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FOREWORD

This report was prepared in the Structural Dynamics Branch (WL/FIBG).
Structures Division, Flight Dynamics Directorate, Kright Laboratory, Wright-

Patterson AFB, OH 45433. The work reported herein was performed under the
workunit 2304N113, Nonlinear Dynamics, during the period of May te December
1991. The present investigation was prompted by the need to understand the
basic mechanics of iiotropic metal and multi-layer;d composite plate specimens
to be tested in the high-temperature sonic fatigue facility of WL/FIBG. which

can simulate the combined thermal-acoustic environment typical of proposed
National Aerospace Plane flights.
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for their valuable comments and suggestions on the first draft of the report.
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NOMENCLATURE

a, b Sides of the plate in x and y coordinates.
D Flexural rigidity

E Modulus of elasticity
F Airy's stress function
f frequency
f(t), fo Mechanical, thermal loading

H Hamiitonian

h Plate thickness
S1-9 12 13' 14 Terms defined by Eq. (3.13)

31' 1 J121 J 4  Terms defined by Eq. (3.23)

Nx, NW Nxy Averaged stress components across the plate thickness

Px' PYV Pxy Integretion constants representing averaged edge loading
Pmn' Pon Modal external forces

Q2 Buckled plate amplitude
q Single-mode displacement

R, R2. R3' ,'• Symbolic form for the f~ur terms in Eq. (3.7)
T, T0  Plate temperature

I Mid-plate temperature
Ts, T• Critical buckling temperature for the simply-supported and

clamped plates
u, v, w Displaements in x, y, and z coordinates
x. y, z Plate coordinates

Wmn- Won Modal displacements

a Coefficient of thermal expansion

p Aspect ratio, b/a

6v' 6g Numerical factors for temperature variation and gradient

Ex' ty' zxy Stress tensor

Om(X), (x) Basis functions for a clamped plate

V Time scale (phb4/,r4D]1/2

F- unctions of Wan used in Sec. III.
* Coefficient for cubic terms

p Poisson's retli
Off(w). gff(f) Power spectral density of acoustic loading

p Cross-sectional mass dinsity

a x, a y axy Strain tensor
0(x.y), e(x,y) Temperature gradient and differential across the plate

%W(x). *X(x) Basis functions for a simply-supported plate
U Angular frequency

* Damping coefficient

<.> Statiatical average
<<.>> Average over the plate
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I. Introduction

Transatmospheric vehicle (National Aero-Space Plane) technology presents a

grand challange of the rest of this century and the next for aerospace science
and engineering communities [1]. In contrast to ballistic re-entry vehicles

(space shuttles) piercing through the atmosphere nearly vertically, the trans-

atmospheric vehicle will remain in the dense layer of the atmosphere for a
good portion of its flight, and hence the air n6ar the maving vehicle is heat--

ed to vory high temperatures (aerodynamic heating). According to computatJonal
fluid dynamic simulations of hypersonic lifting body, the skin temperature can

readily reach 2000OF and. In particular, the nose cone and external skin

panels near the jet efflux are ectlated to have temperatures over 3500OF [1).
At these high-temperature hypersonic flights, acoustic fatigue becomes a
severe structural problem because not only are the pressure fluctuations anti-

cipated In the range of 160-180 dB. but also the skin panels can vibrate

chaotically about the thermally buckled po0itions whose amplitudes increase as
the square root of temperature above the criticul buckling temperature (oil-

canning effect) [2]. Realizing the importance of elevated temperatures on
acoustic fatigue, work has begun as early as in the 70'? to establish fatigue
failure criteria In a combined thermal-acoustlc environment (3].

Strictly speaking, sonic fatigue Is a fluid-structure interaction problem
which requires simultaneous solution of the Navier-Stokes equations for
pressure and temperature together with the structural dynamic equations for

ensuing stress/strain distributions. For large-amplitude deflections, the
shape of structures representing the fluid-structure Interface is not known a
priori, and hence must be determined from simultaneous solution of the fluid

and structural equations. However, much progress has been made in the past by
decoupling the structural part of the problem from solving the Navier-Stokes

equations for pressure fluctuations. Following in this tradition, we shall
in this report investigate dynamics of a piece of hypersonic vehicle structure
modelled by the so-called von Karman-Herrmann-Chu plate equations subjected to
prescribed pressure fluctuations and temperature variations.

Although Bolotin [4] derived the basic plate/shell equations for large-

amplitude deflection subjected to temperature variation in the late 50's (Sec.
II). It is fair to say the role of thermal effects has not yet been elucidated
in its full generality. This is perhaps due to the complexity of nonlinear
equations and. moreover, a wide variety of boundary and edge conditions that
one may impose on the plate. To exhibit the essential physics, we expand the
transverse displacement, Alry's stress function, and temperature distribution

lit trigonometric functions, and thus obtain modal equations for both simply-
supported and clamped plates (Sec. III). Note that the original plate equa-

tions are partial differential equations, whereas the modal equations are
ordinary differential equations. However,'the price paid for this reduction



(Galerkin's procedure) is indeterminancy because the system of modal equations

Is not closed because of nonlinearity. We shall therefore truncate the system

to o'itain modal equations for the first four even modes in Sec. IV, and there-

by permitting comparison with the previous formulations of Levy [51 and Paul
[61. It is important to point out that after a suitable nondimensionalization
the modal equations of simply-supported and clamped plate can exhibit a simi-

lar form for the three temperature terms. The first in global thermal expan-
sion by uniform temperature, the second corresponds to local thermal expansion

by temperature variation over the plate, and the third term represents the
thermal moment owing to temperature gradient through the plate thickness.

Even for the low order modal equations, there are too many cubic terms for

us to readily ascertain the correctness of Galerkin's procedure carried out in

Sec. IV. We therefore demonstrate credibility of the modal equations by way

of constructing the Hamiltonian which embodies the kinetic and potential

(strain) energies of the plate being conserved in the absence of viscous damp-

ing (Sec. V). To proceed further, it is necessary to specify the temperature

variation over the plate and temperature gradient across the plate. We have

adopted in Sec. VI very simple, but nontrivial profiles for the temperature

variation and gradient to expedite the subsequent analysis.

Much insight into thermal terms can be gained by the prototype single-mode

equation shared by both the simply-supported and clamped plates (Sec. VII).

First of all, the uniform temperature and temperature variation represent a

kind of thermal stiffness, but they add negatively to the structural stiff-

ness. Hence, the combined thermal-structural stiffness remains positive when

the sum of uniform and local temperatures is less than the critical buckling

temperature (pre-buckling), whereas it becomes negative when the sum exceeds

the critical buckling temperature (post-buckling). In contrast, the tempera-

ture gradient across the plate gives rise to thermal moment, hence represent-
ing an additional loading, as already observed by Boley and Weiner [7]. There-
fore, this together with external pressure forces constitute the combined

thermal-applied forcing.
For the acoustic loading It is necessary to consider stochastic dynamic

formulation of the single-mode equation and estimate the mean square response

amplitude subjected to Gaussian random excitations [8]. Although the equi-
valent linearization technique [9] has proven useful for nonlinear structural

dynamic problems, it cannot be applied directly to the present problem because
the thermal moment appears as an additional time-independent forcing. This
therefore calls for an extension of the equivalent linearization to nonzero-

riean Gaussian excitations. The main thrust of this report (Sec. VIII) is to

show the growth of mean square displacement as the plate goes through thermal
buckling, the competing mechanical and thermal loading, and the effect of
various thermal terms 3n the extreme-fiber stress and strain tensor

components.
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Mott detailed Information has been relegated to the appendices. for the
benefit of those readers who demand proofs. In any event, this report contains
a complete Galer!hin formulation of simply-aupported and clamped plates,
including the combined stiffness and applied forcing terns.
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II. Plate Equations for Large-Amplitude Displacement

Let us begin with the following strain-stress relations for a plate,
including the effect of thermal expansion aT

zx -! (ax- #oy) + cT,
1 (ay- 'ox) + aT.

axy i Xy, (1)

where E is the modulus of elasticity and j Poisson's ratio. Besides, T
denotes the local temperature of plate with the thermal expansion coefficient
a. In the absence of aT, Eq. (1) is the usual linear relationships of the
strain tensor components axt eye and a and stress tensor components ax, aye
and o . For a positive a, raising T would simply result In Increased strain,
in con oralty with the Intuitive notion of thermal expansion. By solving Eq.
(1) for the stress tensor, the inverse relation is

Ox (i-p) [ea1+ pAt - (1+p)aTJ,

c (an+ )se - (1+#)aT])
Ox (1"() 2)

a1-(+L (2)

It is important to notice the negative sign for *T terms; hence, the stress
may in fact decrease as T is raised.

Following Bolotin (41, we decompose T Into

T(x,y,z) - T(xy) + z$(xy), (3)

Sh/a
where T(x,y)-h- f T(x,y,z)dz is the temperature averaged over the plate

-h/a
thickness h. and *(xy) is the temperature gradient across h (Fig. 1). Note
that only the linear tenperature differential in z is included in Eq. (3);

any nonlinear temperature variations are ignored according to the thin plate
theory. We shall first outline briefly derivation of the compatibility, trans-
verse displacement equation, and plate edge conditions.

ComomtibilitY Equation

For the mean strain tensor Vx' aY and y at the mid-plate; i.e.,
.h/a h/a .. h/a

i_-h-'$ *xdz, i.=h- 1 f .tdz, and 7.-h-j f h stdz, we have the followingS-h/s ý h/* -• his XY

expressions

-4-
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ix - I + 1()

7 j(I y + VV.) + I (.) (y). (4)

deduced from geometric considerations. The condition of strain compatibility
is obtained by eliminating u and v from Eq. (4) through cross differentiation

*+ 2 - - ( 1:9) (LI ) (L5)

a? 3K s 3Y(2

Now, by averaging Eq. (1) over h we obtain the alternate expressions for the
mean strain tenser

.z. " I (Nx- /A ) + ,
- M 1
iy- ' (NY~- PNy) +

ixy. (6)

h/a h/a h/a
Here. Sx-_h/aoxdz, Ny-fh/ a(ydz, and N,,f -h/2a ydz are forces per unit length

of plate. They are often expressed by Airy's stress function F

N-LF NY!AF Nx- O8F (7)NX" 3Yy2 Ny Y --

which automatically satisfy the stress equilibrium at the aid-plate; i.e.,
aNx~/bxNXY/ay-O and NNYxyXN y-y. Substituting Eq. (6-7) into Eq. (5)
yields the compatibility condition

v'•F + EhhVaY - h a) , (8)

where V'- " is the biharmonic opei-ator.

Transverse Displacement Equation
Next. we consider the balance equation for the shear forces and normal

loading q, on one hand, and for the shear forces and bending moments ax and
my. and twisting moments %Y-myx, on the other hand. Upon eliminating the
shear forces from such force balance equations, we obtain

! qn -,O, (9)

relating the moments with the normal loading qn" We first express the moments
in terms of w

-5-.
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3x=-D(1-+pl y, (10)

where D=Eh3/12(1-9?) is the flexural rigidity. We then include In qnthe
inertial force, viscous damping, and external pressure p; i.e.,

qn = -ph -- ph 3w + p, (11}
ata

where p is the cross-sectional mass density and t the damping coefficient.
Note that phe(Bw/8t) has been introduced as a symbolic representation for
viscous damping. Perhaps, a more practical damping model would be (D*(3w/Bt)
of Iaekewa j1Gj. Upon inserting Eqs. (7), (10) and (11) into Eq. (9), we
obtain the equation for transverse displacement consistent with the von Karman

type of large-amplitude deflection

p _phi'Y-. p + *+c(1i)IE ++ a(12

aa ae a%2ax a a? ax2 a*y a ey

The pair of Eqs. (8) and (12) is that given by Eqs. (4.131) and (4.132) (in
which kx and ky are set to zero) of Bolotln [4], and also agrees in form with
Eqs. (13.7.1) and (13.11.3) of Boley and Weiner (7].

Plate Edge.Conditions

It must be pointed out that the compatibility is a statement about force
balances at the mid-plate. Hence, it implies certain constraints cn u and v,
which dictate the movement of plate edges. Let us assume that the solution of
Eq. (8) is made up of the particular solution and a homog neous solution Fh of

V*R=O which is given by

Fh +~ P~xy, (13

where integration contants P,' Py* and Pxy represent the membrane stresses.
As shown In Sec. II of Ref. (II], the immovable edge conditions of zero in-
plane displacement are

82F -0 and fJoo(1x)dxdy -O at x-0, a,

-0 and foJ(l)dxdy -0 at y-0. b, (14)

Here, the integrals of displacements along the plate edge are suppressed in an

--6--



average sense. By combining Eqs. (4) and (6), we find appropriate expressions
for the integrands in terms of F and w

1-•L" 2 a 2";x

D.Y( LZ'f A: FL + _-T.1 , (15)

as given by Bolotin's Eq. (4.140) In Ref (4]. On the other hand, the movable
edge conditions

32F (b 8F- j(-)dy =0, and u= constant at x=O, a,

3-'T , (a8L2-F,^ -0, and v= constant at y=O, b. (16)
SWY -Jo 3xi

permit free movement of edges with zero inplane stress. Here, again, the
vanishing of inplane membrane stress Is imposed by the integral constraint.
We shall be concerned in this report with the immovable edge conditions, and
thereby exhibit thermal buckling under general temperature distributions.

Stress Tensor

Rather than displacements, the stress and strain are the more physically
relevant quantifiers in structural analysis. We shall, therefore, present
here the stress components expressed in F and w, from which the strain compo-
nents can be recovered by Eq. (1). Let us begin with the following oxpressions

e v 3V 8w1 u aS~w
- Pv - yaw

txy= 1 + a z baw (17)

computed by assuming that surfaces which are parallel and normal to the mid-
plate remain so after heating. (Eq. (17) Is Identical to Eq. (12.2.1) of
Weiner and Boley [7] with the replacement yxy. 2 exy.) Let us Insert Eq. (17)
Into Eq. (3) to obtain

x" + Iv.,- + A - (1+.)a T1

0 E f Sa aw •a a

S + 10 r;' +AI

(1-A*)I ~ -.7 -y X



When the stress tensor Is averaged over h, one finds that only the symmetric

terms survive and the odd (unsymmetric) terms drop out. Hence, we obtain from
Eq. (18)

•u 2v
S+ - Ja- NY + (l+o o) l .

- . (19)

Now, substituting Eq. (19) back Into Eq. (18) yields the stress tensor

expressed In F and w (with the use of Eq. (7))

a 132 F - Ez a~w + a2 w EU

VA -~ , ~ ~ ,!) Ez

la 2 F Ez 3. K (20)Tiy = - (1+p) Mj'

after circuitous substitutions.

in retropsect, the assuption that the derivatives bu/Bx. 3v,'%y, 8aw/37•i,
... , are constant across the plate was essential in arriving at Eq. (19).

Obviously, this cannot be true in composite plates, as pointed out to me by
Steve Whitehouse. Furthermore, It Is because of this assumption that the

nonlinear &train teitror (i.e., the terms (I.2)(a/wi/L 2 , (i/2)(3 /,')a, i

(1/2)(aw/fx)(aw/ay) being incorporated Into the right-hand sides of ex, eye

and txy' respectively) also gives rise to the slme Eq. (20), as pointed out

to me by Jay Lavraea.
Note that Eq. (20) Is identical to Eqs. (29-31) of Choi and Valcaltis [12]

when Nb and N b are set to zero In their equations. For later reference we
x Y

point out that in. Eq. (20) the first term is the membrane stress, the second

term the bending stress, and the third term represents the thermal stress

induced by temperature gradient across h.

Normalized Coordinates
It In convenient to scale x and y by the respective sides a and b of the

plate (Fig 1). Introducing x-x/a and y-y/b and subsequently dropping the
karats, we have the pair of compatibility and displacement equations (p-bia)

(PSI! .+ _•yI Mobs •T' Eh((a, ) -AI M(L.)
[ x' -3%a by X2f.~) ahb'a1 3,12f~ x ays 2



e-a,' e- axw - e -(2

together with the Immovable edge conditions

*1 ff{(.rz - Oera-JJ e- ~ (aM)}dxdy -0,

-b ""-b 2 ( j)}dxdy -0. (23)

to be considered in the preseat Investigation. And, the strtss tensor now has
the form

OX= Ib OF" Z!('y + -Z 2-Ea "

e __ Ez a a EaO~~~~~- + ppba!3)a?)Z - r"Iiy

hby hb bV (i+) (24)

&ecause of the coordinate normalization, it should be remembered henceforth
that x and y extend over (0,1).

Boundary Conditions
PesMps the edge conrtr^Jynts, we further assupie that the plate edges

undergo no transverse displacement

w(Oy)- w(l,y)- w(xO)- w(x.l)- 0. (25)

For a simply-supported plate the tangential components of the bending moment
being zero implies (Eq. (12.4.2) of Boley and Weiner [7])

OS"- + ab(1+p)S - 0 at x-0, 1.

S+ abP(1.+p) = 0 at y-0. 1. (26)
ao

Since Eq. (26) is the .nhorogeneous boundary conditions, the usual sine
expansion

w(x-y) - 2-o1A-o won -(x)'In(y)i (27)

where @m(x)-sln(mwx), cannot be used unless 0-0 around the plate edge. Then,

-9 -



Eq. (261 degenerates to the homogeneous boundary conditions

S- 0 at x-O, 1 and A - 0 at y-O, 1. (28)axa 3ay

On the other hand, for a clamped plate we have (Eq. (12.3.1) of Boley and
Weiner [7])

=I. 0 at x-o. 1 and 0- at y-0, 1, (29)

as given by Eq. (12.3.1) of Boley and Weiner [7], which are independent of the
temperature gradient. We may therefore continue to use the trigonometric

function expansion

w(x,y) - •.o4 *o..n•.(x)#n(y), (30)

where *a(x)-cos(m+I)?Tx-cos(m-1)rx, as has already been applied to the thermal
buckling [6] and sonic fatigue [10] problems.

-10-



III. The Derivation of Modal Equations

Using expansion Eqs. (2.27) and (2.30), one can reduce the set of partial
differential Eqs. (2.21-2.22) to ordinary differential equations for wv.

However, owing to the presence ot Airy's stress function, thI2 reduction would
lead to an infinite set of modal equations. It is, therefore, necessary to
truncate the modal equations for practical computation -- an cz hoc procedure

not dictated by the problem. For a simply-supported plate the Introduction of
Eq. (2.27) into EqR. (2.21-2.23) gives rise to the modal equations with
diagonal mass, damping, and stiffness matrices. On the other hand, Eq. (2.30)

will result in the mass, damping, and stiffness matrices which are nondiagonal
in the clamped-plate case. This is because 0. are not orthogonal and the form
of #m changes after the second and fourth-order differentiations. The latter

simply restates that Y4 m(x)n (y) is not an engenfunction of V*Y-XY-0. We

shall first present in Sec. MIla the modal equations for a simply-supported
plate, prior to the more complicated deriva- tion for the clamped plate in

Sec. I1lb.

A. Simply-Supported Plate
Expanding the particular solution of Eq. (2.8) in cosines, we write in

view of Eq. (2.13)

F - P + Eh i E F cospnx cosqny, (1)
p-o quo ""

where P and Py are Integration constants for the homogeneous biharmonic
equation. Here. we have invoked Pxy -0 in anticipation of 38 F/a,)y-0, as

required by the immovable edge condition. Also, a similar expansion in

cosines is assumed for T [13]

- to + to tpcospnX cosqiy, (2)

p-a q=o p

where to is constant temperature over the plate. Note that in Eqs. (1-2) the
term for p-quO is excluded from the double sum. Instead of Eq. (2.27), let us

redefine the expansion by

w(x,y) - Z 0o 0 wu %(x)fn(Y). (3)

where %m-,, sin(mwx) are the orthonormal eigenfunctions.

The compatibility With the use of Eq. (3) the right-hand side of Eq. (2.21)

can be expanded in a cosine series

"a, "•-'r'*° q' opqcospnx cosqny, (4)•' •Xllaal puq=o

whern 9pq Is given by Eq. (A7) of Appendix A. Hence, after substituting Eqs.
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(1-2) into Eq. (2.21), we collect the following coefficients with the use of

Eq. (4)

F = absto SpD (5)
pq W2(e9a+q8 ) +P C?

As pointed out in Appendix A, Spq consists of the nine sums B - B. of Levy

(5].

The displacement In parallel to Eq. (3), the 0 and p are also expanded by *a

Lp(x,- y))J'WOý (Opwj *.(xn ()

For the derivation of modal equations, it is convenient to put Eq. (2.22) in a

symbolic form

R, +R2 + Rs+ - 0. (7)

where
"R," Mh47-! + Phfl-Vt- -p,

R~a- Db-'[p'A" + * •w +

3X4 ax1~y2  By*

R s - a ( l + P) D b ' P 2 + +

We then Introduce Eqs. (1), (3). and (6) into Eq. (7), and sort out the com-

ponents for wrs, as in the Gelerkin procedure. Because of the orthogonality

fo~ljdx dj! aone csn write down at onre

• 8 wrs •wrs
f•fl R *t(X)*s(y)dxdy - ph rs+ sph-w rs, (8)

flfl Ra*r(x)'*(y)dxdy - D(tIra+b) wrs r (90)

fafo r(X)-#s(y)dxdy - - (10)

On the other hand. the treatment for R. is complicated because of the product

terami in F and w. After some algebra, we obtain

f fl I4'r(x)'Os(y)dxdy- - e*-(Pxlbrx + P asa)w rs- e Irs(wanFpq), (11)
ba r 4b r

as shown by Eq. (B5) of Appendix B. Here, we have indicated the explicit

dependence of Ira on wan and F p." Note that Eq. (11) Is still indeterminate

owing to the presence of constants Px and Py, which we shall evaluate under
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the immovable edge condition of Eq. (2.23). Remembering that p-q-O Is excluded
from the sums in Eqs. (1-2), we find that

P (1-ps) I2b L -

u Eh -- - (pp<<(Px)*>> + (y)>> (1+s÷)ato (12)
~' (i-pt) 20 @yJ

where <<f>>-f•Slfdxdy is the average of f over the plate. After evaluating

<<{-w) >> and <<(3)2>>, and inserting P and P back into Eq. (11). we write
the final expression in the following form

fofel lRet.r(x)-#s(y)dxdy - Ii, + + I + It, (13)

where

I w E h a t 0 ( a * + 8 ) r
"11=h-t0 (~r8 + s5)wrs,

4b0 ra'mnb (lapa+qa)
I- rapaIhmW...+~ natm..,) + .*(,'" . mwm_.+ na1 e )nWr.

mamn mjr2b'(1- 3 )'- mn-i mtn-& mtn I mn-in

16- - Wy 9r(Wn Det/)
4b' l(pe+ "2/p)a

According to Eq. ("), by setting the sum of Eqs. (8-10) and (13) to zero we
obtain the modal equation for wrs of a simply-supported plate. Although it is
possible to consolidate Eq. (13) into a more compact form, we prefer to leave
it in the present form involving spq and Vrar zr reedab.lity is orm impor-
tant than compactness whi.n one attempts to enumerate the modal equations.

B. Clamped Plate
Although it is most desired to expand w(x,y) by the orthonormal eigen-

functions of V4 Y-XY-O for the clamped-plate boundaries, the use of such eigen-
functions Is indeed intractable for the derivation of modal equations, similar
to what we have done In Sec. Ilia. Therefore, we shall be content here with
the use of 4. which may be expressed alternately by Im(x)=2Ss(x), where
S,(x)-sin(wx)slwtx. Since ). are Independent, we construct the orthonormal
functions 9m from Sm by the Gram-Schmidt procedure (14]. Since S1 (x). SSlx),

... are even functions of x and S,(x), S,(x),... are odd functions, one finds
that the orthonormalized 9,(x) also split Into the even-shaped components

9 1 (x).%T•s•(x), % (x)-A'73Ss(x).i47T8Ss (x)...
and the odd-shaped components
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q•8(x)=2S2 (x). 94 (x)•vh7s 4 (x)+.7s 2 (x),..

As an illustration, we have compared in Fig. 2 the primitive 41 and #3 with
the orthonormalized 9 and 4p" Summing up the even and odd components, we
have the following orthonormal bases

9W- a*tSt(x), (14)

where
vf7- 0 0 0 0 0

0 2 0 0 0 0
/7T1 0 ,A4-/5 0 0 0

a mi o ,A3 o v1 o o0.0
U 0 34  0 %A4 O77- 01 vf :¶ 0 i3 :0 , .

is the lower triangular matrix. Hence, in contrast to Eq. (2.30), the
orthonormal expansion for a clasped plate is given by

w(x,y) - ",oe-0 w m9 XWn(Y)
m-o n-oman

- ;. ana 3i nj~t(R)Sj(y). (15)

Note that the second equality gives the working definition for modal
expansion.

The Compatibility Substituting Eqs. (1-2) and (15) into Eq. (2.21), we obtain
by coliecting the coefficients for p and q

" ib t , Do + P M

pq =,;(ppa+q4) + ( +a , (5/#)5 (16)

where Ppq Is given by Eq. (C12) of Appendix C. Note that Ppq is considerably
more complicated than Spq (Appendix A) due to, in part, the use of orthonormal

bases. However, it presents no serious handicap in that both Spq and Ppq are
too unwieldy for hand enumeration and hence, in any event, will have to be

enumerated by symbolic manipulations on a computer (see, Appendix D).
To establish a contact with Paul's tabulated results (Appendix B of Ref.

[6]), we must remember that his analysis was based on the nonorthogonal
expansion of Eq. (2.30). However, note that Eq. (15) does reduce to Eq. (2.30)
under aij=dJ. For instance, of the 30 quadratic terms listed In Eq. (Dl) of
Appendix D, there are 10 terms which involve only the diagonal a i. Hence,
with a(1,1)-a(3,3)-1 the 10 terms simplify to give
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Z -5 -32we -48M vj,1 -64w11w %+48w 11 % +l6w*02 09 it IS11S 13

4-48w " -32w,5-ts+160vt 8 -240w w -800- 17
13 31 ±3 31 3133 33

On the other hand, Paul presented the fn3lowing matrix (the tabulation for

P-0 and Q-2 in Appendix B of Ref. [6])

32 18 -32 -16)

0o -64 16 64 -16

-2 -16 180 soJ
-16 -320 $0

to form F 0 by WT %.M. w here 51 is the colurt vector (w1 ,L w:L,w3% ,wQ2) and T is

the trauupoae. It is easily checked that PTQ•;aQ Is identical te Eq. (173,

Furthermore, other components of Fi• can also be checked aRaie.st P~ol's tabu-

lated results in a coapletely analogous manner.

Ite ditplacemetnt In analogy to Eq. (6), we let
e(xy -

p(x,: •=) ao:: o(0P0m(x),n(y)' (18)

and carry out the Galerkin procedure. In view of f;lgjdx=6 j we have by

inspection

Baw aw
fofo RIErl (x)s(Y)dxdy - p -Es + re - Pra" (19)

For the biharmonic term we obtain after some algebra

fofol Rar(x)98 (y/dxdy - ;- a., %__1

where A, is given by Eq. (E5) oi Appendix E. Similary, we have for the

temperature-gradient term

f"' c 1r(xq) s(y)dxdy"'- (21)

where

&2-- as, isn1 mi E Z&Iar(i,+.E)(P+I) - • Z en a -i'ZE JIa (J+1 .J)(J+I,.,tJ 1=. J n,=L J=1 IJ •jIJ

Here, the summation notation Zif(1)-f(1)+f(-l) of Maekawa (10] was used to

consolidate 8 terms into the 2 terms of , Finally, the Integral Involving

R is given by Eq. (F6) of Appendix F
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fo~fo" Iitr(X)Vs(y)dxdy- _• (PxVS~+Pya8AS) - 4bEh Srrs (wan F P) (22)

To render Eq. (a2) eGapletely determinable, it is necessary to evaluate Px and

under the Immovable edge conditions. Using the <<(F)w-)>> and <<W).>>
evaluated in Appendix G, we again reurrange Eq. (22) into linear and cubic

contributions

fofo 0 Rir(X)9s(Y)dxdy = j- + Ja + J3 + J4 ' (23)

where

*Ehcit

naftactEh S t

j= 4ba rs nf (p 8aqa)

S-h2bV (1-)( s+ PAS )0s + (PAS + P-A )

J= - .h P
04b4 -r (pn + qS/P) 2

The modal equations for a clasped plate are obtained by assembling Eqs.

(19-21) and (23) according to Eq. (7).
For completeness, attempts were made in Appendix I to compare ýrrs with the

corresponding formulas derived by Paul [6]. However, we can provide only a
partial comparison because the orthogonality of Eq. (14). which plays an

Important role in our formulation, is completely absent in Paul'I formulation.
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IV. Lowest-Order Modal Equations of Even Mode Shape

The complexity of Eqs. (3ý13) and (3.23) prevents us from seeing the
overall structure of modal equations. Even more, it is very difficult to
assess the role played by each term and thereby demonstrate any inter-
relations among the terms of modal equations. To this end, we shall in tUils
section enumerate the lowest-order modal equations which include only the four
modes wil, W1., w., and w%. For a unified representation, however, it is
necessary to put the modal equations In dimensionless form. As In Ref. (15],
we first choose the length scale h, the time scale 7-[phb'/n4D]l/ , and the
force scale (Ph2/!). We then introduce the temperature scale T*, which will
be defined later for the simply-supported and clasped plates. Using these
scales, we form the dimensionless mechanical variables

r -t/7', Prs 0(?/Pha)prs' Wrs -Wrs/h, (1)

and thermal variables

To =to /T*, Tpq =tpq/T*, Ors nhers/T*. (2)

Because of the factor h, the Ors now represents temperature differential
rather than gradient across the plate.

A. Simply-Supported Plate
According to Eq. (3.7), the modal equation follows by equating the sum of

Eqs. (3.8-3.10) and (3.13) to zere. For the simply-supported plate, the
appropriate T* is the critical buckling temperature Tu1hs(t2 +1)/12MtP(1lU).
at which the global thermal expansion cancels out the mechanical stiffness for
wNl [3.16]. Then, the dimensionless modal equations becomes

Ora + -ft ars + (p~z5+s2 )2 W
-Zrs rs rs

(SSP-1) (SSP-2) (SSP-3) (SSP-4)

+6P2{rs(P•af° mawk- + Pe n2 a-n)+ ss(PC' rsin + p-2CP nSW•_ )}r
m,n-t xn-L m,n-i m011-r

(SSP-5a)

-3P3(1-palXrs(Kan' ( 90a+ /).)
(Ppp8+ qa/gp)a

(SSP-5b)

-Ial('aa9) 4+W (W T
o ra 4rs onl (paps~qa)

(SSP-6) (SSP-7)

- IA (r+2 ers2 , -0 . (3)

(SSP-8)
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We may interpret the terms labeled by SSP (simply-supported plate) I - 8 as

follows: SSP-1 Is the inertial term, SSP-2 represents viscous damping, SSP--3

is the external forcing, SSP-4 is the usual stiffness term, and terms SSP-5a

and 5b represent the cubic nonlinearity. Note that SSP-5a is contribution

from the Immovable edge conditions, whereas SSP-5b is derived from the product

terms of w and F. Thermal effects are embodied by the last three terms. That

is, SSP-6 is the global thermal expansion owing to uniform temperature, SSP-7

Is the local thermal expansion by temperature variation over the plate, and

SSP-8 represents the thermal moment induced by temperature gradient acrons the

plate.

Using the 9pq and Irs tabulated in Appendices A and B, respectively, Eq.

(3) for r and s =1 or 3 yields

Wrs+ tewrs- Prs+ arsWrs + (SSP-5)rs- (9+1)Tobrawrs

- A.h~A4. ± rlp.q) -
1 4 brL rss 0, (4)

where the overhead dot denotes 3/ar. No sum is implied in Eq. (4) by the

repeated indices, and

a 11 (pa+)a,, a 1=(Pa+W, a 1 -(9gpa+1), a%,-81(P+l)2, (5)

blm-(P2+1), b1 5 =(. +9), b,1 -(9P+1), b,$=9(Pa+1). (6)

The frs given by Eq. (B6) of Appendix B are

Tv
$I, (.pDO.. ) - h:L... ÷ hW+ + hhWns+ h,1 W ..

TpS -mhsW11 hW15 + hO 31+ hW 3,3

T

#33 ( M.- ) - h*V.+ h7)S+ he ws,+ h, OhW3, (7)

where

h1 "--2(To0 +T7so/P). hs "2ToS-4T7g/(PS +1)-2To4 +T 5 4/(P +4),

h2 -2T2 0 /P2 -4T,, / (P-2 +1) -2T, I/S ÷Tro / (49 +T1 )1.

h*=-9T, 4 /(9*+4) -9T,,/(4P+I), hs--18(Tao/ 92+Toe/9).

h6--25T 5 4/(9 +4)-25T, 2/(4(4 )+1}6T./(4+1)+4T, ,/(9 +1).
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lh7-18T80 /Pa-18T40 /Pa36T36 /(gJ+9)+9T4, /(4P3 +9). h* -18(T03 +T60 /gp),

hoin18T02 -1T 0, 6T/gg pa+1)+9T*,/ (9P2+4). hi --18 (TO +Toole)). (8)

Finally. the cc~sponents of SSP-5 are

(3SP-5) 11-4a1W3,1 2a8W11 Wl +3a$*I V1 +3a WlIW31+2,I ~11I 331 +a1WS11

G1 13

+2aW-5 3V - aW+2aW V ,*,+a 71W,,+2aW SW3V3 +2a V V V 1 +a V V V,

(SSP-5)13m as*W11L2a.W 1W, a 3  +aW1 WV2 W1*W2 1  W3a1* 1*W33ays3
8 I33 t6 31i 10 I3

+a8ssI+23311131W3 s141333 15339613

WhenP-1)theexpression fora I -V siplf greatly an reuet h

carry out the tedou enmeation by1 4a 1 W comute,i and 281 sapl lsinosc

weetcomptrefficraientso P~-1a.2novg and po-. isreslisted In Appendix K.

B. Clamped Plate
For the clasped plate, using T ifat(Pl+W/3+1)/3mtf(14~I)($ 2 +1) as the

T', the modal equations obtained from Eqs. (3.19-3.21) and (3.23) have the
dimensionless form in parallel to Eq. (3)

bas rI amnFSr

(CP-1) (CP-2) (Cp-3) (CP-4)

+ 8P3[(P3A+p)&3+ (&fA)g* 3e(l9)"rrs(wanp -
(pp;+ q/p)a

(CP-5a) (CP-5b)

e1 311&PIJ 19 , ra3 nIv &jhm n)r

(CP-8)

(CP-7)

-19-



- (# 4 +2 9 /31)[=(en)]r- 0. (10)

3(fi+l)
(CP-8)

Because of the parallelism, Eq. (10) has exactly eight terms CP (clamped
plate) 1-8 with the same physical interpretation as SSP 1-8.

In reality, however, the enumeration of Eq. (10) would generate many more
terms than Eq. (3) because the terms CP-4, CP-6, and CP-8 are non-diagonal.

In any event, the lowest-order components for r and s-1 or 3 are given by

Wrs+ 7tWrs- Prs+ [0 ]rs+ (CP-5) rs- 4(#+2P2/3+)To[4+ As]rs

(1-_)fl3 (P+2P2/3+1) T _ (f*+20 3/3+1)
-(p2+1) Ors - 3(P2+1) [ 1rs0. (11)

First, the components of CP-4 are

16~ 2~- .(ge +i)W _ A2 2 +, . _ 32 1 ()W + 2 -3 + 16a+ 32 _02 278 e 12 (6

[ 31 2(p+ 1)W 6+ 1 6W + 1(4_ + 12W 3)W - 3 (2 +6)

320a~a+ 2) + 128e.p + ) 1 6 14 P *(lR3+l )W -22pz 3 (12)1)31202.l•_• . _ 20(p2+ 16 32 (16 6 4 37 32+ 37 W 12

Second, the components of CP-6 are

[p2A2 +&s] 1 1 " I(p2+I)W11 - -1 W•, -',

[Pao.+A 5 1  4 1-W --

Eea3+2& 3 ,-• -, W1 + 4(2Pa+1)W,3 - V 33.

-pew- + 8 + •(r2+l)W,. (13)

Third, the components of CP-8 are also given by Eq. (13) but with 0an replaced
by 0 n are

[] 4 -P2+1)S - --9'

1112J13-- 1 A &+ 3(p2+2*13 -20-
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[A I - ~ + (2p*+1)031- 8.§.3

34.13.1 3V913 343 3 33+ .(4

Fourth, the components CP-7 are

T
711 (-P, if gVWt g I+~ .0s+ 33,

T

313 ( sS3+? 9W1+IW3+9W1 3?WS

731 T-s2-) g3W11+ gO6 V3 + ggP + gO V3

,.33 g*W11+ g1W13+ grW$1+ g10W33 , (15)

where g's are given by Eq. (F8) of Appendix F. For instance, we see that

g-- 14.222(T S+T g#-)/4 +- 14.222(T I+T* 0 P- )/16 + 14.222T. /4(P*+1)

- 7.111(Ta (p+4)1'+T 2(4pa2+1)1')/4, (16)

and the remaining g's are expressed similarly. Lastly, instead of the

analytical expressions, vie present here the computer listing of CP-5 with the

coefficients evaluated for P-1.2 and P3 0O.i

(CP-5)11- O.76804E+O2xV(l11)V(1 ,1)W(1,1)-O.14892E+O3xW(1.1)W(1,l)W(1 :3)

-018330E+O3xV(l, 1)W( 1.1) W(3,1)+O.43305E+O2xW(1, 1) W(1,1) V(3. 3)

+O.38925E+O3xV(1,1)W(1,3)W(1,3)+O.331025+03xM(11I)W(l,3)W(
3.l)

-O.28888E+O3xV(1,1)V(1,3)W(3,3)+O.55192E+O3xW(3 ,I)W(3,1)W(3,I)

-O .3109E+O3x( 1, 1) V(3,1) W(3, 3)+ .46008E+03xW(1, 1) (3 .3) V(3, 3)
-O.17082E+O3xV(1 ,3)V(l,3)V(1.3)-O.42937E+O3xW(l,3)W(1.3)V(3,I)

,O.17620E+O3xV(1,3)W(1,3)V(3.3)-O.43437E+O3xW(1.3)W(3,1)V(S. 1)

+0.88712E+O3xV(1,3)V(3,1)V(3,3)-0.27129E+03xV(1,3)V(3,3)V(
3,3 )

-0.32645E+03xW(3,1)W(3, 1)W(3,1)+O.35047E+03xV(3, 1)V(3.1)W(3,3)

-0.54223E+03xV(3,I)W(3,3)V(3,3)-0.92581E+OlxV(3,3)V(3,3)N(
3 ,3),

(CP-5)13 M--.49640E'O2xV(1 ,1)W(1 ,1)V(1,l)+O.38925E+O3xV(1. 1)W(1 .1)W(1.3)

+O.16551E+O3xV(1.l)W(1 ,1)W(3,1)--O.14444E+O3xW(l ,i)W(1,l)W(3,3)

-0.51247E+03XW(1,I)W(1,3)V(1,3)-0.85874E+O3xV(l,1)W(1.3)W(3e1)
+0. 35241E+O3xV(1, 1) V(1,3) V(3,3)-O. 45437E+O3XW( 1, 1) (3.1) W(3.1)

+O.88712E+03xW(1,l)V(3,1)W(3,3)-0.27129E+O3xV(l,l)V(3,3)V(,.S)
+0. 14310E'O4xW(1, 3)V( 1,3) W(1. 3).0. 33868E+03xV(l,3)V( 1, 3)W(3,A)
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-*016894E+04x11(1,3) W(1, 3) W(3 ,3) +0. 17030E+04x11(l,3) 1(3, 1)W1(3,1)
-0.78637E+03x1( 1, 3) 1(3, 1)1(3, 3) *031710E+O4xW(l, 3) 1(3 *3)11(3. 3)
+0.18257E+03x11(3,I)W1(3,1) W(3, 1)-0. 75391E+03x11(3, 1) 1(3,1) 1(3, 3)
-0.28530E+02x11(3,1)11(3,3)11(3,3)-0.32311E+03xW(3,3)W(3,3)11(3,3),

(CP-5) .1=-0.61101E+02x11(1 1)11(11I)1(1 1)+0.16551E+O3xW(1 .1)11(1,1)11(1.3)
*0.55192E+O3xW(1, 1)W(1 .1)11(3, 1)-0.18055E+03x11(1,1)1(1 .1)11(3.3)
-0.42937E+03x11(1,1)W(1,3)11(1,3)-0.90874E+03x11(1,1)W1(,3)11(3,1)
+0.88712E+03x11(1,1)11(1,3)11(3,3)-0.97935E+O3xW(1,1)11(3,I)11(3,1)
+0.70094E+03x11(1,1)11(3,I)W(3,3)-0.54223E403xW(1,1)V(3,3)11(3,3)
+0.11289E+03x11(1, 3) 1(1 3) W(1,3)+0 .17030E+04x1(1, 3)W1(1,3) W(3,1)
-0 .39318E+03x11( 1,3) W(1,3) 1(3, 3)+0. 54770E+03x11(1,3) 1(3, 1)W1(3. 1)
-0.15078E+O4xW(1 .3)11(3,1)11(3,3)-0.28530E+02x11(1,3)11(3,3)11(3,3)
4-0.27674E+O4xW(3.1)11(3,1)W(3,1)-0.30167E+04x11(3,1)11(3.1)11(3,3)
+0 .52367E+04x11(3, 1) 1(3,3 )1(3, 3)-0. 13402E+03x11(3,3)11(3 3)11(3,3).

(CP-5) 23 a 0.14435E+02x11(1,1)11(1.1)1(1 ,l)-0.14444E+03x11(1,1)11(1,1)W(1 .3)
-0. 18055E+03x11(1,1)1(1,1)11(3.1)+0.46008E.03x11(1,1)1(1,1)11(3.3)
+0.17620E+03xW(1,1)W1(,3)11(1,3)+0.88712E+03x11(1,1)11(13)11(3,1)

-0 .54259E+03x1( 1, 1)1( 1. 3)W1(3, 3)+0 .35047E+03x11(1, )11(3, 1)1(3, 1)
-0.10845E+04x11(1,1)1(3,I)11(3.3)-0.27774E+02x11(1,1)1(3,3)11(3,3)
-0. 56313E+03x1( 1,3)11(1, 3)11( 1,3)-0 .39318E+03x11(1,3)11(1,3)11(3.1)

+0.31710E+04x11(1,3)1(1 ,3)11(3,3)-0.75391E+03x11(l,3)11(3,1)11(3,1)

-0. 57060E+02x1( 1,3 )1(3 , )11(3,3)-0.96934E+03x11(1,3)11(3,3)1(3 .3)
-0.10062E+(i4x1(3, 1) W(3, 1) 1(3, 1)+0 .52367E+04x11(3, 1) 1(3, 1)1(3 ,3)

-0.40205E+03x11(3,I)11(3,3)11(3,3)+0.42215E+04x11(3,3)11(3,3)11(3,3). (17)

This therefore completes specification of Eq. (11) for r and s-l or 3, which
clearly Involves a lot more terms than Eq. (4) for the simply-supported plate.
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V. Hamiltonlans for The Kodal Equations

Even for only four components of Wrsa the modal equations have a
bewildering number of constant, linear, and cubic terms. Hence, one cannot
help but wonder if the modal equations have included only those terms which
rightfully belong to them and left out none inadvertently. The purpose of
this section is to show the internal consistency of modal equations. We do
this by way of constructing the Hamiltonlans for simply-supported and clamped
plates, from which Eqs. (4.4) and (4.11) can be recovered by the Hamiltonian
equations of motion. Therefore, the readers who have svi.icient faith in the
accuracy of Sec. IV may skip this section without loss in continuity.

A. Simply-Supported Plate
We define the column vectors R-(W11 ,W12 ,Ws1 , 2 ). TN(',el .l , ),

FM(P 3., P 'P 3 1 PP 33 ), the diagonal matrices

S..a, , a,, , Sonb bb3
10 3s as%]s 0 bs 1 '33

where aj and bij are given by Eqs. (4.5) and (4.6), and a symmetric matrix

il ha h3 h,6

$h: hg h?
7 ha h:

h 0

where hi are given by Eq. (4.8). With the 4x4 unit matrix I Eq. (4.4) can
readily be put in matrix form

r" * +7ai - IF+ S 4 (SSP-5) r - (, 2 +1)ToSsR

- I Af...J5 (.....-.(Tp 9 )j - -Msl1 I O. (1)

except for the term SSP-5. In fact, one can also express SSP--5 in matrix

S( )
(SSP_5)rsu3PAbi2Z~aa_(l1A)S 7 E . !M / ýZ)53}1* (2)

Here, Sea is a 4x4 diagonal matrix with the elements

{[(P+2pu+Pa)W8 +(pa+jOP+9p-2)Wa +(9pa+lOP+a)W* *9(pa+2p,+p-)W33

[(~'lOh~~)W+(9p2+j82P+89p)Wo +(S8O+p2j +9(9p+lop+ -)fl~)8

11 13 31 31
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9( (P2+2pa+#f3 )Ha +(P8+lOA+9f 8 )W: + ( 9pa+1Oj&+p- 2 1W +9(P2+2p,+, 3 )W~a]

And, S7 [.] denotes a symmetric matrix with the element h .
In the absence of viscous damping, it is straightforward to deduce the

Hamiltonian for Eq. (1). To do this requires defining a column vector 0 with
the components q1 -W,,, q2-W1 3 , q%-W3 1 q,-W3 2 , and a column vector P with the

conjugate variables P1 -1v. P -Ws' P2 .ks, p4 -W " Ignoring the SSP-2, thea13' 3 33
Hamiltonian Hs of the simply-supported plate Is given by

H.- .ý{TZt + 9S. - (Ota+l)T 9TS.Q - OLM~I±l TS ( )Q}

-TIF - 1• 9T51 + hs. (3)

Here, h. denotes contribution by the SSP-5, to be determined presently.
Although it is tempting to formally define hs by presultiplying Eq. (2) by 4T,

the resulting qtuartic expression, though correct in form, does not have the

correct coefficients. This Is because the quartic form, unlike a quadratic
form, generate nonuniform numerical factors under differentiation. We shall

therefore deduce h_ directly from Eq. (4.9) [15)

h. =aq +ai,c(q. +a (?.q2 +a~cql% +a (f.(4 +a~cjq1' +a,ie~qq4 +-as qq.

+as q. q. +a. q q 3% a11 q(qq 3 *a13,%%%q, +a 13a +al 4 q
+aq +a16 qq +a17q +a.,*qq +a,.qq +a20q. (4)

It is simple to checked that Eq. (4.4) is recovered from the Hamiltonian
equations of motion

ii-aH/Bpi, k.• -BH/Bqi, (5)

when HiHs to given by Eqs. (3-4).

B. Clamped Plate

Similarly, Eq. (4.11) can also be put in matrix form

l+' t -]IF ; C4 N + (CP-5)rs - 4(04+20/3+1)T Con(p@+i) o
,.(l_)/3+1i)c (+4+2f/+/3+1. - 0. (5)

Pj SP +If 3(08+2) g
where
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Cu16(p4 2 +) -3 2 + ) 2)g~ 13280 a

1.(sym.) 8437

4(2pa+1) -8 0*

ptebcon mes S+) 0 V o o9

Hc~~T + -4(5
4  20/+1)T N/c5- (1)5(B+2 2/+)p 91

(gym)) 32(+

3(91

Anderte contribution by CP5ducdfo Eq. (4.17). HnethHa istna fr h lse

H -O.611+O1E+,0 _xq(1)q(1q2lSq31)Te g_ +O.1435EO)x($*)q$l/1)qC.( i __)

-0185~+Ox (p2+(1)(3() (OPS04 +xq1)q1()()

hcO .1720!Ee.O2xq(1)q(I)q(I)q(I) -0.45643E+O2xq(1)q(2)q(3)q(3)
i0.8812E+O2xq(1)q(2)q(I)q(3) -0.21293E+O2xq(1)q(2)q(4)q(4)
-O.19445Ee-O3xq(I)q(3)q(3)q(2) +O.36504E+03xq(1)q(I)q(3)q(4)

-O.1805SE+O3xq(1)q(3)q(3)q(4) -O.925811E+Oxq(1)q(I)q(4)q(4)
-O.3170$E4O3xq(I)q(2)q(2)q(2) -O.12893E.O3xq(2)q(2)q(2)q(3)
-O.76313E+03xq(I)q(2)q(2)q(4) -O.45143E+O3xq(I)q(2)q(3)q(3)
-O.39312E+O3xq(I)q(2)q(3)q(4) +0.27129E58.Oxq(2)q(2)q(4)q(4)

+0. 18257E+03xq(2)q(3)q(3)q(3) -0.7539IE+O3xq(2)q(3)q(3)q(4)
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-0.28530E+O2xq(2)q(3)q(4)q(4) -0.32311E+O3xq(2)q(4)q(4)q(4)
+0.69186E+O3xq(3)q(3)q(3)q(3) -0.10062E+04xq(3)q(3)q(3)q(4)
+0.26183E+04xq(3)q(3)q(4)q(4) -0.13402E+O3xq(3)q(4)q(4)q(4)

+O.10554E+O4xq(4)q(4)q(4)q(4). (8)

Again, the Hamiltonian equations of motion rederive Eq. (4.11) when H=Hc.

Summing up, the existence of H. and Hc strongly suggests the internal

consistency of modal equations for the simply-supported and clasped plates,
whereby no terms have been added or left out inadvertently. Unfortunately,

this does not prove the absolute correctness of the modal equations derived In

Sec. III. The reason is that the Hamiltonians are deduced, in part, from the

modal equations. Hence, errors that are consistent with the Hamiltonian

formulation can remain undetected.
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VI. Mid-Plate Temperature Variation and Gradient

To proceed further with the modal equations, it is necessary to specify

Tpq and Or* which appear in Eqs. (4.4) and (4.11). Returning to Eq. (2.3),
we first split I(x,y) into the uniform temperature to and temperature varia-

tion tv(xy) over the plate

7 - to + t v(xy), (1)

as in Eq. (3.2). We then convert * to the corresponding temperature differen-
tial 0 (see, Eq. (4.2))

S - he. (2)

In view of Eqs. (1-2), we may put Eq. (2.3) in the following form

T - to + tv(x.y) + 21(xy), (3)

where Z-z/h ranges over (1/2,-I/2). Since to will be assumed nonzero, we use
it as the main thermal parameter to express the magnitudes of tv and S

tv" 6vtofv(X'Y)0 - " egtofg(x.Y)" (4)

Here, the scaling factor 6v defines the magnitude 6vto of temperature varli-
tion whose profile over the plate Is given by fv(X,y). Similarly. 4 t Is the
magnitude of temperature gradient through the plate thickness and figx~y)
represents its distribution over the plate., Upon introducing Eq. (4) into Eq.
(3), we bhave the dimensiunless temperature T -T/T*

T - To + ( 6vTo)fv(X.y) + Z(6 OT)f (x,y). (5)

where T* is T* for a simply-supported plate and T: for a clamped plate.
First of all, for the temperature variation over the plate, we find by

comparing Eq. (5) with Eq. (3.2) that

(6 T)fv(X'Y)" C t T cospnx cosqwy, (6)
v 0 v p-o q-o p

which holds for both the simply-supported and clamped plates. Let us examine
two examples of fv(x.y) which are neither constant nor linear. As a first
example, we let fv=slnrxsinwy and find from Eq. (6) that

164vTo

Tpq"r~'l( t l)16)16 (p-q-0 excluded) (7)
p q

Now, for the second example fv=sin~wxsinawy, the sum of Eq. (6) reduces to a
finite sum (1/4)(1-cos2Rx)(1-cos?.wy). Hence, we have by inpsection
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To- T0 T - -T 8 - -6vTo/4, T - 0 (for other p and q). (8)so a v 0 pq

Since the majority of Tpq is zero, Eq. (4.8) reduces to

h-= (-•l&(1+P-), etc., (9)

for the simply-supported plate, and Eq. (4.16) gives rise to

128r6 1 [1~t+,-a+ _1+_], etc., (10)
S WP+1

for the clamped plate (Note that the coefficient 14.222 in Eq. (4.16) is

128/9). And, the remaining h's and g's summarized In Appendix L, all have

simplified expressions.

Second, for the temperature gradient across the plate thickness we find

from Eqs. (3.6) and (3.18)

(6 9T 0)f 9(x~y)- rs 0" aL' f O~(X)i7 (Y) (1

where the function 'n is fn for a simply-supported plate and 9 n for the clamp-

ed plate case. For maximal simplicity, we shall assume fguslmxsinwy for the

simply-supported plate and obtain

8•I= 6gT0 / 2 and On- 0 (for other a and n). (12)

On, the other hand, f -sinfwxsitniy gives rise to

SL - 36 To/8 and 8anm 0 (for other m and n), (13)

for the clamped plate. Clearly, =On=- for m-wil Is generally not observed

under different f Using Eq. (12) the last term of Eq. (4.4) has a single

nonzero component -(p*+1)6 gT /24. And, similarly, Eq. (4.14) simplifies to
-T 1/•,o and Aunder Eq. (13).

[&J1(*16T/2, 0A E&S th3o3 -O0ne q 1)
The relationship between the magnitules 6vTo and 6 T is shown schema-

tically in Fig. 3. Although It appears at first sight that the tv(x.y) and

*(xy) can be assigned arbitrarily, this Is not the case when they have a
nonuniform distribution over the plate. First of all, we notice that a non-

uniform S(x,y) cannot exist unless tv(x.y) is also nonuniform. That is, 6v=O

implies 6g-0 . What Is then the maximum value of 6g , denoted by (6g)max' for a

given 6 v? This cannot be answered, in general, without knowing the profiles

fv(xy) and f (xy). However, in the case of fv(X.Y)=fg(xy) (i.e., fvmfg-
sinawxsingwy for the clasped plate discussed), It Is readily seen that
(a})ax-.26v. Sunakawa and Uemura (13] have used a parabolic temperature
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distribution for both fv and fgY and consequently prescribed (6g)MaxM(4/ 3 )6 v,
which implies that the upper surface temperature is half the lower surface
temperature (see, Eq. (42) in Ref [13]).

In view of the recent attempts (17.18] to generate various temperature
profiles by radiant heating, temperature variation profiles of the sort that
we have considered here do not appear at all unrealistic. On the other hand,
to the best of our knowledge no attempt has yet been made to either measure or
impose certain temperature gradient distribution through the plate thickness.
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VII. Single-Mode Equation for Nil

Let us examine the simplest case of modal equation for it when all other
Wrs are absent. With Eqs. (6.9) and (6.12), Eq. (4.4) for the simply-
supported plate becomes after letting r-s-1

V1+7f;1 +(P2+1)5{1-T [1+. 1(~)vIi +4a81 -1 [P11+ n~2+)2Z]- 0. (1)

where a1(pB) •[(1-#)(p'+1) + 2(p*+1+2pP)] as shown In Appendix J.
Similarly, with the use of Eqs. (6.10) and (6.13), Eq. (4.11) for the clasped

plate reduces to

V1I +veWl + p+20/3+1 4 1- T 1iI

+128 (P + +2p2/3+1)dgT ]- 0, (2)
where

d1 (p.P).5(p5+P3-+2M )+(1...ý54[17(pa+p-*)+ 4 + 1 1
(p+.9-I)8 (p+4P-t)' (4p+,q-l)2J

Here, (128/9)d 1 (/V-1,1.2)-76.804 is the numerical coefficient for W(1,1;'-term

In (CP-5) 1 1 as given by Eq. (4.17). The eight terms In -•qs. (4.4) and (4.11)

have been regrouped into five In Eqs. (1-2). In particular, note that the

third term of Eq. (1) Is the combined stiffness which subsumes structural

stiffness (SSP-4), global thermal expansion by uniform temperature (SSP-6),

and local thermal expansion by temperature variation (SSP-7). And, the last

term In Eq. (1) Is the combined forcing of both the applied external pressuzre

(SS,-3) and thermal moment owing to temperature gradient across the plate

(SSP-8). That the temperature gradient plays the role of external forcing has

already been observed by Boley and Weiner (7] and Sunakawa and Uemura (131.

In a parallel fashion, the combined stiffness and forcing terms in Eq. (2) are

gIver, by the regrouping of terms in Eq. (4.11).

Since Eqs. (1-2) are qualitatively similar, we may present them in a

prototype form by denoting q-W1 1 and f-PI

"* + wof4 + 0a(1-s)q + xq3 - fa + f, (3)

where 00.(p4+ 1), suTO(l+g(1-P)dv]. xw4al fom. (Pa+1j-6 T for the simply-M --. 0o
supported plate; and w 0 T P*+ W2/3+1), S.To[I÷ 26(1 j)dvL1+ 161L+1 )

4rd I fo= -6( +2p2/3+1)64T 0 for the clamped plate. Note further that

has been introduced. The combined stiffness c,*(1-s) remains positive as long
0
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as the thermal loading is weak (pre-buckling for s<l), whereas it becomas
negative under a strong thermal loading (post-buckling for s>1).

The Hamiltonian for Eq. (3) Including the kinetic energy and potential
(strain) energy can be written down from Eqs. (5.3) and (5.7)

H + ' co(1-s)c? + (4)

As an Illustration, we have shown In Fig. 4a the potential energy
UJo(1-s)qai4q of a simply-supported plate for P-1 and pa-O.1, while incre-
menting s from 0 to 3. More visually, however, Fig. 4b depicts the potential
energy surface which Is a single well potential for s<l, but develops
symmetric double-well potential as a beccews larger than unity. Both To and
6.T. contribute to the parameter s. We have shown in Fig. 5 the threshold
boundary of thermal buckling (s-I), which intersects the To-axis at To-1 and
approaches the 6v-axis asymptotically.

A. Thermally Suckled Modal Amplitude
For the static problem, we retain only the terms which do not involve time

differentiation
* P +A(- - g -0, (5)

where g-fo+f is the combined forcing. Under a weak thermal loading, the
combined stiffness Is positive, hence only one root of Eq. (5)

S0-(7,-.-"
Q , + i + 2 7 i÷ , l s ,( 6 )

./4x 27w3 4g 2w

is real. Note that g must be nonzero In Eq. (6); otherwise, Q 1-O Is the only
real root. Because of g-fo+f, the temperature gradient alone is sufficient to
sustain thermal buckling, even when there Is no external pressure Japosed. In
contrast, for a strong thermal loading the combined stiffness becomes nega-
tive, hence one may either include [16] or exclude [61 the combined forcing In
computing the buckled amplitude. In the latter case, the thermally buckled
modal amplitude in

Q2 ±'lwojsiFy7x. (7)

B. Dynamic Considerations
In the pre-buckled state, qC-O is the equilibrium state of Eq. (3), and

corresponds to the location of single-well potential energy In Fig. 4. Note
that Eq. (3) iz a Duff ing equation (19]. On the other hand, %nO becomes
unstable In the post-buckled state. Hence, the stable PVielibrium states are
now given by qooQ3 , which corresponos to the locaticns of double-well
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potential energy (Fig. 4). We then rewrite Eq. (3)

"*4 + %o( -w(s-1)q + xq' - f, (8)

which is the so-called buckled be= equation originally investigated by Holmes

[20,21], the trajectory of which wanders in and out of the potential energy

wells in a chaotic fashion. By the change of variable

q - ±Q. + q, (9)

we obtain from Eq. (8)

q + Wo q + 2C.4(s-91)q i UQ2q + xq3 . fo+ f, (10)

which now represents oscillation about Q." Comparing the linear stiffness

terms of Eqs. (3) and (10), Schneider (3] has concluded that the natural

frequency increases by the factor V2 after a thermal buckling. The dynamical

behavior of Eqs. (3) and (8) with respect to a will be investigated elsewhere.

At present, however, the more compelling need is to estimate the stochastic

response, for acoustic excitations will be used in the high-temperature sonic

fatigue test facility being constructed at the Structual Dynamics Branch

(WL/FIBG).
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VIII. Response Estimation by the Equivalent Linearization Technique

Since fo is assumed constant, the combined forcing is a Gaussian process
superposed on a nonzero-mean level when f(t) is mean-zero Gaussian. The
equivalent linearization as originally formulated by Caughey [22] and Booten
[23] was built on the zerL-mean Gaussian excitation, Hence, it cannot be
applied directly to Eqs. (7.3) and (7.10) when f,;O. In Sec. ViIla. we re-
strict ourselves to fo=O and apply the equivalent linearization in its fasil-
iar form. The case of fo0 O will be presented in Sec. VIlIb, after extending
the equivalent linearization technique to Gaussian forcing %ith a nonzero mean

(see, Appendix N).

A. Acoustic Loading
For s*< let us denote by ql1 n the amplitude of linearized Eq. (7.3).

Under foYO the mean square amplitude is given by Eq. (X12) of Appendix M

""' M TW f f ( % q.ro i)

where < > is the statistical (time) average. Here, Off(w) is the power
spectral density of Gaussian forcing expressed in angular frequency W [8].
Assuming that Off(w) is more or less flat around the sharp resonance peaks at
w~t±ooVI-s, Eq. (1) has the alternate form

<gffin> 2ff)
2tCo;(1-8)

using Off(w)=gff(f)/ 2 n, where f is frequency. The argument of gff(f) is
suppressed, for gff is assumed a constant power spectral density. Now, for
the full nonlinear Eq. (7.3) the mean square amplitude can be estimated by the
equivalent linearization technique

SE L -°:(_n,> - (3)

as given by Eq. (M18) of Appendix M. As expected, for a small x, i.e., weak
nonlinearity, Eq. (3) reduces to

whereas, when the cubic nonlinearity is dominant we find that

Hence, <qa> increases more gradually as the square root of the magnitude of
forcing power spectral density in Eq. (5), rather than linearly in Eq. (4).
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As the tonthermal (s=O) reference case, we have evaluated <qalin> and <qs>
from Eqs. (2-3) for p-1, p3 -0.1, and f-0.04, and presented in Fig. 6 the
maximum mean square displacements computed by

<(W /h)a> - b<qln> or b<qa>, (6)

max

where b-4 for a simply-supported plate and b-64/9 for a clamped plate. In
the figure, the straight lines originating fios the origin are the linear
input-output relation given by Eq. (2). In contrast, the mean square displace-
ment predicted by Eq. (3) increases more gradually due to the nonlinear energy
sharing provided by the equivalent linearization. For a given gff, the simply-
supported plate has a larger mean square displacement than the corresponding
clamped plate, as already pointed out by Mei [11].

In the zhermal case (9>0), however, the maximum mean square displacement
does increase with s, as indicated by the three values of a=0, 0.5, and 0.9 in

Fig. 7. However, we notice that the increase is more pronounced In the clamp-
ed plate than in simply-supported plate. In both plate cases, the net thermal

contribution diminshes as gff becomes large, which is supported by

<q2> gff (7)

obtained from Eqs. (2-3) in the limit as gffr-). Eq. (7) states that the res-
ponse is essentially independent of thermal effects when acoustic excitations
become very intense.

Next, let us examine the pair of Eqs. (7.9-7.10) for s>1. Now, denoting by
the amplitude of linearized Eq. (7.10), we have in parallel to Eq. (2)

<-lln> gff (8)

4fc,(s-81) (

The difference In nuL .cal factors of Eqs. (2) and (8) is due to the 4
factor associated with the post-buckled natural frequency In Eq. (7.10). It
is simple to check that the equivalent linearization goes through just as in
the pre-buckled case, for the square term ±3xQ.q3 in Eq. (7.10) has no effect
under the Gaussian assumption. Hence, in analogy to Eq. (3) the mean square
amplitude is

"- 028- +x<4 1 >

Because of Eq. (7.9), the total mean square amplitude is sum of the buckled
plate position and amplitude fluctuations

<. - (10)
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since Q. and q are statistically Independent.
The total mean square displacement shown in Fig. 8 Increases greatly with

s. Moreover, the Increase is considerably more pronouned in a clamped plate
(Fig. 8(b)) than simply-supported plate (Fig. 8(a)). However, this rapid in-
crease is mainly due to the contribution of Q2_ in Eq. (10). Hence, to separate
the contribution of Q2_ from that of <;2>. we presented in Fig. 9 the total
mean square displacement over the range of s=(O, 3) for a particular value of
gff=l. We see from the figure that not only does I increase linearly with
(s-1), but also <42> actually decreases steadily in the range oZ s>1 from Its
maximum value at s-1. The latter is predicted by the asymptotic form of Eq.
(8), <q2> a 1/s, as s -ho. Hence, the mean square displacement falls off es
1/s in the post-buckled state. This has been borne out by the Monte-Carlo
simulation of Choi and Vaicaitis (12], in which the amplitude of displacement
fluctuations is considerably small whenever the displacement and stress time-
histories Jump off to thermally buckled positions.

The composite view of total mean square displacements Is shown In Fig 10
over the forcing range of gff=(O. 5). Notice that the clamped plate builds up
the total mean square displacement much more rapidly than a simply-supported
plate. However, this rapid buildup in the post-buckled state is mostly due to
the contribution of buckled plate displacement, as depicted in Fig. 11.

B. Combined Acoustic and Thermal Loading
The analysis of Sec. Villa was restricted to fo=O. Clearly, this is valid

when a plate is maintained in uniform temperature or there is no heat flux
through the plate thickness. The latter is possible when one side of the plate
is heated while the other side is insulated. However, under a nonuniform heat
flux, the temperature gradient will have a certain distribution over the
plate, which is neither constant nor linear. To incorporate f. into the acous-
tic loading, one must extend the equivalent linearization to the nonzero-mean
Gaussian excitations. Let us denote by qc the amplitude under the combined
forcing fo+f(t) and split it into two parts

q 4- y. (11)

The implicit assumption is that • is the response to fo and y to f(t). We
first replace q In Eq. (7.3) by qc and then introduce (11) to obtaln

""*y + ( 2(1-3)+&--) + 3VIY2 +XY3 .+2(1_-s)9 c i'+ - f0 = f. (12)

Applying the equivalent llnearizaticn technique to Eq. (12) gives rise to
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c<(1X) > - + 2t4>- j.~(3
<e (I-S) Was(l _, .

given by Eq. (N17) of Appendix N. Furthermore, the I in Eq. (13) is given by

Eq. (N20)

f 0_2_____ (1-s)+3w + 3v< j~~ý1 2.. -(24)0 , ,

The pair of Eqs. (13) and (14) can be solved simultaneously for <ys> and x.

Afterwards, the total mean square of qc Is computed by sum of the squared

and mean square fluctuations owing to acoustic loading

<4 = ý> + <y>. (15)

This is the amplitude response to the combined acoustic-thermal forcing. Note
that when f 0=O Eq. (14) becomes 1-0. Then, Eqs. (13) and (15) degenerate to

Eq. (7.13) which was derived in Sec. Villa under the assumption of fo=O.

Recall that In Sec. VII both T0 and 6vTo are represented collectively by a

single parameter s. Under the combined forcing, however, one must also specify

the magnitude of temperature gradient 6 gTo. in addition to s. For simplicity,

we shall assume ag=4 v in what follows. For three values of To= 0.2, 0.5, and

0.8, we choose dv large enough for s to be about 0.96 and compute the total

mean square amplitude by Eqs. (13-15). The results are summarized in Figs. 12

and 13 for the %imply-supported and clamped plates, respectively. Three plots

are presented in each frame of the figures. The first two plots, referring to

the left ordinate, are the maximum mean square displacement b<4c> under the

combined loading (solid curve) and b<q4> under the acoustic loading alone
(dotted curve). Here. b-4 for the simply-supported plate and b-64/9 for the

clamped plate. One observes that the thermal loading is generally unimportant,

unless acoustic excitations are very weak. Now, to accentuate the difference

of the first two plots, the third plot with respect to the right ordinate,

shows the difference of the first two in percent, i.e.,

A<(wsax/h)a>l0OO(<qac>-<qS>)/<q2c>. All the third plots fall off rapidly from

the initial 100% as gff increases. Even In the most thermal-loading sensitive

case (Fig. 13a), we find that A<(wmax/h)s> drops down to 40 when gff

approaches unity.

C. RNS stress and strain

The lesson of Sec VIllb is that the temperature gradient across the plate
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which appears as an additional louding, is gent)rally unimportant, as long as
the acoustic loading Is dominant. Quantitatively, for gff>l we can ignore
the effect of temperature ,'adient, and hence consider only the uniform tem-
perature and temperature variation over the plate. Nevertheless, since the aT
term appears explicitly In Eqs. (2.1-2.2), one suspects that the temperature
gradient might contribute to the stress and strain tensors as equally as the
uniform temperature and temperature variation. The purpose of this subsection
is to substantiate this susipicion.

To this end, we express the normal stress and strain components involving
only the W1, in the following form

YJ (16)

X:] ftha ^x1 (17)

where the dimensionless ax ay, •x and vyare given by Eqs. (012-015) of
Appendix 0. It should be pointed out that ax and ay are symmetric in x and y
(when one ignores the parameters p and p), and so are t x and ey. We shall
therefore examine, here only ax and :x as a function of x, under a fixed y-1/2

Simply-supported plate

ox I +(1-,1)(-j)( ((P+1) ) }

2Z1A024 (18)u(jrxq

f ! ((Aos1r) x)} 272(aiimx)q

+ I(V + ucos2nx)qa. (1)

Clamped 2Late

r fv)[1 - cosix)÷ +Z6gsintw}

16Z [gSCO2sFX + Psin2irxjq

3(1 -jj)

+ + + con2nx -c2wx # cos4,.x ,qa (20)

-32(7+P-) (P+4#-')a 4(4P+Pt )iJ
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ex +2~3+) T {fsin 7!X -f(14.ucos27wx)- .L~.cos~nx)} - 57 (cos2nx)q
x3(1+,,)(p2+1) v 0, (~1

+ 32r,9+ 1(2+pcos27tX) + y(P* cou4wx) - 2°• (1)1 -0

C0s2nx (1- M)+c0547Tx (~5 3(1
(p +4p -1 )2 (4 1-P) _

Eqs. (18-21) are quadratic expressions in q, which we shall express in the
following skeleton form

IT = Co + C q + C'q2, (22)

where IT represents any one of ax, vy, c., and ty and Co, C1, and C2 are the
corresponding coefficients involving x and other parameters. Under the assump-
tion that q is zero-mean Gaussian, the mean square iT is given by

<+$> = +(+2CC)<q> 4 3C•(<q>)2 , (23)

in terms of the <e2> already presented In Fig3. 12 and 13.
To be specific, let us choose Figs. 12b and 13b as typical cases of the

simply-supported and clamped plates, and also consider gff-1. As discussed
in Sec. VIIb, at this acoustic loading the effect of thermal lading Is
negligible on the mean square amplitude. U61ng the parameter vajues of Figs.
12b and 13h. we first compute the extreme-fiber stress and strain by setting
Z-1/2 in Eqs. (18-21), then estimate the mean square stress and strain by Eq.
(23). and finally present in Figs. 14 and 15 the root-mean-square stress and
strain distributions in the x coordinate. To quantify the role of thermal
terms, four plots are shown In each frame of ligs. 14-15. The first (dotted
curve) is the nonthermal reference case (To= 'vSg=-O); the second (solid curve
with 0) includes only the uniform temperature (To*O, 6 v='g=O); the third
(solid curve) involves both the uniform temperature and temperature variation
over the plate (T 0O, 6.POe 6,=O); and the last (solid curve with X)
represents the fully thermal case (ToO*, SvO, dg*O). Figs. 14-15 show that
three thermal terms do not contribute additively to the utress and strain
tensors. In other words, the thermal terms do not necessarily bring about
increased stress and strain over the entire x range. Moreover, the effect of
temperature gradient which we have written off as unimportant in Sec. VIIIb.
becomes the main contributor to the stress components.
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IX. Assessment of Random Single-Mode Dynamics

For a pre-buckled plate (s<1), the three terms of uniform temperature.
temperature variation over the plate, and temperature gradient across the
plate, all contribute to increasing the mean square displacement, although the
increase due to the temperature gradient is insignificant unless the acoustic
loading Is very weak. On the other hand, the thermal terms do not necessarily
bring about increased stress and strain components, as evidenced by the de-
creased root-mean-square strain and stress tensors in some region of the
plate. Moreover, the temperature gradient contributes significantly to the
stress tensor, while its effect was negligible on the mean square displace-
ment. The roles played by three thermal terms are briefly summarized in Table
1.

Table 1. Summary of the thermal effects for 9<1

Uniform temperature Temperature variation Temperature gradient
over the plate across the plate

In the absence of temperature gradient, Negligible for both
Displace- the uniform temperature and temperature the simply-supported
ment variation are lumEad into the parameter and clasped plates,

s (Fig. 8). Small increase for a *in- except when the acous-
ply-supported plate and moderate in- tic loading is weak
crease for a clamped plate. (Figs. 12 and 13).

Very small increase for a simply-sup- Significant for both
Stress ported plate and moderate increase for the simply-supported

a clasped plate (Figs. 14 and 15). and clasped plates.

Moderate increase Significant In- Negligible for both
Strain for both the sim- crease for both the the simply-supported

ply-supported and simply-supported and and clasped plates.
clamped plates. clamped plates.

Now, for a post-buckled plate (sl) we have restricted ourselves to zero
temperature gradient. I.e., no thermal loading, so that the uniform tempera-
ture and temperature variation can be lumped into the parameter s. In the
post-buckled state, the total mean square displacement is sum of the square of
buckled plate amplitude and mean square displacement owing to the acoustic
loading only. As s becomes large, the former increases linearly with s,
whereas the latter falls off by 1/s. Hence, the total mean square displace-
ment is dominated by the buckled plate amplitude in the high-temperature
limit. It should be pointed that the extended equivalent linearization devel-
oped In Appendix N does not work when applied to Eq. (7.10). This, together
with the 1/s falloff, is why the post-buckled plate analysis was restricted to
zero temperature :radiant.
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At this Juncture, one may ask: "How good is the random dynamics of a
single-mode equation?" Clearly, we cannot answer this fully withcit the
detailed study of multi-mode equations. In the nonthermal case, however, Mel
has shown that the single-mode dynamics provides an adequate approximation, as
long as the external forcing is weak (11,24]. In fact, this is a good news in
that the thermal effects are played out quite polgantly in the weak external
forcing range. Hence, the peculiarities of three thermal terms might have
already been captured by the single-mode equation investigated here. Finally,
a redeeming feature of the present analysis is dimensionless representation of
the results, thereby freeing the validity of analysis from the lack of knowl-
edge of the precise temperature dependency of parameters involved in the
formulation.
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X. Directions for Further Work

This report began with the derivation of modal equations for both the
simply-supported and clamped plates, under the immovable edge condition. It
is this edge condition that gives rise to thermal buckling when the effect of
large-amplitude displacements is incorporated lto the displacement equation.
However, in an attempt to exhibit the interplay of thermal and structural
terms, we first obtained the nodal equation for Wi1 , W13 , W.21 , and W.., and
then reduced It further to the prototype single-mode equation for quantitative
comparisons. Clearly, we notice the direction of simplification from multi-
mode to the single-mode equation. Hence, the further work must follow the re-
versed path of generalizing the single-mode dynamics to multi-mode equations.

Some specific proposals for further investigation are then:
(1) Investigate the dynamical behavior of Eqs. (4.4) and (4.11) to exhibit

the role of thermally buckled modes on the modal energy exchange. The under-
lying motivation is that the post-buckled mode has a larger amplitude than the
pre-buckled. It is therefore necessary to investigate the sequence of modes
undergoing thermal buckling In a multi-mode system.

(2) Validate the random dynamics of single-mode for the multi-mode Eqs.
(4.4) and (4.11). This should be carried out in two steps. First, analytical-
ly by extending the equivalent linearization to Eqs. (4.4) and (4.11), and
then numerically by applying the Monte-Carlo computer simulation to compare
with the analytical approximation. It is also suggested that other random
dynamic techniques such as, for example, stochastic averaging should be con-
pared with the equivalent linearization used in this report.

(3) Investigate t't multi-layered composite plates. Although this Is
doable by the Galerkin type of analysis, It is preferred to formulate an
alternative finite element numerical procedure which can easily andle the
complex plate geometry, boundary and edge conditions. non-aymmaeric composite
layers, etc.

(4) It is highly desirous to provide some experimental verification for
the random dynamic analysis presented In this report. Perhaps, it may be
necessary to begin with Investigation of a system simpler than the plate, and
a deterministic excitation rather than the acoustic loading considered here.
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Fig. 1 Plate configuration.
The x-y plane is at the mid-plate and z-axis is across the plate
thickness. The Top and bottom of plate are located at h/2 and -h/2,
respectively.
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Fig. 2 Comparison of basis functions for clamped plate.
(a) Nonorthogonal expansion functions of even mode shape

~# =. . :2s: (x); ---- O- • #28(X).
(b) Orthonormal expansion functions of even mode shape
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Flgi.3 Typical distributions of temperature variation and gradient.TO ds dmensionless uniform temperature above the room temperature;Todv is the magnitude of temperature varlat~on over the plate;Tod 9 Is the magnitude of temperature gradient through the plate thickness.
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Fig. 4 The potential energy U of slmply-supported plate.

(a) U- (- + -)+ l a under P-1 and pa-O.l.

(b) Potential energy surface developing a symetric double-well.
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Fig. 5 The threshold boundary for thermal buckltng.
(a) Simply-suppported plate. (b) Clamped plate.
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?ig. 6 Linear and nonlinear estimates of the maximum mean square
dislaement. Nonthernal case (9-0). ---<--- simply-supported plate;

-clasped plate.
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7a" Maximum mean sqluare dliplacement of pre-buckled plate (sdl).
('Simply-suppozrted plate. (b) Clamped plate.
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FIg. 8 Kaxlmua mean square displacement of post-buckled platit (8>l),
The level of mean sqiiare displacement is raised y the square of buckled
plate amplitudes. (a) Simply-supported plate. (b) Clasped plate.
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Fig. 9 Maximum mean square displacement under g ,-l.
The cross-hatched triangle represents the contribution of buckled plate
amplitude. (a) Simply-supported plate. (b) Clamped plate.
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Fig. 10 Total mean square dixplacement.
The mean square displacement Js entirely due to the fluctuations for *<I,
whereas the contribution of btickled plate umplitude Increases linearly
with s for s>>1. (a) Simply-supported plate. (b) Clamped plate.
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Fin. I1 Mean square displacement due to acoustic loading.
Up to swl. the mern square displacements are identical to Fig. 10.
However, only the contribution by acoustic loading is displayed for s>l.
(a) Simply-supported plate. (b) Clasped plate.
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Fig. 14 Root-nean-square of extreme-fiber stress and strain for simply-
supported plate under gff-1.
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Fig. IS Root-mean-square of extrese-tiber stress and *train for clamped
plate under gff-1.
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Appendix A: Cosine expansion of ( y) and (r-Y)(i*!) expressed by Eq. (3.3)

axs 3V2

The term (3 ) Using Eq. (3.3) we have by the trigonometric Identities

(W Y)2= -r-'gf ' nj
n-o J-o A

.(-o' 1"owanwIjmi(nOs(m+i)WxfcOs(M-I)7Tx) (cos(n+j)ny+cos(n-j)ny), (Al)

By interchanging the order of summations, the {..) in Eq. (Al) becomes

:r = pnj cosplTX. (A2)

Here

a n- muP (p-m+~j~m+j P
Plnj*z wit(Vm~jn(mimP-ff)+r-° WlanWlm-p)jm(m-P%"r6" mlmp~mmP)l)

where A(p)-1-6 0 excludes the term for p-O. (Note that the factor A(p) can be
applied to either the second or third temr to avoid double counting.) Now.
inserting Eq. (A2) Into Eq. (Al) and interchanging the order of summations,
we obtain the double cosine expansion

Pa q o . cosqry (A3)
whr O•W Eqn a -n'n--"n(q-n) + nr Q p -nq)n(n-q) + 'r olPn(n+q)n(n+q)A(q)-whereS Z G+n n q

nino 7,n(q n-,~n pn(n n-q

The term (V ! )( Ba: In parallel to Eq. (Al), we have

WXOYY nuo J=o

4e- 1 ownwi$jR(-cos((+i)w x+cCs (m-I4x) 4(-cos(n+j)wy+cos(n-j)vry)" (A4)

After" expressing the I..) in Eq. (A4)

{. 4 n cospnx, (A5)

where
Cpnj'- EP Wm-onW'p-m)J + a*=WanWlm-p) up + eWrnnw(m~pýjIPA(P).

C S nao an(-mmp an(r-p

the interchtge of the order of summations gives

wXw = r•]r e' D=pqcosptx coqwy, (AO)
p-o quo

where
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pq .. pui(q-n) nuq nuo n q)n)4q'

Therefore, by combining Eqs. (A3) and (M6) we obtain the final exptession

(wxy)2 wxxwV - 're e Spqcospwx cosqiny. (Al)

*whereg 8 =0-D .
Forlater r~eret~nce, we sh~all enumerate 9 which Involve only w.1 , w *

*w 31 and w3

9 .2[o? -2w w + 90- -18%1%01 E..- 2(%*- 2w w+ 90 - 16ww3%,)03 L1 11 13 31 313 0 11 11 21 13 133

922-16[w1(w Cv +woe - 4%V3%:)

9004 [I1 1 931%33] 4-0 U 't~ 31 W13%231

82'4f 11%13 11,33 2 1% 3% 1 1, 8"4(ww+9w wI3, +25w1w 3%].

S 6=8[W2 w go w _18[25 +1 'go13

o m18 3  toj Ss ft~ ~'33
06 28 16[w3+3 96-18["1%1

946=4r[-9W13 3w 1 9s*4-49w,1wos3. 9*4-64[-,w12wo1

Note that the pattern of quadratic terma In t-he [..) agrees with Levy's
Table 1 In Ref (501.
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Appendix B: Evaluation of flfo R 4 #r(X)Vs(Y)dxdy

Let us evaluate the first term wxxFyy of 1 4. In view of Eq. (3.1) and
(3.3), we find that

fofo WxxFyyY'r(X)'*s(Y)dxdy- 2bVP xrawrs + 4- It (BI)

where

1W f* f Cq{ f w *m (6._- am + 6 pr)1(,n_,_ dn + n
n-i q-o m= po pq r- p-r p+r q q-s q+s

The integrations have been carried out with the aid of Eqs. (HI) and (H2) of
Appendix H. By expanding the factors of 6, we see there are nine sums in I

#I= 2 8 qr(s..q)q - 1ý*qar(q-s)q + Ir '?Jr(q+5 )qI (B2)

where 
q-0

lu - z (r .~F (r-.p)l - e' w~..~F (p-r)' + (+0
rnq p=o'-(r-p) -r p=rw(Pr)n pqp + pw(p+r)nF(p+r)"

Similarly, we have
fofo WyFxr(x)%rs(y)dxdy- w2a2PyWrsr+ E+ E a' (B3)

where

92= o nr Zf' wnF p (6d - 6m + Z _ 6m
n-a q=0o L= p-o --" p( r-p p-r p+r (6 q-s q+s "

Also,

flfL w yF y* (x)%I5(y) dxdy= ~- Eh ,. (Bf4)

where

By combining Eqs. (B1), (B3) and (B4), we obtain the final expression

fofo R *Or(x)'*s(y)dxdy_- !Pb_ (baPxr2 +aOpys m )wr - 'Ehb Srst ON

where frs V + V2- 2F.. In view of Eq. (B2). we see that Irs represents the
nine sums in Levy's Eq. (9) in Ref (5].

As an illustration, we enumerate Vrs for waiil, w13 , w3, and %3;

iall,1 haws,+ hawls+ haw,+ hw 3s.

V ," hswa,,+ hswas hew*,+ hw,,.

131- hwaa+ h*w, 3 + '9%wl+ 1sas.
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go* h411t 713,Ls 03al1. blowtV (

wbere bla-(FOS+ao).haU8F
03 -I6FSS8 32F04 +4?g 4 ,

h 2m8Fs0 -16F2 2-32F40+4F43t, h4 --s6(F,,+F*S),

he M72(Fc,+F6),h6A-1OO(F24+F4g )+34(&F"+F*.L V1

h7-72P,~ -288F~~ -144F8* +36P,* * hsm--T2(F70 +F 90 ),

h* x72FoA -288F04-144FG,4.S6Fa., No --648(FP6 +F so). (87)



Appendix C: Cosine expansion of (M") and (LM)(L!w) expressed by Eq. (3.15)

The ter& ~) Using the alternate expression for Eq. (3.15)

w(x~y)=if e ~f-e* w a WS()
r-o 8=0 run s-n ra rmasnsmxS~)

we have

n-o Jug sun duj 81d

e. Ir f!ý Iwrswcdarmaci~m(X)Ai(X)}A,(y)Aj(y), (Cl)

where A*(x)-mcos(m~rx)sinwx+sin(mmrx)coa~rx. By trigonometric Identities, we
rewrite the (.)in Eq. (Cl)

1( + ~~m cos(m+i)wr.- + q~isd cos(R-i)itx). (C2)
where

±3 lad I*r wcd armc2(rni+1) - ir* i w wa )c~-)1l
au runcm I e c-i.c r-m-2 cui rswcd r(m-*acm1)±)

- Ir e~wrw car,.... a.1 (m+1)(iT+1).
r-m'a cmiVULU5U

By changing the order of summations, we then have

~' (P0(p.*5~ ~~m~-psd+ e ( a.(.+P)Sd(P)) cosplffx (C3)e*- p-c (E- rn- ern-c-~

where A(p)-(l-40). Now, substituting Eq. (C3) inti, Eq. (Cl) yields

(Wxy)82 W# " Ir Ir 1 a fadj~df()Jy]cs~x (C4)
p-o n-o i-c s-n d-J

Yh~ere

"~pad % 0 (p-amyd " ' "7 (rn-p)sd + e' m(a+p)sd&(P).8n-0 r-pto

Bty repeating the same Interchange procedures for the [..] In Eq. (C4), we
obtaini

Ir* Ir. (1q PK ~ntq-,) + 'ý lpn(n-q) + o p(n+q)&(q)) coaqnx, (C51
n-c J-o * q-o n-o n-q OM1c(

wehere
Ktn, aignad1psd2(flf+-1) if sn-'dapdn1)J1P -n d-J *-n-* d-J n.)dpdnl)J)

e* I a sI+*adJ Wd ,;(r l)(J';l).
*-n's j

Hence, the final cosine expansion becomes
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(w y)2. !. ' q cosp"x cosqvwy, (CO)

where
+~)Zpq Eq P *n(q-n) + r" 'pn(n-q) + ' "n(n+q)U-o n-q n-c

* The term %11!)(Au): We begin with the representation
axs OV

n-c J1-o a-n d-Jo ld
la ,{!. Ir wr-swcdaruacIBx(x)Si (x)}Sn(Y)BJ (Y)s (C'?)

where D*(x)-2acos(mrx)comlx+(l+u3 )S*(x). The (..) In Sq. (CM) summed over m
and i given

'r ~'f J- r1,. Li..p 32+(Pm + Ir 2;(*p)*sj + Ir 1n(u+p)sd&(P))c5x C8

where

31ýisdm * e 1r-mc~wrswcdarmac12(m?+1) 7 I Ir' WrsWcdar(...)lcI(m-')2r-acmr-"- c-i

r-m+a c-Irad ma)i

Now, insert Eq. (C8) back Into Eq. (C7) to obtain

txw, W ~ r e' e- [e' e- a dS (y)BJ(y )] coarxp 0C9)p-c- n-c i-c s-n d- adpsn
where

?'pod 'a E 11m(p-m)sd + Ir 3(a* )sd + ýmpshp*

After Interchanging the order of summations for the C..] in Eq. (C9)

'r r [ ']- ' [L- *pq- + e 0 (J..q)j + Ir ()(J+q)jA(q))coscPnx. CO

where
0*±j I I ±Ira a 31 2(f' +1) L' r asdi2fs(J)

pn s-n d-j an d-pasd son d-J--,sndJ21pdJ'*

3+' el ' a ad(~~pdJl'
son d-j +, ondj*)pd(+

the final cosine expansion becomes

-xwy C L" 0 coau'nx cosqwy, tC I)

"Where 
Poqop
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J0Pqj + )J&(q).

Therefore, combining Eqs. (C6) and (Cli) gives

(wXY)2 - wxxwy- W"r e' 3r ppq COSPIx cosqnYt (C12)

where P1,.-(Zp,- Opq)/8
For later reference, we enumerate P pqwhich Involve only w1  *is ww 21

and W3

roa 3.556w811- 3.975w1 w13 - 6.360w11 wS1 + 3.558w11 W,3 + 0-7110w3
+3.556w~w3 - 1.272w1 3w33.. 28.444wsas- 31.802w$,w S+ 5.669wS,,

- -3.5 6.601 L- 3.75 w$1 + 3.856w1 1 w3 + 28.444013
+3.556wq &13- 31.802w13w33+ 0.711*2.8- l.272wa.w33+ 5.889033P

P --7111W + 27.032w11wt3 + 27.032w11u 31 + 14.222w11 w233 - 18.48908
-65.778w13w31 + 24.487w2 3 %33 - 18.489"221+ 24.487%1%3- 7.111w832

6O=-3.536W2l + 25.441w11 w'3 + 6.360w1 1 wqtS- 22.756wlu*33 + 5.689W~j:
-22.756w,3 3  10.177%13%s8 - 28.444"221+ 203.53%3 w3 + 45.5110-

P4O .-3.5ff6sP8 + 6.360w,' w1 + 25.441w Lw ,- 22.756w w ~- 28.444013

-22.756w13%2 1 + 203.53wsw3 + 5.689w8- - 10.177w31w3 + 45.511wso
31 p

P08 -21.468w 1 1 w13 + 19.20w lw + 19.20910+ 19.20w w - 34.346wn
119 13s 131 13333

-17'L.73%3 1%33 + 153.eows8
83.

Pcz-21.466uw w+ 19.20w11w33 + 19.20wsuw,1- 171.73w13w33+ 14.20 *A8J

-34.346w, v + 153.60":,

3.556wa - 44.523w ,w *- 23.058wt w + 29.156wlw s- 14.222-18
11 11;L13,13 113

+157 .!8lws,31 + 46.431w,3p*,+ 17.778*28 - 131.02w 3 - 30-151w*,.
31 2$%

P4- 3.556wo1 - 23.0~6w1 1oc, - 44.523vw11w31 29.156w11w33 + 17.7118*21:
+157.1ew,3w31 - 131.02w13 33 14.~220-02+ 46.431%,%S,,- 30.15108

21 33

P -25.8&t? + 45.795w w: - 20.480w3 .
Poe SO W3 33

P -25.60w'* + 45.795**w%- 30.480**-
Po0 ft 13

so 23.851ulw1 1 $3 - 48.233w 1 3  21.333ul 94.933Ww13 , + 126.89wtswes

+107.81w3 1W423- 96-42708
,3s
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P-23.851w w -46.933w w s- 94.933,w w + 107.81w. w-21.3330'
63 11 31 1133ss 1a1s233

+126.89wa,1w33 - 96.427w'-
32'

P-19.081~w11 13 + 19.081w11 W3 - 34.133olw11 w+ 8.5331A - 238.93w143313 .131*:

-91.589w1 3 w2 2 + 8.533w*- - 91.589w3 1w 3l- 27.307ws.
313

ons 25.60vP - 166.01wtsw,, + 128.01P ,

P.2- 25.600' - 166.Olws, 1 v,+ 128.0w:-,,
31 3

a4 -2.385w11 w13 + 27.733w11 w33 - 2.133w' + 104.53W1 3w 1 -183ww 3

+55.335w %-.%- 49 43
31 33

P64 =-2.385w1,w, 1 + P27.733ww &%+ l04.53wS1 3wz:L+ 55.335wL3w 33 + 2.133*4'j
-118.30w 3 w,%3 - 49.4930-

322

P66 -28.80w sw + 25.760vw13 2 + 25.760ws1 w33 - 23.040*2.
e1 2 I3a

p. 137.389t 2 %~3 2 + 81.440w'- P - 137.38w* w + 81.440if's
33' 643133

P.--17.1'73W11 w 3 + 15.360**-, P* o-17.173w3 l~ 3  15.360of-33

so 33 f W5-



Appendix D: Complete listing of X 0- ~on

The enumeration of Zp and S qbecomes simpler when only w11 W 1 3 Wss and
are retained. As an illustration, we present here the computer listint

of X08-0,0 which Involves a,,. a%, and a%, only

-648w . . a 1 ,1 1 a 1,1 a 3,3

464 w(1,1)w(3,1)(,)a( 1,1 )a( 3, )aM a(l113-e4 u(,)(,)(,)(, a(3 ,3 )a(I1, 1
-112 w(1,1)w(3,3 )a(i,l)a( ,)(, a33
+48 ur(1,1)w(3,3 a(1,1ý a 11a 3,3 a 3,3)
+84 w(1,1)w(3,3)a(1l I)a(1,1)a(3,1)a(3,1)

-48 w 1 13a I I)a 3,3 a 1,1 )a(3
+18 (1,3w(1,)a(11)a()a( a(, a 3)a

+32 w(1,3)w(1,3)aI I)a(3,1)a(1,1) 3,1)
-112 w(1,3)w( 3 1)a( 1 1)a(3, )a3,103:a(1,l1
+48 w( 13 )(31a11)(33 )a(*3 )a(l1,
+64 w1 3, 3) 31 al I, a 3,1 )a(3 )a(l1,
-180 W(1,3)w(3,3)a(1,1 )a (3.3 aR(31 W B,1
+128 "(1:3,w 3 3)a(1,1 a 3,3)aý3,3 a13.1)

-32w~k3)w 3,3 )a(1,1 )a3,3 )a 3,3 )a 3,3)
+64 W(11:3)w(3,3 a 1,I )al31) 3, a 1 )
+32 "(31 lw(3,1)a(3,1 a 1,1 1a(3,I)a(1,l)

+160 W(3:1 w(3,1)a(3,3 a I1,a(3:3)a(1,B
-64 w(3,1)w(3,1)a(3,1)a(l,1)a (3,3 )a(l1,

-16 (3,1'w3,3 a(3,3 )a(111~a(3,3 aJ3,3)
+2416 (31(3.3 a a, )( I 1~a (31a3,3

+8 (3!)w( 3.3 a 3,1)a 1,11a(3:11a 3:1)
-112 w(,)(,~(31a33 )a3 a(3,1

-272 w(3.3)wit )a 3.3)a(3,3 )a(3 3a(3.1)
+27?, w(3,3)w( 3,3)al (3 sj,1)a( 3 3 )a (3,3 )31).
+80 w( 3,3)w( 3,3)a (3,3 a 3.3)&(3,3 a 3,3)
ý-32 w(3,3)w(3.3)a(3,1)a(3,1 )a(3,1 )(31). (Dl)
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Appendix E: Evaluation of f"f It Vr(x)q,(y)dxdy

Let us evaluate the three integral* In the order that they appear in R,.
First, we have

-w'L'~ Zrwasamiari J(.4i(ia+l)C(x)+((ia+1)2+4iS)si(x))Sj(x)dx

- j-" Z~r~sm~ai((i8'+i-1)1 -r(i...)(i1)* - ar(+2) (i+1)'} (El)Tsai i-161

The notation Ci(x)-co9(Inx)coswx is uged for the first equality and the second
ejuality follows from Eqs. (H3) and (N4) of Appendix H. Using the notation

Ef(I)-f(l)4-f(-i) of Maekawa. (10), we have 1.)-9J~ar+IJ 1i
Hence,

By symmetry, we can write at once

ft I w Z'1~~dd- T C i w anjE'E'Jla ~+,j(J+I)*. (M3)
VOyyrWn-i Ju rnniIJcjI)

Slmilarly,

flf I ~~(~~(y)dxdy

Mf a~ E{P Xe a .ZIELJ~a, Ii+)~LFE(aZ'ZLJ. (E4)

Hence, combining Eqs. (1E2)-(E4) yields the final expresion

.f'Lf Rgqi (x)f#,(y)dxdyn !!D (95)

where

#ns i- %ri I+J~+I)4 n- hr in a E1 EJjJIa 3 j+,+,)(S+I)*

+f W.{e~ a31Z-E'Jla J(+)~n Tjik4Jla,(j+,+,)(J+I)5}
in-i.1 n- 'i I J rJi+I
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Appendix F: Evaluation of fV a 4r(X)gs(y)dxdy

Let us evaluate the three terms in the order that they appear in KQ.

For the first term we write

ftf WxFyy rl(x)f(y)dxdy -=ebsPx&1 + - . (F')

Here, 43 is evaluated as In Appendix E

A3= -(1/8) mwis a -E jJIar.-+J+-.(i+I)' . (F2)

The evaluation of £4 Is complicated due to the presence of F

"--=, n-a. 0p- o Mpqo'

mr aicari f(2cCc(x)_( +l)Sc(X))Si(x)cos(prx)dx}

a{~ nda fSd(Y)Sj(y)cos(cqny)dy}. (F3)

where Cn(X)-cos(rmx)cosnx. After the Integration with the aid oi :.4d. (H7-

H8) of Appendix H. the result say be put in the form

-(/•r e o r I • F p • af a amc cr~ • a nd• ,
uina n-a. Poo qwo C1dj

where

0 - 'EJl' c- acpr i•,I(C+I)(&r(c+I+J-p) + ar(c+I+J+p) r(-c-I-J~p)]
61'

Rdqs"' aI I(2-I)(as(l2+1-q) + aWli2T+q) - as(-2-1+q)]

-(l-,d)JZlEJI(as(d+l+J-q) + as(d+I+J+q) - a,( dlJ+q)).

Note that in Rdqs the factor d5 picks out the first term d-1, and only the

second term is retained for d>1. Although it is possible to consolidate the

three torus In 0cpr and Rdqs' we prefer to leave them in their present form

for readability.

For the second term we have by symmetry

ftf wyyF xx9r(Xls(y)dxdy - SaOPy As + A s." (M4)

where

&sG- -(1/8)f wrnen a.VE 9 JIa,(j+,+j)(J+l)a.
nma JrS -= J

-88-



A--(1/8)lf e* wn2l f* F pq {ze a mc XpXe and Xl
rn-I n-i poo q-o Cmc cpjdoinaq

And, for the last term wa have

Here, we have

a - 4e L' wpnl? Ea Z~r amiarc ~~i(fXS (x)d}
an-In-I PMO qo i-IC-Ia

4{L dafl a~d fA (y)hin'qwy)Sd(y~d}

using An(x)-ncost'nwx)sinwx+sin(nirx)coswx. Integrating with the aid of Eqs.
(119-H10) of Appendix H yields

A..n (1q--I Ir wrJ C FqsJe
rn-I n'i anp-a q-o JulI -IrJan~ql

where

a P- ' ;ZJI(i+I)(ar(,I4 j..p) - ari+J)-

Therefore, by combining Eqs. (P1). (R4) and (F5), we obtain the final
expression

fOf1*rX)sydd= e!.(Pxb*&s+Pyaa*-s) - e!L;th- rs, (F6)

where 5rrsmA4 + As- 2A,1.
Again, as an Illustration "e enumerate 5rsfor w11, 1WIS. wS, and w.

I'l 9: l+ ;w1Is+ gw3 1 + g9w 3 3,

11 gsV1 1t ;w 1 ,4s 90% 3 + 4A

:Y2 %"V1  ;1+ . ;w3 1+ %* ;w9%,,

1,3 gW:L$. g7w10+ 19w21 + g10%32  (F7)
where

ts- 7 .951 Fo2-50 .83O+293O+271 *a- to)-7022+453a
-23.851 F24 +23.056F*a -19.081P,44+2.385F *a,

330 1.721Foa-p*)+795IF O-2 32Fg8+23.*056184 50.883P,*0+44.523F 62
-19.0817,, e42.933P.O-23.851F as+2.385P.,,
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+46. 933(Ras +F62 ) +34. 133%F -27. 733 (P~ F40 +F@)I

go-n 2.844F 02t22.756P0 4 76. 8Ptrs +102.4p1? -113.78 (Pao -F40 ) +36.9781?22
+28.4441?4 +42.6671?,*-5l.21?,,-S5.558F,, -17.067F,, 4.2671?4st

go --7-.Ill(FO 1120 )+45.511(Po +116 ) -38.4 (Fo +Pe ) +65.778F~s -157.'16(F24 +F? 4)
+94. 933(Pa +F62 ) +238.93F4 -104. 53(14? +F, ) +28.8IFO a

g?-2.54'262.5F.--862O-159 FOS 144 46 64.0F2 2.4

-46.4311?2, -126. 89F26 +166.OlWas -407. 06?,60 +131.021%2 +118.3F 46
-137.38F48 +343.461?.O -107.8lMae -55.3351?*4 -25.760POO +17.1731?S,

+28.444F~ +42.6671~ -51.2Ff -35.556F4,2-17.067T, 4.267%6*,

go- 63 .604 F 02 -407.06FO4 +343.461?,.+2.544F,, -24.4871?2,+131.021?34-107.81Fa.

4.20.3531?.o -46.4311? -55.3351? +88.6921?o -226.891? +118.301?4
-25.760F*O -91.589(1? -1? )+166.O11?S -137.38FS +17.1731?86

"-o-22.756(1? +1? )-182.04(F4 +F 0) -614.4(Foe +Flo ) +819. 2(FOS +1? )
+1.22 603 24F 4* )19.85(1?2,+1?*,)-256(F +1? 2)+54.613F4

+98.987(P41? 64+ ) -122.88(F4, +1? )+46.0801?G -30. 720(Fe +Fee) (F8)

-70-



Appendix G: Evaluation of <<(H"!)*>> and <<(jM)2> based on Eq. (3.15)

We first write in detail

(gzr)>m " a)2dxdy- ze e-2-E ~aj ~~)At~x«(a W)8>,,.rJ00 rn-i n-i r= Jul mE l 0rair

where AI(x)-icos(iwnx)sinwxfsin(Iw~x)coswx. Then, umhlag Eqs. (M3), (H4) and
(HS) of Appendix H. we obtain

anti nucl

if* wanwmnZ:., (2(ia+)1)arI - (i+l)8 ~ar(i+2) - (-1 )aar(!-2)). (G1)

Let us consolidate the (..) in Eq. (61) by the notation Ejf(I)-f(1)+f(-1)
of Heekawa (10]

<<mW2>- wags,~ (62)

where

As rn-a n-, i-a rnn lot 1 1~

By syarnetry we have

<-F )> (63)

where

rn- wm w rnn rnsj1 nJJas(j+I+J)(J12
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Appendix H: Integrals used In Galerktn's procedure

fsin(anx)sin(brYz)cos(uwix)dxm(1/4)cPa -6~+] (11

fcos(wtx)siui(Ifrx)sin(pTx)dxw(1/4)(Pa-p8aa.b-5p+bI, (H12)
0

fcos(avrx)sin(bwx)cswn~x snxdz=8)(I/8 1)[6£d b (H34)
0 b a a

0

fcsi(airx)csi(bnr~o~ix)sinnxdxixciic (-(1/i)[2~6 (Hp5)a~

I b ab bb b b

fcos(eiirx)stn(bnx)coB prxdxco/)[2nx ) +i~xx(/6)[6b (H6
a - a+2-a ++

4 b b6  b

fsin(arx)sin&tmx)cin~pmx)cos~x" sinxd1/16l)[26b a-+6~b2-~

-s2pa2pa-2-p a-2+p -a-2+p -a+2+p -8 +2 2pJ

fcos(awx)sin(bwrx'oin(pwrx)csin inrxdx-(1/6)(-2E.+2-+6 a4 26b
0 -~

db_ 4b_ -6b +6b .b (H8
a+- a+p-2-p a -2+p~ -a-2+p -a+2+p -a+2-p '(10

Since~~~~~~ thbnie o n ~adF r etitdt oiie hfs~(=~sn~1=~sn~jx~ow swrdx(1/6)6,,- -pq+
te 0 ihngtv nie r etoto h bv omls o ntne

68b d- 6 6 -b b(9-(p~ba 2-p exlue from Eqs.+ (1-a12). Noeals haq.P-11)rduet

ES.nc ( the-In4), esecily fo r ai n omadFar etice opsiie.h
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Appendix I: Coupxjrlson of Ea. (3.22) with Paul's results

By simjly Ikpooarg aij=61, It is not possible to reduce Eq. (FI) of

Appendix F, fofowxF r(x)Vs(y)dxdy, to Paul's expression

fofowl Fy•r (X)gs(y)dxdy, where fr(x)=coe[(r-l)nx/a]-cos[(r+l)7x/aI and g (y)

is defined similarly for y. The reason Is that 9r are orthogonal but fr are

not. To begin with, let us reproduce Eq. (71) of Paul [6] In his notations

frf1W xFyyf r(x)g (v)dxdy =

n• hbP I

- -- ][(Ci+l)Wrs- Wr(s+a)- Wr(s-&a)]+
+ (r i•['c+1)W(r•a)s- w (r+g)(s)- W (r+2)( -2)]
+(7'-1)2[(CI+1)lW (r-a )s- W (._ )2(S+)- V(r-a ) (s:-2

-rBh *" , I "c-(÷ ) ,-
Td- Wanf ,m+l)2[2(n+s)*A,(n+a)-- (n4.s-2)sA,(n+s-2)- (n+s'.2)2A (n+s+2)

mn1
-2(I1-1'A 1 (-s)4 (n-s-2)2A (n-s-2)+ (a-s+2)2A (n-s+2)]

+(m-1)2[2(n+s) 3A,(n+s)- (n+3-2)2A,(n+a-2)- (n+u+2)A a(n+s+2)
a - (n--2)+ (n-*+R)A - (11)

where

A1 (k)= C(n+r+2 )F(m+r-})k+ C(a-r)F(mar)k- C(m+r)F(a+r)k- C(m-r+2 )F(n.r+a)k,

A,(k)= C(a+r--2 )F (m+r-)k+ C(m-r)F(a-r)k- C(a+r)F(m+r)k- C((-r-2)F(mr-a)k,

1~)-2 for k -0o ora-I for k 00, C = for s O"

We shall now attempt to compare Eq. (I1) with Eq. (Fl) of Appendix F.
First, note that Eq. (FI) cozisistc of two terms AS and A , given Eqs. (F2-F3)

respectively. Since the orthogonality has been used In Eq. (F2). We repeat
the derivation of &s with the replacement of fo0n(Y)•s(v)dy by

fsin(nrny)sin(wry)sIn2wydy and obtain

k3- wsf ki, a+&~l~6r* A- 8a.*=1 3nt -[ll)÷(-12]:•(+lF'•+a 4 (m-l)'6~,},

flui

X{( s 6 3+ - a

It is easily checked that I{..{..) in Zq. (12) is Identical to the first
4..) term in Eq. (11), multiplied by n'hbPx/4a.

On the other h3nd, the orthogonality Is not used In Eq. (P3), hence A4
becomes upon imposing a -41
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A4= -47I w If :rF q-

SIX{ (2mC a(x)-(22+1)S .(x) )Sr(x)cos(pnx)dx}Sn(Y)s (y)cos(qUTy)dy

where C,(x)-cos(wrx)cosirx. After integrating with the aid of Eqa. (H7-H8) of
Appendix H, we put the resulting expression In the form

mai n~i pno q=pq

+ ((21)2+R-1) m.pr + -p(a-r)- mp+r]+(m+l m[a+a-r~ +-p(m+a-r) - mp.a+rl

m-a-r -(a-*-r)- as-a+r- a-(m-2+r) j

x{2[aq_ + 6q( 5 ) - q ] a + aq ]an a n-s) n~s n+a-s -(n*2-s) n+2+8

_(-a-s+ 6q( - aq - '6q(l~)f (D3)

As pointed out in Appendix H, Eqs. (H7-H8) exclude terms with negative
indices. Hence, the terms excluded from the first (..) In Eq. (13) are

((U+l) 5 +(m-1) 2 ),6p br - (R 2-p(P+a+r)' (14)
and

_2q(n+s) +-q(n+a+s)' M

are left out of the second 4..) In Eq. (13). Then, Inserting Eqs. (14-15)
back into Eq. (13) we have

X=1 n~i mp 0 q-0 p

+ 6 'SP p ~6p a4p '6pa-(ma+r)+ am-r+ -(m-r)- +r- -(+r)- -2-r- (m -r]

26_ 2 -6 q~ dq -aq -2 aq_ ~2 6q
n (-s n2+ -n-a~) n+2+s -(n+2+4) n-s -(n-s)

+6q + 6q a6 q + (18n-s-t -(n-a-u)+ n+2-s -(n+2-9)1.

Under the symmetry F7±p,tq"Fp,q imposed by Paul [6], one finds that

~F q{..)..)In Eq. (16) can be pnt in the form of the second (..) In Eq.

(11), multiplied by (wr4Ehs/I6ab)EWan.
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In a similar fashion, one cpn compere Eqs. (F4-45) with the formulas
given by Eqs. (70) and (72) in hef. [6).
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Appendix J: The coefficients a -a

a12s(3/4)[(I-sssi{p +1}+2(P*+I+2W2)] V

%-=(27/2)[1 3( I -I2)e{l/(P+4P-ý )*+j /(4p~pl )2}+(1 1~,)

%-a(3/2) [ (1-p3)P2{99-+4P2+l6/(pO+P-1 )2+/(P4,p-l)s1+2P++0

aq =~71l,L2 ,!)pa{p2+1/(4p+4,1)2},1

ate0--3(l-i&2 )p3{QP-+64/ ,..P+l )2+25/(P+4,1 )a}1

al s4 8 ([.jjZ)P2/(P+P1 )2,

S.27(1-p2 ) ){4(pa+jra )+25/ (P+4p1 )'2+25/ (4p+P-1)2)

al (3/4) +1pr8 h..p -11+2(P*+8>l.8Pef)J1

a. . (27/2)[1(I -$A )PS{AP, ~36;2+144/ (P +9P-1)s+9/ (4# +IP-)21}+2(p*4941 P)].

a. ",-243(1-;A),

%6- (3/2) [(1-jt a),1i272/(Pa+P-2 )2+25/(,+4,,1 )a+6 25 /(4p+p-'L )2}

+2',9P*i49*;2pP*)]

a%7 2' WC4(1-Pa),a{81P8+0 a}+2(8i,4++l8Pea)],

a,,,-243(1-p2 )f',

a::(2/2 1"~ 1-ý)p2{36e4.5.p+ 144/ (9pg~p* 1 )S+9/ (9p+4P1 )3}2+2 (9*I1w)1

For P-1 we find that .- Ire.duce to the coefficients C. - Cls previously
defined by Lee ['11

CMa,/4, C,-%/4, C,-a,/4, C-,-a 3 4--a,/4 Cma,/4-a,/4.
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-.,aa /4, C,,-a 1,,/4. C18--a15/4=-a ,/4. -~sa f/,l.a /4.

Note that the factor (1/4) Is due to #,a4Ahin(uwx), In contrast to ta-sin(mrx)
used in Ref. [15).
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Appendix K: Listing of--SSP-5 under p-1.2-end ,Aý-.0

(SSP-5)1  0.32205e+O2xW(11I)W(1 .1)W(1,1)+0.22165e+03xW(1,1)V(3.l)W(3.l)

-0.16796e+02xW(1,1)V(1,1)W(1,3J-0.1O298e+03xV(1,1)NSP,1)W(
3 .3)

-0.52005e+02xW(1,1)W(1.3)W(3,3)-0.11364e4O3XW(1l,3)W(3,1)W(3.1)
+O.38889e+03xW(1,3)W(3,I)W(3,3)+O.30093e+O2xW(l,l)V(l,3)W(

3.l)

-0.89215e+O2xW(1,3)W(1 ,3)W(311)+0.24040e+O3xWtI1 1)W(3,3)W(3.3),

.O.15569e+O3xW(1,1)W(1,1)W(1,3)+O.36889e+03xV(1.1)W(
3 ,1)W(3 ,3)

-O.26003e+O2xW(1,1)W(1,1)W(3,3)-0.17843e+03xW(1h1)W(1,3)W(
3 ,1)

+O.15046e+02xW(l.l)W(1,1)W(3,1)+0.77192e+03xW(1,3)W(1.3)W(1I$)

+O.18377e+04xW(I.3)V(3,3)W(3,3)-0.65610e+03xW(1,3)W(.3)V(3.
3)

+O.84062e+03xW(1.3)W(3.1)W(3,l),

+0. 22165e+03xW( 1 1) W(1, 1) V(3, 1)+Q 36889e+03xV( ,) W(1, 3) 3(3,3)

+0 .15046e+O2XW(1, 1) (1,1) 3(1,3)+0.84062e+03xW(1, 3) W(1,3) (3. 1)

+O.15191e+04xW(3,I)W(3,1)W(3.1)-0.13805e+04x3(3,1)W(3,1)3(3,3)
+0. 31848e+04x3(3. 1) 3(3, 3) 3(3.3).

(SSP-5)~ ,W0.26003e+02xW(1,1)W(1,1)W(1,3)+0.24040e+0
3xW(I .1)3(1,1)W(3.3)

+0. 36888e+03x3( 1. ) 3(1, 3)3(3.1)-0 .51491e+02x3(1.1)3(1, 1) (3. 1)

-0.2187Oe+O3x3(1 ,3)W(1,3)W(1,3)+0.J8377e+04xW(1.3)V(l ,3)3(3,3)

-0.45350e+03x3(3, 1)N(3, 1) (3. 1)+0. 31848e+04xW(3. 1) 3(3, 1) W(3 .3)

+O.28086e+04x3(3.3)3(3,3)W(3,3 ).
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Appendix L: Summary of Wes and E' a ider z(.8

Under Eq. (6.8). Eq. (4.8) reduces to

h u-A(1+0-*), hsm-MAl +21(9a+1)], h,--A[P-&42/(9a+l)J.

h~mh,,0 a0, h5 .-h7'-A/9*, h.u8A/(pa4l), h5 '-h,-9A, (i

where A-6Ar /2.
On the other hand. Eq. (FS) of Appendix F reduces to

g1- 14 222B[1+p-2+1/f9s+l)],

%2=-7.951B -12.7213/9*- 27.032B/(9-+1),

g,=-12.721B -7.9518/92.- 27.032B1(9&+1),

6-2-844B +113.763/9s+ 36.9788/(9.1l).

go- 7.IIIB(1+$p¶* +85.770B/(O+I),

.T-25443 -83.6043/9*- 24.4873/(9*+1),

g-2.844B +113.783/9s+ 36.97881(94.1).

ge--63.804B -2.5448/9s- 24.487B1(P2+1).

91.0 a 22.75OB(1+P-') +1,4.222b/(9a+1), (L2)

where 3w6v /16.



Appendix M: Random response under stationary zero-mean Gaussian exCitations

For completeness, we shall present here the Wiener-Khinchin theorem, the

input-output relation for a damped linear oscillator under stationary zero-

mean Gaussian excitations, and the equivalent linearization technique applied

to a Duffing nonlinear oscillator under the same excitations.

Wiener-Khinchin theorem: For d stochastic process x(t) we define :he

correlation Rxx(t± ta)-<x(ti)x(tY)>, where < > is the ensemble average. When
the process Is stationary, the correlation function depends only on the time

difference ?-ta-tl, hence Rxx(t 1 't2 )-Rxx(r). (Note that T was the dimension-

less time In Sec. VI.) Moreover, when the process is erg~lc the ensemble

average may be replaced by time average; however, we shall use < > to denote

both the ensemble and time averages. The correlation Rxx (-) is expressed by

the power spectral density function g.x(f) and the inverse relation also

exists through the Fourier transform

ADR xx(r) f gxx(f)e 12nf~df,

gxx(f)- I Rxx(T)e"I2'rfrdr. (MI)

Using the angular frequency uzwrf and 0 xx()g 7 (f)/2?, Eq. (MW) becomes

RXX(r)" f 0xX(C)e'4.'dw,

zXX(,w)- -r-f. f Rxx(-rple -lord (M2)

known as the Wiener-KhInchin theorem (8]. One often finds Eq. (X2) defined in

terms of Gxx ()-20M(w), with the constant pair (1.1/2f) of Eq. (N2) being

replaced by (1/2,1/iv) [25]. Since Rxx(-r) and x(c.i) are even functions, Eq.

(M2j may be reduced to the cosine Fourier transform relations

Rxx(7)- 2$ Gxx(W)coswT,

0xx(- -4f Rtx(7-)coswrdr. W
0

It Is Important to note that Rxx(O)=<x<> i1 the mean square amplitude (i.e.,

the energy), hence
O f

which states that the power spectral density 0, (w*) represents energy

contained in a small band of Aw ebout -=tk*.

Linear Iputt-output relation: Consider a damped linear oscillator
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"*x+ pi + kX- f(t), (NS)

where p is the damping coefficient and k the stiffness (Note that P was the
aspect ratio in Sec. II). Assume that f(t) is a stationary Gaussian process
with the power spectral density Off(w). In terms of the frequency response

function of Eq. (M5)

H(w) , (M6)

the input-output relation is [8]

OXXM• - Off(W)MOM)S. 07

Now, It is simplest to let Off(0) be a constant K over the range of w In which

JH(w)cs is significantly different from zero. We then have

<x2>- K f IH(i)I8 dw. (MS)

To evaulate the Integral I-fjH(o)jl&. by the method of residues, we write it

as I-r.f(z)dz, where f(z)-l/[(k-z2)2+(Pz) 2 ]. Since the poles of f(z) are

1 3. z, =

the residues of the simple poles zI and z2 give

I- '2ri[(z-z1 f ziz.z +(z-z )f(z)lz.z]- (11O)
a PEI

Hence,
<x2>=. (RKl

in standard linear oscillator notations p-2Cw and kXw2, we therefore recover
a 0

<X2>-wK/2(CQ3, given by Eq. (5-42) of Lin [8]. Since for small P, the I

represents contributions from the sharp resonance peaka at &m JA, one say
approximate <x"> by

<x[> X nf f (X12)

which Is asystotically correct as p + 0 (see. Fig 5.3 In Ref (8]).

Equivalent linearization: We now consider a damped Duffing oscillator with
the cubic stiffness term

". + A + kx + rx*- f(t), (N13)

where y denoting the strength of hard spring. Rather than solving Eq. (M13)
by perturbation, the aim Is to replace it by a linear system c the form
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"+ P + kex + e = f(t). (M14)

e

By a Judicious choice of the equivalent stiffness ke, one attempts to capture

the effect of nonlinearity of Eq. (M13) In a statistical sense, and the degree

of failure is quantified by the error term e=(-ke+k)x+vx., which is nothing

but the difference of Eqs. (M13) and (K14). In the equivalent linearization

technique, ke Is found by minimizing the mean square error, i.e., d<eO>/dke -0.

Under the assumption that x Is Gaussian with zero mean, a simple expression is

obtained

ke = k + 37<x'>. (M15)

When the error term Is suppressed we see that Eq. (114) has the same form as
Eq. (M5). In view of Eq. (K12), we therefore have

<X V Tf f (A•e) NS
Pke

Now, suppose that Off(w) Is more or lest flat, i.e., Off("'e)%v•ff(A). Then

inserting Eq. (M15) Into Eq. (M16) and identifying <XA >wirUff(A/R)/Pk as the
mean square amplitude of the linear system, the mean square amplitude of Eq.

(113) is given by the quadratic equation

V(<X)2 + <X2> - <Xin> =0. (M17)

The positive root of Eq. (K17)

127/<xin> ><xR> k I+ i )(MS

is physically zilevant (9]. (It is not necessary to solve Eqs (115-NI6)
iteratively, as suggested in Ref [11].)

It is instructive to examine the two limits of Eq. (MIS). First, when

the cubic Ponlinearity is weak we obtain by Taylor expansion
/ 12<1.n> 6< ll>

11+ k k1+ k

Then. Eq. (N18) becomes <X>a<x2in >. as expected. Second. for a strong non-

linearity, by ignoring 41 under the radical and -1 In the square brackets, we

obtain

<ka ln>

hence <Kx> Is proportional to <x >11/ or (off) /W .
-8n
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Appendix N: Extension of the equivalent linearization technique

Suppose a constant forcing fo is added to the otherwise zero-mean G.aussian
excitations for a damped harmonic oscillator

"i + Pi + kx - f + f(t), (Ni)

where P Is the damping coefficient and k the stiffness. The general solution
of Eq. (Ni) has the form

xt-e-/Pt/2[ coatC t
X(t)© e (Clco-t+Casint] + fh(t--r)(r0o+f(r))dr, (N2)

0
where

h(t)- e- ePt/2sinit/i for t>O, (N3)
10 for t<O,

and U1(4k1e)-2)/ (In standard oscillator notations P -2Co and kNaW, Eq.
0 0

0N3) reduces to h(t)ueGCotsirit/w, where u.w0o(l-C)I/ [261.) The first term
of Eq. (N2) is a homogeneous solution reflecting the Initial condition speci-
fied by constants CA and Ca, which eventually dies out as t 4o. The second
integral term is the particular solution. Consider the contribution of f.

t f p/2fhlt--rlfo0dr - ![-e " llslnZ~t+Z•co9Zt ) +1. (N4)

0

After a long time, Eq. (N4) settles down to steady state

fh(t--r)fod-r f (N5)
0

which we shall denote by i; i.e.,

f
i -i. (N8)

With this preliminary, we are now in a position to formulate the Input-
output relation. By splitting x into the mean I and fluctuation y

x - + y, (N)
we rewrite Eq. (Ni) as

"P+ + ky + (ki - fo) - f(t). (N8)

Because of Eq. (NS), we find that Eq. (1S) reduces to Eq. (MS) of Appendix N
after a long time, hence

<ya> jr . (N9)

Is the etationary response, as already given by Eq. (M12) of Appendix N. Since
Sis constant and <y.-3, we have
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<x2> = <y2>. (NIO)

In other words, the total mean square amplitude is sum of the squared steady

level and mean square amplitude due to the zero-mean Gaussian excitations.

Our goal here is to estimate the response of a damped Duffing oscillator

under nonzero-mean Gaul'ian excitations, that is

"*i + P + kx + T = fo+ f(t). (Nil)

We again split x into the mean i and fluctuation y, and recast Eq. (NIl) into

the following form

"0 + pr +(k+3yi 2 )y+ 3•yi2 9+ Iy* + ki+ y-i- fo= f(t). (N12)

We shall now replace Eq. (N12) by an equivalent linear system

"Y + PY + key + e - f(t), (Nl3)

where the error term is

e-(-ke+k+3 i)y+ 3xy+ Y+ 7Yy+ i+ yi- fo" (N14)

Following the equivalent linearization proceaure, the ke is chosen to minimize

the mean square error; i.e., d<e2>/dke=O. Under the usual zero-mean Gaussian

assumption for y, we obtain

ke- k + 3yV+ 3y<yt >. (N15)

Again, dropping the error term in Eq. (N13), we can write down the mean square

of amplitude y
<y2> 'Toff( (Ae)

Pke

in analogy to Eq. (N9). Inserting Eq. (N15) into Eq. (N16) and denoting by

<elIn>"'Rff(Ae)/Pk the mean square amplitude of linear equation, the positive

root of the quadratic equation is given by

__2 = k 3yV (N17

in analogy to Eq. (I18) of Appendix M. Note that the meav I in Eq. (1i17) can

be related to fo via Eq. (N6) which now has the form

f 0 ~N18)
e

ey inserting Eq. (NIS) into Eq. (N18), we obtain
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3$x-i + (k+37<y2>)! - fo 0 0. (N19)

the real root of which is given by

= A - B, (NZO)
where

A-:/ f 7YaII7~i and B,;/- -4 ~ (±5!i'

The pair of Eqs. (NI?) and (N20) can be solved for <yA> and", afterwards the
mean square of amplitudel is obtained by Eq. (N10).

In the limiting case of fo-0, Eq. (N20) yields 1 -O because A-B. Then,
Eq. (Ni?) degenerates to Eq. (H18) of Appendix M, which was derived under the
assumption of zero-mean Gaussian excitations.
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Appendix 0: Normal stress and strain components

We consider here only the normal components of stress and strain tensors.
Let us begin by writing the three terms separately 4n the order that they
appear in Eq. (2.24)

a -o tox = UX + Ox +

cry ar U +b + at (01)
y y yo

where the superscript 'a' denotes the membrane stress, IbI the bending stress,
and 't' the thermal stress. By using the nondimensional variables of Eqs.
(4.1-4.2), the three terms in Eq. (01) can be put in a dimensionless form
which we shall denote by an overhead karat

ai "b + tOxaa + a x OX

+ b ++0
y y y c

so that the stress is now measured in units of raEha/ba; I.e.,

wn Eh2 ^ 7ra ^
bx bS 0x 0y Y' W y (03)

Also, by inserting Eq. (03) into Eq. (2.1), we obtain the expression for
the strain tensor

X= ex# Cy ba aY, (04)

Here, the nondimensional ex and £y are given by

e x M (F - 00 + h -T*T
x x y Wha

Cy = ay -Pa + h- W T*T, (05)

where T*-T: for a simply-supported plate and T=-T* for a clamped plate.

A. Expansion for the stress teneor
Let us now express the stress tensor in series expansions.

Simply-supported Plate: Introduce Eqs. (3.1), (3.3), (3.5) and (3.12) into
Eq. (01). With the use of Eqs. (4.1-4.2), we obtain the dimensionless stress
components when TS=•h 5 (9+1)/12ab( 1+p)

• (92+1)T 1
x 12 (1-$is (1  a)rI n-

12(1+p) E•,o = - )qcospvtx cosqwy
p88-+q*



K'5 INA -

48cospvr cosqwry,

__ 1-1__ 1 on

x y 12(1-p)&S1-~) r-

T
E~jj~j ~ E. -P- .... L..)ecospnx cosqny

a~ 29

pao qWuo (~p +(f /P)5

,"b z 40

ay F.p8  Va W(m5 P'~+n*)*S(x)-*n (y). (08)

where Z-z/h ranges over (1/-&.-1/2).
Cl"2~ed plate: Instead. introduce Eq*. (3.1). (3.12), (3.15) and (3.16) into

Eq. (01). Then, with T*'~t(p'+2$a/34.1)/3mtF(1I~)(92+1) we obtain the
dimensionless stress components In a similar fashion

ax 3(1-pý)(92+l) '2(1 -F p 2&t)&

- ('+22/31)E E (-q--)q~cospitx Cosqny
3(14is)(P*+1) p-0 q-0uo * C

- E.O i (......4.acospyux coeqnry,
Pao q-oi P~t )214

^bO #2. -I Or, so
(7 (1#* a- o = Wad "a(X)C9n (Y) + pE E Z 9W()#(~

^a (P*+2Pa/3+1)T
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^b z~0 00 0 O a

y ~~~E Wmn'P;(x)9n(y) + E E mVmx9"y(7
m~i n=1 N~i n1Mi 4P(). (7

Under the temperature variation discussed in Sec. VI for which Tp obey
Eq. (6.8), 'je sum involving T In ;m has only two termspq x

00 G T 6 VT 6VTO
E E (-2 q )qecosprrx csn -j- -- coe2ny+ --- cos2ffxcos2ny, (8
p~o q~o p2p8+q3  4(P2ym-(08

and the corresponding sum In a; reduces to

a* CO T 6 T 6 T
E E (- )p9cosprmx cosqnrys- ý-ý.-cos2nrx+ Výý 0 cosanxcos2ny. (09)

pn0 q=o p2P2+q2  4fi2  4(p2+1)

B. Stre~ss tensor involving W., only
For the simpleet case involving only the W,,,, Eqs. (06-09) simplify to

give
Simply-su ported Plate:

-~ ~ 4.V VTO) fcos2 vT, + I cos2nxcos2wy}- 1N!4s1a y

12~(1+)" ){- Cos P2+ c 2  y ,,~cos2wy,

ax 1-$A ~"~ Wl*1 (x)*v (y). 00

Ox ay

ClaMe -Diate:ej+1V

y 12(-isa)+ 2(1 -88-1



-(#4+2PS/3+1)T~ 0 2(P2+o) ~2

- I?1+ 2 fi8/3 +1)(j vTO) {cos2iry :- - I-coE2wxc~os2vY

3g~a cot%27ry- cos2?Tx--p2Wn+ jos2?TxCos4n+co4vxos,
5. ~ ~ LI 32 qj-co~Y cos47'y- 2 (P+P1")a (P+4C'-)S' 44~

ox (1-P4) W ±a2 PusTx iW02f]

-t. -t. _ (P4+2$9/3+:1jZ
Ox 0Y 3(1..p2) (Pa+I)

%* * (p+W2/3+1) TO 2+~

-0*+21 ) 6VO csn + 02 .cos2ffxcosawY

-
3gWa os2rx 1 co4r--a~xozylcenca- P9coa4wxCosav
9IJIt4~ 1 2(F+$-1)2 4(P+4fi- )2 (4p-P-1)2 5

b_ 2Z W i 1 1a [P-*pcosL'nXrP 1(y)+ 91 (xcos2iny].(0)

Note that for 6d,=0 the cr 0 and angiven by Eq. (010) agree iwith Eq. (34) of
x y

For computation, however, It is more convenient to regroup Erq8, (010) and
(011) in powers ofri
Simply-supported Dlte

=-(P2 +1)To 6U(a
OxI+(I 1-1) ) (-cos2?ry + .- 2+--cosawxcos2nY) +Z6g9siItwxsinnIy}

+ 2ZIe.±&1sinntxsiwrryW + -if(fig.~ -,u P2cos2nryjw

(.P11) 11 4L( 1...pý) Ji

~(P 8a+1)T 6
(Jyn j 0 (1J)- 1)1 C0s22rX + E!cosan~xcos2nY) +Z6 gsifllTxsiiiii

+ 2Z(D0i'+1 isinwrxsinvryW 1 + {if ~+1) - 92t~ (012)
(1-Ptm ) ItS CO2LXW

Clamned Dilate:

a0-



41+(1-.0)( a i -cos2ity + I os27ixco~y +Z6 sing T8 
i~y

- 16Z [P2 cos2nrxsIri~y + jssin2Trxcos2nry]W,, 2(0 +

3(1 ,a) 3(1-p-2

3202 eos2i'ry- ec84y cos2irxcos~ny + cos2irxcos47Yr cos47Txcos2?rV}wa
TAr co47y- 2(P+P' )a (P+4P- )2 4-4(4P+P(12 I)*

-% (P6 +Z2/3+1)T,

I - (1-ps)( 1)(-cos2ynx + -~cos2nfxcsT +g sinaxsIA'T}
--(ps +1) V1 9

- 6Z8 [e~srrszn + sin'2nxCos~ry]W 1 2 L68p+1 ),

32fl~0 1 2Cos2Ytxcos2nv 4 +* ACos2sxCos4i + P2 cos4yrXCosry l
g--4ost--Bos7r- 2(fi+P- ) 4(P+4$-' )2 (4p p-1 )2 1

(013)
C. Strain tensor Involving 1V1 only

In view of Eqs. (6.4-6.5), the substitution of Eqs. (012-013) Into Eq.
(05) yields the dimensionless strain tensor
Simply-supported plate:

tx= 4 ~~Toffv- -- (cos2nY-sacos2trx) + 9  Y ) }co~r

+ 2Zfl~sin7nxsin7TYW 11+ .ýp2_(p2cos27rV-pcos27rX)}W2.

,Y= yTf- -4(- (cos2ny-pcos21Tx) + --- cos2ff xcos2n Y)'y LG..Lp-V~of v jp.1

+ 2ZslnnxsinnryW1 + I~{ -(cos2ny- Ppecosa1x)}W21 .O (014)

Clasped plate:

cx 3(1+.u) (p2+1) av Toffv- -4(cos2nyiicos2nx) +(p+1)csrxoy )

eZ# i..cos27rxsin 2 TYW + ?fw

- {1(P~2cos~wy...pcns27Tx) - I .(P~cos47ry...pcos4yrx)- cos27TXcos27T( 1...f*)

+ cos2nxcoa47TY(1 - + cos47Txcos21n (- I pp~
(P +4p 1 )a (4p+p1l)a 4 ±1

S(P*+2P4/3+1) vToftv- 1 ((cos2nx-;tcos27Y) + EJLp-)cos27Txcos27TY)

y v (-20-



16- i 2 7txcos2TyW 431

I(OSe U# osn)- (cos4Tx-/4Icos4Try)- co2(p+81 b )2 2

+ cos~nxcos4r(- -p + coa4nxcmS~pn J)}e(15
(p 4# 1 )2  4(p#- 21J

Here, f =sin2 lrxsln 2 ny should be inserted in Eqs. (014-015).
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