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The Classical Scattering of Waves:
Some Analogies with Quantum Scattering

Michael F. Werby, Theoretical Acoustics and Simulation,
NOARL, Stennis Space Center. NIS 39529

Abstract
The scattering of waves in classical physics and quantum scattering theory have

many dissimilarities, but also many things in common. Many of the modern
developments in classical wave theory have their origin in quantum scattering despite
the later development of quantum physics. Although each field has diverged from
the other over time, there are many analogies between the two disciplines and much
in one area may enhance the other. In this work an outline is given of some aspects
of the classical scattering theory of waves which have some relation with quantum
theory. In addition, some numerical techniques are presented that may be of use
in both areas.

Introduction
As in the field of quantum scattering, one employs the scattering of waves on

objects and interfaces to gain knowledge of the scatterer. From targets in the sky
to those under the sea, to oil domes under the ground, we use electromagnetic,
acoustic, and elastic waves to gain knowledge of what would otherwise elude us.
Remarkably, much of mathematical methodology and some of the physical events,
such as resonances in classical scattering occur in quantum scattering and it is likely
that the base of knowledge in one area will promote "hybrid vigor" in the other.
The purpose of this article is to describe some aspects of the classical scattering
of waves from the viewpoint of one familiar with quantum scattering theory and
quantum phenomena. The mathematical development to describe scattering from
targets that will be emphasized here is based on an exact numerical technique by
Peter Waterman, who in a series of beautiful papers, 1- 3 outlined the course of
treatment that constitutes a unified theory of the classical scattering of waves. The
T-matrix or more properly, the extended boundary condition (EBC) method due to
Waterman '3 is in part an algorithmic method which, in my view, is as powerful
in an algorithmic sense as that of Hamilton's principle or the Euler-Lagrange equations.
This method (largely overlooked by the classical scattering community) along with

II numerical or structural improvements has enabled researchers to perform enormously
complicated calculations and understand physical phenomena previously not possible.

:180 cl 1992 American institute of Physics



Michael F. \Verbhv I 1 I

Along with the formal and numerical procedures outlined here I will discuss some
physical phenomena in wave scattering that has some similarities with quantum
scattering. In the area of acoustical phenomena such as resonance scattering, Herbert

lion, Uberall '4 8 has, in my view, been the major contributor, both in introducing tech-
niques and in describing phenomena in the context found in quantum physics. Of
particular note is his development of a resonance scattering theory" (RST) along
lines parallel to that of Briet and Wigner 9 and Kapur and Peierls16 as well as his
realization that resonances excited on elastic targets were mainly due to circum-
ferential waves excited on elastic surfaces that due to phase matching conditions
form standing waves at distinct frequencies resulting in the resonance phenomena.'

ng theory have Analogies between quantum and classical scattering and propagation are numer-
F the modern ous.tt The treatment of some scattering from submerged particles such as sediment.
tiering despite due to Foldy and Lox, is similar to the adiabatic theory of scattering developed by

diverged from Foldy. The Born approximation and the related Kirchhoff approximation play an
:nes and much important role in wave scattering, particularly from surfaces. Both a T-matrix and
* some aspects an S-matrix can be defined in wave scattering where the important concept of symmetry,

vith quantum unitarity, and the generalized optical theory play a role. t 2 ' 13 Oberall has shown that
lay be of use even Reggie poles8 find their place in the classical scattering of waves and that one

can divide scattering into a superposition of a form of direct scattering (called the
background) and resonance scattering just as in quantum scattering. This was done
for elastic spheres by Uberall in which he employed a rigid scatterer as the back-

of waves on ground for elastic solids4 and by Werby using the concept of entrained mass forof wvs on theskya shell.' 4
, 15 The analogy with quantum scattering occurs at low energy where shape..etsint skyelastic scattering adds coherently with resonance scattering due usually to collective

wise elude us. motion of the nucleus. Due to space limitations, I will limit my discussions to topics

hysical events, that I have had direct experience with, with it being understood that many more

and it is likely analogies exist between the two areas than presented here. A comprehensive
,r" in the other, development of the vast area of resonance scattering from elastic targets may be t

ssical scattering found in a new book by Uberall. 7

ring theory and Several techniques are available for describing waves that scatter from objectsringtthinr'fand of known constitution and geometry. Many of them are rather specific or have
scattering from
d technique by intractable numerical pitfalls. It is therefore desirable to obtain a formulation that] the course of allows for general objects, ranges of frequency, and boundary conditions, and thatr of waves. The overcomes numerical difficulties commonly encountered in several broad classes of

method due to numerical methods. In this paper we briefly describe the Waterman method which
s as powerful proves to be a consistent, unified and manageable numerical approach useful for

'-inge equations. researchers interested in solving any of a wide class of scattering problems. It is

ty) along with based on the coupling of the exterior and interior solutions of the surface boundary
representation of the Helmholtz or elastodynamic equations and yields the EBCm ly not possible method of Waterman.' - The EBC method avoids numerical problems often encoun-
tered by other techniques. We present numerous physical examples which are chosen

" I;



182 The Classical Scattering of Waves

not only for their intrinsic interest but also because they represent comparatively
difficult problems to solve by other means.

We then focus on some of the physical events in wave scattering that have similarities
with quantum mechanical events. We first start with a review of the Extended
Boundary Condition method for determining the field scattered from a rigid sphe-

roidal object. We next extend this development to include elastic objects. Finally.
we describe the time domain solution, partial wave analysis, and additional physical

phenomena.

The Extended Boundary Condition Method in Review

The EBC method forms the basis of the equations used here to develop the eigen-

expansion and transformation methods that follow. Since emphasis is on the

mathematical basis and properties of these two procedures (with the exception of
scattering from impenetrable targets, details of EBC equations can be both intricate

and extended), we will indicate only the EBC equations for the simplest case. and

list the generalizations for more complicated scenarios. The Helmholtz-Poincare'

integral representa-ion for a field exterior to a bounded object can be expanded as
follows.

U(r) Ui(r) + J[U+(r') -- r') - G(r, r') ds (1)

an ~
where r is chosen to be at an exterior point to the object; i.e., r is a member of

D. where D is the set of all points exterior to the object, G is an outgoing Green's

function, D' is the set of points in the interior of the bounded object, and S is the
set of all points on the object surface. The surface of the object is assumed to be

piecewise continuous. It is redolent of Gauss' law that when r is in the interior the

total wavefield U(r) is zero (extinguished or nulled), hence the terms "extinction
theorem" or, "null-field condition," This fact was generally thought inconsequential,

but Waterman took specific advantage of this condition to employ a constraint on
the exterior solution to eliminate the surface terms U,. or aU,(r')/an, which arise
in the exterior solution. Here n is a unit outward normal to the surface. Although

Waterman employed the condition algorithmically to eliminate the surface term.
he developed a method that also produced a unique solution for all positive fre-
quencies of the exterior problem. This is of considerable importance, because exterior

solutions have often suffered from "spurious resonances" at the so-called
"irregular values" of incident frequency. These irregular values correspond to the

eigenfrequency of a problem related to the interior problem considered here. It 'Ia.
been established that by coupling the interior points in the solution the irr,-g..lar

I,
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comparatively values are eliminated T',~is. WVaterman's equations actually serve two computational

We imiartic Ipurposes. For ccmpleteness w~e fist the interior problem as tlowks

the Extended

a rigid sph- (rr' 3r ~ (r t

jects. Finally, On () In)+ i

where r" is an interior point. The above equations constitute the extended boundary
condition equations. Since in their present form they are not directly useful, we now
reduce them to a form amenable to numerical computation. For convenience of

.lop the eigen- presentation we simplify the problem. to that of an impenetrable object (although
asis is on the solution of the fluid target case is quite similar). Elastic targets submerged in a fluid
t: exception of require far greater mathematical detail, as indicated by W'aterman.3 Let us assume

both intricate that al.(r')/an =0 so that we obtain the expressions
Aest case, and

:)ltz-Poincare'

expanded as U~r =L* oi~ r +rU(f ds (3)

0 =U 1WC) + U.(r') cG O ds. (4)
is a member of is a n

:'going Green'sj
and S is the To solve these expressions, it is convenient to represent Ui(r), U.(r') and G(r,r') in

.4ssumied to be some convenient series expansion, which upon truncation would lead to matrix
the interior the equations that can then be solved using digital computers. The Green's function G
rns ." xtinction is a normal operator, and thus can be represented by the biorthogonal series
riconsequential,

acntanonG(r~r') = iKYXRetp,(rJ)q(r,) (5)i, which arise ~

i-. surface term, where r, and r, are the greater and lesser of the two points r and r relative to the
I positive fre- origin of the object, respectively. The quantity Ui, the incident wavefield, is known.
cause exterior In a manner similar to that of the Hilbert-Schmidt theorem for symmetric kernels,

the so-called it can be shown that(6

d here. It has U1(r) = 'ane9p(r)(6
the irregular

_A



184 The Classical Scattering of Waves

For incident plane waves, the a's are known. We now have the relation

a, Regp(r) = iKy_ Rep,(r)U.r) ( dS (7)
n n f (in

where it follows that

d, , 1)(r')

a. = if U.(r) dS . (8)

We now wish to represent the above matrix form. This can be achieved by writing
U.(r') in some complete set of known functions so that

U,(r) = " b, Re(Pnr) (9)
n

where bn is the only unknown. This redu.ces to an expression in which the expansion
coefficients bn are the only quantities to be determined. Note that we are not really
concerned with the b.'s as such, but rather are eliminating the unknown surface

quantities U. We get:

a Re(Pn(r')
a= bm Re pm(r') dS (10)

where Qnm is an element of some known matrix. The Reqpm's are not the most

efficient functions to employ. Our intention is to determine the most efficient expansion
functions, i.e., those that would form an,orthonormal (ON) basis set on the surface
of the bounded object. We then obtain the most effective expansion of U. on the
object surface. 6' t7 To do so, we premultiply the above equation by the adjoint of

Q, namely Q1, where the latter quantity is the complex transpose of Q.

Qta = iQtQb = i Hb (11)

where the matrix H can easily be shown to be self-adjoint or Hermitian (where
Ht = H). The advantage pursuing this course is that we can easily find the eigen-
values and eicenfunctions of H that have known and computationally desirable
properties. In particular, the eigenvalues here are real, positive, and increase

monotonically, and form an orthonormal set of functions on the surface. The eigen-

ifunctions can be obtained as follows:

14.7
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7elation 1t3, k3. (12)

Here, the adjoint of 13 is (l3. so that

(13)

where 6,, is the Kronecker delta function.
We also have the ordering X1 < )- < X3 . . .where the dimension of H is any

desired order and relates to the number of surface quantities required in expanding

U.. One can show that the 13's are an alternate representation of the 3ap9(r')in's.
with the desired property that they are an orthogonal representation with another

computationally desirable property to be discussed). Thus, we have b = jco1J i so
-ved by writing that

Q'a = i XHaf1i3 = i I ct,Xio,. (14)

(9) Thus a, =-i3,QAA, and b =-i X1,Q'A/Xk (15)

the expansion We also expand the extenor problem as follows

are not really f, = ik 1, b'Re (pj(r')Reaqpi(r)/an dS = ik Y-ibjQi . (16)

nown surface

The final expression for the scattered field in terms of the incident wave field is
thus

(10) f = -Y-ReQP3,Q'A/"i3i. (17)

Although the above expression has proven computationally efficient, it is also possible

not the most and sometimes'necessary to obtain an alternate T-matrix representation. This may

,ient expansion be done by means of the following derived relation:

on the surface
of U. on the T = -ReQI3(1/) P'Q' (18)
the adjoint oft of where 3ot = P3P = I. The set of eigenvectors 03 form a unitary matrix and therefore

of Q. the above expression may be viewed as having been obtained by transforming Q

via a unitary matrix obtained from Q times its adjoint. This offers a generalization
(11!) of this method to one more complicated and that cannot be posed in such a simple

form. For the general problem a T-matrix may be written in the formSmitian (where

ind the eigen- TpQ- (19)

;tally desirable
I and increase with solutions of the form

ace. The eigen-
T =-P3 (]/X) 13tQ

'  (20)

m4l



186 The Classical Scatterimn Of Waves

where QQt3i = kip i.

The Elastic T-Matrix

We now consider the case of an elastic object. The equation of motion in a fluid
is

V - + k-U =0 (21)

where k is the acoustic wavenumber and U is related to the particle displacement.
The equation for motion in an elastic body is

(k KOvv J} V~ U + U=(

2 poW, ' )and k,2 - 22)-ko + 20o lto

where ko and r are the longitudinal and transverse wavenumbers respectively. The
boundary conditions at an interface are:

n U,=n - U n t. =n • t- Vxt_=0. (23)

Where the traction t for the outer (+) and inner (-) surfaces are:

+=XnV . t=X;nV . 24o a_ -+4onx(VxU-). (24)
i.n

The Green's Functions G(r, r') and Green's stress triadic Y)(r, r') are:

2 VV KO V x V xG+G=- 15(r-r') (25)

XiV •U =XiV - G.+ 2ion-cn +  oijx(VxG - )

>an

Ip

II
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The boundary integrals are in the fluid and in the elastic bod.08_20

31

,otion in a fluid + f f i[U. - {n U+ OutIside the object

(21) U_ ( 10 - t- GO ds {U Outside the object~ (26)

Ic displacement. IP003 2 S n oo nid h bi

We need to solve these equations subject to the boundary conditions at the inter-
faces and with the appropriate asymptotic boundary conditions. The partial wave
expansion functions in the fluid and the elastic body are:-,I

0. - h~TY"(,P V1 ='n(n + 1)1-1 V x h(rY

(22 n V -n kn17

functions. Expand everything into partial wave,

SN f N -b N
;i aRefp. U . (pf, U = Y. (a~~ +11n - (8

U-). (24) U n0 n 0 n =0 (8

re: The Green's functions are also expanded using biorthogonal expansions for normal
operators:

0 ' (25) G(r,r') = i7_ RC4n (00 n(r') do (r~r') iY, Rc (r)y.(r') . (29)
n n

x Expansion Method to Reduce the BIE to Mlatrix Form
The T-matrixt for the most general case, is: 20

T = Q - Q,.T2 ) I RJ'T + R1., + IT I 'P,,( 0  Q00T2J I

(RJ T+ R, +iT2 ~I~t (30)

%i 4; 4



188 The Classical Scattering of Waves

T2 corresponds to a reflection from the inner face of a shell. For a solid T 2 = 0 :oo a
so that 19 

:'.r

T = -Q tR, r]-rP, (Qo ,RTO-lP 
-j (31) cxprc

~QrT(O~I 1  32) nver
For fluid or sound soft or sound hard objects one has:

T = -Qr{ (Qo,) } ( 32) Th

where the matrices Q, R, P are as follows: thatthat

Q.- k 2  nReWn. iV- - n. t(Ren.)n- On ds

'A Fk
3

i Rnn'=-----g-  Rein'" t(Ren)--n t(Rejds )n-" , s

JJ

Unitarity, Symmetry and the S-Matrix Whet

The above, equations are difficult to solve because the matrices ,re often poorly
conditioned. We obviate this problem by a method we refer to as the unitary method Here.
which we briefly outline. We know from reciprocity that T is symmetric. Also S a cor
is unitary if the target and fluid are not energy absorbing which we assume. We range
can then write T = -RP-1 which is its most general form. Then

S =I +2T=I -2RP-1 = UP- ' (34)

where U = P-2R. S now becomes

S S' P'-Iu'. (35)

, Now write U = MU P = NP where P and U are unitary and N and M are upper
triangular. Then S = P'- LU' where L = N'-M'. But SS'* = P*LL'*P *- ' I which That
implies LL'* = 1. Which implied L is unitary. That means that L which is a product ,k Idt
of two upper triangular matrices is upper triangular. But it has to be lower triangular time-

,Ie f
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T 0 too and therefore it has to be diagonal. The diagonal elements have to be real and

therefore L is the unit matrix. Thus, S = U?'* and that implies T = _I' 1V2. This

expression is much easier to calculate than expressions dependent upon matrtx
(31) inversion. t3

Time Domain Resonance Scatterir- Theorv

(32) The partial wave series that emerges from normal inode theory for separable

geometies can be represented in distinct partial waves or modes. It ha; been shown 5

that a representation due to a distinct mode (n) can be written in the form:

f 7.'1

2 2 r_ { S n .
f (0) e e sin c. 36)

(3)where X ka, X(rn is the nth resonance and I' the half-width.

(2)

Where e
2i" n

hl ' (x)
often poorly

-itary method Here, the factor 2n + I is absorbed in the expansion coefficient. For the pulse form,

e'ric. Also S a continuous wave (cw) ping is used which corresponds to a very broad frequency

assume. We range. For each time domain modal component, o.e has that

(34) Re e(02 jF~snx2~e* rr
n srIsrS! 3

.RM are upper

I which That is, at a resonance, the time-domain solution is simply the product of the half-

b is a poduct width times a sinusoidal function times an exponential damping actor. From the

wer triangular time-domain solution for a nest of resonances (N-m) tor a cw p.ng, one obtaits
(ie form

... . ....... .a. .

.3_

• 4 1 |
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-iij siy'
p~~~s)=2 ~~SI n. ;Inslzse -tg

inm ( (r\ \_

The remaining contributions from backscatter are small due to phase averaging.

It is assumed that calculations are performed in a resonance region for which the
resonance widths are fairly constant and the resonance spacing is fairly uniform.' 2 3

This assumption leads to the important expression

P(s) = 2n 2M (sin X ,S) Cos (A 3, 9S/2) e e )

where X(r n .,2M

*Here one sets n - m = 2M. It is seen from the above expression:
- The half-width is associated with the decay of the response in the time domain

solution: the response decreases exponentially with increasing value of the half-
" width.

-When the number of adjacent resonance, (2M) sensed increases, the return
signal becomes more sharply defined and the envelope function (the beats) are more

• enhanced and clearly defined.

- For larger carrier frequencies, the signal is more oscillatory within the envelope.

Applications of the EBC Method to Various Problems
We first treat scattering from rigid impenetrable objects in a free space. The two

simplest cases are for spheroids and for cylinders with hemispherical caps. We
focus on spheroids.

Application to Rigid Target

There are two classes of targets for impenetrable problems, i.e., soft and hard
scatterers. They do not support body resonances; therefore; we examine acoustic
quantities appropriate for nonresonant targets, such as circumferentially diffracted

* tor creeping waves. These arise when scattering end-on from a spheroid in which
one observes the return signal at the origin of the signal. The values of the incident
wavefield frequency are expressed using the dimensionless quantity kL/2. where L
is the object length and k the total wavenumber (k = 2t/L).

Bistatic angular distributions correspond to measurement of a scattered field at
any point in space for some incident wave fixed relative to some source-object

orientation. In Figure 1 we examine a rigid spheroid of aspect (length-to-width)

'9
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ratio of 30:1. Figure ]a and lb represent scattering from the object along the axis
of symmetry (end-on) (a) and 90-degrees relative to the symmetry axis (hroadsidei.

(38) The value of kLI2 in Figure la and lb is 200, which implies that the object is about
70 wavelengths long and thus in the intermediate- to high-frequency region where
neither low nor high frequency approximations apply. In all figures, frequency is

,e averaging. sufficiently high that wave diffraction effects are significant in the forward scattering
for which the direction.
uniform. 22

. 23 There are two competing mechanisms in the backscatter case. One arises from
specular scattering (geometric) and the other arises from the creeping waves. The
result is a coherent effect in which the two waves add constructively at some point
leading to a maximum value when they are in phase and destructively leading to

(39) a minimum when they are out of phase, This can be seen in Figure I for a spheroid
of aspect ratio (c) 4 to I (d) 8 to I and (e) 16 to 1. The more pronounced dips
with increasing aspect ratio is due to the greater grazing angular region for higher
aspect ratio targets.

me domain Applications to Elastic Targets
of the half- We now examine a phenomenon observed frequently when scattering from elastic

objects with smooth boundary conditions surrounded by an acoustic fluid, namely,
the return body resonances. The resonances examined for the elastic solid case originate from

s) are more the curved-surface equivalents of seismic interface waves of pseudo-Rayleigh or
Scholte type, propagating circumferentially to form standing waves on a bounded

'te envelope. object or from bending modes when scattering at oblique angles. These types of
resonances occur at discrete values of kLJ2 and manifest themselves in a characteristic
manner. For elongated elastic solids, three distinct resonance types occur. The first

e Tkind (at lower frequencies) are due to leaky Rayleigh waves and have been shown•e. The two
to be related to both target geometry and material parameters (notably shear modulusand density). Resonances can, in this case, be best observed by examining the

backscattered echo amplitude and phase response plotted as a function of kL/2,
often referred to in acoustic scattering literature as a form function. We illustrate

ft and hard this for WC spheroids of aspect ratios of 6, 8, and 10 to I end-on incidence in
ine acoustic Figure 2a, 2b, and 2c respectively. Here we see two resonances superimposed on
v diffracted the semi-periodic pattern due to Franz waves associated with rigid scattering. If we
d in which were to subtract rigid scattering (in partial wave space) from the elastic response

*he incident then we would be left with the resonance response alone. Note the slight upward
2, where L shift in kL/2 value with increasing aspect ratio (LID) which can be explained in

terms of standing waves on the surface. It? addition to the above wave phenomena,
ed field at it is also possible to excite "whispering gallery" resopances, which for these examples
irce-object occur at higher kL/2 values.

i'-to-width) In Figure 3 we examine broadside resonances for 2, 3, 4, and 5 to I steel spheroids.
Here we can excite three phenomena. At the lowest value we can see a spike

, 1£

", ' : " ', j • - .-. - -...
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192 The Classical Scattering of Waves

representing a bending resonance (Werby and Gaunaurd24 ) discussed below. The C,
second lowest spike corresponds to the lower order Rayleigh resonance seen end-
on, corresponding to a standing wave, circumnavigating the largest meridian of the
spheroid. We also see weak Franz waves similar to those excited on a cylinder, and bi
then we see the lowest order Rayleigh and Whispering Gallery resonances corresponding
to circumferential waves around the smallest meridian. The third kind we wish to c:
illustrate has to do with bending modes or flexural resonances. For unsupported tc
spheroids, a plane incident wave at 45 degrees relative to the axis of symmetry can al
excite these modes illustrated in Figure 4a through 4d for aspect ratios of 2:1 through
5:1. It can be shown that the lowest mode corresponds to 2, and thereafter 3, 4.
etc. The interesting thing about these resonances is they can be predicted by exact
bar theories and coincide nicely wit- results here. Of particular interest is the effect tF
that with increasing aspect ratio, the onset of resonances occur at lower kL/2 values,
the opposite observed in Rayleigh resonances. 1'

Finally, we examine scattering from a thin elastic aluminum 'pheroidal shell. P
Figure 5a, 5b, and 5c illustrates scattering end-on, at 45 degrees relative to the axis n-
of symmetry and broadside. As noted earlier by Werby and Gaunaurd,2 one can C.
only excite resonances due to modal vibrations corresponding to standing waves le
about the largest meridian (end-on) and modal vibrations corresponding to standing, c1
to modal vibrations about the shortest meridian (broadside). Further, it is possible
to excite bending modes at oblique angles. In fact, the lowest nulls in Figure 5b
and 5c correspond to the lowest (n = 2) bending mode. Evidence of bending modes 0
can be seen at higher frequencies as slight nulls in the two figures and are the thin ti
shell analogues of the elastic solid case. Here they appear as nulls instead of spikes v
due to a change of phase of 180 degrees in acoustic background (from rigid to soft). IIfi

Resonance Phenomena, Time Domain, and Partial Waves

Flexural waves do not yield resonances from fluid-loaded shells until the phase
velocity of the flexural wave is about equal to the speed of sound in the ambient
fluid.23.23, 6 The value in frequency for which this happens is referred to as the
coincidence frequency; however, some subsonic fluid-borne waves produce sharp 9 20

resonances below coincidence frequency. These waves are referred to as pseudo-
Stoneley waves and the related resonances as pseudo-Stoneley resonances. 22 " 23 27 t

The pseudo-Stoneley resonances are well defined in partial wave space; they usuallyIt
correspond to only one partial wave mode number and a very narrow half-width
with a dispersive phase velocity, which approaches rhc speed of sound in the fluid
with increasing frequency. The pseudo-Stoneley resonances diminish in significance
at the point where the flexural resonances begin to dominate. It can be determined
that a phase change occurs in the pressure field in the transition region from subsonic
to supersonic. This change accounts for the envelope of the resonance curve at

ii
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d below. The coincidence frequency %here the waves are in phase until coincidence, and are out
ace seen end- of phase afterwards. Our interest here is in examining the time-domain response.
edian of the since one expects the conditions previously described to be partially met over a
cylinder, and broad frequency range, and thus to yield a strong coherent response with a carrier
corresponding frequency in the neighborhood of the frequency at coincidence. Accordingly, the
rd we wish to case of cw pings for two examples-for which coincidence resonances are expected

unsupported to arise-is examined. This is certainly suggested'by the strong responses in Figure 6b
symmetry can at the ka value 45, for WC. Further, in this analysis, the Mindlin-Timoshenko2 8

of 2:1 through thick plate theory is used to determine the value for which the flexural phase velocity
tereafter 3, 4, will equal the ambient speed of sound in water. The phase and group velocities are
icted by exact determined from flat plate theory, which proves to be quite reliable in predicting
st is the effect the phase velocity for the curved surfaces of the spheres at the coincidence frequency.
r kL/2 values, The time-domain calculations are now examined. The example is a WC shell of

1% thickness. In this case, a well-defined envelope (illustrated in Fig. 6a) with'erod hel xipronounced oscillations within the envelope, is consistent with Eq. 39. The enhance-
y)e to the axis ment due to the factor 2M is obvious here for the WC case. The group velocity
,done can can be obtained from the peak-to-peak distance of the adjacent envelopes. The result

tnding waves leads to a value of 2.33 km/sec. Both flexural and pseudo-Stoneley resonances
- tg to standing, compete in this region. A mixture of pseudo-Stoneley waves, as well as flexural

it is possibleit i posib waves, must be leaking into the fluid. For flexural waves, the group velocity is
in Figure Sb 2.65 km/sec at coincidence frequency with a range between 2,49 and 2.78 km/sec

14in modtes hover the ka range of 30-60, where the strong flexurals are significant. In that range
tA are the thin the phase velocity varies from 1.37 to 1.58 km/sec. The value of the extracted group

regid o sofk), velocity does not agree well with the flexural group velocity; the discrepancy is
:rigid to soft). 12%. This variation suggests that the flexural resonances are of little importance

for the time sequence presented here. The group velocity of the pseudo-Stoneley
'es waves for this case has been determined27 to be 2.65 km/sec based on plate theory.
nril the phase The phase velocity is in the range from- 88% to 98% of the speed of sound in the
tithe ambient .fluid. This value of group velocity is within 3% of the extracted value from the1ed to as the time-domain solution. Moreover, the pseudo-Stoneley resonances have very narrow

-e shro19 'th widths, while the flexural resonances are quite large. The conditions in a previous
as pseudo- section would indicate that the flexural resonances would rapidly dampen due toces. 22.227 the large half-widths, while the pseudo-Stoneley resonances would attenuate slowly

"cy usually in time. Thus, based on the similarity of the extracted group velocity and that of
Shalf-width the pseudo-Stoneley wave and the conditions in the previous section on level widths,

in the fluid one may conclude that the time-domain calculations in Figure 6a represent pseudo-

significance Stoneley resonances.
It is of some interest to discuss resonance scattering- from elastic targets becausedetermined iof the close analogy to low energy nuclear resonance scattering. It was mentioned

o subsonic earlier that one can describe the resonance return signal as a function of the
nondimensionalized frequency ka (excitation function for the nuclear case) as a

...... .....

A ° '
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resonance term and a background term (shape elastic scattering in low energy nuclear
scattering). To show this, Figure 7a illustrates the total backscattered response from
a steel spheroid (length to width of 3 to 1) end-on incidence. Figure 7b illustrates
the resonance return signal obtained by subtracting the rigid background. The resonances
are labeled according to the fundamental group (In, 1 with n 2, 3, . . .) and
the higher-order group ((n, 11 with 1 = 2, 3, . . and n = 0. 1, 2, .. .) in analogy
to the ground state and excited states of a nucleus. The series [n, I] is referred to
as the Rayleigh series R1, while the higher order series has been labeled as a Whis-
pering Gallery resonance because of the presumed analogy with the phenomenon
at St. Paul's Cathedral in London. To illustrate that these resonances form standing
waves on the surface of the object and to suggest the origin of the labeling, we
plot the residual bistatic angular distribution (illustrated in Figure 8) as a function
of the angle in a plane of the object. It is clear that we observe dipole, quadruple,
etc. terms according to the "N" designation for both classes of waves consistent
with the Uberall notion of this class or resonances. Although is has been commonly
assumed that Uberall's notions for elastic solid spheres are accepted. these calcu-
lations form the basis for establishing that the notions are also valid for a spheroid.29

The theory of partial wave analysis often used in nuclear physics has found a
useful place in resonance analysis of elastic scattering. Large resonance returns have
been noted in scattering from elastic shells. In Figure 9a the analysis used 30 to
resolve the matter of the origin of these resonances is illustrated. It has been determined
that the sharp spikes correspond to waterborne waves, referred to as pseudo-Stoneley
waves, superimposed on broad overlapping flexure resonances. Figure 9b illustrates
this effect by examining the contributing partial waves for a fixed frequency. N = 32

corresponds to the sharp waterborne wave and n = 28 corresponds to the broad
flexural resonance. N = 6 relates to a fast symmetric mode.

Finally we illustrate a "level diagram" in Figure 10 for WC spheroids for aspect
ratios ranging from I to 4 in steps of 0.25. We see that the Rayleigh resonances
gradually shift upward with increasing ratio while the Whispering Gallery resonances
shift up more rapidly for fixed index N. Eventually, the Whispering Gallery reso-
nances shift upward to the extent that they cross over 3 the Rayleigh resonances.
We have referred to this as "level crossing" in analogy with a similar event for
prolate nuclei.

32
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Figure 1. (a) Bistatic scattering from a 30-to-I aspect ratio rigid spheroid end on;

(b) broadside incidence for kcL/2 = 200; backscatter from spheroid of aspect ratio
of; (c) 4 to 1; (d) 8 to 1; and (e) 16 to I for kL/2=0 to 150.
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Figure 2. Backscatter from solid WC spheroid end on incidence for aspect ratio of

(a) 6 to 1; (b) 8 to 1; and (c) 10 to I for kL/2=5 to 18.
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Figure 4. Backscatter from solid steel spheroid at incidence of 450 relative to axis

of symmetry for aspect ratio of (a) 2 to 1; (b) 3 to 1; (c) 4 to 1; and (d) 5 to I

for kL/2' 2 to 24.
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Figure 5. Backscatter from steel spheroidal shell of aspect ratio of 1.5 to I
*relative to axis (a) backscatter; (b) 450 relative to the axis of symmetry; and (c) broadside.
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Figure 6. (a) Time domain scattering from a 2.5% thick WC shell from
18 microseconds to 50.07 and (b) backscattered echoes from a 2.5% WC shell b.

from ka = 30-60.II
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shell for ka =33.
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