricted to fo=0. Clearly, this is valid
when a plate is maintained in uniform temperature or there is no heat flux
through the plate thickness. The latter is possible when one side of the plate
is heated while the other side is insulated. However, under a ncnuniform heat
flux, the temperature gradient will have a2 certain distribution over the
plate, which is neither constant nor linear. To incorporate fo into the acous-
tic lomding, one must extend the equivalent linearization to the nonzero-mean
Gaussian excitations. Let us denote by 9. the amplitude under the combined
forcing fo+f(t) and split it into two parts

Q. =X + V. (11)

The implicit assumption is that X is the response to to and y te f(t). We
first replace g in Eq. (7.3) by q. and then introduce (11) to obtain

‘y o+ ooe§ + (oﬁ(l-s)+3ci?}y + Xy + Yy + v:(l-sfi + 8% - £, =, (12)

Applying the equivalent linearizaticn technique to Eg. (12) gives rise to
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o®(1-8) v//r_- 2 12 12¢<q®,. >
> B [ { a*u -3 ' u:(l—s) { ' o:(l-s}}] (13)

given by BEq. (N17) of Appendix N. FPurthermore, the X in Eq. (13) is given by
Eq. (N20)

‘ -8)+ -g)+
A_ g (1 s) ac<y‘>]: /&_ [a’(l s) ac<y‘>] (14)

The pair of Egqs. (13) and (14) can be solved simultaneously for <y’> and x.
Afterwards, the total mean square of q is computed by sum of the syuared X
and mean square fluctuations owing to acoustic loading

<q2> = ¥ + <>, (15)

This is the amplitude response to the combined acoustic-therzal forcing. Note
that when fo-o Eq. (14) becomeg X=0. Then, Bqs. (13) and (15) degenerate to
Eq. (7.13) which was derived in Sec. Villa under thc assumption of roao.
Recalil that in Sec. VII both To and 6v'l‘o are represented collectively by a
single parameter s. Under the combined forcing, however, one amust also specify
the magnitude of temperature gradient cho. in addition to s. For simplicity,
we shall assume Ggsév in what follows. For three values of To= 0.2, 0.5, and
0.8, we choose év large enough for s to be about 0.96 and compute the total
mean square amplitude by Eqs. (13-i5). The results are summarized in Pigs. 12
and 13 fer the simply-supported and clamped plates, respectively. Three plots
are presanted in each frame of the figures. The first two plots, referring to
the left ordinate, are the maxixum mean square displacement b<q‘> under tne
combined loading (solid curve) and b<q®> under the acoustic loadinz alone
(dotted curve). Here. b=4 for the simply-supported plate and b=64/9 for the
clamped plate. One observes that the thermal loading is generally unimportant,
unless acouatic excitations are very weak. Now, to accentuate the difference
of the first two plots, the third plot with respect to the right crdinate,
shows the difference of the first two in percent, i.e.,
a<(w, /h)’> 100(<q’>—<q3>)/<q3> All the third plots fall off rapidly from
the 1n1t1a1 100% as Eep 1ncreases Even in the most thermal-loading sensitive
case (Fig. 13a), we find that ‘<('iax/h)a> drops down to &¥ when g,
approaches uaity.

C. RMS stress and strain
The lesson of Sec VIIID is that the temperature gradient across the plate
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which apnears as an additional louding, is gen>rally unimportant, as long as
the acoustic loading is dominant. Quantitatively, for sz>1 we can ignore

the effect of temperature c.adient, and hence consider only the uniform tem-
perature and temperature variaticn over the plate. Nevertheless, since the «T
term appears explicitly in Eqs. (2.1-2.2), one suspects that the temperature
gradient might contribute to the stress and strain tensors as equally as the
uniform temperature and temperature variation. The purpose of this subsection
is to substantiate this suspicion.

p To this end, we express the normal stress and strain components involving
only the ‘&z in the following form

] (]

[GXI = ﬂaw [SX] , (16)
yy y

e g (¢

{zX] = ﬂ’gh {:X] , (17)
v Ll A8

o) ~

where the dimensionless ; ' oy. LI and‘: are given by Eqs. (012-015) of
Appendix 0. It should be pointed out that Gy and o, are synnatric in x and y
{when ocne ignores the parameters g and B). and sSo are ‘x and ¢ We shall

therefore examinz here only Oy and 'x as a function of x, under a fixed y=1/2

Simply-supported plate

~ (BT, s, 1
Oy=- ;;?;:;-;{1 +(1—p)(—z)[1 - I;;:;;cosZRx] +Z6gsinnx}

——M(simx)
q ¢+ » {18)
(1'}5 -2{ -“ ) pa}q’
1 i 1
- {%’;T;}S‘v?o tv- ;{(lmcoaz-rx) - %’%lcosmx]} + 2282 (sinvx)q
+ %(2ﬂ3+ pcos2nx)q®, (18)
Clamped piate
i - (p+es™ /3r1)T ] 8, X .
Cx 3(152) (F2+1) { (1~#)(—3)[1 - (‘.+1)cosanxa +28,81n ﬂx}

. - nggf—;lﬂ’coszwx + psin®nx}q

cos2nx  _ _coa2nx __cosdnx ., (20
‘z{mup) F g; 2(p+p71)2  (prapt)® Amw")'}q‘ (20)
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- {gt2p%/341), 1 1- 16
3(1+p)(53+1) vTo{sinanx - z[(1+p0082ﬂx)— {;;€§§lc°82"xi} - -—%Ei(cosznx)q

+ 5—{3%2+ z(ﬂg+pcosznx) + %g(ﬂ‘—pcoaARx) - ~§9§g35-— -p#‘)

2(pept
-—?—-—(p‘:;z'if), 1- 4 . s #2u)} e (21)

Egs. (18-21) are quadrutic expressions in q, which we shall express in the
following skeleton form

m=c, +Caq-+Cyq, (22)
where 1T represents any one of 3 . 3 . :‘. and :y and c C‘. and c are the
corresponding coefficients involving x and other paraleters Under the assump-
tion thet q is zero-mean Gaussian, the mean square T is given by

> = + (c“+2c c, )<q®> + 3ca(<qx>)a (23)

in terms of the <¢®> already presented in Pigs. 12 and 13.

To be specific. let us choose Figs. 12b and 13b as typical cases of the
simply-supported and clamped plates, and also consider gff-l. As discussed
in Sec. VIIIb, at this acoustic loading the effect of thermal loading is
negligible on the mean square amplitude. Using the parasster vaiues of Rigs.
12b and 13b, we first compute the extreme-fiber stress and strain by setting
Z=1/2 in Egqs. (18-21), then estimate the mean square stress and strain by Eq.
(23), and firally present in Figs. 14 and 15 the root-mean-square stress and
strain distributions in the x coordinate. To quantify the role of thermal
terns, four plots are shown in each frame of 7igs. 14-15. The first (dotted
curve) is the nonthermsal reference case (To- dv-dgno); the second (solid curve
with Q) includes only the uniform temperature (To#o. 6v=68-0); the third
(solid curve) involves both the uniform temperature and temperuture variation
over the plate (1;#0, 66*0' 6g-0); and the last (solid curve with X)
represents the fully thermul case (Toio. 6v#o. 6i#0). Figs. 14-15 show that
three thermal terms do not contribute additively to the stress and strain
tensors. In other words, the thermal teras do not necessarily bring about
increased stress and strain over the entire x range. Moreover, the effect of
temperature gradient which we have written off as unimportant in Sec. VIIIb,
becomes the main contributor to the stress components.
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IX. Assessment of Random Single-Node Dynamics

For a pre-buckled plate (s<1i), the three terms of uniform temperature,
temperature variation over the plate, and temperature gradient across the
plate, all contribute to increasing the mean asquare displacement, although the
increase due to the temperature gradient is insignificant unless the acoustic
loading is very weak. On the other hand, the thermal terms do not necessarily
bring about increased stress and strain components, as evidenced by the de-
creased root-mean-square strain and stress tensors in some region of the
plate. Moreover, the temperature gradient contributes significantly to the
stress tensor, while its effect was nezligible on the mean square displace-
ment. The roles played by three thermal terms are briefly summarized in Table
1.

Table 1. Summary of the thermal effects for s<i

Uniform temperature Temperature varfation Temperature gradient

over the plate across the plate
In the absence of temperzture gradient, Negligible for both
Displace- the uniform temperature and teamperature the simply-supported
ment variation are lumi2d into the parameter and clamped plates,
s (Pig. 8). Small increase for a sim- except when the acous-
ply-supported glate and moderate in- tic loading is weak
crease for a clamped plate. (Figs. 12 and 13).
Very small increase for a simply-sup- Significant for both
Stress ported plate and moderate increase for the simply-supported
a clamped plate (Figs. 14 and 15). and clamped plates.
Moderate increase Significant in- Negligible for both
Strain for both the sim- crease for both the the silply—sugported
ply-supported and simply-supported and and clamped plates.
clamped plates. clamped plates.

Now, for a post-buckled plate (s>1) we have restricted ourselves to zero
temperature gradient., i.e., no thermal loading, so that the uniform tempera-
ture and temperature variation can be lumped into the parameter s. In the
post-buckled state, the total mean square displacement is sum of the square of
buckied plate amplitude and mean square displacement owing to the acoustic
loading only. As s becomes large, the former increases linearly with s,
whereas the latter falls off by 1/s. Hence, the total mean square displace-
ment is dominated by the buckled plate amplitude in the nigh-temperature
limit. 1t should be pointed that the extended equivalent linearization devel-
oped in Appendix N does not work when applied to EG. (7.10). This, together

with the 1/s falloff, is why the post-buckled plate analysis was restricted to
zero temperature cradient.
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At this juncture, one may ask: "How good is the random dynamics of a
single-mode equation?” Clearly, we cannot answer this fully withcat the
detailed study of multi-mode equations. In the nonthermal case, however, Mei
has shown that the single-mode dynamics provides an adequate approximation, as
long as the external forcing is weak [11,24]. In fact, this is a good news in
that the thermal effects are played out quite poigantly in the weak external
forcing range. Hence, the peculiarities of three thermal terms might have
already been captured by the single-mode equation investigated here. Finally,
a redeeming feature of the present analysis is dimensionless representation of
the results, thereby freeing the validity of analysis from the lack of knowl-
edge of the precise temperature dependency of parameters involved in the
formulation.
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X. Directions for Further Work

This report began wita the derivation of modal equations for both the
simply-supported and clamped plates, under the immovable edge condition. It
is this edge condition that gives rise to thermal buckling when the effect of
large-amplitude displacements is incorporated {ato the displacement equation.
However, in an attempt to exhibit the interplay of thermal and structural
terms, we first obtained the modal equation for ﬁ;‘. “;z' wzx. and wsa. and
then reduced it further to the prototype single-mode equation for quantitative
comparisons. Clearly, we notice the direction of simplification from multi-
mode to the single-mode equation. Hence, the further work must foliow the re-
versed path of generalizing the single-mode dynamics to multi-mode equations.

Some specific proposals for further investigation are then:

(1) Investigate the dynamical behavior of Eqs. (4.4) and (4.11) to exhibit
the role of thermally buckled modes on the modal energy exchange. The under-
lying motivation is that the post-buckled mode has a larger amplitude than the
pre-buckled. It is therefore necessary to investigate the sequence of modes
undergoing thermal buckling in a multi-mode system.

{2) Validate the random dynamics of singis-mode for the multi-mode Eqs.
(4.4) and (4.11). This should be carried out in two steps. Pirst, analytical-
ly by extending the equivalent linearizaticn to Egs. (4.4) and (4.11), and
then numerically by applying the Monte-Carlo computer simulation to compare
with the analytical approximation. It is also suggested that other random
dynamic techniques such as, for example, stochastic averaging should be com-
pared with the equivalent linearization used in this report.

{3) Investigate t" + multi-layered composite plates. Although this is
doable by the Calerkin type of analysis, it is preferred to formulate an
alternative finite element numerical procedure which can easily andle the
complex plate geometry, boundary and edge conditions, non-symmeiric composite
layers, etc.

(4) It is highly desirous to provide some experimental verification for
the random dynamic analysis presented in this report. Perhaps, it may be
necessary to begin with investigation of a system simpler than the plate, and
a deterministic excitation rather than the acoustic loading conasidered here.
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Fig. 1 Plate configuration.

The x-y plane is at the mid-plate and z-axis is across the plate
thickness. The Top and bottom of plate are located at h/2 and -h/2,
respectively.

0 02 04 . 06 08 1 0 02 04 06 U8 1
X

(a) (b)

FIT. 2 Comparison of basis functions for clamped plate.
{a) Nonorthogonal expansion functions of even mode shape
- .- 0‘-28‘(x): —e—ra— 63-28,(x).

(b) Orthonormal expanaion functions of even mode shape

-~ = - e B35 (x); 9, VIS, (x) + /BIIBS, (x].




Temperature

room tempsrature

Configuration

Fig. 3 Typical distributions of temperature variution and gradient.
'l‘o is dimensioniess uniform temperature above the room temperature;

To‘v is the magnitude of tempersature variation over the plate;
‘l‘oég is the magnitude of temperature gradient through the plate thickness.
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Fig. 4 The potential energy U of simply-supported plate.

F
(a) U= ilfill (1-8)q®+30(1-4®) (5*+1)+2(p*+1+20#%) ] under #=1 and x*=0.1.
(b) Potential energy surface developing a symmetric double-well.
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Fig. 5 The threshold boundery for thermal buckling.

(a) Simply-suppported plate.
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{b} Clamped plate.
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Pig. 6 Linear an¢ nonlinear estimates of the aaximum mean square
displacerent. Nonthermal case (s=0). =——O-— simply-supported plate;

—— clauped plate.
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Pig. 7 Maximum mean sguarc dicgiacelent of pre-buckled plate (s<1).

(a) Sizply-supportad plate. (b) Clamped pilate
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Pig. 8 Meximum mean square displacement of post-buckled plata (e>1),
The ievel of mean square displacement is raised y the square of buckled
plate amplitudes. ?a) Simply-supported plate. {b) Clamped plate.
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Fig. 8 Maximus mean square dizplacement under g.t-x.

The cross-hatched triangle represents the contribution of buckled plate

ampiitude.

(a) Siaply-supporied plats.
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{b) Clamped plate.
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Fig. 16 Total! mean square displacement.

The mean square cdisplacenent is 2ntirely due to the fluctuations for s<1,
whereas the contribution of backled plate amplitude increases linearly
with s for s>>1. (a) Simply-supnorted plate. {(b) Clamped plate.
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Pig. 11 MNean square displacement due to gcoustic loading.

Up to s=1, the meun square displacements are identical to Pig. 10.
Howaver, oniy the contribution by acoustic loading is displayed for s>1.
(a) Simply-supported plate., (b) Clamped piate.
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Fig. 12 Maximum mean square dis-
placement of simply-supported
plate. The left ordinate refers to

4<q:> and - - - - 4&<@>;
the right ordinate represents
(<q:>-<q'>)/<qz> in percent.

(a) T°'0.2. év-62-44 (8=0.952).
(b) To-0.5. 6v-6g-10.8 (8=0.962).

(a) T°-0.8. av-ag-z.s (8=0.957).
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Fig. 13 Maximum mean square dis-

lacement of clamped plate. The
eft ordinate refers io

64<q:>/9 and - - - 64<qg*>/9;
the right ordinate represeants
(<q:>—<q‘>)/<qz> in percent.

(a) To-o.z. 6v-6g-27 (3=0.968).
{b) ro-o.s. 6v-6gse.4 (3=0.956).
(a) ro-o.a. ‘v"g'l" (s=0.9600.
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Fig. 14 Root-mean-square of extreme~fiber stress and strain for simply-
supported plate under Lpp=1.
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Appendix A: Cosine expansion of (%§§§) and (g;f)(g;f) expressed by Eq. (3.3)

2, 2
The ter!L(%igﬁ) : Using Eq. (3.3) we have by the trigonometric identities

(wy )a = 2% ¥ nj
n=g j=o

x{ﬂ” T ow wijni(ros(l+1)nx+cos(n*1)nx)}(cos(n+j)ny+cos(n-j)ny). (A1)

A= i=o

By interchanging the order of summatZions, the {..)} in Eq. (A1) becomes

{..} ; apnj cospnx. (A2)
Here pmo

@pns"ED Mmn(p-n) $H(P- ")*2“ “an¥(n-p) (A PIE

%o "an" (nep) SR(PIA(P).

where A(p)-l-Jg excludes ‘the term for p=0. (Note that the factor A{p) can be
applied to either the second or third terr to avoid double counting.) Now,

inserting Eq. (A2) Into Eq. (A1) and interchanging the order of summations,
we obtain the double cosine expansion

(w )‘= nt ¥ ¥ 8,4 Cosprx cosgny, (A3)
p=0 Q'o

where 8N= ﬁzoapn(q-n)n(q n) + ﬁ:qapn(n-q)n(“ -q) + }:” Qpn(mq)n(mq)a(q)

The term (Qi!)(éi!): In parallel tc Eq. (A1), we have
3¢ ay?

=nty” & £
n=g j=o

x{t" T ow wijl“(-cos(a+i)ﬂx+cos(l-£)¢tx)}(-cos(n+j)ny+cos(n-j)1ry). (A4)

mw i=g

"xx"yy

After expressing the {..} in By. (Ad4)

{..} = g:ocpnj cospmx, (AS)
where
Cony™" f.o" “p-my ¥ ¢ ‘;‘:p" Ym-p)s® * f:,," o™(msp? 3¥ 0 ()
the interchucge o¢f the order of sunmations gives
< nt
Mex¥yy = 7 pSAND Al pqCOBPTX Cosqny, (A6)

pP=c Q=0
where
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- 34 - -q 2
Doq ﬁ’ocm(q_n)(q a)® + ﬁ:qcpn(n—q)(“ -q)® + ﬁocpn(n*q)(““" A(q).

Therefore, by combining Eqs. (A3) and (A6) we obtain the final expresaion

(v, )8 w_w . =n%e" ¥ g cosprnx cosqny, (A7)
Xy xxyy p=o quo P4
. where & '—'qu-ﬂ .
Forp?ater refeirence, we shuall enumerate Spq which involve only LAERA

. Wy, and Wy,

803-2[00:‘- 2 Vst 9":1" 18w, w1 830'2[":1_ 2w, Yyt 9":3‘ 16w, w1,

- | T
833 16['11. ("u" 'ax f 4'1:':1: 1.

Eoon160w 1 o+ Oy w1, B =160w  wy + Bu, W,

8“-4[-u w_ + 0w u _+ 25w _w__ 1, 8“-4{4 W+ 9w w _+ 25w _w 1],

113" 11" 13%91 11%31 7 1Y 131
€e=1800,+ 0 1, £ =18(w) + vl ],

Eoe=1800w w1, Eg,=1800w, w1

Bog=al-0m Wyl Gy mal-Owy w1 £ =64[-w w1

Note that the pattern of quadratic terma in the [..] agrees with Levy's
Table 1 in Ref [Z].
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Appendix B: Evaluation of j;f; R ¥, (X)¥,(y)dxdy

Let us evaluate the first term 'xxFyy of R‘. In view of Eq. (3.1) and
(3.3), we find that

SAFL W B (XD (V) dxdy= n2b3p 12w, + EONC g (B1)
where
- 2 (" n n n n
-5 goq‘ = g‘:oumppq (8_p~ Op_p* Spup) (85 - 60 o+ 60 ).

The integrations have been carried out with the aid of Eqs. (H1) and (H2) of
Appendix H. By expanding the factors of 8, we see there are nine sums 1n.$1

.= 2° qMUp(gq)qg - E Uy (g-8)q * £ T Ur(qra)q’ (B2)
q=o q=8 q=0
where
Yrng® ggo”(r—p)n Fpqtr-p)® f oM(p-rinfpq(P-r)® + ’3” S (p+r)nFpq(Pe)®
Similarly, we have
Ehr*
f; ; Wy Fxx¥r (X)¥g (y)dxdy= naaaPynanrs + ~33- g, (B3)
where
n n
§,- ﬁ:‘ :q.':on E’; g:’on FoqP* (67-p~ B+ ‘p+r)}“’s g~ Sq-s® Sag)-
Also,
11 Ehn*
JoSo YxyFxy¥r(X)¥g (y)dxdy= BT (B4)
where
n n n
.- ﬁ: g:onq{f“; gow F -p(a p ot cpﬂ,)}(as_q 805 Sgrg)-
By combining Eqs. (B1), (B3) and (B4), we vbtain the final expression
<
oS5 RYp(X)¥,(y)dxdy=- "—:?—(b‘er‘ +a?Pya®w, - %:—2-"-— ¥Foo (BS)

where ’rs“ 81+ 53— 2!’ . In view of Eq. (B2), we see that ’rs represents the
nine sums in Levy's Eq. (9) in Ref (5].

As an illustration, we enumerate ’rs for LA w_. and L

137 T3

, 11 h1'11+ hﬂ'lﬂ* h ' + hﬁ"’

= haw * hyw ho"sx by ¥y v

= hyw + how ¢ v+t Row o,
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where

Foa= DWWyt byt g+ howy + b W

h, =-8(Fy +Fo0).

h:-8P‘°-16Pa.'32?‘0+‘F.‘.
h1'72F’°-288F‘°—144F..*38F‘..

ho*72?08-288F°‘°144P.3+3632‘.

-81-

10 93’

ha-8Po‘~16P“~32Fo‘+4?“.

h‘--ae(ra‘+r“).

h.--lOO(F +F _)+34(7

26 42

hy=-T2(F +F, ).

h‘o--648(30'+y'°).

aa+F‘+)’

(b8)

(87)
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Appendix C: Cosine expansion of (gz'—s-,) and (g—xg)(g-j) expressed by Eq. (3.15)

a2, =
The terx (%;g-) : Using the alternate expression for Eq. {3.15)
o O XO Y

w(x,y)=E B0 Tr Eo_ Woa i a S (x)S (V).

r=0“g=0“r=p“g=n "rs rm sin
we have

2
('x&') ’néﬁo‘ ’5’:,0 f:n g: jasnadi
{7 E wowan e AL (KA (OFA (9)A, (v), (c1)

K¢ i=gl'r=m c=i T* C

where A.(x)-lcos(mx)sinnx+sin(mx)cosnx. By trigonometric identities, we
rewrite the (..} in Eqg. (C1)

{- } - %(e;iad cos{m+i)mx + Gy 4 cos{m-i)nx), (c2)
wherz 4
Auisd” ,r::n ﬁzi'rs'cd‘rn'ciz('“” - f:._a }é:i"rs'cdar(l-a)act("“(ﬁl’
- f‘;ﬂ giurs"cdar(ua)aci("l)(ﬁl)'

By changing the order of summations, we then have

+ - -
i:’ 21:{ '}' ﬁ[ﬁ:el(p—l)sd + {:pan(l-p)sd + g:an(»p)sd‘(p)] cosprex, (C3)

where A(p)x(l-cg). Now, substituting Bq. (C3) intc Eq. {C1) yields

(wxy)a. "‘}E:o g; z;o ;E:n ﬁ:j"an‘df’psd%(ynj(y)] cosprx, (c4)

where

Hosd ~ E:oq;(p—n',sd M ipa;(-—p)cd + f:oa;(np)sdﬁp)'

Hy ropeating the same interchange procedures for the [..] in Bq. {(C4), we
obtain

1 + - - .
z ?:,,[ J- Eﬁo[ﬁgo‘vn(q-n) * f:q"pa(n-q) * goxpn(nm)“‘”] cosgnx,  (C5)
where

K= X Banlafpsad(0fF1) - T 5 Gy (n )8 fpua(n-1) (£21)

s=n d= d=n-g d=j

B f:nﬂ g‘:jaﬂ(!l*a)udj’pad(""’l)(le).

Hence, the final cosine expansfon becomes




("xy)" ;L; g ¥ Z,, cospnx cosqmy, (ce)
o q=0

where

+ - -
Zq = Z2 Kon(g-n) * 2" Xon(o-a) * Z_ Xon(neq) 409

The term (&)(&): We begin with the representation
axt ay

", W -w‘}f'z'f'faadj

xxyy n=g j=o0 s=n d=j °0

& T T "d‘nacisn(")si(x)}sn(ymj(3'-" (c7)

n=¢ i=olr=m c=i 18 C

where B.(x)-hcos(mx)conn(lu')S-(x). The (..} in Bg. (C7) summed over a
and i gives

b >Al {}- %t’ (P ﬂ;(p_.’.d + & % (n-p)ad * ) 4 l;(”p)'dd(p)]cospnx, (c8)

m=0 i=0 p=0‘m=0 B=p R=0
where
':ud' % };:. E:i"ra"cd’r-‘ciz("*n + g:’ - }é:i"rs"cd‘r(l-s )‘ci("”‘

¥ §:3+3 E:jnrswcdar(.+g)aci(l+1)‘.

Now, insert Eq. (C8) back into Eq. (C7) to obtain

My -’53}:“ ) > > [:" >4 °.n°dj"p;dsn(")93‘¥’] cosprx, (C9)

p=0 n=0 j=o‘s=n d=j
where

Noed = E:.;(p-u)sd + .;(n—p)sd + E:)';(mp)cd“p)‘

n=p
After interchanging the order of susmations for the [..] in Eg. (C9)

1 + - -
2 L] 8 B 00 ns + F Ghi-as * T Opseqsat0)]cosanz. (<101

n=o J=o J=o PRI7INI - yaq J=o P
where
ofmj' : E:n gjaonadjnpadz(fﬂ) * f:n g:j,_aasnad(j-Z)npst'”‘ '
* E:n g:jua'nad“*‘ ’np'd(jﬂ)‘ ’
the final cosine expansion becomes
ex¥yy™ .0 i* I 8§ __cosrex cosqry, {C11)

8% peo quo M
vihere
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¥pq §.o°p(q Nyt ’f:q"p(i -a)3 " f e 2O

Therefore, combining Eqs. (C6) and (C11) gives
(w, )2 - w  w =n¢ ¥ P_cosprx cosqny,
xy xxX"yy p=0 q=o0 P9

where P =(2 - sm)/s*.
For later refererce, we enumerate P
and w

Pq which involve only w

23"
P-3556w‘-3975ww 6380ww+3558ww+071

-171.73w, W+ 153. eow'

Py =256+ 45.795w _w - 20.¢80nf, .

Poo-25.600] + 45.70%w  w - 20.480e3 ,

243
Ppe™ 23.851n w - 48.233m, % - 21.333:2 94.933% w_ +
+107.81w, w_ - 96. 42'11:,.

.

(C12)

t1’ 'xa' Y21

M

13 13 11 32 33

+3.556w - 1.272% .w__+ 28. 44«' ~ 31.802w, W+ 5. ssw:',
Pao= 3.556 - 6.380m w - 3.975w % + 3.556w w. _+ 28.344%,

+3.556w .~ - 31.802w w__+ 0. 7nu‘ 1.272w, w  + 5.889|t:’.
Pag -7 111«' + 27.032w, w  + 27.032w w _+ 14.222w W - 18.489w::

-65.778w, W  + 24.487w _w__- 18. 489#' + 24.467w, W 7.111-‘ .
P =3 553-P + 25.441w W _+ 6. 350.:“3:“ 22.756w,_w _+ 5. easw‘

~22.756w W, ~ 10.177Tw__w__ - 28.“4!!;‘4» 203.53w  w__+ 45.511#},.
Po=-3 sseu' + 6.360w, w _+ 25.441w W - 22.756w w - 28. 44«‘

-22.756w,  w, + 203.53w _w__+ 5. esow‘ - 10.177w, w__+ 45. 511»1‘
P g=-21.466m W _+ 19.20% W _+ 18. 20vF +19.20w, w - 34.346w_w

Pyo=-21.466w w_ ¢+ 19.20w w__+ 19.20w _w 171.73w w _+ 19.20 af}‘L

30. 151-’ .

30. 1511:, .

11 32 12 33 t % ) 3t
-34.346w, x_ + 153. eou:,,
P> 3 sssw‘* - 44.523w w - 23.056w w + 29.156w w - mzzzu:,
+157 16w W + 46.431w w_ + 17. 'new’ - 131.02w, w_ -
Po= 3 5sew‘ - 23.0%6w  x  ~ £4.523w w -+ 20.156w W+ 17. wsu*
+157.16w__w_ - 131.02w .w_ - 14. \.zow' + 46.431w, w_ -

126. Bﬁw“wz’




BN

2 S R e e R

P‘z- 23.851w w__ - 46.933w w__- 94.93%w w__+ 107.81\‘1‘2703‘- 21.333&:‘

11 84 112 33 13 3¢
+126.80w, w__- 95.42“:3,
P, = 19.081w w _+ 19.081w w - 34.133w w _+ s.saa-f:,- 238.93w W
-91.580w _w__+ a.saaw:‘- 91.580w, w - zv.aow:,.
. e 25.60@,- 166.01w w _+ 128.01;".

) Po" as.so@t- 166.01w, w__+ 128.0-23,

PQO’-2°385"31'13+ 27.733w“w”+ 2.133#:’4' 104.53"1,\'“- 118.30w _w

13 33
+55.335w, w_ - 49 493@,,

P.‘--2.385w w + 27.733w ¥ __+ 104'53'13'81* 55.335w _w +2.133§§‘

11 32 i1 33 13 33
~118.30w, w__- 49.493@,.
P“-—as.sm“z“+ 25.760w w _+ 25.760w, w - zs.oww}s.

P..t 137.38n“h”+ 61.440“:’. ?.‘-' 137.38',81,,*— 61.440@,.

Poe=17-173W w__+ 15.350@,, Pog=-17-1730, ¥+ 15.330@,,
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The enuaseration of £ _ and § __ becomes simpler when only w 1 Mgt ¥

Appendix D:

LI are retained.

of L.,z

Zoe F0a"

which involves a, a

32

-48 w
+64 w
1684
-84

-112
+48
+64

-48

+18 w

+32

-112
+48 w
+64 w

-180
+128
-32

+64 w

+32
+160
-64

~-176
~240
+416 w
+64

~312
-272
+2172
+80
+32

Complete listing ¢f £ -8

og_0g

3%

and

Ag sn illustration, we present here the comsputer listing

and a

T a3 OPLY

w(1 1¥w{1,1)e1,1)a(1,1)aé1,1)a{1,1)

i Rati: et e a0ai
w(l 1)n(3 1)a(1,1}a(1,1)af3,1)a(1,1
w(l,l)n(s,l)a(l.l)a(l.l a(3,3)a(1,1

w(1,1)w(8,3 a(l.l)ail,l)aés,l a(8,3)
w{l,1)w(3,3 a(l,lga 1,1)a{3,3 azs »3)
wi{l,1)w(3,3)a(1,1)a(1,1)a(3,1)a(3,1

wzl,a u(1.3;a{1.1)a 3,3;a§1,1;a(3
1,3)w(1,33a(1,1)a(3,3)a{1,1 ai
w(1,3)w(1,3)a(1,1}a(3,1)a(1,1)a

n(l s,u v.l)a i, 1)a(3 3)af3,1)a(
? 3 a(3 aia(-,sia(
3 1)a(3,1)a{

brb gt (bt ww
b pos fnb T 00 b
A g g g s?  agnt et et "V

.- ° ~ - -

w(l 3)!(3 3)&(1 1 3. 3 l3 .1)a(
w{1, 3‘n33 3}&(1 1)a ;3 3)a 3 3 a}
SR HH R AR R
(
(

O}WG(O

- o ® ®

Sob G Db fub

a(3,1
)

w(3,1)w(3,1)a(3, 1} }1 I;a(
w(3,1 w(3.1)a(3.3 a{1,1)a(
w{3,1)w(3,1)a{3,1)a(1,1)a(3,

w(3,1)w(3,3)a(3,i)a(1,1}a

»(3.1)w(3.3)a(3.3)a(1.1)a

%3 1}ui3.3 3,3)a i;,l\ai
3.1)a{1.1

/

3.1)w j
|

L E.a.

S S, i S A".M _—

i\
a
l

L

3
3
.3
3
I

000 It 308 bbbt GO CO KD b ub ot

T gt N N Nt gt et gt vant
.

wwwaw »
WLWLw wwa.co et

LI Y
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Appendix E: Evaluation of j‘[? R ¥ ()9, (y)dxdy

Let us evaluate the three integrals in the order that they appear in !’.
First, we have

5555 Yapxx® o (X)9 4 (v)dxdy=

- n‘}-:” ;1:" §“ Wes®nilrs I‘(-u(i"ﬂ)ci(x)+((1‘+1)“+41’)Si(x))sj(x)dx
=1 1%y )= o

-t n ci V8 ({-1)4T - -1)* - +
7 ?qw.sa.i{ari[(iv;) HU-10] - g gy (1% - a0} (E1)
The notation ci(x)-cos(inx)cosnx is uged for the first equality and the second
equality follows from Egqs. (H3) and (H4) of Append%x'ﬂ. Using the notation
ﬁlt‘l)'t(1’+f("1) of Maekawa [10], we have (..}--zjzlJlar(1+I+J)(i+I)'.

ence,

+
f;f; WyxxxPr (X)0(y)dxdy=- g’f:‘ f:aalsullziszlar(i+l+J)(1+I).’ (E2)

By symmetry, we can write at once

L ]
5o Myyyyts (e (y)dxdy=- F-T° f-“-manjziz_',.uae( g1sg) 3P0 (B3)
Similarly,

S50 Yxxyy®r(x)eg(v)dxdy

)
= :?"ln{z. aliziijIar(i+I+J)(1+I)g gf“njzizij’s(J+I+J)(j*l)z}' (E4)

8%mx=y nxg i=4

Hence, combining Eqs. (T2)-(E4) yields the final expresion

4
55t @, (X)9g(v)dxdy= 1’-bl.’ &, (ES)
where
L]
- L) ’ - 1 Tyee
& Q-E’;unxi::zlz‘,sxar(m,ﬁ,,‘m)‘ 3§:‘urn§i“anjzlzJara3(j”m(_m)‘

+ §;:°‘ £ Wy xi::‘a_,zi:j,.nar( fols J)(1+I)‘}{.§:18nj8i}:3.llas( J4147) (341 )‘}.

m=1 N=g
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Appendix F: Evaluation of [;j;_l‘vr(x)¢,(¥)dxd¥

Let us evaluate the three terms in the order that they appear in N..
For the first term we write

Sol s ¥xxFyy®r(X)eg(v)dxdy = =*b®P.0  + !;Eh 8. (F1)

Here, a, is evaluated as in Appendix E

&~ -(1/8) i";unﬁa“zizjnar(Mm(M)‘. (F2)

The evaluation of a‘ is complicated due to the presence of qu

& - ¥ ow s =P

m=g N=g = p=0 q=0

E‘ g“ a-caﬂz(ZCCc(x)—(c'ﬂ)sc(x))Si(x)coa(prrx)dx}
= 1=

1
ﬁ“t §9‘anda,j {sd(y)sj(y)cos(qnv)dv}. (¥3)

where cn(x)-cos(nnx)cosnx. After the integration with the aid oo ‘' ;s. (H7-
H8) of Appendix H, the result may be put in the fora

8- ~(1/8F I owy, ¥ R MR a,0 gg‘.ndadq,}.

m=1 n=; p=c q=0 P9 lca=y MCCPT.
where

Cepr™ szIJI(°+I)z["r(c+I+J—p) Y B (c+1+dep) T ar(-c—l-J+p)]'

Rags™ “331“2'1’[°s(z+1-q) * Bg(2+1+q) T as(-2-l+q)]
'(1“3’2J31J1[‘a(d+1+J—q) * By (del+deq) ‘a(-d-l-J+q)]-

Note that in qu‘ the factor 65 picks out the first tera d=1, and only the
second term is retained for d>1. Although it is possible to consolidate the

three torms in Qc r and qus. we prefer to leave them in their present form
for readability.

For the second term we have by symmetry

L ]
S58 wo B @ (X)0g (v)dxdy = nPa®p o + DB o (P4)
where

8- -(1/8)§‘wrn§‘:‘an12ixyla‘( Jo143) (3D
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o~ (/89 £ w ¥ Pmp'{c-‘s.ckcpr ﬁ:‘ndqdqs}'

R=1 N=g p=0 q=0

And, for the laszt ters w2 have

So5o xyPay®r(XI9g(y)dxdy = 3559 2,. (F5)

Here, we have

- 4}:; i:;"'“}f:o ﬁ‘:oym ,i::; E:‘liarc zAi(x)sin(mx)sc(x)dx}

1
E:t §:$‘njacd {Aj(v)ain,qu)sd(v)dy}.
using An(x)-ncos(mrx)sinnxﬂiu(mx)comx. Integrating with the aid of Eqs.
(H9-H10) of Appendix H yields

Rxi n=g p=0 Q=9 i=g
whele

t
819:'2.121"1(1“)[%(1+I+J-p) T 8p(i+144p) ax-(—i--l--J'rp)] .
Therefore, by combining Eqs. (¥1), (F4) and (F8), we obtain the final
expression

)
SoT R @ (X)9, (v)dxdy=- %’.ﬁ(v,b‘a,wya'a,) - %‘i'-‘ g (¥e)

rs’
where 3"- 9.‘ + a.- 2.9.7.

Again, as an illustration we enumerate 3" for LV w__ and L

1' Y Yy 3

ol LA AP LTS A Y
13 T BaWi t BVt &%, &%,
R L VAR A VS A s A Py

23 " BNt B gt Zg¥y B oYy (F7)

Q.‘Q
[

“

where

g " -14.222(F )+14.222(Po‘+3.°)+14.222P“-7.111(P +F__),

+F
03 a0 2¢ ¢2

g," 7.951?0.-50.883Po’+42.933?0.012.721(?‘O-P.o)m27.032?a'+44.523F“
-23.851F3.+23.056F03-19.0813‘.+2.3852‘..

Z," 12.721(?0.—P0.)+7.951?.0*27.032P“*23.05GF..-50.883?‘°+44.523F.‘
~19.OBIP“+42.983?00-23.851P.’+2.385?..,
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£, =-7. lll(Fog 8(

+46.933( F

g~ 2. 844Faa ~22. 756!?04
+28. 444?2‘ +42. 66733’

g. =-7.111 (Foz+
+94'933(Fau+

2.544F, 2 +20. 353F0 .
"46'431173,“126'89?33
~-137. 38F“8 +343. 46F.o

£, =-2. 844170a -22. 756170‘
+28. 444173‘ +42. 667!72.

g, 63. 6041’03 -407.06F

+20.353!"° -46.4313‘
-25 .760F“ -91 .589(!’80

,1o-=—22.756(!’03+?20 )—182.04(?0‘4-1?‘0 )—814.4(?0. +F )+819 2(?

)+45. 511(F
)+34 133F -27.733(P“+P.‘).

Fao )+‘5'511(F00+

+688. 692?0. -91. 589(?0.

-18. 8?0. +102 .4Foa —1].3.'78(!?ao

o )-38.4(?0.4-['.0 )-14.222&3-29. 156(F’.+F

08)

78.8?0.+l(32.4?o‘-—113.78(?a° —Fto )+36.9'78!"3a
-51.21’88 —65.5561’“-17.0671".‘ 4.2671?“

F,,)-38.4(F, +F, )+65.778F, -157.16(F,

2¢ 68)

Fsa )+238.93F‘“ —104.53(F‘.+F.. )+28.8F°'

-F P J4R3, 604F3° -24. 48717gg
+166.01an—407.081"‘0+131.02F +118, 3F

-107.81F.a-’5.33517.‘-25.760? +17. 1'73!7.s ,

-F’o )+38.9'I8Fga
"51'2833'35'556!743“17'0871?44 4.267!?‘.

04 +343.46F°‘+2 . 544!“:0 -24 .4873384»131 .0217“—107 ’81F80
3—55.33517‘.4-68.892?.0-126.89F.a+118.301’°‘

-F“ )+166 .OIP"a -137 .38F“ +17. 173Fac

)

03 80

+14.222F32+60 302(F +F )+192 85(F3.+F. ) 258(F )+54 613F,
) 122 88(F‘8+F8‘)+48.080F -30. '72()(17sa 80) (P8)

+98.987(F‘
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Appendix G: Evaluation of <<(%¥)‘>> and <<(g§)‘>> based on Eq. (3.15)

Ve first write in detail

13 (X
<<(57)3>>- H‘ﬁ)tdxdyn waﬁx E:‘ r::"u“ “‘T‘.‘ 2:‘ L fAi(x)Aj(x)dx,
where Ai(x)-icos(1nx)ainux+tin(iwx)cosax. Then, using Bqs. (H3), (K4) and

(K5) of Appendix H, we obtain

«<@¥®>>~ ”32" *

l"t n=g

2wt oy (208 0)ayy - (141)Ra o) - (18, ,)) . (6D)

rog i=g

Let us consolidate the (..} in Eq. (G1) by the notation Zir(l) ~£{1)+£(~1)
of Maskawa [10]

<«< (g%)‘» - ﬂ‘&a . {G2)
where

-4 2
8- Fﬁ:g .:;*:’ i;” v, z' aanEIJIar(hI”-,(hI) :

By symmetry we have
<<(g‘§')‘» - n2e,, (63}
where

=y fl::x E’: "nn"ns .“J"JzIJhS(J*I*J}UH)




Appendix H: Integrals used in Galerkin's procsdure

1
{am(mx)sm(tnx)cos(pnx)dx-(1/4)[sg_p-o;_bwg+b1. (31)
1
focos(av:x)sin(brrx)sin(pnx)dxs(1/4)[6%_9-6;_.b-6;+b}. {H2)
fsin(anx)sin{bnx)sin®nxdx=(1/8)[(2+63)sP-sP _sb (63)
° { b'“a™Ca-27%+a
fros(anx)sin(bmx)cosnx sinmxdx=(1/8)[616P-s2 5P ) (Ha)
0‘ b'a a-g a+z?’
}cos(anx)cos(bnx)sin’nxdx-(1/8)[(2-6‘)ab-6b b ] {HS)
° b’"a "a-z2 “a+a’’ v
fsin(anx)sin(brx)cos®nxdx=(1/8) [ (2-83)cPssD _+sb ] (H6)
o Y Wa "a-a a+a’’
1
{sin(awx)sin(wa)cos(pnx)sinaﬂxéx ~(1/16)[26b_p+26a+p—2696+p
b b b b b b b :
"Gava-p"aa+2+p'6a—2—p'6a-2+p*c—a-2+p*6-a+2+p+6-a+z-p]' (47)
1
{coa(anx)s1n(bnx)cos(pnx)cosnx sinnxdxa(l/ls)iég+2_p+62+z+p
b b b b b
"ca-z-p'ca-2+p“6-a-a+p*6—a+2+p*6-a+2—p]' (H8)
1
{sin(anx)sln(hnx)sln(pnx)coanx alnnxdx-(l/ls)[6:+2_p—6:+2+p
") b b b b
"ba—z-p+6a-2+p'6-a-2+p*6-a+2+p'6—a+2-p]' (19)
1
{con(aﬂx)sin(hnx)sin(pnx)sin’nxdx-(1/18){-26:_p+26u+p+269a+p
b b b b +b b b
*ara-pPararpPa-2-pPa-2+4p-a-24pF -ar2+p*®-ara-pl- (H10)

Since the indices for ay and %an and F__ sre restricted to positive, the
terns with negative indices are left out of the sbove formulas. For instance,
58 p+b) is excluded from Eqs. (H1-H2). Note also that Egs. (¥ -H8) reduce to

Eqs. (H3-H4), respectively, for p=0.
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Appendix I: Comparison of E3. (3.22) with Paul's results

By simply isposirg a1j=6}, it 1s not pcssible to reduce Eq. (F1) of
Appendix F, f;j;wxxpyywr(x)¢s(y)dxdy. to Paul's expression

S eMxxFyyfr (X}, (v)dxdy, where £, (x)=coe[(r-1)nx/a}-cos{(r+1)nx/a] and gg(V)
is defined similarly for y. The reason is that ¢, are orthogonal but fr are
not. To begin with, let us reproduce Bq. (71) of Paul [6] in his notations

Sof oMxFyyfr (X)gg(¥)dxdy =
- ?ahbpx ~{{r-1)2+(r-1)3}[(C +1)W __- W - W I+
~Ta {{r-1)*+{r-1)*]J[( 1 ) rs” "r(s+a) ri(s-a)
HE P LC AW g e ¥riz) ()™ (i) (s-2)]
+(T-1)3[(Ct+13"(r-.)g‘ Wiz-za)(s+te) "(r-2)(s-2)]
_atgh? O

= -’ﬁ_!w‘ﬁ{(n+1)‘{2(n+s)*Az(n+s)~ (n+a—2)‘Aa(n+s-2)~ (n+s+2)’Ai(n+s+2)

—ﬁ(n-a)‘ﬂa(n-s)+ (n—s-2)3Aa(n-s-2)+ (n-a+2)’Aa(n-s+2)]
+(--1)’{2(n+3)‘Aa(n+a)- (n+3—2)‘A‘(n+a—2)- (n+a+2)‘Az(n+s+2)

~2(n-3)*A, (n-8)+ (n-8-2)*4, (n-s-2)+ (n-:+a)‘A§(n~s+2)i}. (11)
where

A‘(k)= C(.+P+2)F(.+r+=)k+ C(.“r)F(.-r)k‘ C(‘*P)F(.+r)k” C(.'r+2)r(._r4a)ko

An(k)’ C(I"P“Z)F(-*.r__z)k*' C(I-l‘)?(a_r)k'- C(I*r)l’('+r)k' C(ﬂ‘r-z)F(n_r,a)k.

'2 for k =0 2 for 8 =1
C(k)= {1 for k #0° C1° {1 for s #1°

We shall now attempt to compare Eq. (I1) with Eq. (F1) of Appendix F.
Pirst, note that Bq. {F1) consistc of two terms &, and d‘. given Eqs. (F2-F3)
respectively. Since the orthogonality has been used in Eq. (F2), We repeat

the derivation of &, with the replacement of fi¢ (y)¢ (y)dy by
f;sin(nny)sin(tny)sin’nydy and obtain
8y=- L2 wynf LA+ 1)35(a-1)2185: (m+1138

me=g
ns=4

nig' ("1)36:-3}

x{(z+6;)62- LS 62_8}. (12)

It is easily checked that Ew’n(..){..) in 2q. (12) i3 identical to the first
(..} term in Eq. (I1), multiplied by a‘thx/4a.

¢n the other hand, the crthogenelity is rot used in Eq. (F3), hence a.
becomes upon imposing a1jnc§
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pqq
R=y Nxg p=o Y=o
1
x{{(a-c,(x)—(-3+1)s,(x))s,(x)cos(pnx)dx}{zsn(y)s,(y)cos(qny)dg}.

where C.(x}tcos(lnx)cosnx. After integrating with the aid of Eqa. (H7-48) of
Appendix H, we put the resulting expression in the form

a--(l/a’)z‘” 2w, z"’z“’vq’ -

M=y n=g p=o0 q=o

x{-((-+1)3+(--1)‘)[6° + &P

a-r* S (u-r)” Smerlt(a+1)?[6]

n+a-rt I-,(l*-t-l‘)— ég*l*r]
h Y
Ha-1)*[6g o+ g(l—a-r)- Sm-g+r” 6E(l—2+r)]}

q q - &4 - 1894 q - &4
x{2[6n_8+ 6 (n-s)” %n+s) ~ Uonia-g* ¥ (n+a-5)" Sn+a+sl

~134 P - &4 - &4
[Gn—a -t —(n-a—s) 6n—a+s 6-(n-2+s)]}‘ (13)
As pointed out in Appendix H, Eqs. (H7-H8) exclude terms with negative
indices. Hence, the terms excluded from the first {..} in Eq. (I3) are
2, (a_11214P - 2,p ]
(1) (-1)%)6% )~ (me1)26P Loy, (14)
and
263 h1s) * 63 (neass)" (15)

are left out of the second (..} in Eq. (I3). Then, inserting Egs. (14-15)
back into Eq. (I3) we have

a--(l/a‘)f" AN R A o

R=1 n=y p=o qm=o P4

{('+l)a[6n+a -r* g(-+n+r)+ ot ég(n-r)' Sper™ 6g(n+r)" SRea-r" 32 (miz-r))

—1y\arzP &P P P - &P _ zP Y - &P
H-1) 0y o p* S (m-2+r)* Sm-r* S(m-r)” Swer” S-(mer)” Sm-a-r 6-(n+-—r)]}

q q -1 _ 44 _ 81 _ &4 - 239 - 254 ’
x'{2'511--11" 26-(:\—3) 6n—a+a 6-(n—a+s) 6n+a+s 6-(n+a+s) 26n-s 2‘s--(n-s)

+84

n-a-s" cg(n—8~8)+ 6g+a-s+ 63(n+2ns)}° (16) )

Under the symmefiry Ftp.tq'Pp.q imposed by Paul [6], one firds that
zrpqq’{..)(..) in Eq. (I8) can be pnt in the form of the second (..} in REq.
(11), multiplied by (n*Eh?/16ab)IN,
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In a similar fashion, one can compere Eqs. (F4-F5) with the formulas
given by Bqga. (70) aad (72) in .ef. [8].
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Appendix J: The coefficients a - a,

a‘-(3/4)[(1~p‘){ﬂ‘+#}+2(ﬁ’+1+2pﬂ*)],

8, =(27/2)[3(1-4°)6%{ 1/ (g +48 ™ 2 11/ (4987 Loz (gt +10208%)]

2, =-3(11%)p*,

a =-3(14%),

ag=(3/2) [ (1-42)8%{08% 44872416/ (8487 )2+1/ (44074 ) }s2 190+ 1+2008%)

ag=(3/2)] (12 )82{ 982 +48% +16/ (84872 1241/ (B +48 ™ ¥} e2(* +9 120087 )]

a,=-27(1-p2)g3{p% 41/ (44874 %],

a,=-2712% )2{p 2 +1/ (B 4™ )%},

8, =-3(1-2)e%{0p% 164/ (8471 12425/ (ap+p ™ )3}.

3,0 =-8(1-4% )82 { 08 +64/ (o 2425/ (p+4 ™ 1Y,

8, =480 )p%/ (8472,

8, =27(1-%)p2{ 4182 +572) 25/ (B+ap™" )2 425/ (494874 )%,

a,,=13/8)[ (1-4°)8% 8 12 8 2 }e2(8%+82 1808%)]

a, ~(20/2)[ (1401820 3687 4140/ (84987 1240/ (g0 Loz (st 0 rione® )]

8, r-243(13%),

8, *(3/2)[ (121N 212/ (82+572)2 625/ (p+4p 7" )2+625/ (4p+p7*)3)}
+2(9p% -0 -c2u8%)]

8, ,=(5/83[ (1-5")8°{B16% 8 2} sz (810 s 10100 |,

a, ,=-243(1-4%)p¢,

a, =(27/2) [ (1 )ﬂ‘{ssp‘w““uu/ (98+p72)2+9/ (9p+4p7* )'}+z(9p‘+1+1oup' )] '

80~ (243/4) [ (1-%) (B*+2)s2(8%+14208%)] .

Yiy

For f=1i we find that L= % reduce to the coefficients ct- c‘, previously

defined by Lee [15]
C,-a /4, C,=a /4, C,=a /4, C =-a,/4=-a /4, Cg =e /4=a /4,
c'-a‘3/4-a‘1/4. c7"u“/4, C.s—&,/&n-a‘/c, c.n—a./4--a‘ﬂ/4,
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|

\

)

|

Ciom8p/4: Cp =8, /4, C g=-8  /d=-8, /4, C  =a  /i=a /4.

| Note that the factor {1/4) is due to i.-\/hin(mrx). in contrast to P _~sin(mrx)

used in Ref. [13].
*
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Appendix K: Listing of SSP-5 under f=1.2 and p2=0.1

(SSP—S)‘t~ 0.32205e+02xW({1,1)W(1,1)W{1,1)+0.22165e+03xW(1,1;W(3,1)¥(3,1)

-0.
+0,
-0.
+0.
-0.

(SSP-S)“t—O.
+0.
-0.
+0.
+0.
+0.

(SSP—5)2‘=-O.

+0

-0.

+0

+0.

+0

(SSP-S),,-—O.
+0.

-0

16796e+02xW(1,1)W(1,1)W(1,3)-C.
15569e+03xW(2,1)W(1,3)W(1,3)~0.
52005e+02xW(1,1)W(1,.3)W(3,3)-0.
38889a+03xW(1,3)W(3,1)W(3,3)+0.
89215e+02xW(1,3)W(1,3)W(3,1)+0.

55987e+01x¥(1,1)W(1,1)W(1,1)-0.
15569e+03xW(1,1)W(1,1)W{1,3)+0.
26003e+02xW(1,1)W(1,1)W(3,3)-0.
15046e+02xW(1,1)W({1,1)W(3,1)+0.
18377e+04xW(i,3)W(3,3)W(3,3)-0.

84062e+03xW(1,3)¥(3,1)¥W(3,1),

27000e+01xW(1,1)W(1,1)W(1,1)-0.
.22185e+03xW(1,1)W(1,1)W(3,1)+0.
51491e+02xW(1,1)W(1,1)¥(3,3)-0.
.15046e+02xW(1,1)W(1,1)W(1,3)+0.
15191e+04xW(3,1)W(3,1)W(3,1)-0.
.31848e+04xW(3,1)W(3,3)¥%(3,3),

26003e+02xW(1,1)W(1,1)W(1,3)+0.
36889e+03xW{1,1)W(1,3)W(3,1)-0.
.21870e+03xW(1,3)W(1,3)W(1,3)+0
-0.
+0.

45350e+03xW(3,1)W(3,1)W(3,1)+0
26086e+04xW(3,3)W(3,3)W(3,3).
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10298e+03xW({1,1)W(3,1)W(3,3)
81000c+01xW(1,1)W(1,1)W(3,1)
11364e+03xW{1,3)W(3,1)W(3,1)
30093e+02xW(1,1)¥(1,3)W(3,1)
24040e+03xW(1,1)W(3,3)W(3,3),

11364e+03xW(1,1)W(3,1)W(3,1)
36889e+03xW(1,1)W(3,1)W(3,3)
17843e+03xW(1,1)W(1,3)W(3,1)
77192e+03xW(1,3)W(1,3)¥W(1,3)
65610e+03xW{1,3)W(1,3)W(3,3)

89215e+02xW(1,1)W(1,3)W(1,3)
36889e+03xW(2,2)WN(1,3)W(3,3)
22727e+03xW(1,1)W(1,3)W(3,1)
84062e+03xW(1,3)W(1,3)W(3,1)
13805e+04xW(3,1)W(3,1)W(3,3)

24040e+03xW(1,1)W(1,1)W(3,3)
51491e+02x%(1,1)W(1,1)W(3,1)
.18377e+04xW(1,3)W(1,3)W(3,3)
.31848e+04xW(3,1)W(3,1)W(3,3)
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Appendix L: Summary of h's and g's uuder . (6.8
Under Eq. (6.8), Eq. (4.8) reduces to

h,=A(1+87%), h =-A[1 +2/(#*+1)], b =-A[g™%42/(8%+1)],
h,=h =0, hy=-h =9A/%, h =8A/(8%+1), h =-h =9A, (L1)
* where A-ﬂv‘l'elz.
On the cther hand, Eq. {F8) of Appendix F reduccs to
g,= 14 222B[1+p72+1/(p%41)],
€,=-7.851B -12.721B/#%- 27.032B/(2%+1),
£,=-12.721B -7.951B/F%- 27.032B/(8%+1),
g~ 7-111B(1+87%) -14.222B/(p*+1),
£~ 2.844B +113.76B,/8%+ 36.978B/(p*+1),
g,~ 7.111B(1+5™*) +85.778B/(p*+1),
€,~-2.544B -63.6048/p%- 24.487B/(p*+1),
€,~ 2.844B +113.78B/a%+ 36.978B/(p*+1),
g,=-63.604B -2.544B/8%- 24.487B/(F*+1),
g, .= 22.756B(1+87%) +14.2228/(s%+1), (L2)

where B=5 T /18.
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Appendix M: Randor respounse under stationary zero-mean Gaussian excitations

For completeness, we shall present here the ¥iener-Khinchin theorem, the
input-output relation for a damped linear asciliator under stationary zero-
mean Gaussian excitations, and the equivaient linearization technique applied
to a Duffing nonlinear oscillator under the same excitations.

Wiener-Khinchin theorem: For 2 stochastic process x(t) we define :he
correlation sz(t1.tg)-<x(t1)x(tg)>. where < > is the ensemble average. When
the process is stationary, the correlation function depends only on the time
difference 7'tg‘t,' hence Rxx(tt,ta)-Rxx(r). (Note thst r was the dimension-
less time in Sec. VI.) Moreover, when the process is erg-dic the ensemble
average may be replaced by time average; however, we shall use < > to denote
both the ensemble and time averages. The correlation Rxx(r) is expressed by
the power spectral density functicn gxx(f) and the inverse relation also
exists through the Pourier transform

= i2ntr
Rxx(f)'.i gxx(f)e dat,

g (1= § Roy(r)e 12 7gr, (M1)
Using the angular f{requency o=anf and 'xx(a)*gzx(f)/Zﬂ, Eg. (¥1) becomes
% fwr
Ryx(T)= S #yx(0)e™ do,
box(0)= 5 § R (r)e 197ar, (M2)

known as the Wiener-Khinchin theorem [8]. One often finds fg. (M2} defined in
terms of Gxx(o)azlxx(a), with the constant pair {(1,1/2r) of Eg. (M2) being
replaced by (1/2,1/=) [25]. Since Rxx(r) and 'xx‘”) are even functions, Eq.
{(M2) may be reduced to the cosine Fourier transform relations

oo
Rxx('r )= 2{ !u(o Jeosurdea,

Foy (0= %f Rex(T)COSOTAT. {M3)
1]

It is important to note that RXX(O)-<x3> isx the mean square amplitude (i.e.,
the energy), hence

<x%>= ? $,lo)ds, (%4)

which states that the power speciral density ¢
contained in a sexll band of Aw ebout w=tw?®,

xx(a‘) represents energy

Linear input-output relation: Ccraider a damped linear oscillator
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'k o+ BX + kx = £(t), (M5)

whera g is the damping coefficient and k the stiffness (Note that # was the
aspect ratio in Sec. Il). Assume that f(t) iz a stationary Gaussian process
with the power spectral density itfﬁn). In terms of the frequency response
function of Eq. (M%)

1
H = ———, {M6)
©) (k~2) + 1o

the input-output relation is [8]

£, () = Bpp(0) [H(2) |, (7)

Now, it is simplest to let lff(o) be a constant K over the range of & in which
{H(w)]® is significantly different from zero. We then have

xB>e K [ JH(w)]3do. (M8)

To evaulate the integral I={"_jH(v)|®*ds by the method of residues, we write it
as I~f> f(z)dz, where £(z)=1/[({k-Z*)®+(#2)®]. Since the poles of f(z) are
zI=[V4k-ﬂ3+iP]/2. zg-[-\/4k—p‘+iﬁ]/2, z,-[‘@k—p‘-ip]/z. z‘n[—‘/dk-p’-ip]/z. (M9)
the residues of the simple poles z, and z, give

I= 2nil(z-z £(2)j,_, +(z-z){z)|, _. 1= z%. (M10)

1 'z 2, 2 Iz z, 1" Bk
Hence,
<x®> 7k (Mi1)

in standard linear oscillator notations pr-atuo and k-az. we therefore recover

<x3>unx/2¢o:, given by Bq. (5-42) of Lin [8]. Since for small 8, the I

represents contributions froa the sharp resonance peaks at u= 1/k, one may
approximate <x?> by

nhy,{vK)
B> —-!-;E—— , (%12)
k4
which is a2symtotically correct as # + 0 (mee, Fig 5.3 in Ref [8]).
. Bquivalent linearization: We now consider a damped Duffing oscillator with
the cubic atiffness term
‘X + Ak + kx + yx¥= £(t), (M13)

where 7y denoting the strength of hard spring. Rather than solving Eq. (M13)
by perturbation, the aim is to replace it by a linear system ¢2 the fora
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‘X + BX + keX + e = f(t). (M14)

By a judicious choice of the esguivalent stiffness ke. one attempts to capture
the effect of nonlinearity of Eq. (¥13) In a statistical sense, and the degree
of failure is quantified by the error term es(-ke+k)x*7x?. which is nothing
but the difference of Eqs. (M13) and (K14). In cthe equivalent linearization
technique, ke is found by minimizing the mean square error, i.e., d<e’>/dke-0.
Under the assumption that x is Gaussian with zero mean, a aimple expression is
obtained

ke = k + 3y<x®>, (M15)

When the error term is suppressed we see that Eq. (M14) has the same form as
Eg. (M5). In view of Eq. (M12), we therefore have

moeeWRe)

e

<x®> (M16)

Now, suppose that !ff(v) is more or lesu flat, i.e., trf(JEe)xiff(JE). Then

inserting Eq. (M15) into Eq. (M16) and identifying <x§in>ln¢ff(J§)/pk as the
mean square amplitude of the linear system, the mean square amplitude of Eq.
(M13) i3 given by the quadratic equation

§£(<x?>)‘ + <B> - <x§1n> =0, (M17)

The positive root of Eq. (M17)
——
127<x8, >
ot> « o [ /1 2Ty, (u18)

is physically 1:levant [9]. (It is not necessary to solve Eqs (M15-M16)
iterativeiy, as suggested in Ref [11].)

It is insivuctive to examine the two limits of Eq. (M18). Pirst, when
the cubic nonlinesrity is weak we obtain by Tayloer expansion

/ 127<x§1n> 87<‘§1n>

V2 Sl e S
Then, 2q. (M18) becores <x‘ms<x§1n>. as expected. Second, for a strong non-
linearity, by ignoring +1 under the radical and -1 in the square brackets, we

obtain
/ k<x®, >
lin
<x‘>z ...57__ .

hence <x®> ie proportional to <x§1n>‘/‘ or (!tf)‘/'.

~-82-




Appendix N: Extension of the equivalent linearization_ technique

Suppose a constant forcing fo is added to the otherwise zero-mean CGaussaian
excitations for a damped harmonic oscillator

‘X + X + kx = £+ £(t), (N1)
N where § {3 the damping coefficient and k the stiffness. The general solution
of Eq. (N1) has the form
. pt/2 - ~ t .
x(t)= e [C‘coavt+qzoinnt] + Ih(t-f)(lo+f(7))df, (N2)
0
where
h{t)= {e’pt/asinzt/z for t>0, (N3)
0 for t<0,

and 3%(4!(‘-#‘)‘/‘. (In standard oscillator notations §-2w and k-o:, Eq.

(N3) reduces to h(t)=e<%tsinst/G, where 5-00(1-{‘)‘/' (26].) The first term
of Eq. (N2) is a homogeneous solution reflecting the initial condition speci-
fied by constants c‘ and q'. which eventually dies out as t 4+, The second
integral term is the particular solution. Consider the contribution of to

t £
fh(t-r)t dr = -k%[-e"‘/ 2(£sincteTcosat) 5], (N4)
0
After a long time, Eq. (N4) settles down to steady state
© 4
{h(t—‘r)fodf + 2. (N5)

which we shall denote by X; i.e.,
f
X=g2. (N8)

With this preliminary, we are now in a position to formulate the input-
output relation. By splittirg x into the mean X and fiuctuation y

X=X +y, (87)
we rewrite Bq. (N1) as

v Y By ky ¢ (KX - 1)) ~ £(t). (N8}

Because of Eq. (N8), we find that Eq. (N8) reduces to Eq. (M5} of Appendix ¥
after a long time, hence

b ¢ (VK)
~ -—m———

<y*> . (N8)

is the stationary response, as already given by Eq. (M12) of Appendix M. Since
X is constant and <y»>=), we have
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<x®> = ¥ + <y®>. (N10)

In other words, the total mean square amplitude is sum of the squared steady
level and mean square amplitude due to the zero-mean Gaussian excitations.

Our goal here is to estimate the response of a damped Duffing oscillator
under nonzero-mean Gauecian excitations, that is

‘X + BX + kx + yx? = £+ £(t). (N11)

We again split x into the mean X and fluctuation y, and recast Eq. (N11) into
the following form

Y+ BY +(keH )y NIV 7P+ K 7R~ £ = £(2). (N12)
We shall now replace Eq. (N12} by an equivalent linear system
Yo+ BY ¢ kgy + e = £(t), (N13)
where the error term is
ex(-k +k+3y % )y+ HXVPE+ 7P+ Kx+ - . (N14)

Following the equivalent linearization proceaure, the ke is chosen to minimize
the mean square error; i.e., d<e3>/dke=0. Under the usual zero-mean Gaussian
zssumption for y, we obtain

ko= k + R+ Iy c<y>. (N15)

Again, dropping the error term in Eq. (N13), we can write down the mean square
of amplitude y

<y®> »

in analogy to Eq. (N9). Inserting Eq. (N15) into Eq. (N16) and denoting by
<y§1n>zu¢ff(JRe)/ﬁk the mean square amplitude of linear equation, the positive
root of the guadratic equation is given by

'ﬂ”ff (/Ee )
—gKk {N186)

o> = /g T ),

in analogy to Eq. (N18) of Appendix M. Note that the mean X in Eq. (i117) can
be related to fo via Eq. (N6) which now has the form

X~ KQ . {N18)

By inserting Eq. (N15) into Eq. (N18), we obtain
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«;r :'! ggwrp»%r-@ﬁ‘*
v" st B = E
s

%:1méw

37x3 + (K+3y<y®>)X - ¢
the real root of which is given by

{N19)
where

LR

The pair of Eqs

(N20)

g wa k(5 Y

(N17) and (N20) can be solved for <y*> and X, afterwards the
mean square of amplitude x is obtained by Eq
In the limiting case of f_=0, Bq

. (N10).
(N17) degenerates to Eq

(N20) yields x =3 becausc A=B. Then,
(M18) of Appendix M, which was derived under the
assumption of zero-mesn Gauasian excitations.
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Appendix O0: Normal stress and strain components

We consider here only the normal components of stress znd strain tensors.
Let us begin by writing the three terms separately in the order that they
appear in Eq. (2.24)

- oM b t
Oy =0y + og + Oy
] t

Oy = Oy *+ 0y +ag, (01) 2

where the superscript 'm' denotes the membrane stress, 'b' the hending stress,
and 't' the thermul stress. By using the nondimensional variables of Egs.
(4.1-4.2), the three terms in Eq. (01) can be put in a dimensionless form
which we shall denote by an overhead karat

Ox = S; + ;b + ;to

-~ - A. Ab At

oy oy + cy + °y (02)

so that the stress is now measured in units =f n®En3/b%; i.e.,

R 2 R ER 2
O™ a Ox+ Oy* -;;—- Ty (03)

Also, by inserting Eq. (03) into E3. (2.1), we ohtain the expression for
the strain tensor

B S
tx~ -bT tx. ty ba ty. (04)

Here, the nondimensional :x and : are given by

y
Ee = Oy poy + n‘h‘T T
-~ . -~ _ -~ G!P ’
ey oy poy + 2 aT T, (05)

where T‘-T; for a simply-supported plate and T‘-T: for a clamped plate.

A. Expansion for the stress teneor
Let us now express the stress tensor in series expansions.

Eq. (01). With the use of Eqs. {4.1-4.2), we obtain the dimensionless stress
components when T*=n®h®(2+1)/12ab%(14p)

n__ T

o T T W (Pt
Ox 12(1-4®)  2(14®) I-x n=y an(¥F7 1)
- £ = . Tpa_ qry
3%%;-;* Z ., q-o( pa+q‘)q‘cospnx cos
~86-~

Simply-supported plate: Introduce Egs. (3.1), {3.8), (3.5) and (3.12) into <




- g
‘E r {§ —PA___leBcospnx cosqny,
p=o q-o{(v"ﬁ'rd‘/ﬂ)‘}

b e BT W (B nEa)ey (XY ().
(1-u%) m=s n=g
xoy 12(1-42)
~ (B2 +1)T, e
" 1
- - — T © W (& ?
%y 12(1%) | 2(1-88) .-; = n (€ F%418)
s%n; Toq
- b }2 ( )pcosprx cosqny
*H) pmo gm0 pPpR+q®
o0 g
- z P J—PQ 1.2 ,
4 p=0 q-o{(v'hd'/ﬂ jEye coopmE cosamy
b e B R W, (et )y, (x)¥y(y). (96)

(1-42) m=1 n=g

where Z=z/h ranges over (1/2 -1/2).
Clamped plate: Instead, introduce Egs. (3.1), (3.12), (2.15) and (3.16) into

Eq. (01). Then, with T*=n¥}® (g*+208/3+1)/3t® (14p) (8% +1) we obtain the
dimensionless stress components in a similar fashion

- (B*+2p%/3+1)T,
oy = - Cal RO
X 3(1p* )(ﬂ"m 2(1-# )
M&u z ; (-——-m—-) cos ~
OSPRX TOSgny
sum)(n‘m p=o q= P8+ ¢
- ;; —PL L ®cospnx cosgqmy,
p=o q-o (n'ﬁﬂl'/ﬁ)}

Q
]

--——{ I X u " ok
x (1%) ﬂzlﬂz . ar® a (X, (V) “‘f-; ﬁ-x mv,(x)on(y)}
at - - Lp%+2p%/3:170
Xy 3(1-u®) (1) '
~n _ (BUs2B/341)T
% = na, +4,
T seridevrar ALY
Bl U T ol 2 D R,
3(14s) (8% +1) p=o q=o pﬂpa P

)p2cosprx cosqry
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e

2
p=0 q=o{(p*m A

BWE T W o pt(xl (y) +E T Woo (xiop(v)}.  (07)
1-# ) m=4 n=g ParPu(*¥n m=y n=g DN n
Under the temperature variation diacussed in Sec. VI for which Tp obey
Eq. (6.8), ‘"1 sum involving qu in o kas only two terms
z T —Pd )2 ST 2n ’vl 2n 2n (08)
cosSpnX Cosqry=- cos2ny+ ~—~—Ccos2rnxcosny,
p=o Q=o p‘ﬂ“ﬂx‘ 9 4(p3+1)
and the corresponding sum in ;; reduces to
GVT 6;%
2 2 (———Jﬂl——)p'cospnx cosqry=- ——Lcos2rx+ —=2 _cos2rxcos2ny. (09)
p=o g=o p*p*+q® 46° a(p2+1)

B. Stress tensor involving wit only
For the simpleet case involving only the w‘$. Eqs. (06-09) simplify to
give

Simply-supported plate:

o} (ﬁ3+1)'l‘° . AB) 2

g
X o1204%) z(l-u‘) 11

+1 v 0 1
- T%%;——* ){-cosZn + coszﬂxcoaaﬂy}- gfﬁ’ cos2ny,
tp y (p3+1) 11

;l - (ﬂ3+1)T0 . jﬁgﬂ.[wg

y 12(1—13) 2(1-;:3) i1

- %y ° an 1 2n 2nyb- 4 2nx,
( ){pacos X + (pa+1)cos XCOs y} E":a°°° x
(Efg+1[ .
y (1) W ¥, (x)¥, ly). (010)

Clamped plate:
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(840287734007, 502,

x au-p*)(p‘m 3(14%) 13

+
_ 48 +gp3/3+1) v o){_poszny - -(-;}-—-coszﬂxcosz'ny

3(1+u)(ﬁ‘+1) "+1)
- 322 _ _ _COS2mXC0s2ny .  TOBZRXCOS4nY . cosdnxcosZny
u{é;—coshy %Zcouny 2(ﬁ+p‘* )a + (o4 ‘)a + S ‘)a}
oPs- 22 [#%cosanxg (y)+ e, (x)cos2my],

X (1 3) 11 28

o=o,_LL_£i@+_L_,

XV 30142 (p%41)

“n (ﬂ*+$‘/3+1)1’0 . 2(§3}‘+1)W

VT TR () | B(1®) 28
é
_ st *‘3#313*1)( %’_0 ){-cosa-rx + G‘es—cosanxcosary}

3(14) (8% +1) +1)
_ 32 1 1 _ BPcosznxcos2ry #3cos2nxcosdany g*cosdnxcesany
Hfl{zcosanx {gcos4nx 2(pepl)2 %)3 gty S
obe- —22__ [#2ucos2nxp (y)+ @, (x)cos2ny]. (c11)

y (1-p )31 1&

Note that for & v=0 the S' and ;; given by Eq. (010) agree with Eq. (34) of
Wilcox & Cleuer [16] when k -k w0 ig imposed in their equation.

For computation, honever. it is more convenient to regroup Ens. (010G) and
(011) in powers of “u
Simply-supported plate:

-~ (B3+1)T 8
Oy=" —T"-{l +(1vp)(-—}’)(-coszny + ----—cosancosany] +Z6gshmxsimry}

12(1-4%) (82+1)
+ z—?lf-zﬂ)lsimxsimyu -((;ﬁfﬂ 2 coszny )W}
K -8

- (B2+1)T s
Oy=- W—u’o){l +(1-p)(—-‘i')[—ccaanx + v-;%-i—coeanxcoaaw} +ugsimx31my}

22(8%u+1) )
+ ) ainnxsinnyW, 3{ (1-“) cos2nx H:‘. (012)

Clamped plate:
(B¢ +28%/3+1)T,
Oy ="
X 3(1-42){p%+1)
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8
x{l + (l-p)(—-}')[—coszﬂy + (ﬂ: ~0092nxc0821ry] +Z¢stinanxs1n3ny}

+1)
_ 162z [F2cos2rxsimfny + psinfnxcosznylW, + 2
3(14%) to3(1-4%)

_ gg{?coszﬂy- %coshy— coszfrxc-::xsz-ny . cosz'nxcc_:u:y + Cosdnxcos2my 2
2(p+87*)? (8+4p7%) 4(4p+p71)2

- (ﬁ‘+2#3/3+1)10

o =
y su-»‘)(p%g) .
x{l + (l-p)(-—‘z')[-cosarrx + -(;gt—l)-cosarxcosary] +Z6¢sm’nxsm’ny}
- -——ys—z-a—[ﬁxpcosenxsin’ny + sirfrnxcos2nylW + Mﬂ*
3(1"# ) 1 3(1_“3) i1
3211 1 g2 cos2nxcos2ny, g2cos2nxcosdny. B2 cosdnxcosny W
- COS2n X~ FxCOS4T X~ + + .
T{? 18 28 R a(prag )2 (484871 )3 }“
{013)

C. Strain tenscr involving R“ only

In view of Egs. (6.4-6.5), the substitution of Egs. (012-0i3) into Eg.
{(05) yields the dimensionless strain tensor
Simply-supported plate:

- - +1 _ar !i 23) ] }
£y -‘%3(—{—)-’61 ™ vTo{fv 3[ {cos2ny-nucosarx)} + (pa+1) cgsg"xcosanj]

+ ZZﬂzsinwxsin'rryH“+ %{ﬂa—(ﬁzcosaﬂy-pcosanx)}wfl.

-~ _ +1 _ 1 _
ty" %f(_)'rslm v'I‘G{t'v 3[ (cos2ry-pcoszrnx) + -‘%ﬂcos&xcoszxy]}

(£7+1)

+ ZZsimrxsinnyWu+ %{1 -{cos2ny- yﬂgcosaﬂx)}wz. (014)

Clamped plate:

T.= _(Elt.ﬁlﬁ_ﬂla T - 1 ~{cos2ny-ucos2nx) + —Q‘—jﬁzcos%xcos&y
X (T (g2 e1) of fu 3 -(eosny-n (62 +1) )}

_ 1€z 2. ggf ‘
—-_‘;ﬁcosZ‘nxsin nyW,  + wft

- %g{%(ﬂ3coszﬂY‘#0032ﬂx)- %g(ﬂacos4ﬂy—pcos4nx)n Eg%ifiggfgzx(lwpﬁa) ’
cos2nxcosdny cos4nxcos2ny,1 .2
* (Beag ™t )2 (1..&%1) "——(jm!(g -ﬁﬂ)}‘f‘.

T o l8t+2p%/341),

I o - (82-p)
Y" 3(tep) (F241) vTo{fv 7!'[ (cos2nx-pcos2ny) + ‘p3+1)cosanxcoszny]}
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162 ;2 .2
3 sin ﬂxcosznyh11+ 3u§x

- %g{%(cosznx-pﬂzcoszny)- %é(cosérx-pﬁacos4ny)- £OS2nXCOoSNY (g2 ;)

2(p+87 )2
cos2nxcos4ry _ COS4NXCOSNY o2 _ .
' (B4t )2 (%3 #) o+ (48+p71 )2 (ﬁa %)}wix' (C15)

Yere, fv=sin2nxsin2ny shouald be inserted in Egqs. {(014-015).
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