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A COMPARISON OF MEMBRANE, VACUUM, AND FLUID LOADED SPHERICAL SHELL MODELS
WITH EXACT RESULTS

Cleon E. DeanNaval Oceanographic and Atmospheric Research Laboratory
Numerical Modeling Division, Building 1100

Stennis Space Center, MS 39529-5004
USA

ABSTRACT

A new set of spherical shell theories is presented with differing degrees of physicality, varying from a
simple membrane model up to a fluid loaded shell theory that includes translational motion, rotary inertia, and
transverse shearing-stress. Numerical results from these theories are compared with exact results from
elastodynamic theory. The motivation of this study is to overcome the limitations of both modal analysis
approaches and of the somewhat more general Extended Boundary Condition (EBC) method due to Waterman,
sometimes called the T-matix method. The spherical shell is studied with an eye towards generalizing the results
obtained to spheroids. The aim of the present research is to yield a better understanding of the scattering event by
employing more general and more physical shell theories.

INTRODUCTION

So-called "shell theories" simplify the calculations of the motion of thin elastic shells by making
assumptions about the scatterer and its movements. We use the standard assumptions of shell theory as
formulated by A. E. H. Love [1] and which are as follows: first the thickness of a shell is small compared with the
smallest radius of curvature of the shell; second the displacement is small in comparison with the shell thickness;
third the transverse normal stress acting on planes parallel to the shell middle surface is negligible; and finally the
fibers of the shell no val to the middle surface remain so after deformation and are themselves not subject to
elongation. These assumptions are used in the development of a shell theory for an elastic spherical shell in the
spirit of Timoshenko-Mindlin[2,3] plate theory.

DERIVATION OF THE EQUATIONS OF MOTION

In spherical shells membrane stresses (proportional to f) predominate over flexural stresses (proportional to

p2) where

I h= ia' (a)

We differ from the standard derivation for the sphere [4] by retaining all terms of order p 2in both the kinetic and
potential energy parts of the Lagrangian and by considering the resonance frequencies for the fluid loaded case to
be complex. We note that this level of approximation will allow us to include the effects of rotary inertia and shear

distortion in our shell theory, as well as damping by fluid loading. The parameter P3 itself is proportional to the
radius of gyration of a differential element of the shell and arises from integration through the thickness of the

shell in a radial direction. We will use an implicit harmonic time variation of the form exp(-iax). We begin our
derivation by considering a u,v,w axis system on the middle surface of a spherical shell of radius a (measured to
mid-shell) with thickness h, as shown in Fig. 1.
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Fig. 1.--- Spherical shell showing coordinates used. The j2, i, iv - coordinate system is somewhere on the mid-
surface.

Lagrangian variational analysis

The Lagrangian, L, is

L=T-V+W, (2)

where T is the kinetic energy, V is the potential energy, and W is the work due to the pressure at the surfac=.
The kinetic energy is given by

1 2s r A/2

T = -pP.p f : + ,i,2)(a + x)2sin Odxd~d#, (3)

where the surface displacements are taken to be linear as in Tikmoshenko-Mindlin plate heory: -A

Ai, =(I + -__)A x o:i (41
a ado

* and

,. W,, =W .

The motion of the spherical shell is axisymmetric since the sound field is torsionless. Thus there is no motim
the v-direction. Substituion of Eqs. (4) and (5) into Eq. (3) yields, after integration over x and 0,

,zAhs Ph s h • ' h' X h
T ipfsi 0( -2(T h )j T .oN,5a + _X +one,=jdr==p'o=" <- J+ + )"  (8-6 +-)u-+(+- )(-) x +(-2+h')wJdo.
0 7 7 a 4 d 0a 12 4W2O 12

or, in terms of13,
.p* p[(1.8l +61+ 1)*2 -(3.6 p2 +6, 1)- +(I1.8p4 +.'X-) + ( 2 + l)%;sin d9, -

do dO)inOO

where the first and last terms in square brackets in Eq. (7) are associated with linear translational kinetic
and the middle two terms are associated with rotational kinetic energies of an element of the shell.

The potential energy of the shell is

fJ: J: J-o "+  + )(x+ a)sin Wxdedo,
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where the nonvanishing components of the strain are

1o l(du, ,) x f udw"

d+W a+ de d (9)

and

E'" =(cot Ou + W) + A-2cote u - - ,(10)

and where the nonzero stress components are

E
099 = _- (2  + ye,), ( 1)

and

ElE 1 (c** + ve,), (12)

where E is Young's modulus. By substitution the potential energy becomes

V2 (X + af M (+ x) W 2 x XOV= -- +1 W), .

2 .- /2L~va(x+a) a dO a dO w a adO

x xow x du xd 2 w I
+2 vcot 01(l + a)u - - + (l- + + w]i(x + a)2 sin Odxd9O, (13)

a adO a dO adO2

which after integration is

V = Yrh 2 J((+ )2 + (W +UCot0)2 + 2 v(w +-d)(w + ucot 0)
1- 0 dO dO

in du -d 2w 2  d 0) + 2 c t~ -- w(
in +/[( -) cot, O(u - 0)2 + 2 vcot 8(u - d)( u _ - )])sin OdO. (14)

dO9 dO5 dO dO dO dO2

5) Terms in the potential energy proportional to p32 are due to bending stresses.
And finally, the work done by the pressure of the surrounding fluid on the spherical shell is given by

W 2yra2J fp.wsinOdO, (15)
1)

where p. is the pressure at the surface.

es
The LajrZanian density and its equations of motion

A Lagrangian density must be used instead of the Lagrangian since the integration along the polar angle is
intrinsic to the problem. The Lagrangian density is

)
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L, = Irpha 2[(1 + 602 + L8P')a 2 _ (6fl2 + 3.6p 4 )au- + (p
2 + 1.8p 4)(-)

do do

+(1 + f
2 )l 2 ]sin- -Yr (w + d-) + (w + ucot 0)2 +2 v(w+ -)(W+UcO)

T-2  o do

+2ra2p.w sin 0, (16)

with corresponding differential equations of motion

dL d dL d dLdu dO due dt du, '

and

dL d dL d dL d2 dL d2 dL
0= -+ + -- - (18)

dw dO dw dt dw dOdtdw, dO2 0d ' 1

where subscripts denote differentiation of the variable with respect to the subscript.

By substitution of Eqs. (17) and (18) into (16) we obtain

O= l+2)[a~u2 d + O l d~ 0 2w

0L(1 + /cot0O.--(v+cot2 o)u 1 / ; 7 2 cot 0j

+[, ) p LVd ot2  doj J~ dU_ 1.p d'
+[(1d+ v)+3 2 (v+ cot2 0)'---2[(.83' +62 + l) - (1.8+ 3/32 ) (19)00 c, atd+ )dOP(9

and
P(1-v 2 )o' _ d'au . d'mau ~~If 2

+l o 2  d

Eh - /2 d'U p2 cotO -It(l+ 2 cot20)]-
Eh do, ,do

+cot 0[(2 - v + cot 2 O)f -(1 + v)]u -' d'w - 2f3 cot d .

d2w _'cotO(2-2 0) ct - 2(1 + v)w

a 4 2 d'u p2 d'uc;[-1. +30% ) d- tt-(1.804 3 )o0
+(18t3 2 d1w 2 dw

+(1.8p4 +#2) -d - . + )d- 3l2 )t ot- + d-i-. (2

These differential equations of motion (19) and (20) have solutions of the form

u(7) = --72)12 P ,
• .o drI

and

w(77) =YwP.(7),
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wvhere 17 = cosO and P.(ij) are the Legendre polynomials of the first kind of order n. When (he differential

equations of motion (19) and (20) are expanded in terms of Eqis. (21) and (22). 'se obtain a "et of linear equations

in terms of U. and IV., whose determinant must vanish. We shall consider i%, cases: %k ith and without fluid

loading.

The vacuumfl cUse
Th vcumcase is the simpicij problem that oc~curs when the spherical 'hell is surrounldCLd 111 3 vacuum11

such that there is no damping. Thus, the pressure at the surface vanishes: .= 0. The set of lincar equations thle

expansion coeft icien s niust satisfy arc

0) = fi2 (l + 6/'+ 1.8,6)- 0I + /-)V + 112(313' , LSO4) -/P jh-' 0 ~ (21)

and

01 = -A.I(-- 3)P'2 - 1.8,6' + I + 1T, + 10 2 (1 + 2/32 +L.8l) - 20 4- v) -/4.t. (24)

where MI / Cr -= v+ A. - I. and ;.4 n~z + 1). In order for Eqs. (23) and (24) to be satisfied

simultaneously wvith a1 non-trivial1 solution the determinant of the system must vanish:

0 = 0-4 1+ 6f2 + 1. S3)l+ 2132 + 1.8p4) +Ql(30l
2 + I.81

4 );.1Kh7-3)0: - 1. 8/' + I +v
-[2(1+ v) + IN L!(+ 6# + 1. 8#) _(1 +f32)K(l + 2P2 +1.#)

+(I + p 2 )k2( + )P 2 .I( K--3)02 - .83 4 +++v)(02 +1+V (25)

Since there are no damping terms, the shell vibrates theoretically forever. Thus, the normalized frequency

Q can be taken to be real. Equation (25) is quadratic in 022. thus we expect two real roots to (25) and thus tw,.o
modes for the motion of the shell. They are the symmetric and antisymmeure Lamb modes.

The fluid loaded case
The fluid loaded case requires that we consider a modal expansion of the surface pressure in terms of the

specfic acoustic impedance z.. In its most general form this is

p(a,8,Q) = i z.W "(cosO)cosmO, (26)

where

Z,=ir (27)
h. (ka)

The specific acoustic impedance z, can be split into real and imaginary parts:

zr -I .Wrn (28)

where

r4 = PcRe j'h. (a)2 (29)
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and

M.} (30):

For the case of axisymmetric motion we are considering, the surface pressure is

p. (0) = -"z, W, ,(cos 0), (31)-
.-O

or by substitution,

p.(0) =- -ioW r -oj 2Wmn)P'(cOs0). (32)
.. 0

Use of Eq. (32) in our set of differential equations of motion (19) and (20) yields the following set of linear
equations for the expansion coefficients in the case of a fluid loaded spherical shell:

0 = [2 2 (l + 6/32 + 1.8/3')- (I +/3 2 )d]U. + [22(3/32 + 1. /')-/32  (I + v)]W,, (33)

and

0 =-,%[(hc-3)/32 - 1.8/34 + + vIU.+[0 2(l+ a+2/32 + l.834) -2(1+ v)+ 2iy-/3 2iQAJ1W., (34

where

a - (3ph'
and

a r. (3

h pc,

Again the determinant of Eqs. (33) and (34) must vanish. However, in this instance the value of QZ must be
to be complex; the resonances have a width that depends on the damping. The result of setting this dete
zero is

0 = 04(1+6/32 + 1.83')(1 + a + 2/32 + 1.8/3')
+Q'i(1 + 6/32 + 1.8/3') +f 21(3/32 + 1.8/3').[( -3)/32 - 1.8/3' + 1 + v]

-[2(1 + v) +/3 2 4'J. ](1 + 6/32 + 1.8/3') - (1 +/ p) K( + a+232 + 1.8/3')) +.[-iY(l +/32 ) ]

+(I +/3 2)K2(1 + v) +/32 i.] -A.[(c -3)/3 - 1.8/3' + I + v](/32 + I + v).

Equation (37) has at least four complex roots. From work with an exact modal solution to the p
expect two roots to be associated with the symmetric and antisymmetric modes of the shell. We expect the
two Toots to be associated with a water-borne pseudo-Stoneley wave.

CONCLUSIONS

The next step is to plot the roots of Eqs. (25) and (37) to compare the resonances predicted by these
with those given by exact modal expansion solutions. By suppressing a and y, the model associated

(37) reverts to the vacuum case model associated with Eq. (25). Similarly suppression of factors of in
will result in a reversion to a previously derived solution (Junger and Feit, 1986). We may then rank
different models according to their degree of physicality and compare their results for various relati
thicknesses against each other and against the exact results of the modal expansion model. We may alsO
the limitations of each of the models including the exact solution, as well as those of shell models in gn
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By setting the values of a and y in Eq. (37) to zero, we revert the shell theory model to one without fluid

loading. Similarly, by setting 8 to zero as well, the model reverts to a membrane model. These models, fluid
loaded, vacuo case, and membrane, are successively less physically sophisticated and give successively less good

comparison with exact (modal expansion) results. Starting with the least sophisticated model, we see in Fig. 2

'30) thick spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by the
rmembrane model. Here and in the succeeding figures thick means hla =0.1; thin means h/a=0.01. The shell

material is a generic steel with density p, = 7.7 times that of water, shear velocityv, = 3.24 km/s, and longitudinal

velocity vi = 5.95 km/s. The surrounding fluid is taken to be water with density p = 1000 kg/m 3 and sound

Velociryc, = 1.4825 km/s. The symmetric mode shows a good comparison between exact and shell theory

'31) predictions, but the antisymmetric shell theory results for this approximation compare poorly with the exact
flexural results. Note that some symmetric mode resonances were not found by our exact theory algorithm. In

Fig. 3 we see thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode resonances
calculated by the membrane model. Again there is good comparison between dilatational (symmetric) mode

resonances calculated by the two methods, except for the first couple of resonances. Only a few exact flexural
32) resonances were picked up by our algorithm. And again the shell theory flexural (antisymmetric) mode

resonances show the do not asymptote properly with increasing order. In Fig. 4 we have thick spherical steel

shell dilatational (symmetric) and flexural (antisymmetric) mode resonances calculated by shell theory without
fluid loading (vacuum). As in the membrane model the shell theory and exact calculations compare well for the

dilatational (symmetric) mode resonances. In contrast with the membrane model, however, the exact and shell

theory calculations for this model show much better agreement for the flexural (antisymmetric) mode resonances.
3) 'Ibis model does not include fluid loading, but does include the effects of shear distortion and rotary inertia. The

vacuum shell theory flexural mode resonances do not asymptote for large size parameter ka to the exact results,

however. In Fig. 5 we see thin spherical steel shell dilatational (symmetric) and flexural (antisymmetric) mode

resonances calculated by shell theory without fluid loading (vacuum). As in the membrane model the shell theory
and exact calculations compare well for the dilatational (symmetric) mode resonances except for the first couple of

I) resonances. This vacuum model does not have fluid loading, and has insufficient damping for the first two
dilatational (symmetric) mode resonances. Again, the flexural (symmetric) mode resonances show roughly the
correct behavior, but it is not possible to tell what the asymptotic value of the phase velocity would be for large
size parameter on this scale. Next in Fig. 6 we have a plot of thick spherical steel shell dilatational (symmetric)
and flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. As in the vacuum

case as well as for the membrane model, the dilatational (symmetric) mode resonances compare well for exact and
shell theory methods. The flexural (antisymmetric) mode resonances, as calculated by shell theory with fluid
loading, do not appear to have the correct asymptotic limit for large size parameter, although they do exhibit
roughly the correct behavior for lower values of ka. Finally, in Fig. 7 we see thin spherical steel shell dilatational
(symmetric) and flexural (antisymmetric) mode resonances calculated by shell theory with fluid loading. The

6) exact and shell theory calculations agree well for the dilatational (symmetric) resonances and exhibit a marked
improvement for the first several shell theory symmetric mode resonances. This is due to the inclusion of fluid
loading in the model. The flexural (antisymmetric) mode resonances show the appropriate behavior on this rather
limited size parameter scale.
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