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Preface

The objective of this study was to examine the influence of attenuation and scattering on
regional high frequency seismograms. This is a wide-ranging topic because of deficiencies
in our knowledge of basic aspects of attenuation and scattering, complicating attempts to
assess their effects on regional seismograms. This final report consists of a Ph.D. Thesis, a
paper, and three preprints of papers either submitted or in preparation, on work supported
by this project. Each of these five publications forms a section in this report; they include
both basic work on attenuation and scattering, and applications to regional seismograms. In
addition, preliminary work on the problem of the radiation from an explosive source in an
anisotropic medium was performed under this contract.

The first section is E.E. Charrette’s Ph.D thesis and discusses the application of the finite
difference method to problems in scattering and attenuation due to scattering in a random
medium. In the first three chapters of the thesis, the basic issue of the application of Born
theory, widely used in seismology, to scattering and scattering attenuation is assessed. A
method of incorporating Born theory into the finite difference formalism is used to accomplish
this. Results indicate that the failure of Born theory to remove energy from the in- .dent wave
is often the greatest inaccuracy resulting from this theory. The fourth chapter applies two-
dimensional finite difference calculations to explain the observed scattering phenomena at the
NORSAR and NORESS arrays in Norway. Although these calculations are two-dimensional,

they examine all of the aspects of scattering—amplitude and travel time fluctuations of the




first arrival, coda level, and colierency of the first arrival and coda. This is the first L -1
of these aspects have been considered together.

The remaining sections of the report are papers, either published or preprints. The
second section discusses the radiation pattern of explosive sources in anisotropic media. In
such a situation, both SV and SH waves may be generated, and the radiation pattern for
S waves may look like that of an earthquake. If the source is near the surface in a layered
medium, both Raleigh and Love surface waves may be produced, including Lg-like phases.
This work is now being continued under a separate contract. The third section examines
the problem of Lg blockage across crustal extension zones by the method of coupled modes.
The calculations indicate that this blockage may occur due solely to the geometrical effects
of the crustal thinning; attenuation in sedimentary basins is not neccessary. The fourth
section is concerned with the fundamental problem of scattering of the reflected wave from
a rough interface. The subject is treated both experimentally in water tank experiments
and theoretically by finite difference for the case of randomly spaced parallel grooves. The
presence of the grooves has a strong effect on the refracted wave and hence its interaction
with the reflected wave near the critical angle. The grooves can also affect the reflected
wave by producing amplitude fluctuations and coda. The final section applies transport
theory to Rg data from a U.S. Geological Survey experiment in Maine. The purpose is
to determine the attenuation mechanism for these waves. In this area, attenuation due to

anelastic mechanisms and/or scattering to body waves dominates over Rg to Rg scattering.
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Abstract

The earth is often modeled as a series of simple homogeneous layers. Such an ap-
proach can lead to synthetic seismograms which match the dominant arrivals in the
field data very well, but lack the random travel time and amplitude fluctuations
and signal generated noise commonly observed on seismic recordings. These sec-
ondary features are often due to scattering from small-scale variations in the earth.
The small-scale variations are too numerous and distributed too irregularly to allow
deterministic characterization, so these features are often characterized by their sta-
tistical distribution. This thesis is concerned with modeling elastic waves in randomly
heterogeneous media

We first explore the general principles and assumptions concerning statistical char-
acterization and introduce several commonly used statistical models. Both analyt-
ical and numerical techniques have been applied to this problem. Most analytical
techniques assume scattering is weak and use the Born or Rytov approximation to
generate relatively simple closed form solutions. These solutions can be limiting is
some applications because they neglect the effects of multiple scattering, and assume
the incident wave travels though a smooth background medium. In the random me-
dia studied here, it is shown that these assumptions can cause serious errors in the
amplitude and phase of the scattered wavefield. In order to investigate these errors, a
new numerical technique is developed. The technique starts with the elastodynamic
equation of motion. Using the Born approximation and perturbation analysis, the
elastic wave equation is reduced to a single scattering wave equation which can be
solved with finite differences. The utility of the new technique is that both the single
and multiple scattering (as calculated by conventional finite difference techniques)
solutions can be generated for the same complex velocity model. In Chapter 3, this is
done for two different random media. The first is an impedance scattering medium;
a medium which has impedance variations, but no velocity variations. In such a
medium, the dominant scattering mechanism is back scattering and the efficiency
which energy is scattered varies inversely with the size of the heterogeneity. In this




medium, the two solutions (single and multiple scattering) agreed well, except around
the first arrival. Near the first arrival, the amplitude of the single scattering solution
is consistently greater than the multiple scattering solution. This is a consequence
of the Born approximation, which does not account for the removal of energy in the
incident wave due to scattering. The general shape and arrival time of the scattered
field is consistent with the multiple scattering solution.

In the second model, the material properties were chosen so that the medium con-
tained significant velocity anomalies, but almost no impedance anomalies. Because
scattering is stronger in this medium, agreement between the two solutions is not as
good as the previous case. Again, the single scattering solution had too much energy
in the first arrival, which in turn lead to an overestimated scattered field. Unlike the
previous example, the velocity anomalies also created significant travel time a..fer-
ences between the two solutions. These errors were present in both the scattered and
incident waves and occurred because the Born approximation assumes the incident
wave travels in the background field (which is often assumed to be homogeneous).

It is generally agreed that the Earth’s crust and lithosphere have heterogeneities.
However, the distribution and exact nature of these heterogeneities have not yet been
resolved. Using the techniques presented in this thesis and data from the NORSAR
and NORESS arrays we develop a model for the siatistical heterogeneities present
under Fennoscandia. In the course of choosing the final model, we investigated many
randomly heterogeneous models. We began with a simple, single layered inodel with
a Gaussian autocorrelation function. We also considered other single layered mod-
els with more roughness, like that proposed by Frankel and Clayton (1986), as well
as multi-layered models like that proposed by Flatté and Wu (1988). Based on co-
herency measurements and travel time and amplitude fluctuations, we propose that
the random velocity variations in the lithosphere can be modeled by as a three lay-
ered random medium. Satisfactory results were obtained when the power spectrum of
the fluctuations in the uppermost layer (0-3 km) was a bandlimited white spectrum
(0.05 km™! < [k]| > 1.1 km™!, where k is the wavenumber vector) and the rms veloc-
ity variation was 2%. The middle layer was meant to simulate the remaining portion
of the crust (3-35 km) and the fluctuations in this layer were described by the Oth
order von Karman function. The correlation length of the von Karman function was
10 km and there was 3% rms variation in velocity. The third layer extended from
the base of the crust to a depth of 250 km and was characterized by an anisotropic
Gaussian correlation function. The horizontal and vertical correlation lengths in this
region were 20 km and 5 km, respectively and there was 2% rms variation in velocity.

Thesis Supervisor: M. Nafi Toksoz
Title: Director, Earth Resources Laboratory
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Chapter 1

Introduction

1.1 Thesis Objectives

Most wave propagation studies concentrate on identifying the coherent features in
seismic data. These features are often indicative of major structural trends, and are
of great interest in many branches of geophysics. The small incoherent arrivals which
occur between the major reflections and refractions also contain information about
the earth, yet these features are often dismissed as noise, or classified as coda. In
fact, numerous techniques, such as stacking, beamforming, etc have been developed
to suppress these arrivals.

The primary objective of this thesis is to investigate the attributes of seismic waves
which have propagated through a highly heterogeneous medium. This is accomplished
using two different finite difference modcling techniques. One of the techniques is
a conventional second order finite difference technique (Alford et al., 1974; Kelly
et al., 1976), which provides a full, iterative solution to the elastic wave equation.
The second is a new technique which is based on the elastic wave equation and
the Born approximation. The Born approximation has received great attention for
both forward and inverse modeling, because it serves to linearize the elastodynamic

equations of motion (e.g., Nayfeh, 1973; Beydoun and Tarantola, 1988). Although




this approximation has been commonly used to study scattering, there is reason to
question the validity of this approach. The Born approximation assumes scattering
is weak, and as a result three important assumptions arise. First, it is assumed the
incident wavefield passes through the heterogeneous region undisturbed. Second, the
only source of scattering is the interaction of the incident wave with the perturbations
in the medium. As a result secondary scattering is ignored. Third, the total field is
the sum of the incident and scattered fields. Together, these assumptions violate the
law of energy conservation.

The final and most important objective of this thesis is to apply what is learned
from the forward modeling to actual field data. To do this, waveforms from an under-
ground nuclear explosion were analyzed. These data were also compared to synthetic
waveforms generated for a variety of previously published random lithospheric mod-
els (e.g., Aki, 1973; Frankel and Clayton, 1986; Flatté and Wu, 1988). Using travel
time and amplitude fluctuations, coherency measurements and coda generation to
constrain the modeling, we propose that the lithosphere below NORSAR is best

modeled as the three layered model described below.

1.2 Large-Scale Variations

In whole earth seismology, the earth’s velocity field is often approximated by a series
of radially symmetric shells. Similarly, in exploration seismology the velocity field is
often simplified to constant velocity layers. Data from these simplified models lacks
the high degree of variability often seen on field data. Between the major reflec-
tions and refractions, field observations have small incoherent arrivals that cannot be
accounted for by the model.

Instead of attempting to understand these arrivals, they are routinely dismissed as
“noise”. As a result, geophysical efforts have been directed towards data processing

techniques to enhance the impact of the coherent arrivals and diminish the incoherent




arrivals (Robinson, 1957; Mayne, 1962). This Liziute’ uce T seismic data has identified
many major features within the earth and has estsbiisk -4 re.cane imaging asa m i
tool for oil and gas exploration. These successes in both wliole earth and exploration
seismology, occurred because the “signal” was used to identify major changes in
lithology and/or structure. In fact, that is the only information the “signal” carries.
It can tell us little of what lies between the interfaces.

It is sometimes the case that the material between major lithographic boundaries
is more important than the boundaries themselves. Of particular interest are the
small-scale velocity anomalies in the crust. These features are often smaller than the
shortest recorded wavelength and can be indicative of changes in lithology, porosity,
pore pressure, fracture density or permeability. The two key features of these vari-
ations are their small size and large number. Both factors coalesce to produce an

incoherent scattered field which cannot be explained by a simple layered model.

1.3 Characterization of Small-Scale Variations

Due to the large number and random distribution of small-scale variations, these
features are often characterized by their statistics (e.g., Chernov, 1960; Hudson and
Heritage, 1981). The advantage of statistical characterization is that it allows some
aspects of the velocity field to be described by only a few parameters. Much like
a horizontal formation in reflection seismology might be characterized by its depth,
thickness and velocity, highly heterogeneous media can be characterized by their
spatial autocorrelation function, correlation lergth, perturbation index, and average
velocity.

In scattering theory, it is common to normalize both the wavelength A of the
incident wave and the extent I of the heterogeneous region by the scale length of the
scatterers a (e.g., Chernov, 1960; Wu and Aki, 1985c). The product ka = 27ra/) is

the normalized wavenumber, and L/a is the normalized propagation length

10




These normalized parameters define different scattering regimes. When ka < .01,
the heterogeneities are too small to individually affect the passage of seismic energy,
thus the spatially varying properties of the medium can be replaced by some effective
bulk properties. For .01 < ka < 1, the low frequency approximation (i.e., Rayleigh
scattering) is valid and the power of the scattered wave is proportional to k*. When
ka = 1, the size of the scatterers is comparable to a wavelength. This is often called
the Mie scattering regime, and is dominated by isotropic scattering, with some pref-
erence to the forward direction. When ka > 1, scattering is strongly concentrated in
the forward direction. In this regime, mode conversion and backscattering are small,
so parabolic approximations to the wave equation can provide accurate solutions. For
relatively short propagation paths, L/a < 100, ray theory can be successfully used,
but for longer propagation paths analytical techniques are usually used (Wu and Aki,
1990).

A third parameter is commonly used to quantify the strength of a scatterer. The

perturbation index ¥ is defined as the rms deviation in velocity v (or Lamé’s param-

where vy is the average velocity of the medium. If ¥ < .1 the scattered field will

eters, density, etc),

be small compared to the incident field and the Born approximation may give good
results. Stronger variations lead to strong multiple scattering, thus invalidating the

Born approximation.

1.4 Characterization of the Scattered Field

The amplitude and travel time of seismic waves are affected by propagation through
a random medium. If the correlation length of the medium is small, the incident
wave will be strongly scattered by the medium. If the correlation length is large, the

wavefront will alternately be focused and defocused by the medium, creating large

11




variations in both ampiitude an! travel tine but loale scatiering. in either case, the
statistics of the waveficld may contawm infortnation reiating tu the statistics ot n.»
medium.

One technique commonly used to estimate the statistics of the wave field is the
coherency. Coherency is a measure of similarity between a pair of time series. The
technique has been used to study spatial and temporal trends in both strong ground
motion (Harichandran and Vanmarcke, 1984) and regional (Dainty and Tokséz, 1990)
studies and is a frequency domain equivalent of the correlation function used by
Bungum et al. (1985) and Ingate et al. (1985). The coherency function is useful in
practice because it provides a dimensionless measure of similarity between two traces.
Due to the variability in traces which have propagated through a random medium,

coherency studies of this kind are often done on arrays of seismic data.

1.5 Wave Propagation in Random Media

Seismic wave propagation through random media can be approached either statisti-

cally or deterministicly.

1.5.1 Statistical Modeling

Most studies of wave scattering in random media use the statistical approach. The
typical methodology is to first assume a spectral model for the random medium, then
attempt through analytical means to predict the statistical behavior of the propa-
gatimg wave field. This course of action has the advantage that if successful, the
statistical variations in the observed wave field can be directly related to those in the
medium.

In general, there is no exact closed form solution for elastic wave propagation in an
highly heterogeneous medium. Several approximate solutions have been presented,

however. If scattering is very strong, the transportation of energy can be modeled
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with the diffusion equation. The diffusion models presented by Aki and Chouet (1975)
and Dainty and Toks6z (1975) use energy conservation to derive seismic envelopes for
strong scattering media. These techniques are valid only when all of the energy in the
medium is multiply scattered and no direct energy remains. Thus, these techniques
are of limited use when intrinsic attenuation is strong, or scattering is weak.

When scattering is weak, the single scattering model may provide an accurate
solution (e.g., Aki, 1969; Aki, 1973; Sato, 1977a). These theories have the advantage
that they are well suited to perturbation analyses, where the medium and the wave
field are decomposed into a background part plus a perturbative part. This decom-
position leads naturally to the Born approximation. Chernov (1960) investigated the
applicability of the Born approximation for scattering in random acoustic media. The
generality of his analysis lead to an overly strict validity criterion. Kennett (1972b),
was the first one to extend Chernov’s analysis to the elastodynamic case. His analysis
was limited to two-dimensions and aimed at the problem of a horizontally stratified
perturbation in a layered structure. For this geometry, he found the following validity
condition,

w HW _
Ekm‘,xTv < 1, (12)

where w is the radial frequency, f, is the background shear wave velocity, kp,,, is the
largest wavenumber contributing to the solution, and H, W and 9 are the the height,
width and strength the scatterer. The strength of the scatterer is measured often
defined in terms of the perturbation index, which is equal to the rms variation nor-
malized by its mean (where the variations may defined in terms of Lamé’s parameters,
density, or velocity). Hudson and Heritage (1981) investigated the accuracy of the
Born approximation for the 3-D elastic case. They present several inequalities which
give the range of validity of the Born approximation and show that in all cases, these
criteria are violated by typical teleseismic frequencies and scatterer sizes. They argue
that to satisfy the validity criteria, observations would have to be made at periods

on the order of 100 seconds, or greater.
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1.5.2 Deterministic Modeling

One way to minimize the uncertainties and errors associated with statistical modenng
is to approach the problem deterministically, that is, construct a “random” medium
with known statistical parameters and investigate that model. This is the approach
taken here.

In this thesis, numerical (finite difference) modeling is used to propagate energy
in a variety of random media. The finite difference technique was chosen because
it can produce a full solution to the elastodynamic equation of motion, and unlike
high frequency approximations (such as raytracing), the technique is valid over a
wide range of scatterer to wavelength ratios. Another advantage of the technique
is the ability to make synthetic seismograms and snapshot pictures of the vector
displacement ficld at any point in time.

This is not the first time the finite difference technique has been used to study
scattering in random media. Frankel and Clayton (1986) used the technique to assess
the accuracy of Chernov (1960) scattering theory. They also found that the travel
time and amplitude variations in teleseismic arrivals at NORSAR and LASA could
be explained by random heterogeneities having a von Karman distribution and length
scales less than 50 km (a > 10 km). Dougherty and Stephens (1988) used the tech-
nique to study scattering in the ocean crust and found that much of the seafloor
"noise” could be traced to scattering of the primary wave into both scattered body
and Stoneley modes. In this thesis, the finite difference technique is used both to

model single and multiple scattering.

1.6 Thesis Plan

In the scattering literature, highly heterogeneous media are often approximated by
random fields. The advantage of this approach is that a complex, multi-dimensional

velocity function can be expressed in terms of a few simple statistical parameters. The
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conditions under which statistical characterization is justified are outlined in Chap-
ter 2. One statistical parameter which can be used to describe the variability of a
velocity field is the autocorvelation function. The properties of three commonly used
autocorrelation functions, the Gaussian, exponential, and von Karman functions are
investigated, and their likely applicability to the earth is discussed. All three spectra
are nearly flat at low wavenumbers, but at higher wavenumbers the Gaussian falls off
exponentially, while the exponential and von Karman fall off with a power law depen-
dence. The fall off rate controls the roughness of the medium. Those characterized
by the Gaussian autocorrelation are smoothly varying, while the exponential and von
Karman functions are more highly textured. Although not directly related to wave
scattering, the ideas presented in Chapter 2 are important to the developments in the
later chapters.

In Chapter 3, a new semi-analytical technique is introduced to calculate the single-
scattered field. The technique is based on the Born approximation and makes use
of the full elastic wave equation. In this technique, an incident wave is either an-
alytically or numerically propagated in a background medium. When the incident
wave interacts with the perturbations in the medium, body forces are generated and
introduced into a separate finite difference calculation. Unlike similar analytical tech-
niques (Appendix B), the body forces are calculated numerically making the technique
applicable to arbitrarily complex velocity models. The ability to produce synthetic
seismograms based on the single scattering approximation in arbitrarily complex me-
dia is unique and of great interest because these traces can then be compared one to
one with traces from the multiple scattering solution. These comparisons are made
in Chapter 3. In addition, the effect of the single scattering approximation on coda
and coherency statistics is investigated.

In Chapter 4, numerical simulations and data collected at the NORSAR and
NORESS arrays are used to evaluate several different lithospheric models. We begin
the study with the simple single layer models proposed by Aki (1973), Capon (1974)
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and others. These mod. {5 matcaed the viristic, 1wl tires and amplitude
well, but couid not geuncrate the seine crnoant of codi ohaeiod iy short period d 5o,
The overlapping two-layered model proposed by Flattc ait Wu (1988) also matchied
the observed variations in travel times and amplitude and produced more coda, but
the wavefield produced by this model was considerably more coherent than the field
data. After experimenting with numerous statistical models of the litliosphere, we
found a three-layered model which matched the variations observed at NORSAR
better than any previously proposed models. The autocorrelation of the fluctuations
in‘ the top layer (0-3 km) is a bandlimited white spectrum with 2% rms velocity
variations. We found this layer necessary in order to match the observed variations
across small array such as NORESS. The middle layer (3-35 km) is characterized
by the Oth von Karman function and has larger (3%) velocity variations. This layer
contributes to both the generation of the coda, and to the travel time and amplitude
variations observed at the surface. The bottom layer (35-250 km) is characterized
by a Gaussian autocorrelation and 2% rms velocity variations. We found the best
results when this layer was made to have a 20 km correlation length in the horizontal
direct and a 5 km vertical correlation length. Evidence from seismic profiles near
NORSAR (e.g., Cassell and Fuchs, 1979) and coupled-mode inversions (e.g., Kennett
and Nolet, 1990; Kennett and Bowman, 1990) also suggest that heterogeneities in
the upper mantle might have different scale lengths in the horizontal and vertical
directions. In particular, Kennett and Bowman (1990) analyzed data from seismic
arrays with apertures between 100 to 1000 km and suggested that the heterogeneities
in the upper mantle have horizontal scale lengths on the order of 300-400 km, but
a vertical scale length of about 100 km at a depth of 200 km. They also suggest
the vertical scale length might increase with depth. These studies used snrface wave
data with frequencies on the order of 0.02 Hz and body waves with frequencies on the
order of 0.04 Hz, which might explain the larger scale sizes observed in these studies.

Chapter 5 contains the conclusions which can be formed from the material pre-
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sented in this thesis. In this chapter, there is a review of the technique used to
generate the single scattered field, as well as a summary of some of the differences
between the single and multiple scattering solutions. Limitations in single scattering
theory lead us to use finite difference modeling to calculate the multiple scattering
solutions presented in Chapter 4. These data are reviewed in Chapter 5, as is a

mode] for the random heterogeneities thought to exist in the lithosphere beneath the

NORSAR array.
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Chapter 2

Seismic Velocities as Random

Fields

2.1 Introduction

Velocity variations in the earth can be separated into two broad classes; those which
are “organized” enough to be treated discretely and those which are not. Large scale
lithographic boundaries and small isolated objects fall into the first category, which
we will refer to as deterministic variations (or deterministic scatterers). The second
category is characterized by small-scale features such as subtle velocity variations,
or localized changes in composition, saturation, pore pressure, etc. These variations
are often irregularly distributed and so numerous and small that they can only be
treated effectively with statistical techniques; hence the name stochastic or random
variations.

Waves scattered by discrete scatterers tend to produce strongly ccherent arrivals.
The coherency of the scattered waves makes them clearly visible across neighboring
seismometers, thus these were the first waves to be studied by seismologists. The
scattered field due to stochastic variations lacks coherency. These waves are thought

to be the cause of the significant travel time and amplitude anomalies which are of-
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ten observed, even between elements of tightly spaced arrays (Aki, 1973; Wu, 1982a;
Ringdal and Husebye, 1982; Frankel and Clayton, 1986; Flatté and Wu, 1988). Be-
cause of their small amplitudes, uncorrelated nature and erratic arrival time, these
waves have historically been treated as noise. Only recently has their importance
in crustal studies (e.g., Aki, 1973; Aki and Chouet, 1975; Wu, 1985; Frankel and
Clayton, 1986), upper mantle studies (e.g., Berteussen et al., 1975b; Mereu and Ojo,
1981: Ojo and Mereu, 1986), core-mantle boundary studies (Haddon and Cleary, 1974;
Bataille et al., 1990) and reservoir characterization (Greaves and Fulp, 1987) been

realized.

2.2 Seismic Velocities as Random Fields

In the scattering literature, highly heterogeneous media are often represented by
random fields (e.g., Capon, 1974; Sato, 1978; Macaskill and Ewart, 1984; Wu and
Aki, 1990). The justification for such an approach hinges on the assumption that the
scale length of the heterogeneities is much smaller than the extent of the study area.
When satisfied, the complex, multi-dimensional velocity function can be expressed
in terms of a few simple statistical parameters. Due to practical considerations, the
most commonly used statistical parameters are the low order statistical moments (the

mean, variance, and correlation function).

2.2.1 Decomposition of the Velocity Field

With the above discussion in mind, consider the velocity function v(z) which may
vary with position z over some region of the earth . The velocity function can be

decomposed into two parts; a deterministic part v,(z ) and a stochastic part fv(z),
v(z) = vo(z) + év(z) zEeR (2.1)

It should be pointed out that the two different types of heterogeneities, deterministic

and stochastic, are not inherent properties of the medium. This decomposition is
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arbitrary and done simply as a modeling apprcach. Wiir *his in mind, we will assume
that the deterministic (or background) part of the velacity fieid contains all le-g-

scale velocity variations. Such variations might arise from gross changes in lithology;
where a shale meets a limestone, for instance.

Although interesting, scattering from discrete variations is well understood, and
numerous techniques have been developed (e.g., travel time analysis, migration, 7-
p methods, etc.) which are capable of estimating that portion of the velocity field
(e.g., Aki and Richards, 1980; Claerbout, 1985). In this thesis, the focus will be
on scattering from the small-scale features of the velocity field. Most materials in
nature contain stochastic variations, yet the distribution of these features is poorly
understood.

Stochastic variations are capable of affecting the passage of seismic energy, al-
though usually to a lesser extent than deterministic variations. Three mechanisms
are commonly attributed to scattering from stochastic variations. One is the genera-
tion of coda; scattered energy arriving at the receiver after the direct arrival (Aki and
Chouet, 1975; Herrmann, 1980). A second is attenuation due to scattering; energy
which is scattered by the medium and never arrives at the receiver (Dainty, 1981;
Wu, 1982b; Dainty, 1984). A third is through travel time fluctuations; changes in
arrival time of the initial pulse due to fluctuations in the medium (Aki, 1973; Ojo and
Mereu, 1986; Flatté and Wu, 1988). The first two mechanisms are interrelated and
have been shown to be controlled by backscattering. Travel time fluctuations arise
from scattering within a narrowly defined cone about the propagation direction, and
are thus controlled by forward scattering. These three mechanisms contribute to the

complexity of most seismograms observed in the earth.

32.2.2 General properties of a Random Field

A random field provides a probabilistic description of a physical phenomenon which

varies spatially according to the laws of probability. For statistical reasons, it is often
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necessary to treat a random field as one element randomly selected from an infinite
population or ensemble of fields. Each member of the ensemble shares the same
statistical properties, but is a unique realization of that ensemble. In this context,
the earth’s velocity field is but one realization of an infinite ensemble of functions
which might have been observed.

The statistical description is achieved by associating each point in space £ with
a random variable V(z ). It is assumed that the range of z and sample space of the

random variable are infinite,

0> Jz| <o

-0 < V(z) <oo, (2.2)

and the probability density function (pdf) and all the joint pdfs are known . When
this is true, a field can be described by an ordered set of random variables V(z).
At any point in space, the univariate moments of the random field can be written

in terms of its pdf fy(z)(6v),

EV(2)™) = | _(6)" fuien(6v)d(v), (23)

where m is the order of the statistical moment and E denotes the expectation opera-
tor. Since little is known about the statistical distribution of scatterers in the crust,
it is commonly assumed in the scattering literature that velocities are Gaussian dis-
tributed. Then, the pdfof the velocity field can be completely described by its mean
(first statistical moment) and variance (second statistical moment).

Similarly, the bivariate moments of the random field can be written in terms of

its joint probability density function (jpdf),

EV(z,)"V(z.)"] = /_: /_0:0(61;1)m(6vg)"fv(§,)v(_x_2)(6v1,6vg)d(6v1)d(6v2). (2.4)

The multivariate moments describe the dependence between values of the velocity

field at two points in space.
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The simplest, and in practice most imporctset, of he bivariate moments is the

covariance. We define the autocovanance fun-tion (acnfy by.

wv(znz2) = E[(V(z1) - E(21))(V(z2) - E(z2))] = Cov[V(z1), V(z2)], (2.5)

where Cov denotes the covariance between two random variables. Since the acuf
depends on the variance of the distribution, a normalized form of the acvf is often

used to describe random fields. The normalized acvf, or autocorrelation function

(acf), is given by,
~ Cov[V(z,1),V(z2))

\/Var[gl]Var[_:_c_g] ’
where Var is the variance of a random variable. From these two relations, it is clear

that

(2.6)

va(&‘u@.z) =

ywv(zi,Z2)
Vwv(zuz)wy(zezz)
If the acuf depends only on the spatial separation, the random field is said to be

(2.7)

pvvizi,Z2) =

stationary (Tatarski, 1961). Then, the acvf and the acf can be simplified to

wv(zi,z22) = Yvv(za — z41), (2.8)

and
‘I’VV(£2 —_z.x)

Uyy(0)

Stationarity is almost always assumed in seismic scattering studies, in part because

(2.9)

PVV(.:ElaZZZ) =

it simplifies most analytical approaches.

One can imagine regions in the lithosphere where the fluctuations in the velocity
field have a preferred orientation. One example might be the deposition of overlapping
lenses with different lithologies. The lens shape suggests that the correlation length
of these features might be different in the ' orizontal and vertical direction. Although
each lens may have isotropic elastic moduli, the composite medium may display an
“effective” or “apparent” anisotropy. The preferred orientation of the fluctuations

should be reflected in the acvf For simplicity, it will be assumed that all azimuthal
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variation in the acf can be explained through the dimensionless ellipsoidal norm,

V(2 -21) = 0| ((2a - 207Qzs — 1)) 7] (2.10)

where Q) is a symmetric, positive-definite matrix. The eigenvectors &, =1,2,3 of @
point along the axes of the ellipsoid, and the eigenvalues ), are inversely proportional

to the square of the correlation length along that axis, such that
3
Q =Y Méel (2.11)
- =1
If the fluctuations have no preferred orientation, Equation 2.11 reduces to

Q = AL, (2.12)

where [ is the identity matrix. Then for a stationary, isotropic random field, the acvf

and the acf depend only on the spatial separation r =| 2, — z, |,

wv(zi1,z2) = Yyyv(r), (2.13)
and
pvv(zi,z2) = g%:/% (2.14)

Under these assumptions, the autocovariance and autocorrelation functions have sev-

eral useful properties.

1. The zero lag value of the acufis equal to the variance of the distribution. Then,
from Equation 2.7, the zero lag of the acfis unity, pyyv(0) = 1. This property
makes it possible to normalize different distributions based on their total vari-
ance (zero lag value of the acf). It can also be shown that | pyy(r) |[< 1 for all

T.

2. If the random field is continuous, then pyy(r) must be a continuous function of

the lag r (Jenkins and Watts, 1968).

3. Lastly, the power spectrum of a random field is the Fourier transform of its
correlation function (Tatarski, 1961). This property is central to the technique

used to construct the realizations presented in the later chapters.
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2.3 Commonly Used Autocorrelation Functions

The autocorrelation function is commonly used to characterize random fields and
is a measure for quantifying the similarity between neighboring points in a random
mediim. It has the property that it is the Fourier transform of the power spectrum
(Tatarski, 1961). This relationship allows us to build realizations from a desired
cotrelation function in the wavenumber domain. Throughout this thesis, realizations
were constructed by convolving the square root of the power spectrum with a phase
term of the form e, where 0 is a random number drawn from a uniform distribution
over the range 0 < 6 < 2. Since the norm of the phase term is one, the shape of the
power spectrum and the total power within that spectrum are unchanged.

Although the statistical derivation outlined above was carried out for the con-
tinuum case, all computations were performed on a digital computer. As a result,
it was necessary to convert the continuum equations to their discrete counterparts.
The conversion is known to be inaccurate if the discrete medium is not well sampled
(e.g., Jenkins and Watts, 1968; Bracewell, 1978). To minimize these errors, special
care was taken to ensure that the power at the Nyquist frequency was small. This
was necessary because truncation of the power spectrum at the spatial Nyquist is
equivalent to convolution with a rectangular window function. Prange (1989) showed
that when this occurs, oscillations are introduced into the acf.

Three correlation functions have received a great deal of attention in the scat-
tering literature; the Gaussian, the exponential and the von Karman functions (e.g.,
Chernov, 1960; Tatarski, 1961; Dainty, 1984; Frankel and Clayton, 1986; Wu and
Aki, 1990). The commonly used form of these functions and their power spectra are
given in Table 1, and shown graphically in Figure 1.

In both the Gaussian and exponential functions, the correlation length @« marks the
lag where the correlation function has the value e~ (Figure 1). In the wavenumber
domain, both spectra are flat out to a corner wavenumber which is approximately

equal to 1/a. The difference between the two spectra is most noticeable at higher
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Table 1. Correlation Functions and Their Spectra
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Figure 1: The model autocovariance functions (top) and their 1-D power spectra (bottom).
The spectra are normalized so that they have the same power.
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wavenumbers, where the Gaussian falls off exponentially, and the exponential falls off
as k=Nt where N is the number of space dimensions. The fall off ratce of the spectra
controls the amount of roughness in the realization. Spectra with more energy at high
wavenumbers are expected to show more roughness (Figure 3) than those which are
localized near zero wavenumber (Figure 2).

The von Karmadn function was first introduced to characterize the random velocity
field of a turbulent medium (von Karmdn, 1948). In the spatial domain, the von
Karman function is peaked about the origin. The peak is especially severe when
v = 0, since then the modified Bessel function K, goes to infinity as r/a goes to zero.
Although the parameter v can take on any value in the range 0 to 1, is has some
special properties at 0, 0.3, 0.5 and 1. When v = 0 the spectrum defines a multi-
dimensional Markov field (Goff and Jordan, 1988) v = 0.3 defines Kolmogorov’s
turbulence (Wu and Aki, 1990), while for v = 0.5 the von Kiarmdn function simplifies
to an exponential and when v = 1.0 to an autoregressive field.

In this thesis we will be most interested in the von Kdrman function where v =
0. Our reason for choosing this parameterization is two-fold. Earlier studies have
shown that it might best describe the random heterogeneities which exist in the
crust, (Frankel and Clayton, 1986; Goff and Jordan, 1988; Toksoz et al., 1988). In
addition, the Oth order (v = 0) von Karmadn function is least similar to the Gaussian
and thus will offer us a suitable comparison to that function.

The peakedness of the correlation function leads to a wide spectral representation,
indicating that media characterized by the von Karman function contain a significant
amount of roughness (Figure 4). As in the Gaussian and exponential functions, the
power spectrum of the von Kdrman function is flat up to a corner wavenumber roughly
equal to 1/a. The difference is that at higher wavenumbers the spectrum falls off as
k=(N+2) considerably slower than the Gaussian or exponential functions. Thus for
the von Karman (and exponential) function, 1/a defines a corner wavenumber and

the parameter v controls the rate of decay of the power spectrum (Figure 1).
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Figure 2: A 2-D realization of a randeni inedirun with a Ganssian autocorrelation function.
The correlation length in this realization is 20, and there is 5% RMS deviation in the
velocity. Note the smoothness of this realivation corpared to those in Figures 3 and 4.
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Figure 3: Same as Figures 2 and 4, but with an exponential autocorrelation function.
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Figure 4: Same as Figures 2 and 4, but with a Oth order von Karméan autocorrelation

function.
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The von Karman function has an additional property that its slope is discontinuous
at zcro lag. This property qualifies the von Karman function as a fractal (Mandelbrot,
1977). Fractals are unique and of interest because they contain variations on all
wavelengths. Since many physical characteristics in the crust also display variation
on a wide variety of length scales, this autocorrelation function may be well suited
to crustal applications. The self-similar nature of fractals can be easily seen by
examining the variance as a function of wavenumber. Figure 5 shows a series of
1-D realizations taken from the three acfdescribed above. All three realizations have
the same correlation length (a = 20 m) and were generated by the same random
seed. At low wavenumbers there is little variation in shape and variance between the
traces. This is consistent with the power spectra (Figure 1), which are flat at low
wavenumber for all three functions. At high wavenumbers, there is no variance in the
Gaussian trace, and the variance in the exponential trace is smaller than it was at
low wavenumber. Thus, for these media, the variance over equal logarithmic intervals
of wavelength decreases as the wavelength decreases (Frankel, 1989). This is not so
for the Oth order von Karman function. The variance for that function is roughly
constant over length scales smaller than 2ra (Figure 5).

At this point it is worth restating a subtle distinction. Three acf are commonly
used in scattering literature to represent spatial velocity fluctuations in the earth;
the exponential function, the von Kirman function, and the Gaussian function. It is
important not to confuse the Gaussian acfwith the Gaussian statistics of the medium.
The former describes the spatial dependence of the medium, while the later describes

the pdfof the random variable.

2.4 Conclusions

In this chapter we have outlined the statistical background necessary to generalize

the complex velocity fluctuations in the earth to a random field. Statistical charac-
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Figure 5: Random realizations from the 1D Gaussian, exponential, and Oth order von
Karmén autocorrelation functions. a) unfiltered, b) bandpass filtered allowing wave-
lengths 2.5a-5a, c) bandpass filtered allowing wavelengths a/4-a/2. All realizations were
constructed with the same random seed, and are plotted at constant scale.
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terization is considered reasonable because changes in lithology, fracture density, pore
pressure, regional stresses, etc, all cause seismic velocities in the earth’s crust to vary
irregularly with position. Many of these features are too small and too numerous to
define deterministically, thus we have little recourse but to treat them stochastically.

Although all the features mentioned above can affect seismic velocities, their spa-
tial extent may vary by many orders of magnitude. Contrast a typical micro-crack
which may be only a few microns wide and a fault zone which may be a kilometer
wide; the range of length scales is 10 orders of magnitude. This wide range of length
scales presents a problem when numerical techniques are used to model wave propa-
gation in the earth. Most often only the large-scale variations (i.e. var: :'icns larger
than a seismic wavelength) are included in the velocity model. As a result, synthetic
seismograms generated from these models often lack the “background noise” observed
in real-earth seismograms. By including these small-scale random features, we are
able to achieve a better match between the synthetic seismograms and those recorded
in the earth. We do this not only to better model wave propagation in the earth, but
also in an attempt to understand the velocity distributions within the earth. These
distributions are capable of describing a little known and poorly understood aspect of
the earth and may hold grcat potential in reservoir characterization, fracture density
studies, seismic anisotropy, mantle studies (with respect to convection), etc.

In this chapter we also introduced the autocovariance functions most commonly
cited in the scattering literature. We will use these functions in the chapter on forward
modeling in stochastic media. It was shown that random processes with Gaussian
autocorrelation functions give rise to smoothly varying realizations, while random
processes with von Kdrmdn autocorrelation functions produce realizations with a

strongly textured appearance.
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Chapter 3
Scattering in Random Media

3.1 Introduction

Seismic wave scattering is a complex phenomenon which depends on the size, dis-
tribution and magnitude of the heterogeneities in the earth. In general, the exact
distribtition of these heterogeneities is unknown, and we have no recourse but to use
someé simplified model. Historically, the earth has often been modeled as a simple
stratified medium, each of the strata having constant velocity and density. Seismo-
grams from these models tend to match the gross features recorded in field data, but
lack the variations in amplitude and travel time and the incoherent energy which is
often observed after the major arrivals. Both of these features are symptomatic of
scatteting from small-scale changes in velocity or density.

The scattering problem is difficult to solve exactly, in part because the problem
is recutsive. That is, a wave scattered from a particular heterogeneity is further
influenced by other heterogeneities in the medium. When scattering is weak, it is
common to consider only the incident wave and the first scattered wave. This is the
sifigle scattering solution (e.g., Aki, 1969; Aki and Chouet, 1975; Sato, 1977a; Sito,
1977b; Aki, 1980; Wu and Aki, 1985¢c; Chouet, 1990). The problem is often further
sithplified by invoking the first Born approximation, which will be referred to as simply
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the Born approximation. In the Born approximation, it is assumed that the incident
wave is unchanged during propagation through the heterogeneous region. As a result,
energy scattered from the incident wave is not subtracted from the background field
and the total energy in the medium increases with time. Although this limitation is
clearly stated in much of the scattering literature, the Born approximation continues
to be used for both forward and inverse modeling of random continua.

Whereas most analytic solutions for scattered waves are valid only when scattering
is weak, it may be possible to solve the problem exactly via numerical methods.
The first numerical simulations of seismic wave propagation in stochastic media were
accomplished using a two-dimensional ray tracing technique (Mereu and Ojo, 1981).
In that study it was found that the variations in travel time and amplitude of the
incident wave are controlled mainly by the long wavelength variations in the medium.
Frankel and Clayton (1984) used the finite difference technique to model acoustic
waves in random media and were able to produce coda waves and study apparent
attenuation. For the three random media they studied (characterized by the Gaussian,
exponential, and von Karmdn autocorrelation functions), they found that apparent
attenuation increased with frequency until the correlation length of the scatterers
was comparable to a wavelength. At higher frequencies, there was no decrease in
apparent attenuation in the exponential and von Kirman media, but there was a
noticeable decrease in the Gaussian media. These results agree well with analytic
solution (Dainty, 1984). Finite difference modeling has also been applied to the
elastic wave equation; both to study the relationship between the medium and the
observed scattered field (Frankel and Clayton, 1986; McLaughlin and Anderson, 1987;
Dougherty and Stephens, 1988) and to study the response of typical seismic processing
streams used on data collected in highly heterogeneous regions (Gibson and Levander,
1988).

In this chapter, the focus is on the differences between the single and multiple scat-

tering solution. To accomplish that end, a new semi-analytical technique to calculate
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the single scattering solution is developed. The technique uses single scattering theory
and the Born approximation to calculate the equivalent body forces in the medium
due to the interaction between the incident field and the heterogeneities. These equiv-
alent sources are then propagated in the background medium via the finite difference
technique. The most important advantage of this new technique is that it can be used
to generate the single scattering solution for any particular velocity model. This will
allow us to compare the single scattering solution to the multiple scattering solution,
as calculated by a conventional finite difference technique, for a variety of random
media. It is important to point out that both techniques make use of finite difference
modeling, but in one case (the single scattering solution) special steps are taken to

include only single scattered waves in the solution.

3.2 Single Scattering

3.2.1 Theory

Consider an isotropic, elastic medium which is homogeneous except for some small
region R. Outside the region R, let A, o, and po be Lamé’s parameters and density.
Inside R, the material propertier can be written as the sum of the homogeneous

parameters plus a spatially varying perturbative term,

Az) = do+6Mz) SA=0 z¢.§2
p(z) = po+épu(z) bu=0 z¢R
p(z) = po+6p(z) bp=0 z¢ R (3.1)

Both inside and outside R, particle displacements can be described by the general

elastodynamic equation of motion (Aki and Richards, 1980)
pii — (AV - ) — [plui, +uji)]; = S, (3.2)

where ¥ = u(z,t) is the displacement vector, and § = S(z,t) is the body force

vector.
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Outside R, the material properties are spatially invariant and Equation 3.2 can
be simplified to
poiti — (Ao + po)(V - )i — poV?u; = Si. (3.3)

Inside ® Equation 3.1 can be inserted into Equation 3.2.
poit; — (do + po)(V - )i — poVu; = Si + Qi (3.4)
where
Qi = —bpii + (6X + 8p)(V - 1) + 6uV2u;i + (60),;V - u + (8p) 5(uij + uji). (3.5)

Notice that Equation 3.4 is similar to Equation 3.3, with terms involving the hetero-
geneities appearing as a body force term.

If the scattered field is small compared to the incident field, the problem can be
simplified by introducing the first Born approximation. Under that assumption, the
displacement field can be decomposed into two parts; the incident field 4° and the

scattered field u’,
u=u’+u’ (3.6)

u®>lu’]. (3.7)

It is assumed that scattering is weak enough that the perturbations in the medium
have no effect on the incident wave and all scattering is due to the interactions between
the incident wave and the perturbations in the medium (i.e. secondary scattering is
ignored).

Inserting Equation 3.6 into Equations 3.4 and 3.5 and neglecting terms involving

the interaction bet ween the scattered field and the perturbations in the medium yields,
poiid = (Ao +p0)(V-1°),i = o V?ul +poit} — (Ao+0)(V-u')i—poV?u; = 5i+QF, (3.8)
where
Q? = —bpid + (52 + 6p)(V - u®) i + 6uVPul + (60),:V - u® + (8p) ;(u?; + u2,). (3.9)
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The first three terms in Equation 3.8 account for the displacements of the inci-
dent field in the homogeneous background. From Equation 3.2 these terms can be

subtracted, leaving an equation of motion for the scattered field,
poit; — (Ao + po)(V-u')i — poVui = Q7. (3.10)

Under the Born approximations then, both the incident and scattered fields travel in
the background medium. As a result, the incident wave is not affected by the pertur-
bations in the medium, and the scattered field is generated only by the interaction

between the incident field «® and the perturbations.

3.2.2 Limitations of the Born Approximation

Although the Born approximation in commonly used in boil. forward and inverse
modeling, surprisingly few studies have been published which explore the range of
validity of the technique (e.g., Chernov, 1960; Hudson and Heritage, 1981).

Chernov (1960) showed that it was possible to estimate the power carried by
the scattered field in a random acoustic medium. In that derivation, gradients in
the material properties were neglected (i.e. smooth perturbations only) and it was
assumed that the receiver point was far from the heterogeneous region. Then, for a
medium with a Gaussian correlation function, the ratio of the power in the scattered

field to the power in the incident field is given by
-AT{ = Jriktal(l — e—K'a%y, (3.11)

whete 7i is the rms deviation in the refractive index, k is the wavenumber of the
incident wave, a is the correlation length of the medium and L is the propagation
length within the heterogeneous region.

From Equations 3.11 and 3.7, the range of validity for the Born apptoximation in

an acoustic medium is given by
\/;f;(ka)4£ <1, for ka<k 1 (3.12)
a
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ﬁﬁ(ka)zé < 1, for otherwise. (3.13)

When ka is small, the waveiength is much larger than the scatterer, and the scattered
field has the characteristic Rayleigh scattering k* dependence. When ku is large, the
scattering coefficient increases as the square of the ka. In either case, it is clear that
the Born approximation is probably not adequate when the propagation path is long
compared to the correlation length of the medium. This is precisely the case in a
random continuum studied here.

Hudson and Heritage (1981) carried out a similar analysis for the elastic wave case.
Using several simplifying assumptions, they were able to define a range of validity for

the Born approximation,
2 2
(,%oﬁ) p+ (g) max(}, i) < 1, (3.14)
where (2 is the maximum angular frequency, B is the background shear wave velocity,
d is the size of the region bounded at each instant of time by the scattering centers
corresponding to scattering from the incident wavefront to the observer by the least
time path and ), ji and p are the normalized rms deviations in Lamé’s parameters
and density. In that study, the authors warn that Equation 3.14 is extremely strict
and the Born approximation will work well in many media which violate this limit.
These studies suggest that although the Born approximation has been shown to
produce excellent agreement with other analytical solutions when the scatterer is a

discrete, isolated feature (e.g., Wu and Aki, 1985¢), the technique may not be valid

for random continuous media.

3.2.3 Numerical Implementation

In Appendix A, the single scattering and Born approximations are used to generate
closed form solutions to a variety of scattering problems. In all cases, the inhomoge-

neous region is assumed to be a single, discrete, isolated anomaly. These solutions are
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useful for gaining insight into the nature of scattering, but they may not be adequate
to study scattering in the earth. An alternative to these analytical solutions is to
solve solve the problem numerically. The advantage of numerical solutions is that
they can be used to study scattering in media which may be too complex to study
with known analytic techniques.

Many numerical techniques exist which can be used to compute synthetic seismo-
grams in laterally heterogeneous media. High frequency cechniques such as raytracing
are valid only when the size of the scatterer is large compared to a wavelength (e.g.,
ka > 10) (Cerveny et al., 1982). Methods based on Kirchoff-Helmholtz integration are
very accurate for sharp interfaces, but these techniques ignore the effects of multiple
scattering and are invalid in smoothly varying media where the size of the scatterer is
similar to that of a wavelength (Scott and Helmberger, 1983). Perturbation methods
consider only scattering of the incident wave, thus cannot be used to study media in
which multiple scattering may be important (Kennett, 1972a; Prange, 1989). Finite
difference modeling overcomes many of these shortcomings and has been used success-
fully in a number of scattering studies (e.g., Flatté and Tappert, 1975; Macaskill and
Ewart, 1984; Frankel and Clayton, 1984; McLaughlin et al., 1985; Frankel and Clay-
ton, 1986; McLaughlin and Anderson, 1987; Dougherty and Stephens, 1988; Toksoz
et al., 1991).

The chief advantage of the finite difference technique is that it is capable of prop-
agating the complete wavefield through an arbitrarily complex model. The technique
is accurate over a wide range of scattering regimes (0.1 < ka < 1000), and all wave
types (direct, reflected, diffracted, and guided modes) are included in the solution.
In addition, seismograms can be calculated at any point in the medium and “snap-
shot” pictures of the displacement field can be generated over the whole extent of
the model. ‘I'he snapshot pictures have proven to be extremely useful as they provide
an excellent opportunity to view both mode conversion and coda generation. The

main disadvantage of finite difference modeling is its computational burden. This has
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proved to be the limiting constraint in extending the technique to three dimensions.

The finite difference scheme used throughout this study is presented in Appendix B.
It is an explicit, second-order scheme in which displacements are propagated on a dis-
crete grid. The material properties of the medium, A, u, and p are allowed to vary
freely as a function of position and are discretized at the same spatial position as the
wavefield. The second-order scheme was chosen because it was easy to implement
and it allowed the two components of the displacement vector to be calculated at the
same spatial position (unlike a staggered scheme, where displacements and stresses
are calculated at different points in space). Also, the non-staggered scheme technique
works well with published free surface and absorbing boundary conditions. The cost
of these simplifications is a loss of accuracy, which we will show can cause observable
errors in the wavefield.

The algorithm to numerically compute the single scattering solution is straight-
forward. First, the incident field is propagated one time step on a finite difference
grid. The Born approximation states that the incident field is unaffected by the
perturbations in the medium, therefore the velocity field for this simulation is the
background field. Next, the source term arising from the interactions between the in-
cident wave and the scatterers is calculated from Equation 3.9. This body force is then
introduced into a second finite difference simulation which has the same background
velocity model (Equation 3.10). The second finite difference simulation is updated
one iteration and the process is repeated. If desired, the background (displacement)
field may also be simultaneously propagated on the second finite difference grid, thus
providing the total (single scattered) field.

It is important to note that the new technique is not meant to replace conventional
finite difference techniques. It is simply a technique which can be used to obtain
- the single scattered solution for any complex velocity model. Therefore, this new
technique and conventional finite difference modeling are complimentary, and for the

case of an isolated point scatterer should converge to the same solution. In the next
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section, we will exploit this, and use the conventional finite difference technique to

assess the accuracy of the numerically derived single scattering solution.

3.2.4 Validation of the Single Scattering Solution

In this section, the scattered field due to a plane P-wave incident on a point diffractor
is calculated using both the single and multiple scattering finite difference techniques.
The incident wave was a Ricker wavelet with a center frequency of 60 Hz and the
scatterer was a point diffractor with a 33% perturbation in . The resulting displace-
ments were recorded by a circular array of receivers centered about the diffractor with
a radius of 100 m (Figure 6).

To limit errors due to inaccuracies in the finite difference technique, the dominant
wavelength of the source was sampled at 60 points per wavelength (PPW). Since
the frequency band of the source extends to three times the center frequency and
the medium was a Poisson solid, the highest frequency shear waves (waves with the
shortest wavelengths) were sampled at a rate of greater than 10 PPW. At these
sampling rates, the maximum errors due to the finite difference technique should be
less than 5%, and at the center frequency errors should be less than 2% (Appendix B).

Figures 7 and 8 show the radiation patterns for P-P and P-S scattering for both
the single and multiple scattering solutions. The radiation patterns were calculated
by first converting the horizontal and vertical components of the displacement field
to radial and transverse motion relative to the position of the scatterer. Then the
traces were enveloped and the maximum displacement on the radial components was
taken to be the P-wave radiation and the maximum displacement on the transverse
component was taken to be the S-wave radiation.

From Figure 7 it is clear that the single scattering solution underestimates the
scattered field in the forward direction, but overestimates the scattered field in the
backward direction. There are two causes for this disagreement. First, the two tech-

niques use different finite difference operators to find the gradient of the perturbation.
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Figure 6: The source-receiver geometry used to validate the numerical single scattering
solution.
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Figure 7: Comparison of the single and multiple scattering solutions for a plane P-wave
incident on a point diffractor (33% variation in ). Shown is the peak amplitude of the
scattered P-wave as a function of angle.
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Figure 8: Comparison of the single and multiple scattering solutions for a plane P-wave
incident on a point diffractor (33% variation in u). Shown is the peak amplitude of the
scattered S-wave as a function of angle.
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The conventional finite difference technique (multiple scattering) uses a more accu-
rate half-step finite difference. Second, errors in the tini*e ditferences arise due to the
sharp gradients in the velocity model. These gradients cause the equivalent sources
in the single scattering solution to be injected into the finite difference simulation
without any spatial smoothing. The lack of smoothing introduced high wavenumbers
into the displacement field, which are known to cause large errors in the solution (Ap-
pendix B). This problem could be minimized either by adopting a staggered finite
difference formulation (Virieux, 1986), or by smoothing the velocity model slightly
(Fornberg, 1987). The same general trends observed in the P-wave radiation are also
vigible in the S-wave radiation (Figure 8).

To isolate the errors caused by sharp gradients in the medium, the previous
experiment was repeated for a slightly smoothed point diffractor. The smoothed
point diffractor was constructed so that the velocity models had the shape of a two-
dimensional Gaussian function (o?=1 grid spacing). The Gaussian shape was cho-
sen because in wavenumber domain, the power spectrum is dominated by the low
wavenumber components. As can be seen in Figures 9 and 10 the eliinination of high
wavenumbers in the model increased the accuracy of the solution. Notice that the
overall shape of the radiation pattern is consistent with the previous point diffractor,
but the amplitude of the scattered field is roughly three times greater. The increased
amplitude is predicted from the analytical solutions, which shows that in the Rayleigh
scattering regime the amplitude of the scattered field is proportional to the size of
the scatterer (Appendix A).

This simple experiment demonstrates that there is suflicient agreement between
the numerically calculated single and multiple scattering solution to warrant the use of
our finite difference technique for calculating the single scattering solution. It was also
shown that the accuracy of the single scattered solution is improved if the technique
is limited to sufficiently smcoth models. It is possible that adopting a staggered finite

difference formulation would further improve the accuracy of the single scattering
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Figure 9: Same as Figure 7, hut for the smoothed point diffractor. Notice the improvement
in the equivalent source solution. The increase in size of the smoothed point diffractor is
manifest in larger peak amplitude values in the scattered field (Appendix A).
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Figute 10: Same as Figure 8, but for the smoothed point diffractor. Notice the improvement
in the equivalent source solution. The increase in size of the smoothed point diffractor is
manifest in larger peak amplitude values in the scattered field (Appendix A).
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solution, since that technique is more accurate in media with sharp discontinuities
(e.g., Virieux, 1986; Stephen, 1988). For these reasons, the single scattering formu-
lation will be used only on fairly smooth random media (such as those characterized
by the Gaussian correlation function). Solutions for more textured random media
(such as those characterized by the exponential or von Karmén correlation functions)
will be postponed until the technique can be implemented using a staggered finite

difference approach.

3.3 Single vs Multiple Scattering: A Case Study

Having established the validity and limitations of the finite difference technique for
calculating the single scattering field, we can now compare the single scattering solu-
tion to the full, multiple scattering solution for two randomly heterogeneous meaia.
Both velocity models (VEL and IMP) were generated from the same random realiza-
tion for Lamé’s parameter A (Figure 11). The realization had Gaussian statistics with
a mean of unity and 10% rms deviation. The spatial distribution of A had a Gaussian
correlation function, where the correlation length a of the medium was equivalent to
the dominant wavelength of the source (29 m).

In one of the random media (VEL), the perturbations in the medium obeyed the

following relationships,

— == =_L 3.15
Ao Ho Po ( )

This combination of parameters produced random variations in both the shear and
compressional wave velocities, but little variation in impedance (Figure 12). As a
result, the majority of the scattering in this model is due to the velocity perturbations.
In Appendix A this situation was referred to as velocity scattering and the scattered
field from an isolated scatterer was shown to dominated by forward scattering.

In the second model (IMP) the relationships between Lamé’s parameters and
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Figure 11: The realization of Lamé’s parameter A used to construct the two random media
(VEL and IMP). The realization has Gaussian statistics, 10% rms deviation in A and is
characterized by a Gaussian correlation function with a correlation length of 29 m. The
white dots are receiver positions.
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Figure 12: The P-wave and S-wave velocities, elastic moduli, density and P-wave (ap) and
S-wave (3p) impedances for the velocity scattering model.
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density are given by,

bA R (3.16)

A medium with this combination of parameters has no velocity variations, only
impedance variations (Figure 13). In Appendix A it was shown that in these me-
dia P to P scattering is strongest in the backward direction. In addition, it was also
shown that the magnitude of the backscattered field is inversely related to the size
of the scattering body. Therefore, in th's medium scattering should be strongest for
low frequency waves.

In both media, the single scattering solution was obtained using the finite dif-
ference approach outlined above, and the multiple scattering solution was generated
using a conventional finite difference formulation (Appendix B). The source was a
plane P-wave which was introduced near the top of the grid. The source time func-
tion was a Ricker wavelet centered at 60 Hz, and the area around the source region
was assumed to be homogeneous. In addition, the transition between the homoge-
neous and heterogeneous regions was smoothed to prevent reflections. To prevent
contamination from the sides of the finite difference grid, the models were assumed
to be horizontally periodic and absorbing boundary conditions were used on the top
and bottom of the grids (Clayton and Engquist, 1977). Both models were 256 nodes
wide and 2100 nodes long. The spatial grid spacing was dz = 0.5m (60 points per
wavelength (PPW) at 60 Hz). This resulted in a model which was 0.128 km (=4.5
wavelengths) x 1.05 km (=40 wavelengths).

To compare the single and multiple scattering solutions, four separate simulations
were made. The single scattering solution in the medium with velocity variations
is denoted by SS_VEL, while that in the medium with only impedance variations is
denoted by SS_IMP. Similarly, the multiple scattering solutions are labeled MS_.VEL
and MS_IMP. Synthetic seismograms (vertical component of the displacement vector)
from the four simulations are shown in Figures 14 - 17. The individual seismograms

within each plot have constant gain and since scattering in the impedance scattering
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Figure 13: The P-wave and S-wave velocities, elastic moduli, density and P-wave (ap) and
S-wave (3p) impedances for the impedance scattering model.
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Figure 14: Synthetic seismograms from the multiple scattering solution in the impedance
scattering medium. The distance between traces is 10% of the peak amplitude in the
source. Scattering is small and scems to come from only relatively a few isolated scat-

terers.
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Figure 15: Synthetic seismograms from the single scattering solution in the impedance scat-
tering medium. The scale is the same as Figure 14. Notice the similarity to the multiple
scattering solution in the later arrivals, but the difference near the first arrival.
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Figure 16: Synthetic seismograms from the multiple scattering solution in the velocity scat-
tering medium. The scale is twice that in the previous figures to reflect the increase in
scattering in the velocity scattering medium. Notice the lack of coherent arrivals in the
coda and variations in amplitude and travel time in the first arrival.
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Figure 17: Synthetic seismograms from the single scattering solution in the velocity scattering
medium. The scale is the same as that in Figure 16. Unlike the impedance scattering

solutions, the single and multiple scattering solutions in the velocity scattering medium
are quite different.
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model was less than that in the velocity scattering nodel, seismograms from the
impedance scattering model are shown at twice the scale. The detectable up-going
wave in the seismograms from the impedance scattering modcls is a reflect from the
bottom of the finite difference grid.

In the multiple scattering solution for the impedance scattering medium (MS_IMP),
the most obvious feature is the relative lack of scattering. The incident wave travels
through the medium with only minor fluctuations in amplitude and no travel time
fluctuations (Figure 14). The amount of energy scattered from the incident wave is
small and seems to emanate from only a few points in the medium. The scattered
arrivals undergo little subsequent scattering and therefore appear as coherent arrivals
across many neighboring receivers. Both from the particle motion (Figure 18) and
from the moveout across the array, it is clear that the majority of the backscattered
energy is P-wave energy.

The low magnitude of the scattered field is a consequence of the material param-
eters and the relatively large size and smoothness of the scatterers. The relationship
between the perturbations favors backward scattering (Equation 3.16), but the size of
the scatterers is large enough to effectively reduce backward scattering (Appendix A).
With these two factors in mind, it is clear that low frequencies should dominate the
scattered field. A plot of the power i the scattered field (where the scattered field
is defined as the total multiple scattered field less the same incident wave travel-
ing through a similar homogeneous medium) shows this to be the case (Figure 19a).
When normalized to the power contained in the source pulse, this observation is made
even more evident (Figure 19b).

Seismograms from the single scattering solution (Figure 15) look much like those
from the multiple scattering, except for the concentration of energy around the first
arrival. The excess energy is due to the accumulation of errors in the scattered field.
These errors only affect the solution immediately following the incident wave and

result because errors in the finite difference operator add in phase in the forward
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direction. It is important to stress however that these errors in no way affect the
accuracy of the backscattered waves. Although the gain used in Figure 15 make the
errors in the single scattering solution look extremely large, it should also be noted
that even at the furthest offsets the amplitude of these errors are less than 10% of
the amplitude of the incident wave. The latter part of the scattered field is generally
overestimated under the Born approximation and the disparity between the single
and multiple scattering solutions should be expected to increase with propagaticn
distance. Enlarging and comparing some of the traces in Figures 14 and 15, it can be
seen that except for the region around the first arrival, the two solutions agree very
well (Figure 20). As expected, at far offsets the size of the scattered field is generally
overestimated, but the general character of the late arrivals is still remarkably similar.

When the dominant form of scattering is velocity scattering, the difference be-
tween the multiple scattering and single scatter solutions is more obvious. Unlike the
previous example, the multiple scattering solution to the velocity scattering model
can contain significant travel time and amplitude variations in the first arrival, as
well as significant amounts of energy late in the seismogram (Figure 16). Note the
lack of coherent arrivals in the coda, as well as the frequency content of the coda.
Compared to the impedance scattering medium, the coda has a wider frequency range
(Figure 21), and it appears from these results that the maximum scattering in this
medium occurs near the center frequency. These observations are consistent with
earlier observations in both acoustic and elastic media (e.g., Chernov, 1960; Frankel
and Clayton, 1986).

The most obvious difference between the single and multiple scattering solutions
in the velocity scattering medium is the lack of late arrivals in the single scattering
solution. This effect is most noticeable at near offsets (Figure 23). Also notice that
in the single scattering solution, several scattered waves form coherent arrivals across
neighboring receivers. This occurs because there is no secondary scattering of these

waves. FK analysis of the coda reveals that most of the early arrivals result from
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Impedance Scattering Model

T~-omy

Figure 20: An overlay of the single and multiple scattering solutions from the impedance
scattering medium show that the later arrivals agree very well. The disagreement near
the first arrival i3 a consequence of the Born approximation.
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Figure 21: (Top) The power in the multiple scattered field from the velocity scattering model
compared to that in the source pulse. (Bottom) The ratio of the power in the scattered
wave to that in the source pulse. In this medium, there is significant power in the coda

at all frequencies.
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P to P scattering, while the later arrivals were dominated by P to S scattering.
These observations were confirmed by particle motion analysis (Figure 22). Another
important difference between the two solutions is the lack of travel time variations in
the single scattering solution. This occurs because in the single scattering solution,
the incident wave travels in the homogeneous background medium.

As was true for the previous random medium, the magnitude of the scattered wave
increases with propagation distance in the single scattering solution, but decreases in
the multiple scattering solution. Since the majority of the scattering in this medium
is forward directed (Appendix A), there should be less frequency dependence in the
coda. This is confirmed by Figure 21 which shows that there is little frequency
dependence in the coda, except for possibly a slight peak near the center frequency.
Plotting several of the seismograms in Figures 16 and 17 side by side shows that there
is little agreement between the two solutions and highlights the lack of coda in the
single scattering solution (Figure 17).

Power in the coda of the single scattering solution is significantly different than
that in the multiple scattering solution (Figure 24a). Although there is power at low
frequencies, the dominant feature in the data is the linear increase in power with
frequency. When normalized to the source spectrum, it would appear that all of the
high frequency energy in the source has been redistributed to the coda (Figure 24b).
This is not a real effect, but an error due to the Born approximation. Beydoun
and Tarantola (1988) found similar results for an acoustic medium and were able
to show that the errors in amplitude of the transmitted wave increase linearly as a
function of wL, where w is the angular frequency, and L is the propagation distance.
Although the presentation here is based on forward modeling, the results are also
consistent with Snieder (1990) who showed that inversion techniques based on the
Born approximation are only capable of reconstructing the low wavenumber parts
of the model. This occurs because upon inverse (Born) modeling, the wavefield is

damped by a factor which is inversely proportional to frequency (or wavenumber).
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Figure 22: Hodogram (particle motion plots) from a receiver located at the center of the
velocity scattering model. The hodogram is constructed from the multiple scattering
solution. It was found from these hodograms that the early coda is dominated by P to
P scattering and the later coda by P to S scattering.
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Figure 23: Seismograms from the multiple (top) and single (bottom) scattering solutions
plotted side by side. Notice the lack of late arrivals at the near offsets in the single
scattering solution. At far offsets, the single scattered field is dominated by P-waves near
the first arrival and S-waves later in the coda.
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Figure 24: (Top) The power in the single scattered field from the velocity scattering model
compared to that in the source pulse. (Bottom) The ratio of the power in the scattered
wave to that in the source pulse. The power at high frequencies is largely due to errors
introduced by the Born approximation.
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3.3.1 Attenuation and Coda

One way to quantify the loss of energy due to scattering is through the dimensionless
attenuation parameter (). A variety of different techniques have been introduced to
measure Q. One formulation relates the log decrement in amplitude of the transmitted

wave to the propagation distance,
A(w, ) = Age—w%/(2vQ4) (3.17)

where the incident wave is assumed to be a plane wave, Ay is the initial amplitude of
the transmitted pulse, w is the angular frequency, z is distance, and v is velocity. This
relation has been used to quantify the attenuationu due to scattering (i.e. Q = @Q,)
(e.g., Frankel and Clayton, 1986; Toksoz et al., 1988), as well as to describe the loss
due to intrinsic attenuation (i.e. Q = Q;) (e.g., Aki and Richards, 1980). As a result,
this Q is often termed the scattering or transmission Q. The fact both processes can
be explained by the same equation suggesting that it might be difficult to discriminate
between attenuation due to scattering and intrinsic attenuation. This lead Aki (1980)
to combine both type of attenuation when he studied scattering and attenuation of
shear waves in the lithosphere.

Other measures of Q) also exist. Aki (1969) suggested that seismic coda waves from
local earthquakes are composed primarily of backscattered waves. He speculated the
backscatter was caused by small-scale variations in the Earth’s crust. Due to the
large number and random distribution of these scatterers, he suggested treating the
heterogeneities statistically. Aki and Chouet (1975) expanded on Aki’s original work

and presented a single scattering model in which the coda amplitude A(w,t) is given
by

1/2
w ) p-oe—wt/(2Qc), (3.18)

Vs

A(w,t) x (
where v is velocity, a is a constant which depends on the geometrical spreading, Q,

is the “scattering Q" and Q. is the “coda Q”. The term under the radical is often

referred to as the turbidity of the medium and is proportional to the energy scattered
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per unit distance traveled. Aki (1980) showed that in a medium without intrinsic
attenuation the scattering @) is equivalent to the coda . Equation 3.18 was derived
for either a point or line source, and thus not directly applicable for the geometry
studied here.

Equations 3.18 and 3.17 represent two different measures for describing the rate
energy is scattered by the medium. Q). is derived from the coda of the seismogram,
while @, is derived from the first arrival. Hudson and Heritage (1981) suggest that
if the scattering region is strong, the Born approximation will be violated after some
length of time because scattering from far away will be diminished by multiple scat-
tering. They stress that the early scattering process is dominated by single scattering,
but as the effective scattering region (i.e. the region between the source point and
the incident wavefront ) increases multiple scattering should becomes more important.
This suggests that the rate of coda decay will be different between the two solutions
at sufficiently long times.

To calculate the scattering @, 955 seismograms from each of multiple scattering
models were first bandpass filtered (5 Hz) around a series of frequencies (5, 15,
25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165 and 175 Hz), then
enveloped. The natural log of the maximum value of the envelope was then plotted
against distance and fit with a straight line (Figure 25). The slope of the line was
then used to calculate @, as a function of frequency,

_ —wz
" [2aIn[A(w,z)/A0]]
This is the same procedure used by Frankel and Clayton (1986), except no correction

Qs (3.19)

for geometric spreading was necessary since the source was a plane wave. For all
frequencies, the fall-off was roughly linear with distance. This suggests that the
attenuation model presented in Equation 3.17 is capable of accurately explaining
attenuation due to scattering in these media. Since this method uses the decrease in
amplitude of the transmitted wave to calculate @, it is not appropriate for the single

scattering solutions, in which the amplitude of the total field increases with propa-
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Figure 25: Logarithm of the peak amplitude after the data were bandpass filtered (60+5Hz),
and enveloped. These are some of the data used to compute @, for the impedance (top)

and velocity (bottom) multiple scattering media.
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gation distance.

The calculated attenuation curves for the two models are shown in Figure 26.
As expected, attenuation is greatest at low frequencies in the impedance scattering
medium. At higher frequencies the attenuation curve falls off quickly, = (ka)=*. The
attenuation curve for the velocity scattering medium was clearly different. Atten-
uation increases with frequency until ka =~ 1, then at higher frequencies decreases
slowly. This bebavior has been observed in both elastic (Frankel and Clayton, 1986)
and acoustic (Chernov, 1960) media which are characterized by the Gaussian correla-
tion function. The attenuation curves confirm what was evident on the seismogra- s;
the velocity scattering medium scatters more energy from the incident wave than t.
impedance scattering medium. Since the medium is assumed to be perfectly elastic,
energy scattered from the primary wave must eventually be recorded as coda by an-
other receiver. At low frequencies (25 Hz), the two media show comparable amounts
of coda and similar coda decay rates (Figure 27). At higher frequencies, the velocity
scattering medium has more coda, but still has roughly the same coda decay rate,
indicating this coda decay rates by themselves cannot be used to distinguish between
velocity and impedance scattering (Figures 28 - 29).

As was mentioned earlier, another measure of attenuation is the rate at which the
code decays. Figures 27 - 29 show the rate of coda decay in the single and multiple
scattering solutions for both random media. The data used in these figures are taken
from the 40 second window shown in Figures 14 - 17. The raw time series was first
bandpass filtered, enveloped, and then plotted in semi-log format. Several interesting
features emerge from the data. At low frequencies (25 Hz), the coda in the impedance
scattering medium is nearly flat and there is little difference between the single and
multiple solutions (Figure 27). The agreement is not as good in the velocity scattering
medium, but the rate of coda decay is still consistent between the two solutions. Near
the center frequency (Figure 28), there is more slope to the coda curves and in both

media the two solutions are no longer similar. The same trends persist at the
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Figure 27: Coda decay rates at 25 K for the four models investigated here. Data were taken
from the center of the models (Figures 14~ 17) and were windowed (.4-.8 sec), enveloped
and plotted on semi-log axes.

73




65 Hz

10° T
. L ’ i T T T T T T T T
[ —MS_IMPGSHZVE

i — -SS_IMP 65 Hz
— — -MS_VEL 65 HZ, 1

10! |

In [ Amplitde |

102

" 0.40 0.50 0.60 0.70 | 0.80

Figure 28: Same as Figure 27, but bandpass filtered around 65 Hz. At 65 Hz, the single and

multjple scattering solutions begin to diverge.

74




In { Amplitudc |

Figure 29: Same as Figure 28, but bandpass filtered around 105 Hz. Note the rate of decay
in the single scattering solutions is faster than that in the multiple scattering solutions.
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highest frequency (Figure 29), where the single scattering solution clearly decays
faster than the multiple scattering solution. This is the most familiar distinction
between the single and multiple scattering solutions. Reasoning along these lines,
one must conclude that any attempt to use single scattering theory to estimate coda
Q in a medium with significant multiple scattering will tend to underestimate the

true @ of the medium.

3.4 Overview of the Scattéring Process

In scattering studies, the divergence and curl of the displacement field are often calcu-
lated as a means of estimating the relative amounts of P-waves and S-waves. Strictly
speaking this is only valid when the medium is homogeneous. If the medium contains
perturbations, the gradient of the perturbations also contribute to the divergence and
curl of the wavefield and as a result, the two modes (P-waves and S-waves) are not
completely decoupled. With these limitations in mind, the divergence and curl of the
displacement field are shown for the four simulations discussed above (Figures 30 -
33).

The divergence snapshots from the impedance scattering model show a clear dif-
ference between the multiple (Figure 30) and single (Figure 31) scattering solutions.
Since there are no velocity variations, travel time variations in the direct P-wave are
small for the multiple scattering solution. This is contrary to the single scattering
solution, which contains both amplitude and travel time variations. These varia-
tions are due to transmission errors inherent in the Born approximation (Beydoun
and Tarantola, 1988) and are even more pronounced in the velocity scattering model
(Figure 33). The agreement between the single and multiple scattering solutions is
much better in the curl snapshots (Figures 30 and 31). Here, the snapshots are nearly
identical.

The wider range of frequencies in the scattered energy is clearly visible in the
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Figure 30: Snapshot picture of the divergence and curl of the displacement field at t = .52 s.
Shown here is the multiple scattering solution from the impedance scattering medium.
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Figure 31: Same as Figure 30, but calculated using the single scattering technique.
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Figure 32: Snapshot picture of the divergence and curl of the displacement field at ¢t = 52 s.
Shown here is the multiple scattering solution from the velocity scattering medium.
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Figure 33: Same as Figure 32, but calculated using the single scattering technique.
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results from the velocity scattering models (Figures 32 and 33). Note the complete
loss of a coherent direct arrival in the multiple scattering solution. Also interesting, is
the ratio in the peak divergence to peak curl. Note that unlike the previous example,
the curl snapshot is quiescent near the first arrival and and strongest late in the coda.
This implies that multiple scattering may be important in the generation of S-waves.

The divergence snapshot from the velocity scattering medium (Figure 33) is very
similar to that from the impedance scattering medium (Figure 31). The cause of
this seems to be the accumulation of errors in the Born approximation. The curl of
the single scattered field shows the importance of multiple scattering in this medium.
Unlike the snapshot from the multiple scattering solution, there is evidence of signif-
icant P to S wave scattering near the first arrival. These arrivals are clearly visible

across the model, were as in the multiple scattering solution they are not.

3.5 FK Analysis

One of the advantages of the finite difference technique is that seismograms can be
calculated for the divergence and curl, as well as displacements. We use that ability in
this section to Fourier transform those data and form frequency-wavenumber (F-K)
plots of the the divergence (dominated by P-waves) and curl (dominated by S-waves).
F-K analysis is a useful technique to iliustrate the magnitude and direction of the
scattered field.

The time window used for these analysis was the whole seismogram. Therefore,
in the impedance scattering media the dominant feature in the F-K plots of the
divergence is the direct P-wave (Figures 34 and 35). The P-wave in the multiple
scattering solution shows no variation in propagation direction, while in the single
scattering solution the P-wave is less well constrained. The S-wave plots show the
S-wave is strongly side scattered and in the single scattering solution there is some

backscattering of S-waves. Except for this backscattering, the F-K contours agree
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Figure 34: F-K plot of the divergence and curl of the (multiple scattering) wavefield in the
impedance scattering medium shows clear separation between the two phases.
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Figure 35: F-K plot of the divergence and curl of the (single scattering) wavefield in the
impedance scattering medium shows clear separation between the two phases.
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well for the S-waves.

Data from the velocity scattering media show that in the multiple scattering so-
lution, both P and S waves are scattered over a broader range of angles (Figure 34).
This is consistent with earlier findings that multiple scattering is important in this
medium. The single scattering solution in this medium lacks the wide range of scat-
tering angles observed in the multiple scattering solution (Figure 35). It is also inter-
esting ta note that the F-K plots for both the divergence and curl are nearly identical
to those for the single scattering solution in the impedance scattering medium. The
only difference is a slight forward shift in the S-wave energy and slightly more forward

scattering of P-waves.

3.6 Conclusions

In this chapter, a new technique was developed which is capable of calculating the
single scattering solution in an arbitrarily complex medium. First, the technique
was validated by comparing the single and multiple scattering solutions for a simple
isolated: point scatterer. In the limit of an infinitely small scatterer, the two solutions
should converge. The results obtained from this test showed some disagreement, but
it appears. that these errors are due to.the choice of finite difference used: here. Had
a staggered grid formulation been. used, the errors would most likely have been much
smaller.

The bulk of the chapter was concerned with. comparing the single and multiple
scattering solutions for. two randomly heterogeneous media. Both media were char-
acterized by a Gaussian correlation function and had 10% rms deviation in A, y and-
p. In one of the models, the perturbations were chosen so that there were no ve-
locity anomalies, only impedance anomalies. In the other, there were no impedance
anomalies, only velocity anomalies. The former was shown to be dominated by low

frequency backscattering, while in the latter scattering was forward directed over a
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wide frequency band.

In the impedance scattering medium, the shape of the single and multiple scat-
tering solutions were in good agreement away from the direct arrival. In general, the
magnitude of the singlely scattered arrivals was larger than the multiplely scatter
scattered arrivals. This behavior can be directly traced to the fact that under the
Born approximation, the direct arrival travels through the medium unaffected by the
perturbations. The agreement between the two solutions in this medium suggests
that single scattering theories should work well.

Agreement between the two solutions was much worse in the velocity scattering
medium. The discrepancy arose because multiple scattering was important in this
medium. This was confirmed by both the F-K analysis and the snapshot pictures of
the divergence and curl. In this medium there were enough scatterers that significant
amounts of energy was scattered from the incident wave. This causes attenuation
due to scattering, and in the multiple scattering solutions diminishes the amplitude
of the incident wave. This is not accounted for under the Born approximation and
caused an accumulation of error which was proportional to the propagation length,
the strength of the perturbations, and frequency.

Also important in the velocity scattering medium was the lack of late arrivals
at near offsets in the single scattering solution. (Figure 23) and is indicative of the
importance of multiple scattering in this medium. The lack of secondary scattering
also tends to increase the coherency of scattered arrivals across neighboring receivers.

This effect may be important and deserves further quantification.
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Figure 36: F-K plot of the divergence and curl of the (multiple scattering) wavefield in the
velocity scattering medium.
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Figure 37: F-K plot of the divergence and curl of the (single scattering) wavefield in the
velocity scattering medium. The importance of multiple scattering is reflected in the

lesser range of wavenumbers present in the wavefield.
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Chapter 4

Elastic Wave Scattering Below
NORSAR

4.1 Introduction

Seismic data recorded at NORSAR show variations in amplitude and travel time
which cannot be explained by a simple layered model. The magnitude and spatial
variability of these features suggests that they are created by lateral heterogeneities
in the crust and upper mantle. There is currently much debate as to what causes
these variations, but they are likely to be due at least in part to changes in lithology,
fracture density, fracture orientation, or temperature. Even with our limited under-
standing of the subsurface, it would seem likely that those anomalies in the near
surface would tend to be dominated by ongoing geologic processes, and therefore re-
gionally dependent. Similarly, variations in the lower crust may also reflect current
geophysical processes, but in addition might contain remnant information from past
geologic events. The motivation then is to understand the variations in crustal and
lithospheric velocities so that we might be able to infer information concerning the
geology of the region.

To accomplish this, we use full waveform data collected from the NORSAR and
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NORESS arrays and forward modeling to propose a lithospheric model which is consis-
tent with both the observed seismic data and current tectonic theories in Fennoscan-
dia. We approach the problem from a deterministic point of view in that we in-
vestigate a series of specific realizations with known statistical properties. In order
to construct a reasonable starting model, finite difference simulations are performed
using several of the random lithospheric models proposed in the scattering literature.
These simulations served to acquaint us with the sensitivity of the results to differ-
ent models and to identify the influence of different types of heterogeneities. Once
the starting model was chosen, a finite difference simulation was performed and the
resulting seismograms compared to field data from the NORSAR and NORESS ar-
rays. After examining the results, the model was updated and the process repeated.
Throughout the process, each modification of the model was undertaken with full
consideration of the known tectonic features of region.

The methodology pursued here is different than previous attempts to specify the
lithospheric model below NORSAR. Early studies used Chernov (1960) scattering
theory to relate the amplitude and phase fluctuations in the wavefield to slowness
fluctuations in the medium (e.g., Aki, 1973; Berteussen et al., 1975a). These studies
were shown to be accurate only for low frequencies (f < 0.6 Hz) (Aki, 1973) and
completely neglected multiple scattering, as well as mode conversion. In addition,
they required that the autocorrelation function of the medium is known a priori and
easily manipulated mathematically. Flatté and Wu (1988) devised a less restrictive
formalism which over came some of these limitations, though it too neglected mode
conversion and multiple scattering and used only the arrival and log amplitude in-
formation from the recorded wavefield. In this chapter, we continue the work of
Frankel and Clayton (1986) and use the finite difference technique to model elastic
wave propagation in the crust. We then extract several important parameters from
the synthetic data and compare these values to similar parameters taken from nu-

clear explosions recorded at NORSAR and NORESS. The field data then serves to
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constrain subsequent finite difference models. The most important parameter used
in this study is the coherency statistic. It is advantageous because it represents the
average coherency (or similarity) of the wavefield and is therefore directly tied to
ensemble average. The advantage of this study over earlier studies is that we use
a realistic background earth model (to insure the correct wavelength scaling with
depth), we consider the full elastic solution (to account for scattering due to mode
conversion and multiple scattering) and we use the full waveform to compute the
coherency statistics (as opposed to ensemble averages of the travel time and log am-

plitude measurements).

4.2 Scattering Beneath NORSAR

NORSAR is a large-aperture seismic array (=~ 125 km in diameter), located in Norway,
which was designed to monitor teleseismic events. The array consists of 22 subarrays,
each having as many as 6 short-period vertical component seismometers (Figure 38).
In this study, we used only data from the 01A, 01B, 02B, 03C, 04C and 06C sub-
arrays, which had a minimum and maximum receiver separation of approximately
3 km and 70 km respectively. This range of distances should allow us to identify the
moderate wavelength velocity variations in the lithosphere. In addition, we also used
short-period data from the NORESS array. The NORESS array is centered about the
center element of the 06C subarray of NORSAR, but is a completely separate array
in terms of its seismometers, electronics and transmission faciliiies. NORESS consists
of 25 concentrically located receivers all within a 3 km circle (Figure 39). These data
should help us to constrain the more rapidly varying fluctuations in the velocity field.
NORESS was designed as an experimental array for regional monitoring. Like NOR-
SAR, its receivers are deployed in vaults on piers set directly in crystalline bedrock,
thus generate generate good quality data. It should be noted, however, that the data

from NORESS generally have higher signal to noise ratios and contain more dynamic
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Figure 38: The NORSAR arrays. Only data from the 01A, 01B, 02B, 03C, 04C and 06C
subarrays were used.
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Figure 39: The NORESS array is located within the 06C subarray of NORSAR (Figure 38).
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range.

The events investigated here are recordings from underground nuclear explosions
at the Semipalatinsk test site (USSR) (49.93° N, 78.82° E). The larger of the two blasts
(mp = 6.1) occurred on December 4, 1987 and produced exceptionally clean recordings
on the NORESS stations (Figure 40). Due to the limited dynamic range at NORSAR,
this event was clipped on many of those stations. The smaller event (m;, = 5.1) which
occurred on July 25, 1985 was well recorded at NORSAR (Figure 41). Data from
nuclear blasts are often used to study scattering because the source function for these
events is simple and well understood. In particular, data from the Semipalatinsk
test area was preferred for this study because the source area is far enough from
Norway (A = 38°~ 4200 km) that the primary P-wave was nearly vertically incident
(incidence angle =~ 76°), and the curvature of the wavefront was small. These two

factors allow the incident wave to be approximated by a plane wave.

4.2.1 Tectonic and Geophysical Setting
Large-scale Structure near NORSAR

The entire region surrounding NORSAR is part of the stable Baltic Shield, which
is characterized by the predominance of Precambrian rocks (Sellevoll and Warrick,
1971). The Olso graben, which is located slightly southeast of NORSAR, separates
the Precambrian rocks into two parts. North of the graben, Precambrian rocks of
southern Norway dip below the highly metamorphosed rocks of the Caledonian oro-
genic zone (Figure 42). The Scandinavian Caledonides consist of geosynclinal sedi-
mentary and volcanic rock. An increasing degree of metamorphism with granitization
and intrusions are evident from the Oslo graben to the northwest. It is in this region
that the deep-seated orogenic processes have been especially active. This has resulted
in the fusion of previous Precambrian basement and Cambrian-Silurian sedimentary
rocks.

Much of the geology described above was mapped using seismic techniques. Knopoff
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Figure 41: NORSAR data (plotted at constant scale) from a nuclear explosion in Eastern
Kazakhstan, USSR (July 25, 1985).
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(1983) and Tanimoto and Anderson (1985) used surface wave dispersion to mapped
the large-scale velocity variations in the Fennoscandian lithosphere. The lateral extent
of these features are too large to be resolved by our study and any effects would
appear as constant travel time and amplitude shifts over our whole study area. For
this reason, we look to more detailed studies which might identify features smaller
than the width of our array (=~ 50 km). Tomographic imaging of the subsurface
is capable of resolving features having dimensions on the order of 10 km and has
been used extensively in Fennoscandia (e.g., Thomson and Gubbins, 1982; Husebye
et al., 1986). This resolution has been sufficient to identify the seismic signature of
most of the major tectonic provinces in southern Scandinavia, but smaller features
such as the Oslo Rift have escaped detection. In an attempt to increase resolution,
several reflection and refraction surveys have been performed near NORSAR (e.g.,
Sellevoll and Warrick, 1971; Mykkeltveit, 1980; Cassell et al., 1983). While most
of these studies have concentrated on mapping the depth of the Moho and other
discontinuities, several have suggested the existence of an alternating series of positive
and negative velocity anomalies below the Moho. These studies suggest that the

velocity anomalies are thin tabular features which have a lateral extent not greater

than 100 km.

4.3 Scattering at NORSAR

4.3.1 Travel time and Amplitude Variations

The techniques described above are oriented towards identifying the long-wavelength
variations in the velocity field. Synthetic data generated from these models may fit the
average travel times observed at large aperture arrays, such as NORSAR, but cannot
explain all the variations seen on the field data. The degree of mismatch is greater
than expected from measurement errors (Berteussen, 1974) and usually attributed

to heterogeneous structures in the Earth’s crust and/or mantle. The purpose of this
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section is to display the nature of these variations so that they can be compared to
similar quantities measured from the synthetic modeis discussed below.

The data collected at NORSAR contained several dead traces (Figure 41) and
significant amounts of low frequency noise (Figure 43). The low frequency noise
was removed by highpass filtering above 1 Hz and the dead traces were removed
before subsequent processing (Figure 44). After the preprocessing step, the data
were bandpass filtered around 2 Hz, the peak frequency of the P-wave (Figure 43),
so that reliable arrival times could be measured using a simple first break algarithm.
These data were then fit (least squares criterion) with a plane, leaving the residuals as
the travel time fluctuations. The same procedure was used to calculate the travel time
fluctuations in the NORESS data, although the preprocessing step was unnecessary
since that data contained very little background noise and no dead traces (Figure 45).

The linear regressions on the two datasets were consistent and yielded a backaz-
imuth direction ~8 north of east. Projecting the travel time residuals for the NOR-
SAR data along the a line parallel to that direction (Figure 46) shows the residuals
are generally on the order of .1 s and distributed evenly about zero. The total rms
travel time variation observed for these data was about 0.06 s, considerably less than
0.2 s figure usually observed at large seismic arrays (e.g., Berteussen et al., 1975a;
Powell and Meltzer, 1984). The reason for the discrepancy might be related to the
fact that only data from six closely spaced subarrays was used in the calculations.
Similarly, the travel time residuals for the NORESS data were calculated, but the
rms variation in travel time was found to be less than the temporal sampling rate
(1/40th s), which implies these variations are insignificant.

For both sets of data, the variations in log amplitude are considerably greater
than the travel time variations. Log amplitude fluctuations in the NORSAR data
showed as much as 0.75 rins variation across the array (Figure 47). The data show a
definite linear trend: amplitudes are highest in the east. If these variations are due to

changes in local surface geology, the effects can be adequately modeled by the finite
difference modeling performed here. However, it is also possible that the dip of
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Figure 43: Average power spectra of the background noise (10 s preceding the first arrival),
unfiltered traces, and bandpass filtered (1 - 10 Hz) traces at NORSAR.
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Figure 44: NORSAR data (plotted at constant scale) from a nuclear explosion in Eastern
Kazakhstan, USSR (July 25, 1983). Traces have been bandpass filtered (1-10 Hz) and

dead traces have been removed. These are the NORSAR data used in all subsequent
calculations.
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Figure 46: Travel time residuals projected along the great circle path between the source
and the center of the NORSAR array. The rms deviation for these data was ~0.07 s.
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Figure 47: Fluctuations in log amplitude projected along the great circle path between the
source and the center of the NORSAR array. The rms deviation for these data was 0.75
before removing the linear trend and 0.35 after removing the trend.
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the Moho is also a factor. Figure 42 suggests that the depth to the Moho decreases
steadily to the east, consistent with the trend in increased amplitude. Since all the
modeling done in this study assumed a flat Moho, it is tempting to remove the linear
trend before calculating the rms variation in amplitude. When this is done, the rms
variation drops from 0.75 to 0.35. Similar findings were made for data from NORESS,
but due to the lesser spatial extent of the array the rms variation in log amplitude
was only 0.06 (Figure 48). The proximity of the receivers at NORESS allowed us
to contour the amplitude fluctuations (Figure 49), something which was not possible
with the NORSAR data. The contours are generally smooth, which is due in part
to the contouring algorithm, but they also display variations as small as 200 m.
The existence of these variations over distances as small as the width of NORESS is
strong evidence for including a highly heterogeneous layer in the very near surface.
In addition, by examining these features in the data, we have established one of
the criteria which will help to constrain the lithospheric models which are presented
below. Removal of the linear trend had little effect on the coherency calculations since
that statistic is known to be affected only weakly by amplitude variations (Dainty
and Toksoéz, 1990).

4.3.2 Transverse Coherency (NORSAR)

For densely spaced receivers, the spatial trends in the amplitude and travel time may
provide information about the scale-lengths of the scatterers. If the receiver coverage
is too sparse, simple techniques such as contouring may be of little value. One measure
which has proven useful in these circumstances is the transverse coherency function
(Harichandran and Vanmarcke, 1984; Dainty and Toksoz, 1990; Menke et al., 1990).
The coherency statistic has been used in both strong ground motion (Harichandran
and Vanmarcke, 1984) and regional (Toksoz et al., 1990; Dainty and Toksoéz, 1990)
studies and is a frequency domain equivalent of the correlation function used by

Bungum et al. (1985) and Ingate et al. (1985). The coherency function is useful in
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Figure 48: Fluctuations in log amplitude projected along the great circle path between the
source and the center of the NORESS array. The rms deviation for these data was very
small (0.06), even before removing the linear trend.
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Figure 49: Contour of peak amplitude values observed at NORESS.
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practice because it provides a dimensionless measure of similarity between two traces.

Before calculating the coherency, Jenkins and Watts (1968) and Harichandran and
Vanmarcke (1984) suggest removing any gross travel time delays in the data. In the
synthetic examples presented here, no time shifting was necessary since the source
was normally incident on the receiver array. The field data was time shifted in the
same manner as described above. After correcting for the normal moveout (which
roughly aligns the traces), the seismograms were windowed and the crosscorrelation
and autocorrelation between each receiver pair was calculated. These correlations
were then further windowed with a Bartlett window. The purpose of the Bartlett
window was to provide frequency smoothing of the correlation spectra and minimize
bias at low coherencies (Jenkins and Watts, 1968). The smoothing makes the spectral
estimates more reliable, but diminishes resolution. This problem is discussed in detail
by Harichandran and Vanmarcke (1984). They show that to obtain optimal results,
the width of the Bartlett window should be approximately 1/5 the width of the
original data window. The coherency between each receiver pair can be calculated by

Sii(z,w)
Clew)= 72 4.1
() [Sii(w)S;(w)] (4.1)

where z = |z, — z | is the spatial separation between receivers i and j, w is angular

frequency, S;; is the crosscorrelation spectrum between seismograms and S; and S;;
are the autocorrelation spectra.

Since the coherency values calculated from seismic data depend on the data win-
dow, they are only estimates of the true coherency. Better estimates can be obtained
by averaging over the ensemble. This is accomplished by grouping the calculated
coherencies into bins of approximately equal receiver distance and averaging. The
magnitude of the coherency (here after called simply the coherency) is limited to the
range between zero and one and the distribution of values is more log-normal than
normal (Jenkins and Watts, 1968; Dainty and Toksoz, 1990). Accordingly, uncertain-
ties in the coherency are found using the Fisher Z-transform. Errors associated with

phase of the coherency function are not limited to any fixed range of values and seem
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to be better described by the Gaussian distribution. Therefore, uncertainties in the

phase values are estimated using the Gaussian normal distribution.

Coherency of Waveforms at NORSAR and NORESS

The coherency is one of the measures we will use to evaluate the similarity of the
variations in the synthetic data to those in the field data. It is important then that
we outline the key features in the coherency function which is observed at NORSAR
and NORESS. Beginning with the NORSAR data, the coherency was calculated over
a 4 s window which began = 1 s before the onset of the direct arrival. The stacked
(25 fold) power spectrum for this time window is shown in Figure 43. Note the strong
peak at 2 Hz and the numerous notches in the spectrum. The lack of power at low
frequencies is due to the high-pass filtering which was done prior to processing. The
other depressions in the spectrum might be due to interference effects which arise
because of scattering. Although the windowing of the correlation spectra helped to
minimize the effects of these features, some care was necessary in order to calculate
coherencies only for frequencies with good signal to noise ratios. After some exper-
imentation, we found that we could get good coherency measurements at 1.5 Hz,
2.5 Hz and 3.5 Hz. The frequency separation between these frequencies is greater
than the width of the smoothing window, thus yields independent results, and avoids
the major notches in power spectrum.

Figures 50 — 52 show the spatial coherency and phase lag as a function of receiver
separation for the NORSAR data. Each “x” on the coherency plots represents a
single coherency measurement between two specific receivers. The darkened circles
and associated error bars show the mean coherency value and its uncertainty as
described above. Similarly, each “x” on the phase lag plots shows the relative time
shift between a given pair of receivers. For the reasons described above, average phase
lag values near zero are desirable. Lastly, the gap in the coherency data near 15 km

is due to no receiver pairs having that spatial separation.
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Figure 50: Coherency as a function of spatial separation for the direct arrival and early
coda of the NORSAR data around 1.5 Hz. Each cross represents the coherency (top) or

phase lag (bottom) estimate from one receiver pair. The filled circles and error bars are

the mean values and their uncertainties.
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Figure 51: Coherency as a function of spatial separation for the direct arrival and early coda
of the NORSAR data around 2.5 Hz. Each cross represents the coherency (top) or phase
lag (bottom) estimate from one receiver pair. The filled circles and error bars are the

mean values and their uncertainties.
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Figure 52: Coherency as a function of spatial separation for the direct arrival and early coda
of the NORSAR data around 3.5 Hz. Each cross represents the coherency (top) or phase
lag (bottom) estimate from one receiver pair. The filled circles and error bars are the

mean values and their uncertainties.
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The coherency of the NORSAR data at 1.5 Hz (Figure 50) shows very little falloff
with distance out to the largest receiver separations (60 kin). The significance of
these values is supported by the relatively small variation it the individual coherency
measurements and the small average phase lag values. The trend in the average
coherency values at 2.5 Hz are similar to what was observed at 1.5 Hz, although
in general the values are slightly lower. There is also more variation in individual
coherency and phase lag measurements at this frequency. The coherency at 3.5 Hz
is clearly different than was observed at the lower frequencies. There is considerable
variation in both the individual coherency and phase lag values as well as a strong
decrease in coherency with separation. It is tempting to explain the lower coherencies
observed at this frequency on a decrease in the signal to noise ratio, however the power
spectra (Figure 43) do not support this interpretation. An alternative explanation is
that this frequency is simply more strongly scattered than the lower frequencies.

Due to the lack of closely spaced receivers in the NORSAR array, we turn to the
NORESS data for insight into the small-scale crustal heterogeneities. Due to the
distinct notches in the power spectra at 2 Hz and 3 Hz, the coherency was calculated
at 1.5 Hz, 2.5 Hz and 3.5 Hz. All frequencies showed high coherency over the re-
ceiver separations at NORESS (3 km) and very little scatter in individual coherency
and phase lag measurements, so data from the three frequencies were combined and
displayed in Figure 53. The most important feature in these data is the existence of
variations over distances as small as 3 km. The existence of these variations is espe-
cially interesting, given the lack of observable travel time anomalies. Charrette and
Toksoz (1989) showed that highly heterogeneous media (such as those characterized
by the von Karmén autocorrelation function) are capable of producing considerable
waveform variations with little effect on travel times. One way to reconcile the ob-

servations at NORESS then is to include a highly heterogeneous near-surface layer.
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Figure 53: Uncertainties in the coherency measurements for the NORESS data were so
small, the coherency curves for 1.5, 2.5, & 3.5 can all be shown together. The average
phase lag for thesc data was zero for all distances.
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4.4 The Coda

One of the most obvious features on high-frequency (> 1 Hz) teleseismic recordings
is the coda that appears behind the direct P-wave and S-wave arrivals. Consider
the NORSAR data used here; the source was a nuclear explosion which lasted only a
fraction of a second yet the P-wave envelope stretches over several seconds. The same
effect can be seen in data from local microearthquakes, which can have an S-wave
coda lasting hundreds of seconds (Frankel and Wennerberg, 1987). Coda waves can be
formed by a variety of mechanisms; reverberations in horizontally layered structure
under the receiver (site response), reverberations in layered structure between the
source and receiver, surface waves scattered by lateral heterogeneities, the conversion
of body waves at depth or at the surface, and by anelastic effecis. In this study, we
assume that all the coda is produced by the scattering of body waves from velocity
fluctuations in the lithosphere. Furthermore, when examining the synthetic data,
we are limited by the modeling technique to two dime" ... ..ul geometries and we can
consider only scattering in the lithospher~ uuder the receiver.

The significance of near source scattering can be measured by transforming the
data to wavenumber domain. Each point in waveiuiaber domain maps to a plane
wave, where the direction of the wavenumber vector is the backazimuth and the norm
of the wavenumber vector is inversely proportional to the apparent velocity of the
plane wave across the array. Figure 54 shows four FK plots, each over a 5 second
window of the NORESS data (2 Hz). The first 5 second window is dominated by the
incident P-wave, which is manifest as a well localized peak. In the second frame of
Figure 54, the broadening of the peak indicate that energy is incident on the array
from a wider range of angles. This is indicative of of either P-wave scattering and/or
S-wave scattering below the receiver array, or P-wave scattering below the source
array. We favor the former explanation. In the third time window, the FK plot
shows energy in botk the first and third quadrants, indicating that some energy is

being backscattered from the incident P-wave after if has reflected off the free surface.
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Figure 54: FK plots of four different time windows from the wavefield recorded at NORESS.
a) The 5 s after the first break, b) 5 —~ 10 s after the first break, ¢) 10 - 15 s after the
first break and d) 15 - 20 s after the first break.
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The apparent velocity of the backscattered energy suggests that this energy may be
dominated by S-waves. The last time window, which begins ~15 s after the first
arrival, shows that a significant amount of the energy in this time window is due to
backscattering. In summary then, the first few cycles of the incident wave appear
to be dominated by energy coming directly from the source region. Later in the
seismograms, the range of angles from which energy is incident on the array increases.
Lastly, the existence of the secondary peak in the third and fourth quadrants suggest

that backscattering is an important component of coda generation.

4.5 Forward Modeling in Random Media

Small-scale Structure in the Lithosphere

It is now well established that the amplitude and travel time anomalies observed at
NORSAR and NORESS are due to small-scale velocity anomalies in the lithosphere
(e.g., Aki, 1973; Frankel and Clayton, 1986; Flatté and Wu, 1988). Aki (1973) as-
sumed the crust under LASA (an array similar in size to NORSAR) could be modeled
as a random medium. Aki (1973) used Chernov (1960) scattering theory (based on
the Born and Fresnel approximations) to relate amplitude and travel time variations
to slowness fluctuations in the medium. If the slowness fluctuations in the medium
were assumed to be Gaussian distributed and have a Gaussian autocorrelation, Aki
(1973) found the crust could be modeled as a 60 km thick random medium with a
correlation length of 10 km and 4% rms variation in velocity. An equally important
finding in his study was that data up to 0.6 Hz were fit well by this model, but higher
frequencies were not. The conclusion made in that study was the misfit occurred
because the Born approximation had been violated. Capon (1974) used a slightly
different implementation of the same theory (Chernov (1960) scattering theory) and
found optimal results when the random heterogeneities extended to a depth of 136 km

and the rms deviation in velocity was 1.9%. Like Aki (1973), it was assumed that
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the random fluctuations had a Gaussian autocorrelation function. Berteussen et al.
(1975a) gives an excellent review of Chernov scattering theory as applied to the earth
and discusses several key issues, such as the lack of resolution between the rms de-
viation in slowness and the thickness of the random medium. They then investigate
NORSAR data and found that 50 - 60% of the variance in amplitudes and travel
times could be explained by the existence of a 50 km thick layer with random fluctu-
ations having a Gaussian autocorrelation function. They found the best results with
a correlation length of 15 km and 3% rms variation in slowness.

These studies are similar in that they are all restricted to the acoustic case and as-
sume Chernov scattering, and therefore the Born approximation, is valid. As a result
they neglect multiple scattering and mode conversion, both of which are important
if the size of the scatterers is small compared to a wavelength. In addition, they
all assume that the fluctuations in the lithosphere can be adequately described by
the Gaussian autocorrelation function. Although, this function is desirable because
it is easily manipulated mathematically, it is now generally believed that the earth’s
lithosphere contains more roughness (e.g., Wu and Aki, 1985a; Wu and Aki, 1985b).
The studies are also limited in that they use only a very small portion wavefield,
only the travel time residuals and the log amplitude of the P-wave. Lastly, all these
studies assume a constant velocity background model, thus they neglect the effect of
the background velocity on the wavelength of the incident wave.

Flatté and Wu (1988) used the acoustic parabolic approximation and weak scat-
tering theory to derived the angular and transverse coherence functions in a general
random medium. When they applied these techniques to data from NORSAR, they
found the best-fitting lithospheric model was an overlapping two layered model. The
top layer extended from the surface to a depth of 200 km and was characterized by
a simple band-limited white spectrum. The second layer, superimposed on the first,
extended from 15 km to 250 km and had fluctuations which obeyed a power spec-

trum of the form W(k) = Alk|*, where k is the wavenumber vcctor and A is a
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normalization constant. Although fairly simple, this is generally believed to be the
best available random lithospheric model.

Frankel and Clayton (1986) overcame many of the problems inherent in the earlier
scattering studies. They used the finite difference technique to model elastic wave
propagation in random media and examined many aspects of the scattering problem.
Based on the frequency dependence of the scattering Q in short-period data (15 -
30 Hz), they speculated that the crust (35 km thick) could be characterized by a
random medium with a Oth order von Kdrman autocorrelation function, a correlation
length >10 km and standard deviation in velocity of 5%. They also neglected to
include the effect of the background model as well as the effect of scattering below

the source.

4.5.1 Pinite Difference Simulations

To avoid many of the assumptions and limitations common to analytic scattering
studies, we also chose to use the finite difference technique to generate the scattered
field. Unlike earlier studies (e.g., McLaughlin et al., 1985; Frankel and Clayton,
1986) we include a realistic background earth model and use a full waveform method
to compare synthetic seismograms to field data from NORSAR and NORESS. The
finite difference scheme used in this thesis is a simple explicit second-order scheme
to solve the elastic wave equation (Appendix B). Although computationally very ex-
pensive, we favor this technique because it is accurate for a wide range of wavelength
to scatterer ratios, and it provides a complete solution to the elastodynamic equa-
tions of motion (e.g., Frankel and Clayton, 1984; McLaughlin et al., 1985; Franke]
and Clayton, 1986). As a result, P-wave and S-wave mode conversions are accurately
modeled for both forward and backward scattering. This is especially important be-
cause thus far most analytic scattering theories neglect shear waves completely and
often consider only forward scattering (parabolic approximation). The trade-off for

the increased accuracy is a significant increase in computational effort, which cur-
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rently limits our study to only two-dimensional models. Frankel and Clayton (1986)
also used two-dimensional finite difference modeling to investigate the effects of scat-
tering. They suggested that the effect on travel time and amplitude variations would
be very small. Furthermore, they also derived a two-dimensional equivalent to one of
the analytical results presented by Chernov {1960) and showed that at low frequen-
cies attenuation due to scattering was proportional to (ka)® in a three-dimensional
medium and (ka)? in a two-dimensional medium. Using the same equation, they
showed that in the high frequency limit the two solutions converged.

As was stated above, the synthetic models were made as realistic as possible by
including the Parametric Earth Model (PEM) for continental structure (Dzienwonski
et al., 1975), as the background velocity model. Inclusion of a realistic background
model is necessary to account for the fact that the wavelength of the incident wave
varies inversely with velocity, and therefore generally increases with depth. The
models also included zero stress boundary conditions at the top of the finite difference
grid and absorbing boundary conditions at the bottom. To avoid unwanted reflections
from the sides of the grid, the model was assumed to be horizontally periodic. The
simulation was carried out for 18000 time steps (thus producing 90 s of synthetic
data) on a large finite difference grid (512 nodes by 2750 nodes) which simulated a
51.2 km by 275 km region of the lithosphere.

In all the simulations the incident wave was a plane P-wave, which entered the
bottom of the grid as a Ricker wavelet centered at 1.65 Hz. Since the independent
variable in the finite difference calculations was displacement, the resulting synthetic
seismograms were differentiated with respect to time to produce seismograms of par-
ticle velocity, like those recorded at NORSAR and NORESS. Upon differentiation,
the center frequency of data became 2 Hz, consistent with that of the field data
(Figures 43 and 45).

The plane wave source used in this study is a good approximation of the true

incident wave if the source is located far from the receiver array (as is the case with
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the field data used here). Furthermore, it is likely that the incident wave would
show little variation over a region the size studied here. This occurs because of the
small range of takeoff angles (from the source) which constitute this portion of the
wavefront. It is true however that we have neglected the effects of forward scattering
(P-wave to P-wave scattering) in the source region, which would be constant across
the spatial extent studied here. The effect of this type of scattering would an overall
increase in complexity and coda along the incident wave.

Since in the field data the source was located close to the surface, the wave-
field observed at NORSAR traveled through the lithosphere twice; once beneath the
source and once beneath the receiver array. Numerical limitations prevent us from
modeling the full propagation path, so we must devise some way of estimating the
coda produced in the source region. After investigating several different approaches,
we chose an approximate technique based on a simple one-dimensional convolutional
model (Dainty et al., 1973). The technique makes use of the fact that energy which
has propagated through the lithosphere is the convolution of the transfer function of
the lithosphere with the source wavelet. Since the source function is known for the
synthetic data, it can be deconvolved from the synthetic seismograms, leaving only
the transfer function. Convolving the transfer function with the seismogram results
in a new seismogram which contains some of the features which would be observed in
seismogram of energy which had propagated through the medium twice. It must be
pointed out that this is not an exact solution, but it does allow us a simple mechanism

to include the first order effects of propagation through two lithospheric layers.

Simple Gaussian Models

As was mentioned above, it is generally believed that the lithosphere can not be
adequately described by a Gaussian random medium like those presented in the early
literature (e.g., Aki, 1973; Capon, 1974; Berteussen et al., 1975a). Still, it is worth

investigating one such model so that these data can be compared to data from more
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contemporary lithospheric models. For this purpose, we chose the model proposed by
Aki (1973) (Table 1). Although the original analysis was based on the acoustic wave
equation, we will extended the random velocity perturbations to the S-wave velocity
field and include the PEM background velocity field to account for the change in
wavelength with depth.

Before beginning a quantitative analysis of the data, it is often useful to observe
the general trends in the scattered field. For this purpose snapshot pictures of the
divergence and curl of the wavefield were output at 7 s increments and are shown in
Figures 55 and 56. The medium is a two-dimensional realization of the lithospheric
model proposed by Aki (1973). Snapshot pictures from any of the other simulations
would contain many similar features. In an homogeneous medium, the divergence and
curl exactly decompose the wavefield into its P-wave and S-wave components. This is
not true in an heterogeneous medium, where the gradients of the material properties
are not zero and therefore contribute to both the divergence and curl. Although if
the medium is sufficiently smooth, the divergence is dominated by P-wave energy and
the curl by S-wave energy.

The firsi snapshot picture of the divergence shows the incident P-wave shortly after
it has entered the bottom of the heterogeneous zone (Figure 55). At this point, there
is only a slight disturbance on the curl snapshot, which is due to the partial conversion
of the P-wave to an S-wave as it enters the heterogeneous region (Figure 56). When
the P-wave interacts with the free surface (the second frame), a strong S-wave is
created, which is subsequently scattered is it travels downward behind the reflected
P-wave. Note that in the subsequent frames the dominant scattering mechanism is
common mode (P-wave to P-wave and S-wave to S-wave) forward scattering. This
type of scattering tends to distort the incident wave and create strong diffractions
with very little backscattering and little P-wave to S-wave scattering. As a result,
the direct arrival is no longer a simple planar wavefront and distinct travel time and

amplitude anomalies are visible along the wavefront.
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Ak1 Model

divergence

Figure 55: Snapshot pictures of the divergence of the wavefield at 7 s intervals. The ra‘ndor'n
portion of the vel. ity model is like that proposed by Aki (1973), and the deterministic

velocity structur: i« a simpie reference cal th model.
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Aki Modei

curl

Figure 56: Same as Figure 53, but shows the curl of the wavefield.
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Synthetic seismograms generated at 3.2 km intervals along the free surface are
shown in Figure 57. The data have already been differentiated, to produce velocity
data like that recorded at NORSAR, and only the time window between 25 s and
45 s is shown. The most striking feature in the data is the strong first arrival and
lack of coda. The travel time fluctuations of the P-wave (Figure 58), show two
large anomalies with a spatial separation of =25 km. Comparing Figures 58 and 59,
note the correspondence between the amplitude and travel time fluctuations. The
strong correlation between these two parameters is indicative of scattering in smoothly
varying media dominated by large scatterers and was predicted by Chernov (1960)
and Aki (1973). The periodicity in both these figures is a direct consequence of the
periodicity in the velocity model and the source wave. Lastly, it should be pointed
out that the discrete steps in the plot of the travel time variations (Figure 59) are due
to the discrete sampling interval of the finite difference simulation. The large size of
the simulation and the large number of timesteps, forced us to decimate the synthetic
seismograms as they were computed. After decimation, the sampling interval was
0.05 s. The rms variation in travel time (0.08 s) and amplitude (0.46) in the data
from this model were generally consistent with what was observed at NORSAR.

Another way to compare the synthetic data to field data is to calculate the co-
herency of the waveforms over distances similar to those at NORSAR and NORESS.
This was done by first windowing the synthetic data over a 6 s window surrounding
the first arrival. Then, the coherencies were calculated for two sets of 25 receivers. In
the first set, the 25 receivers were each separated by .1 km, resulting in maximum and
minimum separations of .1 km and 2.4 km; roughly equivalent to receiver separations
at NORESS. Variations over these length scales will help to identify the prevalence of
small-scale scatterers. In addition, a second set of receivers, each separated by 1 km,
were investigated. The second data set spans distances more like that of NORSAR,
and can therefore be compared to coherencies calculated for teleseismic arrays such

as NORSAR. The latter data set will help to identify the large scale features in the
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Figure 57: Synthetic seismograms resulting from the finite difference simulation of a plane
wave propagating in a random medium like that proposed by Aki (1973).
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Travel Time Fluctuations
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Figure 58: Travel time residuals which resulted from the Aki (1973) model. The rms variation
for this parameter was ~0.08 s.
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Amplitude Fluctuations
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Figure 59: Fluctuations in log amplitude which resulted from the Aki (1973) model. The
rms variation for this parameter was 0.459.
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lithosphere.

Comparing the coherencies calculated from the synthetic data to that from the
NORESS data highlights several important issues. At low frequencies (1 & 2 Hz), both
data sets display high spatial coherency over the full range of distances (0 - 2.5 km).
At higher frequencies (3 & 4 Hz), the fall-off rate of the coherency in the field data is
considerably higher than that in the synthetic data. One explanation for this might
be that the earth has more small (relative to the wavelength) scatterers, which would
be consistent with the P-wave fluctuations discussed above. The difference hetween
the two data sets becomes even more clear when the coherency is calculated for larger
offsets. When measured over distances similar to those at NORSAR, the fall-off of
the coherency with distance is far slower than is observed at NORSAR. Together, all
the data suggests that this model is too smooth to represent the velocity fluctuations
in the earth. The lack of roughness limits the amount of coda which is generated.

Simple single layer lithospheric models based on the Gaussian autocorrelation
function have been proposed by several other authors (e.g., Capon, 1974; Berteussen
et al., 1975a). All are similar to the one investigated above (Aki, 1973), although exact
details concerning the thickness of the random layer, the intensity of the perturbations
and the correlation length .ary between studies (Table 1). Several of these models
were investigated and each proved to have the same general characteristics described
above. Namely, these models produced coherency measurements which were too large
and they were not capable of reproducing the amount of coda generally observed at
NORSAR and NORESS. It has been speculated that they all failed because they
did not contain enoug. roughness. Frankel and Clayton (1986) recognized this and
proposed modeling the lithosphere as a 35 km thick layer described by the Oth order
von Karmén function. We investigated this model as well, and found it was desirable
in that it produced more coda and therefore less coherent seismograms, however, the

fall-off rate of the coherency as a function of distance was still significantly more than

what is observed at NORSAR.
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Multiple layered Models

Although the random modeis discussed above are capable of explaining some of the
observed travel time and amplitude variations, they are probably too simple to de-
scribe the velocity field in the lithosphere. More realistic is the overlapping two
layered model proposed by Flatté and Wu (1988). In that model, the heterogeneities
obey a simple power law relation of the form,

Wk)=A|k[|™, (4.2)

where W (k) is the power spectrum of the fluctuations, k is the wavenumber vector,
A is the normalization constant and p is the power law index. Flatté and Wu (1988)
found the best agreement when the power law index was zero (p = 0) in the upper layer
and four (p = 4) in the lower layer. In addition, to compensate for the limited aperture
of the array and the frequency content of the source, the spectra were bandlimited
so that there were no fluctuations with wavenumbers less than 0.05 km~! and n