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The Classical Scattering of Waves:
Some Analogies with Quantum Scattering

Michael F. Werby, Theoretical Acoustics and Simulation,
NOARL, Stennis Space Center, MS 39529

Abstract

The scattering of waves in classical physics and quantum scattering theory have
many dissimilarities, but also many things in common. Many of the modern
developments in classical wave theory have their origin in quantum scattering despite
the later development of quantum physics. Although each field has diverged from
the other over time, there are many analogics between the two disciplines and much
in one area may enhance the other. In this work an outline is given of some aspects

of the classical scattering theory of waves which have some relation with quantum -
theory. In addition, some numerical techniques are presented that may be of use |

in both areas.

Introduction

As in the field of quantum scattering, one employs the scattering of waves on
objects and interfaces 0 gain knowledge of the scatterer. From targets in the sky
to those under the sea, to oil domes under the ground, we use electromagnetic,
acoustic, and elastic waves to gain knowledge of what would otherwise elude us.
Remarkably, much of .. mathematical methodology and some of the physical events,
such as resonances in classical scattering occur in quantum scattering and it is likely
that the base of knowledge in one area will promote “hybrid vigor” in the other.
The purpose of this article is to describe some aspects of the classical scattering
of waves from the viewpoint of one familiar with quanum scattering theory and
quantum phenomena. The mathematical development to describe scattering from
targets that will be emphasized here is based on an exact numerical technique by
Peter Waterman, who in a series of beautiful papcrs.‘“3 outlined the course of
treatment that constitutes a unified theory of the classical scattering of waves. The
T-matrix or more properly, the extended boundary condition (EBC) method due to
Waterman'3 is in part an algorithmic method which, in my view, is as powerful
in an algorithmic sense as that of Hamilton’s principle or the Euler-Lagrange equations.
This method (largely overlooked by the classical scattering community) along with
numerical or structural improvements has enabled researchers to perform enormously
complicated calculations and understand physical phenomena previously not possible.

© 1992 American Institute of Physics
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Michael F. Werby 18]

Along with the formal and numerical procedures outhined here 1 will discuss some
physical phenomena in wave scattering that has some similariues with quantum
scattering. In the area of acoustical phenomena such as resonance scattering, Herbert
Uberall*® has, in my view, been the major contributor, both in introducing tech-
niques and in describing phenomena in the context found in quantum physics. Of
particular note is his development of a resonance scattering theory* (RST) along
lines parallel to that of Briet and Wigner® and Kapur and Peierls'® as well as his
realization that resonances excited on elastic targets were mainly due to circum-
ferential waves excited on elastic surfaces that due to phase matching conditions
form standing waves at distinct frequencies resulting in the resonance phenomena.®
Analogies between quantum and classical scattering and propagation are numer-
ous.!" The treatment of some scattering from submerged particles such as sediment,
due 10 Foldy and Lox, is similar to the adiabatic theory of scattering developed by
Foldy. The Born approximation and the related Kirchhoff approximation play an
important role in wave scattering, particularly from surfaces. Both a T-matrix and
an S-matrix can be defined in wave scattering where the imponant concept of symmerry,
unitarity, and the generalized optical theory play a role.!* 13 Uberall has shown that
even Reggie poles® find their place in the classical scattering of waves and that one
can divide scattering into a superposition of a form of direct scattering (called the
background) and resonance scattering just as in quantum scattering. This was done
for elastic spheres by Uberall in which he employed a rigid scatterer as the back-
ground for elastic solids® and by Werby using the concept of entrained mass for
a shell.! % The analogy with quantum scattering occurs at low energy where shape
elastic scattering adds coherently with resonance scattering due usually to collective
motion of the nucleus. Due to space limitations, I will limit my discussions to tapics
that 1 have had direct experience with, with it being understood that many more
analogies exist between the two areas than presented here. A comprehensive
development of the vast area of resonance scattering from elastic targets may be
found in a new book by Uberall.”

Several techniques are available for describing waves that scatter from objects
of known constitution and geometry. Many of them are rather specific or have
intractable numerical pitfalls. It is therefore desirable to obtain a formulation that
allows for general objects, ranges of frequency, and boundary conditions, and that
overcomes numerical difficulties commonly encountered in several broad classes of
numerical methods. In this paper we briefly describe the Waterman method which
proves to be a consistent, unified and manageable numerical approach useful for
rescarchers interested in solving any of a wide class of scattering problems. It is
based on the coupling of the exterior and interior solutions of the surface boundary
representation of the Helmholtz or elastodynamic equations and yields the EBC
method of Waterman.!~> The EBC method avoids numerical problems often encoun-
tered by other techniques. We present numerous physical examples which are chosen
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not only for their intrinsic interest but also because they represent comparauvely
difficult problems to solve by other means.

We then focus on some of the physical events in wave scattening that have similanties
with quantum mechanical events. We first start with a review of the Extended
Boundary Condition method for determining the field scattered from a ngid sphe-
roidal object. We next extend this development to include elastic objects. Finally,
we describe the time domain solution, partial wave analysis, and additional physical
phenomena.

The Extended Boundary Condition Method in Review

The EBC method forms the basis of the equations used here to develop the eigen-
expansion and transformation methods that follow. Since emphasis is on the
mathematical basis and properties of these two procedures (with the exception of
scattering from impenetrable targets, details of EBC equations can be both intricate
and extended), we will indicate only the EBC equations for the simplest case, and
list the generalizations for more complicated scenarios. The Heimholtz-Poincare’
integral representa:ion for a field exterior to a bounded object can be expanded as
follows.

U(r) = Ui(n) + U} Gy _ G(r,r')aU'(r.) ds (1)
dn dn

N

where r is chosen to be at an exterior point to the object; i.c., r is a member of
D, where D is the set of all points exterior to the object, G is an outgoing Green's
function, D' is the set of points in the interior of the bounded object, and S is the
set of all points on the object surface. The surface of the object is assumed to be
piecewise continuous. It is redolent of Gauss' law that when r is in the interior the
total wavefield U(r) is zero (extinguished or nulled), hence the terms “extinction
theorem” or, “null-field condition.” This fact was generally thought inconsequential,
but Waterman'® took specific advantage of this condition to employ a constraint on
the exterior solution to eliminate the surface terms U, or dU,(r')/dn, which arise
in the exterior solution. Here n is a unit outward normal to the surface. Although
Waterman' employed the condition algorithmically to eliminate the surface term,
he developed a method that also produced a unique solution for all positive fre-
quencies of the exterior problem. This is of considerable importance, because exterior
solutions have often suffered from “spurious resouances” at the so-called
“irregular values” of incident frequency. These irregular values correspond to the
eigenfrequency of a problem related to the interior problem considered here. It hias
been established that by coupling the interior points in the solution the irreg.lar
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Michael F. Werhy 183

values are eliminated T'.us, Waterman's equations actually serve two computatnonal
purposes. For completeness we list the intenior problem as follows

[®)
2

on an

!
()-L<r)+J-tU()aG” ) - G r — i Dds t

where r” is an interior point. The above equations constitute the extended boundary
condition equations. Since in their present form they are not directly useful, we now
reduce them 1o a form amenable to numerical computation. For convenience of
presentation we simplify the problem, to that of an impenetrable object (although
solution of the fluid target case is quite similar). Elastic targets submergcd in a fluid
require far greater mathematical detail, as indicated by Waterman.® Let us assume
that dU,(r')/dn =0 so that we obtain the expressions

‘ SGirr) |
U = Ui + | | U S0 | ds 3)
on
s B
[ o
0=Ur) + | (U 28D aG" 1) ) ds . )
si

To solve these expressions, it is convenient 10 represent Uy(r), U, (r') and G(r,r) in
some convenient series expansion, which upon truncation would lead to matrix
cquations that can then be solved using digital computers. The Green’s function G
is a normal operator, and thus can be represented by the biorthogonal series

G(r,r') = ixZRe;(r )o;(r,) (5)
where r_ and r, are the greater and lesser of the two points r and r relative to the
origin of the object, respectively. The quantity U,, the incident wavefield, is known.
In a manner similar to that of the Hilbert-Schmidt theorem for symmetric kemnels,

it can be shown that

Uyr) = ¥a Req,(r; . (6)
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184 The Classical Scattering ot Waves

For incident plane waves, the a’s are known. We now have the relation

Yot
Y ag Re@a(n) = ixzj Re@q(r)U.(r) 99ur) dS 7

n n gn

where 1t follows that

2, = iKJ- UL 2240 s 8)
dJn

We now wish to represent the above matrix form. This can be achieved by writing
U,(r") in some complete set of known functions so that

U.(r) = ¥ b, Re@uir) 9)

n

where b, is the only unknown. This reduces to an expression in which the expansion
coefficients b, are the only quantities to be determined. Note that we are not really
concerned with the b.’s as such, but rather are eliminating the unknown surface
quantities U,. We get:

3 = 2 bm J- Rapmu’)a-*}i”l('—) ds U
m on

where Q. is an element of some known matrix. The Reg,,’s are not the most
efficient functions to employ. Our intention is to determine the most efficient expansion
functions, i.c., those that would form an,orthonormal (ON) basis set on the surface
of the bounded object. We then obtain the most effective expansion of U, on the
object surface.'s 17 To do so, we premultiply the above equation by the adjoint of
Q. namely Q', where the latter quantity is the complex transpose of Q.

Q'a=iQ'Qb =i Hb (tn

where the matrix H can easily be shown 10 be self-adjoint or Hermiuan (where
H' = H). The advantage pursuing this course is that we can easily find the eigen-
values and eigenfunctions of H that have known and computationally desirable
properties. In particular, the eigenvalues here are real, positive, and increase
monotonically, and form an orthonormal set of functions on the surface. The eigen-
functions can be obtained as follows:
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HB, = 4B,. (12)
Here, the adjoint of B 1s B, so that
BB, =8, (13)

where 8, is the Kronecker dela function.

We also have the ordering A; <k, <Ay . . . where the dimension of H is any
desired order and relates 1o the number of surface quantities required in expanding
U,. One can show that the B;’s are an alternate representation of the dg,(r)/on’s,
with the desired property that they are an orthogonal representation (with another
computationally desirable property to be discussed). Thus, we have b= 2aB; so
that

Q'a=1XHaP, =i T aif,. (14)

Thus a, = -iBQA/, and b=-1 IB,QA/A,. (15)
We also expand the extenior problem as follows

f,=ik Z,b/Re (r)Redp(r)/dn dS =ik TbQ, . (16)

The final expression for the scattered field in terms of the incident wave field is
thus

=-YReQB,QA/B; . an

Although the above expression has proven computationally efficient, it is also possible
and sometimes necessary 10 obtain an alternate T-matrix representation. This may
be done by means of the following derived relation:

T =-ReQB(1/A) B'Q! (18)

where BB = B'B = 1. The set of eigenvectors §§ form a unitary matrix and therefore
the above expression may be viewed as having been obtained by transforming Q
via a unitary matrix obtained from Q times its adjoint. This offers a generalization
of this method to one more complicated and that cannot be posed in such a simple
form. For the general problem a T-matrix may be written in the form

T=-PQ} (19)
with solutions of the form

=-PB (1) B'Q’ (20)

» o—

b
.
t
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where QQ'B; = 4,8..

The Elastic T-Matrix
We now consider the case of an elastic object. The equation of motion in a fluid
1s

YL+ kU =0 Q2D

where k is the acoustic wavenumber and U is related to the particle displacement.
The equation for motion in an elastic body is

21 . -1 ..
(LO) vy . U‘(x(;) VxVxU+U=0

where kg and K, are the longitudinal and transverse wavenumbers respectively. The
boundary conditions at an interface are:

n-U=n-U. n-tl=n-1 Vxt=0. (23)

Where the traction t for the outer (+) and inner (-) surfaces are:
- -~ — <~ - ~3uU. ~
to=AnV - U, t_=anV + U_2upn e +pon x (VxU). 24)
n

The Green's Functions G(r,r) and Green's stress triadic X(r, ") are:

2\! - 2\ ! - 3\t -
(ko) vv. G—(KO) VxVxG+G=—(vc0) B(r-r) (25)

T.=AlV - U, 3 =iV - 6-+2u038-89:+u0ix(vX6_).
n
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The boundary integrals are n the fluid and in the elastic body'8-2

i a3 . B , .
U|+_k_,fj' o - (- S)-t. - Glds = UOul;uicxhcob;ect
pw % 0 Inside the object

U Qutside the object . (26)

ko
. . -t - ds = ) .
poo)z ‘!J - (n Zo) -t Go |ds 0 Inside the object

We need 10 solve these equations subject to the boundary conditions at the inter-
faces and with the appropriate asymptotic boundary conditions. The partial wave
expansion functions in the fluid and the elastic body are:*!

On = %th(kr)\’{"(e,op) Yo =la(n + D] 9 x jthakon Y] (8,9)]

32
vielvuxyl yls Kﬁ kithn(kor)Y{“(G,w. 27)

Ko °
Here the Y's are spherical harmonics and the h's are outgoing spherical Hankel
functions. Expand everything into partial wave,
N N

=i ~f N —~b
U= ZoanRefpn U=3 90 U = T (ctaReyn + Bawn). (28)
n= n=0 n=0

. . . . .
The Green’s functions are also expanded using biorthogonal expansioas for normal

operators:

G () = iZ Redn 0(F)  Go (r.F) = il Reyy (DY) . (29)

Expansion Method to Reduce the BIE to Matrix Form
The T-matrix for the most general case. is:*

T=-{Q; — QuT?) {RT? + R, +iT 7P {Q,, - QuoT?}

(RoT? + R, +iT?)7'P, )71 (30)

o e

s

o o coe g e o
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T? corresponds 10 a reflection from the inner face of a shell. For a solid T2 =0
19
so that

T = -Qu(Re] Py (QulRpol 'Prl ™ 31
For fluid or sound soft or sound hard objects one has:
T=-QnlQul” (32)

where the matrices Q, R, P are as follows:

-
3 —~— —~ ~
Qm-=k—2§ n Reyn AV- ¢, - n- ¢(Reyng)n- 6, (ds
po” 7|
¢ o ~ ~
Rpn = 1} Reyy - t(Reyn) - n- t(Reyy)n- yy|ds
pw”
L -
Kol ~
Pn,,~=———_,§ n- Redn n- t/Reyy,) |ds . (33
pw” T

Unitarity, Symmetry and the S-Matrix

The above, equations are difficult to solve because the matrices zre often poorly
conditioned. We obviate this problem by a method we refer to as the unitary method
which we briefly outline. We know from reciprocity that T is symmetric. Also S
is unitary if the target and fluid are not energy absorbing which we assume. We
can then write T=-RP™' which is its most general form. Then

S=1+2T=1-2RpP"' =Up~! (34)
where U =P~ 2R. S now becomes

$=8=ply. (35)

Now v.rite U=MU P = NP where P and U are unitary and N and M are upper
triangular. Then § =P~ LU" where L = N''M". But §§'* = P*LL'*P*~! = | which
implies LL'* = 1. Which implied L is unitary. That means that L which is a product
of two upper triangular matrices is upper triangular. But it has to be lower triangular
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100 and therefore it has to be diagonal. The diagonal ¢lements have to be real and
therefore L is the unit matrix. Thus. § = U2'* and that implies T = «JZ 212, This
expression is much easier to calculate than expressions dependent upon matnx

inversion.!?

Time Domain Resonance Scatterir : Theory

The partial wave serizs that emerges from normal mode theory for separable

. . .. . 4.5

geometries can be represented in distinct partial waves or modes. It has been shown™ -
that a representation due to a distinct mode {n} can be written 1n the form:

(36)

o | —
o
)
ER
.
.
P

)

where x = ka, x:) is the nth resonance and %J 1”(,:) the half-width.
@
cp (D) h X
Where &2n =——("lT(—)-.
hy " (X)

Here, the factor 2n + 1 is absorbed in the expansion coefficient. For the pulse form,
a continuous wave (cw) ping is used which corresponds to a very broad frequency
range. For each time domain modal component, o.e has that

11 r
7 rr: ( '(I; sl"(,)
o0 . / . '~ o
Re —————-—(—-——c" Sd,\:l::[}; I'(njsm‘lxri)s fe L (37
L0 i ew .
x—xnr PLE rnr

That is, at a resonance, the time-domain solution is simply the product of the half-
width times a sinusoidal function times an exponential damping actor. From the
time-domain solution for a nest of resonances (N-m) ior a cw p.ng, one obtains
the form
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_(1_ Nt
N {2
p(s)=2x Y [%)I‘:)sm (x(nr)s)c \ . (38)

n=m\

The remaining contributions from backscatter are small due to phase averaging.
It is assumed that calculations are performed in a resonance region for which the

resonance widths are fairly constant and the resonance spacing is fairly uniform.~* =
This assumption leads to the important expression
M ) M sri2
P(s) = 2m 27| sin () ve5) | § €OS (AN 0eS/2) € . (39
where 30 = L 5 X(')
XIVC 2&1 iTh T

Here one sets n—m=2M. It is scen from the above expression:

— The half-width is associated with the decay of the response in the time domain
solution: the response decreases exponentially with increasing value of the half-
width.

— When the number of adjacent resonances (2M) sensed increases, the return
signal becomes more sharply defined and the envelope function (the beats) are more
enhanced and clearly defined.

— For larger carrier frequencies, the signal is more oscillatory within the envelope.

Applications of the EBC Method to Various Problems
We first treat scattering from rigid impenetrable objects in a free space. The two
simplest cases are for spheroids and for cylinders with hemispherical caps. We
focus on spheroids.

Application to Rigid Target

There are two classes of targets for impenetrable problems. i.e., soft and hard
scatterers. They do not suppont body resonances; therefore; we examine acoustic
quantities appropriate for nonresonant targets, such as circumferentially diffracted
or creeping waves. These arise when scattering end-on from a spheroid in which
one observes the return signal at the origin of the signal. The values of the incident
wavefield frequency are expressed using the dimensionless quantity kL/2, where L
is the object length and k the total wavenumber (k = 2n/L).

Bistatic angular distributions correspond to measurement of a scattered field at
any point in space for some incident wave fixed relative 1o some source-object
orientation. In Figure 1| we examine a rigid spheroid of aspect (length-to-width)
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ratio of 30:1. Figure la and 1b represent scattering from the object along the axis
of symmetry (end-on) (a) and 90-degrees relative to the symmetry axis (broadside).
The value of kL/2 in Figure 1a and 1b is 200, which implies that the object is about
70 wavelengths long and thus in the intermediate- to high-frequency region where
neither low nor high frequency approximations apply. In all figures, frequency 1s
sufficiently high that wave diffraction effects are significant in the forward scattening

direction.
There are two competing mechanisms in the backscatter case. One arises from

specular scattering (geometric) and the other arises from the creeping waves. The
result is a coherent effect in which the two waves add constructively at some point
leading to a maximum value when they are in phase and destructively leading 10
a minimum when they are out of phase. This can be seen in Figure 1 for a spheroid
of aspect ratio (¢} 4 to 1 (d) 8 10 } and (e) 16 to 1. The more pronounced dips
with increasing aspect ratio is due to the greater grazing angular region for higher

aspect ratio targets.

Applications to Elastic Targets

We now examine a phenomenon observed frequently when scattering from elastic
objects with smooth boundary conditions surrounded by an acoustic fluid, namely,
body resonances. The resonances examined for the elastic solid case originate from
the curved-surface equivalents of seismic interface waves of pseudo-Rayleigh or
Scholte type, propagating circumferentially to form standing waves on a bounded
object or from bending modes when scautering at oblique angles. These types of
resonances occur at discrete values of kL/2 and manifest themselves in a characteristic
manner. For clongated elastic solids, three distinct resonance types occur. The first
kind (at lower frequencies) are due to leaky Rayleigh waves and have been shown
10 be related to both target geomewry and material parameters (notably shear modulus
and density). Resonances can, in this case, be best observed by examining the
backscattered echo amplitude and phase response plotted as a function of kL/2,
often referred to in acoustic scattering literature as a form function. We illustrate
this for WC spheroids of aspect ratios of 6, 8, and 10 to 1 end-on incidence in
Figure 2a, 2b, and 2c respectively. Here we se¢ two resonances superimposed on
the semi-periodic patiern due to Franz waves associated with rigid scattering. If we
were 10 subtract rigid scattering (in partial wave space) from the elastic response
then we would be left with the resonance response alone. Note the slight upward
shift in kL/2 valuc with increasing aspect ratio (L/D) which can be explained in
terms of standing waves on the surface. I addition to the above wave phenomena,
it is also possible 10 excite “whispering gallery” resopances, which for these examples
occur at higher kL/2 values. )

In Figure 3 we examine broadside resonances for 2, 3, 4, and 5 to 1 steel spheroids.
Here we can excite three phenomena. At the lowest value we can see a spike
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192 The Classical Scattering of Waves

representing a bending resonance (Werby and Gaunaurd®') discussed below. The

second lowest spike corresponds to the lower order Rayleigh resonance seen end- o
on, corresponding to a standing wave, circumnavigating the largest meridian of the si
spheroid. We also see weak Franz waves similar to those excited on a cylinder, and b
then we sec the lowest order Rayleigh and Whispering Gallery resonances corresponding T
e to circumferential waves around the smallest meridian. The third kind we wish to o
illustrate has to do with bending modes or flexural resonances. For unsupported tc
spheroids, a plane incidemt wave at 45 degrees relative to the axis of symmetry can a1
excite these modes illustrated in Figure 4a through 4d for aspect ratios of 2:1 through th
5:1. It can be shown that the lowest mode corresponds to 2, and thereafter 3, 4, w
etc. The interesting thing about these resonances is they can be predicted by exact de
bar theories and coincide nicely with results here. Of particular interest is the effect tk

that with increasing aspect ratio, the onset of resonances occur at lower kL/2 values,
the opposite observed in Rayleigh resonances. 1

Finally, we examine scattering from a thin elastic aluminum <pheroidal shell. o
Figure 5a, 5b, and 5c illustrates scattering end-on, at 45 degrees relative to the axis -
. of symmetry and broadside. As noted earlier by Werby and Gaunaurd,” one can ; o
: only excite resonances due to modal vibrations corresponding to standing waves le
’ about the largest meridian (end-on) and modal vibrations corresponding to standing, o
to modal vibrations about the shortest meridian (broadside). Further, it is possible w
10 excite bending modes at oblique angles. In fact, the lowest nulls in Figure 5b 2
and 5c correspond to the lowest (n = 2) bending mode. Evidence of bending modes
can be seen at higher frequencies as slight nulls in the two figures and are the thin "
shell analogues of the elastic solid case. Here they appear as nulls instead of spikes v
due to a change of phase of 180 degrees in acoustic background (from rigid to soft). 1
fe
Resonance Phenomena, Time Domain, and Partial Waves ,‘;

Flexural waves do not yield resonances from fluid-loaded shells until the phase

. . . . f
velocity of the flexural wave is about equal to the speed of sound in the ambient
fluid.? 2.2 The value in frequency for which this happens is referred to as the )
coincidence frequency; however, some subsonic fluid-borne waves produce sharp!®% '
resonances below coincidence frequency. These waves are referred to as pseudo-
Stoneley waves and the related resonances as pscudo-Stoneley resonances.?> 3%
The pseudo-Stoneley resonances are well defined in partial wave space; they usually
correspond to only one partial wave mode number and a very narrow half-width
with a dispersive phase velocity, which approaches the speed of sound in the fluid
with increasing frequency. The pseudo-Stoneley resonances diminish in significance
at the point where the flexural resonances begin to dominate. It can be determined
that a phase change occurs in the pressure ficld in the transition region from subsonic
to supersonic. This change accounts for the envelope of the resonance curve at
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coincidence frequency where the waves are in phase untj coincidence, and are out
of phase afterwards. Our interest here 15 in examining the time-domain response,
since one expects the conditions previously described to be partially met over a
broad frequency range, and thus 1o yield a strong coherent response with a carrier
frequency in the neighborhood of the frequency at coincidence. Accordingly, the
case of cw pings for two examples—for which coincidence resonances are expected
to arise—is examined. This is certainly suggested by the strong responses in Figure 6b
at the ka value 45, for WC. Further, in this analysis, the Mindlin-Timoshenko?®
thick plate theory is used to determine the value for which the flexural phase velocity
will equal the ambient speed of sound in water. The phase and group velocities are
determined from flat plate theory, which proves 10 be quite reliable in predicting
the phase veiocity for the curved surfaces of the spheres at the coincidence frequency.

The time-domain calculations are now examined. The example is a WC shell of
1% thickness. In this case, a well-defined envelope (illustrated in Fig. 6a) with
pronounced oscillations within the envelope, is consistent with Eq. 39. The enhance-
ment due to the factor 2™ is obvious here for the WC case. The group velocity

can be obtained from the peak-to-peak distance of the adjacent envelopes. The result-
leads to a value of 2.33 kmy/sec. Both flexural and pseudo-Stoneley resonances-

compete in this region. A mixture of pseudo-Stoneley waves, as well as flexural
waves, must be leaking into the fluid. For flexural waves, the group velocity is
2.65 km/sec at coincidence frequency with a range between 2.49 and 2.78 km/sec
over the ka range of 30~60, where the strong flexurals are significant. In that range
the phase velocity varies from 1.37 w0 1.58 km/sec. The value of the extracted group
velocity does not agree well with the flexural group velocity; the discrepancy is
12%. This variation suggests that the flexural resonances are of little importance
for the time sequence presented here. The group velocity of the pseudo-Stoneley
waves for this case has been determined®” to be 2.65 kmv/sec based on plate theory.
The phase velocity is in the range from. 88% to 98% of the speed of sound in the
fluid. This value of group velocity is within 3% of the extracted value from the
time-domain solution. Moreover, the pseudo-Stoneley resonances have very narrow
widths, while the flexural resonances are quite large. The conditions in a previous
section would indicate that the flexural resonances would rapidly dampen due to
the large half-widths, while the pseudo-Stoneley resonances would attenuate slowly
in time. Thus, based on the similarity of the extracted group velocity and that of
the pseudo-Stoneley wave and the conditions in the previous section on level widths,
one may conclude that the time-domain calculations in Figure 6a represent pseudo-
Stoneley resonances. oL

It is of some interest to discuss resonance scattering from elastic targets because
of the close analogy to low energy nuclear resonance scattering. It was mentioned
earlier that one can describe the resonance return signal as a function of the
nondimensionalized frequency ka (excitation function for the nuclear case) as a
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194 The Classical Scattering of Waves

resonance term and a background term (shape clastic scattering in low energy nuclear
scattering). To show this, Figure 7a illustrates the total backscatiered response from
a steel spheroid (length to width of 3 to 1) end-on incidence. Figure 7b illustrates
the resonance retum signal obtained by subtracting the rigid background. The resonances
are labeled according to the fundamental group ({n,1] with n=2,3,. . ) and
the higher-order group ({n, 1] with 1=2,3,. .. and n=0,1,2,. . .) in analogy
to the ground state and excited states of a nucleus. The series [n, 1] is referred to
as the Rayleigh series R, while the higher order series has been labeled as a Whis-
pering Gallery resonance because of the presumed analogy with the phenomenon
at St. Paul’s Cathedral in London. To illustrate that these resonances form standing
waves on the surface of the object and 1o suggest the origin of the labeling, we
plot the residual bistatic angular distribution (illustrated in Figure 8) as a function
of the angle in a plane of the object. It is clear that we observe dipale, quadruple,
etc. terms according to the “N” designation for both classes of waves consistent
with the Uberall notion of this class or resonances. Although is has been commonly
assumed that Uberall’s notions for elastic solid spheres are accepied, these calcu-
lations form the basis for establishing that the notions are also valid for a spheroid.?’

The theory of partial wave analysis often used in nuclear physics has found a
useful place in resonance analysis of elastic scattering. Large resonance returns have
been noted in scattering from elastic shells. In Figure 9a the analysis used®® 10
resolve the matter of the origin of these resonances is illustrated. It has been determined
that the sharp spikes correspond to waterborne waves, referred to as psecudo-Stoneley
waves, superimposed on broad overlapping flexure resonances. Figure 9b illustrates
this effect by examining the contributing partial waves for a fixed frequency. N = 32
corresponds to the sharp waterborne wave and n =28 corresponds to the broad
flexural resonance. N =6 refates to a fast symmetric mode.

Finally we illustrate a “level diagram” in Figure 10 for WC spheroids for aspect
ratios ranging from 1 to 4 in steps of 0.25. We see that the Rayleigh resonances
gradually shift upward with increasing ratio while the Whispering Gallery resonances
shift up more rapidly for fixed index N. Eventually, the Whispering Gallery reso-
nances shift upward to the extent that they cross over’! the Rayleigh resonances.
We have referred to this as “level crossing™ in analogy with a similar event for
prolate nuclei.>?
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Figure 1. (a) Bistatic scattering from a 30-t0-1 aspect ratio rigid spheroid end on;
(b) broadside incidence for kL/2 = 200; backscatter from spheroid of aspect ratio
of; (¢) 4 o 1; (d) 8 10 1; and (¢) 16 to 1 for kL/2=0 to 150.
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Figure 2. Backscatter from solid WC spheroid end on incidence for aspect rato of
(a) 610 1; (b) 8to 1; and (c) 10 to 1 for kL/2 =5 to 18.
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Figure 5. Backscatter from steel spheroidal shell of aspect ratio of 1.5

(a) backscatter; (b) 45° relative to the axis of symmetry; and (c) broadside.
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Figure 6. (a) Time domain scattering from a 2.5% thick WC shell from
18 microseconds to 50.07 and (b) backscattered echoes from a 2.5% WC shell

from ka = 30-60.
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Figure 10. Spectroscopic diagram as a function of aspect ratio of WC spheroidal
shells for Rayleigh and Whispering Gallery resonances.




