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Abstract

In this study the impact of spatial resolution enhancement is tested on

estimates of typhoon rainfall using microwave measurements from the

Special Sensor Microwave/Imager (SSM/I). Pa ;,,-ive microwave estimates of

rainfall are susceptible to errors from non-complete beam filling. The SSM/I

ground footprints for the 19, 22, and 37 GHz channels have considerable

overlap and thus deconvolution techniques can be applied to enhance spatial

resolution. A Backus-Gilbert matrix transform approach is utilized to

accomplish the deconvolution so as to minimize noise amplification as

suggested by Stogryn (1978). Various validation procedures are performed to

demonstrate the effectiveness of the method.

The deconvolution scheme is ev _iaated in terms of its impact on

integrated rainfall throughout the life cycle of a number of ropical storms

which occurred during the 1987 hurricane and typhoon season. This

evaluation was performed for a single frequency emission algorithm, a single

frequency scattering algorithm, and three multiple frequency algorithms, each

with different properties and scientific approaches. While rainfall patterns

detected by all algorithms were qualitatively enhanced, quantitative responses

were different for each algorithm. The area-averaged rainiall derived from

the single frequency emission algorithm was increased by nearly 6%, due to

the non-linear relationship of rain rate to brightness temperature, whereas

ix



the rainfall from the single frequency scattering algorithm was decreased by

almost 16% due to biases introduced by the deconvolution method. While

the multiple frequency algorithms had more complex responses, the

difference between deconvolved and raw area-averaged rainfall produced by

these methods were less sensitive to deconvolution than the single channel

algorithms. The deconvolution method enhanced the quality of the rainfall

images produced by all the algorithms, accentuating gradients and other

smaller scale features.

x



CHAPTER 1

Introduction

1.1 The Deconvolution Problem

Due to the very low levels of energy in the microwave regime

emanating from the earth-atmosphere system, it has been required that

orbiting instruments measure this radiation with large fields of view (FOV)

or large "effective" apertures. This feature is necessary to ensure an

adequately high signal-to-noise ratio. these requirements differ for each

SSM/I frequency, this by necessity results in differing ground footprints for

each frequency, as illustrated in Figure 1.1. For example, at the 3 dB levels

used for the SSM/I instrument, the 19 GHz channel ground footprint is 69

km x 43 km, while the size for 85 GHz is only 15 km x 12 km.

When utilizing measurements at different frequencies in multi -

channel retrievals or other objective modeling applications, it is desirable that

the measurements be collocated in time and space. Identical antenna

boresights for each respective satellite channel (or identical central points of

the ground footprints) do not guarantee spatial collocation as channels with

larger fields of view sample larger surface areas. For example, a specific

SSM/I 19 GHz measurement may sample a small but significant feature such

I
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Freg. Footprint

85 GHz 15 x13 km

37 GHz 37 x29 km
22 GHz 6Ox 40Okm

19 GHz 69 x43 km

Figure 1.1: Ground footprint spatial overlap of the four SSM/I frequencies.
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as a thunderstorm, whereas this feature may effectively lie outside of the FOV

of the 85 GHz measurement. Hence comparisons of these measurements at

multiple frequencies are hampered by the fact that different phenomena are

being sampled by different channels Therefore, uniform spatial resolution is

desired for multi-channel applications.

This requirement poses a dilemma. One must either effectively average

the high resolution measurements down to the scale of the low resolution, or

alternatively attempt to improve or enhance the low resolution

measurements up to that of the high resolution. As th, iormer results in the

loss of smaller scale information, the latter is obviously preferred. The

optimal methods for increasing spatial resolution rely on an overlap of the

gain functions of adjacent antenna measurements. This redundancy of

information makes it possible to retrieve information, namely deconvolved

brightness temperatures, on scales smaller than those directly sensed by the

antenna.

The correction technique presented utilizes a matrix inverse method

proposed by Backus and Gilbert (1970) and applied by Stogryn (1978) to the

problem of satellite radiometric measurements. Essentially when the density

of such measurements is oversampled, the redundancy in the measurements

coupled with the antenna gain pattern of the sampling instrument may be

combined to produce a set of coefficients, which when applied to

measurements surrounding a central point, can produce a data set whose

spatial resolution is greater than the original data. Since Backus and Gilbert

(1970) showed that such an attempt to enhance resolution leads to an

amplification in noise, Stogryn (1978) proposed a method which
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simultaneously works to enhance resolution and minimize noise, where

these two properties are balanced by a tuning parameter.

Poe (1990) proposed a method by which the low density measurements

of the SSM/I lower frequencies were resampled to the higher grid density of

85 GHz. As no attempt was made to increase the spatial resolution of the

resampled measurements, the problem of minimizing noise could be

neglected. Although this method is quite useful in such applications as

imaging, the problem of inequality in spatial sampling between channels is

not addressed. This papei seeks a solution to this problem by attempting to

increase the spatial resolution and sampling rate of the low resolution SSM/I

measurements to that of the high resolution 85 GHz channel. By a careful

objective selection of the tuning parameter within Stogryn's theoretical

framework, a method is developed which enhances the SSM/I channels to a

common resolution, which may prove to be valuable in multispectral

applications of satellite data.

1.2 Motivation for tropical storm rainfall

Due to the destruction of flooding associated with hurricanes, the

observation and prediction of these tropical storms has long been a high

priority. Measurement of rainfall within these storms is important not only

for observational reasons, but for forecasting as well. Rodgers and Adler

(1981) utilized Nimbus 5 ESMR data to study the precipitation characteristics

of several Pacific tropical cyclones. They found that storm intensification was
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indicated by an increase in total rainfall, as estimated from the satellite

measurements. Also these intensifying storms had an increase in the relative

contribution of the heavier rain areas (rain rates > 5 mmohr -1) to the total

storm rainfall, and that these maximum rain bands had a smaller radius for

intensified storms.

Measurements of rainfall are also valuable in determining storm

dissipation. Lewis and Jorgensen (1978) utilized radar data to measure rainfall

from Hurricane Gertrude and determined that precipitation intensity

decreased rapidly as the storm dissipated. Area integrated rainfall decreased

four-fold during a six hour period when the storm was undergoing rapid

dissipation. Hence rainfall observations can provide valuable information

for intensity forecasting of tropical storms. Due to the unavailability of radar

information away from coastlines and the expense of aircraft observations,

satellite remote sensing is considered by many to be the best alternative for

the monitoring of rainfall within these storms.

Due to the inability of visible and infrared radiation to penetrate the

cloud and directly sense the precipitation particles, measurements in the

microwave regime have been utilized by a number of current researchers to

tackle the rainfall retrieval problem. Wilheit et al. (1977) utilized 19 GHz data

from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) to

retrieve precipitation rates over the ocean. Spencer (1986) and Olson (1989)

have also employed data from the Nimbus 7 Scanning Multichannel

Microwave Radiometer (SMMR) toward the same goal. One problem which

has hampered the results of the studies is the large ground footprints of the
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microwave measurements, which leads to non-complete beam filling by

precipitating clouds.

Some improvements were made in the latest instrument, the four

frequency SSM/I, which has greater ground coverage (-80% increase in swath

width) and less noise inherent in its measurements than did its predecessors.

However the problem of large ground footprints remains. For reasons

explained in the next section, each frequency has different ground footprints,

such that each effectively samples a different spatial area. As addressed by

Mugnai et al. (1990), such mismatches in radiometer fields of view lead to

non-linear complications in the radiative transfer models utilized to

determine rainfall rates from microwave brightness temperatures. Short and

North (1990) compared radar-derived rain rates for convective and mesoscale

systems [obtained from shipboard measurements during the Global Atlantic

Tropical Experiment (GATE)] with rainfall derived from satellite radiometric

measurements made by the Nimbus 5 ESMR. They found that non-complete

beam filling of the satellite measurements resulted in a 50% underestimation

of rainfall, when compared to the radar-derived values. For these reasons, a

deconvolution method is introduced which will attempt to match the

differing fields of view of the SSM/I channels, and apply the enhanced

measurements to the retrieval of rainfall. As this study is being conducted for

tropical storms, which are more likely to contain precipitation regions of

greater area coverage and homogeneity than the meteorological systems

studied by Short and North (1990), the effects of non-complete beam filling

will be less pronounced for this study.
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Through the introduction of enhanced measurements, the attempt is

made not only to improve the rainfall retrievals, but also the rainfall imagery

itself. Since the deconvolution method improves the spatial resolution,

boundaries between precipitating and non-precipitating regions which

become smoothed by the large instrument fields of view are better revealed.

The enhancement of small scale features leads to improvements in the

mapping of the precipitation regions of tropical storms, which are useful to

tropical storm observation and forecasting as well as to research problems

concerned with precipitation retrieval.



CHAPTER 2

Description of SSM/I Data System

The first SSM/I instrument was launched aboard the Defense

Meteorological Satellite Program Block 5D-2 Spacecraft F8 on June 19, 1987.

The Block 5D-2 spacecraft is in a circular sun-synchronous orbit at an altitude

of 833 km with an inclination of 98.80. This results in an orbital period of

102.0 minutes, yielding 14.1 orbits per day.

2.1 SSM/I instrument

The SSM/I is a series of seven linearly polarized passive microwave

radiometers, measuring upwelling radiation at four microwave frequencies.

Dual polarization measurements are made at the 19.35, 37.0 and 85.5 GHz

window frequencies, while only the vertical polarization at 22.235 GHz water

vapor channel is observed. As described in detail by Hollinger et al (1987), the

radiation is focused to the instrument by an offset parabolic reflector, which is

fed by a corrugated, broad-band, seven-port antenna feedhorn. The reflector,

feedhorn, radiometers and other subsystems are mounted on a drum unit,

which spins with a rotation period of 1.9 seconds. A cold calibration reflector

8
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(a mirror reflecting cold radiation from space) and a hot reference absorber are

mounted next to the drum unit, but do not rotate. Once each rotation, the

cold reflector and hot reference absorber pass between the feedhorn and the

parabolic reflector, such that calibration measurements are taken for each

scan.

While the drum containing the feedhorn and radiometers rotate with an

axis parallel to the local spacecraft vertical, radiation is sampled aft of the

spacecraft track from a nadir angle of 45* . The SSM/I scans left to right (when

looking in the aft direction of the satellite track) and actively measures

upwelling radiation for 51.20 to either side of the satellite track, resulting in a

swath width of 1394 km. During each scan, 128 equally spaced measurements

by the 85 GHz channels are made over the 102.40 active scan region. The time

interval between these samples is 4.22 msec, so that each measurement along

the scan is separated by a ground distance of 12.5 km. This is the same

distance which separates each scanline, as the satellite moves 12.5 km along

its track during the 1.9 sec rotation.

The other five lower frequency channels make 64 equally spaced

measurements every other scan with a sampling interval of 8.44 msec, such

that these measurements are separated by 25.0 km along the ground in both

the along-track and cross-track directions. A scan line where measurements

are made by all channels is denoted as Scan A, while the alternate scan, where

only samples by the 85 GHz channels are made, is denoted as Scan B. A

pictorial representation of the scan and orbital geometry is presented in

Figure 2.1. Also depicted is the instantaneous field of view (IFOV) for each

frequency, represented as ellipses which denote the projections of the 3 dB
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Figure 2.1: SSM/I scan and orbital geometry [from Hollinger et al (1987)]
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beamwidths on the earth's surface. Since the radiometer filter integrates the

instantaneous radiometer output over 3.89 msec for 85 GHz and 7.95 GHz for

the other frequencies, an effective field of view (EFOV) is defined which takes

into account the finite integration time. While EFOV is significantly larger

than the IFOV in the cross-track direction, it is essentially identical in the

along-track direction. The IFOV and EFOV beamwidths, as well as their

projections on the earth's surface (defined as ground "footprints"), are

presented in Table 2.1 for each channel.

Table 2.1: SSM/I Antenna Beamwidth Characteristics

Frequency Polarization Beamwidth (degrees) Footprint (km)
(GHz) A.T. IFOV C.T. IFOV C.T. EFOV A.T. C.T.

19.35 vertical 1.86 1.87 1.93 69 43
19.35 horizontal 1.88 1.87 1.93 69 43

22.235 vertical 1.60 1.65 1.83 50 40
37.0 vertical 1.00 1.10 1.27 37 28
37.0 horizontal 1.00 1.10 1.31 37 29
85.5 vertical 0.41 0.43 0.60 15 13
85.5 horizonf 1  0.42 0.45 0.60 15 13

* - C.T. is Cross Track, A.T. is Along Track
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2.2 Calibrated brightness temperature data

Brightness temperature data utilized in this study was obtained from

antenna temperature data tapes produced by Remote Sensing Systems. The

antenna temperature data set is a compacted version of the Temperature Data

Records (TDR's) produced by the Fleet Numerical Oceanographic Center. The

data are recorded on 6250 cpi magnetic tapes containing 160 megabytes, where

eight such tapes consists of approximately one month of data. For this study,

the first 16 tapes produced in this manner were utilized, which included data

from July 10 to September 9, 1987.

The conversion of antenna temperatures to brightness temperatures was

simultaneously performed with the decoding of the packed antenna

temperature data by subroutine DECODE, a software package included with

the data tapes provided by Remote Sensing Systems. An antenna

temperature is essentially the integration of the viewed brightness

temperature field over the gain pattern of the parabolic reflector and antenna

feedhorn. Hence this integral must be inverted to obtain a brightness

temperature from an antenna temperature.

Wentz (1988) develops an approximation for the brightness temperature

(TB) as a function of antenna temperature (TA) and two measured

instrument characteristics: feedhorn spillover and cross-polarization leakage.

The feedhorn spillover is a measure of the power that enters the feedhorn

directly from space, as opposed to the primary source that enters the feedhorn

from the antenna. The cross-polarization leakage is a measure of the amount

of radiation that enters a port with a polarization orthogonal to that which
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the port is attempting to measure. An example would be a measure of the

amount of 19 GHz horizontally polarized radiation entering the port of the

radiometer measuring 19 GHz vertically polarized radiation. Values of these

two properties are reported for each channel in Table 2.2. Polarized brightness

temperatures for each of the dual polarized frequencies (19, 37 and 85 GHz)

are then calculated by

TBv = Avv TAV + Ahv TAh + 2.7 Aov (2.1)

TBh = Ahh TAh + Avh TA v + 2.7 Aoh (2.2)

where the factor 2.7 is the temperature of cold space, and the A coefficients are

defined as functions of the spillover (8) and the cross-polarization leakage Xp

by
Avv = (1 + Xv ) / [1 - Xv Xh)(1 - 8)]

Ahv = -Xv (1 + Xh) / [(1 - Xv Xh)( 1 - 8 ) ]

Ahh = (1 + Xh) / [(1 - Xv Xh)(1 - 5)] (2.3)

Avh = -Xh ( + Xv) / [(1 - Xv Xh)(1 - 8 A

Avh = Avh = -8/(1-8)

The above equations require both polarizations and therefore may not be

applied to the 22 GHz channel, as only the vertical polarization i- available.

Wentz (1988) utilizes an ocean brightness temperature model to calculate

brightness temperatures as a function of antenna temperature for a variety of

environmental conditions, yielding the following least-squares linear

regression (for 22 GFIz):
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TBv = 1.01993 TAV + 1.994 (2.4)

Utilizing this set of transformations, the antenna temperature data is then

converted to brightness temperatures for use in radiative calculations.

Table 2.2: Spillover and Cross-Polarization Leakage Factors

Frequency (GHz) Polarization Spillover (5) Leakage (X)

19 35 vertical 0.03199 0.00379
19.35 horizontal 0.03199 0.00525
22.235 vertical 0.02685 0.00983
37.0 vertical 0.01434 0.02136
37.0 horizontal 0.01434 0.02664
85.5 vertical 0.01186 0.01387
85.5 horizontal 0.01186 0.01967



CHAPTER 3

The Deconvolution Method

Various methods have been employed by researchers to describe

brightness temperatures of specified regions in terms of measured antenna

temperatures. Claassen and Fung (1974) pro -)seC a matrix inverse technique

which concentrated on the cross-polarization effects of the measuring

instrument. As the measured temperature distributions are approximated by

spherical bands, the solution coefficients were determined by integrations of

the antenna gain over the the spherical bands. A different method was

developed by holmes et a'. (1975), which was based on Fourier transforms.

However these methods have the undesirable side effect of amplifying noise

in the .neasured data. Stogryn (1978) recognized that the problem of

inverting a series of antenna temperatures to yield a brightness temperature

was mathematically identical to that of inverting antenna temperatures

(measured in either the microwave or infrared regime) to yield an

atmospheric temperature profile. Research in this field had already shown

that attempting to obtain higher resolution in the retrieved profiles could

result in the amplification of noise. This trade-off between noise and

resolution was recognized by Backus and Gilbert (1970) in their geophysical

research. Stogryn's (1978) application of the Backus-Gilbert matrix inverse

15
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method to the problem of estimating brightness temperatures seeks to

minimize noise amplification by the use of a tuning parameter. In this

research, the technique was implemented in conjunction with SSM/I

measurements in such a fashion so as to objectively determine the tuning

parameter. A discussion of the method follows.

3.1 Method of Solution

Following Stogryn (1978), consider a satellite-borne radiometer observing

the earth-atmosphere system from a known altitude (h) and boresight

direction (so) as illustrated in Figure 3.1. The incremental solid angle viewed

by the antenna may be described as:

dQ = (-- •/ s2 ) dA (3.1)

where ' is the unit vector along a position vector from earth center to the

incremental surface area dA, Cs) is the unit vector from the antenna to area

dA, and s is the distance from the antenna to dA. Therefore, the antenna

temperature measured along the boresight direction may be expressed as:

T A 60 ) = J G ( A0 , s1 T B ( p , ) d( 3
(3.2)

where the integral is evaluated over the portion of the earth (E) seen by the

satellite.
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Figure 3.1: Geometry for satellite radiometric observations;
adapted from Stogryn (1978)
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In realizing that this process is not instantaneous but is being performed over

a finite period of time, two more aspects of the problem arise. Firstly the

movement of the instrument as it scans and movement of the platform as it

orbits the earth must be considered. This may be dealt with by allowing the

appropriate quantities in equation (3.2) to become functions of time. Secondly

the integration or measurement time of the instrument itself must be taken

into account. This may be accomplished by considering the antenna

temperature averaged over the integration time 1. Allowing for these two

time dependences leads to:

ti + c /2 (p t ( S(

TA =1 J JEG(O (t), s(t)) TB (ps (t))(- (t).o/s2(t))dAdt

E(3.3)

But assuming that the variation in TB over the integration time tr is

negligible, the ith value of a time averaged antenna temperature TA may be

described as:

TA = f_ Gi (p) TB(P) dA (3.4)

where the time averaged gain function is:

ti + /2-- l G( s0(t ),s(t )t S2 (- () s(t))d
Gi (P) = (S s Jti P/2

Ir fj -, /2(3.5)
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Consider now that a set of N measurements whose antenna patterns

overlap are to be utilized to determine the brightness temperature for some

point at PO on the earth's surface. As this problem is mathematically identical

to that considered by Backus and Gilbert (1970), Stogryn (1978) applied their

method of solving a system involving a linear combination of the N

measurements which approximates TB (P0):

N
TB (PO)= Ci TAi

i=l1

JE [ N ci - p1TB(p) dA(36f 1 (3.6)

where a substitution for TAi has been made from equation (3.4). As it is not

possible to produce a set of coefficients ci which yield a perfect solution for

TB(PO), the problem is reduced to finding a set coefficients which most closely

produces the resultant brightness temperature.

By considering an integral of the form:

QR= ciGi - F(P,Po) J(p,po) dA
f = (3.7)

and a normalization constraint:

IN
I ciGidA = I

=3 (38)
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then by appropriate choice of F and J, QR can be minimized. The F and J

functions are chosen according to a particular application. J is a weighting

function which allows emphasis to be placed on desired regions in the

integration but can be set to unity if this dependence is not relevant. If F is

chosen to be equal to a constant value of 1 /A 0 within the area A0 and equal to

zero outside this area, the minimization of equation (3.7) will yield the best

estimate of the average brightness temperature over the specified area A0.

Another aspect affecting the procedure is the propagation of instrument

noise into the desired solution of the brightness temperature. As the

variance of this random noise is equal to (ATrms) 2, the variance in the

resultant solution of the brightness temperature is:

QN= 'TE (3.9)

where C is the vector with elements c and E is the error covariance matrix.

As the noise in this case is purely random and hence no correlation exists

between successive measurements, E is a diagonal matrix whose diagonal

elements are (ATrms)2. In order to ensure a minimum propagation of noise to

the solution, equation (3.9) could be minimized with the normalization

constraint of equation (3.8).

The method utilized in this research attempts to balance the trade-off

of resolution and noise, with the constraint of equation (3.8), by minimizing

the combination of QR and QN, i.e.:

Q=QR cOSY+ W QNsiny (3.10)
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where w is chosen to insure that QR and QN are dimensionally consistent and

the tuning parameter y allows emphasis to be placed on resolution or noise as

it is varied from 0 to 7C/2, respectively.

The solution to the minimization may be now be expressed. Allow G to

be the N x N matrix with elements:

Gij=J Gi (p) Gj (p) dA
(3.11)

Then the solution vector C becomes:

=Z 1  c s - ' Tz - I )

c cT " Z I (3.12)

where:

Ui = Ui () dA(3.13)

i =  f Gi (p2)(/ A0 )dA 
( -4

(3.14)

Z = cosyG + w sinyE (3.15)

The solution of equation (3.12) in conjunction with equation (3.6) and the

specification of G yields the solution for TB (PO).
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3.2 Implementation for SSM/I

Once the deconvolution method has been developed, several specific

characteristics of the measuring instrument and scan geometry must be

incorporated to uniquely specify the problem. One aspect is the number of

neighboring measurements that can be used in the inversion. As the SSM/I

employs a conical scanner, which causes the orientation of neighboring

footprints to be different for each position along a scan line, the choice of a

constant number of footprints for all scan positions is undesirable. The

criterion thus chosen was one of proximity, such that all footprints whose

center points lie within a specified elevation from the boresight would be

considered. An elevation cutoff value of 1.5' is selected in attempt to balance

a trade-off. The gain at this elevation drops by approximately an order of

magnitude for 19 GHz (by two orders of magnitude for 37 GHz), while the

gains at smaller elevations would still have relatively large values and

significant contributions to the measured brightness temperature might be

neglected. Conversely, larger values of the elevation cutoff would involve

many more measurements and hence slow the calculation process.

Aside from orbital and scanning characteristics, two instrument

specifications are needed to implement this method: instrument noise levels

and antenna gain patterns for each channel. The error covariance matrix E

may now be defined as previously described by assigning to ATrms the

appropriate values for each channel, as described by Hollinger (1987).

As only limited gain information was recorded for the instrument

utilized (instrument S/N 002 aboard DMSP F8), some interpolation is
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necessary for the G function. The gain function is determined at a resolution

of .10 in elevation angle (displacement from boresight), but only at intervals

of 450 in azimuth. In an attempt to produce spatially complete patterns, the

gain data are interpolated to a resolution of .01' in elevation angle by a cubic

spline. Due to the azimuthal symmetry of the patterns, it was found feasible

to average over azimuth, yielding gain patterns which are functions of

elevation angle only Figure 3.2 depicts the interpolated gain versus the eight

azimuthal cuts for the 37 GHz and 19 GHz channels. The azimuthally

averaged gain matches the gain for each azimuthal cut quite well for

elevations less than 1.5° , the cutoff value utilized.

The contribution of brightness temperatures away from the boresight to

the measurement of the brightness temperature along the boresight is

accomplished by taking advantage of the overlapping antenna patterns of

neighboring measurements. hence the gain of each measurement with

respect to the relative position of its neighbors must be determined. This in

turn requires a knowledge of the scan geometry in order to describe the

relative positions between successive measurements and their ground

footprints. As the SSM/I employs a conical scanner, the exact determination

of such a geometry leads to computational complexity. However, by making a

tangent plane approximation, oriented such that this plane is tangent to the

earth's sphere at the point of intersection of the boresight and the earth's

surface, it is possible to obtain nearly exact results for small displacements

away from the boresight. After the displacement of neighboring footprints

from the boresight is found in terms of elevation and azimuth, they are

matched with the interpolated antenna patterns to yield the appropriate gain
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(C) 37 GHz Vertical
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values. Once the instrument gain is properly incorporated, the G matrix may

he uniquely specified allowing the solution vector c to be obtained.

3.3 Objective specification of tuning parameter

One final parameter remains unaccounted for in the solution vector:

the tuning parameter y, which attempts to balance the trade-off between

resolution and noise. Since there is no apriori rule which uniquely

determines this parameter, y is chosen on the basis that the inter-correlation

between the deconvolved channel and the next highest frequency channel is

maximized. A number of test data cases have been analyzed in this fashion to

select a set of optimum tuning parameters. In the process, the selection of test

cases which may lead to negative correlations has been avoided , such as

precipitation. The scattering effects of precipitation-sized particles at the

higher frequencies (i.e., 85 GHz) can lead to radiation losses and hence

minimum values in the brightness temperatures. However these same

precipitation regions will have little scattering effect at the lower frequencies,

and due to emission effects, will in fact appear as relative maxima. This

negative correlation due to precipitation, when coupled with the remainder

of the scene which is positively correlated, contaminates the cross-channel

correlation approach in determining optimal tuning parameters.

Another consideration is that there must be sufficiently high brightness

temperature gradient information such that the blurring effect of the lower

resolution channels is measurable. Such gradients are found along coastlines,
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where cool ocean brightness temperatures transition rapidly to warm land

brightness temperatures. Hence, rain-free coastline cases were chosen to

determine the y 's with the cross-correlation technique. Approximately one

hundred coastline cases were selected from four ocean basins: Western

Pacific, Eastern Pacific, Caribbean, and Indian Ocean coastlines.

After determining the optimum y at each channel for all the selected

coastline cases, the results were averaged to yield a set of coefficients (given in

Table 3.1) which could be utilized for general applications. Such applications

may include those which require computational speed, as the

implementation of such predetermined coefficients avoids the extra

computer time required to calculate the optimum values. Another such

application is made where the cross-channel correlation technique is not

applicable, such as for precipitation cases.

Of note is that the solutions are dependent on the choice of y, and that

utilization of average y 's does not always yield the level of detail which can

be obtained by the case sensitive approach. Hence there may be no universal

best set of 'y 's, although the search is still ongoing. For the purposes of

validation discussed in the next chapter, only applications where the tuning

parameter has been determined independently on a case by case basis were

used.
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TABLE 3.1: Average values of y determined by coastal calibration cases

Channel Polarization Tuning Parameer (y)

37 GHz vertical 0.53 7c/2
37 GHz horizontal 0.48 n/2
22 GHz vertical 0.13 ic/2
19 GHz vertical 0.13 7/2
19 GHz horizontal 0.08 n/2



CHAPTER 4

Validation of Deconvolution Method

The only way to truly validate the resolution enhancement of the SSM/I

low frequency channels would be to compare enhanced measurements to

those actually made at the desired high resolution. However, as such high

resolution measurements of the SSM/I low frequency channels coincident to

their actual low resolution measurements do not exist, such comparisons

cannot be made and hence other methods of validation must be pursued.

Three forms of validation were selected to illustrate the effectiveness of

the deconvolution method. First a simple linear regression technique is

presented as a standard by which the deconvolution method may be

compared. Secondly, a self consistency test was performed by averaging a

high resolution data set to a lower resolution, whereby the deconvolution

procedure is invoked on the averaged set in an attempt to retrieve the

original high resolution data. Thirdly, a qualitative comparison of

deconvolved and raw imagery was performed to determine the visual

improvement made by the method in terms of its enhancement of actual

geographic features.

29
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4.1 Comparison to linear regression

The first way of demonstrating the effectiveness of such a rigorous

procedure as the deconvolution method is to show that it can improve on the

results of a simpler technique. A linear regression procedure developed by

Spencer (1991) provides the method of comparison. A linear regression was

performed on a set of horizontally polarized 19 GHz brightness temreratures

along coastlines to produce a set of regression coefficients, which when

applied to the raw 19 GHz brightness temperatures, produced a new set of

brightness temperatures which most closely matched the horizontally

polarized 37 GHz brightness temperature pattern. The coefficients and the

geometry for their application are presented in Figure 4.1.

As this linear regression method represents the equivalent of an

enhancement of 19 GHz brightness temperatures to the resolution of 37 GHz,

the deconvolution method was reconfigured to this enhancement resolution

for the purpose of comparison. When applied to the 19 GHz brightness

temperatures for several cases, the linear regression of Spencer (1991) explains

97.95% of the total variance in the 37 GHz data, whereas the deconvolution

method explains 98.65% of the variance. This represents a 34.15%

quantitative improvement in terms of reducing the unexplained variance.

However, even though the deconvolution method leads to an improvement

over the linear regression technique, the raw 19 GHz data themselves

explained such a high percentage of the variance (over 97%) that such a

comparison by itself is not an adequate proof of the superiority of the method.
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Scan Direction Footprint Positions

2 3 4

5 6 7

8 9 10 11 12
25 13 14 1 15 16 --

Satellite 17 18 19 20 1
Track Direction 22 23 24

126

Scan Location
Footprint 4-11 12-19 20-27 28-37 38-45 46-53 54-61

1 2.501 2.209 2.199 2.109 2.070 2.551 2.428
2 0.081 -0.001 -0.025 -0.069 -0.135 -0.082 -0.018
3 0.028 0.097 0.224 0.237 0.224 0.049 0.031
4 0.004 -0.079 -0.132 -0.023 0.047 0.136 -0.031
5 -0.446 -0.199 0.094 0.204 0.369 0.212 -0.001
6 0.041 -0.213 -0.720 -0.729 -0.795 -0.344 0.107
7 -0.061 0.145 0.353 0.106 0.024 -0.287 -0.289
8 -0.035 0.018 0.126 0.092 -0.020 -0.020 0.015
9 0.117 0.002 -0.311 -0.348 -0.240 0.054 -0.087
10 -0.001 0.161 0.453 0.505 0.568 0.090 0.169
11 0.007 -0.127 -0.200 -0.262 -0.327 -0.044 -0.064
12 0.0 0.073 0.0 0.047 0.035 0.076 0.107
13 0.200 0.141 -0.010 0.051 0.080 0.023 0.219
14 -0.614 -0.488 -0.361 -0.248 -0.312 -0.500 -0.753
15 -0.554 -0.382 -0.394 -0.317 -0.286 -0.670 -0.666
16 0.183 0.018 0.032 0.169 0.178 0.168 0.122
17 -0.028 -0.004 0.086 0.096 0.120 0.186 0.105
18 0.045 0.024 0.107 -0.131 -0.280 -0.346 -0.100
19 -0.128 -0.053 -0.291 -0.163 -0.002 -0.130 0.0
20 -0.055 -0.239 -0.144 -0.116 0.0 0.231 -0.021
21 0.0 0.145 0.152 0.0 -0.045 -0.048 0.0
22 -0.123 0.015 -0.069 0.0 0.0 -0.072 -0.300
23 0.136 -0.128 -0.102 -0.275 -0.364 -0.231 0.139
24 -0.348 -0.109 -0.054 0.040 0.0 -0.074 0.0
25 0.083 0.060 0.075 0.127 0.169 0.147 0.0
26 -0.033 -0.036 -0.047 -0.054 -0.032 -0.034 -0.074
27 0.0 -0.050 -0.041 -0.048 -0.046 -0.041 -0.038

Figure 4.1: Linear regression geometry and coefficients. Actual scan
geometry is illustrated at top left. Coefficients, given at the bottom, are
multiplied by brightness temperatures around a central point (designated as
footprint location #1 by geometry at top right)
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4.2 Self-cor istency / noise production test

A self-consistency test was chosen as a second quantitative means of

validation. If the high resolution measurements are smoothed to a lower

resolution, a proper enhancement procedure performed on the smoothed

data should yield an enhanced data set very close to the original high

resolution data. This self-consistency approach was performed on several sets

of 85 GHz vertically polarized brightness temperatures to numerically

validate the deconvolution method . The 85 GHz data were subjected to the

same deconvolution procedure as previously described, with two exceptions.

Whereas as before the resolution of the low frequency channels had been

increased utilizing their respective gain functions, here the resolution has

been reduced to that of 37 GHz utilizing the gain function of the 85 GHz

instrument. Secondly, as the act of smoothing inherently reduces noise, the

consideration of noise reduction in the procedure can be neglected by

choosing a zero value for the tuning parameter (y = 0).

The smoothed data set was then enhanced back to the 85 GHz resolution

(by the deconvolution method as originally described), where it was

compared with the original data in terms of an rms difference. For a perfect

enhancement with no noise production, such a comparison should result in

an rms difference between the original data and the smoothed/re-enhanced

data of no more than the inherent instrument noise. The average rms

difference for the series of 85 GI-Iz vertically polarized test cases was 1.47 K,

roughly twice the value of 0.75 K reported by Hollinger (1987) as the noise
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inherent in the 85 GHz instrument. Hence the enhancement process only

generates approximately 0.75 K of added noise.

Note that the smoothing and enhancement processes differ in their

choices of gain functions, limits of spatial integration, and selection of tuning

parameters. Thus their implementations are independent and are not merely

an inversion of one another. Hence this validation approach is not simply a

measure of how well the matrix processes can be inverted but is instead a

legitimate estimate of the effectiveness of the enhancement procedure.

4.3 Qualitative assessment of imagery

If the procedure is truly improving the spatial resolution of the

measurements, prominent geographical features should be enhanced in the

resultant images. Thus a qualitative validation procedure has been applied

for a number of geographical cases to reinforce the conclusions of the

previous section. Such a case for the Caribbean basin and Florida peninsula is

presented in Figure 4.2, where (A) a raw 19 GHz image and (B) an enhanced

image are presented for comparison. Whereas the actual raw measurements

blur the boundary between land and ocean and hence underestimate the

brightness temperatures of the land along the coast, the deconvolved data not

only enhances the resolution but tightens this coastal brightness temperature

gradient. This blurring effect is especially noticeable in many Caribbean

islands, where due to their small size, the brightness temperatures are

smeared not only along the coastlines but throughout the interiors as well.



34

The deconvolution procedure improves on the coastlines and actually

increases the brightness temperature values of the relatively warmer and

drier island interiors, most dramatically illustrated in the depiction of Cuba,

Andros, Jamaica, and Hispaniola. The process also works in the other

direction so as to enhance a relative minimum, as illustrated by Lake

Okeechobee (in south Florida). Whereas the raw image of the lake is blurred

with the surrounding warmer land, the deconvolved image enhances the

boundaries while producing a lower brightness temperature for the relatively

colder lake waters.

Another such case for the western coast of India is illustrated in Figure

4.3. As for the Caribbean case, the deconvolution procedure better defines the

coastal brightness temperature gradient. When compared to a geographical

map as illustrated in Figure 4.4, the deconvolution procedure enhances the

Indian coastline to a resolution which better matches the actual geographic

features. What is most notable is the improvement of the actual geographic

coastline, depicted by the enhanced definition of the Gulfs of Kutch and

Khambhat along with the peninsula of Gujarat that lies between. Whereas

this peninsula is blurred by the raw image, the deconvolved image actually

matches the geographic pattern, highlighted by the shape of the tip of the

peninsula, near the city of Okha (located by * in Figure 4.4). In addition to the

two examples shown, many more cases were examined to determine the

effectiveness of the method in improving the geographic details of the scenes.

The deconvolution method was found to consistently tighten the coastal

brightness temperature gradients, bring out small features blurred by the raw

data, and better depict actual geographic features found in the examined cases.
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CHAPTER 5

Response of Rainfall Retrievals to Deconvolution

5.1 Selection of tropical storm cases

The data set utilized consists of three full months of worldwide SSM/I

brightness temperature measurements, from July 10 to September 9, 1987.

The selection of cases was performed by a systematic search of the data for

SSM/I overpasses of each recorded tropical storm. This search was aided by

the time/location history documented for each prevalent tropical storm

region. Hoffman et al. (1987) provided the information for the eastern

hemisphere cyclones, while those for the western hemisphere were produced

by Case and Gerrish (1988) for the Atlantic and Cross (1988) for the eastern

Pacific. Such records greatly simplified the search for good tropical storm

cases, as it was known exactly when and where to look.

The only remaining problem was due to the nature of the polar orbiting

spacecraft. As the sun-synchronous satellite passed over the same spot only

once every twelve hours, and the width of its scan swath was only 1394 km,

many such overpasses sampled only a portion of the tropical storm or missed

it altogether. Although this was present throughout the life of each tropical

storm, the degree of the problem varied. For some cases, many consecutive

37
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overpasses viewed a storm well, only to miss the next several in a row. Other

cases viewed a storm for nearly all overpasses, but only partially, as it

consistently missed the eye. Still other cases viewed the majority a storms life

cycle, only to miss the crucial time when the storm was at or near its

maximum strength. In selecting the cases studies, all of these considerations

were taken into account. Cases which had inadequate coverage during a

particular time period of the storm, cases which had many consecutive

missed overpasses, and cases which consistently sampled only the periphery

of the storm while missing the eyewall were not used. The remainder of the

cases which passed these screening tests were then deemed adequate to

represent the life cycle of each storm. For these cases (listed in Table 5.1), a

fairly complete temporal study of precipitation could be accomplished.

Table 5.1: Tropical storm cases

Name Status Region # Overpasses

Arlene hurricane Atlantic 8
Betty super typhoon West Pacific 9
Cary typhoon West Pacific 10
Greg hurricane East Pacific 5
Hillary hurricane East Pacific 9
Thelma super typhoon West Pacific 7
Wynne typhoon West Pacific 10
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5.2 Application to rainfall retrievals

The quantitative effect of the deconvolution procedure on the actual

brightness temperatures was evaluated in terms of its impact on five

microwave rainfall retrieval algorithms, applied to the tropical storm cases

discussed in the previous section. Three of the algorithms utilized involved

only 19 GHz and/or 37 GHz brightness temperature data. The first of these is

the single channel emission-based algorithm for unpolarized 19 GHz

measurements, developed by Smith and Mugnai (1988). The second

algorithm examined is the scattering-based algorithm of Spencer et al. (1989),

which utilizes polarization differences at 37 GHz to measure the scattering

effects of precipitation in terms of a polarization corrected (brightness)

temperature (PCT), from which rainfall rates were then inferred. The third

rainfall algorithm is that of Hinton et al. (1991), a hybrid physical

model/statistical regression developed for the Nimbus 7 SMMR instrument.

It is actually a weighted average of four single channel algorithms, (developed

for 18H, 18V, 37H and 37V GHz) where the weights are determined from the

response of each channel to the magnitude of the detected rainfall. Of note is

that while the regression equations were developed for the SMMR

frequencies of 18 and 37 GHz, they were used with SSM/I data measured at 19

and 37 GHz. Hence the results for this algorithm are presented in terms of

the effects of the deconvolution procedure alone, and are not to be interpreted

as an evaluation of the rainfall retrieval itself when SSM/I data is employed.

The other two algorithms employed in this study involved all four

SSM/I frequencies. The first of these is the method of Olson (1991), a
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statistical regression of transformed brightness temperature parameters

(derived from all SSM/I frequencies) to radar-retrieved rainfall data. The

second is that of Kummerow et al. (1991), which utilizes the inversion of

hydrometeor profile relationships to retrieve rainfall rates. As both of these

algorithms are currently under development and are not yet fully complete,

any remarks made concerning their performance are to be considered as

preliminary. A more detailed discussion of all five algorithms is presented in

the Appendix.

Initially, the deconvolution procedure was applied to the SSM/I

measurements, yielding a set of both raw and deconvolved brightness

temperatures. Then both sets were introduced to each of the five rainfall

algorithms to produce five sets of raw and deconvolved rainfall rate maps.

This process was performed for all overpasses for each of the tropical storm

cases listed in Table 5.1.

When algorithms devised for retrievals over ocean backgrounds are

utilized for scenes which include land, the emission from these land sources

can appear as rainfall regions. As an example, Figure 5.1a illustrates the

contamination of the Phillipine islands in the rain field of Super Typhoon

Thelma depicted by the algorithm of Smith and Mugnai (1988). As the

relatively warm land surfaces have not been filtered out but instead appear as

heavy rain areas, a calculation of an area-averaged rainfall rate over the scene

will be distorted by the contribution from the land. Although many methods

exist which screen out the data over land sources, it is important to utilize the

same screening method for all retrieval algorithms to insure consistency in

their comparisons. In this study the land areas were removed by only
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considering measurements made within a specified box, where no land was

included. A depiction of the rain field from Figure 5.1a without the land is

shown below it in Figure 5.1b. Rainfall maps of the same scene derived from

the other four rainfall algorithms are presented in Figure 5.1c-f. Qualitative

examination of each of these images reveals one positive effect of the

deconvolution method. Smaller rainfall areas such as the bands of the

depicted typhoon are enhanced in their definition, as well as the tightening of

the gradients between precipitating and non-precipitating areas. Such

improvements in the definition of the images were observed for terrestrial

geographic features in Chapter 4.

A more quantitative evaluation of the effect of the deconvolution

method on the rainfall retrieval algorithms is its impact on area-averaged

rainfall. After the rainfall maps were made for each overpass of each selected

storm case, they were integrated nver area to yield an area-averaged rainfall

rate over the scene. The result of this process gives an account by each

rainfall algorithm of the area-averaged precipitation history for each storm.

As was evident from the rainfall maps, the methods of Hinton et al. (1991)

and Olson (1991) produce low but non-zero values of rainfall for regions away

from the storm, as illustrated in Figure 5.1d and 5.1e, respectively. As the

other rainfall algorithms do not exhibit this property, a comparison of rainfall

involving all of the methods may be biased by this difference. Hence the idea

of minimum rainfall cutoff values was introduced into the analysis, where

any value of rainfall rate less than the specified cutoff would be neglected in

the calculation of the area-averaged rainfall. This not only allows a more
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Figure 5.1: Raw/Decoi~volved rain rates for various rainfall algorithms
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(D) Method of Hinton et al (1991)
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thorough comparison between the different methods, but allows the effect of

the deconvolution method on more intense rain areas to be isolated.

For the sake of brevity, graphic representations of these area-averaged

rainfall time series will be limited to Super Typhoon Thelma. The first such

time series, presented in Figure 5.2, is derived from the application of the

algorithm of Smith and Mugnai (1988). Figure 5.2a, which presents area-

averaged rain rate versus time (derived from raw SSM/I brightness

temperatures) for four minimum cutoff rainfall rates, has several interesting

features. The rainfall peak on day 193 (on the left of the figure) corresponds

well with the time of maximum intensity reported by Hoffman et al. (1987),

and grows as expected when higher cutoff values are imposed. However, the

sharp minimum left of this peak appears lower than it should, as the

coverage of that particular overpass missed the eyewall and the contribution

of its heavy rainfall. The peak on day 195 (on the right of the figure), which

appears at higher cutoff values, is an aberration which occurs due to the small

number of pixels which exceed the higher rain rates. Another interesting

feature present in Figure 5.2a is the overall behavior of the plots as a function

of cutoff rainfall rate. There is a large separation between the plots for the

first two cutoffs, that of 0 and 1 mmohr -1. This is due to the large areas of

light rainfall away from the central eyewall (seen in Figure 5.1b) and their

contribution to the area average.

The effect of deconvolution on the retrieved rainfall is illustrated in the

second half of the figure, where the area averaged rainfall rates retrieved

from the deconvolved data exceeded those retrieved from the raw data by an

average of 4.1% for a zero cutoff value, which is represented by a positive
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difference in Figure 5.2b. This degree of difference is considered significant

for rainfall averaged over such a large area, especially when noting that at

some individual grid points, differences exceed 6 mm.hr -1. These increases

are expected as the deblurring effect of the deconvolution process both

enhances smaller areas of rainfall not detected in the raw data, and secondly

increases the brightness temperatures and likewise the retrieved rain rates for

certain points [as governed by the non-linear properties of the brightness

temperature - rain rate algorithm, explained by Smith and Kidder (1978)].

The next such analysis is conducted for the single frequency (37 GHz)

algorithm of Spencer et al. (1989) and is presented in Figure 5.3. The same

peaks in rainfall (both the actual peak on the left and the false one on the

right) appear here in Figure 5.3a as did for the previous method; however the

percent difference diagram of Figure 5.3b is quite different. The values of rain

rates derived from deconvolved brightness temperatures were consistently in

excess of 10% smaller than those derived from raw data. This is not due to

the rainfall algorithm, since the relationship between rain rate and PCT is

linear, and an energy conserving enhancement should not significantly

change the PCT values. This difference instead is due to the way in which the

tuning parameters were selected within the deconvolution method itself.

Since the exercise of finding the optimum tuning parameter must be

conducted independently for each polarized channel, the values of y utilized

were different for each polarization at 37 GHz, as previously listed in Table

3.1. Due to this difference, the effect of the deconvolution procedure was

more pronounced for the 37 GHz horizontally polarized channel. Hence the

differing applications of the deconvolution procedure introduced a bias to the
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polarization differences, which in turn biased the rainfall rates. This

illustrates that the consistency of the deconvolution method between

polarizations can be important for certain applications, and hence will be

included in future development of the method.

One final notable aspect of the method of Spencer et al. (1989) is its

inability to detect stratiform rain or light rain (i.e., small drops). This is seen

in the precipitation pattern illustrated in Figure 5.1c, where only the major

convective band and the eyewall are depicted as raining. The surrounding

areas of lighter rain [seen in Figure 5.1b by the algorithm of Smith and

Mugnai (1988)] have smaller drops and hence the depolarizing effects due to

scattering by larger drops is diminished.

The quantitative analysis of the rainfall algorithm of Hinton et al. (1991)

is presented in Figure 5.4. The time series of area-averaged rain rate is similar

to those of the previous methods. However, the distribution of rain has one

distinct difference; the method suffers from overprediction of light rainfall.

Figure 5.1d illustrates that large spatial regions far from the storm, judged to

be rain free by other methods, are depicted as precipitating. This is due to an

inadequately low threshold value of brightness temperature defined by the

method (see the Appendix). However, the rainfall rate values for the regions

in question are quite low, and can easily be ignored by selecting an appropriate

cutoff rainfall rate (i.e., 1 mmehr -1). Also of note is that the low rainfall rates

(below the 1 mmohr -1 cutoff) contribute the least variation to the difference

between deconvolved and raw rain rates. This is seen in Figure 5.4b by the

closeness of the plots for the 0 mmehr -1 and 1 mmohr -1 cutoff rainfall

values.
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The most interesting aspect of the method of Hinton et al. (1991) is the

apparent insensitivity of its area averaged rainfall to the deconvolution

process, as seen in Figure 5.4b. This is dominated by the behavior of the 18

GHz algorithms, as these algorithms respond more to larger values of rainfall

rate (described in the Appendix), and regions of heavy rainfall tend to

dominate the area average. One reason is that these algorithms are simply

less sensitive than others. Whereas the difference between rain rates derived

from raw and deconvolved brightness temperatures exceeded 6 mmhr -1 at

individual pixels for the algorithm of Smith and Mugnai (1988), such

differences remained less than 2 mmohr -1 for these algorithms. However

the main reason the area-averaged rain rates changed little was the

maximum threshold rainfall rate. The algorithms are devised in such a way

so as to set the rainfall rate to 12 mmohr -1 if the rate produced exceeds that

value (see the Appendix). Notably, that threshold is exceeded for a large

portion of each storm. In those places the deconvolved and raw values of

rain rates are both equal to the threshold and therefore the deconvolution

procedure has no effect. These identical maximum rain areas, when

combined with low rain rate areas which have a minimal impact on the area

average, produce an average rain rate which is relatively insensitive to the

deconvolution process. This may be due to the fact that the radiative model

was prescribed with physical parameters consistent with precipitation over

the Indian ocean, which did not consider the intense rainfall present in the

typhoon cases of this study.

The analysis of the algorithm of Olson (1991) is presented in Figure 5.5.

Unlike the others, area averaged rainfall obtained from this algorithm
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apparently does not respond to changes in storm intensity. While Figure 5.5a

shows very little change in area averaged rainfall with time, significant

changes in storm intensity were reported [Hoffman et al. (1987)] during that

same period. This is explained by the fact that this algorithm produces only

small values of rainfall rates, which can be seen by comparing the actual

values plotted in Figure 5.5a with the corresponding plots of the other

methods. This may also be seen in the actual rainfall map (Figure 5.1e),

which exhibits very low rainfall rates when compared to the other methods

for the intense convective band and eyewall. The author of this algorithm

has pointed out to us that this behavior is due to a lack of heavy rainfall cases

in the derivation of the regression coefficients. This arises because tropical

storms are difficult to comprehensively analyze with radar data, since such

storms are not near land during much of their lifetime. The author is

currently considering this problem before the algorithm is finalized.

The analysis of the final algorithm, that of Kummerow et al. (1991), is

presented in Figure 5.6. The time sequence of area-averaged rainfall, depicted

in Figure 5.6a, is less sensitive to storm intensity and displays lower rainfall

values (see Figure 5.1f) than the first three algorithms discussed. The peak in

rainfall near day 193 is weak but still noticeable, unlike the time record for

Olson (1991), which appears nearly flat. Also the actual rainfall values

displayed in the rainfall map of Figure 5.1f are less than those of the first three

algorithms discussed, although twice as large as those of Olson (1991), shown

in Figure 5.1e. The effect of deconvolution on the area-averaged rain rate,

depicted in Figure 5.6b, is not straightforward. The difference of deconvolved

and raw rain rates varies in sign and in magnitude from one scene to the
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next, although when averaged over the entire time series, this difference

appears small. Individual scenes within the series may havc values

significantly greater or less than the time mean, such that the smal. .. rall

time average may be misleading. As described in the Appendix, this

algorithm utilizes relationships derived from a series of 25 cloud models.

These cloud models employ the effects of many radiative properties, such as

emission and scattering, all of which have varied responses to the presence of

precipitation with varying degrees of non-linearity. Interpretations are also

complicated by the averaging process, since several of the 25 models may be

used within a single SSM/I scene and each are sensitive in different ways.
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Figure 5.2: Raw area-averaged rain rates and percent differences (between
deconvolved and raw rain rates) for the algorithm of Smith & Mugnai (1988).
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(A) Raw area-averaged rainfall rates
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Figure 5.3: Raw area-averaged rain rates and percent differences (between
deconvolved and raw rain rates) for the algorithm of Spencer et al. (1989).
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(A) Raw area-averaged rainfall rates
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Figure 5.4: Raw area-averaged rain rates and percent differences (between
deconvolved and raw rain rates) for the algorithm of Hinton et al. (1991).
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(A) Raw area-averaged rainfall rates
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Figure 5.5: Raw area-averaged rain rates and percent differences (between
deconvolved and raw rain rates) for the algorithm of Olson (1991).
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(A) Raw area-averaged rainfall rates
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Figure 5.6: Raw area-averaged rain rates and percent differences (between
deconvolved and raw rain rates) for the algorithm of Kummerow et al. (1991).



CHAPTER 6

Summary and Conclusions

The five rainfall retrieval algorithms were also applied to six additional

tropical storm cases. The numerical compilation of the percent differences

between deconvolved and raw area-averaged rain rates for all the cases is

presented in Table 6.1, with averaged results for all cases appearing in Table

6.2. The same types of patterns detected for Super Typhoon Thelma are also

present in the other case studies. The area-averaged rainfall derived from the

algorithm of Smith and Mugnai (1988) is increased for every case. Also biases

introduced between the two 37 GHz polarized channels by the deconvolution

method lead to reductions in area-averaged rainfall for the algorithm of

Spencer et al. (1989) in every tropical storm case. The area-averaged rainfall

from the algorithm of Hinton et al. (1991) remains insensitive to the

deconvolution process, as illustrated by the small values shown in Tables 6.1

and 6.2. The rainfall from the method of Olson (1991) did not respond to the

changes in intensity for the other storm cases and continued to yield the

lowest values of rainfall, when compared to the other methods. The most

notable example of this was for Hurricane Hillary, where the rainfall values

for nearly all pixels was under 1 mrnohr -1 . The tiny number of pixels

measuring rain above the 1 mmohr-1 cutoff yielded extreme values for the

55
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percent difference between deconvolved and raw rain rates presented in Table

6.1, such that they were not included in the average presented in Table 6.2.

The final algorithm, that of Kummerow et al. (1991), was run by the author of

that algorithm for the case of Super Typhoon Thelma only. Hence the

average values presented in Table 6.2 includes dka from that one case only.

The effect of deconvolution of lower frequency SSM/I channels has been

illustrated by its impact on rainfall r,,es derived from five different rainfall

retrieval algorithms. The independent treatment of different polarized

channels introduced a bias in polarized differences, which lead to decreased

rainfall from a single channel scattering algorithm. Hence future

development and improvements of our deconvolution will address this

problem. More favorable results were obtained for a single channel emission

algorithm, which will inherently underestimate rainfall due to non-complete

beam filfing of the large 19 GHz field of view. The deconvolution method

improved the resolution of the scene, which lead to increased estimates of

rainfall. While the deconvolution process produced smaller impacts on area-

averaged rainfall for the other algorithms tested, smaller scale features were

enhanced in the rainfall images for all the algorithms, such as was shown for

terrestrial featur-s in Chapter 4. This method, by improving the retrieved

rainfall and the spatial distribution of rainfall within storms, can make

positive contributions to the analysis ar.d forecasting of precipitating systems.
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Table 6.1: Percent difference between deconvolved / raw -derived rain rates
for each tropical storm case at various minimum cutoff rain values

Minimum rainfall rate cutoff values

method storm 0 mmehr 1  1 mmohr- 1  3 mmhr- 5 mmehrl

A) Smith and Mugnai (1988) Arlene 6.613 % 6.500 % 19.859 %
4.440 %
Betty 3.789 4.238 5.369 1.956
Cary 4.201 3.325 4.299 1.743
Greg 2.363 3.003 5.426 6.027
Hillary 5.059 6.044 9.776 6.881
Thelma 4.073 5.358 3.787 5.462
Wynne 11.613 19.600 5.370 4.762

13) Spencer et al. (1989) Arlene -18.237 % -16.485 % -10.672 % -6.063 %

Betty -9.338 -7.418 -7.684 -7.327
Cary -12.220 -8.982 -8.882 -9.632
Greg -27.302 -18.882 -10.068 -11.629
Hillary -14.843 -10.859 -13.319 -9.573
Thelma -16.539 -14.850 -13.401 -11.214
Wynne -15.794 -13.993 -11.142 -10.361

C) Hinton et al. (1991) Arlene -0.556 % -1.338 % -0.651 % 0.485 %
Betty -0.664 -0.837 -0.670 0.422
Cary -0.745 -0.785 -0.853 0.852
Greg -0.342 -0.897 -0.953 0.102
Hillary -0.767 -1.032 -0.908 0.291
Thelma -0.680 -0.566 0.141 0.387
Wynne -0.638 -0.829 -0.444 0.821

D) Olson (1991) Arlene -3.571 % -3.608 % -0.991 % N/A
Betty -4.359 -2.190 1.164 0.831
Cary -2.462 -1.723 1.080 0.301
Greg -1.581 -1.198 -0.603 N/A
Hillary -0.131 22.623 42.755 150.073
Thelma -3.457 -1.760 -0.255 N/A
Wynne -3.464 -4.127 -1.502 -3.585

E) Kummerow et al. (1991) Thelma 0.366 % -0.320 % -2.664 % -1.318 %
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Table 6.2: Average percent difference between deconvolved / raw -derived
rain rates for various minimum cutoff rain values

method 0 mmehr -1 1 mmohr -1 3 mm-hr -1 5 mmohr-1

Smith and Mugnai (1988) 5.753 % 7.429 % 7.685 % 4.279 %

Spencer et al. (1989) -15.567 -12.611 -10.675 -9.291

Hinton et al. (1991) -0.646 -0.897 -0.617 0.527

Olson (1991)* -2.783 -2.567 -0.159 -0.935

Kummerow et al. (1991) ** 0.366 -0.320 -2.664 -1.318

* - Average neglects values from Hurricane Hillary (as given in Table 3)
** - Values consist only of data from ST Thelma



APPENDIX

Rainfall Retrieval Algorithms

A.1 Smith and Mugnai (1988)

This single frequency (19 GHz) rainfall algorithm was developed from

simulations of a microwave radiative transfer model of precipitating clouds.

This model [developed by Mugnai and Smith (1988)] coupled a highly detailed

solution of the radiative transfer equation to an explicit microphysical model

of a time dependent cumulus cloud. The simulation studies of the model

produced rainfall rates at the model frequencies as a function of upwelling

brightness temperature at the top of the atmosphere (TOA), cloud

development time (characteristic of the state of the developing cloud) and

thickness of the rain layer. Knowledge of rainfall rates as a function of the

microphysical and dynamical aspects of a precipitating cloud was incorporated

within the model framework, such that a most probable rainfall rate was

associated with each cloud development time. Hence a most probable rain

rate for particular values of rain layer thickness as a function of TOA

brightness temperature was developed.

59
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This functional relationship for 19 GHz is presented in Figure Al. The most

notable feature of this diagram is its double valued nature. As the cloud

develops, absorption of the underlying rain signal by the cloud media grows

rapidly and the cloud layer itself begins to provide most of the signal detected

at TOA. As the cloud continues to develop and achieve higher rainfall rates,

its optical depth reaches a critical limit in which scattering in the upper cloud

plays an important role in masking radiation from the lower cloud. Hence

the rainfall rate as a function of TOA brightness temperature appears as a

double valued function.

A.2 Spencer et al. (1989)

This single frequency (37 GHz) algorithm is based on the depolarization

of microwave brightness temperatures due to the scattering by hydrometeors,

which was shown to be dominated by the effects of ice. As these

hydrometeors (especially ice) scatter radiation signals out of the path, the

values of the resulting satellite measured brightness temperatures are

reduced. It was then shown that the polarization diversity of the SSM/I

measurements allowed low brightness temperatures due to the ocean surface

to be distinguished from those due to scattering from precipitation.

Such polarization information was represented in terms of a

polarization corrected temperature (PCT), defined as:

PCT = (3 TBh - TBv) / (3 - 1) (A.1)
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where = (TBvc - TBvo) / (TBhc - TBho ) (A.2)

Here TBvc and TBhc refer to the respective polarized TB'S over a cloud free

ocean, while TBv o and TBhO are the TB'S over the ocean with no overlying

atmosphere. Each of these parameters were derived from model calculations

for a standard tropical atmosphere over the ocean at the SSM/I viewing angle

of 53' . As actual SSM/I measurements differed significantly from the model

results, an empirically modified value of [5 was used. When this value was

applied to the 37 GHz measurements, the expression for the polarization

corrected temperature at 37 GHz reduced to the following:

PCT37 = 2.1 TB(37V) - 1.1 TB(37H) (A.3)

A threshold value of the PCT was then derived such that any value

larger than the threshold would be considered too highly polarized to

represent significant precipitation. As this method relies on effects due to ice

and large hydrometeors, it fails to identify shallow, light precipitation.

Finally rainfall rates were then inferrec from the threshold PCT (270 K) and

the 37 GHz polarization corrected temperatures by

Rainfall Rate (mm-hr 1) = 270 - PCT37 (A.4)
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A.3 Hinton et al. (1991)

This algorithm is a series of single channel hybrid physical/statistical

models developed for the SMMR (Scanning Multichannel Microwave

Radiometer) instrument aboard the Nimbus 7, and is explained in detail by

Martin et al. (1990). A plane-parallel, 120 layer radiative transfer model was

used to determine the upwelling brightness temperatures over a 10 by 1'

latitude box as a function of many model parameters, most of which were

prescribed with typical climatological values or values obtained from

statistical model tests. Sensitivity tests of all these parameters found that

variations in non-precipitating cloud liquid water content (LWC) dominated

the variations in the resultant brightness temperatures. The presence of non-

precipitating cloud liquid water not only introduces uncertainty in the rate of

precipitation obtained from such a model, but also has been linked to the

dynamical processes which produce precipitation. A semi-empirical

relationship between rainfall rate and non-precipitating LWC was introduced

in an effort to remove some ambiguity in a model-derived relationship

between rain rate and brightness temperature. The results for each 10 by 1'

box were then integrated with a prescribed statistical distribution to match the

field of view of the SMMR instrument, so that an area averaged rainfall rate

could be calculated from an area averaged brightness temperature measured

by the instrument.

The following equations result from a polynomial regression of the

average rainfall rate against the average brightness temperature for each

single channel model.
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0 TB(18V) 5 192.283

RR18V = 0.06295 [TB(18V) - 192.283]

+ 2.010-5 [TB(18V) - 192.283] 3

12 RR18V > 12

0 TB(18H) _< 133.763

RR18H = 0.038162 [TB(18H) - 133.763]
+ 387.0~ TB(8H)- 13.73]~ , for TB(18H) > 133.763 (A.5b)+ 3.87*10 -6 [TB(18H) - 133.763] 3

12 RR18H > 12

0 TB(37V) < 213.38

RR37V = -5.0199 + 0.02333 TB(37V) +

0.6272 * exp { [TB(37V) - 2581/3.3655)

12 RR37V > 12

0 TB(37H) < 159.42

RR37H = -1.3973 + 0.008942 TB(37H) +
3.8394 o exp( [TB(37H) - 258] /11.0530)

12 RR37H > 12
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These four algorithms were weighed by the inverses of their variances,

which were determined experimentally from model studies of each channel.

As the measurement errors are assumed to be random, it follows that the

individual weights are proportional to the inverse square of of the derivative

of RR with respect to TB times the error variance, for each channel. The

weights for each channel can then be expressed as a function of its respective

rainfall rate, as follows:

W18V = 0.175 * [1 - exp (-1.53 RR18V)] * exp ( C.0717 RR18V)

W18H = 0.516 1[ 1 - exp (-1.39 RR18H)] * exp (-0.0698 RR18H) (A.6)

W37V = 0.004+0.125oexp(-RR37v)

W37H = 0.019 + 0.776 * exp (- RR37H)

The total rainfall is then found by applying the weights of equation (A.6)

to each respective single channel rainfall found from equation (A.7), and then

dividing by the sum of the weights. Finally, of note is that while the

regression equations were developed for the SMMR frequencies of 18 and 37

GHz, they were used with SSM/I data measured at 19 and 37 GHz.

A.4 Olson (1991)

This multiple frequency algorithm begins with two physical quantities

retrieved with the SSM/I measurements. The first is near-surface wind speed

(U) over the ocean, given by Goodberlet et al. (1989) as a function of brightness

temperature at 19, 22 and 37 GHz. The second quantity is the total precipitable
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water (V), given by Petty and Katsaros (1990) as a function of brightness

temperature at 19 and 22 GHz. These physical quantities are utilized to

calculate normalized polarization differences at 85 and 37 GHz:

P37 = ITB(37V) - TB(37H)I o exp (0.0151 U + 0.00607 V - 4.40) (A.7)

and

P85 = [TB(85V) - TB(85H)] * exp (0.0241 U + 0.0271 V - 4.44) (A.8)

A scattering depression at 85 GHz (S85) is then defined in terms of P85 by

S85 = P85 TB85vo + 273 (1-P85) - TB85 v (A.9)

where

TB85Vo = 280.0 - exp (4,20 - 0.00567 U - 0.0406 V) (A.10)

Olson (1991) then performed a statistical regression between two of these

quantities (S85 and P37) to radar-retrieved rainfall rates. The resultant

regression formula is given as

RR (mmohr -1) = exp (2.24395 + 0.00358838 o S85 - 0.169310 o P37)

- 8.0 - Bias (latitude) (A.11)

where the bias correction (based on retrieval histograms performed for

January and July, 1988) does not exceed 0.2 mmohr -1.

At the time this article was prepared, the preceding was still a trial

algorithm and its development was ongoing. Among other improvements,
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the author was attempting to eliminate the bias correction by reformulating

the predictors S85 and P37.

A.5 Kummerow et al. (1991)

This multiple frequency algorithm employs relationships between rain

rates and brightness temperatures, derived from a set of 25 cloud radiative

models. Each model consists of five vertical layers and specifies a distinct

vertical cloud structure in terms of cloud liquid water and rain rate. Ten of

the models are defined as "convective," indicating the presence of significant

quantities of liquid and frozen hydrometeors above the freezing level. Ten

models are identified as "stratiform," indicating the absence of liquid

hydrometeors above the freezing level. The final five models are defined as

"anvil clouds," characterized by ice aloft but no significant precipitation at the

surface, such as those often observed in downwind or "blowoff" regions of

convective systems. The retrieval scheme determines which of these models

best represents the observed meteorological conditions as outlined by the

following procedure.

First, various quantities within each cloud model are varied randomly to

produce a large set of possible clouds. Multiple linear regression techniques

are applied to the upwelling brightness temperatures produced by the model

to obtain regression coefficients relating the rainfall rate (RR) to a linear

combination of the observed brightness temperatures. This is expressed by
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N
RR (mm/hr) = a0 + ai TB i

i=1 (A.11)

where N is the total number of channels (7 for SSM/I), TBi is the brightness

temperature for each respective channel, and a0 and ai are the regression

coefficients. In requiring consistency between the observed TB's those

calculated from the models, the retrieval scheme determines which of these

models best represents the observed meteorological conditions.
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