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Abstract

We consider the approximation algorithm of Leighton et. al. [8] for the multicom-
modity flow problem. We give a more natural randomization strategy that is simpler
than the one in [8] and results in a better running time. This strategy also applies to
several related algorithms.

1 Introduction

The multicommodity flow problem is as follows: given a network wi.h capacity constraints

and commodity supplies and demands, find a flow that satisfies the demands without vio-

lating capacity constraints. The multicommodity flow problem is a classical problem that

has numerous applications. The concurrent flow problem is an optimization version of the

multicommodity flow problem, where the goal is to maximize the fraction of the satisfied

demands, i.e., to maximize z such that if the demands are multiplied by z, the resulting

multicommodity flow problem is feasible.

In this paper we work with the concurrent flow problem. We denote the number of

nodes in the network by n, the number of arcs by rm, the number of commodities by k, the

largest capacity by U, the largest demand by D, and assume that capacities and demands

are integral.

The only known polynomial time algorithms for the problem are based on polynomial-

time methods for linear programming, either the ellipsoid method [6] or the interior-point

method [5]. The fastest currently known algorithm, due to Vaidya [12], takes advantage

of the matrix structure to achieve improvement over the underlying interior-point method.

This algorithm runs in O(k 3 "5 n3 m°'s log(nDU)) time.

For many applications it is sufficient to find an approximate solution to the problem, i.e.,

a feasible solution that ships (1- c)z" fraction of the demands, where z" is the optimal value.

In these applications, c is a constant or a slowly decreasing function of n (e.g. 1). Shahrokhi

and Matula [111 gave an approximation algorithm for a special case of the concurrent flow

problem with uniform capacities. Their work motivated several other papers. A faster

algorithm for the uniform capacity case was given by Klein et. al. [7]. An algorithm for

the general version of the concurrent flow problem was given by Leighton at. al. [8]. The

deterministic version of this algorithm runs in O(k 2(C-2 log !j + log n log k)) minimum-cost

flow computations and the randomized version in O(k(c-3 log R +log n log k)) minimum-cost

flow computations. (For a survey of minimum-cost flow algorithms, see e.g. [2].)
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In this paper we give a modification of the relaxed optimality conditions that leads

to a slightly simpler analysis of the algorithm and allows us to show that the simplest

randomization strategy, which selects a commodity to be updated during the next iteration

uniformly at random, works better than the more complicated strategy used in [8]. We show

an O(k(c- 2 log a + log n log k)) bound on the number of minimum-cost flow computations.

From the theoretical viewpoint, the dependence on c is a major drawback of the algo-

rithm of [8] since exponential precision is required to solve the multicommodity flow problem

exactly. We reduce this dependence by a factor of c- 1. Our randomization strategy appears

to be a better choice in practice as well.

Our results can also be applied in a straightforward way to improve the results of

[7] on the uniform multicommodity flow problem, as well as in the generalizations of the

multicommodity flow algorithm to other linear programming problems [101.

A recent paper of Grigoriadis and Khachiyan [41 extends the results of [8) to block-

structured convex linear programs. This paper uses a randomization strategy similar to

ours in a somewhat different framework.

This paper is organized as follows. Section 2 gives definitions and notation used in the

paper. Section 3 describes relaxed optimality conditions. Section 4 discusses the exponen-

tial length function and its properties. Section 5 describes the algorithm and Section 6

analyses it. Section 7 discusses some aspects of the algorithm and general applicability of

our techniques.

2 Definitions and Notation

In this paper we consider a directed version of the multicommodity flow problem; however,

the results also hold for the undirected version with straightforward modifications. An input

to the multicommodity flow problem is a graph G = (V, E), a capacity function u : V --

R+,' and a demand specification for commodities. For each commodity i : 1 < i < k, the

specification contains the source si, the sink ti, and a nonnegative demand di. Without

loss of generality we assume that m > n and that G has no parallel arcs. We assume that

capacities and demands are reals and denote the biggest capacity by U and the biggest

demand by D.

I R denotes the set of nonnegative reals.
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A multicommodity flow f is given by a set of functions fi, 1 < i < k, f, : E --* R+.

Each function fi must satisfy conservation constraints

Jdi if v =ti,

Vv E V, • fi(u,v)- 1: fi(v,w)= -di ifv =si,
(u.v)EE (v,w)EE 0 otherwise.

We define f(v,w) = •15i<k fi(v,w). A multicommodity flow is feasible if the capacity

constraints are satisfied:

V(v, w) E E, f(v, w) < u(v, w).

The concurrent flow problem [11] is an optimization version of the multicommodity flow

problem where the objective is to maximize z such that the problem with demands zdi is

feasible. An equivalent problem is to minimize A such that the problem with demands di

and capacities Au is feasible. Let A" denote the optimal value of X. We define the congestion

by \(v,w) = f(v,w)/u(v,w), and let ,\ = max(-,,,)EE; \(v, w). A multicommodity flow f is

c-optimal if \ < (1 + c)A,. In this paper we consider the problem of finding an c-optimal

solution to the problem; throughout the paper we assume that 0 < e _< 1.

Next we introduce the length function, which has its roots in linear programming duality.

The length function I : E --* R+ is a nonzero, nonnegative function. Let distt(v, w) denote

the distance in G from v to w with respect to 1.

To simplify notation, we sometimes view length, capacity, and flow functions as vectors

indexed by arcs. Given two vectors a and b, let a o b = •(,,)E a(v, w)b(v, w).

Theorem 2.1 For a multicommodity flow f and a length function I we have

k

At(v, w) o u(v, w) Ž distt(si, ti)di.
t=1

Given a length function t, we define the cost of the flow of commodity i by Ci = fi o e.
Let CT(A) be the value of the minimum-cost flow fi satisfying the demands of commodity

i with costs t and capacities Au.

Lemma 2.2 [8] For f, Ci, and Ci'(A) as above,

k k

Mt 0 u Ci= C,(A).
=1 i=1
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A multicommodity flow f minimizes A iff there is a length function I for which the above terms

are equal.

Lemma 2.3 [8] For f, e as above,

uol

is a lower bound on A'.

3 Relaxed Optimality

The relaxed optimality conditions are as follows:

V(v,w) E E (1 + E)f(v,w) Ž_ Au(v,w) or u(v, w)1(v,w) -((uoI). (1)

(1 - 2c) Cj <_ C;(A). (2)

The first condition is the same as the one in [8]; it states that either an arc is close to being

saturated, or its "volume" is small compared to the total "volume". The second condition

states that the total cost of f with respect to I is close to the optimal.

Theorem 3.1 If f, t, and e satisfy the relaxed optimality conditions, then A is at most (1 +

O(c)),'.

Proof. From condition (1), we have

S((1 +,)f(V,w)I(V,w)+ A \-uot) >_ Auot.

(v,w)EE m

Rewriting, we get

(1+ c)fo t > Auot(1- -)

or

Sfot=EC,< _1 (3)
- -12 4



By Lemma 2.3 and the previous inequality,

A* > Ei Ci(A) > (1- c)(1 -2c) A,

uol - +

and the theorem follows. a

4 Exponential Length Function

Shahrokhi and Matula [11] were the first to use the length function that exponentially

depends on flow in the context of the uniform capacities. Leighton et. al. introduced the

following generalization of this idea.

Define

t u(v, w)" (4)

Lemma 4.1 [81 Suppose f is defined by (4) and a > (1 + c)A,-1 e- ln(mc-1 ). Then the first

relaxed optimality condition (1) is satisfied.

Proof. Suppose (1 + c)f(v,w) < Au(v,w). Then A(v,w) < A/(1 + c). We need to show

that u(v, w)e(v, w) -L .u o e.

Note that

uoe= -0-t eA(V'w) > C ea\.
m M E m

To obtain the last inequality, we bounded the sum of nonnegative terms by the largest one.

On the other hand,

u(v, w)t(v, w) = e*(,w) < eI-+ = e i'.

By the assumption of the lemma, the second term is at most e- -n(,) = and the lamma

follows. M

5 Algorithm Description

The algorithm maintains a multicommodity flow f and the corresponding exponential length

function t such that f satisfies the demands. By Lemma 4.1, the first relaxed optimality
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condition is always satisfied. While the second condition is not satisfied, the algorithm picks

a random commodity and, if the potential function u o t decreases, replaces a fraction of its

flow by the minimum-cost flow with respect to the cost function e. The expected decrease

in the potential function is large, ensuring quick termination of the algorithm with high

probability.

Finding initial solution The algorithm starts with an initial solution f such that A <

kA*. Such a solution is obtained by finding, for each commodity i, a maximum flow gi in the

network with source si, sink ti, and capacity function u, and setting fi(v, w) = g1(v, w)-d,

where Igil denotes the value of gi. It is easy to see that for the resulting flow f, A < kA'.

The length function t defined by the initial flow is also computed.

Improving the current solution At each iteration, the algorithm iteratively improves

the current flow, until the desired approximation precision is obtained. An iteration (rerout-

ing step) works as follows.

1. Select commodity i from the set {1,.. ., k} uniformly at random.

2. Consider the network with capacity function \u and cost function t. Compute the

minimum cost flow fi* in this network satisfying demands for the commodity i.

3. Define f' = (1 - oj)fi + afi*, and let fl be the multicommodity flow obtained from f

by replacing fi by fi'.

4. Compute the length function t' for f'.

5. If u o t > u o t' then replace f by f'.

The parameters a and a" are set as follows: a = 2(1 + c)A\-- 1 In(me- 1 ) and a = -' The

values of these parameters are not updated at every iteration, but the values are updated

when A decreases by at least a factor of two from its value during the time of the last update.

Intuitively, an iteration of the algorithm replaces a a fraction of a random commodity by

the same fraction of the optimal flow of this commodity. The flow is updated only if the

potential function u o t decreases.
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Nonscaling and scaling algorithms A simple implementation of the algorithm is to

set E to the desired value at the very beginning, and improve the flow until it becomes

E-optimal.

An alternative is to scale c. Note, however, that we assumed that C < 1. Thus the scaling

algorithm starts with a constant c (say 1) and finds an c-optimal solution f(O). Then at

jth scaling iteration, c is reduced by a factor of two and a new c-optimal solution f(j) is

computed starting from f(-1), until the desired precision is reached.

As we shall see later, the use of scaling improves the running time of the algorithm by

a factor of c-1 if c is small enough.

Termination detection The above description assumes that we know when the current

Plow becomes c-optimal. This is not the case; however, we can test for c-optimahity by

computing minimum-cost flows of all commodities. This can be done every k iterations

while increasing the worst-case running time bound by a constant factor.

6 Algorithm Analysis

For the purpose of the analysis, we define the potential function t by 4 = u o t.

The next lemma shows that when f, is rerouted, D decreases by almost aco(Ci - Ci*(A)).

The proof of this lemma is similar to the proof of [8] showing that D decreases significantly

if a "bad" commodity is rerouted.

Let 4 and t. be the values of the potential function before and after the rerouting,

respectively.

Lemma 6.1

t - t. > Go(C, - Ci(A\) - EC,).

Proof. Let t and t. be the length functions before and after the rerouting. By Taylor's

theorem, for Itl _< c/4 < 1/4 we have

e2+t < ex + tex + 2(tie'.

Thus

t.(v,w) 5 t(v,w)+ Oa (f'(v W)-fi(v,w))f(v,w)+ 2fuj*(v, w) - f,(v, w)lt(v, w)

72u(v, w)
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(note that f,(v, w) - fh(v, w) < Au(v, w), and recall the choice of a). We have

q- = (e-t4)ou

>_ aao(fh - f.*) 0 t - -- a Ihti* - .hi o t
2

> aa(C. - C!(A)) - ,EcCi.

The last line follows by definition of Ci and CQa(A) and uy the fact that Ci > CQ(A) > 0. 0

Note that if the current flow does not satisfy the second relaxed optimality condition,

then the expected value of Ci - C1
1(A) is large and - decreases significantly. The following

lemma formalizes this statement.

Lemma 6.2 Suppose -', < r < and f does not satisfy the second relaxed optimality

condition. Then the expected decrease in $ due to a rerouting step is Q(--).

Proof. Since the algorithm selects a commodity uniformly at random, we have

E[4 - -0, _ -aa (Ci - C(A) - eCi)

= -- (D(( - 20)Ci- C') +E c Ci)
i i

> aa 1 - C £
k 1+c

£2

The third line follows from the assumption that f does not satisfy the second relaxed

optimality condition and since by (3)

1- C Al < •-•Ci.

S+ 4E SC.

The last line follows from the assumption on a. M

Note that since a and a are updated every time A decreases by a factor of two, conditions

of the lemmas 4.1 and 6.2 are always satisfied.

Next we analyze the nonscaling algorithm.
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Lemma 6.3 Suppose the parameters a and a are set when the congestion is A0. In expected

O(c'3 klog!!) iterations, either the algorithm terminates or A decreases to AO/2 or less.

Proof. Initially, D < mel'ýO since the congestion on any arc is at most A0 . Note that until

A decreases by a factor of two, the congestion on some arc is at least AO/2, so 4 >_ ellO/2.

Thus 4 cannot decrease by more than a factor of me&"O/ 2 without A getting below Ao/2.

By Lcmma 6.2, O(c 2k) iterations reduce 4 by a factor of two. ýI can be halved at

most 0(log(me-'o/ 2)) = 0(c- 1 log •) times before A is halved. Therefore in O(c 3 k log •)

iterations (expected), the algorithm terminates or A is halved. M

Note that the work done by an iteration of the algorithm is dominated by a minimum-

cost flow computation. Combined with the above lemma and the fact that initially A < kA*,

this yields the following result.

Theorem 6.4 The nonscaling algorithm runs in expected O(c 3klog klog n)) minimum-cost

flow computations.

To analyze the scaling algorithm, we need the following version of Lemma 6.3.

Lemma 6.5 Suppose the parameters a and a are set when the congestion is A0, and the initial

flow is 0(E)-optimal. Then in expected 0(c-2k log 1) iterations, either the algorithm terminates

or A decreases by at least a factor of two.

Proof. Recall that c < 1, so A0 = O(A*). The proof is similar to that of Lemma 6.3, except

that the upper bound on $ is meac(1+O((M*) and the lower bound is eaA*, so $D needs to

decrease by a factor of meaO()`O. *

The scaling algorithm starts with c = 0(1), and obtains an 0(1)-optimal solution in

0(klogklogm) iterations by Theorem 6.4. Then the scaling process starts. Since the

number of rerouting steps needed to reduce E by a factor of two is proportional to c 2 , the

last scaling iteration dominates. This iteration terminates in O(c 2k log !1) rerouting steps.

We have

Theorem 6.6 The scaling algorithm runs in expected O(k(c- 2 log 2 + log k log n)) minimum-

cost flow computations.
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7 Remarks
A

First, we would like to address the selection of a minimum-cost flow subroutine. Since the

costs in the minimum-cost subproblems can be big due to the use of the exponential length

function, Orlin's strongly polynomial algorithm [9] appears to be the best choice. However,

it is enough to solve the subproblems approximately, so the costs can be rounded to small

integers. When this is done, the cost scaling algorithm of Goldberg and Tarjan [3] or the

double scaling algorithm of Ahuja et. al. [1] become a better choice. The selection of the

subroutine is discussed in more detail in [8].

The deterministic version of the algorithm of Leighton et. al. [8] finds a commodity

i with the biggest C, - Ci*(A) and reroutes this commodity. Our variant of the relaxed

optimality conditions also can be used to analyze this algorithm. Since the maximum of

a set of numbers is at least as big as the average, the deterministic choice of i gives an

improvement in 1 that is at least as big as the expected improvement. Thus the bound

on the number of rerouting steps apply for the deterministic version of the algorithm.

Each deterministic rerouting step, however, requires k minimum-cost flow computations (to

compute C;(A) for every commodity j); in contrast, a randomized rerouting step requires

a single minimum-cost flow computation.

Our randomization strategy can also be applied to the algorithm of Klein et. al. [7].

This improves the running time bound of the randomized algorithm of [7] by a factor of E-1 .

We omit the details, which are straightforward given those of [71, [8], and this paper. A

recent paper of Plotkin, Shmoys, and Tardos [10], that extends the results of [8] to a more

general class of linear programming problems, also extends our randomization strategy to

the more general framework.
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