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ABSTRACT

The report summaries a closely coupled experimental and theoretical
investigations of various stages of Fracture Process: (1) accumulation of
"damage” on submicroscopical and microscopical scales leading to crack
initiation; (2) slow (subcritical) crack growth and an evolution of the damage
zone; (3) transition to dynamic crack growth and the catastrophic failure.

The experimental part of the program is focused on the observation and
quantitative characterization of damage preceding and accompanying crack
initiation and growth. A special experimental setup for studying the fracture
process under variable stress field is reported in Chapter 2. A leading role of
crack-damage interaction in fracture process is well documented. A new
formalism for solution of crack-microcrack array interaction problem and its
successful implementation in the evaluation of crack layer driving forces is
presented in Chapter 3.

A new model of the process zone, which generalizes the well-known
Dagdale-Barenblatt model is presented in Chapter 4. A new measure for material
toughness and the prediction of R-curve behavior illustrate the practical
application of our model. Experimental examinations of our model under various
test conditions are reported in Chapters 4, 5 and 6. The development of the
constitutive equations for Crack Layer evolution and their experimental
examinations under stress relaxa.ion, fatigue and creep conditions are reported
in Chapters 5 and 6.

An accelerated test procedure and the formulation of crack layer instability
criteria as a substitution for the conventional fracture toughness parameters are
also discussed in Chapter 6.
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SIGNIFICANT ACCOMPLISHMENTS

A new test methodology was developed for studying the law of crack
propagation.

A protocol for quantitative characterization of damage and its
evolution was established.

A new formalism for the crack-damage interaction problem has been
developed. It successfully implemented in evaluation of the crack
layer driving forces.

A thermodynamic model of the process zone was proposed. It
generalizes the well-known Dagdale-Barenblatt model. Our new
model describes a wide range of experimental data with no

adjustable parameters.

A constitutive equation of process zone growth under stress
relaxation condition was derived and verified experimentally.

Kinetic equations of the crack and its surrounding damage zone
growth were proposed. The equations adequately describe
experimentally observed nonmonotonic crack layer propagation.

Crack Layer instability criteria were developed to substitute the
conventional fracture toughness parameters. Well known R-
curve behavior has been obtained from crack layer stability
considerations.

An accelerated test to predict the time to failure under fatigue and
creep conditions was proposed. A comparison with well characterized
experimental data reported elsewhere illustrates the predictive
power of the proposed methodology.

An inspection tool and an inspection manual aimed at prevention of
polycarbonate canopy failure has been developed. This work has
been funded by The Wright Laboratory, WPAFB, through AFOSR
grant 890105. The detailed report of these studies is presented
directly to, and will be published by The Wright Laboratory.
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CHAPTER 1
INTRODUCTION

This report summarizes a three year research program on fundamental
problems of fracture phenomena. The program has been planned as a closely
coupled experimental and theoretical investigation of various stages of the
fracture process: (1) accumulation of "damage" on submicroscopic and
microscopic scales leading to crack initiation; (2) slow (subcritical) crack growth
accompanied by an evolution of the damage zone surrounding the crack; (3)
instability of slow crack growth leading to the catastrophic failure. Accordingly,
the issues addressed in this report are:

I. Observation, quantitative characterization and modeling of the damage
preceding crack initiation and growth.

1I. Kinetic equations for a crack and its surrounding damage growth. 'I'h.e payoff
is the creation of a rational basis for a predictive formalism for lifetime and
reliability of structural components.

The above topics have been extensively studied under the name Fracture
Mechanics and related areas of research during the last four decades. Two
primary directions of fracture research have emerged during this time.

The first direction is related to materials science and examines the
hierarchy of microdefects, their nucleation, inter- and intrascale interaction and
coalescence. The scale hierarchy can be visualized by employing progressively
finer scales of observation. Here the fundamental question is which elements of
the hierarchy of defects are central to fracture phenomena, and thus should be
properly parametrized and included in a quantitative model. This question
cannot not be answered solely by materials science. The formalism of continuum
mechanics, which is the other direction in fracture research, must also be used.

Recent achievements in observational techniques challenge adequacy of the
continuum approach to modeling the observed details of fracture phenomena.
Obviously the complexity of an interaction of defects on various scales is the main
obstacle for modeling. Thus one may simplify the picture by examining a crack
surrounded by damage urder relatively low magnification (less than 100X).
Studies which link the material microstructure observed at such magnification
with macroscopic properties belong to Mesomechanics. This term has recently

been introduced to denote observations and models which focus on intermediate
scales [1].

Observations on mesoscales reveal the existence of numerous similar
features of fracture propagation in various materials, despite many differences in
molecular structure and morphology {2]. These observations constitute the basis
of our search for the objective laws of the fracture process.




OUTLINE OF THE REPORT

The following Chapter 2 is dedicated to an experimental examination of the
existing models of slow (quasi-static) crack growth. A new experimental setup
has been proposed and implemented to observe and characterize crack growth in
the complex stress field. This setup resulted in establishing the limitations of
existing models, as well as recognition of an important role played by the damage
zone in determining the direction and rate of crack growth.

A system consisting of a crack and its surrounding damage is referred to
as a Crack Layer (CL). A protocol for CL characterization has been developed and
reported in a few international and national meetings, and has been published in
four papers (Int. J. Fracture, 1991 [3,4], Int. J. Solids Struct. [5], and J. Polym.
Eng. [6D.

Close observation of CL reveals a high density of damage (crazes, shear
bands, microcracks, and so forth) formed as a response to stress concentration.
This calls for crack-damage interaction analysis. There was no available
formalism, which would allow one to perform the stress analysis of crack-
microcrack (crazes, etc.) array interaction for high density of microcracks.
Therefore, we have made a special effort to develop a new formalism for the stress
and energy analysis of crack interaction with a high density microcrack array.
These new theoretical developments closely linked to the observations have been
reported in a few meetings and published in two papers (Int. J. Fracture {7] and
Eng. Fract. Mech. [8]). These results constitute Chapter 3.

The mesomechanical considerations of chapters 2 and 3 provide detailed
knowledge of crack-damage interaction, but assume extensive knowledge of
damage distribution. The latter requires tedious damage characterization and
analysis. An alternative thermodynamic approach operates with only a few
average parameters, and thus is much more adequate for engineering
applications. Having this in mind, we developed a thermodynamic model of
crack-damage interaction concurrently with mesomechanical studies. The two
approaches complement each other. The new thermodynamic model of the
damage zone is presented in Chapter 4. Here we operate with the effective
properties of media with damage, and introduce thermodynamic driving forces
which are responsible for damage zone evolution. The model is an essential
generalization of the well-known Dagdale-Barenblatt model. Experimental
examination of our model demonstrates its predictive power. Moreover, our
model is one of only a few known thermodynamic models which describe a wide
range of experimental data with no adjustable parameters. A new measure for
material toughness and the prediction of R-curve behavior illustrate the practical
application of the model. The model has been reported at SPE annual meeting [9],
ASME meeting [10], and is to appear in Int. J. Fracture [11] and J. of Appl.
Polym. Eng. Sci. [12].
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Previous analysis has led us to recognize the important role of the process
zone evolution in fracture phenomena. In Chapter 5 the experimental and
theoretical studies of the process zone kinetic are presented. The kinetic equation
of process zone growth is derived by using the ideas of the thermodynamics of
irreversible processes. The proposed equation results in a master curve for the
process zone evolution for various initial conditions, and serves as the basis for
mathematical modeling of CL evolution. The material in this chapter has been
presented at SPE annual meeting [9] and Fracture Colloquium at Wright-
Patterson Air Force Base, November 1991; two papers have been accepted for
publication in Appl. Polym. Eng. Sci. [13,14].

The relationships between the rates of CL growth and the corresponding
driving forces i.e., CL kinetic equations are addressed in Chapter 6. Following
the general framework of irreversible thermodynamics, we formulate the kinetic
equations by expressing the CL growth rates as a linear combination of CL
driving forces. The proposed CL kinetic equations model well experimentally
observed nonmonotonic CL growth, and provide the basis for fatigue and creep
lifetime estimation. Such predictions have been examined by comparison with
the large data base of fatigue and creep experiments reported in [15]. Prediction of
lifetimes by the model is in an excellent agreement with an empirical formula,
which summarizes a large pool of experimental data. The developments of this
chapter have been reported at ASME meeting [16], SPE annual meeting [17], and
is accepted for the Third PanAmerican Congress of Applied Mechanics [18]. The
first paper on this subject has been accepted for publication in J. Appl. Polym.
Eng. Sci. [14].




CHAPTER 2
EXAMINATION OF FATIGUE CRACK PROPAGATION LAW

2.1 Introduction

Fatigue crack growth has been studied for more than 30 years out of about
150 years of fatigue research. The first rational formulation, which summarized
numerous experimental data, was due to Paris and Erdogca [19]. Since then,
various models have been proposed offering equations of fatigue crack growth.
All the models assume a functional relationship between the crack speed and the

stress intensity factor increment AK, = K, |cm“— K, Icmin, mean value of K, or the

energy release rate, G,. For example, a comparative analysis of a number of
models for fatigue crack growth in polymer can be found in [29]. The as: umption
of a functional relationship between the crack speed and AK,or C, implies that the
influence of the crack growth history prior to a given moment can be neglected.
However, there are experimental evidences to the contrary [21]. Thus, it appears

that the crack growth rate in general cannot be expressed as a function of AK; or

G, only.

In this chapter, we report the results of a specially designed experimental
program of examining the relationship between the fatigue crack propagation
rate and AK; (or G,). Fatigue crack growth in a vicinity of a hole in a single edge
notcired (SEN) specimen has been observed through travelling optical microscope
and record on a video system. Commercial polystyrene (an amorphous
transparent polymer) has been chosen as a model material. The experimental

setup and parametric studies are described in details in Appendix A (section
A221).

One can observe a layer of damage (crazing in cur case) surrcunding and
preceding the fatigue crack (see Fig. 2.1). The dark zone in Fig. 2.1 reflects the
layer of intense crazing. A system of th: crack and its surrounding damage zone
is referred to as Crack Layer (CL) [2]. An Active and Inert Zones are
distinguished within CL. The Active Zone (AZ) is the part of CL adjacent to the
crack tip, where the damage growth is taking place. Figure 2.2 illustrates an AZ
morphology in this experiment. The inert zone of CL appears as a trace of the AZ.
It is illustrated in Fig. 2.2 by the consecutive configurations of the AZ at 790, 800,
810, etc. cycles and the corresponding envelope of the CL. Notice that the AZ
positions are almost equally spaced whereas the time intervals (in number of
cycles) are significantly different. In particular, the crack significantly slows
down between C and D positions (see Fig 2.3). This coincides with dramatic
changes in AZ size and orientation.




LOADING DIRECTION

Figure 2.1 The fatigue-grown layer of intense crazing around a crack in a
vicinity of a hole in a single edye notched specimen. Material:

commercial polystyrene.
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Figure 2.2 Crack Layer Notations.
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Figure 2.3 Crack Layer evolution in a vicinity of a hole. For each AZ position,
the number of cycles counted from the beginning of the test is
indicated. The middle line represents the main crack trajectory.

The analysis below demonstrates that there is no unique relationship
between the crack propagation rate and conventional fracture mechanics
parameters such as AK, or G,. Moreover, it results from our studies that the
changes in the craze distribution and orientation within the AZ are primarily
responsible for the effect.

Crack Layer Kinematics

In the absence of the hole, a fatigue crack in SEN specimen under simple
tension propagates along the axis of symmetry. In our experiments, we position a
hole at three different distances from the axis of symmetry (which we refer to as
"reference line"). In all three cases, the crack propagates in a rectilinear fashion
until it enters the domain where the elastic fields are perturbed by the presence of
the hole. At this stage the crack begins to curve, as illustrated in Fig. 2.4 where
crack trajectories traced from different specimens are superposed. The
trajectories begin at differently positioned notches (reference lines at the
distances 5r/3, 7r/3 and 9r/3 from the hole center, respectively; the hole radius
r = 1.5 mm). The trajectories are well reproducible.

Figure 2.5 shows the speed of the crack along each of the trajectories shown
in Fig. 2.4 (three separate tests). The position-vs.-cycle data are obtained from
playback of the video recording of the crack growth process.

In Case 3 (crack trajectories farthest from the hole), the crack accelerates
monotonically throughout its propagation. In Case 1 (crack trajectory closed to
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the hole), the crack speed is initially higher than in Case 3, then, as it enters the
"shadow" above the hole (reduced stress), it decelerates to point of being almost
arrested and, finally, it accelerates again. The crack behavior in Case 2
(intermediate position) falls in between those above.

In what follows, we will discuss mainly the most revealing Case 1.

Stress Intensity Factor and Energy Release Rate Estimation

Traditionally, the kinematics of fatigue crack growth is correlated with
fracture parameters such as the stress intensity factor increment or the energy
release rate (ERR). To do so, in our case, an elastic solution for infinite media,
has been worked out by Rubinstein [22]. An adaptation of the Rubinstein's
solution, which makes use of mode I and mode II correction factors for load-
specimen configurations under consideration is presented in Figs. 2.6-2.7. Non-
zero mode II stress intensity factor (Fig. 2.7) results from both the curvature of the
crack and its interaction with the hole. WE also utilize ERR G, = (K} +K,2,)/E to
correlate with fatigue crack growth rate, since the mixed mode crack tip field is
present. The ERR as a function of the crack tip position is shown in Fig. 2.8 for all
three test configurations.

It should be noted that the mode I dominates: the ratio K/K;; = AK/AK,, <
8%, hence the mode II contribution to the ERR is less than 1% [K/(K? + K2 )< 1%].
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Figure 2.6 Normalized stress intensity factor K, as a function of the crack tip
position. The computations were performed for the crack
configurations observed in the tests (Fig. 2.4).
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Crack Speed Versus AK; , G,

We start the discussion with Case 3 (see Fig. 2.4) which closely resembles
the conventional test condition, i.e., a rectilinear crack in an SEN specimen. In

this case, the log (df/dN)-vs.-log (AK;) plot indeed has a common shape (see
Fig. 2.9): a significant portion of the curve (region II) is fairly linear, thus the

power law approximation d(/dN = A(AK')", A=2.4x10"° n=2.2 (SI units) is justified.

- REFERENCE LINE

LOx, i /AN

1OG (aKky

Figure 2.9 Crack speed d//dN for the crack trajectory farthest from the hole
(Case 3 in Fig. 2.4) in relation to the corresponding stress intensity
factor increment AK;in a log-log plot. The relation is obtained from
Figs. 2.5 and 2.6. The thick arrow above the curve shows the
direction of crack growth (i.e. the increment of "X" in Figs. 2.5 and
2.6).

For the crack having the intermediate position relative to the hole (Case 2 in
Fig. 2.4), there are two ranges over which the log (d(/dN )-vs.-log (AK)) relation is
approximately linear (see Fig. 2.10), though both line is not a good approximation
for the curve any more. However, one still finds one-to-one correspondence
between d//dN and AK,.

For the crack trajectory closest to the hole (Case 1 in Fig. 2.4), the very
concept of the existence of a functional relationship between d//dN and AK, breaks
down. Indeed, as Fig. 2.11 shows, there is a range of value of AK,; (roughly
between 2.7 and 3.1 Mpa-m'? ), over which there are three different crack speeds




11

corresponding to one value of AK,. Similarly, there is a range of crack speed

(between 2.8X10™° and 28X10™° m/cycle) over which there are three different values
of stress intensity factor for each speed. In addition, one observes that there is no

unique relation between d{/dN and AK,, if the three tests are compared.

Since we are dealing with a mixed mode crack, we also show the relation
between the crack speed and ERR for each of the three cases (Fig. 2.12). For the
crack farthest from the hole (Case 3), there is a unique relationship - monotonic
with monotonically increasing slope - as commonly observed. For the
intermediated Case 2, the relation is still monotonic, but the slope is not
monotonic any more. Finally, for the crack trajectory closest to the hole, there is
no functional relation at all between the crack speed and the ERR. Moreover, the
difference in crack propagation speed for the range of the normalized ERR > 16
mm (see Fig. 2.12) indicates a strong effect of crack growth history.

~3.5

4

1
3

LOG (df/dN)

5.5 -

8 -4 2 .3 .4 .3 R 7

LOG (AKy)

Figure 2.10 Crack speed df/dN for the intermediate crack trajectory (Case 2 in
Fig. 2.4) in relation to the corresponding stress intensity factor
increment AK, in a log-log plot. The relation is obtained from
Figs. 2.5 and 2.6. The thick arrow above the curve means the same
as in Fig. 2.9,
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Figure 2.11 Crack speed d(/dN for the closest to the hole crack trajectory (Case 1
in Fig. 2.4) in relation to the corresponding stress intensity factor
increment AK, in a log-log plot. The relation is obtained from
Figs. 2.5 and 2.6. The thick arrow above the curve means the same
as in Fig. 2.9.
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Figure 2.12 Crack speed df/dN for the three tests in relation to the corresponding
energy release rates. The relations are obtained from Figs. 2.5 and
2.8.
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Apparently, the stress intensity factors or the ERR are not the only
parameters responsible for the crack growth rate. Our observation indicate that
AZ morphology plays an important role in the determination of the crack speed.
IN what follows, we elaborate on this statement.

It should be noted that the crack speed measurements obtained from video
recording are not highly accurate. Therefore, we have repeated the key
experiment (Case 1) at high stress level, (6., = 0.45 G, Opin/Omax = 0.1) which
allowed a cross-examination of crack speed measurements from the video
recording by those made from a 160X micrograph of the fracture surface and the
side view, both carrying clear marks of crack tip positions. Also the AZ evolution
was followed in more detail.

Figure 2.13 represents the d/ /dN-vs.-G, curve for the above test with an
addition of the schematic pictures of the AZ at various stages of the main crack
growth. For each AZ position, we show the crack growth direction, AZ overall
shape, and craze orientation within AZ. As before, there is a range 13 < G, <1£
[mm], where there is no one-to-one correspondence between df/dN and G,. This
statement has been carefully checked and holds even if the two lower portions of
the curve over this range are not distinguished (the difference of the speed values
is on the borderline of the experimental accuracy).

This observation indicates the necessity to incorporate parameters of AZ
evolution into the equation of crack growth.

Damage Characterization and Active Zone Kinematics

A two-dimensional linear elastic solid containing a crack surrounded by a
random array of microcracks is considered. It represented a particular case of
crack layer [2]. A random array of microcracks can be visualized as follows. Let
us consider N realizations of CL formed under identical loading conditions (see
Fig. 2.14). It is observed that the configuration of the microcrack array varies
from one realization to another. Thus a statistical characterization is required.

The microcrack density with orientation 6 can be introduced as follows (see
Fig. 2.15):

N n
p(0/x) = % El \l,kZI £k(x,q). 2.1)

Here ¢% in RHS is the length of a portion of k-th microcrack with orientation q
belonging to the elementary cell V surrounding a point "x", nm is the number of
such microcracks in m-th realization of the microcrack array and N the number
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Figure 2.13 Crack speed d#dN (N number of cycles) in relation to the
corresponding energy release rate G,. The thick arrow means the
same as in Fig. 2.9. Shown along the curve are the shapes of AZ at
various crack positions. In each of the AZ's, the corresponding
distribution of craze orientations in the AZ is roughly indicated. The
pair of arrows next to each AZ contour shows the main crack
orientation: the long arrow is parallel to the reference line (see
Fig. 2.4), and the short arrow shows the current direction of the
crack at its tip.

number of realizations considered. The function p(6/x) represents a histogram on
the unit radius circle (sphere in 3-dimension). Employing conventional statistical
analysis, we substitute the histogram by the corresponding angular distribution
of microcrack density p(6/x) at the given point "x". If this distribution has an
elliptical shape, it can be characterized by a second rank tensor [23]). If the shape

of the distribution is more complex, the higher rank tensors can be utilized to
approximate the distribution.

For most practical cases the size of V is much smaller than the
microcracks (crazes) length and different directions of cracks or crazes within V

are mutually exclusive. Therefore p(6/x) can be presented by two Dirac's delta
functions (to account for two faces):




crack microcrack array

Figure 2.14 N realizations of crack layer under identical loading conditions.
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Figure 2.15 The schematic representation of the active and inert zone and the
subdivision of the crack layer into a rectilinear mesh. The boundary
between active and inert zone is illustrated following [7].
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p(6/x) = % p(xX)(5(8 - 8,) + &8 — (8,+T)), (2.2)

where 0, stands for a crack (craze) orientation.

It is convenient to normalize the angular distribution:

p(0/x) = % Po(x) 0(6/x), (2.3)

where

2n
po(x) = f p(6/x) d6.
0

The latter represents the total microcrack density in a point "x" and has
dimension (m?m?®). This quantity can be directly measured (see for example
[24,25,26]).

The fact that microcrack length is larger than the size of elementary cell,
implies that the angular distribution of microcracks is not sufficient to formulate
the microcracks interaction problem. Thus in addition to p(6/x), we introduce a
conditional probability distribution p(¢/x,0) of microcrack length #(8) with
orientation 6 crossing V. Finally, the damage D(x) at a given point x is
characterized by the microcrack density 6,(x), angular distribution ¢(6/x) and the
microcrack length distribution D(x) = {84(x), $(6/x), p(¢/x,0)).

Figure 2.16a shows a micrograph of the AZ developed at about 820 cycles
(see Fig. 2.2). At this stage the CL enters the domain of high stress gradient
resulting from the CL-hole interaction.

We characterize the AZ morphology by the craze density distribution p(x)
and the average AZ craze orientation w. Specially, the craze density at a point x is
the total area of the craze middle planes within an elementary volume (its center
at x) divided by V, thus the dimension of p is mm?*/mm®. (In Fig. 2.16b, p(x) is
represented by the contours of equal craze density.) The size of the elementary
volume is chosen much smaller than the typical craze size, thus all crazes are
parallel within V. Craze orientation at x is the angle w(x) between the crazes in
V and the direction tangent to the crack at its tip.

We integral the following integral parameters of crazing: total crazing
within the AZ
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Figure 2.16 (a) A micrograph of the crazed zone ahead of the crack tip
immediately after 820 cycles. (b) An outline of the AZ from the above
micrograph; shown are: contours of equal craze density p [X 0.41
m-!], position of the AZ gravity center x., eigenvectors y,, v, of the AZ
central inertia moment matrix E, and the average AZ craze direction

(dashed line).
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R= f p(x) dV,

VAZ

the gravity center of the AZ (see Fig. 2.16b for an illustration)

Xi = %f xip(.)é) dv , i=1,2

Vaz

the normalized “central inertia moment"

1 ..
i~ ﬁf (x; - x)x; - x Jp@ V., =12
Vaz

(represented in Fig. 2.16b by its eigenvectors v,, v,) and the average craze
orientation

= % f ox)px) dV,

Vaz

represented by the dashed line in Fig. 2.16b. The advantage of such integ:ral
parameters is that they are insensitive to local fluctuation of craze t:iensny.
Comparing the values of the above parameters for consecutive AZ position, one

can evaluate the rate )_zc , of AZ translation together with the rates of rotation and

deformation (recovered from f, and (;), see [3] for details).

Our observations indicate that t : crack speed near the hole is strongly
correlated with evolution of AZ. For example, Fig. 2.17 shows that the crack speed
d(/dN reaches its maximum approximately at the same point (x = 5 mm) where
the AZ area reaches its peak and, vice versa, d{/dN reaches its minimum at the

noint (x = 6.5 mm) where the area also has a minimum. Also, it should be pointed
out that crack deceleration coincides with a drastic mismatch between the
average craze orientation and the crack propagation direction (see Fig. 2.18). In
regard to this, it should be noticed that the changes in the average craze
orientatior. represent only part of AZ rotation. The rest of it is associated with the
rotation of the eigenvectors of AZ inertia moment [.

For the cenditions described above, the crack-damage interaction is the key
problem for modeling crack layer growth.




19

. rack Tveed

|
isae

sse
b1 ]
a5Q
488

ise

A (M)

s

Ji/AN(prt ooy )

1 250
{ 200

158

'Il'lIIIIII'IU'IIIIIIT!IYI»

X (MM)

Figure 2.17 The Active Zone area A as a function ¢{ the crac< tip position X (solid
line) shown against the crack seed df/dN (N number of cycles) as a

function of X (dashed hine).

3 600
E
3 -
“r s00 -~
- -
2 o
2 w00 =
0k b
E 300 %
& >
3 00 3
- 2
2 :': 100
h— )
N - o
3 =
Y
3 Average Craze Orientation
-8 |-
-
3
ETES
-18 3 L 1l L 1

-
~
-
»
»
-
~
o

X (MM)
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cycles) as a function of X (dashed line).




CHAPTER 3
ELASTIC CRACK-DAMAGE INTERACTION PROBLEM

3.1 Elastic Interaction of a Crack with a Random Array of
Microcracks

Introduction

As illustrated in the previous chapter, a damage zone (DZ) usually
accompanies slow crack propagation under fatigue and creep conditions.
In this chapter we consider a special case of a damage zone consisting of an
array of localized discontinuities such as microcracks or crazes. Figure 3.1
illustrates an array of crazes formed in a vicinity of a fatigue crack in an
amorphous polymer. Statistical distributions of microcrack densities,
orientation and length appear to be the most appropriate characterization
of such type of damage [3,4]. A hypothesis of a self-similarity of DZ, i.e.,
self-similarity of the statistical distributions at various stages of the DZ
evolution has been first proposed theoretically [2] and then supported by
experimental examinations [27,28]. The self-similarity hypothesis (SSH)
yields a decomposition of the DZ propagation into elementary movements
such as translation, rotation and deformation. The corresponding driving
forces are represented by linear functions of the energy release rates (ERR)
associated with the elementary movements [29]. This motivates the
present study of crack-microcrack array interaction and an evaluation of
ERR's resulting from the array translation, expansion etc.

Three approaches recently advanced to evaluate elastic fields
associated with the presence of microcrack array in a vicinity of the main
crack tip. The first approach models the microcrack array as an inclusion
of an effective elastic media. This well posed boundary value problem of
crack partially penetrating into a "softer inclusion" has been addressed by
various authors [30-33]. However, there are various shortcomings in this
approach from the physics stand point. First it does not account for local
fluctuations of microcrack density and length, which is of primary
importance for fracture process. Secondary, the relationship between the
statistics of the microcrack array in the vicinity of the main crack and the
effective elastic constants is, in general, unknown. Determination of such
relationship is equivalent to solving the crack-microcrack interaction
problem. Besides that, the distribution of microcracks in the array is
usually a heterogeneous one. To reflect that, an equivalent elastic
inclusion should be nonhomogeneous and anisotropic one that would lead
to certain computational difficulties.




21

The second approach to crack-microcrack interaction uses a detail
description of the location, size and orientation of every microcrack in
every particular realization of the microcrack array [34-39]. Apparently,
this leads to a computational limitation and the method becomes
impractical for an array similar to one shown in Fig. 3.1.

Figure 3.1 The optical micrograph displaying the damage zone (craze
array) near the crack tip in an amorphous polymer.

The third approach characterize the microcrack array by statistical
distributions of microcrack densities, sizes and orientation. It leads to
evaluation of integral (average) parameters associated with microcrack
array [4,7,40,41]. The present paper follows the third approach and is a
continuation of our previous work.

The statistical distributions of the microcrack lengths as well as the
distance between the microcracks, their locations and orientations with
respect to the main crack are essential for the interaction problem. We
employ a characterization of a random array of microcracks in terms of
distributions of the size, orientation and density of microcracks proposed
by [4]. Specifically we characterize the damage at a given point x by the

microcrack density p,(x), angular distribution 9(8/x) and the distribution of
length of microcracks p(#x, ) with orientation 6. The microcrack density
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Po(x) is defined as 1/2 of crack surfaces per unit volume and has

dimension m'!. Apparently, it is different from dimensionless “microcrack

density” e conventionally used in damage mechanics. A corresponding
quantity in our case is microcrack concentration pf. The relationship
between pland the effective elastic constants for "dilute” microcrack
concentration in 2-D case can be easily found [8].

Two issues are addressed in this paper. The first is a formulation and
solution of crack-microcrack array interaction problem in terms of the
above distributions. It is based on the Green's function of linear elasticity
for a dislocation dipole placed in a vicinity of the main crack tip given by
[42]. The second is an evaluation of ERR's. The effect of the distributions
of microcrack density, length and orientation on the SIF and the ERR's due
to microcrack array is illustrated on examples.

Formulation of the Problem

The linear elastic interaction of crack microcrack array can be
obtained by the superposition method based on the Green's function "G" for
a dislocation dipole interacting with a crack. Microcrack opening
displacement is conventionally represented by a continuous distribution

b(§) of dislocation dipoles. Thus the stress, displacement and SIF of the

main crack due to a particular microcrack (4) can be expressed as:

u(x)=J b(E)D(x,E)dE, ofx)=| bEF(x,E)dE (3.1)
~~ 6 20 O 2

K= b®)Gar(®) dt
PO Car @)

Where the influence functions &, F and Ggy are obtained by simple

transformations of the Green's function G [41]. Then by means of the
superposition principle, the stress, displacement and stress intensity factor
due to a microcrack array can be obtained by integrating Eq. (3.1) over the
domain V occupied by the array with microcrack density p as a weight
function.

v = [ pBb®xEA, o= [ PO FERDE  (3.2)
v v

K*= | p&)b(E) Ger §) dt
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The integrals in Eq. (3.2) are well defined if the microcrack concentration pf
tends to zero faster than rl/2.

}._1}{)1 r'2p(@m (1) =0 (3.3)

We consider below the case when this condition is satisfied.

The elastic fields in a vicinity of the main crack surrounded by a
process zone can be expressed as a sum:

u=u‘+u*, o=c+o* (3.4)

where u° o° and K® are the displacement, stress and SIF due to the main
crack under the remote loading o° respectively. Thus the traction free

condition on the main crack is met since both terms in Eq. (3.4) satisfy it,
the remote loading boundary condition is satisfied by the first terms in Egq.
(3.4). The remaining boundary conditions, i.e., the traction free faces of the
microcracks are met by solving a system of corresponding integral
equations with respect to o¢* and K.

The equations are written for every microcrack embedded into an
effective stress field. The latter is defined as following. Let us consider the
effective stress o° along the i-th microcrack line generated by the main

crack and the rest of microcracks in absence of i-th microcrack:

M
0°(x) = ¢%(x) + T " bU(E) F(x,E) d§ (3.5)

Jei ~ o~

Then applying -o*(x) - n(x) on i-th microcrack faces, we satisfy the

traction free requirement for i-th microcrack. Applying this treatment to
every microcrack, one obtains the system of integral equations. For
simplicity, we assume o°(x) being constant on the microcrack scale. Then

the relation between the effective stress and the microcrack opening
displacement is well known:

b=Z gt .n (3.6)
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Combining Eqs (3.5) and (3.6), we obtain a system of integral
equation with respect to the unknown b functions. Solution of these
equations leads to the solution of the interaction problem.

Substituting the summation in Eq. (3.5) by the integration over V
with weight function p(x) and employing a conventional regularization of

the singular integrals in Eq. (3.2) (see [39] for details), we rewrite
equations (3.5) as:

o0 = °0 + | pE) )~ bx] Fex,t) d (3.7)
v

~ o~

Finally, combining the equations (3.6) and (3.7), we obtain the
following equation for the unknown microcrack opening displacement
vector b(x):

nfx) ndx)
bX)=—f o n+—g— {f (&) [b&) -~ bx)] F(x,£) d&} - n (3.8)
v

~ o e

Apparently from Eq. (3.8) the components b, of an average vector
opening b(x) at point "x" can be viewed as the sum of the opening due to

the main crack with remote load and due to the microcrack array in
presence of the main crack. The integral in Eq. (3.8) can be divided into
summation by employing the same method described in [4]. Thus Eq. (3.8)
can be reduced to two system of algebraic equations with respect to the
components of microcrack opening displacement b, and b,:

AuBy +A;,B, =F
AuBy +AyB, =F, (3.9)

Where B, and B, are the columns matrix consisting of the value of
microcrack openings b at points of discretization. Matrix Ai; and F; are
known functions of the microcrack density, length distribution and the
elastic properties of the undamaged material. The equation (3.9), in
principle, can be solved by a numerical technique. However, the singularity
of the effective stress at the crack tip creates an obstacle for the
computation. To overcome this problem, we decompose the effective stress
¢*" into a singular and a regular ones:




eff

oTx =

~

9(8) + o,"(x) (3.10)
2nr =

The form of the singular part of the effective stress is based on the
analytical solution with unknown K¢, The regular part of the effective
stress are obtained numerically. If the microcrack orientation is
statistically isotropic at every point of the active zone, the effective stress
singularity is expected to be the same as conventional singularity in an
isotropic material. For an anisotropic statistics, i.e., for a microcrack array
with a dominant orientation, the singularity of stress field is expected to
resemble that in a media with the corresponding anisotropy. Then, the
order of singularity is still the same (r'V2), but the angular distribution of
stress @(8) depends on the particular anisotropy.

Knowing the b(x) field, the SIF Kleff, the elastic fields u(x) and o(x) can
be radially reconstructed by Eqgs. (3.2) and (3.4).

Crack-microcrack Interaction

Example 1. In this example we compare the SIF calculated using our
scheme with that obtained by modeling a microcrack array as an elastic
inclusion with isotropic effective elastic properties. A circular shape
damage zone and the corresponding inclusion are considered. The elastic
properties of the inclusion are chosen as effective properties of an elastic
media perforated by microcrack array with constant microcrack
concentration (pf{= constant). For computational purpose we select the ratio
of the radius of damage zone and the main crack length R/L = 0.1. All the
microcracks are parallel to the main crack, so the singular part of the
resulting effective stress field similar to that for an orthotropic material
where the orthotropic property comes from the distribution of microcracks
[8]. A low microcrack density case, the range 0 < pf < 0.2 is considered to
examen the effect of microcrack array on the SIF. It should be noted that
the above microcrack concentration is different from commonly used
microcrack densities "e" [32]. Here, the relation between the effective
elastic properties and the microcrack concentration is taken from [8] for
two dimensional case. Considering the equation (3.2), the effective SIF can
be expressed as following:

K==K*+ K =K'+ [ p(&) b(&) Gor (&) dE (3.11)
v
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The dependence of SIF on microcrack concentration p/ is shown in
Fig. 3.2 by solid line. The dotted line represents SIF of Hutchinson [32]
whose result given in terms of the ratio of the initial and effective Young's
modular of material has been reformulated in terms of the microcrack
concentration. It should be emphasized that the Huchinson's [32] results is
obtained for an isotropic inclusion which can be considered as a model of
an isotropically distributed microcrack array. For the case when all
microcracks are parallel to the main crack, our solution should be
compared with an anisotropic inclusion problem. However, to our
knowledge, the SIF for a crack partially penetrating an anisotropic
inclusion is not known, therefore we compare our results with the closest
available solution. It is expected that shielding of parallel microcrack array

is higher than the randomly distributed microcracks, i.e., KIeff of our
solution is smaller than chff given by [32].

The main advantage of the method described above is that it can
deal with crack-damage interaction equally well for uniform and
nonuniform distributions of microcracks. As soon as the microcrack density
b(x) and the microcrack length distribution ((x) are given (e.g., measured

by experimental means), the interaction problem can be solved using the
same numerical procedure as above. This statement is illustrated in the
next example.

Example 2. Let us consider a specimen of the same geometry and
loading condition as in an experiment reported by [24] (a SEN specimen of
an amorphous polymer with Young's modulus E=2.2GPa, Poisson's ratio
v=0.3, applied load ©,,=16MPa). The evolution of the damage zone was

monitored by a video recording system attached to an optical microscopy.
It should be noticed that the damage reported by [24] consists of crazes. In
our example the crazes are substituted by microcracks. The calculation is
performed for the microcrack array whose density coincides with the
observed craze density and length distribution resembles that of crazes.

The microcrack density po(x) employed is shown in Fig. 3.3a. The

distribution of mathematical expectation of microcrack length is chosen as
an extrapolation of the peripheral craze length distribution:

[(x)=0.06 {4 +0.15 ()% ifx,>0

[(x)=0.15 ()% if x, <0 (3.12)
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where £ and w are the length and half width of the active zone
respectively. Using the numerical procedure as described above the
effective stress field is constructed for such microcrack array. The result
of numerical computation for a=2 is presented in Fig. 3.3b, which displays
the 02;" component of the effective stress field. Other component of the

effective stress as well as the microcrack opening distribution are reported
in [4]. The effective SIF K here is K =0.88 K°, where K stands for SIF of

the main crack without the damage zone.
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Figure 3.2 The dependence of chff on the microcrack concentration pL

Evaluation of Energy Release Rates

An elegant approach of evaluating the elastic energy changes due to
initiation and growth of defects was outlined by [43,44]. Following his
approach one can express the energy release associated with the process
zone translation, expansion etc. in terms of Eshelby tensor P. For example,

the ERR J, due to "translation” of the damage zone can be written as:
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Jk:f a,PkJ dV, ij'_'fakj—c;i Uy (3.13)
\ 4

Here V is the domain occupied by the damage zone, ¢* is Piola-Kirchhoff

stress tensor and f is the strain energy density. To evaluate
Eq. (3.13) one needs to know the elastic fields ¢ and u of the interaction
problem discussed in the previous chapter.

Below we consider only the energy release associated with
translation of the damage zone. Let us decomposed the DZ into N, x Ng
elementary cells (see Fig. 3.4). Then the integral over V in Eq. (3.13) can be
rewritten as:

N, N;
a=1 ﬁ:]_ VaB
where VaB is the volume of the elementary cell. Since 9;P,; = O within a

homogeneous domain, the area integral in Eq. (3.14) can be converted into
a path integral by means of Gauss Theorem:
aIPU dV=f Pl] n_,dr (3.15)
r

f"aﬁ af

where ruB is the total boundary of the elementary cell VaB' I‘mB consists of
the surfaces Fapcr“ks of microcracks penetrating the elementary cell, the
boundaries Faﬁmt between Vqp and the neighboring cells and a part I‘OLB""‘t
of external boundary V when the elementary cell VOLB is one of the extreme

peripheral cells of the active zone. When the summation in
Eq. (3.14) is performed, the integrals over I‘aB‘“t cancel each other since
there are always two opposite directions of integration. The summation of
the integrals over Faﬁe"t results in the integral aver the boundary of the
active zone V. The integrals over traction free rectilinear microcrack
surfaces are vanishing everywhere except the microcrack tips. There are
two types of those integral paths, i.e., r*andr- (see Fig. 3.4). The integrals

in the RHS of Eq. (3.15) over I'*.and I'" represent the energy release rates

Gl+ and G, respectively. For small microcrack density one may employ a

piece-wise constant approximation of o®ff on the scale of microcrack length
"£" It results in the following expression for ERR:
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G =+ (- g+ nf1 + (1 -0 V] (3.16)

With "+" and "-" correspond to the I'" and I'", respectively. In the total sum

Gl+ and G,~ balance each other except: (a) when there is an unbalance in

numbers of the "left" (-) and "right" (+) microcrack tips (see Fig. 3.4) and
(b) there is a difference in the mathematical expectation of the microcrack
length on the left and right size of the elementary cell under consideration.
The first is associated with the gradient of the microcrack density p and
the second with the gradient of the mathematical expectation of crack
length <& crossing a given point. The summation in Eq. (3.14) in the limit of

N, and NB approaching zero gives the final expression of ERR due to

translation of the damage zone:

J1=j Py, njdl“—f = cosOl(n - )] +[( - 0™+ 1]
v vE

[£(cosO 9,p + sinB d,p) + p(cosBd,[ + sinbd,/)] dV (3.17a)

where 0 is the average orientation of the microcracks.

Considering a high craze density case, we utilize the solation in Tada
[45] for a craze in a thin strip of width h=1/p instead of piecewise constant
approximation of o°". The boundary condition is related to the craze

formation stress ¢ which is a material parameter. Then the ERR due to

translation of the damage zone can be expressed as:

J,—J aP,,n,dI‘ f ﬂsﬂ[(n 0" -n)’]+[(1 - 0" - 1)*] (cos 9,p + sinb dp)ldV (3 .17b)

We have performed the computation of Eq. (3.17b) for the craze
array reported in [24] . The total ERR J, consists two parts, one path
integral J, . and one volume integral J

Jy = Jurt Jyy = 0.86 Gy + 0.54Gy (3.18)
where Gl0 is the ERR of the main crack with no damage zone (G10=

(KIO)Z/E). The volume integral depends on the craze formation stress ¢~

which is 1.60" in above example.




Summary

(1). The interaction between main crack and surrounding microcrack array
is formulated in terms of the distributions of the microcrack density and
the mathematical expectation of microcrack length. The formulation is
based on the analytical solution of the interaction between a viack and a
dislocation dipole. The approach is illustrated by a special case of a circular
damage zone with a constant microcrack concentration and all microcracks
being parallel to the main crack. The shielding effect of the microcrack
array here is compared with that of an elastic inclusion. It is shown that an
isotropic elastic inclusion model underestimates the shielding.

(2). A more realistic microcrack array configuration is considered in the
second example. In this case the effective stress field within the damage
zone is decomposed into singular and regular parts. The singular part with
unknown effective siress intensity factor is taken from the asymptotic
solution of a crack in an anisotropic material where anisotropy corresponds
to effective elastic properties of cracked material. The regular part of ¢*Tis

determined from self consistency equation.

(3). A new technique to evaluate the ERR associated with the damage zone
translation is formulated. The ERR consists of two parts. The first part 1s
represented by a path integral similar to conventional J, inicgral. The

second part is represented by an integral ovc the DZ domain and depend
on the geomctry of the process zone and the statistical distribution of
microcrack density, length and orientation.

(4). The total ERR associated with translation of the damage zone is
characterized by tne microcrack density and length distributions.
Computation of ERR for the particnlar craze array indicates that the ERR

due to damage zone advance is the same order of magnitude as Gl0 .

3.2 KEffective Elastic Properties of Elastic Solid with Microcracks

Introduction

Effective elastic properties of an clastic solid containing many
microdefects are often discussed in composite materials and continuum
damage mechanics. In continuum damage mechanics, effo:tive elastic
properties of elastic solids with microdefects sometimes ae used as a
measure of damage. A brief review of an effective elastic properties
evolution for an elastic solid with microcracks can be found for example in
[46]. Recently, the relation between damage and effective elastic
properties was discussed by [47]. However, although the effective elastic
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properties of solid containing microcrack array with interaction between
the microcracks has been considered [35-37,42,48], most of work about
effective elastic properties are presented based on the small density
microcracks configuration (see Fig. 3.5a). To our knowledge, the problem
of effective elastic properties of elastic solid with high density
microdefects (i.e., the distance between microcracks is much smaller than
microcrack size, see Fig. 3.5b) was not presented before except a few
special cases such as a periodic array microcracks.

(a) (b)
T Sy p—
eme—— Ih ——
bt . | ! ]
- "_"_4'—_'—“ - ' 2a o

Figure 3.5 The sketch of a elastic solid with microdefects (microcrack or
crazes).

(a). the case of small density microcracks.
(b). the case of high density microcracks.

For the problem of interaction between the microcracks, usually a
microcrack array is modeled by detail description of the location, size and
orientation of every microcrack [35-37,42,48]. Apparently detail
description implies certain limitation on the number of the interaction
cracks [49]. In order to solve the interaction problem of large number
microcracks, a method based on the double layer potential technique [39],
a self-consistency method [4,34) and a semi-empirical method [7,40] have
been approached. For high density of microcrack (i.e., the distance
between microcracks is much smaller than microcrack size), the problem of
interaction between microcracks is so complex that the method emploied
in the previous case becomes unrealistic. In this paper, in order to discuss
the relation between the effective elastic properties and the failure
criteria, a simple model is used to formulate the interaction problem. To
evaluate the contribution of microcracks to the effective elastic properties,
the element in Fig. 3.5b is represented by a simple beam for 2-D case and
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by a thin plate for 3-D case. Two different boundary conditions, i.e.,
simply supported and build in edges, are used to obtain upper and lower
bounds for the displacement jumps and consequently for the compliance.
The compliance in the direction perpendicular to the cracks for both 2-D
and 3-D cases are used as a example to test this model.

The relation between the effective elastic properties and the failure
criteria have been discussed by this paper. Statistical analysis of the
effective elastic properties show that the failure criteria appears to be
sensitive to the distribution of size, orientation and distances between
microcracks, where the effective elastic properties are quite insensitive to
such morphological details.

Effective Elastic Properties of a Linear Elastic Solid with
Microcracks

We consider a elastic solid with microcracks. The word "microcrack”
is used to emphasize that the cracks size is small in comparison with a
scale existing in the problem in question. The microcracks increase the
compliance (decrease the stiffness) of the elastic body.

An average strain <g;> over a representative volume v for an elastic
solid containing N microcracks is conventionally defined as:

N
<ei,->=<eg->+51\721 {[4P) ™ + [5™] ™ } d (3.19)
o™

m=1

where <egj> is the components of elastic strain in the bulk of the material,
4® and #™ are the components of the displacement jump across and the

normal vector to m-th crack surface o™, respectively.

The first term in Eq. (3.19) is simply related to the applied stress oj
due to Hook's low:

<g;> = Cl <Op> (3.20)

The second term in Eq. (3.19) can also be expressed in a similar fashion.
Indeed, the contribution of the displacement jump due to m-th microcrack
to the average deformation is




%j (47152 + (7] ™ } do = AC,z <O> (3.21)
< o™

where the tensor ACiu of compliance increment, in general, depends on the
size, location, orientation and the openings of the microcracks surrounding

the m-th crack. Thus the determination of ACi is based on the solution of
a quite complex problem of many microcracks interaction. If this problem
is solved, then the effective compiiance tensor represents a resulting affect
of individual microcrack contributions can be expressed as:

Cii = Cu + 2 ACS. (3.22)

m=1

However, although many method have been approached for the
interaction of microcrack array [35-37,39,42,48,49], there is no analytical
solution for an arbitrary microcrack array configuration. Thus, the
expression of Eq. (3.22) is useless except for a few particular cases. One of
them has been well studied is a small density of microcracks (the
interaction between microcracks is neglected). In the case of tension (for
3-D case, penny shape microcrack is considered) we have

W2
I 7 E Qfm) for 2-D case ‘
V
(m (m) (m (m) i
\ v 1t(2 -V)E (%"’ +n™Iy'] for3-D case’

where

QR = ™ r™ 8y + v n™ 8y and 1P = 8; ™ + Su ™ - V™ n™ ™, (3.24)

where E and v. are Young's modulus and Poisson's ratio of material,
respectively.  Apparently, the symmetry of the effective elastic compliance
tensor, Eq. (3.23), depends on the symmetry of statistical distribution of
microcrack orientation as well as the symmetry of the initial elastic
material.

The simplest result of Eq. (3.23) can be generalized accounting for
microcrack interaction for particular microcrack array configurations [28].
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For high density of micromechanics (i.e., the distance between
microcracks is much smaller than microcrack size), the problem of
interaction between microcracks is so complex that the method employed
in the previous case becomes unrealistic. In the following we present a
simple model which utilizes a small parameter, i.e., the ratio of the distance
between parallel cracks and the size of the microcracks.

The representative volume for 2-D case is shown in Fig. 3.5b (in 3-D
line cracks are replaced by penny-shape ones). High density
microcracking implies a/h>>1. Traction free condition on microcrack
surface is assumed. To evaluate the relation between the displacement
jump [u;] and applied stress o>, the element in Fig. 3.5b is represented by a
simple beam for 2-D case and by a thin plate for 3-D case. Two different
boundary conditions, i.e., simply supported and build in edges, are used to
obtain upper and lower bounds for the displacement jumps and
consequently for the compliance. The results of the calculation for the
compliance in the direction perpendicular to the cracks can be expressed
as follows. The details of the model are given in Appendix B.

For 2-D case (the microcrack is under the tension):

)
- ’T ®,(N™)  upper bound l

ACH, = - (3.25)
A7) &4
\ 5 @, (™) lower bound
For 3-D case (the microcrack is under the tension):
(m), 4
- ’G—EL ®;(N™)  upper bound l
ACy3 = - . (3.26)
‘ Q-E—) ®; M*) lower bound ’

where A = a/h, n.= fa. Functions @), ®;(1), d3(n), and d3(M) are given in
Appendix B.

The dependence of functions @), &), ds(n), and ds(M) on the
parameters A. and n for 2-D and 3-D cases is given by Fig. 3.6. An energy
release estimate shows that for 0.4< 7.<0.7 and A <0.25 the simple support
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beam model (i.e. the upper limit) approximate well the high density
microcrack effect including the interaction.

Effective Elastic Properties and Failure Criteria

As it was mentioned above, the changes in effective elastic response
are often used to "measure” damage. Such measure can be misleading
when used to formulate a failure criteria. Indeed, a failure criteria is
usually related to an instability of the most "dangerous” crack where as
effective elastic properties represent an average affect over all
microcracks. For an illustrative purpose, below we use the well known
Griffith's concept with the maximum energy release rate GI™ =2y as the
failure criteria. This failure criteria appears to be sensitive to the
distribution of size, orientation and distances between microcracks, where
as the effective elastic properties are quite insensitive to such
morphological details.

1.2
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Figure 3.6 The dependence of functions ®;(m), ®;(n), ®;(n), and ®3(M) on the
parameter fa.




Statistical Analysis of Effective Elastic Properties

A uniform distribution of microcrack location for both small density
and high density is considered. For simplicity, we assume that microcracks
are parallel (horizontal), and the microcrack length and distance between
microcracks to be Gaussian random variables as:

(-
. 267
fh=- 5= ¢ 0<< rnas (3.27)
{
(x-X)*
202
f(X)= - V—z‘]lt_?e Xmin<X<! (3.28)
d

where o,[0s, X are standard variance and mathematical expectation of
microcrack length and distance between microcracks. Now using the same
concept as [49] to consider the interaction between microcracks (see
Fig. 3.5a). By comparing the stress intensity factor of one crack with
collinear cracks under the same loading condition [50], a correction factor
which reflect the interaction between collinear cracks can be obtained.
The interaction between different layer cracks is ignored. Then the largest
component of the effective elastic compliance may be expressed as:

N
a _ t o =1 1 N2 2 n(1-x)
L = <Ci>, E[l+v22n(t‘“‘)\/{n(l_x)tan - )} (3.29)

m=1

where x=(a-f)/a is the relative distance between cracks. In this case the
largest component of the effective elastic compliance is Cf». For small
density of microcracks, a simple statistical analysis shows that the
normalized standard deviation of the maximum effective compliance is
proportional to N''2 (N is the number of microcracks in a representative
volume):

o(G) _  (0.0:\'2
<Co> k<ol\?d) (3.30)
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where o.and o, are the standard deviation of microcrack size and distances.
respectively. k = 2 for A = 1. 1 =0.4 and average distance between cracks
x=05a. Thus, when the representative volume is large enough, i.e.,
contains a large number N of microcracks. the scatter of the effective
elastic properties become negligible.

Using the same procedure as above and considering the Egs. (3.25)
and (3.26), the same result is obtained for high density of microcracks,
except the coefficient of proportionality k is about 10 times larger than
that of small density. Thus the relative scatter of effective elastic
properties decrease with number of microcracks much slower than for
small density case.

Statistical Analysis of Strength

Now we consider the scatter of G™ employed in Griffith's criterion of
tailure for the most dangerous microcrack. The largest energy release rate
results from the most unfavorable combination of two random variables:
crack length and the distance between the cracks.

The distributions of the largest crack length and the smallest
distance between the microcracks result from conventional in statistics of
extremes derivation [51]:

0 if [< bnin
_@ e - O
m
qu([)= = ifcmn<[<£nu (3.31)
1 if [> [nax
0 if X < Xmin

_NXM‘X
Fmin(X) = 1-e¢ X7 K if Xmun < X < Xenax (3.32)

1 iIf X > Xmax

where a, P are phenomenological parameters.
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Evaluation of the normalized standard deviation o(GP)/<G™*> for 2-D
problem shows for a <3 and B = 1

20%<G(GY—-<100% for small density (3.33)
<G{nu>
and
max for high densit
<G> (simple support beam model)

Thus one can expect a large scatter in strength measurements and
relatively low scatter in effective elastic properties. It suggest that the
later are not a good measure of damage.

Similar conclusion is formulated by [47] based on their numerical
simulation of five realization of a random array containing 48 cracks. The
results shows that the Young's modulus E../E, varied from 0.66 to 0.73
whereas o(G™*)/<GM™*> varied from 0.94 to 1.93.

Conclusion and Discussion

The effective elastic properties of an elastic solid with small and high
density microcracks are discussed. For high density of micromechanics,
the problem of interaction between microcracks is represented by a simple
beam for 2-D case and by a thin plate for 3-D case. Two different
boundary conditions, i.e., simply supported and build in edges, are used to
obtain upper and lower bounds for the displacement jumps and
consequently for the compliance.

The effective elastic properties of solid with microdefects is an
important way to analyze the volume average physical parameters of
materials. The effective elastic properties are volume average quantities,
then it is not sensitive to the distribution of shape and size of microdefects.
However, failure of an elastic solid is strongly depend on the detail of
microdefects, the size, orientation and distances between microcracks, the
effective elastic properties is not adequate to be used as a "measure" of
damage, and should be used with caution in the failure analysis.
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CHAPTER 4
THERMODYNAMICS OF THE PROCESS ZONE

4.1 Thermodynamic Model of the Process Zone
Introduction

Propagation of a fatigue crack by first forming a process zone ahead of
the crack and then forcing its way through the zone is a well-known
phenomena. The Dugdale-Barenblatt Model, (DBM), is conventionally
employed to analyze the process zone [15,52]. The application of the DBM
for various polyethylenes seems plausible since the basic features of the
model are observed, for example, the process zone has a thin strip shape
[53,54] and has constancy of stress along the process zone [55]. In this
paper we examine the differences between the size of the process zone
formed under fatigue and the DBM prediction. The process zone size is
evaluated based on fatigue striations observed on the fracture surface.
Recently Chudnovsky proposed a new model for the process zone [10,11],
which renders the simplicity of the DBM and the same time releases some
of its limitations. In this chapter the new model, CM, is employed to analyze
the process zone preceding fatigue crack growth in various polyethylenes
reported [56] and polycarbonate.

Description of the Model

The process zone in front of a crack is considered to be a zone of
allotropically transformed material. Indeed, in polyethylene or
polycarbonate analyzed below, the drawn material of the process zone can be
regarded as a second phase since it differs from the original one by its
physical properties, and is separated by a distinct boundary. A typical
process zone formed in front of a fatigue crack is illustrated in Fig. 4.1a.

Let G be the Gibbs potential of the two phase system shown in
Fig. 4.1b and V;; be the domain occupied by the second phase (process

zone). For isothermal condition and fixed remote load, an equilibrial
process zone, V. , renders the minimum of G:

8G[6.., 1, Vy |

Vi Gu=const. l=const. (4.1)

The brackets indicate that G is a functional of the zone Vi, and a function of
the crack length, 1, and the applied stress, O .
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Figure 4.1 (a) Schematic illustration of the process zone,
(b) Schematic illustration of the model.

Following Eshelby [43], the change in Gibbs potential of the system as

a result of the migration of the boundary dVy between two phases can be
expressed as:

. 0© tr
6G = 'f 6&; (Pij - Pij) n dI (4.2)
dVy

where Py is the energy momentum tensor of elasticity (Eshelby tensor)

Py=f8y-0*jxuy 4. f is the Helmholtz free energy density, c*jx and ug, stand
for Piola-Kirchhoff stress tensor and the gradient of the displacement vector

uy, respectively; 8§; is an infinitesimal vector of boundary migration dVy and
ny is the unit normal vector directed outwards from the transformed toward

initial material. Superscripts "0" and "tr" refer to the original and the
second (transformed) phase, respectively.

The continuity of the traction and the displacement vectors at the

phase boundary dVy,, the equilibrium and compatibility equations within each

phase together with equation (4.34) result in a system of integro-differential
equations for determining equilibrial Vi;. To our knowledge there is no
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analytical solution to the problem in such generality. To simplify the
problem the following assumptions are admitted:

a) The process zone width w is much smaller than its length I;:
w/l <<1, i.e., Vi, has a shape of a thin strip.

b) The process zone consists of a cold drawn material with a constant
draw ratio, A.

The two phase system equilibrium, (Fig. 4.1b), is represented as a
superposition of the two problems, illustrated in Fig. 4.2. The first results
from the original problem after removing the process zone and substituting

it with an equivalent traction oy,. The second is the process zone Vi,
submitted to oy, representing the action of the original phase onto the

- transformed one. The constancy of oy, along the phase boundary follows
from the phase equilibrium condition.

The width, w,, of the layer of the original material which undergoes
the transformation varies along the process zone and is unknown. The
width, w*, of the transformed layer is w*= Aw,. The displacement

continuity, i.e., the coherency of the phase boundary can be expressed as
follows:

w*(x1) - wo(Xy) = A(xy,l,) (4.3)

where A(x; 1) stands for the slit opening displacement (Fig. 4.2a) and x; is
the coordinate shown in Fig. 4.11b. Then the width wg(x;) of the initial

strip which undergoes the transformation is related to the slit opening
displacement and the draw ratio:

wolx1)=Alx] 1,)/(A-1) (4.4)

The volume Vi, of the initial material which undergoes the
transformation can be expressed as:

1+1,
Vn— = )\‘Jl—l-f A ( l,la;coo,ou-;x1 ) dx1 (4.5)
1

where t, is the initial thickness of the specimen. Given the assumptions a)
and b) it can be shown that the variation of Vi, is uniquely determined by
changes in 1,. Thus, equation (4.1) can be rewritten as:
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dG(oooylsla)' ..O (4-6)

dla O==const. J=const.

Since the slit is narrow we approximate A(x) ;) by the crack opening

displacement (COD) and employing a standard fracture mechanics
formalism, equation (4.39) leads to the following equation for 1; [11]:

K6, O 1, 1y) | =2 Kowll)!

Gw=const.,l=const. (A -1) Oy I=const. (4.7)

Here Kot is the stress intensity factor (SIF) for the problem of
Fig. 4.2a, Kl(oy:1,1;) is the SIF for the same problem with absence of .. A

new parameter Y' (Esz-P‘z'z) represents the jump of the Gibbs potential
density (per unit volume) over the boundary between the drawn and original
material (see next section).

\ initig_l material zone .
: J-prior"the transformation
]

(a) (b)

Figure 4.2 Crack carrying the transformation stress oy, at its edge (a) and
the process zone of the transformed material (b).




The three material parameters. yf, 4 and o, are emploved in the

model. It should be emphasized that these parameters can be determined
in independent tests, for example. in a tensile test on neck formation.
including the heat flux measurements together with calorimetry for
determination of the residual strain energy in the necked region. The

evaluation of yif, A and oy, for three PE's are presented in the next section.

Figure 4.3 displays the comparison of the DBM prediction and that of

our model for SEN specimen for various Y=yt / (A-1)0y; (6/Ox =0.23. 1/B=0.4),

where B is a specimen width. The vertical axis is normalized with respect
to the SIF Kg of the same crack in absence of the process zone. K'0t=0 gives

the DBM process zone length "b" and a point of intersection of two curves
(Ktot and -2Y K(oy,)) is the equilibrial process zone length of our model. The

equilibrial process zone length decreases significantly with Y. For =1, the
two models predictions differ by an order of magnitude. It is easy to see

from equation (4.7) that in the limit y'¥/o(A-1)— O, the model reduces to
the well-known equation of the DBM, i.e., K"!=0.

1.0 = S
A =0 444 4
0.8
o 06- |
E 0.2 4 ‘0" +
% 044 -
0J/0x=0.23
1/B=0.4
0.2
0.0
0.00

equilibrial I,/1 bl (DBM)

Figure 4.3 Graphic solution of equation (4.40) for various ?=y"/ (A-1)oyr (Ko
is the SiF of the same crack length in absence of the process
zone).




Evaluation of Material Properties

The factor Y has been measured in a simple tension test [10]. Typical
tensile stress-strain curves of initial and drawn PE together with the
photograph of a specimen illustrating the growth of a stable neck are shown
in Fig. 4.4. The materials properties relevant to the analysis are summarized
in Table 4.1 The necked material in the tensile test appears as a
homogeneously drawn continuum. In contrast the material within the
process zone is highly fibrillated (cavitated) due to the constraint of the
plane strain condition. The cavitation and fibrillation are well manifested on
the fracture surface and apparently play an important role in the fracture
process. For instance, the evolution of micro features on fracture surfaces

indirectly related to the crack driving force [9,57]. Thus, the value of ¥
obtained in the tensile test with neck formation is simply an approximation

of ¥ in a process zone formation.

Result and Discussion

a) Shape of the process zone

From equations (4.3) and (4.4), the width of the transformed layer w*(x,)
can be expressed through the slit opening A as w*(x;)=A/(A-1) Ax,;.L1,).
Thus, the shape of the process zone can be uniquely determined by the
model for given 1 and 1,. Fig. 4.5a shows the envelope of the set of process
zones calculated from the initial crack length to the current crack length. A
typical process zone formed in front of a fatigue crack in Polycarbonate (PC)
is illustrated in Fig. 4.5b. An effective draw ratio A¢ff=1.33 was used to
account heterogeneous drawing within the process zone [14]. The model
prediction shows a very good agreement with that observed experimentally.

b) Size of the process zone

Fig.4.6, 4.7 and 4.8 represent the SEM micrographs of the fatigue
fracture surfaces of M5202, TR140 and TR418 polyethylenes (specimens
courtesy Dr. N. Brown). The SEN specimens are 25mm wide and 10mm
thick with 3.5mm deep notch. A 1Hz sinusoidal load is applied with the

maximum and minimum stress *4MPa, respectively.

Fatigue striations are observed on the fracture surface [9]. Based on
the discontinuous fatigue crack growth mechanism reported elsewhere
[56,58] as well as our own observations, we consider the bands between
consecutive striations on the fracture surface to be a measure of the
corresponding process zone length. The band-width increases with the
crack length for every PE studied. The varirus PE's are distinguished by
their branch decnsity [56]. We note that the band-width increases with
increase in branch density for any given crack length.
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TABLE 4.1
MATERIAL PROPERTIES OF M5202, TR140 AND TR418 RESINS

Figure 4.4 The stress-strain curves of original and drawn material.

Resin M5202 TR140 TR418
Branch Density *1 1.2 2.3 46
(butyl/1000c)
Young's modulus 1.12 0.77 0.50
(initial PE) (GPa)
Young's modulus 2.73 2.00 1.50
(drawn PE) (GPa)
% 305 27.0 225
(MPa)
Gy 175 158 14.2
(MPa)
Draw Ratio 6.5 55 5.1
A
Energy of material 101.0 74.7 61.1
transformation %, (MJ/m3)
Y=0JA - Doy, 1.05 1.05 1.05

(Specimens and data *1, courtesy of Dr. N. Brown)
(oy=maximum load/cross sectional area of the initial state)
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a) the envelope of the process zone (The model prediction).

b) Composite optical micrograph of a side view of the crack with
the process zone in Polycarbonate.

Figure 4.5 The shape of the process zone.

Figure 4.6 SEM mlcroraph of the fracture surface of M5202
(Branch Density=1.2)




Figure 4.7 SEM micrograph of the tracture surtace of TR140
(Branch Density=2.3)
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Figure 4.8 SEM micrograph of the tracture surface of TR118
(Branch Densityv=4.6)
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Our purpose is to compare the theoretical prediction of the process
zone length. 1,. i.e., the solution of equation (4.7) for various 1. with the

observed band-width. The conventional fracture mechanics formalism is
employed to evaluate the SIF of equation (4.7).

The results of an application of the Chudnovsky Model to the three
polyethylenes (M5202, TR140 and TR418) are shown in Figs. 4.9. 1.10 and
4.11, respectively. The "points” represent the band-width observed on the
fracture surfaces. The solid lines show the solution of equation (4.7) in
terms of 1; vs. 1. The dashed lines represent the DBM prediction for
comparison. The CM gives much better predictions than the DBM. The
predictions are expected to be much better if we account for the cavitation
and fibrillation processes and the heat flux. We have observed the
exothermic heat flux qualitatively with IR microscope, but no measurements
have been performed yet. Accounting for heat loss leads to a reduction in
the reported value of yir and consequently to an increase in the predicted

process zone size (see Fig. 4.3).
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Figure 4.9 Process zone size vs. Crack length (M5202).
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42 A New Measure of Toughness

The slow process of the crack propagation in the SEN specimen is known to
end abruptly with instability of the process zone (Kasakevich et al. [86,87]). The
ductile instability characterization of medium density PE has been studied with J/
integral R-curve method by Narisawa and Nishimura [88). However the tedious
and expensive testing procedure preparing many identical specimens calls for the
necessity of a simple test to determine the instability point. It is also pointed out by
Strebel and Moet [89] that the standard J, test often requires unrealistic thick
specimen and the value obtained from such experiment may not represent the
fracture toughness of the actual structural element, since the morphological
difference can be expected because of the different thickness.

The instability condition of the process zone results from the general

thermodynamic consideration as the vanishing of the second derivative of the
Gibbs potential with respect to I , i.e., 3G /0dl,2=0. It yields the critical values for

the crack length I* and the process zone length [,* at the point of instability for
given applied stress o,.. The detail description of the stability analysis of the CL is
discussed in chapter 6.

The resistance, R, for crack propagation can be measured by the rate of the

total energy absorbed on the process zone formation. It is expressed as the
product of the specific energy of the material transformation 7, and the change of

the volume of the zone with respect to the crack length oV, /dl. In the SEN
specimen, the change of the volume dV,, /dl monotonically increases with crack

length leading to a monotonic increase of the resistance R in agreement with the
R-curve concept (Fig. 4.12). At the point of instability, R reaches the maximum
value R*. Thus the maximum energy absorption rate R* prior to instability is
proposed as a measure of material toughness. The values of R* (per unit
thickness) for three PEs are presented in TABLE III. The proposed measure of
toughness correlates well with the lifetime under fatigue as well as creep
condition. It is illustrated in Fig. 4.13 which shows the fatigue and creep
lifetimes (in min, in log. scale) reported in the paper by Zhou et al.[56] versus R*.




Resistance R (J/m)

0 : -+ ' ,
0.30 0.40 0.50
I/B

Figure 4.12 Resistance R versus crack length.

7 c
) . reep
E &4
=40
S 5
S & 44
'g"l
a.g 3 - Fatigue
3]
Y- -
‘E‘, ‘ /
1 v I M T I N Y
1 2 3 4 5

Maximum absorbed energy R* (kJ/m) x102

Figure 4.13 Maximum absorbed energy versus fatigue and creep lifetimes.




G

However no kinetics are involved in the evaluation of this measure. Thus,
it should be emphasized that this measure can be utilized only as a tool to choose
or rank materials as a first step when one would like to screen out materials for
design purpose. The lifetime estimates require further study of the CL
propagation law and are discussed in the next chapter.

Conclusion

A new thermodynamic model proposed by Chudnovsky has been
successfully applied for the analysis of the process zone in SEN polyethylene
specimen. Three material parameters employed in the model are determined in
an independent test. Thus, no adjustable parameters are required. The
maximum energy absorption on the process zone formation is proposed as a
measure of toughness. The measure can be used as a convenient tool and as a
first step in screening out materials for design purpose.

TABLE 4.2

VALUES OF MAXIMUM ENERGY ABSORPTION R* (kJ/m) x102

resin
Loading condition M5202 TR140 TRA18
Fatigue 15 25 4.2
Creep 15 2.9 33
0,.=3(MPa)




CHAPTER 5
KINETIC EQUATION FOR PROCESS ZONE GROWTH

5.1 Kinetic Equation for Process Zone Growth in Polycarbonate
Introduction

Numerous authors have reported that slow-crack propagation in
polycarbonate (PC) is commensurate with the formation and growth of a
process zone surrounding the crack [11,59-61]). The energy required for
process zone growth can be many orders of magnitude greater than the
surface energy associated with crack formation and as such can provide
significant resistance to crack growth. Thus the kinetics of the process zone
development is an essential factor in the PC lifetime determination.
However, the kinetics of the process zone evolution is closely coupled with
that of the crack growth which complicates the determination of the
kinetics of the process zone evolution itself.

The purpose of this study is to develop a methodology for the
determination of the kinetics of the process zone evolution by decoupling
these two processes. This is achieved by observing the process zone growth
under stress-relaxation at essentially constant crack length. The growth of
process zone under stress-relaxation was previously reported for
polystyrene [62]. Also presented is a comparative analysis of the
mechanism of process zone formation ahead of the crack with necking
phenomena under simple tensile drawing. In a subsequent paper we will
report the derivation of new constitutive equations for PC process zone
evolution which allow the generation of a master curve for our
observations reported here.

Experimental Setup and Observations
a) Material and Specimen Preparation

Polycarbonate of molecular weight, Mw 38000, Calibre 300-3, was
provided by the Dow Chemical Company in the form of injection molded
plaques of 3 mm thickness. After drying in a vacuum oven at 120°C for 24
hours, the plaques were further compressed to 0.7 mm thickness using a
Dake compression molder under the following conditions; preheat to 270°C,
hold at zero load for 10 minutes, compression under 4 MN/m?2 for 5
minutes, then another 8 minutes under this same compression condition
until cooled to 23°C. Single edge notched(SEN) specimen of dimensions
shown in Fig. 5.1a and dumbbell specimens, Fig. 5.1b were machined from
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the compression molded plaques. The notch tips of SEN specimens were
carefully introduced by razor blades. Smaller dumbbell specimens shown
in Fig. 5.1c, were machined from the necked portion of pulled specimens

Shown in Fig. 5.1b.
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Figure 5.1 a) Dimensions of SEN, b) Dumbell specimen for original

material, c) Dumbell specimen for drawn material
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b) Tensile Test

The dummbell specimens were marked with horizontal lines
(Fig. 5.1b) and pulled at an initial crosshead speed of 0.6 mm/min at
23+1°C. The draw ratio, A, was determined from the ratio of the spacing
between the marked lines of the drawn (necked) material, Fig. 5.1c, to that
of the untransformed material. To characterize the properties of the drawn
polycarbonate, smaller tensile bars with dimensions as shown in Fig. 5.1c
were cut from the necked region and repulled as above.

c¢) Kinetics of Process Zone Growth under Fixed Displacement.

The SEN specimens were strained in tension to fixed displacements,
1.00, 1.15, 1.25 and 1.35 mm, at a constant cross-head speed of 0.6
mm/sec at 23+1°C, then held at constant strain. The load was monitored
throughout the test. The kinetics of the process zone evolution was
monitored through a video-recording system attached to a microscope.
The process zone size is reconstructed from a combination of a side view
from the video screen and optical microscopy of two cross-sections
perpendicular and parallel to the direction of load application (Fig. 5.2).

d) Evaluation of Apparent Shear Band Density

The density of shear bands in the process zone was measured by
optical microscopy. A micrograph of a cross-section perpendicular to the
direction of load application was prepared for the evaluation(Fig. 5.2b).
The shear bands in the micrograph appear to be dark stripes. The
micrograph is subdivided into elementary squares, 0.077mm x 0.077mm,
and the apparent density of shear hands evaluated as a ratio of the dark
stripes inside a unit square to the area of this unit square.

e) Thinning in the Process Zone

The thinning in the process zone relative to an undeformed region
was measured in four specimens using a Zeiss optical microscope with
x200 magnification to an accuracy on the micrometer scale. The thinning
was measured at more than 15 sites in each equilibrial process zone to
construct the equal thinning level contour. The thinning is measured as
(zg-2)/zo where z is the specimen thickness and zg is the undeformed
thickness.




Figure 5.2 a) A side-view of process zone from the video screen
b) Cross-section A-A' in polarized transmitted light
¢) Fracture surface of cross-section B-B' fractured in liquid
nitrogen




Results and Discussion

Figs. 5.2a, b and c are examples of an actual determination of the
process zone shape and size from the side view, cross-sections A-A'
(normal to the crack plane) and B-B' (surface after fracture in liquid
nitrogen). These three projections allow the determination of the process
zone dimensions. It is obvious from Fig. 5.2b (cross-section A-A') that
there is thinning in the thickness direction. In addition, two families of
intersecting shear bands are observed. Fig. 5.3 is a schematic of the three
dimensional process zone consisting of intersecting shear bands with
varying density. Similar features have been well-described previously
[63]. This point will be readdressed later.

%

Figure 5.3 Three dimensional schematic diagram of the process zone

Figs. 5.4a-d show the surfaces of specimens at their equilibrial
process zone state after fracture in liquid nitrogen. The fracture surfaces
generated within the process zcnes are relatively smooth compared to
those outside the process zones. The final equilibrial process zone size is
determined based on the side-view, the thinning profile and fracture
surfaces.




Figure 5.4 a-d) [racture surfaces of equilibrium process zones fractured
in liquid nitrogen
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The stress-relaxation behavior during the test is given in Fig. 5.5. The
dashed lines indicate the values of remote stress, G. at an apparent

equilibrium. This stress behavior will be utilized in modelling in a
subsequent paper.

The kinetics of the process zone evolution is depicted in Fig. 5.6
which shows the process zone length, /4, versus time for SEN specimens for
the four experimental conditions described previously. The process zone is
seen to reach at least half of its final length during the initial ramp loading
and then follows an increasingly slower approach to an apparent
equilibrial size (la(eq)) dependent on the displacement. The dashed lines in
Fig. 5.6 represent the values of the equilibrial sizes. Some relatively small
crack growth from the notch-tip occurred during the initial loading and for
a short period thereafter, particularly at the highest strain loading.
However, the crack is arrested soon after the stress relaxation starts and
remains stationary during subsequent process zone evolution. Thus this
process occurs at essentially constant crack length. Fig. 5.6 represents the
process zone evolution data acquired at this stage.

The rate of the process zone length, ja, evaluated from Fig. 5.6, is
shown in Fig. 5.7 as a function of, la(eq)-la, scaled by the equilibrial length,
la(eq), a measure of the deviation from the equilibrium. The rate of four

different loading strains apparently show different kinetics. This means
that identification of the appropriate scaling factors in the kinetic
equations needs to be attempted to develop a master curve.

Stress 0. (x 10° N/m? )

v T . I v T v T v
0 1000 2000 3000 4000 5000
Time ( sec )

Figure 5.5 Stress relaxation data at various displacements in SEN
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Figure 5.7 Rate of the process zone growth, ia vs (la(eq)-la) / la(eq)
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As described earlier, the process zone consists of two intersecting

families of shear bands with orientation +59° with respect to the X-Y plane
which are non-homogeneous in density, see Figs. 5.2b and 5.3. The
number of shear bands and the band width diminish with distance from
the notch along the X-direction. The cumulative effect of the shear bands
gives rise to the thinning profile. The gradient of the thinning provides the
shadow seen in the side view on video screen (Fig. 5.2a) and distinguishes
the boundary of the process zone and undeformed material.

As described previously in the experimental section, the relative
density of shear bands is obtained from the enlargement of the optical
micrograph Fig. 5.2b. The contours of equal levels of apparent shear band
density is shown in Fig. 5.8. The maximum shear band density
corresponds to the plane of the crack. The shape of the contours follows
the conventional plastic zone behavior although there is some asymmetry
which may be attributed to the sequence of shear band formation.

Haddaoui et al {59] drew an analogy of the thinning due to shear
band formation in fatigue with necking phenomenon(cold drawing). If this
is so, the material properties and formation of shear bands (drawn
material) can be estimated separately from the tensile test. In Fig. 5.9 the
tensile engineering stress-strain curves are shown for the original
undeformed and drawn material. The polycarbonate was determined to
have Youngs Modulus 2.08 GPa, with yield strength Oy = 57.7 MPa,
followed by necking with constant drawing stress, Gdr = 47.9MPa until the
material in the waist section was exhausted. As is well described
elsewhere [64,65], the transition in material occurs in a localized zone
between the untransformed and transformed regions. The draw ratio was
determined as 1.60 for polycarbonate tested here and remained constant
throughout the process of neck propagation. The specimens of drawn
material showed uniform deformation until fracture with a modulus value
of 3.53 GPa which accounts for the essentially constant value of draw ratio
during the tensile test. These results could be used to construct a true
stress-strain curve similar to that determined for polycarbonate from
careful stress-optical measurements [66].

A linear correlation between the apparent average shear band
density along the thickness (z direction at y) and the thinning of the
thickness (at y) is shown in Fig. 5.10. The data points were measured from
Figs. 5.2b and 5.8. The correlation coefficient is 0.984. Indeed the linear
relationship implies that the integral density of shear bands across the
thickness can be evaluated indirectly by measuring the thinning. Though
the relationship was examined for one cross-section, it can be justified and
generalized by the existence of a characteristic slip distance during
formation of a shear band which was observed by J. Grenet et al. [67].
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band density and the thinning in the process zone

Based on the above, the thinning in the process zone was measured
to evaluate the density of shear bands (drawn material). The equal contour
levels of relative thinning in four different equilibrial process zones are
shown in Fig. 5.11. Here the relative thinning is defined by the ratio of the
thinning measured in the process zone to the thinning of necked material
in the tensile test, Az(zone) / Az(neck). If the density of drawn material in
necking is defined as 1, the relative ratio represents the density of shear
bands in the process zone. The average values of this ratio are 0.19, 0.28,
0.35, 0.35 at load displacements 1.00, 1.15, 1.25, 1.35 mm, respectively.

Summary

1. An experimental procedure for the study of the kinetics of the process
zone evolution decoupled from the kinetics of crack growth for
polycarbonate was designed and implemented. This was achieved by
observing the process zone evolution under stress-relaxation at essentially
constant crack length.
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2. The process zone was reconstructed based on the side-view, the thinning
profile and liquid nitrogen fracture surface and found to consist of two
intersecting families of shear bands with orientation *59° with respect to
the X-Y plane and with variable density. The variation of the shear band
density was mapped using contour lines of equal relative thinning.

3. The kinetics of the rate of growth of the process zone length were
investigated during stress relaxation. The size and time to reach an
equilibrium process zone were dependent on the level of strain imposed.

4. The kinetics of the process zone evolution was evaluated in terms of the
relative deviation of the current process zone size from its equilibrial
value. However, this parameter does not provide adequate scaling.
Thusthe challenge remaining is the determination of a suitable parameter
to generate a master curve for various experimental conditions.

5.2 Process Zone in Stress Relaxation Experiment

Introduction

In our previous paper we reported the evolution of the process zone
ahead of a crack under stress-relaxation at a constant crack length in a
polycarbonate [14]. The evolution of the process zone was evaluated in
terms of the relative deviation of the current process zone size from its
equilibrial value. However, this parameter did not allow us to generate a
master curve for the various experimental conditions. The goal of this
paper is to construct a constitutive equation for process zone growth
employing thermodynamic considerations.

A thermodynamic model for an equilibrial process zone in polymers
was recently proposed by Chudnovsky [11] and its validity was supported
by the experimental studies on various polyethylenes [10,12]. The essence
of the Chudnovsky model (CM) is that the process zone can be considered
as a homogeneous second phase, i.e., transformed material, and thus the
shape and the size of the process zone are derived from the phase
equilibrium conditions.

The experimental examination of CM has been performed on
polyethylene for which the assumption of the homogeneity of the
transformed (drawn) material within the process zone is quite adequate.
However, the observation of the process zone in polycarbonate, PC, shows
an important difference; it consists of shear bands whose density varies
noticeably within the zone. Similarly, in examination of neck formation
under uniaxial tension of PC one observes a spectrum of intermediate
stages between the initial and fully drawn (transformed) material. In the
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present paper we improve the CM to account for the variable extent of
transformation of material within the process zone. Further we employ the
improved model to determine the process zone driving force and then
formulate an appropriate kinetic equation following the framework of
irreversible thermodynamics. An analysis of the parameters of the model
as well as the comparison with experimental data are also presented.

Review and Generalization of Thermodynamic Model

Let G be the Gibbs potential of the system described in Fig. 5.12 and
Vpz be the domain occupied by the process zone. Then for isothermal

condition the equilibrial domain V,, of the process zone corresponds to the
minimum of G, i.e.:

3G(Gw, Vpz) I 0o
————8sz [=const (5.1)

Here, G is a functional of the domain Vp,and a function of crack length [
and applied stress Ow.

Following the reference [20], we employ the Eshelby method to
evaluate a variation of the Gibbs potential due to a virtual migration of the
process zone boundary:

5G='j 8&; (P5j - PY) n;dI’
oy (5.2)

For evaluation of the Gibbs potential, G, of a crack with the
surrounding process zone consisting of the second phase (see Fig. 5.13a),
the two-phase system was decomposed into its elements as shown in
Fig. 5.13b. The first element results from removal of the process zone and
substituting its action with an equivalent traction Oa along the interface
(O is the drawing stress). The second element is the process zone Vi
within which the original material submitted to O« undergoes the
transformation (drawing). The width, Wo, of the layer of the original
material in Fig. 5.12 which underwent transformation varies along the

process zone length X1 and is initially unknown. The resulting width, w(x1)

of the process zone is W*(X;) = A(X])Wo(X;) with A being the draw ratio and
assumed constant within the process zone. The displacement caused by the
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transformation at the interface shown in the element 2 of Fig. 5.13b is
wo(x1) - Wo(x1).

Then the coherency of the interface requires that the opening of a
slit in the element 1 should be equal to the displacement of the boundary
of the element 2. For a slender process zone the displacement of the
element 1 can be approximated as the crack opening displacement, A, thus
leading to the following compatibility equation.

A(xp,ll) = w - Wo (5.3)

Then the width wgy(x;) of the initial strip which is transformed into the
process zone is directly related to the crack opening displacement of the
element 1 in Fig. 5.13b:

Wo(x1) = A(xpl, ) (A - 1) (5.4)
Gen
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Figure. 5.12 Schematic diagram of crack and process zone in
polycarbonate.
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Figure. 5.13 A model for the computation of Gibbs potential: Element one

is obtained from removal of the process zone and
substituting its action with an equivalent traction Oa along
the interface, and element two is obtained from the process
zone Vp; within which the original material submitted to Ou
undergoes the transformation.




Thus, the volume Vp, of the initial material can be expressed as:

I+1,
Vpz = Zof A(xpds L) (A - 1)1dx, (5.5)
!

where Zo is the initial thickness of the specimen. Thus the process zone
shape is uniquely determined by the process zone length, la, because the
crack opening displacement depends on [, G, O&, and la. Thus, the condition

for the minimum Gibbs potential for two-phase system equilibrium can be
written as:

dG(Geosl,l2,0dr, A
( o )|l=const = (5.6a)
d/,
2
d—Qz |l=const >0 (5.6b)
dly

The equation (5.6a) leads to the following equation [11]:

KK + K (Ggr)) = 0 (5.6¢)

and the inequality Eq. (5.6b) ensures the uniqueness of the solution, i.e.:
K +3K(o4) =0 (5.7)

Here K'* is the stress intensity factor (SIF) for the element 1 of Fig. 5.13a,
K(og4) is the SIF for the same element with absence of G. 7Y represents

2y" / (A - 1)04) where v* is the specific transformation energy. This solution
leads to the equilibrial process zone size and shape which agree well with

experimental observations on polyethylene and thin film polycarbonate
[10,11].

As mentioned previously, polycarbonate was observed to undergo
non-homogeneous transformation within the process zone, Fig. 5.14
showing the optical micrograph in polarized light and the schematic
diagram of the two intersecting families of shear bands in cross section A-
A'.  we consider the individual shear band as transformed material.
Between the shear bands the material appears to be untransformed.
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During the evolution of the process zone, drawing progresses by a) an
increase of the number of shear bands, and b) increase of the width of the
individual shear bands at the expense of the neighboring untransformed
material [53]. The various stages of drawn state correspond to different
densities of shear bands.

i

Zross Section A-A

Figure 5.14 Micrograph and schematic diagram of intersecting families
of shear bands in a cross-section of the process zone.

To characterize an intermediate transformation we introduce an
extent of transformation . {=0 corresponds to the original state and {=1 is
associated with the fully transformed state. The thinning of cross-section is
a cumulative effect of the shear banding as illustrated in Fig. 5.14. The
thinning and the draw ratio, A, are uniquely related since the density of
transformed material is practically unchanged (a few percent) [10). The
extent of transformation { is simply related to the draw ratio A:

SSEs
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where A  is the draw ratio for fully transformed material and A is a
variable draw ratio reflecting a current extent of transformation. A
correspondence between an extent of shear banding and A has been
discussed in our previous paper [14]. It has been also found that the extent
of transformation varies within the analyzed process zone. Moreover the
distributions of { for process zone formed under different conditions are
noticeably different.

Let us consider an average draw ratio A(X;) for the cross-section at
X1t

<

2

}\, = _1_ __él___.d
(x1) w*f_,ﬁz(xl g y (5.9)
2

Here Zo represents the thickness of original material and z that in the
process zone. Then the average extent of transformation { in the cross-
section with coordinate "X1" (see Fig. 5.12) is given as

_[AxD) -1} A" )
C(x1) ( o )(X*-l (5.10)

The thinning profiles presented in Fig. 11 of the reference [19] were
used to give the average extent of transformation, {(X;), and the average
draw ratio, A(X), along the process zone. Shown in Fig. 5.15 are the values
of the Geq(X1) as a function of the X1 normalized by the equilibrial process
zone size, laeq), for the various fixed displacements. Noticed in Fig. 5.15 is
the similarity of the shape of C(X]/la(eq)) and the monotonic increase of the

amplitude of Ceq(X1) with the displacement. This suggests that the
evolution of the extent of transformation follows a self-similar pattern
which can be formally expressed as follows:

_X_]_, ty = 13(_t) X1
¢ (la(t) la(eq) Ca{la (5.11)

Here, t is time. In order to evaluate the Gibbs potential we first need to
introduce an effective specific energy, y, which is related to { as follows:
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Y( X1 (5.12a)

TR

L)’ ,

Y*. in thermodynamic terms. is the difference in chemical potential (per
unit volume; across the boundary of untransformed and fully transtformed

material. Then the dimensionless factor Y also becomes a function of X; and
time:

7w

aw - W&-q%

a

(5.12b)

At equilibrium, the Gibbs potential depends explicitly on laeq similar
to that in the CM as well as implicitly through the extent of transformation.
As a result, the Eq. (5.12a) which is the necessary condition of the
minimum Gibbs potential is rewritten as:

G i
oL li=const + %‘%T‘ (5.12¢)
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Figure 5.15 Profiles of average extent of transformation as function of
X1/laeq) for various applied displacements.
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The equation (5.12c) determines the size of equilibrial process zone.
Figure 5.16 shows the solution of equation (5.12¢) (solid line) with
y* = 7.05 x 10° J/m® for the various fixed displacement conditions. The
experimental data points are shown by the open circles. Only one
parameter is employed in the above treatment for the four experimental
conditions reported. The justification of this value comes from independent
tests using the neck formation in simple tension combined with
calorimetric determination of the residual strain energy stored in the
transformed (necked) material and estimation of heat generation during
the transformation.

3
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Figure 5.16 Equilibrial process zone size as a function of applied
displacements. The solid line represents the theoretical
solution.

Process Zone Driving Force

The force on an interface between original material and the process
zone can be defined following Eshelby [43]. In our case the evolution of
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the interface is uniquely determined by the process zone length, [, as a
function of time. The driving force Xp; is determined as:

Xpz = - ‘c‘l—?— J=const (5.13)
a

Repeating the arguments prior to the equation (5.12c) on the dependency
of G on /a, the process zone driving force can be presented as:

dgxL

%G 56 90,

Xpz = - R |l=const+ 5C di ) (5.14)
a a

The details of the calculation of equation (5.14) will be reported
separately. If the transformation of material within the process zone is
homogeneous the CM is recovered. It corresponds to the first term in the
RHS of the Eq. (5.14). Figure 5.17 shows the dependency of the process

zone driving force as a function of la/la(eq) for the four experimental
displacement conditions. At equilibrium the process zone driving force is
zero.

The kinetic equation of process zone evolution.

In irreversible thermodynamics for systems close to equilibrium that
the rate of change toward the equilibrium is assumed to be proportional to
the corres~onding driving force, X. In our case the rate of approaching
equilibrium s defined by the rate of changes in [, i.e., . Thus a kinetic
equation can be written as:

li=kXp, (5.15)

A different approach has been widely considered in studies of failure
kinetics. For example, Zhurkov in his studies of the kinetics of fracture of
solids under creep conditions found that a wide range of materials
followed a stress biased Ree-Eyring failure kinetic equation [68]: ¢

U -¢0

tr = Agexp( BT

) (5.16)
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where ti is the time to failure, T is the absolute temperature. R is the gas
constant, Ao is the characteristic time and ¢ is a factor accounting for the
effectiveness of reducing the activation energy, U, by the applied stress, ©.
The equation (5.16) was applied to uniaxial specimens of small diameter
for which the fracture propagation time was negligible compared to the
crack initiation time.
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0.5 0.6 0.7 0.8 0.9 1.0
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Figure 5.17 Process zone driving force as function of la/ laeqy for various
applied displacements.

An energy release rate biased Ree-Eyring equation was proposed
with argument that the crack rate [ is inversely proportional to the
fracture time on the melecular level and the stress at the crack tip is
proportional to the energy release rate G; by a relationship such as
o =Gy/A where A is the crack opening displacement:

(U-aGy) (5.17)

[ = Aexp( - T
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where [ is crack velocity, and A; and o are constants. Equation (5.17) was
adapted in studies of crack growth in PMMA [69]. A similar kinetic
equation for alcohol assisted craze growth in PC was proposed [70]. The
short-coming of these types of exponential equations is the absence of an
equilibrial state.

Since the driving force Xp; can be decomposed into two parts, i.e., a
resistant part and a driving part.

Xy, =-9G = _ (*a_Vt_r__ a_U_)
p Y 3L, ( aIa) (5.18)

where V. is the transformed volume of process zone and IT is the potential
energy of system. The resistant part has an analogy with activation
energy U and the driving part has with energy release rate G, in the
equation (5.17).

The Arrhenius equation was first developed to account for the
temperature dependency of the reaction rate constant, k, in chemical
kinetics.  The equation (5.15) resembles that of a first-order chemical
reaction and so adapting the Arrhenius assumption of k with incorporation
of an activation energy reduced by the process zone driving force we
propose the following equation for the kinetic coefficient in the Eq. (5.15):

k = koexp -

8] -asz)
EE—— (5.19)

RT

where a is a constant with units m?/mole. Finally, combining the Eq. (5.19)
with Eq. (5.15) we arrive at a new kinetic equation as follows:

. U-aX
o= ko] - -] |x,
koex BT Xp (5.20)

Note that the equation (5.20) accounts for an equilibrial state (J, = 0
when Xp; = 0) and becomes increasingly nonlinear with increasing Xp,, that
is to say with increasing departure from the equilibrium.

Since the experiments reported in the reference [19] were performed
at one temperature the equation is simplified and the data cast as In(/)
versus Xy, in Fig. 5.18. The solid line indicates the fit of equation (5.20)
with a constant o as 16.39 x 10° (m?/ kmol). The unit of k, is m*/(J-sec).
The strongly nonlinear kinetics data are now collapsed into a master curve.
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Figure 5.18 A master curve for process zone kinetics.
Conclusion

A generalization of Chudnovsky Model is made to account for non-
homogeneous transformation of material within a process zone
surrounding a crack.

The distribution of the extent of transformation was experimentally
determined in these studies. Further improvement of the model using the
variation of Gibbs potential should allow for prediction of the distribution
without experimental determination.

The driving force for the process zone evolution is evaluated and a
new kinetic equation incorporating the driving force is proposed which
leads to a master curve for the observed growth of the process zone under
various loading histories.

The fundamental significance of the constants k, and o in the
equation (5.20) and their relation to intrinsic material parameters as well
as the applicability of the equation to account for temperature and various
loading conditions are subjects for future scrutiny.




CHAPTER 6
CRACK LAYER GROWTH EQUATION AND STABILITY ANALYSIS

6.1 Crack Layer Growth Equation

Introduction

Many engineering polymers undergo cold drawing. A slow crack
growth in such polymers is usually preceded by a process zone consisting
of drawn material. The crack and the process zone are considered to be a
single entity called the Crack Layer (CL). In ductile polymers such as
polyethylene, nonmonotonic (discontinuous) CL growth has been reported
under both creep and fatigue loading conditions [54,71-77].  Detailed
observations of CL growth processes have been reported by Lu, et al. [75].
The existence of arrest lines (discontinuous CL growth) on the fracture
surface of polyethylene has been noted as evidence of stick-slip crack
propagation [71,72]. Crack blunting effects explain this phenomenon as
demonstrated by Kinloch and Williams for epoxy resins [78]. However,
crack growth in polyethylene is a slow process, and the process zone is
formed simultaneously during crack growth [75]. Thus the blunting effect
exists even during crack growth. Lu, et al. suggested that the breaking of
craze fibrils is the key mechanism underlying CL growth in polyethylene
[75]. Similar observations in polycarbonate have also been reported
{79,80]. A schematic representation of nonmonotonic behavior of CL
growth is shown in Fig. 6.1. Details of the mechanism of CL growth is
discussed in the sections on CL growth mechanism and CL growth
simulation. Constitutive equations that adequately describe discontinuous
CL growth have not yet been formulated.

In this chapter constitutive equations for CL propagation are
proposed, and analytical results are compared with the experimental
observations reported in [80]. A new thermodynamic model of the
equilibrium process zone presented in chapter 4 has been employed to
evaluate CL driving forces. These forces are the essential elements of the
constitutive equations.

Determination of Crack Layer Driving Forces

The process zone is modeled as a phase transformation localized in a
thin strip ahead of the crack. Experimental observations supporting this
consideration are presented elsewhere [54,72,75]. Figure 6.2 shows a
schematic representation of the model: V,, is the domain occupied by the
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second phase (process zone); 0. is the applied stress: / and [/, are the crack

and process zone lengths respectively. The material within the strip of
width wq(xy) undergoes transformation (drawing) at a constant draw ratio

A. The resulting process zone of width w*(x;) is indicated by the solid line.

—
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— =
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= =
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Figure 6.1: Schematic representation of nonmonotonic CL growth in
ductile polymers.
BC, DE and so forth correspond to crack growths; AA', B'C', D'E’
and so on correspond to process-zone growths; AB, CD, EF,
A'B', C'D', EF and so forth reflect the time intervals (waiting
time) between consecutive crack growths and the process-
zone growths.

Using the assumption of a thin strip, V,, is uniquely determined by
the process zone length [; for given values of / and o.. In this case the

Gibbs potential of the system (per unit thickness) can be expressed as a
simple superposition of Gibbs potential (the potential energy) G'and G'" of
the first and the second phases, and the fracture energy 2yl associated with
crack within the drawn material. The resulting equation is

G=G'+2y1+G" (6.1)

where 7y is the Griffith's fracture energy of the drawn material per unit
area.




initial state
transtormed state

Figure 6.2 Model of the process zone as a phase transformation.

Using basic thermodynamics, the driving forces for the crack, XCR,
and the process zone, XPZ, can be expressed as partial derivatives of the
Gibbs potential with respect to corresponding variables (the crack length [
and the process zone size [; ):

XCR <. a_G“ II+Ia=const. (6.2)
ol

xPZ=.9% li=const. (6.3)
dl,

Employing a standard fracture mechanics formalism (see Appendix C and
(81]) the driving forces per unit thickness are

Crack Driving Force: X CR= J1-2y (6.4)
Process Zone Driving Force: XPZ = KX [kt —ZZV——K[O'”] (6.5)
EO O’tr(l - 1)

Here the active part of the crack driving force (the energy release rate
because of crack extension into a stationary process zone) is




Ji = ol stor Y ol
1 n{ +————Gtra_1)5[ )] (6.6)

Kot is the stress intensity factor (SIF) and é%of is the crack tip opening
displacement (CTOD at x;=I/) for the problem shown in Fig. 4.2a. K]o,,] and

o[o,,] are, respectively, the SIF and CTOD for the same problem when 0.=0.
Eg is the Young's modulus of the initial material.

The Mechanism of Crack Layer Growth

As an example, consider a single edge-notched (SEN) specimen with
notch length | and specimen width B under a remote tensile stress

0. =0.256,,. The equilibrium process zone size [;¢9 is determined by the
co’ ! XPZ(},1,e4,B,0.)=0.

The process zone driving forces for various crack lengths are shown
in Fig. 6.3. The abscissa is the process zone length /, normalized with
respect ‘o the equilibrium process zone size [,¢4. When the crack length is
shorte  han a certain critical value (//B<0.64 in this case), the driving
force .ecreases monotonically with the process zone length, and
approaches zero as [; approaches [,¢9. For [/B20.66, the graph of XrZ
versus [,/1,¢9 displays the nonmonotonic dependency which is typical for
thermodynamic instability. First the process zone is formed in front of the
crack. Then the process zone grows slowly, approaches its equilibrium
length and is arrested. This part corresponds to region A-A' in Fig. 6.1.

Lhe active part of the crack driving force (the energy release rate J)
is shown in Fig. 6.4. The abscissa is the increment of crack length,
normalized by the equilibrium process zone size for the initial crack length.
If the crack resista : 2y is greater than J;, crack propagation will not
occur. Thus the degradation of the material within the process zone by the
action of the transformation stress o, (reflected in the decrease of y) is
responsible for crack advance. Lu, et al. and Schirrer, et al. suggest that
this degradation is the result of a slow process of disentanglement of the
molecules within the fibrils constituting the process zone [75,79].
Therefore material degradation (the time dependence of 7y) should perhaps
be considered for modeling crack growth.
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At the moment when material transformation begins at a given point
x1, the degradation process simultaneously begins at x;. It should be
emphasized that each point x; of the process zone has its own initiation
time, t;(x;), for the degradation process. It is assumed that material
degradation resulting in the decay of fracture energy y is a first-order
reaction. Assuming that y=0 when the degradation is completed, y can be
expressed as

Y= 1 exp-K{r-t:(x1)}) (6.7)

Here 7y is the initial value of the fracture energy at time t;(x;) of material
transformation at the point x;, and K is a rate constant which obeys an
Arrhenius-type equation [68].

When the crack advances it disturbs the equilibrium condition for
the process zone, so that the process zone grows simultaneously with crack
extension. When the crack enters the newly formed process zone, it is
arrested because not enough time is available for material degradation to
result in a sufficient decrease in 2y. That is, 2y of this region is still greater
than J;. However, 27 in this domain later will become less than J; and the
crack will again advance. This periodic pattern results in discontinuous CL
growth. The actual values of y(x;,t) vary from point to point, because the
time at which the process zone is formed (the beginning of the degradation
process in a given point) depends on the point.

When the crack length exceeds a certain critical length (/o/B20.58 in
this case), the second partial derivative of the Gibbs potential with respect
to crack length changes sign. For example, when 2y (dashed line in
Fig. 6.4) approaches the value of J; for the initial crack length (/y/B=0.62),
J1 is already greater than 2y over half the region to the next arresting
point. Thus when initiated, the crack jumps. However, the crack driving
force decreases monotonically again after (I-l3)/1,€9~0.5.

Constitutive Equations

The evolution of CL is a slow (quasi-static) process. In
thermodynamic equilibrium, both the fluxes and the driving forces are
zero. It is therefore natural to assume that a homogeneous linear

relationship exists between the fluxes and the conjugate forces near
equilibrium:




I =k XCOR + kypx P2 (6.8)
ia = k21XCR + kszPZ (6.9)

Here kj1,k19, k21 and kpp are the kinetic coefficients. Relationships such as
the above are often used in empirical laws. Examples include Fourier's law
of heat conduction (heat flux is proportional to the gradient of
temperature) and Fick's law of diffusion (the flux of matter is proportional
to the gradient of concentration).

In the calculations of the next section, the coupling between the
crack and the process zone kinetics is omitted for simplicity, so that
k12=k21=0. Evaluating the kinetic coefficients in Eqs. (6.8) and (6.9) from
experiments thus becomes easier. The methodology for evaluating the
coefficients kj; and k75 is discussed in the following section.

The Evaluation OF Material Parameters

Equations (6.8) and (6.9) were solved numerically using the Runge-
Kutta method. "'gure 6.5 shows the simulation of the first three steps of
the CL jumps. The time step for the numerical calculation is taken to be 30
minutes. The values of the material parameters used in the calculations
for Fig. 6.5 are listed in Table 6.1. The model provides a good simulation of
experimentally observed discontinuous CL growth. The parameters used
in this model can be evaluated from the first two steps of CL kinetics (in
other words, from short-term tests) as follows:

(a) Parameters related to drawing

The parameters such as o, A and y,,, which are related to the
material transformation (cold drawing) can be determined in an
independent test such as a test on neck formation. The evaluation of these
parameters for various polyethylenes is reported in [10].

b) Parameters related the degradation of fracture ener

The parameters Yy and K can be obtained from the crack initiation
test. At the instant of crack initiation, the energy release rate equals 2.
Since J; is known for a given crack and process zone size, measuring the
time interval between the instances of load application and crack initiation
(A-B in Fig. 6.1) gives the condition




[ (mm)

(Crack + PZ length 1+la)

Crack length

w
o

«
o
1

w
~
1

w
(o))
1

| 0./0,=0.25

B=10mm

{ Crack+PZ length

w
n

w
>

_ t ¢
lg
S S=
: Crack length B

t o———y
Crack initiation RN
v ] M ]
0 10 20 30

Time (in steps)
(one step=30min)

Figure 6.5 CL growth simulation.

Table 6.1: Material parameters used in the simulation

Eo Oty Yr ky 1 ka2 ) K
m/Nsec |m/Nsec

GPa MPa or(A-1) J/m2 1/sec

0.77 15.8 1.05 1.5x10-10{1.5x10-10]1.5x104 |3.5x10-4
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J1 =21 1.K) (6.10)

which has two unknown parameters ¥y and K.

Similarly, by measuring ihe timne delay for the next crack growth (C-
D in Fig. 6.1), another condition can be obtained for a different value of J,
(for different crack and process zone lengths) having the form of Eq. (6.10).
Thus one can determine the unknowns ¥y and K from these two equations.

(c) Kinetic coefficients

In order to evaluate the kinetic coefficients k;; and kp3, it is
necessary to measure the time for crack and process zone growths (A-A’
and B-C in Fig. 6.1). When the load is applied, process zone formation
begins immediately, but the crack remains at the initial position (A-B' in
Fig. 6.1). Thus from Eq. (6.8),

L
knn = 1 0 (XPZ )‘1
22 =~ (x1)] dx; (6.11)
At o

where [y is the initial crack length, [,€9 is the equilibrium process zone size
for the fixed crack length I=lj, and At is the duration of the first step (A-A’
in Fig. 6.1). Similarly, k;; can be evaluated by measuring the duration of
stage B-C in Fig. 6.1. Because in this case the process zone is formed
simultaneously with crack initiation, Eqs. (6.8) and (6.9) must be solved in
order to determine kjj.

It can thus be seen that all necessary parameters of the mo: | can be
obtained from the first two steps of ~L growth. After these parameters
have been obtained, the entire process of CL growth can be predicted for
arbitrary loading histories.

6.2 Computer Simulation of Crack Layer Growth

Crack Layer Stability Analysis and Computer Simulation

The instability conditions for the crack and the process zone result
from thermodynamic considerations. The rnecessary conditions for CL
instability are

X CR=0, xFZ=0 (6.12)
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The sufficient conditions for CL instability are

2
aa_lczid) (crack instability) (6.13)
0%G N
——< 0 (process zone instability) (6.14)
ol2

*G %G

2

orr g | (CL instability) (6.15)

7G2G

dlgdl 912

As mentioned earlier crack instability leads to crack jumps, although
stable crack growth is recovered after the jump. When the process zone
and crack instabilities points are reached, CL evolution becomes a sequence
of instant jumps of crack and process zone, resulting in ultimate failure.
Figure 6.6 shows the [-I; diagram for crack and process zone instabilities in

a SEN specimen under a tension of 0.250,, .

Eguations (6.12)-(6.15) give the critical values for a crack length and
process zone size at the point of instability, for a given applied stress O..
Using the kinetic equations, the evaluation of the time for CL growth to a
point of final instability gives the total lifetime of the specimen (Fig. 6.7).
Thus the kinetic equations together with the instability analysis can be
used as a tool for accelerated tests.

Test of the Model

Using this model, the final lifetime for a SEN specimen was estimated
for different applied stress levels and different material properties (the
transformation stress and Young's modulus). The effect of the kinetic
coefficients was also examined. For comparison with experimental data,
the following empirical formula proposed by Huang and Brown [81] for the
lifetime of SEN polyethylene specimens under creep was used:

tf= k(—g;)o'” (6.16)
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Here ¢ is the time to failure, a is the angle at the tip of the process zone at

the initiation stage and & is the rate of crack opening displacement at the
root of the original notch at the very first stage. The power 0.89 was
obtained from regression analysis of an extensive amount of experimental
data for different stress levels, temperatures and so forth. The above
formula suggests that the time to failure can be predicted from the initial

stage of the fracture process. The parameters a and & in Eq. (6.16) are
readily evaluated within our model, thereby allowing for a comparison of
this model with experimental results.

Figure 6.8 plots the predictions of the model for lifetime versus

(a/8)0-89 using various stress levels and kinetic coefficients. The model

reconstructs exactly the same linear relationship between ¢f and (or/8)0-89
as specified in Eq. (6.16). One can therefore feel confident that the model
captures the essence of the phenomena. This model is perhaps suitable as
a tool for accelerated tests.
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Figure 6.8 Parametric studies of the simulated lifetime versus Brown's
empirical factor.




6.3 Conclusion

Constitutive equations to describe slow Crack Layer growth are
proposed. This model provides a very good simulation of experimentally
observed nonmonotonic crack growth in ductile polymer, and recovers
Brown's empirical formula for estimating lifetimes. A methodology is
suggested for evaluating the material parameters in the model. Since
these parameters can be evaluated from short-term tests, this model can
be used as the basis for an accelerated test procedure.
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Appendix A
Experimental Setup and Parametric studies

A.1 Experimental Setup

Commercial polystyrene (PS) was chosen as a modelling material due to its
transparency and visibility of defects. Plane isotropic PS obtained from
Transilwrap Company (Cleveland, Ohio) was used in all studies. Rectangular PS
sheets were cut and machined to single edge notched specimens with 80mm
gauge length and 20mm width. A 60 degree V-shaped notch was milled into the
edge to Imm depth at the midspan of the gauge length. An internal circular hole
was drilled, and the location and diameter of the hole vary in different tests.

Tension-tension fatigue experiments were conducted on a 1.1 ton (2.5 Kip)
capacity servohydraulic Instron Testing System at room temperature. Sinusoidal
waveform loading was employed in all tests. Figure A.1 shows the specimen
geometry and the loading configuration. The damage evolution and crack
propagation were observed and recorded using the Hamamatsu video system
attached to a Quester long range travelling microscope.

After testing, specimens were photographed through the Zeiss optical
microscope for the sideview (with transmitted light) and fracture surface (with
reflected light) analysis. Then specimens were polished to a thickness of 20-30um
in order to make the micrographs for craze density and orientation analysis.

Botsis [87] has shown that during rectilinear crack layer propagation in PS,
crazing is uniformly distributed in the thickness direction. Therefore, sections
parallel to the plane of the specimen adequately represent craze distribution
within an active zone. Accordingly, damage is characterized as the area of craze

middle plane per unit volume, p (mm?*mm?).

The assembled micrographs of AZ is covered by a square grid, the squares
being at least one order of magnitude smaller than the linear dimension of the
AZ. In each square, the number of intersections of the crazes with a vertical test

line is counted. Then the craze density p at each cell is calculated by

= nat
P="2t

where p (mm?* mm?) represents the amount of area of craze middle planes per
unit volume, n is the number of intersections of crazes with a vertical test line at
each square, a is the size of the cell, and t is the specimen thickness. The
orientation of craze is measured with respect to a horizontal line which is parallel
to the tangent direction of the crack trajectory at the crack tip.
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Time
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Figure A.1 Experimental setup
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Standard metallographic and polishing techniques (88] were used to section
the specimen in the direction perpendicular to the fracture surface. A typical
micrograph of a polished section of an AZ is shown in Fig. A.2. From these
micrographs, the distribution of craze density and orientation within the AZ are
obtained by the following procedures.

Main Crack

Insert Zone Leading Edge

Central Line of Crack Layer

Figure A.2 A schematics of the Active Zone

A.2 Parametric Studies

In this section, the effect of three geometrical parameters on the CL
configuration is studied. The parameters are the hole radius, ¢, and the hole
center coordinates: a and h. "a" is the horizontal distance from the hole center to
the notched edge and h is the vertical distance from the hole center to the
reference line. Figure A.3 shows the geometrical parameters used in this study.
The reference line is the potential rectilinear crack trajectory under a symmetric
specimen-loading configuration.

The reason to introduce a hole inside the SEN specimen is that we want the
crack to experience the most complex stress condition similar to the real
situation. This is usually neglected in most research works about crack
propagation. Due to the presence of a hole, there are stress concentrations at the
hole edge such that the stress field near the hole area is extremely heterogeneous.
The mixed mode effect of K, and K is clearly shown in the CL evolution.
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Reference Line
60— D e m e = 0
h- ¢ ¢

I B B B

Figure A.3 Parameters of specimen geometry

Experimental Conditions
The following five cases are considered in this study:

(1) h varies; a and ¢ are constants;

(11) ¢ varies; a and h—¢ are constants;

(iii)  h, ¢, and @ vary under the constraint that h=2¢ and a/¢ is constant;
(iv)  a varies; h and ¢ are constants as well as the remotely applied stress;

(v)  a varies; h and ¢ are constant and the remotely applied stress is adjusted so
that the potential energy of a straight crack of length a remains constant.

Experimental Results

The following format is used to present general observations for each type of
the parametric studies.

A. "Crack Trajectory Geometry": Observations concerning the shape of the
main crack are shown (its deviation from the reference line, its curvature,
etc.).
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B. "CL Geometry': Observations concerning the shape of the crack layer are
presented (the curvature of the CL central line versus the main crack's
curvature, CL width, craze orientation, etc.).

C. "CL Kinetics": Qualitative observations concerning the evolution of both the
main crack and the CL are presented (speed of main crack, craze
orientation, etc.).

Additional geometrical parameters are introduced in Fig. A.4 for future
reference. In this figure, & and &, represent the difference between the
abscissas of the hole center and the depth of the peak of the curvature of the crack
trajectory and CL central line, respectively.

e Trajectory: Main Crack or CL Centrai Line

————— Curvature of the Trajectory

Peak Value of the Curvature

ey o o

&.c or i.r..

Figure A.4 Additional geometrical parameters

Case (i): Crack Layer Propagation for Various h and Constant ¢ and a

Loading conditions: o,,, = 15.0 MPa, 6_,, = 1.5 MPa
Frequency: 0.5 Hz
Geometry: (1)a =6.0 mm, ¢ = 1.5 mm, h=2.5 mm
(2)a =6.0 mm, ¢ = 1.5 mm, h=3,5 mm
(3)a =6.0 mm, ¢ = 1.5 mm, h=4,5 mm
Number of tests: geometry (1) - 1, geometry (2) - 2, geometry (3) — 2
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A. Crack Trajectory Geometry:

The curvature of the crack trajectory is strongly affected by the distance h
(Fig. A.5). Figure A.6 shows the corresponding curvatures of crack trajectories.
Both figures indicate that the effect of the hole tends to disappear as h becomes

larger than 3¢
B. CL Geometry:

The comparison of the main crack curvature with the CL curvature
(Fig. A.7) indicates that the array of crazes turns first and the main crack follows.
To evaluate "CL curvature”, we use the geometrical central line of the CL instead
of the line formed by gravity centers of the CL cross-sections. However, the
conclusion that AZ guides the main crack is supported by the direct observations
of the AZ morphology. Intense crazing within AZ appears as a response to the
stress concentration at the crack tip. On the other hand, AZ extends ahead of the
main crack. Therefore, the crazes at the AZ leading edge "sense” the changes in
the stress field earlier than the main crack. As a result, the AZ changes direction
prior to the main crack. The peak of the curvature of CL central line occurs at a

shorter depth than the peak of the main crack, i.e., &cp. < &c. Notice the apparent
oscillation of the CL curvature relative to the mair crack curvature, as if the AZ
guides the main crack with a strong feedback.

S —-— — REFERENCE LINE

Y (MM)

X (MM)

Figure A.5 Trajectories of main cracks for three notch positions
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(mm)

1
Curvature Gom )

Y

X t(mm)

Figure A.6 Curvature of three crack trajectories

Main Crack Curvature

sr - - == Crack Layer Curvature

P TR

Y (MM)

12

X (MM)

Figure A.7 The curvatures of the crack trajectory and the middle line of the CL
together with the CL envelope for Case 1 in Fig. Ab.
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C. CL Kinetics:

The width of CL evolves with CL propagation. During the period when CL
is turning toward the hole, the lower part of CL is wider than the upper part.
Once the tip of the active zone reaches the vertical axis A-A (Fig. A.4), CL
propagation speed suddenly decreases and CL starts to move away from the hole.
At the same time, the width of the lower part of CL begins to decrease and the
width of the upper part begins to increase.

The morphology of CL at this stage for h=2.5mm shows "feather-like"
crazes (Fig. A.8). The common phenomenon is that, within one test, the size of
the active zone correlates with the crack speed, that is, the larger the active zone
is, the higher the crack speed. Apparently, this holds for both rectilinear and

curved CL propagation.

OIMM "Feather-like" Crazes

10 MM
—t

Figure A.8 "Feather-like" craz.s are found where the main crack starts to turn
away from the hole.
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5% —— 0 = 1.5 mm

——— O = 1.0 mm

Y (mm)
(=]

e —

X (mm

Figure A.9 Trajectories of main cracks in three specimens with different holes.

Crack Layer Propagation for Various h, and ¢ and a under the Constrain that
h=2¢ and a/¢ is Constant

Loading conditions: 6, = 17.0 MPa, o, = 1.7 MPa

Frequency: 0.65 Hz

Geometry: (1)a/¢=6,2=3.0mm.¢=05mm.h=10mm
(2)a/¢=6,¢=60mm. ¢=1.0mm.h=20mm

Number of tests: geometry (1) - 2, geometry (2) - 3

A. Crack Trajectory Geometry

In all of the tests, the crack is arrested at the hole approximately one-half
radius beyond the hole center (Figs. A.10, A.11, and point B in Fig. A.4). The
main crack curvature of the small-hole specimen is similar to the main crack
curvature of the large-hole specimen at the "corresponding” depth. By
"corresponding”, in this case, we mean "twice as large’, since the essential
parameters a, h, and ¢ for a large-hole specimen are two times larger than those
for the small-hole specimen. Figure A.12 shows a twice enlarged portion of the
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small-hole specimen. Then the curvature behavior of both cases is clearly seen by
comparing Figs. A.11 and A.12.

B. CL Geometry

The CL width w for specimens with the smaller hole compares to the CL
width W at the corresponding depth for specimens with the large hole. For small
crack length (L € a/2). W = 2w; at later stages (L ~ a), W = 3w (the CL widths are
measured in the direction which is locally perpendicular to the direction of the
main crack trajectory).

Cases (iv) & (v): Crack Layer Propagation for Various a and Constant h and ¢

Omax = 17.7 MPa
(a) {

Loading Conditions: Gmin = 4.43 MPa

o { Omax = 13.4 MPa
Gmin = 3.35 MPa

Frequency: 1.0 Hz
Geometry: (1) ¢ = 0.5 mm, h=1.0 mm, a = 4.0 mm
2)¢=05mm, h=1.0mm, g =50 mm
Number of tests: geometry (1) under loading condition (a) — 3
geometry (2) under loading condition (a) — 2
geometry (2) under loading condition (b) - 2

Specimens of another thickness (0.17 mm) were used in all of the tests of
Cases (iv) and (v) (the thickness was 0.25 mm in cases (i)-(iii)).

Case (iv): Same remote stress

Under the same loading conditions, specimens with the hole farther from
the notched edge (a=5.0 mm) exhibit wider CL and more pronounced curvature
change of the main crack (Fig. A.13).

Note: For specimens of the same geometry, higher stress caused wider CL and
more pronounced curvature of the main crack (Fig. A.14).

Case (v): The

The main crack curvature pattern of (a=4.0 mm)-specimens subjected to
half of failure stress (0.5 ;) and (a=5.0 mm)-specimens subjected to 0.38 o, (to

have approximately the same potential energy at depth a) are very similar
(Fig. A.15).
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Figure A.10

Crack Layer geometry for a test with a 1 mm diameter hole

mm

Figure A.11

Crack Layer geometry for a test with a 2mm diameter hole
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}_m'

Figure A.12 Twice enlarged portion of Crack Layer geometry from Figure A.10

Summary of the Parametric Studies

As we mentioned in the previous section, the curvature patterns are very
similar for 2 conditions of Case (v). An immediate check for this is to compare the
normalized curvatures for specimens with the same geometry but different
loading conditions at Case (iv). Normalizing the curvature by the stress intensity
factor (SIF, owd) for the cases shown in Fig. A.14, we found the normalized
curvatures to be almost identical for (a=5.0 mm)-specimen and (a=4.0 mm)-
specimen. It can be seen by enlarging Fig. A.14 (a) 1.32 times, then comparing it
to Fig. A.14 (b). The factor 1.32 is the ratio of the maximum SIF for these two
cases. However, the CL width is different in these two cases even though the
curvature appears to be the same.

In terms of the scaling effect, the study of Case (iii) indicates that the
scaling of linear elasticity works well for the macroscopic quantity such as the
main crack curvature but is not applicable for the microscopic quantity such as
CL width, asymmetry, etc. (Figs. A.11 and A.12).
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As to other geometrical factors, we also try to normalize the curvatures
with the ratio of h/, but the results are not consistent for all five cases. We find
that the main source of this is the CL width. Also, in section 2.1, we have shown
that the AZ guides the main crack. This phenomenon is actually observed in all
the tests. Rubinstein [4] made an attempt to explain the curved crack trajectory by
means of the conventional criteria for crack direction such as maximum K,
maximum G,, and K;;=0. He found that none of these criteria is applicable, i.e.,
gives the correct direction. It is obvious that the damage zone in front of the main
crack plays an important role in the crack propagation rate and direction.
Therefore, the detailed analysis of the CL is necessary to understand the CL
kinetics and the crack direction.
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Appendix B The Simple Model for Evaluation of Opening

From the representative volume element for the high density cracks
in Fig. B.lb and considering the conditions fa<( a/h>>1. the element in
Fig. B.1b is represented by simple beam model (for 2-D case ) as shown in
Fig. B.1.

The deflection of beam can be found in [90] for simple support beam
(Fig. B.1a)

ve DU O k= 3x#+0 = ((=¢)]]  —c<x<0
6EI
(B1)
=P(ggl[) [6(f—c)/(- 3([—-c¢) — (x+D}) —-[<x<—C
for built in beam (Fig. B.1b):
P((-c)’
V= 6EI° [=([= ¢) + 3(x+0) = 3(x+021] —<<x<0
" (B2)
P(x+0)
V= El [—(x+0) + 3({— )+ c)/2(] —-[<x<—
(a) (b)
ol 2¢ 19 y oHZC p f
Or . ﬂ.{h 1 ° 4 :
A 4
by I‘;l 1 ty 4
o | \ ol
' 2 - = 2 !

Figure B.1 The sketch of simple beam model. (a). simple support beam.
(b). build in beam.
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The deflection of a circular plate concentrically load can be found in
[91] for simple support plate.

2 2 _ 1. 2
w = 12U-V)P [=(2+c) Inf + (x2—c?) + Gl - a zv)c (~x) O0<x<c
8nEh’ ¢ 2(1+v)/f
(B3)
2 2 (12
W= 12A-v)p [-(x2+c?) InL + Canlidt 2v)c (*-x?)] c<x</
8nEh’ X 2(1+v)(
for built in plate:
12(1-v»)P 1,y G2
W= ) Inf + (=c?) + F 1+ D) O<x<c
(B4)
_12a-vHp Lol oz </
W_—_——SnEh3 [—(x2+c?) lnx+2\1+[2)([ x9)] c<Xx

The stress distribution between the two crack tip is modeled by two
concentrate load where the loading point is introduced as a "center of
gravity " with respect to the normal stress.

2(a-0) 2a-0)
xc=j xcndx/f Oz dx, c=a-[-x. (B5)
0 0

The concentrate load P is obtained by the equilibrium of force
P=ato% (for 3-D case, P =2a20}).

Then the average crack opening displacement of upper and lower
bounds associate to the simply supported and build in beam can be
expressed as:

For 2-D case upper bound,

{
_1 =29 (40 120 — (19(4l-a) + 1/108(4(-a)’ B6
<b:> = L[uz]dx S (4l /9(4(~a) +1/108(4(~a) ] (B6)




115
For 2-D case lower bound,
(
=1 = atCp 1736(4(—a) (/3 (4(-a)+*
<bz> 2[[ 2] dx 27EI[(4[ a) [1736(46-a)’ — £/3( a)+[’] (B7)
For 3-D case upper bound,
2 pf
<b;>= Lz [us]rdrd6
o )
=12(1—v2)a2<;;;{ L l@-o° [,] La@-0’ Gy - (IEVNG@=D Jl (R3)
nEh3 /2 16 81 36 8(1+v) 9 J
For 3-D case lower bound,
2n {
<b:> = Lz [us]rdrd®
o Ju
_120-¥)a’c5, { ~a-0", 4_r@0, [1+(a—l)2]} (B9)
RERC 16l 81 36 8L af )

where E and v. .~ Ycung's modulus and Poisson's ratio, I is the moment of
inertia.  Substitute Eqs. (B6-39) to Fgs. (3.26) and (3.27), the effective
compliance in Eq. (3.22) will be obtained and the functions

@3 (), @2(7), B3 (M), ard B3 (M) can be presented as the following:

(m)

S = 2 (A _ w3 N7, ne - 1 ™ _

<I>z(n)—3(4n D2m™) 9( 1)+108(4n 1)’] (B10)
(m)

<I>§(n)=%(4n‘""— D'l @n™- 1)2—33—( ® _ 1) + (™)?] (B11)

oim =2V (L[4 Y _ ey - A (o’

(n"“’)

(m
8(1+v) [(3 V™Y -

1-v)(1-n™)’
2 (1=-v)(1-n )]} (B12)

9




Dy(n) =

3(1-v¥)
2

mh4
, )

(l—n‘“")“] @

=L [ (e
{zt [

[1

81 36
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Appendix C Crack and Process Zone Driving Forces

The purpose of this section is to evaluate the crack driving force.
Knowing the Green's function for the SIF allows us to calculate the
displacement caused by the crack at any point. Reference [45] specifies
the Green's function for the SIF in a SEN specimen caused by a unit dipole
force F applied to the crack face as follows:

SIF(x.]) = 2E gfx L i
G = 25 X, L (C-1)

Here [ is the crack length, B is the specimen width, x is the distance
from the notch edge to the point of load application and ¢, the correction
factor reflecting the specimen geometry, is

3.52(1-%) 4.35-5.28(%) . fl.3 20.3 ()ﬂ%

b VR

+0.83 - 1.76(x7)\ {1-(1 ‘XT)f} (C-2)

d4)-

M
F
F=1
F (F=1)
X
l
“— B
.
:—\——-——— unit thickness

SEN specimen

Then the SIF from o,, applied at the interval [/,/+],] is obtained by means
of superposition (integration) as

l+la
K(Oi3l+l5)= - oy f GSIF(x,I+1,)dx (C-3)
l
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Similarly, the SIF from the remote applied stress O. is
[+la
K(oul+l)= o, f G (x,1+1,)dx (C-4)
0
Thus the SIF for the problem in Fig. 4.2a is given by
K(0..,0ul+5) = K(0.;1+1,) + K(Gipl+1,) (C-5)

In order to calculate the potential energy for the problem in
Fig. 4.12a, it is necessary to first compute the load point displacement
(LPD). The LPD A, can be expressed in terms of the SIF by [45]

l+la

Ap = Ap no crack + E%j K(C'wo'zr;‘g)KQ(é)lQ:ldé (C-6)
0

where 4j, .5 crack is the LPD from the applied load with no crack, and the
second term is the LPD caused by the crack. E( is the Young's modulus of
the initial material; XK o is the SIF from a fictitious dipole force Q applied at
the load point, and can be written in the form

3

Ko(§)ip-1 = -é—f GSTF (x,&)dx (C-7)
0

Similarly, the relative (4,, rqck=0) crack opening displacement
(COD) at the point x; caused by a unit dipole force at xy is expressed by

l+la

G COD(xp,xy;141,) = -Ez-f G5 (x0,6)G5IF (x),6)dE (C-8)
0 max{xg,x1)

Then the COD from o,, applied at the interval [I,/+1,] is obtained by means
of superposition (integration) as
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I+l
&Opxi;l+H,) = - o f G €OD(xg,xy,I+15)dxo (C-9)
!

Substituting the term on the right side of Eq. (C-8) for GC¢OP in
Eq. (C-9), and changing the order of integral gives

I+l ¢&
ao':r;xl,1+1a)=-%:lf f G5 (x0,6)GSF (x,6)dxod& (C-10)
!

x]
Since the zone of material transformation only includes the region where

x12[, x1<l is not considered in the above integration. Similarly, the COD
from the remote applied stress o. is

I+l r&
§Owtr l+la) = 7;% f f GSIF (x0,&)GSIF (x1, E)dxod (C-11)
x1 0

Thus the COD for the problem in Fig. 4.1a can be evaluated as

KO, Orrix 131+ ) = K Ox131+H ) + HOysx1; 1+ ) (C-12)

The crack driving force is the partial derivative of the Gibbs potential
with respect to crack length. The Gibbs potential G of the model (per unit
thickness) is [57]

G=I+2yl+ %V, +Gy (C-13)

The potential energy IT of the elastic body is given by

m=F,-w=-1 (C-14)

where F; is the strain energy of the system and W is the work done by the
external load. For the problem in Fig. 4.1a, the work can be written as:

I+,
W =o0._BA, - erf KO, 01X 1,1+ g)dx (C-15)
I
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Using the assumption of a thin process zone, the volume V, (per unit
thickness) can be determined by [10]

I+,
Virp= —I——I &O..,0x ]I+l g)dx) (C-16)
A-1];

Equations (C-14), (C-15) and (C-16) show that the potential energy IT is

Il=- %O;,BAP + %o,,(l—l)v,, (C-17)

From Eq. (C-17), the crack driving force XCR is

XCR=__a_Ci -_-_aﬂ 2y- y,,avtr (C-18)

Ol \tst,=const. Ol lrl=const. ol \+l,=const.

Using Eq. (C-17), the change of the potential energy caused by crack
growth for the problem in Fig. 4.2a is

— =.lgpP + L£0,(A-1) C-19
ol W+, 2 ol +l,=const. 2 v dl W+lg=const. ( )
From Egs. (C-5), (C-6), (C-7) and (C-10),
1+,
aAp ) d
—£ =4 — | K(0..,01;8) Ko(E)i0=1|1+1,=const. A
ol wstmconst. EO 81[ mene ] o
l+la "
+iq
-2 [G,,GS’F(I,?;') _LI Gs”'"(x,é)dledé
Eo B 0
0
= O Jo.iL1+) (C-20)
Bo, V<1

—
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Taking the partial derivative of each side of Eq. (C-16) with respect
to crack length gives

I+lg

aV,,- 1 aqau’o-tr;le*'la)

-8 Oy Orrs L 1+1a) + dx, (C-21)

ol l+l,=const. A-1 ol li+l,=const.

Equations (C-10), (C-11) and (C-12) show that

I+lg

aq 0.0 X1 y1+1a)

Eo

X1

l+[a l+la
dx1=} —Z-Ol’—j GSTF(1,6) GSF(x1,E)dEdx,
{

ol +l,=const.

= - &0ihi+l,) (C-22)

Substituting - domll+l) for integral in Eq. (C-11) gives

v, =- _I.[qo,,,mr;l,lﬂa) + da,,;l,1+1a)] (C-23)
al H+l,=const. l"l ;

Substituting the results of Eqgs. (C-20), (C-23) into Eq. (C-19( gives

oIl
— = - 08 0ues Oiri L 1+1a) (C-24)

ol li+l,=const.

Substituting the results of Eqs. (C-24), (C-23) into Eq. (C-28) yields

X CR= Guﬂ O.os Oprs i +g) - 27+ I%'—[qa”’o"’ ;I’IH“) + 3oy ;l’l+1“)] (C-25)
-1

The last term in Eq. (C-18) results from the change of the Gibbs
potential caused by material transformation. It is necessary to emphasize
that the change of the process zone volume caused by crack growth
consists of two parts. In the right side of Eq. (C-21), the first term
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represents a decrease in volume caused by an infinitesimal decrease in the
process zone length. The second term represents an increase in the
volume because of an infinitesimal increment of the process zone width.
Thus the first term corresponds to the release of the energy.

However, the allotropic transformation from the initial to the drawn
material is not a reversible process, and process zone material cannot be
transformed into initial material by releasing the acting stress. Therefore
the change of energy associated with the first part is simply a release of
strain energy of the drawn material. In polyethylene the strain energy
density of the drawn material is known to be very small in comparison
with y,, (14). Thus the change of the Gibbs potential associated with the
material transformation is completely represented by the second term, and
the first term is negligible. Taking this into account, the crack driving
force can finally be reduced to

x CR_ o-,{q Ooes Ot L1+ a) + —yzl—)dq,;l,lﬂa) -2y (C-26)
O-tr( -




