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Preface

The objective of this study was to examine the influence of attenuation and scattering on

regional high frequency seismograms. This is a wide-ranging topic because of deficiencies

in our knowledge of basic aspects of attenuation and scattering, complicating attempts to

assess their effects on regional seismograms. This final report consists of a Ph.D. Thesis, a

paper, and three preprints of papers either submitted or in preparation, on work supported

by this project. Each of these five publications forms a section in this report; they include

both basic work on attenuation and scattering, and applications to regional seismograms. In

addition, preliminary work on the problem of the radiation from an explosive source in an

anisotropic medium was performed under this contract.

The first section is E.E. Charrette's Ph.D thesis and discusses the application of the finite

difference method to problems in scattering and attenuation due to scattering in a random

medium. In the first three chapters of the thesis, the basic issue of the application of Born

theory, widely used in seismology, to scattering and scattering attenuation is assessed. A

method of incorporating Born theory into the finite difference formalism is used to accomplish

this. Results indicate that the failure of Born theory to remove energy from the in, dent wave

is often the greatest inaccuracy resulting from this theory. The fourth chapter applies two-

dimensional finite difference calculations to explain the observed scattering phenomena at the

NORSAR and NORESS arrays in Norway. Although these calcula Lions are two-dimensional,

they examine all of the aspects of scattering-amplitude and travel time fluctuations of the
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first arrival, coda level, and coherency of the first arrival and coda. This is the first Liir.. -I

of these aspects have been considered together.

The remaining sections of the report are papers, either published or preprints. The

second section discusses the radiation pattern of explosive sources in anisotropic media. In

such a situation, both SV and SH waves may be generated, and the radiation pattern for

S waves may look like that of an earthquake. If the source is near the surface in a layered

medium, both Raleigh and Love surface waves may be produced, including Lg-like phases.

This work is now being continued under a separate contract. The third section examines

the problem of Lg blockage across crustal extension zones by the method of coupled modes.

The calculations indicate that this blockage may occur due solely to the geometrical effects

of the crustal thinning; attenuation in sedimentary basins is not neccessary. The fourth

section is concerned with the fundamental problem of scattering of the reflected wave from

a rough interface. The subject is treated both experimentally in water tank experiments

and theoretically by finite difference for the case of randomly spaced parallel grooves. The

presence of the grooves has a strong effect on the refracted wave and hence its interaction

with the reflected wave near the critical angle. The grooves can also affect the reflected

wave by producing amplitude fluctuations and coda. The final section applies transport

theory to Rg data from a U.S. Geological Survey experiment in Maine. The purpose is

to determine the attenuation mechanism for these waves. In this area, attenuation due to

anelastic mechanisms and/or scattering to body waves dominates over Rg to Rg scattering.
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Abstract

The earth is often modeled as a series of simple homogeneous layers. Such an ap-
proach can lead to synthetic seismograms which match the dominant arrivals in the
field data very well, but lack the random travel time and amplitude fluctuations
and signal generated noise commonly observed on seismic recordings. These sec-
ondary features are often due to scattering from small-scale variations in the earth.
The small-scale variations are too numerous and distributed too irregularly to allow
deterministic characterization, so these features are often characterized by their sta-
tistical distribution. This thesis is concerned with modeling elastic waves in randomly

heterogeneous media
We first explore the general principles and assumptions concerning statistical char-

acterization and introduce several commonly used statistical models. Both analyt-
ical and numerical techniques have been applied to this problem. Most analytical
techniques assume scattering is weak and use the Born or Rytov approximation to
generate relatively simple closed form solutions. These solutions can be limiting is
some applications because they neglect the effects of multiple scattering, and assume
the incident wave travels though a smooth background medium. In the random me-
dia studied here, it is shown that these assumptions can cause serious errors in the
amplitude and phase of the scattered wavefield. In order to investigate these errors, a
new numerical technique is developed. The technique starts with the elastodynamic
equation of motion. Using the Born approximation and perturbation analysis, the
elastic wave equation is reduced to a single scattering wave equalion which cait be
solved with finite differences. The utility of the new technique is that both the single
and multiple scattering (as calculated by conventional finite difference techniques)
solutions can be generated for the same complex velocity model. In Chapter 3, this is
done for two different random media. The first is an impedance scattering medium;
a medium which has impedance variations, but no velocity variations. In such a

medium, the dominant scattering mechanism is back scattering and the efficiency
which energy is scattered varies inversely with the size of the heterogeneity. In this

2



medium, the two solutions (single and multiple scattering) agreed well, except around
the first arrival. Near the first arrival, the amplitude of the single scattering solution
is consistently greater than the multiple scattering solution. This is a consequence
of the Born approximation, which does not account for the removal of energy in the
incident wave due to scattering. The general shape and arrival time of the scattered
field is consistent with the multiple scattering solution.

In the second model, the material properties were chosen so that the medium con-
tained significant velocity anomalies, but almost no impedance anomalies. Because
scattering is stronger in this medium, agreement between the two solutions is not as
good as the previous case. Again, the single scattering solution had too much energy
in the first arrival, which in turn lead to an overestimated scattered field. Unlike the
previous example, the velocity anomalies also created significant travel time (ciJer-
ences between the two solutions. These errors were present in both the scattered and
incident waves and occurred because the Born approximation assumes the incident
wave travels in the background field (which is often assumed to be homogeneous).

It is generally agreed that the Earth's crust and lithosphere have heterogeneities.
However, the distribution and exact nature of these heterogeneities have not yet been
resolved. Using the techniques presented in this thesis and data from the NORSAR
and NORESS arrays we develop a model for thc statistical heterogeneities present
under Fennoscandia. In the course of choosing the final model, we investigated many
randomly heterogeneous models. We began with a simple, single layered model with
a Gaussian autocorrelation function. We also considered other single layered mod-
els with more roughness, like that proposed by Frankel and Clayton (1986), as well
as multi-layered models like that proposed by Flatt6 and Wu (1988). Based on co-
herency measurements and travel time and amplitude fluctuations, we propose that
the random velocity variations in the lithosphere can be modeled by as a three lay-
ered random medium. Satisfactory results were obtained when the power spectrum of
the fluctuations in the uppermost layer (0-3 km) was a bandlimited white spectrum
(0.05 km - ' < k I > 1.1 km - ', where k is the wavenumber vector) and the rms veloc-
ity variation was 2%. The middle layer was meant to simulate the remaining portion
of the crust (3-35 km) and the fluctuations in this layer were described by the 0th
order von Ki rmin function. The correlation length of the von K~irmin function was
10 km and there was 3% rms variation in velocity. The third layer extended from
the base of the crust to a depth of 250 km and was characterized by an anisotropic
Gaussian correlation function. The horizontal and vertical correlation lengths in this
region were 20 km and 5 km, respectively and there was 2% rms variation in velocity.

Thesis Supervisor: M. Nafi Toksdz
Title: Director, Earth Resources Laboratory

3



I
Acknowledgmii s

This thesis directly and indirectly reflects the work of many alithors. I say thiJ not tc

share the blame for its weaknesses, but instead to acknowledging the people who helped

me to develop, test, and clearify the ideas present here. In particular I would like to thank

Chris "dude" Bradley, Richard Coates, Vern Cormier, Anton Dainty, Joe Matarese, Jeff

Meredith, Mike Prange, Bill Rodi and most of all my advisor Nafi Toks6z. A special thanks

goes to Bob Cicerone and Sue Turbak who helped me greatly by offering to finish several

last minute changes so that I could spend a week skiing with friends in Jackson Hole.

Much of the work done in this thesis was computationally intensive. For this reason,

I would like to thank the nCUBE Corporation their generous educational discount on a

128 node parallel processor. Although the machine was installed only six months ago, I

was able to use it for all of the simulations in Chapter 4. The speed and flexibility of the

machine allowed me to use the finite difference technique to simulate wave propagation in

the lithospheric, something I couldn't have done with a VAX 8800. I would also like to

acknowledge financial support from the Defense Advanced Research Projects Agency who

funded the work in Chapters 1-3 through contract F19628-89-K-0020 administered by the

the Air Force Geophysics Laboratory (AFGL) and the Reservoir Delineation Group at ERL.

It is easy to forget (I know I sometimes did) that there is more to life than reading

articles, writing papers, and programming computers. I would like to thank my wife,

Annie, for doing her best to provide balance in my life. I know it wasn't easy. I would also

like to thank my parents, wijo watched me get into lots of tight spots, but always seemed to

know when to step in and when to let me dig myself out. I benefitted greatly from learning

how to do my own "spin control" and even more by knowing they were always there.

Lastly, I would like to thank my maternal grandfather. Gramps lived with my family

during most of my childhood and had a profound affect on by life. Among other things, he

taught me how to combine a pile of unrelated components into a servicable widget. I know

he would have been proud to see how far his teachings have gotten me.

4



Contents

1 Introduction 8

1.1 Thesis Objectives ........ ............................. 8

1.2 Large-Scale Variations ........ .......................... 9

1.3 Characterization of Small-Scale Variations ................... 10

1.4 Characterization of the Scattered Field ...................... 11

1.5 Wave Propagation in Random Media ...... .................. 12

1.5.1 Statistical Modeling ....... ....................... 12

1.5.2 Deterministic Modeling ............................. 14

1.6 Thesis Plan ......... ................................ 14

2 Seismic Velocities as Random Fields 18

2.1 Introduction ......... ................................ 18

2.2 Seismic Velocities as Random Fields ........................ 19

2.2.1 Decomposition of the Velocity Field ................... 19

2.2.2 General properties of a Random Field .................. 20

2.3 Commonly Used Autocorrelation Functions ................... 24

2.4 Conclusions ......... ................................ 31

3 Scattering in Random Media 34

3.1 Introduction ......... ................................ 34

3.2 Single Scattering ........ ............................. 36

5



3.2.1 Theory .. .. .. .. .. ... ... .. ... ... ... ... .. 36

3.2.2 Limitations of the Born Approxiniatiol,. .. .. .. .. .. . ..

3.2.3 Numerical Implementation .. .. .. .. .. ... ... ... .. 39

3.2.4 Validation of the Single Scattering Solution .. .. .. ... .. 42

3.3 Single vs Multiple Scattering: A Case Study. .. .. .. .. ... .... 49

3.3.1 Attenuation and Coda. .. .. .. .. ... ... ... ... .. 68

3.4 Overview of the Scattering Process .. .. .. .. ... ... ... .... 76

3.5 FK Analysis .. .. .. .. .. ... ... ... ... .. ... ... .... 81

3.6 Conclusions .. .. .. .. ... ... .. ... ... ... ... ... .. 84

4 Elastic Wave Scattering Below NORSAR 88

4.1 Introduction .. .. .. .. .. ... ... ... .. ... ... ... .... 88

4.2 Scattering Beneath NORSAR. .. .. .. .. ... ... ... ... .. 90

4.2.1 Tectonic and Geophysical Setting. .. .. .. .. ... ... .. 93

4.3 Scattering at NORSAR .. .. .. .. .. .. ... ... ... ... .... 97

4.3.1 Travel time and Amplitude Variations .. .. .. .. ... .... 97

4.3.2 Transverse Coherency (NORSAR) .. .. .. .. .. ... ..... 104

4.4 The Coda. .. .. .. .. ... ... ... ... .. ... ... ... .. 114

4.5 Forward Modeling in Random Media. .. .. .. .. ... ... ..... 116

4.5.1 Finite Difference Simulations .. .. .. .. .. .. ... ... .. 118

4.6 An Improved Random Lithospheric Model. .. .. .. .. ... .. .. 141

4.7 Conclusions .. .. .. .. ... .. ... ... ... ... ... ... .. 153

5 Sumnmary and Conclusions 155

5.1 Overview. .. .. .. .. .. ... ... .. ... ... ... ... ..... 155

5.2 Summary. .. .. .. ... ... .. ... ... ... ... ... ..... 157

A Born Scattering 171

A.1 Introduction. .. .. .. .. .. ... ... ... ... ... ... ..... 171

A.2 The Born Approximation and Single Scattering .. .. .. .. ... .. 172

6



A.2.1 Plane P-Wave Source ...... ....................... 174

A.2.2 Plane S-Wave Source ...... ....................... 182

A.3 Mie Scattering in a Weakly Heterogeneous Media .............. 187

A.3.1 Mie Scattering from a Gaussian Inclusion ................ 192

A.3.2 Gaussian Parameter Function ...... .................. 192

A.3.3 Exponential Parameter Function ..... ................ 196

B Finite Diffei'ence Modeling 207

B.1 Introduction ........ ................................ 207

B.2 2-D Finite Difference Modeling ...... ..................... 209

B.2.1 Numerical Dispersion ...... ....................... 211

B.2.2 Sources and Boundary Conditions ..................... 215

B.3 A Point Diffractor ....... ............................. 221

7



Chapter 1

Introduction

1.1 Thesis Objectives

Most wave propagation studies concentrate on identifying the coherent features in

seismic data. These features are often indicative of major structural trends, and are

of great interest in many branches of geophysics. The small incoherent arrivals which

occur between the major reflections and refractions also contain information about

the earth, yet these features are often dismissed as noise, or classified as coda. In

fact, numerous techniques, such as stacking, beamforming, etc have been developed

to suppress these arrivals.

The primary objective of this thesis is to investigate the attributes of seismic waves

which have propagated through a highly heterogeneous medium. This is accomplished

using two different finite difference modeling techniques. One of the techniques is

a conventional second order finite difference technique (Alford et al., 1974; Kelly

et al., 1976), which provides a full, iterative solution to the elastic wave equation.

The second is a new technique which is based on the elastic wave equation and

the B3orn approximation. The Born approximation has received great attention for

both forward and inverse modeling, because it serves to linearize the elastodynamic

equations of motion (e.g., Nayfeh, 1973; Beydoun and Tarantola, 1988). Although

8



this approximation has been commonly used to study scattering, there is reason to

question the validity of this approach. The Born approximation assumes scattering

is weak, and as a result three important assumptions arise. First, it is assumed the

incident wavefield passes through the heterogeneous region undisturbed. Second, the

only source of scattering is the interaction of the incident wave with the perturbations

in the medium. As a result secondary scattering is ignored. Third, the total field is

the sum of the incident and scattered fields. Together, these assumptions violate the

law of energy conservation.

The final and most important objective of this thesis is to apply what is learned

from the forward modeling to actual field data. To do this, waveforms from an under-

ground nuclear explosion were analyzed. These data were also compared to synthetic

waveforms generated for a variety of previously published random lithospheric mod-

els (e.g., Aki, 1973; Frankel and Clayton, 1986; Flatt6 and Wu, 1988). Using travel

time and amplitude fluctuations, coherency measurements and coda generation to

constrain the modeling, we propose that the lithosphere below NORSAR is best

modeled as the three layered model described below.

1.2 Large-Scale Variations

In whole earth seismology, the earth's velocity field is often approximated by a series

of radially symmetric shells. Similarly, in exploration seismology the velocity field is

often simplified to constant velocity layers. Data from these simplified models lacks

the high degree of variability often seen on field data. Between the major reflec-

tions and refractions, field observations have small incoherent arrivals that cannot be

accounted for by the model.

Instead of attempting to understand these arrivals, they are routinely dismissed as

"noise". As a result, geophysical efforts have been directed towards data processing

techniques to enhance the impact of the coherent arrivals and diminish the incoherent

9



arrivals (Robinson, 1957; Mayne, i962). his l1,. ,te" ,i1, , f :eisinic data has identified

many major features wthin the earth and has est.ih 1Li.s L e, i ic irnaging as a m

tool for oil and gas exploration. These successes in both wlole earth and exploration

seismology, occurred because the "signal" was used to identify major changes in

lithology and/or structure. In fact, that is the only information the "signal" carries.

It can tell us little of what lies between the interfaces.

It is sometimes the case that the material between major lithographic boundaries

is more important than the boundaries themselves. Of particular interest are the

small-scale velocity anomalies in the crust. These features are often smaller than the

shortest recorded wavelength and can be indicative of changes in lithology, porosity,

pore pressure, fracture density or permeability. The two key features of these vari-

ations are their small size and large number. Both factors coalesce to produce an

incoherent scattered field which cannot be explained by a simple layered model.

1.3 Characterization of Small-Scale Variations

Due to the large number and random distribution of small-scale variations, these

features are often characterized by their statistics (e.g., Chernov, 1960; Hudson and

Heritage, 1981). The advantage of statistical characterization is that it allows some

aspects of the velocity field to be described by only a few parameters. Much like

a horizontal formation in reflection seismology might be characterized by its depth,

thickness and velocity, highly heterogeneous media can be characterized by their

spatial autocorrelation function, correlation lei;gth, perturbation index, and average

velocity.

In scattering theory, it is common to normalize both the wavelength A of the

incident wave and the extent L of the heterogeneous region by the scale length of the

scatterers a (e.g., Chernov, 1960; Wu and Aki, 1985c). The product ka = 27ra/A is

the normalized wavenumber, and Lia is the normalized propagation length

10



These normalized parameters define different scattering regimes. When ka < .01,

the heterogeneities are too small to individually affect the passage of seismic energy,

thus the spatially varying properties of the medium can be replaced by some effective

bulk properties. For .01 < ka < 1, the low frequency approximation (i.e., Rayleigh

scattering) is valid and the power of the scattered wave is proportional to k4 . When

ka z 1, the size of the scatterers is comparable to a wavelength. This is often called

the Mie scattering regime, and is dominated by isotropic scattering, with some pref-

erence to the forward direction. When ka > 1, scattering is strongly concentrated in

the forward direction. In this regime, mode conversion and backscattering are small,

so parabolic approximations to the wave equation can provide accurate solutions. For

relatively short propagation paths, L/a < 100, ray theory can be successfully used,

but for longer propagation paths analytical techniques are usually used (Wu and Aki,

1990).

A third parameter is commonly used to quantify the strength of a scatterer. The

perturbation index -6 is defined as the rms deviation in velocity v (or Lam 's param-

eters, density, etc),

(,= , (1.1)

where v0 is the average velocity of the medium. If b < .1 the scattered field will

be small compared to the incident field and the Born approximation may give good

results. Stronger variations lead to strong multiple scattering, thus invalidating the

Born approximation.

1.4 Characterization of the Scattered Field

The amplitude and travel time of seismic waves are affected by propagation through

a random medium. If the correlation length of the medium is small, the incident

wa,,' "."ill be strongly scattered by the medium. If the correlation length is large, the

wavefront will alternately be focused and defocused by the medium, creating large
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variations in both impItLude tw! tramel ti-.c , Ii, , ;, twring. In either case, the

statistics of the wavefilAd may contdiu inforf,,otio, , ia.;g to the statistics o, r,1 .

medium.

One technique commonly used to estimate the statistics of the wave field is the

coherency. Coherency is a measure of similarity between a pair of time series. The

technique has been used to study spatial and temporal trends in both strong ground

motion (Harichandran and Vanmarcke, 1984) and regional (Dainty and Toks~z, 1990)

studies and is a frequency domain equivalent of the correlation function used by

Bungum et al. (1985) and Ingate et al. (1985). The coherency function is useful in

practice because it provides a dimensionless measure of similarity between two traces.

Due to the variability in traces which have propagated through a random medium,

coherency studies of this kind are often done on arrays of seismic data.

1.5 Wave Propagation in Random Media

Seismic wave propagation through random media can be approached either statisti-

cally or deterministicly.

1.5.1 Statistical Modeling

Most studies of wave scattering in random media use the statistical approach. The

typical methodology is to first assume a spectral model for the random medium, then

attempt through analytical means to predict the statistical behavior of the propa-

gatig wave field. This course of action has the advantage that if successful, the

statistical variations in the observed wave field can be directly related to those in the

medium.

In general, there is no exact closed form solution for elastic wave propagation in an

highly heterogeneous medium. Several approximate solutions have been presented,

however. If scattering is very strong, the transportation of energy can be modeled
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with the diffusion equation. The diffusion models presented by Aki and Chouet (1975)

and Dainty and Toks6z (1975) use energy conservation to derive seismic envelopes for

strong scattering media. These techniques are valid only when all of the energy in the

medium is multiply scattered and no direct energy remains. Thus, these techniques

are of limited use when intrinsic attenuation is strong, or scattering is weak.

When scattering is weak, the single scattering model may provide an accurate

solution (e.g., Aki, 1969; Aki, 1973; Sato, 1977a). These theories have the advantage

that they are well suited to perturbation analyses, where the medium and the wave

field are decomposed into a background part plus a perturbative part. This decom-

position leads naturally to the Born approximation. Chernov (1960) investigated the

applicability of the Born approximation for scattering in random acoustic media. The

generality of his analysis lead to an overly strict validity criterion. Kennett (1972b),

was the first one to extend Chernov's analysis to the elastodynamic case. His analysis

was limited to two-dimensions and aimed at the problem of a horizontally stratified

perturbation in a layered structure. For this geometry, he found the following validity

condition,
1W_

kmax- < 1, (1.2)
00 r

where w is the radial frequency, /f is the background shear wave velocity, kmaz, is the

largest wavenumber contributing to the solution, and H, W and fy are the the height,

width and strength the scatterer. The strength of the scatterer is measured often

defined in terms of the perturbation index, which is equal to the rms variation nor-

malized by its mean (where the variations may defined in terms of Lam6's parameters,

density, or velocity). Hudson and Heritage (1981) investigated the accuracy of the

Born approximation for the 3-D elastic case. They present several inequalities which

give the range of validity of the Born approximation and show that in all cases, these

criteria are violated by typical teleseismic frequencies and scatterer sizes. They argue

that to satisfy the validity criteria, observations would have to be made at periods

on the order of 100 seconds, or greater.
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1.5.2 Deterministic Modeling

One way to minimize the uncertainties and errors associated with statistical modeling

is to approach the problem deterministically, that is, construct a "random" medium

with known statistical parameters and investigate that model. This is the approach

taken here.

In this thesis, numerical (finite difference) modeling is used to propagate energy

in a variety of random media. The finite difference technique was chosen because

it can produce a full solution to the elastodynamic equation of motion, and unlike

high frequency approximations (such as raytracing), the technique is valid over a

wide range of scatterer to wavelength ratios. Another advantage of the technique

is the ability to make synthetic seismograms and snapshot pictures of the vector

displacement field at any point in time.

This is not the first time the finite difference technique has been used to study

scattering in random media. Frankel and Clayton (1986) used the technique to assess

the accuracy of Chernov (1960) scattering theory. They also found that the travel

time and amplitude variations in teleseismic arrivals at NORSAR and LASA could

be explained by random heterogeneities having a von Ksrmin distribution and length

scales less than 50 km (a > 10 km). Dougherty and Stephens (1988) used the tech-

nique to study scattering in the ocean crust and found that much of the seafloor

"noise" could be traced to scattering of the primary wave into both scattered body

and Stoneley modes. In this thesis, the finite difference technique is used both to

model single and multiple scattering.

1.6 Thesis Plan

In the scattering literature, highly heterogeneous media are often approximated by

random fields. The advantage of this approach is that a complex, multi-dimensional

velocity function can be expressed in terms of a few simple statistical parameters. The
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conditions under which statistical characterization is justified are outlined in Chap-

ter 2. One statistical parameter which can be used to describe the variability of a

velocity field is the autocorelation function. The properties of three commonly used

autocorrelation functions, the Gaussian, exponential, and von Kirm'in functions are

investigated, and their likely applicability to the earth is discussed. All three spectra

are nearly flat at low wavenumbers, but at higher wavenumbers the Gaussian falls off

exponentially, while the exponential and von Krmi.n fall off with a power law depen-

dence. The fall off rate controls the roughness of the medium. Those characterized

by the Gaussian autocorrelation are smoothly varying, while the exponential and von

KMrmiin functions are more highly textured. Although not directly related to wave

scattering, the ideas presented in Chapter 2 are important to the developments in the

later chapters.

In Chapter 3, a new semi-analytical technique is introduced to calculate the single-

scattered field. The technique is based on the Born approximation and makes use

of the full elastic wave equation. In this technique, an incident wave is either an-

alytically or numerically propagated in a background medium. When the incident

wave interacts with the perturbations in the medium, body forces are generated and

introduced into a separate finite difference calculation. Unlike similar analytical tech-

niques (Appendix B), the body forces are calculated numerically making the technique

applicable to arbitrarily complex velocity models. The ability to produce synthetic

seismograms based on the single scattering approximation in arbitrarily complex me-

dia is unique and of great interest because these traces can then be compared one to

one with traces from the multiple scattering solution. These comparisons are made

in Chapter 3. In addition, the effect of the single scattering approximation on coda

and coherency statistics is investigated.

In Chapter 4, numerical simulations and data collected at the NORSAR and

NORESS arrays are used to evaluate several different lithospheric models. We begin

the study with the simple single layer models proposed by Aki (1973), Capon (1974)
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and others. These mt!.As rnatc.d the ,,t , t . tiw,,s and amplitude

well, but could not gu: cr,.le the ',:' , ,', i , short period ,

The overlapping two-layered model proposed hy Fatt, .ii] % Wi kl198 8) also matched

the observed variations in travel times and amplitude and produced more coda, but

the wavefield produced by this model was considerably more coherent than the field

data. After experimenting with numerous statistical models of the lithosphere, we

found a three-layered model which matched the variations observed at NORSAR

better than any previously proposed models. The autocorrelation of the fluctuations

in the top layer (0-3 kin) is a bandlimited white spectrum with 2% rms velocity

variations. We found this layer necessary in order to match the observed variations

across small array such as NORESS. The middle layer (3-35 km) is characterized

by the 0th von Ki.rm~in function and has larger (3%) velocity variations. This layer

contributes to both the generation of the coda, and to the travel time and amplitude

variations observed at the surface. The bottom layer (35-250 km) is characterized

by a Gaussian autocorrelation and 2% rms velocity variations. We found the best

results when this layer was made to have a 20 km correlation length in the horizontal

direct and a 5 km vertical correlation length. Evidence from seismic profiles near

NORSAR (e.g., Cassell and Fuchs, 1979) and coupled-mode inversions (e.g., Kennett

and Nolet, 1990; Kennett and Bowman, 1990) also suggest that heterogeneities in

the upper mantle might have different scale lengths in the horizontal and vertical

directions. In particular, Kennett and Bowman (1990) analyzed data from seismic

arrays with apertures between 100 to 1000 km and suggested that the heterogeneities

in the upper mantle have horizontal scale lengths on the order of 300 400 kn, but

a vertical -cale length of about 100 km at a depth of 200 km. They also suggest

the vertical scale length might increase with depth. These studies used sirface wave

data with frequencies on the order of 0.02 Ilz and body waves with frequencies on the

order of 0.04 Hz, which might explain the larger scale sizes observed in these studies.

Chapter 5 contains the conclusions which can be formed from the material pre-
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sentcd in this thesis. In this chapter, there is a review of the technique used to

generate the single scattered field, as well as a summary of some of the r'ifferences

between the single and multiple scattering solutions. Limitations in single scattering

theory lead us to use finite difference modeling to calculate the multiple scattering

solutions presented in Chapter 4. These data are reviewed in Chapter 5, as is a

model for the random heterogeneities thought to exist in the lithosphere beneath the

NORSAR array.
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Chapter 2

Seismic Velocities as Random

Fields

2.1 Introduction

Velocity variations in the earth can be separated into two broad classes; those which

are "organized" enough to be treated discretely and those which are not. Large scale

lithographic boundaries and small isolated objects fall into the first category, which

we will refer to as deterministic variations (or deterministic scatterers). The second

category is characterized by small-scale features such as subtle velocity variations,

or localized changes in composition, saturation, pore pressure, etc. These variations

are often irregularly distributed and so numerous and small that they can only be

treated effectively with statistical techniques; hence the name stochastic or random

variations.

Waves scattered by discrete scatterers tend to produce strongly coherent arrivals.

The coherency of the scattered waves makes them clearly visible across neighboring

seismometers, thus these were the first waves to be studied by seismologists. The

scattered field due to stochastic variations lacks coherency. These waves are thought

to be the cause of the significant travel time and amplitude anomalies which are of-
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ten observed, even between elements of tightly spaced arrays (Aki, 1973; Wu, 1982a;

Ringdal and Husebye, 1982; Frankel and Clayton, 1986; Flatt6 and Wu, 1988). Be-

cause of their small amplitudes, uncorrelated nature and erratic arrival time, these

waves have historically been treated as noise. Only recently has their importance

in crustal studies (e.g., Aki, 1973; Aki and Chouet, 1975; Wu, 1985; Frankel and

Clayton, 1986), upper mantle studies (e.g., Berteussen et al., 1975b; Mereu and Ojo,

1981: Ojo and Mereu, 1986), core-mantle boundary studies (Haddon and Cleary, 1974;

Bataille et al., 1990) and reservoir characterization (Greaves and Fulp, 1987) been

realized.

2.2 Seismic Velocities as Random Fields

In the scattering literature, highly heterogeneous media are often represented by

random fields (e.g., Capon, 1974; Sato, 1978; Macaskill and Ewart, 1984; Wu and

Aki, 1990). The justification for such an approach hinges on the assumption that the

scale length of the heterogeneities is much smaller than the extent of the study area.

When satisfied, the complex, multi-dimensional velocity function can be expressed

in terms of a few simple statistical parameters. Due to practical considerations, the

most commonly used statistical parameters are the low order statistical moments (the

mean, variance, and correlation function).

2.2.1 Decomposition of the Velocity Field

With the above discussion in mind, consider the velocity function v(Z) which may

vary with position x over some region of the earth R. The velocity function can be

decomposed into two parts; a deterministic part v(j) and a stochastic part bv(j_),

v(S) = Vo(S.) + bv(a) x E R. (2.1)

It should be pointed out that the two different types of heterogeneities, deterministic

and stochastic, are not inherent properties of the medium. This decomposition is
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arbitrary and done simply as a modeling app:c,'Th. Wtsr 'his in mind, we will assume

that the deterrministic (or background) part Jf tiw vf):xity field contains all k. g-

scale velocity variations. Such variations might arise from gross changes in lithology;

where a shale meets a limestone, for instance.

Although interesting, scattering from discrete variations is well understood, and

numerous techniques have been developed (e.g., travel time analysis, migration, T-

p methods, etc.) which are capable of estimating that portion of the velocity field

(e.g., Aki and Richards, 1980; Claerbout, 1985). In this thesis, the focus will be

on scattering from the small-scale features of the velocity field. Most materials in

nature contain stochastic variations, yet the distribution of these features is poorly

understood.

Stochastic variations are capable of affecting the passage of seismic energy, al-

though usually to a lesser extent than deterministic variations. Three mechanisms

are commonly attributed to scattering from stochastic variations. One is the genera-

tion of coda; scattered energy arriving at the receiver after the direct arrival (Aki and

Chouet, 1975; Herrmann, 1980). A second is attenuation due to scattering; energy

which is scattered by the medium and never arrives at the receiver (Dainty, 1981;

Wu, 1982b; Dainty, 1984). A third is through travel time fluctuations; changes in

arrival time of the initial pulse due to fluctuations in the medium (Aki, 1973; Ojo and

Mereu, 1986; Flatt and Wu, 1988). The first two mechanisms are interrelated and

have been shown to be controlled by backscattering. Travel time fluctuations arise

from scattering within a narrowly defined cone about the propagation direction, and

are thus controlled by forward scattering. These three mechanisms contribute to the

complexity of most seismograms observed in the earth.

2.2.2 General properties of a Random Field

A random field provides a probabilistic description of a physical phenomenon which

varies spatially according to the laws of probability. For statistical reasons, it is often
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necessary to treat a random field as one element randomly selected from an infinite

population or ensemble of fields. Each member of the ensemble shares the same

statistical properties, but is a unique realization of that ensemble. In this context,

the earth's velocity field is but one realization of an infinite ensemble of functions

which might have been observed.

The statistical description is achieved by associating each point in space x with

a random variable V(.). It is assumed that the range of x_ and sample space of the

random variable are infinite,

0> jxI< 00

-00 < V(x) < 00, (2.2)

and the probability density function (pdf) and all the joint pdfs are known. When

this is true, a field can be described by an ordered set of random variables V(x ).

At any point in space, the univariate moments of the random field can be written

in terms of its pdf fvL)(,v),

foo

E[V(_) m ] = ] (bv)'fvL))(#v)d(bv), (2.3)

where m is the order of the statistical moment and E denotes the expectation opera-

tor. Since little is known about the statistical distribution of scatterers in the crust,

it is commonly assumed in the scattering literature that velocities are Gaussian dis-

tributed. Then, the pdf of the velocity field can be completely described by its mean

(first statistical moment) and variance (second statistical moment).

Similarly, the bivariate moments of the random field can be written in terms of

its joint probability density function (jpd),

E[V(x 1 ) V(.2)"J = j (Sv,)m (,Sv2)ThfvL, )V(I)(bVl, ,v2)d(,vl)d(,v2). (2.4)

The multivariate moments describe the dependence between values of the velocity

field at two points in space.
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The simplest, and ii, practice must importzrt, o, fhii bivariate moments is the

covariance. We define the autocovari~n.,e .finition (anj') by,

"tVv(l,2) = E[(V( 1 1) - E(x.i))(V(x 2 ) - E( 2))] =COV[V'(xI), V(1_2)], (2.5)

where Coy denotes the covariance between two random variables. Since the acvf

depends on the variance of the distribution, a normalized form of the acvf is often

used to describe random fields. The normalized acvf, or autocorrelation function

(acj), is given by,

PVv(K.1,Z2) = O[(1) (2](.6
= Var[j,]Var[]2 (2.6)

where Var is the variance of a random variable. From these two relations, it is clear

that

Pvv(Z_.,x-2) =YVU I 2 (2.7)

If the acvf depends only on the spatial separation, the random field is said to be

stationary (Tatarski, 1961). Then, the acvf and the acf can be simplified to

'yVV( 1,.2) = VVV(__2 - L) ,  (2.8)

and
pvv(Z1,!2) = %vv(M_2 - 11) (2.9)

'Ivv(O)

Stationarity is almost always assumed in seismic scattering studies, in part because

it simplifies most analytical approaches.

One can iniagine regions in the lithosphe,'e where the fluctuations in the velocity

field have a preferred orientation. One example might be the deposition of overlapping

lenses with different lithologies. The lens shape suggests that the correlation length

of these features might be different in the ' orizontal and vertical direction. Although

each lens may have isotropic elastic moduli, the composite medium may display an

"effective" or "apparent" anisotropy. The preferred orientation of the fluctuations

should be reflected in the acvf. For simplicity, it will be assumed that all azimuthal
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variation in the acf can be explained through the dimensionless ellipsoidal norm,

- ) =b [((X2 -Z I)TQ42 - 1 1 (2.10)

where Q is a symmetric, positive-definite matrix. The eigenvectors j, i = 1,2,3 ofQ

point along the axes of the ellipsoid, and the eigenvalues Ai are inversely proportional

to the square of the correlation length along that axis, such that
3 V Y i6Tg (2.11)

t=1

If the fluctuations have no preferred orientation, Equation 2.11 reduces to

Q = I, (2.12)

where L is the identity matrix. Then for a stationary, isotropic random field, the acvf

and the acf depend only on the spatial separation r =I - 1 1,

Yvv(X_1,Z2) = 'Ivv(r), (2.13)

and

PvV(1,12) = *vv(r) (2.14)

Under these assumptions, the autocovariance and autocorrelation functions have sev-

eral useful properties.

1. The zero lag value of the acvf is equal to the variance of the distribution. Then,

from Equation 2.7, the zero lag of the acf is unity, pvv(O) = 1. This property

makes it possible to normalize different distributions based on their total vari-

ance (zero lag value of the acj). It can also be shown that I pvv(r) 1< 1 for all

r.

2. If the random field is continuous, then pvv(r) must be a continuous function of

the lag r (Jenkins and Watts, 1968).

3. Lastly, the power spectrum of a random field is the Fourier transform of its

correlation function (Tatarski, 1961). This property is central to the technique

used to construct the realizations presented in the later chapters.
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2.3 Commonly Used Autoo:rerlation Functions

The autocorrelation function is commonly used to characterize random fields and

is a measure for quantifying the similarity between neighboring points in a random

medium. It has the property that it is the Fourier transform of the power spectrum

(Tatarski, 1961). This relationship allows us to build realizations from a desired

corelation function in the wavenumber domain. Throughout this thesis, realizations

were constructed by convolving the square root of the power spectrum with a phase

term of the form e'9 , where 0 is a random number drawn from a uniform distribution

over the range 0 < 0 < 27r. Since the norm of the phase term is one, the shape of the

power spectrum and the total power within that spectrum are unchanged.

Although the statistical derivation outlined above was carried out for the con-

tinuum case, all computations were performed on a digital computer. As a result,

it was necessary to convert the continuum equations to their discrete counterparts.

The conversion is known to be inaccurate if the discrete medium is not well sampled

(e.g., Jenkins and Watts, 1968; Bracewell, 1978). To minimize these errors, special

care was taken to ensure that the power at the Nyquist frequency was small. This

was necessary because truncation of the power spectrum at the spatial Nyquist is

equivalent to convolution with a rectangular window function. Prange (1989) showed

that when this occurs, oscillations are introduced into the acf

Three correlation functions have received a great deal of attention in the scat-

tering literature; the Gaussian, the exponential and the von K'irmin functions (,..g.,

Chernov, 1960; Tatarski, 1961; Dainty, 1984; Frankel and Clayton, 1986; Wu and

Aki, 1990). The commonly used form of these functions and their power spectra are

given in Table 1, and shown graphically in Figure 1.

In both the Gaussian and exponential functions, the correlation length a marks the

lag where the correlation function has the value e- ' (Figure 1). In the wavenumber

domain, both spectra are flat out. to a corner wavenumber which is approximately

equal to I/a. The difference between the two spectra is most noticeable at higher
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Table 1. Correlation Functions and Their Spectra

Gaussian Exponential von Kcirmin

Correlation Function e-r 2 /a eI l [j 'K.,(r/a)2v-lr(v) aJ

1-D Power Spectrum aV e-k2 a2 /4 2a r(v + 1/2) 2ir'/ 2a

2-D oeSpectrum a~e
(1 + kra2  1(v) (1 + k2a2 )r+l

2-D Power Spectrum a- ka 2 /4 a 2  (v + 1) 4ra2
2/a" --- (1 + ka 2 )3 2  () (1 + ka 2)v+'

3-D Power Spectrum (aV./r)3ek2a24 87ra3  r(v + 3/2) 87r 3 2 a3

(1 + k,2a 2)2  17(v) (1 + k~a2)"'+3/2
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Autocovariance Functions
2.0

0th Order von Karrnan
1.5

Gaussian
1.0

Exonential

0.5 

Ep

0.0
0 1 2 3 4 5

Normalized Lag (lag/a)

ID Power Spectra

1000

0th Order von Karmm

10 Gaussian

0.10.

ka

Fiue1: The model autocovariance functions (top) and their l-D power spectra (bottom).

The spectra are normalized so that they have the same power.
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wavenumbers, where the Gaussian falls off exponentially, and the exponential falls off

as k- (N+1 , where N is the number of space dimensions. [he fall off rate of the spectra

controls the amount of roughness in the realization. Spectra with more energy at high

wavenumbers are expected to show more roughness (Figure 3) than those which are

localized near zero wavenumber (Figure 2).

The von Kirm~in function was first introduced to characterize the random velocity

field of a turbulent medium (von Krmn, 1948). In the spatial domain, the von

Krmin function is peaked about the origin. The peak is especially severe when

v = 0, since then the modified Bessel function K, goes to infinity as r/a goes to zero.

Although the parameter v can take on any value in the range 0 to 1, is has some

special properties at 0, 0.3, 0.5 and 1. When v = 0 the spectrum defines a multi-

dimensional Markov field (Goff and Jordan, 1988) v = 0.3 defines Kolmogorov's

turbulence (Wu and Aki, 1990), while for v = 0.5 the von Kirmin function simplifies

to an exponential and when v = 1.0 to an autoregressive field.

In this thesis we will be most interested in the von KMirmi.n function where v =

0. Our reason for choosing this parameterization is two-fold. Earlier studies have

shown that it might best describe the random heterogeneities which exist in the

crust, (Frankel and Clayton, 1986; Goff and Jordan, 1988; Toks~z et al., 1988). In

addition, the 0th order (v = 0) von Kirm in function is least similar to the Gaussian

and thus will offer us a suitable comparison to that function.

The peakedness of the correlation function leads to a wide spectral representation,

indicating that media characterized by the von Krmiin function contain a significant

amount of roughness (Figure 4). As in the Gaussian and exponential functions, the

power spectrum of the von KArmin function is flat up to a corner wavenumber roughly

equal to 1/a. The difference is that at higher wavenumbers the spectrum falls off as

k-(N+2" ), considerably slower than the Gaussian or exponential functions. Thus for

the von KirmSin (and exponential) function, 1/a defines a corner wavenumber and

the parameter v controls the rate of decay of the power spectrum (Figure 1).
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ACF=Exponential

Offset (in)
0 50 100 150 200 250

0 3.25

50

150

2.75

Figure 3: Same as Fitires, 2 and 4, but with an exponential autocorrelation function.
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Figure 4: Same as Figures 2 and 4. buit with a 0th ord~i von harman autocorrelation
function.



The von Kirmin function has an additional property that its slope is discontinuous

at zero lag. This property qualifies the von KArm~in function as a fractal (Mandeibrot,

1977). Fractals are unique and of interest because they contain variations on all

wavelengths. Since many physical characteristics in the crust also display variation

on a wide variety of length scales, this autocorrelation function may be well suited

to crustal applications. The self-similar nature of fractals can be easily seen by

examining the variance as a function of wavenumber. Figure 5 shows a series of

1-D realizations taken from the three acf described above. All three realizations have

the same correlation length (a = 20 m) and were generated by the same random

seed. At low wavenumbers there is little variation in shape and variance between the

traces. This is consistent with the power spectra (Figure 1), which are flat at low

wavenumber for all three fu'actions. At high wavenumbers, there is no variance in the

Gaussian trace, and the variance in the exponential trace is smaller than it was at

low wavenumber. Thus, for these media, the variance over equal logarithmic intervals

of wavelength decreases as the wavelength decreases (Frankel, 1989). This is not so

for the 0th order von Kirmiin function. The variance for that function is roughly

constant over length scales smaller than 27ra (Figure 5).

At this point it is worth restating a subtle distinction. Three acf are commonly

used in scattering literature to represent spatial velocity fluctuations in the earth;

the exponential function, the von Kirmin function, and the Gaussian function. It is

important not to confuse the Gaussian acf with the Gaussian statistics of the medium.

The former describes the spatial dependence of the medium, while the later describes

the pdfof the random variable.

2.4 Conclusions

In this chapter we have outlined the statistical background necessary to generalize

the complex velocity fluctuations in the earth to a random field. Statistical charac-
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Figure 5: Random realizations from the 11) Gaussian, exponential, and 0th order voll
K&rmAn autocorrelation functions. a) unfiltered, b) bandpass filtered allowing wave-
lengths 2.5a-5a, c) bandpass filtered allowing wavelengths a/4-a/2. All realizations were
constructed with the same random seed, and are plotted at constant scale.
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terization is considered reasonable because changes in lithology, fracture density, pore

pressure, regional stresses, etc, all cause seismic velocities in the earth's crust to vary

irregularly with position. Many of these features are too small and too numerous to

define deterministically, thus we have little recourse but, to treat them stochastically.

Although all the features mentioned above can affect seismic velocities, their spa-

tial extent may vary by many orders of magnitude. Contrast a typical micro-crack

which may be only a few microns wide and a fault zone which may be a kilometer

wide; the range of length scales is 10 orders of magnitude. This wide range of length

scales presents a problem when numerical techniques are used to model wave propa-

gation in the earth. Most often only the large-scale variations (i.e. var , 'i, rs larger

than a seismic wavelength) are included in the velocity model. As a result, synthetic

seismograms generated from these models often lack the "background noise" observed

in real-earth seismograms. By including these small-scale random features, we are

able to achieve a better match between the synthetic seismograms and those recorded

in the earth. We do this not only to better model wave propagation in the earth, but

also in an attempt to understand the velocity distributions within the earth. These

distributions are capable of describing a little known and poorly understood aspect of

the earth and may hold grcat potential in reservoir characterization, fracture density

studies, seismic anisotropy, mantle studies (with respect to convection), etc.

In this chapter we also introduced the autocovariance functions most commonly

cited in the scattering literature. We will use these functions in the chapter on forward

modeling in stochastic media. It was shown that random processes with Gaussian

autocorrelation funct;Jns give rise to smoothly varying realizations, while random

processes with von Kirmin autocorrelation functions produce realizations with a

strongly textured appearance.
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Chapter 3

Scattering in R1andom Media

361 Introduction

Seismic wave scattering is a complex phenomenon which depends on the size, dis-

tribution and magnitude of the heterogeneities in the earth. In general, the exact

distribution of these heterogeneities is unknown, and we have no recourse but to use

some simplified model. Historically, the earth has often been modeled as a simple

stratified medium, each of the strata having constant velocity and density. Seismo-

grams from these models tend to match the gross features recorded in field data, but

lAck the variations in amplitude and travel time and the incoherent energy which is

often observed after the major arrivals. Both of these features are symptomatic of

scatteting from small-scale changes in velocity or density.

The scattering problem is difficult to solve exactly, in part because the problem

is recursive. That is, a wave scattered from a particular heterogeneity is further

influenced by other heterogeneities in the medium. When scattering is weak, it is

common to consider only the incident wave and the first scattered wave. This is the

single scattering solution (e.g., Aki, 1969; Aki and Chouet, 1975; Sato, 1977a; Sato,

1977b; Aki, 1980; Wu and Aki, 1985c; Chouct, 1990). The problem is often further

sirhplified by invoking the first Born approximation, which will be referred to as simply
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the Born approximation. In the Born approximation, it is assumed that the incident

wave is unchanged during propagation through the heterogeneous region. As a result,

energy scattered from the incident wave is not subtracted from the background field

and the total energy in the medium 1r'crease- with time. Although this limitation is

clearly stated in much of the scattering literature, the Born approximation continues

to be used for both forward and inverse modeling of random continua.

Whereas most analytic solutions for scattered waves are valid only when scattering

is weak, it may be possible to solve the problem exactly via numerical methods.

The first numerical simulations of seismic wave propagation in stochastic media were

accomplished using a two-dimensional ray tracing technique (Mereu and Ojo, 1981).

In that study it was found that the variations in travel time and amplitude of the

incident wave are controlled mainly by the long wavelength variations in the medium.

Frankel and Clayton (1984) used the finite difference technique to model acoustic

waves in random media and were able to produce coda waves and study apparent

attenuation. For the three random media they studied (characterized by the Gaussian,

exponential, and von Kirmin autocorrelation functions), they found that apparent

attenuation increased with frequency until the correlation length of the scatterers

was comparable to a wavelength. At higher frequencies, there was no decrease in

apparent attenuation in the exponential and von Kirmin media, but there was a

noticeable decrease in the Gaussian media. These results agree well with analytic

solution (Dainty, 1984). Finite difference modeling has also been applied to the

elastic wave equation; both to study the relationship between the medium and the

observed scattered field (Frankel and Clayton, 1986; McLaughlin and Anderson, 1987;

Dougherty and Stephens, 1988) and to study the response of typical seismic processing

streams used on data collected in highly heterogeneous regions (Gibson and Levander,

1988).

In this chapter, the focus is on the differences between the single and multiple scat-

tering solution. To accomplish that end, a new semi-analytical technique to calculate
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the single scattering solution is developed. The technique uses single scattering theory

and the Born approximation to calculate the equivalent body forces in the medium

due to the interaction between the incident field and the heterogeneities. These equiv-

alent sources are then propagated in the background medium via the finite difference

technique. The most important advantage of this new technique is that it can be used

to generate the single scattering solution for any particular velocity model. This will

allow us to compare the single scattering solution to the multiple scattering solution,

as calculated by a conventional finite difference technique, for a variety of random

media. It is important to point out that both techniques make use of finite difference

modeling, but in one case (the single scattering solution) special steps are taken to

include only single scattered waves in the solution.

3.2 Single Scattering

3.2.1 Theory

Consider an isotropic, elastic medium which is homogeneous except for some small

region W. Outside the region W, let A0, y0, and p0 be Lam6's parameters and density.

Inside N, the material properties can be written as the sum of the homogeneous

parameters plus a spatially varying perturbative term,

A(_) = Ao+A(j_) A-O XOR

(_ = o +6A(_) bp=-o x R

P_ = Po+ 6 p(_) bp - 0 X R. (3.1)

Both inside and outside W?, particle displacements can be described by the general

elastodynamic equation of motion (Aki and Richards, 1980)

Pfij - (AV. ii),j - [p(u,, + u,,,)], = Si, (3.2)

where i& = u (r,t) is the displacement vector, and 35 = 1(xt) is the body force

vector.
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Outside R, the material properties are spatially invariant and Equation 3.2 can

be simplified to

poii - (A0 +yo)(V. u),j - poV 2ui = Si. (3.3)

Inside R Equation 3.1 can be inserted into Equation 3.2.

poiii - (Ao + yo)(V. u),j - poV 2ui = Si + Qj, (3.4)

where

Q, = -6 pii + (6A + bu)(V • a),j + 6V 2u, + (bA),V .u + (6p).j(ujj + ui,,). (3.5)

Notice that Equation 3.4 is similar to Equation 3.3, with terms involving the hetero-

geneities appearing as a body force term.

If the scattered field is small compared to the incident field, the problem can be

simplified by introducing the first Born approximation. Under that assumption, the

displacement field can be decomposed into two parts; the incident field u ° and the

scattered field u,

0 + 1 1 (3.6)

L u I1>1 uL I. (3.7)

It is assumed that scattering is weak enough that the perturbations in the medium

have no effect on the incident wave and all scattering is due to the interactions between

the incident wave and the perturbations in the medium (i.e. secondary scattering is

ignored).

Inserting Equation 3.6 into Equations 3.4 and 3.5 and neglecting terms involving

the interaction between the scattered field and the perturbations in the medium yields,

po?- (,j ,_ -(Ao+po)(V ).-),j-oV u, = S,+Q ° , (3.8)

where

Qi = _6bpO + (6A + 6b)(V . z.o),i + b/ V2uO + (6A),iV --u + (6p),j(u, + u o). (3.9)
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The first three terms in Equation 3.8 account for the displacements of the inci-

dent field in the homogeneous background. From Equation 3.2 these terms can be

subtracted, leaving an equation of motion for the scattered field,

pofi - (00 + po)(V _'- pVu - Qi. (3.10)

Under the Born approximations then, both the incident and scattered fields travel in

the background medium. As a result, the incident wave is not affected by the pertur-

bations in the medium, and the scattered field is generated only by the interaction

between the incident field u° and the perturbations.

3.2.2 Limitations of the Born Approximation

Although the Born approximation in commonly used in bL, forward and inverse

modeling, surprisingly few studies have been published which explore the range of

validity of the technique (e.g., Chernov, 1960; Hudson and Heritage, 1981).

Chernov (1960) showed that it was possible to estimate the power carried by

the scattered field in a random acoustic medium. In that derivation, gradients in

the material properties were neglected (i.e. smooth perturbations only) and it was

assumed that the receiver point was far from the heterogeneous region. Then, for a

medium with a Gaussian correlation function, the ratio of the power in the scattered

field to the power in the incident field is given by

AI =/ifik2aL(1 - e- ), (3.11)I

whete i is the rms deviation in the refractive index, k is the wavenumber of the

incident wave, a is the correlation length of the medium and L is the propagation

length within the heterogeneous region.

From Equations 3.11 and 3.7, the range of validity for the Born approximation in

an acoustic medium is given by

V'-f(ka) 4 - < 1, for ka < 1 (3.12)
a
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-- < 1, for otherwise. (3.13)

a

When ka is small, the wavelength is much larger than the scatterer, and the scattered

field has the characteristic Rayleigh scattering k4 dependence. When k" is large, the

scattering coefficient increases as the square of the ka. In either case, it is clear that

the Born approximation is probably not adequate when the propagation path is long

compared to the correlation length of the medium. This is precisely the case in a

random continuum studied here.

Hudson and Heritage (1981) carried out a similar analysis for the elastic wave case.

Using several simplifying assumptions, they were able to define a range of validity for

the Born approximation,

00 + max (A, A) < 1, (3.14)

where f0 is the maximum angular frequency, 13o is the background shear wave velocity,

d is the size of the region bounded at each instant of time by the scattering centers

corresponding to scattering from the incident wavefront to the observer by the least

time path and A, Ai and 0 are the normalized rms deviations in Lam6's parameters

and density. In that study, the authors warn that Equation 3.14 is extremely strict

and the Born approximation will work well in many media which violate this limit.

These studies suggest that although the Born approximation has been shown to

produce excellent agreement with other analytical solutions when the scatterer is a

discrete, isolated feature (e.g., Wu and Aki, 1985c), the technique may not be valid

for random continuous media.

3.2.3 Numerical Implementation

In Appendix A, the single scattering and Born approximations are used to generate

closed form solutions to a variety of scattering problems. In all cases, the inhomoge-

neous region is assumed to be a single, discrete, isolated anomaly. These solutions are
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useful for gaining insight into the nature of scattering, but they may not be adequate

to study scattering in the earth. An alternative to these analytical solutions is to

solve solve the problem numerically. The advantage of numerical solutions is that

they can be used to study scattering in media which may be too complex to study

with known ana!ytic techniques.

Many inumerical techniques exist which can be used to compute synthetic seismo-

grans in laterally heterogeneous media. High frequency Lechniques such as raytracing

are valid only when the size of the scatterer is large compared to a wavelength (e.g.,

ka > 10) (Cervenk, et al., 1982). Methods based on Kirchoff-Helmholtz integration are

very accurate for sharp interfaces, but these techniques ignore the effects of multiple

scattering and are invalid in smoothly varying media where the size of the scatterer is

similar to that of a wavelength (Scott and Helmberger, 1983). Perturbation methods

consider only scattering of the incident wave, thus cannot be used to study media in

which multiple scattering may be important (Kennett, 1972a; Prange, 1989). Finite

difference modeling overcomes many of these shortcomings and has been used success-

fully in a number of scattering studies (e.g., Flatt6 and Tappert, 1975; Macaskill and

Ewart, 1984; Frankel and Clayton, 1984; McLaughlin et al., 1985; Frankel and Clay-

ton, 1986; McLaughlin and Anderson, 1987; Dougherty and Stephens, 1988; Toks6z

et al., 1991).

The chief advantage of the finite difference technique is that it is capable of prop-

agting the complete wavefield through an arbitrarily complex model. The technique

is accurate over a wide range of scattering regimes (0.1 < ka < 1000), and all wave

types (direct, reflected, diffracted, and guided modes) are included in the solution.

In addition, seismograms can be calculated at any point in the medium and "snap-

shot" pictures of the displacement field can be generated over the whole extent of

the model. The snapshot pictures have proven to be extremely useful as they provide

an excellent opportunity to view both mode conversion and coda generation. The

main disadvantage of finite difference modeling is its computational burden. This has
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proved to be the limiting constraint in extending the technique to three dimensions.

The finite difference scheme used throughout this study is presented in Appendix B.

It is an explicit, second-order scheme in which displacements are propagated on a dis-

crete grid. The material properties of the medium, A, p, and p are allowed to vary

freely as a function of position and are discretized at the same spatial position as the

wavefield. The second-order scheme was chosen because it was easy to implement

and it allowed the two components of the displacement vector to be calculated at the

same spatial position (unlike a staggered scheme, where displacements and stresses

are calculated at different points in space). Also, the non-staggered scheme technique

works well with published free surface and absorbing boundary conditions. The cost

of these simplifications is a loss of accuracy, which we will show can cause observable

errors in the wavefield.

The algorithm to numerically compute the single scattering solution is straight-

forward. First, the incident field is propagated one time step on a finite difference

grid. The Born approximation states that the incident field is unaffected by the

perturbations in the medium, therefore the velocity field for this simulation is the

background field. Next, the source term arising from the interactions between the in-

cident wave and the scatterers is calculated from Equation 3.9. This body force is then

introduced into a second finite difference simulation which has the same background

velocity model (Equation 3.10). The second finite difference simulation is updated

one iteration and the process is repeated. If desired, the background (displacement)

field may also be simultaneously propagated on the second finite difference grid, thus

providing the total (single scattered) field.

It is important to note that the new technique is not meant to replace conventional

finite difference techniques. It is simply a technique which can be used to obtain

the single scattered solution for any complex velocity model. Therefore, this new

technique and conventional finite difference modeling are complimentary, and for the

case of an isolated point scatterer should converge to the same solution. In the next
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section, we will exploit this, and use the conventional finite difference technique to

assess the accuracy of the numerically derived single scattering solution.

3.2.4 Validation of the Single Scattering Solution

In this section, the scattered field due to a plane P-wave incident on a point diffractor

is calculated using both the single and multiple scattering finite difference techniques.

The incident wave was a Ricker wavelet with a center frequency of 60 Hz and the

scatterer was a point diffractor with a 33% perturbation in JL. The resulting displace-

ments were recorded by a circular array of receivers centered about the diffractor with

a radius of 100 m (Figure 6).

To limit errors due to inaccuracies in the finite difference technique, the dominant

wavelength of the source was sampled at 60 points per wavelength (PPW). Since

the frequency band of the source extends to three times the center frequency and

the medium was a Poisson solid, the highest frequency shear waves (waves with the

shortest wavelengths) were sampled at a rate of greater than 10 PPW. At these

sampling rates, the maximum errors due to the finite difference technique should be

less than 5%, and at the center frequency errors should be less than 2% (Appendix B).

Figures 7 and 8 show the radiation patterns for P-P and P-S scattering for both

the single and multiple scattering solutions. The radiation patterns were calculated

by first converting the horizontal and vertical components of the displacement field

to radial and transverse motion relative to the position of the scatterer. Then the

traces were enveloped and the maximum displacement on the radial components was

taken to be the P-wave radiation and the maximum displacement on the transverse

component was taken to be the S-wave radiation.

From Figure 7 it is clear that the single scattering solution underestimates the

scattered field in the forward direction, but overestimates the scattered field in the

backward direction. There are two causes for this disagreement. First, the two tech-

niques use different finite difference operators to find the gradient of the perturbation.
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Receiver= / Array

Scatterer

Incident P 5k = 8p = 0
Wave 8g =.33 g

Figure 6: The source-receiver geometry used to validate the numerical single scattering
solution.
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Scattered P-wave
(Point Diffractor)

0.05- 0Incident Wave

0.03

0.00

0.03

-SS P-wave

0.05 - MS P-wave

Figure 7: Comparison of the single and multiple scattering solutions for a plane P-wave

incident on a point diffractor (33% variation in u). Shown is the peak amplitude of the
scattered P-wave as a function of angle.
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Scattered S-wave
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Figure 8: Comparison of the single and multiple scattering solutions for a plane P-wave
incident on a point diffractor (33% variation in i). Shown is the peak amplitude of the
scattered S-wave as a function of angle.
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The conventional finite difference technique (multiple scattering) uses a more accu-

rate half-step finite difference. Second, errors in the tinile differences arise due to the

sharp gradients in the velocity model. These gradients cause the equivalent sources

in the single scattering solution to be injected into the finite difference simulation

without any spatial smoothing. The lack of smoothing introduced high wavenumbers

into the displacement field, which are known to cause large errors in the solution (Ap-

pendix B). This problem could be minimized either by adopting a staggered finite

difference formulation (Virieux, 1986), or by smoothing the velocity model slightly

(Fornberg, 1987). The same general trends observed in the P-wave radiation are also

visible in the S-wave radiation (Figure 8).

To isolate the errors caused by sharp gradients in the medium, the previous

experiment was repeated for a slightly smoothed point diffractor. The smoothed

point diffractor was constructed so that the velocity models had the shape of a two-

dimensional Gaussian function (a2=1 grid spacing). The Gaussian shape was cho-

sen because in wavenumber domain, the power spectrum is dominated by the low

wavenumber components. As can be seen in Figures 9 and 10 the elimination of high

wavenumbers in the model increased the accuracy of the solution. Notice that the

overall shape of the radiation pattern is consistent with the previous point diffractor,

but the amplitude of the scattered field is roughly three times greater. The increased

amplitude is predicted from the analytical solutions, which shows that in the Rayleigh

scattering regime the amplitude of the scattered field is proportional to the size of

the scatterer (Appendix A).

This simple experiment demonstrates that there is sufficient agreement between

the numerically calculated single and multiple scattering solution to warrant the use of

our finite difference technique for calculating the single scattering solution. It was also

shown that the accuracy of the single scattered solution is improved if the technique

is limited to sufficiently smooth models. It is possible that adopting a staggered finite

difference formulation would further improve the accuracy of the single scattering
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Scattered P-wave
(Smoothed Diffractor)

0.20 Incident Wave

0.10 i-

0.I00

0.10

-SS Smoothed P-wave

0.20 ----- MS Smoothed P-wave

Figure 9: Same as Figure 7, hut for the smoothed point diffractor. Notice the improvement
in the equivalent source solution. The increase in size of the smoothed point diffractor is
manifest in larger peak amplitude values in the scattered field (Appendix A).
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Scattered S-wave
(Smoothed Diffractor)

0.50 Incident Wave

0.25

0.00

0.25

SS Smoothed S-wave

0.50 ..... MS Smoothed S-wave

Figure 10: Same as Figure 8, but for the smoothed point diffractor. Notice the improvement
in the equivalent source solution. The increase in size of the smoothed point diffractor is
manifest in larger peak amplitude values in the scattered field (Appendix A).
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solution, since that technique is more accurate in media with sharp discontinuities

(e.g., Virieux, 1986; Stephen, 1988). For these reasons, the single scattering formu-

lation will be used only on fairly smooth random media (such as those characterized

by the Gaussian correlation function). Solutions for more textured random media

(such as those characterized by the exponential or von Kcrmin correlation functions)

will be postponed until the technique can be implemented using a staggered finite

difference approach.

3.3 Single vs Multiple Scattering: A Case Study

Having established the validity and limitations of the finite difference technique for

calculating the single scattering field, we can now compare the single scattering solu-

tion to the full, multiple scattering solution for two randomly heterogeneous media.

Both velocity models (VEL and IMP) were generated from the same random realiza-

tion for Lam6's parameter A (Figure 11). The realization had Gaussian statistics with

a mean of unity and 10% rms deviation. The spatial distribution of A had a Gaussian

correlation function, where the correlation length a of the medium was equivalent to

the dominant wavelength of the source (29 m).

In one of the random media (VEL), the perturbations in the medium obeyed the

following relationships,
-A . (3.15)

Ao /po PO

This combination of parameters produced random variations in both the shear and

compressional wave velocities, but little variation in impedance (Figure 12). As a

result, the majority of the scattering in this model is due to the velocity perturbations.

In Appendix A this situation was referred to as velocity scattering and the scattered

field from an isolated scatterer was shown to dominated by forward scattering.

In the second model (IMP) the relationships between Lam6s parameters and
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(-4.5 Wavelengths)

Figure 11: The realization of Lam6's parameter A used to construct the two random media
(VEL and IMP). The realization has Gaussian statistics, 10% rms deviation in A and is
chmacterised by a Gaussian correlation function with a correlation length of 29 m. The
white dots are receiver positions.
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density are given by,
- - 6P (3.16)AO PO PO

A medium with this combination of parameters has no velocity variations, only

impedance variations (Figure 13). In Appendix A it was shown that in these me-

dia P to P scattering is strongest in the backward direction. In addition, it was also

shown that the magnitude of the backscattered field is inversely related to the size

of the scattering body. Therefore, in th-s medium scattering should be strongest for

low frequency waves.

In both media, the single scattering solution was obtained using the finite dif-

ference approach outlined above, and the multiple scattering solution was generated

using a conventional finite difference formulation (Appendix B). The source was a

plane P-wave which was introduced near the top of the grid. The source time func-

tion was a Ricker wavelet centered at 60 Hz, and the area around the source region

was assumed to be homogeneous. In addition, the transition between the homoge-

neous and heterogeneous regions was smoothed to prevent reflections. To prevent

contamination from the sides of the finite difference grid, the models were assumed

to be horizontally periodic and absorbing boundary conditions were used on the top

and bottom of the grids (Clayton and Engquist, 1977). Both models were 256 nodes

wide and 2100 nodes long. The spatial grid spacing was dx = 0.5m (60 points per

wavelength (PPW) at 60 Hz). This resulted in a model which was 0.128 km (;4.5

wavelengths) x 1.05 km (;40 wavelengths).

To compare the single and multiple scattering solutions, four separate simulations

were made. The single scattering solution in the medium with velocity variations

is denoted by SSYEL, while that in the medium with only impedance variations is

denoted by SSJMP. Similarly, the multiple scattering solutions are labeled MSVEL

and MSJMP. Synthetic seismogramris (vertical component of the displacement vector)

from the four simulations are shown in Figures 14 - 17. The individual seismograms

within each plot have constant gain and since scattering in the impedance scattering
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Figure 14: Synthetic seismTograms froin the multiple scattering solution in the impedance

scattering medium. The distance between traces is 10%, of the peak amplitude in the

upurce. Scattering is small and sems to come fromn only relatively a few isolated scat-

terers.
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Figure 15: Synthetic seismograms from the single scattering solution in the impedance scat-

tering medium. The scale is the same as Figure 14. Notice the similarity to the multiple

scattering solution in the later arrivals, but the difference near the first arrival.
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Figure 16: Synthetic seismograrns frorn the multiple scattering solution in the velocity scat-
tering medium. The scale is twice that in the previous figures to reflect the increase in
scattering in the velocity scattering meditim. Notice the lack of coherent arrivals in the
coda and variations in amplitude and travel t irme in the first arrival.
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Figure 17: Synthetic seismograms from the single scattering solution in the velocity scattering

medium. The scale is the same as that in Figure 16. Unlike the impedance scattering

solutions, the single and multiple scattering solutions in the velocity scattering medium

are quite different.
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model was less than that in the velocity scattering model, seismograms from the

impedance scattering model are shown at twice the scale. The detectable up-going

wave in the seismograms from the impedance scattering models is a reflect from the

bottom of the finite difference grid.

In the multiple scattering solution for the impedance scattering medium (MSJMP),

the most obvious feature is the relative lack of scattering. The incident wave travels

through the medium with only minor fluctuations in amplitude and no travel time

fluctuations (Figure 14). The amount of energy scattered from the incident wave is

small and seems to emanate from only a few points in the medium. The scattered

arrivals undergo little subsequent scattering and therefore appear as coherent arrivals

across many neighboring receivers. Both from the particle motion (Figure 18) and

from the moveout across the array, it is clear that the majority of the backscattered

energy is P-wave energy.

The low magnitude of the scattered field is a consequence of the material param-

eters and the relatively large size and smoothness of the scatterers. The relationship

between the perturbations favors backward scattering (Equation 3.16). but the size of

the scatterers is large enough to effectively reduce backward scattering (Appendix A).

With these two factors in mind, it is clear that low frequencies should dominate the

scattered field. A plot of the power i, the scattered field (where the scattered field

is defined as the total multiple scattered field less the same incident wave travel-

ing through a similar homogeneous medium) shows this t, be the case (Figure 19a).

When normalized to the power contained in the source pulse, this observation is made

even more evident (FigLre 19b).

Seismograms from the single scattering solution (Figure 15) look much like those

from the multiple scattering, except for the concentration of energy around the first

arrival. The excess energy is due to the accumulation of errors in the scattered field.

These errors only affect the solution immediately following the incident wave and

result because errors in the finite difference operator add in phase in the forward
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Figure 18: Hodogram (particle motion plots) from a receiver located at the center of the

impedance scattering model. The hodogram is constructed from the multiple scattering

solution and clearly demonstrates that the majority of the backscattered energy is due

to P-wave to P-wave scattering.

59



Multiple Scattering Coda Wave Power
(Impedance Scattering Model)

1.0 -. 0.05

0.8 Source - 0.04

Wave .

0.6 0.03
" ~Scaered=

0.4 Waves 0.02 n

0.2 o.o1

0.0 0 - .. .00

0 50 100 150

Frequency (Hz)

0.5 r

0.4

0.3

E 0.2 -

0.

00 5 100 150

Fmeqtecy (Hz)

Figure 19. (Top) The power in the multiple scattered field from the impedance scattering

model (magnified 20X) compared to that in the source pulse. (Bottom) The ratio of the

power in the scattered wave to that in the source pulse. In this medium, the scattered

field is dominated by low frequencies.
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direction. It is important to stress however that these errors in no way affect the

accuracy of the backscattered waves. Although the gain used in Figure 15 make the

errors in the single scattering solution look extremely large, it should also be noted

that even at the furthest offsets the amplitude of these errors are less than 10% of

the amplitude of the incident wave. The latter part of the scattered field is generally

overestimated under the Born approximation and the disparity between the single

and multiple scattering solutions should be expected to increase with propagation

distance. Enlarging and comparing some of the traces in Figures 14 and 15, it can be

seen that except for the region around the first arrival, the two solutions agree very

well (Figure 20). As expected, at far offsets the size of the scattered field is generally

overestimated, but the general character of the late arrivals is still remarkably similar.

When the dominant form of scattering is velocity scattering, the difference be-

tween the multiple scattering and single scatter solutions is more obvious. Unlike the

previous example, the multiple scattering solution to the velocity scattering model

can contain significant travel time and amplitude variations in the first arrival, as

well as significant amounts of energy late in the seismogram (Figure 16). Note the

lack of coherent arrivals in the coda, as well as the frequency content of the coda.

Compared to the impedance scattering medium, the coda has a wider frequency range

(Figure 21), and it appears from these results that the maximum scattering in this

medium occurs near the center frequency. These observations are consistent with

earlier observations in both acoustic and elastic media (e.g., Chernov, 1960; Frankel

and Clayton, 1986).

The most obvious difference between the single and multiple scattering solutions

in the velocity scattering medium is the lack of late arrivals in the single scattering

solution. This effect is most noticeable at near offsets (Figure 23). Also notice that

in the single scattering solution, several scattered waves form coherent arrivals across

neighboring receivers. This occurs because there is no secondary scattering of these

waves. FK analysis of the coda reveals that most of the early arrivals result from
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Figure 20: An overlay of the single and multiple scattering solutions from the impedance
scattering medium show that the later arrivals agree very well. The disagreement near
the first arrival is a consequence of the Born approximation.

62



Multiple Scattering Coda Wave Power
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Figure 21: (Top) The power in the multiple scattered field from the velocity scattering model
compared to that in the source pulse. (Bottom) The ratio of the power in the scattered
wave to that in the source pulse. In this medium, there is significant power in the coda
at all frequencies.
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P to P scattering, while the later arrivals were dominated by P to S scattering.

These observations were confirmed by particle motion analysis (Figure 22). Another

important difference between the two solutions is the lack of travel time variations in

the single scattering solution. This occurs because in the single scattering solution,

the incident wave travels in the homogeneous background medium.

As was true for the previous random medium, the magnitude of the scattered wave

increases with propagation distance in the single scattering solution, but decreases in

the multiple scattering solution. Since the majority of the scattering in this medium

is forward directed (Appendix A), there should be less frequency dependence in the

coda. This is confirmed by Figure 21 which shows that there is little frequency

dependence in the coda, except for possibly a slight peak near the center frequency.

Plotting several of the seismograms in Figures 16 and 17 side by side shows that there

is little agreement between the two solutions and highlights the lack of coda in the

single scattering solution (Figure 17).

Power in the coda of the single scattering solution is significantly different than

that in the multiple scattering solution (Figure 24a). Although there is power at low

frequencies, the dominant feature in the data is the linear increase in power with

frequency. When normalized to the source spectrum, it would appear that all of the

high frequency energy in the source has been redistributed to the coda (Figure 24b).

This is not a real effect, but an error due to the Born approximation. Beydoun

and Tarantola (1988) found similar results for an acoustic medium and were able

to show that the errors in amplitude of the transmitted wave increase linearly as a

function of wL, where w is the angular frequency, and L is the propagation distance.

Although the presentation here is based on forward modeling, the results are also

consistent with Snieder (1990) who showed that inversion techniques based on the

Born approximation are only capable of reconstructing the low wavenumber parts

of the model. This occurs because upon inverse (Born) modeling, the wavefield is

damped by a factor which is inversely proportional to frequency (or wavenumber).
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Velocity Scattering Medium
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Figure 22: Hodogram (particle motion plots) from a receiver located at the center of the
velocity scattering model. The hodogram is constructed from the multiple scattering
solution. It was found from these hodograms that the early coda is dominated by P to
P scattering and the later coda by P to S scattering.
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Figure 23: Seismograms from the multiple (top) and single (bottom) scattering solutions
ploted side by side. Notice the lack of late arrivals at the near offsets in the single
sca ttering solution. At far offsets, the single scattered field is dominated by P-waves near
the first arrival and S-waves later in the coda.
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Figure 24: (Top) The power in the single scattered field from the velocity scattering model
compared to that in the source pulse. (Bottom) The ratio of the power in the scattered
wave to that in the source pulse. The power at high frequencies is largely due to errors
introduced by the Born approximation.
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3.3.1 Attenuation and Coda

One way to quantify the loss of energy due to scattering is through the dimensionless

attenuation parameter Q. A variety of different techniques have been introduced to

measure Q. One formulation relates the log decrement in amplitude of the transmitted

wave to the propagation distance,

A(w,x) = Aoe - Wx/( 2 vQ.) (3.17)

where the incident wave is assumed to be a plane wave, A 0 is the initial amplitude of

the transmitted pulse, w is the angular frequency, x is distance, and v is velocity. This

relation has been used to quantify the attenuati)it due to scattering (i.e. Q = Q.)

(e.g., Frankel and Clayton, 1986; Toksdz et al., 1988), as well as to describe the loss

due to intrinsic attenuation (i.e. Q = Qj) (e.g., Aki and Richards, 1980). As a result,

this Q is often termed the scattering or transmission Q. The fact both processes can

be explained by the same equation suggesting that it might be difficult to discriminate

between attenuation due to scattering and intrinsic attenuation. This lead Aki (1980)

to combine both type of attenuation when he studied scattering and attenuation of

shear waves in the lithosphere.

Other measures of Q also exist. Aki (1969) suggested that seismic coda waves from

local earthquakes are composed primarily of backscattered waves. He speculated the

backscatter was caused by small-scale variations in the Earth's crust. Due to the

large number and random distribution of these scatterers, he suggested treating the

heterogeneities statistically. Aki and Chouet (1975) expanded on Aki's original work

and presented a single scattering model in which the coda amplitude A(w, t) is given

by

Awt) o(u- 't.-t(Q, (3.18)

where v is velocity, a is a constant which depends on the geometrical spreading, Q,

is the "scattering Q" and Q, is the "coda Q". The term under the radical is often

referred to as the turbidity of the medium and is proportional t~o the energy scattered
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per unit distance traveled. Aki (1980) showed that in a medium without intrinsic

attenuation the scattering Q is equivalent to the coda Q. Equation 3.18 was derived

for either a point or line source, and thus not directly applicable for the geometry

studied here.

Equations 3.18 and 3.17 represent two different measures for describing the rate

energy is scattered by the medium. Q, is derived from the coda of the seismogram,

while Q, is derived from the first arrival. Hudson and Heritage (1981) suggest that

if the scattering region is strong, the Born approximation will be violated after some

length of time because scattering from far away will be diminished by multiple scat-

tering. They stress that the early scattering process is dominated by single scattering,

but as the effective scattering region (i.e. the region between the source point and

the incident wavefront) increases multiple scattering should becomes more important.

This suggests that the rate of coda decay will be different between the two solutions

at sufficiently long times.

To calculate the scattering Q, 955 seismograms from each of multiple scattering

models were first bandpass filtered (±5 Hz) around a series of frequencies (5, 15,

25, 35, 45, 55, 65, 75, 85, 95, 105, 115, 125, 135, 145, 155, 165 and 175 Hz), then

enveloped. The natural log of the maximum value of the envelope was then plotted

against distance and fit with a straight line (Figure 25). The slope of the line was

then used to calculate Q, as a function of frequency,

-w x (3.19)

= a2ln[A(w,x)/Ao] I (

This is the same procedure used by Frankel and Clayton (1986), except no correction

for geometric spreading was necessary since the source was a plane wave. For all

frequencies, the fall-off was roughly linear with distance. This suggests that the

attenuation model presented in Equation 3.17 is capable of accurately explaining

attenuation due to scattering in these media. Since this method uses the decrease in

amplitude of the transmitted wave to calculate Q, it is not appropriate for the single

scattering solutions, in which the amplitude of the total field increases with propa-
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Figure 25; Logarithm of the peak amplitude after the data were bandpass filtered (60±5Hz),
and enveloped. These are some of the data used to compute Q, for the impedance (top)
and velocity (bottom) multiple scattering media.
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gation distance.

The calculated attenuation curves for the two models are shown in Figure 26.

As expected, attenuation is greatest at low frequencies in the impedance scattering

medium. At higher frequencies the attenuation curve falls off quickly, ; (ka) - 4. The

attenuation curve for the velocity scattering medium was clearly different. Atten-

uation increases with frequency until ka ; 1, then at higher frequencies decreases

slowly. This behavior has been observed in both elastic (Frankel and Clayton, 1986)

and acoustic (Chernov, 1960) media which are characterized by the Gaussian correla-

tion function. The attenuation curves confirm what was evident on the seismogra- 9;

the velocity scattering medium scatters more energy from the incident wave than t.

impedance scattering medium. Since the medium is assumed to be perfectly elastic,

energy scattered from the primary wave must eventually be recorded as coda by an-

other receiver. At low frequencies (25 Hz), the two media show comparable amounts

of coda and similar coda decay rates (Figure 27). At higher frequencies, the velocity

scattering medium has more coda, but still has roughly the same coda decay rate,

indicating this coda decay rates by themselves cannot be used to distinguish between

velocity and impedance scattering (Figures 28 - 29).

As was mentioned earlier, another measure of attenuation is the rate at which the

code decays. Figures 27 - 29 show the rate of coda decay in the single and multiple

scattering solutions for both random media. The data used in these figures are taken

from the 40 second window shown in Figures 14 - 17. The raw time series was first

bandpass filtered, enveloped, and then plotted in semi-log format. Several interesting

features emerge from the data. At low frequencies (25 Hz), the coda in the impedance

scattering medium is nearly flat and there is little difference between the single and

multiple solutions (Figure 27). The agreement is not as good in the velocity scattering

medium, but the rate of coda decay is still consistent between the two solutions. Near

the center frequency (Figure 28), there is more slope to the coda curves and in both

media the two solutions are no longer similar. The same trends persist at the
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Figure 26: Attenuation as a function w." normalized frequency ka for the two random media.
In the velocity scattering medium, attenuation peaks near ka=l, while in the impedance
scattering attenuation is greater for low frequencies.
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Figure 27: Coda decay rates at 25 H for the four models investigated here. Data were taken

from the center of the models (Figures 14- 17) and were windowed (.4-.8 sec), enveloped
and plotted on semi-log axes.
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Figure 28:. Sire as Figure 27, but bandpass filtered around 65 Hz. At 65 Hz, the single and
mnultiple scattering S Iutions begin to diverge.
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Figure 29: Same as Figure 28, but bandpass filtered around 105 Hz. Note the rate of decay
in the single scattering solutions is faster than that in the multiple scattering solutions.
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highest frequency (Figure 29), where the single scattering solution clearly decays

faster than the multiple scattering solution. This is the most familiar distinction

between the single and multiple scattering solutions. Reasoning along these lines,

one must conclude that any attempt to use single scattering theory to estimate coda

Q in a medium with significant multiple scattering will tend to underestimate the

true Q of the medium.

3.4 Overview of the Scattering Process

In scattering studies, the divergence and curl of the displacement field are often calcu-

lated as a means of estimating the relative amounts of P-waves and S-waves. Strictly

speaking this is only valid when the medium is homogeneous. If the medium contains

perturbations, the gradient of the perturbations also contribute to the divergence and

curl of the wavefield and as a result, the two modes (P-waves and S-waves) are not

completely decoupled. With these limitations in mind, the divergence and curl of the

displacement field are shown for the four simulations discussed above (Figures 30 -

33).

The divergence snapshots from the impedance scattering model show a clear dif-

ference between the multiple (Figure 30) and single (Figure 31) scattering solutions.

Since there are no velocity variations, travel time variations in the direct P-wave are

small for the multiple scattering solution. This is contrary to the single scattering

solution, which contains both amplitude and travel time variations. These varia-

tions are due to transmission errors inherent in the Born approximation (Beydoun

and Tarantola, 1988) and are even more pronounced in the velocity scattering model

(Figure 33). The agreement between the single and multiple scattering solutions is

much better in the curl snapshots (Figures 30 and 31). Here, the snapshots are nearly

identical.

The wider range of frequencies in the scattered energy is clearly visible in the
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Fi gure 30: Snapshot picture of the divergence and curl of the displacement field at t =.52 s.
Shown here is the multiple scattering solution from the impedance scattering medium.
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Divergence Curl
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Figure 31: Samne as Figure 30, but calculated using the single scattering technique.
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Figure 32: Snapshot picture of the divergence and curl of the displacement field at I = 52 s.
Showvn here is the multiple scattering solution from the velocity scattering medium.
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Figure 33: Same as Figure 32, but calculated using the single scattering technique.
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results from the velocity scattering models (Figures 32 and 33). Note the complete

loss of a coherent direct arrival in the multiple scattering solution. Also interesting, is

the ratio in the peak divergence to peak curl. Note that unlike the previous example,

the curl snapshot is quiescent near the first arrival and and strongest late in the coda.

This implies that multiple scattering may be important in the generation of S-waves.

The divergence snapshot from the velocity scattering medium (Figure 33) is very

similar to that from the impedance scattering medium (Figure 31). The cause of

this seems to be the accumulation of errors in the Born approximation. The curl of

the single scattered field shows the importance of multiple scattering in this medium.

Unlike the snapshot from the multiple scattering solution, there is evidence of signif-

icant P to S wave scattering near the first arrival. These arrivals are clearly visible

across the model, were as in the multiple scattering solution they are not.

3.5 FK Analysis

One of the advantages of the finite difference technique is that seismograms can be

calculated for the divergence and curl, as well as displacements. We use that ability in

this section to Fourier transform those data and form frequency-wavenumber (F-K)

plots of the the divergence (dominated by P-waves) and curl (dominated by S-waves).

F-K analysis is a useful technique to illustrate the magnitude and direction of the

scattered field.

The time window used for these analysis was the whole seismogram. Therefore,

in the impedance scattering media the dominant feature in the F-K plots of the

divergence is the direct P-wave (Figures 34 and 35). The P-wave in the multiple

scattering solution shows no variation in propagation direction, while in the single

scattering solution the P-wave is less well constrained. The S-wave plots show the

S-wave is strongly side scattered and in the single scattering solution there is some

backscattering of S-waves. Except for this backscattering, the F-K contours agree

81



Impedance (Multiple) Scattering
SOL Divergence

-50

50 tCurl

4

-50~ _ _ _ _ _
-50 0 50

Horizontal Wavenuinber (1/r)

Figure 34: F-K plot of the divergence and curl of the (multiple scattering) wavefield in the
imfpedance scattering medium shows clear separation between the two phases.
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Figure 35: F-K plot of the divergence and curl of the (single scattering) wavefield in the
impedance scattering medium shows clear separation between the two phases.
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well for the S-waves.

Data from the velocity scattering media show that in the multiple scattering so-

lution, both P and S waves are scattered over a broader range of angles (Figure 34).

This is consistent with earlier findings that multiple scattering is important in this

medium. The single scattering solution in this medium lacks the wide range of scat-

tering angles observed in the multiple scattering solution (Figure 35). It is also inter-

esting to note that the F-K plots for both the divergence and curl are nearly identical

to those for the single scattering solution in the impedance scattering medium. The

only difference is a slight forward shift in the S-wave energy and slightly more forward

scattering of P-waves.

3.6 Cooclusions

In this chapter, a new technique was developed which is capable of calculating the

single scattering solution in an arbitrarily complex medium. First, the technique

was, validated by comparing the single and multiple scattering solutions for a simple

isolated point scatterer. In the limit of an infinitely small scatterer, the two solutions

should converge. The results obtained from this test showed. some disagreement, but

it appears, that these errors are due to the choice of finite difference used here. Had

a staggered grid, formulation been, used, the errors would most likely have been much
sm.Jlt~r..

The bulk of the chapter was concerned with comparing the single and multiple

scattering solutions fort two randomly heterogeneous media. Both media, were char-

af<terized by a. Gaussian correlation function and had 10% rms deviation in A, / and

p. In one of the models, the perturbations were chosen so that there were no ve-

locity anomalies, only impedance anomalies. In the other, there were no impedanoe

anomalies, only velocity anomalies. The former was shown to be dominated by low

frequency backscattering, while in the latter scattering was forward directed over a
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wide frequency band.

In the impedance scattering medium, the shape of the single and multiple scat-

tering solutions were in good agreement away from the direct arrival. In general, the

magnitude of the singlely scattered arrivals was larger than the multiplely scatter

scattered arrivals. This behavior can be directly traced to the fact that under the

Born approximation, the direct arrival travels through the medium unaffected by the

perturbations. The agreement between the two solutions in this medium suggests

that single scattering theories should work well.

Agreement between the two solutions was much worse in the velocity scattering

medium. The discrepancy arose because multiple scattering was important in this

medium. This was confirmed by both the F-K analysis and the snapshot pictures of

the divergence and curl. In this medium there were enough scatterers that significant

amounts of energy was scattered from the incident wave. This causes attenuation

due to scattering, and in the multiple scattering solutions diminishes the amplitude

of the incident wave. This is not accounted for under the Born approximation and

caused an accumulation of error which was proportional to the propagation length,

the strength of the perturbations, and frequency.

Also important in the velocity scattering medium was the lack of late arrivals

at near offsets in the single scattering solution. (Figure 23) and is indicative of the

importance of multiple scattering in this medium. The lack of secondary scattering

also tends to increase the coherency of scattered arrivals across neighboring receivers.

This effect may be important and deserves further quantification.
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Figure 37: F-K plot of the divergence and curl of the (single scattering) wavefield in the
velocity scattering medium. The importance of multiple scattering is reflected in the
lesser range of wavenumbers present in the wavefield.
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Chapter 4

Elastic Wave Scattering Below

NORSAR

4.1 Introduction

Seismic data recorded at NORSAR show variations in amplitude and travel time

which cannot be explained by a simple layered model. The magnitude and spatial

variability of these features suggests that they are created by lateral heterogeneities

in the crust and upper mantle. There is currently much debate as to what causes

these variations, but they are likely to be due at least in part to changes in lithology,

fracture density, fracture orientation, or temperature. Even with our limited under-

standing of the subsurface, it would seem likely that those anomalies in the near

surface would tend to be dominated by ongoing geologic processes, and therefore re-

gionally dependent. Similarly, variations in the lower crust may also reflect current

geophysical processes, but in addition might contain remnant information from past

geologic events. The motivation then is to understand the variations in crustal and

lithospheric velocities so that we might be able to infer information concerning the

geology of the region.

To accomplish this, we use full waveform data collected from the NORSAR and
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NORESS arrays and forward modeling to propose a lithospheric model which is consis-

tent with both the observed seismic data and current tectonic theories in Fennoscan-

dia. We approach the problem from a deterministic point of view in that we in-

vestigate a series of specific realizations with known statistical properties. In order

to construct a reasonable starting model, finite difference simulations are performed

using several of the random lithospheric models proposed in the scattering literature.

These simulations served to acquaint us with the sensitivity of the results to differ-

ent models and to identify the influence of different types of heterogeneities. Once

the starting model was chosen, a finite difference simulation was performed and the

resulting seismograms compared to field data from the NORSAR and NORESS ar-

rays. After examining the results, the model was updated and the process repeated.

Throughout the process, each modification of the model was undertaken with full

consideration of the known tectonic features of region.

The methodology pursued here is different than previous attempts to specify the

lithospheric model below NORSAR. Early studies used Chernov (1960) scattering

theory to relate the amplitude and phase fluctuations in the wavefield to slowness

fluctuations in the medium (e.g., Aki, 1973; Berteussen et al., 1975a). These studies

were shown to be accurate only for low frequencies (f < 0.6 Hz) (Aki, 1973) and

completely neglected multiple scattering, as well as mode conversion. In addition,

they required that the autocorrelation function of the medium is known a priori and

easily manipulated mathematically. Flatt6 and Wu (1988) devised a less restrictive

formalism which over came some of these limitations, though it too neglected mode

conversion and multiple scattering and used only the arrival and log amplitude in-

formation from the recorded wavefield. In this chapter, we continue the work of

Frankel and Clayton (1986) and use the finite difference technique to model elastic

wave propagation in the crust. We then extract several important parameters from

the synthetic data and compare these values to similar parameters taken from nu-

clear explosions recorded at NORSAR and NORESS. The field data then serves to
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constrain subsequent finite difference models. The most important parameter used

in this study is the coherency statistic. It is advantageous because it represents the

average coherency (or similarity) of the wavefield and is therefore directly tied to

ensemble average. The advantage of this study over earlier studies is that we use

a realistic background earth model (to insure the correct wavelength scaling with

depth), we consider the full elastic solution (to account for scattering due to mode

conversion and multiple scattering) and we use the full waveform to compute the

coherency statistics (as opposed to ensemble averages of the travel time and log am-

plitude measurements).

4.2 Scattering Beneath NORSAR

NORSAR is a large-aperture seismic array (- 125 km in diameter), located in Norway,

which was designed to monitor teleseismic events. The array consists of 22 subarrays,

each having as many as 6 short-period vertical component seismometers (Figure 38).

In this study, we used only data from the 01A, 01B, 02B, 03C, 04C and 06C sub-

arrays, which had a minimum and maximum receiver separation of approximately

3 km and 70 km respectively. This range of distances should allow us to identify the

moderate wavelength velocity variations in the lithosphere. In addition, we also used

short-period data from the NORESS array. The NORESS array is centered about the

center element of the 06C subarray of NORSAR, but is a completely separate array

in terms of its seismometers, electronics and transmission facilities. NORESS consists

of 25 concentrically located receivers all within a 3 km circle (Figure 39). These data

should help us to constrain the more rapidly varying fluctuations in the velocity field.

NORESS was designed as an experimental array for regional monitoring. Like NOR-

SAR, its receivers are deployed in vaults on piers set directly in crystalline bedrock,

thus generate generate good quality data. It should be noted, however, that the data

from NORESS generally have higher signal to noise ratios and contain more dynamic
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Figure 38: The NORSAR arrays. Only data from the 01A, 01B, 02B3, 03C, 04C and 06C
subarrays were used.
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Figure 39: The NORESS array is located within the 06C subarray of NORSAR (Figure 38).
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range.

The events investigated here are recordings from underground nuclear explosions

at the Semipalatinsk test site (USSR) (49.930 N, 78.820 E). The larger of the two blasts

(mb = 6.1) occurred on December 4, 1987 and produced exceptionally clean recordings

on the NORESS stations (Figure 40). Due to the limited dynamic range at NORSAR,

this event was clipped on many of those stations. The smaller event (mb = 5.1) which

occurred on July 25, 1985 was well recorded at NORSAR (Figure 41). Data from

nuclear blasts are often used to study scattering because the source function for these

events is simple and well understood. In particular, data from the Semipalatinsk

test area was preferred for this study because the source area is far enough from

Norway (A = 38" 4200 km) that the primary P-wave was nearly vertically incident

(incidence angle .:t 760), and the curvature of the wavefront was small. These two

factors allow the incident wave to be approximated by a plane wave.

4.2.1 Tectonic and Geophysical Setting

Large-scale Structure near NORSAR

The entire region surrounding NORSAR is part of the stable Baltic Shield, which

is characterized by the predominance of Precambrian rocks (Sellevoll and varrick,

1971). The Olso graben, which is located slightly southeast of NORSAR, separates

the Precambrian rocks into two parts. North of the graben, Precambrian rocks of

southern Norway dip below the highly metamorphosed rocks of the Caledonian oro-

genic zone (Figure 42). The Scandinavian Caledonides consist of geosynclinal sedi-

mentary and volcanic rock. An increasing degree of metamorphism with granitization

and intrusions are evident from the Oslo graben to the northwest. It is in this region

that the deep-seated orogenic processes have been especially active. This has resulted

in the fusion of previous Precambrian basement and Cambrian-Silurian sedimentary

rocks.

Much of the geology described above was mapped using seismic techniques. Knopoff
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Figure 40: NORESS data (plotted at constant scale) from a nuclear explosion in Eastern
Kazakhstan, USSR (December 12, 1987).
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Figure 41: NORSAR data (plotted at constant scale) from a nuclear explosion in Eastern
Kazakhstan, USSR (July 25, 1985).
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(1983) and Tanimoto and Anderson (1985) used surface wave dispersion to mapped

the large-scale velocity variations in the Fennoscandian lithosphere. The lateral extent

of these features are too large to be resolved by our study and any effects would

appear as constant travel time and amplitude shifts over our whole study area. For

this reason, we look to more detailed studies which might identify features smaller

than the width of our array (- 50 km). Tomographic imaging of the subsurface

is capable of resolving features having dimensions on the order of 10 km and has

been used extensively in Fennoscandia (e.g., Thomson and Gubbins, 1982; Husebye

et al., 1986). This resolution has been sufficient to identify the seismic signature of

most of the major tectonic provinces in southern Scandinavia, but smaller features

such as the Oslo Rift have escaped detection. In an attempt to increase resolution,

several reflection and refraction surveys have been performed near NORSAR (e.g.,

Sellevoll and Warrick, 1971; Mykkeltveit, 1980; Cassell et al., 1983). While most

of these studies have concentrated on mapping the depth of the Moho and other

discontinuities, several have suggested the existence of an alternating series of positive

and negative velocity anomalies below the Moho. These studies suggest that the

velocity anomalies are thin tabular features which have a lateral extent not greater

than 100 kn.

4.3 Scattering at NORSAR

4.3.1 Travel time and Amplitude Variations

The techniques described above are oriented towards identifying the long-wavelength

variations in the velocity field. Synthetic data generated from these models may fit the

average travel times observed at large aperture arrays, such as NORSAR, but cannot

explain all the variations seen on the field data. The degree of mismatch is greater

than expected from measurement errors (Berteussen, 1974) and usually attributed

to heterogeneous structures in the Earth's crust and/or mantle. The purpose of this
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section is to display the nature of these variations so that they can be compared to

similar quantities measured from the synthetic models discussed below.

The data collected at NORSAR contained several dead traces (Figure 41) and

significant amounts of low frequency noise (Figure 43). The low frequency noise

was removed by highpass filtering above 1 Hz and the dead traces were removed

before subsequent processing (Figure 44). After the preprocessing step, the data

were bandpass filtered around 2 Hz, the peak frequency of the P-wave (Figure 43),

so that reliable arrival times could be measured using a simple first break algdrithm.

These data were then fit (least squares criterion) with a plane, leaving the residuals as

the travel time fluctuations. The same procedure was used to calculate the travel time

fluctuations in the NORESS data, although the preprocessing step was unnecessary

since that data contained very little background noise and no dead traces (Figure 45).

The linear regressions on the two datasets were consistent and yielded a backaz-

imuth direction ;8 north of east. Projecting the travel time residuals for the NOR-

SAR data along the a line parallel to that direction (Figure 46) shows the residuals

ase generally on the order of .1 s and distributed evenly about zero. The total rms

travel time variation observed for these data was about 0.06 s, considerably less than

0.2 s figure usually observed at large seismic arrays (e.g., Berteussen et al., 1975a;

Powell and Meltzer, 1984). The reason for the discrepancy might be related to the

fact that only data from six closely spaced subarrays was used in the calculations.

Similarly, the travel time residuals for the NORESS data were calculated, but the

rms variation in travel time was found to be less than the temporal sampling rate

(1/40th s), which implies these variations are insignificant.

For both sets of data, the variations in log amplitude are considerably greater

than the travel time variations. Log amplitude fluctuations in the NORSAR data

showed as much as 0.75 rins variation across the array (Figure 47). The data show a

definite linear trend; bmplitudes are highest in the east. If these variations are due to

changes in local surface geology, the effects can be adequately modeled by the finite

difference modeling performed here. However, it is also possible that the dip of
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Figure 43: Average power spectra of the background noise (10 s preceding the first arrival),

unfiltered traces, and bandpass filtered (1 - 10 Hz) traces at NORSAR.
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Figure 44: NORSAR data (plotted at constant scale) from a nuclear explosion in Eastern
Kazakhstan., USSR (July 25, 1985). Traces have been bandpass filtered (1-10 Hz) and
dead traces have been removed. These are the NORSAR data used in all subsequent
calculations.
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Figure 45: Average power spectra of the background noise (10 s preceding the first arrival),
unfiltered traces, and bandpass filtered (1 - 10 Hz) traces at NORESS.
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Figure 46: Travel time residuals projected along the great circle path between the source
and the center of the NORSAR array. The rms deviation for these data was ;0.07 s.
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Figure 47: Fluctuations in log amplitude projected along the great circle path between the
source and the center of the NORSAR array. The rms deviation for these data was 0.75
before removing the linear trend and 0.35 after removing the trend.
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the Moho is also a factor. Figure 42 suggests that the depth to the Moho decreases

steadily to the east, consistent with the trend in increased amplitude. Since all the

modeling done in this study assumed a fiat Moho, it is tempting to remove the linear

trend before calculating the rms variation in amplitude. When this is done, the rms

variation drops from 0.75 to 0.35. Similar findings were made for data from NORESS,

but due to the lesser spatial extent of the array the rms variation in log amplitude

was only 0.06 (Figure 48). The proximity of the receivers at NORESS allowed us

to contour the amplitude fluctuations (Figure 49), something which was not possible

with the NORSAR data. The contours are generally smooth, which is due in part

to the contouring algorithm, but they also display variations as small as 200 m.

The existence of these variations over distances as small as the width of NORESS is

strong evidence for including a highly heterogeneous layer in the very near surface.

In addition, by examining these features in the data, we have established one of

the criteria which will help to constrain the lithospheric models which are presented

below. Removal of the linear trend had little effect on the coherency calculations since

that statistic is known to be affected only weakly by amplitude variations (Dainty

and Toks~z, 1990).

4.3.2 Transverse Coherency (NORSAR)

For densely spaced receivers, the spatial trends in the amplitude and travel time may

provide information about the scale-lengths of the scatterers. If the receiver coverage

is too sparse, simple techniques such as contouring may be of little value. One measure

which has proven useful in these circumstances is the transverse coherency function

(Harichandran and Vanmarcke, 1984; Dainty and Toks6z, 1990; Menke et al., 1990).

The coherency statistic has been used in both strong ground motion (Harichandran

and Vanmarcke, 1984) and regional (Toks6z et al., 1990; Dainty and Toksbz, 1990)

studies and is a frequency domain equivalent of the correlation function used by

Bungum et al. (1985) and Ingate et -J. (1985). The coherency function is useful in
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Figure 48: Fluctuations in log amplitude projected along the great circle path between the
source and the center of the NORESS array. The rms deviation for these data was very
small (0.06), even before removing the linear trend.
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Figure 49: Contour of peak amplitude values observed at NORESS.
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practice because it provides a dimensionless measure of similarity between two traces.

Before calculating the coherency, Jenkins and Watts (1968) and Harichandran and

Vanmarcke (1984) suggest removing any gross travel time delays in the data. In the

synthetic examples presented here, no time shifting was necessary since the source

was normally incident on the receiver array. The field data was time shifted in the

same manner as described above. After correcting for the normal moveout (which

roughly aligns the traces), the seismograms were windowed and the crosscorrelation

and autocorrelation between each receiver pair was calculated. These correlations

were then further windowed with a Bartlett window. The purpose of the Bartlett

window was to provide frequency smoothing of the correlation spectra and minimize

bias at low coherencies (Jenkins and Watts, 1968). The smoothing makes the spectral

estimates more reliable, but diminishes resolution. This problem is discussed in detail

by Harichandran and Vanmarcke (1984). They show that to obtain optimal results,

the width of the Bartlett window should be approximately 1/5 the width of the

original data window. The coherency between each receiver pair can be calculated by

C(,W) = XSW) 1/2(4.1)

where x = - is the spatial separation between receivers i and j, w is angular

frequency, Sij is the crosscorrelation spectrum between seismograms and Si and S*

are the autocorrelation spectra.

Since the coherency values calculated from seismic data depend on the data win-

dow, they are only estimates of the true coherency. Better estimates can be obtained

by averaging over the ensemble. This is accomplished by grouping the calculated

coherencies into bins of approximately equal receiver distance and averaging. The

magnitude of the coherency (here after called simply the coherency) is limited to the

range between zero and one and the distribution of values is more log-normal than

normal (Jenkins and Watts, 1968; Dainty and Toks6z, 1990). Accordingly, uncertain-

ties in the coherency are found using the Fisher Z-transform. Errors associated with

phase of the coherency function are not limited to any fixed range of values and seem
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to be better described by the Gaussian distribution. Therefore, uncertainties in the

phase values are estimated using the Gaussian normal distribution.

Coherency of Waveforms at NORSAR and NORESS

The coherency is one of the measures we will use to evaluate the similarity of the

variations in the synthetic data to those in the field data. It is important then that

we outline the key features in the coherency function which is observed at NORSAR

and NORESS. Beginning with the NORSAR data, the coherency was calculated over

a 4 s window which began - 1 s before the onset of the direct arrival. The stacked

(25 fold) power spectrum for this time window is shown in Figure 43. Note the strong

peak at 2 Hz and the numerous notches in the spectrum. The lack of power at low

frequencies is due to the high-pass filtering which was done prior to processing. The

other depressions in the spectrum might be due to interference effects which arise

because of scattering. Although the windowing of the correlation spectra helped to

minimize the effects of these features, some care was necessary in order to calculate

coherencies only for frequencies with good signal to noise ratios. After some exper-

imentation, we found that we could get good coherency measurements at 1.5 Hz,

2.5 Hz and 3.5 Hz. The frequency separation between these frequencies is greater

than the width of the smoothing window, thus yields independent results, and avoids

the major notches in power spectrum.

Figures 50 - 52 show the spatial coherency and phase lag as a function of receiver

separation for the NORSAR data. Each "x" on the coherency plots represents a

single coherency measurement between two specific receivers. The darkened circles

and associated error bars show the mean coherency value and its uncertainty as

described above. Similarly, each "x" on the phase lag plots shows the relative time

shift between a given pair of receivers. For the reasons described above, average phase

lag values near zero are desirable. Lastly, the gap in the coherency data near 15 km

is due to no receiver pairs having that spatial separation.
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Figure 50: Coherency as a function of spatial separation for the direct arrival and early
coda of the NORSAR data around 1.5 Hz. Each cross represents the coherency (top) or
phase lag (bottom) estimate from one receiver pair. The filled circles and error bars are
the mean values and their uncertainties.
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Coherency 2.5 Hz
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Figure ,51: Coherency as a function of spatial separation for the direct arrival and early coda

of the NORSAR data around 2.5 Hz. Each cross represents the coherency (top) or phase

lag (bottom) estimate from one receiver pair. The filled circles and error bars are the

nean values and their uncertainties.
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The coherency of the NORSAR data at 1.5 Hz (Figure 50) shows very little falloff

with distance out to the largest receiver separatioas (60 kina). The significance of

these values is supported by the relatively small variation in the individual coherency

measurements and the small average phase lag values. The trend in the average

coherency values at 2.5 Hz are similar to what was observed at 1.5 Hz, although

in general the values are slightly lower. There is also more variation in individual

coherency and phase lag measurements at this frequency. The coherency at 3.5 Hz

is clearly different than was observed at the lower frequencies. There is considerable

variation in both the individual coherency and phase lag values as well as a strong

decrease in coherency with separation. It is tempting to explain the lower coherencies

observed at this frequency on a decrease in the signal to noise ratio, however the power

spectra (Figure 43) do not support this interpretation. An alternative explanation is

that this frequency is simply more strongly scattered than the lower frequencies.

Due to the lack of closely spaced receivers in the NORSAR array, we turn to the

NORESS data for insight into the small-scale crustal heterogeneities. Due to the

distinct notches in the power spectra at 2 Hz and 3 Hz, the coherency was calculated

at 1.5 Hz, 2.5 Hz and 3.5 Hz. All frequencies showed high coherency over the re-

ceiver separations at NORESS (3 kin) and very little scatter in individual coherency

and phase lag measurements, so data from the three frequencies were combined and

displayed in Figure 53. The most important feature in these data is the existence of

variations over distances as small as 3 kn. The existence of these variations is espe-

cially interesting, given the lack of observable travel time anomalies. Charrette and

Toks6z (1989) showed that highly heterogeneous media (such as those characterized

by the von Krmain autocorrelation function) are capable of producing considerable

waveform variations with little effect on travel times. One way to reconcile the ob-

servations at NORESS then is to include a highly heterogeneous near-surface layer.
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Figure 53: Uncertainties in the coherency measurements for the NORESS data were so
small, the coherency curves for 1.5, 2.5, & 3.5 can all be shown together. The average
phase lag for these data was zero for all distances.
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4.4 The Coda

One of the most obvious features on high-frequency (> I Hz) teleseismic recordings

is the coda that appears behind the direct P-wave and S-wave arrivals. Consider

the NORSAR data used here; the source was a nuclear explosion which lasted only a

fraction of a second yet the P-wave envelope stretches over several seconds. The same

effect can be seen in data from local microearthquakes, which can have an S-wave

coda lasting hundreds of seconds (Frankel and Wennerberg, 1987). Coda waves can be

formed by a variety of mechanisms; reverberations in horizontally layered structure

under the receiver (site response), reverberations in layered structure between the

source and receiver, surface waves scattered by lateral heterogeneities, the conversion

of body waves at depth or at the surface, and by anelastic effects. In this study, we

assume that all the coda is produced by the scattering of body waves from velocity

fluctuations in the lithosphere. Furthermore, when examining the synthetic data,

we are limited by the modeling technique to two dime- ..,.. d geometries and we can

consider only scattering in the lithospher- uiuer the receiver.

The significance of near source scattering can be measured by transforming the

data to wavenumber domain. Each point in waveiiduaber domain maps to a plane

wave, where the direction of the wavenumber vector is the backazimuth and the norm

of the wavenumber vector is inversely proportional to the apparent velocity of the

plane wave across the array. Figure 54 shows four FK plots, each over a 5 second

window of the NORESS data (2 Hz). The first 5 second window is dominated by the

incident P-wave, which is manifest as a well localized peak. In the second frame of

Figure 54, the broadening of the peak indicate that energy is incident on the array

from a wider range of angles. This is indicative of of either P-wave scattering and/or

S-wave scattering below the receiver array, or P-wave scattering below the source

array. We favor the former explanation. In the third time window, the FK plot

shows energy in both the first and third quadrants, indicating that some energy is

being backscattered from the incident P-wave after if has reflected off the free surface.
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Figure 54: FK plots of four different time windows from the wavefield recorded at NORESS.
a) The 5 s after the first break, b) 5 - 10 s after the first break, c) 10 - 15 s after the
first break and d) 15 - 20 s after the first break.
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The apparent velocity of the backscattered energy suggests that this energy may be

dominated by S-waves. The last time window, which begins _15 s after the first

arrival, shows that a significant amount of the energy in this time window is due to

backscattering. In summary then, the first few cycles of the incident wave appear

to be dominated by energy coming directly from the source region. Later in the

seismograms, the range of angles from which energy is incident on the array increases.

Lastly, the existence of the secondary peak in the third and fourth quadrants suggest

that backscattering is an important component of coda generation.

4.5 Forward Modeling in Random Media

Small-scale Structure in the Lithosphere

It is now well established that the amplitude and travel time anomalies observed at

NORSAR and NORESS are due to small-scale velocity anomalies in the lithosphere

(e.g., Aki, 1973; Frankel and Clayton, 1986; Flatt6 and Wu, 1988). Aki (1973) as-

sumed the crust under LASA (an array similar in size to NORSAR) could be modeled

as a random medium. Aki (1973) used Chernov (1960) scattering theory (based on

the Born and Fresnel approximations) to relate amplitude and travel time variations

to slowness fluctuations in the medium. If the slowness fluctuations in the medium

were assumed to be Gaussian distributed and have a Gaussian autocorrelation, Aki

(1973) found the crust could be modeled as a 60 km thick random medium with a

correlation length of 10 km and 4% rms variation in velocity. An equally important

finding in his study was that data up to 0.6 Hz were fit well by this model, but higher

frequencies were not. The conclusion made in that study was the misfit occurred

because the Born approximation had been violated. Capon (1974) used a slightly

different implementation of the same theory (Chernov (1960) scattering theory) and

found optimal results when the random heterogeneities extended to a depth of 136 km

and the rms deviation in velocity was 1.9%. Like Aki (1973), it was assumed that
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the random fluctuations had a Gaussian autocorrelation function. Berteussen et al.

(1975a) gives an excellent review of Chernov scattering theory as applied to the earth

and discusses several key issues, such as the lack of resolution between the rms de-

viation in slowness and the thickness of the random medium. They then investigate

NORSAR data and found that 50 - 60% of the variance in amplitudes and travel

times could be explained by the existence of a 50 km thick layer with random fluctu-

ations having a Gaussian autocorrelation function. They found the best results with

a correlation length of 15 km and 3% rms variation in slowness.

These studies are similar in that they are all restricted to the acoustic case and as-

sume Chernov scattering, and therefore the Born approximation, is valid. As a result

they neglect multiple scattering and mode conversion, both of which are important

if the size of the scatterers is small compared to a wavelength. In addition, they

all assume that the fluctuations in the lithosphere can be adequately described by

the Gaussian autocorrelation function. Although, this function is desirable because

it is easily manipulated mathematically, it is now generally believed that the earth's

lithosphere contains more roughness (e.g., Wu and Aki, 1985a; Wu and Aki, 1985b).

The studies are also limited in that they use only a very small portion wavefield,

only the travel time residuals and the log amplitude of the P-wave. Lastly, all these

studies assume a constant velocity background model, thus they neglect the effect of

the background velocity on the wavelength of the incident wave.

Flatt6 and Wu (1988) used the acoustic parabolic approximation and weak scat-

tering theory to derived the angular and transverse coherence functions in a general

random medium. When they applied these techniques to data from NORSAR, they

found the best-fitting lithospheric model was an overlapping two layered model. The

top layer extended from the surface to a depth of 200 km and was characterized by

a simple band-limited white spectrum. The second layer, superimposed on the first,

extended from 15 km to 250 km and had fluctuations which obeyed a power spec-

trum of the form W(k) = Alk[ 4 , where k is the wavenumber vcctor and A is a
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normalization constant. Although fairly simple, this is generally believed to be the

best available random lithospheric model.

Frankel and Clayton (1986) overcame many of the problems inherent in the earlier

scattering studies. They used the finite difference technique to model elastic wave

propagation in random media and examined many aspects of the scattering problem.

Based on the frequency dependence of the scattering Q in short-period data (15 -

30 Hz), they speculated that the crust (35 km thick) could be characterized by a

random medium with a 0th order von Kirmin autocorrelation function, a correlation

length >10 km and standard deviation in velocity of 5%. They also neglected to

include the effect of the background model as well as the effect of scattering below

the source.

4.5.1 Finite Difference Simulations

To avoid many of the assumptions and limitations common to analytic scattering

studies, we also chose to use the finite difference technique to generate the scattered

field. Unlike earlier studies (e.g., McLaughlin et al., 1985; Frankel and Clayton,

1986) we include a -ealistic background earth model and use a full waveform method

to compare synthetic seismograms to field data from NORSAR and NORESS. The

finite difference scheme used in this thesis is a simple explicit second-order scheme

to solve the elastic wave equation (Appendix B). Although computationally very ex-

pensive, we favor this technique because it is accurate for a wide range of wavelength

to scatterer ratios, and it provides a complete solution to the elastodynamic equa-

tions of motion (e.g., Frankel and Clayton, 1984; McLaughlin et al., 1985; Frankel

and Clayton, 1986). As a result, P-wave and S-wave mode conversions are accurately

modeled for both forward and backward scattering. This is especially important be-

cause thus far most analytic scattering theories neglect shear waves completely and

often consider only forward scattering (parabolic approximation). The trade-off for

the increased accuracy is a significant increase in computational effort, which cur-
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rently limits our study to only two-dimensional models. Frankel and Clayton (1986)

also used two-dimensional finite difference modeling to investigate the effects of scat-

tering. They suggested that the effect on travel time and amplitude variations would

be very small. Furthermore, they also derived a two-dimensional equivalent to one of

the analytical results presented by Chernov (1960) and showed that at low frequen-

cies attenuation due to scattering was proportional to (ka)3 in a three-dimensional

medium and (ka)2 in a two-dimensional medium. Using the same equation, they

showed that in the high frequency limit the two solutions converged.

As was stated above, the synthetic models were made as realistic as possible by

including the Parametric Earth Model (PEM) for continental structure (Dzienwonski

et al., 1975), as the background velocity model. Inclusion of a realistic background

model is necessary to account for the fact that the wavelength of the incident wave

varies inversely with velocity, and therefore generally increases with depth. The

models also included zero stress boundary conditions at the top of the finite difference

grid and absorbing boundary conditions at the bottom. To avoid unwanted reflections

from the sides of the grid, the model was assumed to be horizontally periodic. The

simulation was carried out for 18000 time steps (thus producing 90 s of synthetic

data) on a large finite difference grid (512 nodes by 2750 nodes) which simulated a

51.2 km by 275 km region of the lithosphere.

In all the simulations the incident wave was a plane P-wave, which entered the

bottom of the grid as a Ricker wavelet centered at 1.65 Hz. Since the independent

variable in the finite difference calculations was displacement, the resulting synthetic

seismograms were differentiated with respect to time to produce seismograms of par-

ticle velocity, like those recorded at NORSAR and NORESS. Upon differentiation,

the center frequency of data became 2 Hz, consistent with that of the field data

(Figures 43 and 45).

The plane wave source used in this study is a good approximation of the true

incident wave if the source is located far from the receiver array (as is the case with
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the field data used here). Furthermore, it is likely that the incident wave would

show little variation over a region the size studied here. This occurs because of the

small range of takeoff angles (from the source) which constitute this portion of the

wavefront. It is true however that we have neglected the effects of forward scattering

(P-wave to P-wave scattering) in the source region, which would be constant across

the spatial extent studied here. The effect of this type of scattering would an overall

increase in complexity and coda along the incident wave.

Since in the field data the source was located close to the surface, the wave-

field observed at NORSAR traveled through the lithosphere twice; once beneath the

source and once beneath the receiver array. Numerical limitations prevent us from

modeling the full propagation path, so we must devise some way of estimating the

coda produced in the source region. After investigating several different approaches,

we chose an approximate technique based on a simple one-dimensional convolutional

model (Dainty et al., 1973). The technique makes use of the fact that energy which

has propagated through the lithosphere is the convolution of the transfer function of

the lithosphere with the source wavelet. Since the source function is known for the

synthetic data, it can be deconvolved from the synthetic seismograms, leaving only

the transfer function. Convolving the transfer function with the seismogram results

in a new seismogram which contains some of the features which would be observed in

seismogram of energy which had propagated through the medium twice. It must be

pointed out that this is not an exact solution, but it does allow us a simple mechanism

to include the first order effects of propagation through two lithospheric layers.

Simple Gaussian Models

As was mentioned above, it is generally believed that the lithosphere can not be

adequately described by a Gaussian random medium like those presented in the early

literature (e.g., Aki, 1973; Capon, 1974; Berteussen et al., 1975a). Still, it is worth

investigating one such model so that these data can be compared to data from more
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contemporary lithospheric models. For this purpose, we chose the model proposed by

Aki (1973) (Table 1). Although the original analysis was based on the acoustic wave

equation, we will extended the random velocity perturbations to the S-wave velocity

field and include the PEM background velocity field to account for the change in

wavelength with depth.

Before beginning a quantitative analysis of the data, it is often useful to observe

the general trends in the scattered field. For this purpose snapshot pictures of the

divergence and curl of the wavefield were output at 7 s increments and are shown in

Figures 55 and 56. The medium is a two-dimensional realization of the lithospheric

model proposed by Aki (1973). Snapshot pictures from any of the other simulations

would contain many similar features. In an homogeneous medium, the divergence and

curl exactly decompose the wavefield into its P-wave and S-wave components. This is

not true in an heterogeneous medium, where the gradients of the material properties

are not zero and therefore contribute to both the divergence and curl. Although if

the medium is sufficiently smooth, the divergence is dominated by P-wave energy and

the curl by S-wave energy.

The firn snapshot picture of the divergence shows the incident P-wave shortly after

it has entered the bottom of the heterogeneous zone (Figure 55). At this point, there

is only a slight disturbance on the curl snapshot, which is due to the partial conversion

of the P-wave to an S-wave as it enters the heterogeneous region (Figure 56). When

the P-wave interacts with the free surface (the second frame), a strong S-wave is

created, which is subsequently scattered is it travels downward behind the reflected

P-wave. Note that in the subsequent frames the dominant scattering mechanism is

common mode (P-wave to P-wave and S-wave to S-wave) forward scattering. This

type of scattering tends to distort the incident wave and create strong diffractions

with very little backscattering and little P-wave to S-wave scattering. As a result,

the direct arrival is no longer a simple planar wavefront and distinct travel time and

amplitude anomalies are visible along the wavefront.
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Aki Model

divergence

Figure 55: Snapshot ipictiirve; of the dlivergence of the wavefield at 7 s inevl.The random

portion of the ve1 - Itv model is like that proposed by Aki (1973), and the deterministic

velocity stnicil irf1 a s~ imple referenice cai th model.
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Aki Model

curl

Figure 56: Same its Figuire 5), but 'shows the -,I,! I t jif waveficid.
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Synthetic seismograms generated at 3.2 krn intervals along the free surface are

shown in Figure 57. The data have already been differentiated, to produce velocity

data like that recorded at NORSAR, and only the time window between 25 s and

45 s is shown. The most striking feature in the data is the strong first arrival and

lack of coda. The travel time fluctuations of the P-wave (Figure 58), show two

large anomalies with a spatial separation of ;25 km. Comparing Figures 58 and 59,

note the correspondence between the amplitude and travel time fluctuations. The

strong correlation between these two parameters is indicative of scattering in smoothly

varying media dominated by large scatterers and was predicted by Chernov (1960)

and Aki (1973). The periodicity in both these figures is a direct consequence of the

periodicity in the velocity model and the source wave. Lastly, it should be pointed

out that the discrete steps in the plot of the travel time variations (Figure 59) are due

to the discrete sampling interval of the finite difference simulation. The large size of

the simulation and the large number of timesteps, forced us to decimate the synthetic

seismograms as they were computed. After decimation, the sampling interval was

0.05 s. The rms variation in travel time (0.08 s) and amplitude (0.46) in the data

from this model were generally consistent with what was observed at NORSAR.

Another way to compare the synthetic data to field data is to calculate the co-

herency of the waveforms over distances similar to those at NORSAR and NORESS.

This was done by first windowing the synthetic data over a 6 s window surrounding

the first arrival. Then, the coherencies were calculated for two sets of 25 receivers. In

the first set, the 25 receivers were each separated by .1 kin, resulting in maximum and

minimum separations of .1 km and 2.4 kin; roughly equivalent to receiver separations

at NORESS. Variations over these length scales will help to identify the prevalence of

small-scale scatterers. In addition, a second set of receivers, each separated by 1 km,

were investigated. The second data set spans distances more like that of NORSAR,

and can therefore be compared to coherencies calculated for teleseismic arrays such

as NORSAR. The latter data set will help to identify the large scale features in the
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Aki (1973) Model
(Surface Receivers)

0*0

0.0 4.0 8.0 12.0 16.0 20.0

Time~ (s

Figure 57: Synthetic seismograms resulting from the finite difference simulation of a plane
wave propagating in a random medium like thiat proposed by Aki (1973).
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Travel Time Fluctuations
(Aki Model)
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Figure 58: Travel time residuals which resulted from the Aki (1973) model. The rms variation
for this parameter was ;0.08 s.
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Amplitude Fluctuations
(Aki Model)
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Figure 59: Fluctuations in log amplitude which resulted from the Aki (1973) model. The

rnms variation for this parameter was 0.459.
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lithosphere.

Comparing the coherencies calculated from the synthetic data to that from the

NORESS data highlights several important issues. At low frequencies (1 & 2 Hz), both

data sets display high spatial coherency over the full range of distances (0 - 2.5 km).

At higher frequencies (3 & 4 Hz), the fall-off rate of the coherency in the field data is

considerably higher than that in the synthetic data. One explanation for this might

be that the earth has more small (relative to the wavelength) scatterers, which would

be consistent with the P-wave fluctuations discussed above. The difference between

the two data sets becomes even more clear when the coherency is calculated for larger

offsets. When measured over distances similar to those at NORSAR, the fall-off of

the coherency with distance is far slower than is observed at NORSAR. Together, all

the data suggests that this model is too smooth to represent the velocity fluctuations

in the earth. The lack of roughness limits the amount of coda which is generated.

Simple single layer lithospheric models based on the Gaussian autocorrelation

function have been proposed by several other authors (e.g., Capon, 1974; Berteussen

et al., 1975a). All are similar to the one investigated above (Aki, 1973), although exact

details concerning the thickness of the random layer, the intensity of the perturbations

and the correlation length ,ary between studies (Table 1). Several of these models

were investigated and each proved to have the same general characteristics described

above. Namely, these models produced coherency measurements which were too large

and they were not capable of reproducing the amount of coda generally observed at

NORSAR and NORESS. It has been speculated that they all failed because they

did not contain enoug*l roughness. Frankel and Clayton (1986) recognized this and

proposed modeling the lithosphere as a 35 km thick layer described by the 0th order

von Kirmin function. We investigated this model as well, and found it was desirable

in that it produced more coda and therefore less coherent seismograms, however, the

fall-off rate of the coherency as a function of distance was still significantly more than

what is observed at NORSAR.

129



Multiple layered Models

Although the random models discussed above are capable of explaining some of the

observed travel time and amplitude variations, they are probably too simple to de-

scribe the velocity field in the lithosphere. More realistic is the overlapping two

layered model proposed by Flatti and Wu (1988). In that model, the heterogeneities

obey a simple power law relation of the form,

W(k) = A I k 1-', (4.2)

where W(k) is the power spectrum of the fluctuations, k is the wavenumber vector,

A is the normalization constant and p is the power law index. Flatt6 and Wu (1988)

found the best agreement when the power law index was zero (p = 0) in the upper layer

and four (p = 4) in the lower layer. In addition, to compensate for the limited aperture

of the array and the frequency content of the source, the spectra were bandlimited

so that there were no fluctuations with wavenumbers less than 0.05 km- ' and none

greater than 1.1 km - ' (Figure 60). Flatti and Wu (1988) found best results when

the rms deviation in velocity was .9 - 2.2% in the upper layer and .5 - 1.3% in the

lower layer, although they acknowledge that resolution in this parameter is poor.

Snapshot pictures of the divergence of the wavefield are shown in Figure 61. By

the time the incident wave has reached the depth shown in the first frame, it has

already traversed the long wavelength heterogeneities near the bottom of the model

and is about to eater the more heterogeneous crustal layer. The influence of these

long wavelength features is to distort the incident wave and cause the numerous

diffractions evident behind the incident wave. Although the dominant scattering

mechanism is forward scattering, far more energy is side and back scattered relative

to the Gaussian model described above. When the incident wave interacts with the

free surface (second frame) it is partially converted to an S-wave (visible in the latter

frames of Figure 62). The S-wave travels more slowly that the P-wave and therefore

has a shorter wavelength.
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Power Spectra for the Two Layer
Lithospheric Model

0km <Z<l5km
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Figure 60: The lithospheric model proposed by Flatt6 and Wu (1988) was an overlapping
two layer model. The upper layer had a bandlimited white spectrum and the lower a

bandlimnited. power law spectrum which was proportional to 04.
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Flatte &~ Vv u -,(I

divergence

Figure 61: Snapshot pictures of the divergeinc of the wa':eticld at 7 .s Intervals. The random

portion of the velocity niodeI is like that proposod ILv FlattP' arnd Wu (1988), and the

deterministic velocity structure is a simiple reference earth iodel.
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Hatte & Wu Model

curl

Figure 62: Same aLs T- iiire 61, but shows the curl of the xvavefield.
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Synthetic seismograms generated along the top of this model show considerable

variation (Figure 63). Note the variability of the first arrival, as well as the variati,,n

in the strength of the multiply reflected arrivals at 12 s and 18 s. The general

character of these waveforms is more consistent with the field, which suggests that

this model may be more similar to the lithosphere than the smooth Gaussian model.

The rms travel time residuals measured from this model were 0.06 s and the rms log

amplitude fluctuations were 0.21198, both are consistent with what was observed at

NORSAR, although the amount of amplitude variation might be slightly low. The

variation in travel time (Figure 64) shows a single strong peak, corresponding to the

longest wavelength anomaly which can be supported on the grid (51.2 kin). This is

further evidence that the long wavelength features have a large effect on travel times.

The amplitude fluctuations (Figure 65) show more short wavelength variation than

the traiel time fluctuations, but still have a strong peak in the center of the model.

The correspondence between the two type of fluctuations is not as striking as that

observed in the Gaussian model, but it is still very evident.

In order to compare the variation in synthetic waveforms to the variation observed

at NORSAR, the coherency was calculated from the data in Figure 63. Due to the

periodicity in the velocity model, the aperture of the synthetic array was limited to

the half-width of the grid. Thus, the maximum receiver eparation in these coherency

calculations is 25.6 km, approximately half the distance calculated for the NORSAR

data. At the lowest frequency, 1.5 Hz, the coherency of the synthetic data (Figure 66)

falls of slightly more slowly that is observed at NORSAR (Figure 50). There is also

less scatter in the individual measurements, possibly suggesting that the lithosphere

has more roughness than is present in this model. The same general trend is observed

in the coherency of.the higher frequencies (Figures 67 and 68).

It is interesting that although the model proposed by Flatt, and Wu (1988)

matches the observed travel time residuals and log amplitude fluctuations well, it

does not match the falloff rates in the coherency function nor the general variability
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Flatte & Wu (1988) Model
(Surface Receivers)
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F~igure 63: Synthetic data from a model like that proposed by Flatt6 and Wu (1988). The
trace separation is 1 km.
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Travel Time Fluctuations
(Flatte & Wu Model)
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Figure 64: Travel time residuals which resulted from the Flatt(- and Wu (1988) model. The
rms variation for this parameter was 0.06 s.
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Amplitude Fluctuations
(Flatte Model)
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Figure 65: Fluctuations in log amplitude which resulted from the Flatt6 and Wu (1988)
model. The rms variation for this parameter was 0.2.
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Coherency 1.5 Hz
(Flafte & Wu Model)
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Figure 66: Coherency at 1.5 Hz as a function of spatial separation for the direct arrival, and
early coda of the data in Figure 63.
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Coherency 2.5 Hz
(Flatte & Wu Model)
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Figure 67: Coherency at 2.5 Hz as a function of spatial separation for the direct arrival and
early coda of the data in Figure 63.
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Coherency 3.5 Hz
(Flatte & Wu Model)
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Figure M68: Coherency at 3.5 Hz as a function of spatial separation for the direct arrival and
early coda of the data in Figure 63.
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in these measurements. We attribute this to the lack of a highly variable near surface

layer.

4.6 An Improved Random Lithospheric Model

None of the random models discussed above was capable of matching all of the trends

observed in field data. The simple single layered models base(: on the Gaussian

autocorrelation function appear to be too smooth and are not capable of exciting

enough coda energy. The single layered model presented by Frankel and Clayton

(1986) contain more short wavelength variation and therefore excite more coda. Still,

the resulting waveforms from these model do not display a fall-off rate of the coherency

function which is comparable to what is observed at NORSAR. Of the lithospheric

models discussed above, the one proposed by Flatt6 and Wu (1988) is most consistent

with the trends observed in the field data. It matches the total rms variation in

travel time and log amplitude well, and coherencies calculated from these data match

observed seismograms better than any of the previous models.

Working from the models presented above, we now propose a new crustal model

which is consistent with reflection data from a nearby seismic experiment and bet-

ter explains the travel time and amplitude fluctuations observed at NORSAR and

NORESS. After running several simulations, we have found that a three layered

model with varying degrees of roughness is appropriate. In our final model the up-

permost laver extends from the surface to a depth of 3 km and is characterized by a

bandlimited white spectrum. For reasons consistent with those presented by Flatt6

and Wu (1988), we chose the same wavenumber window for this layer. Below the

highly heterogeneous near surface layer, we propose the remaining portion of the

crust (down to 35 kin) can be modeled as a 0th order von Kirmin medium. This is

consistent with the work presented by Frankel and Clayton (1986) and should gener-

ate an amount of coda consistent with that observed at NORSAR. Lastly, we model
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the upper mantle as a random medium with an anisotropic Gaussian autocorrelation

function. By anisotropic, we mean that the horizontal correlation length is different

than the vertical correlation length. The correlation lengths which gave us the best

results were 20 km in the horizontal direction and 5 km in the vertical direction. We

obtained best results when the velocity perturbations in the upper and lower layers

had 2% rms variation and those in the middle layer 3%.

The possibility of an anisotropic upper mantle is interesting and consistent with

several studies based on the inversion of shear waves. Kennett and Nolet (1990) ana-

lyzed data from seismic arrays having apertures between 25 - 1000 km and suggested

a heterogeneity model with a horizontal scale length of 300 - 400 km and a vertical

scale length of 70 km in the uppermost mantle. They also speculated that the ver-

tical scale length increased with depth. Based on the existence of partially coherent

arrivals across the arrays and the extended coda is was also suggested there was sub-

stantial evidence for small-scale scatterers in the upper 200 km. Similar results were

reported by Kennett and Bowman (1990), who used shear wave data and a coupled

mode approach. The scale lengths reported in these studies are considerably larger

than what was observed here. The explanation for this lies in the frequency of the

input data. Those studies used 0.02 Hz surface wave data and 0.04 Hz body wave

data, two orders of magnitude lower than was used here. The lower frequencies limit

resolution to features larger than the width of NORSAR.

It is interesting to compare snapshot pictures of the divergence and curl in this

model (Figures 69 and 70) to those from the simple one layer model proposed by

Aki (1973) (Figures 55 and 56). Whereas the plane wave travels undisturbed up

to the base of the crust in the model proposed by Aki (1973), in this model there

are significant variations in the wavefront at that depth. The increased complexity

in both the P-wave (divergence) and S-wave (curl) are clearly visible in the later

snapshots. Note also the increased amount of side scattered energy in the model

proposed here.
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Thi.- Study

divergence

Figure 69: Snapsh-,t ;)ictares of the divergence of the waveficid at T s intervals. The velocity
model is the t hr,, .' i worel pioposed here.
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This Study

Figure 70: Same as Figure 69. buIt shows the cmi I of t lie c &'d
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Figure 71 shows 25 synthetic seismograms recorded along a 25 km section of the

free surface. Note the variation of the seismograms with offset. The data have 0.08 s

rms deviation in travel time (Figure 72), and 0.48 rms variation in log amplitude

(Figure 73). These values are consistent to what was observed in the field data.

As compared to the field data, the synthetic data (Figure 71) appear to have less

coda. This was to be expected and is discussed above. Therefore, to evaluate the

ability of the model to match the coda observed at NORSAR, we should compare

seismograms from the bottom of the random medium, where the incident wave has

passed through the random medium twice (Figure 74). In terms of the energy behind

the first arrival, these synthetic seismograms have amplitudes and coda signatures

which compare favorably to the field data.

The coherency of the synthetic seismograms was calculated for both the small

aperture (2.5 km) and large aperture (25 kin) synthetic arrays, although only the

large aperture results will be shown here. Using the same procedure outlined above,

coherencies were calculated for the seismograms shown in Figure 71. Like the field

data, the individual coherency values varied considerably between different receiver

pairs (Figures 75 - 77). This was not true for most of the synthetic data discussed

above and suggests that we are converging on the right type of variations our model.

Also like the field data, the coherency is highest for the lower frequencies and dimin-

ishes with increasing frequency. The phase lags of the receiver pairs is also reminiscent

of the field data, both in its average value and its variation. To insure that the peri-

odic nature of the model was not biasing the coherency results, we performed a single

simulated on a model eight times wider (z400 km) than the previous models. The

results were consistent, suggesting that the time window under study did i,ot contain

significant contamination due to periodicity of the velocity model.
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This Study
(Surface Receivers)
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Figure 71: Synthetic data from the model proposed in this study. I he trace separation is

1 kmn.
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Travel Time Fluctuations
(This Study)

1 10-1

5 10-2

0 10°

-5 102

-1 10-1

-1 10"1

-2 101

-3 10 .' I . . I . . I
0 10 20 30 40 50 60

Distance (In)

Figure 72: Travel time residuals which resulted from the three layered model proposed here.

The rms variation for this parameter was 0.08s.
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Amplitude Fluctuations
(This Study)
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Figure 73: Fluctuations in log amplitude which resulted from the three layered model. The
rms variation in this parameter is 0.48.
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This Study
(Includes Near-source Effects)
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Figure 74: Synthetic data from the model proposed in this study. The trace separation is
1 km. What is shown are the traces in Figure 74 after they were convolved with the
transfer funiction of the medium in an attempt to account for both lithospheric legs of
the propagation path.
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Coherency 1.5 Hz
(This Study)
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Figure 75: Coherency at 1.5 Hz as a function of spatial separation for the direct arrival and

early coda of the data in Figure 71.
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Coherency 2.5 Hz
(This Study)
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Figure 76: Coherency at 2.5 Hz as a function of spatial separation for the direct arrival and
early coda of the data in Figure 71.
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Coherency 3.5 Hz
(This Study)
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Figure 77: Coherency at 3.5 Hz as a function of spatial separation for the direct arrival and
early coda of the data in Figure 71.

152



4.7 Conclusions

In this chapter we have shown that even in a the study of random media. a deter-

ministic technique such as finite difference modeling can be useful. The main utility

is that it allows one to study a particular aspect of the data in a controlled manner.

This is often not possible in field studies where the earth, the source, and the receivers

all introduce uncertainties into the investigation. Eventually, of course, the modeling

must answer to the data. This is undertaken here by comparing several character-

istics of the synthetic seismograms to field data from the NORSAR and NORESS

arrays. The field data were from two nuclear blasts at the Semipalatinsk test site.

The nuclear blasts are known to emit strong P-waves with a known source signature.

With such strongly emergent data, we can be fairly sure all variations in the wavefield

between receivers are due to heterogeneities below the receiver array. Furthermore,

due to the large source-receiver distance, we can neglect the effect of scattering in

the source region for all aspects of this study except coda generation. The reason for

this lies in the observation that all energy arriving at the receiver emanated from a

narrow range of take-off angles, implying the source effects Are common to all energy

arriving at the receiver.

After testing numerous random models, we found a three layered random model

which both matched the observed travel time and amplitude variations observed at

NORSAR and is consistent with seismic reflection data. The model, we propose has

three random layers. The top layer is 3 km thick and described by a bandlimited

white spectrum. The second layer extends from 3 km to the bottom of the crust

(35 kin) and can be described by the 0th order von Krmiin autocorrelation function.

Velocity fluctuations in this layer are fairly strong (3% rms variation), while in the

top layer the fluctuations were only 2%/. The third layer extends from the base of

the crust to a depth of 250 km and was determined to have an anisotropic Gaussian

correlation function. We found the best results when we specified the horizontal

correlation length in the bottom layer to be 20 km and the vertical correlation length
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to be 5 km.

The method used here has several important advantages over previous studies of

scattering at NORSAR. First, it includes a realistic background model. This is im-

portant because in general velocity and therefore the wavelength of the incident wave,

increases with depth. Secondly, we used several criteria to evaluate the suitability of

each random lithosphpric model. We used the total rms variation in travel time and

log amplitude as first cut methods and the coherency statistic as the final descrim-

inator. Unlike other studies which use only the P-wave travel time and amplitude

to calculate the coherency (e.g., Flatt6 and \Vu, 1988), we use full waveform data.

By calculating the coherency between many pairs of receivers we are able to get the

average properties of the wavefield from only a single event. Lastly, it should be noted

that we included the effects of P-wave to S-wave scattering and nmltiple scattering

in our analysis. These effects are often ignored in analytical studies, yet they proven

to be important in the frequency range studied here (Aki, 1973).

154



Chapter 5

Summary and Conclusions

5.1 Overview

For the purpose of studying scattering, the velocity field in the earth can be divided

into two parts. A deterministic background part, and a more variable "random" part.

The background part of the velocity field represents the average or "bulk" properties of

the medium, while the random fluctuations are the small-scale fluctuations away from

the background value. A great deal of seismic research has been foc-used on delineating

the background part of the velocity field. This seems natural, since chemical, thermal

and structural boundaries are often continuous over large spatial extents and can

produce strong coherent arrivals across neighboring seismometers. Knowledge gained

from these studies is important and has led to highly successful models of the Earth's

interior, both in exploration and whole earth seismology.

In this thesis, the goal is to understand the effects of the second type of velocity

fluctuations; the random fluctuations. Since these fluctuations are too numerous to

be identified uniquely, they are usually described statistically. The distribution of

scatterers is commonly identified by some scale length, a correlation function and

some measure of the magnitude of the average perturbation. In Chapter 2, these

ideas are developed and the terminology used throughout the thesis is presented.
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Perhaps the single most important feature in that chapter is the concept that a

random medium can be characterized by its correlation function. The correlation

function is a measure of the amount of variability in the medium. The three most

commonly used correlation functions for earth studies are the Gaussian, exponential

and von Kiirmin functions. The Gaussian correlation function is indicative of media

which are very smooth, that is they have very little power at high wavenurnbers. The

exponential and von Kiirmn correlation functions typically characterize media which

have more power at high wavenumber, and therefore have more rapid variations.

Most of the early studies which treated the lithosphere as a random medium made

use of Chernov (1960) scattering theory. Although originally derived for acoustic

media, Chernov scattering theory has been commonly used to study scattering in the

earth. In this application, Chernov scattering theory suffers from four fundamental

shortcomings. First, since the theories are based on the acoustic wave equation,

they are only valid when P to S scattering is small (i.e. ka > 1). Second, the

theories make no attempt to include the effects of multiple scattering, which may be

important, especially in the upper lithosphere. Third, implicit in the assumption of

stationarity is the limitation that the statistics of the random medium are constant

along the entire propagation path. This assumption may not be valid since it is

generally believed that the upper lithosphere is most heterogeneous region of the

earth. Fourth, the theory assumes the analytic form of the autocorrelation function

is known. Since the theory requires extensive manipulation of the autocorrelation

function, most early researchers used well behaved functions such as the Gaussian or

exponential functions.

Several studies (e.g., Frankel and Clayton. 1986; Flatt6 and Wu, 1988) as well as

the work in this thesis suggest that the Gaussian correlation function is too smooth to

adequately describe the velocity anomalies in the crust. Current research is directed

toward media which exhibit a high degree of variability. Furthermore, it is anticipated

that in the future more complex models like the overlapping two-layer model proposed
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by Flatt6 and Wu (1988) or the three layer anisotropic model presented here will better

explain the variation is waveforms observed at seismic arrays.

5.2 Summary

The purpose of this thesis was to study the effects of small-scale heterogeneities on the

passage of seismic waves. To this end, a new technique was developed to obtain the

single scattering solution in a particular random velocity model. The chief advantage

of the technique is that it can be used on any arbitrarily complex velocity model.

As a result, both the single and multiple scattering solutions can be obtained for the

same velocity model. Comparing the synthetic seismograms for two representative

random media allowed us to show several important conclusions.

When the medium is dominated by impedance scattering (i.e. the perturbations

in Lam6's parameters and density are of the same sign and relative magnitude), there

are no variations in velocity only variations in impedance. Then

" the Born approximation provides a reasonable estimate of the true scattered

field. It is true that the amplitude of the single scattering solution is overes-

timated near the direct arrival and the error becomes larger with propagation

distance, but the overall shape and arrival time of the scattered field agrees

fairly well with the multiple scattering solution. As a result, coda decay rates

for the single scattering solution are greater than corresponding rates for the

multiple scattering solution.

" the scattered field is frequency dependent and dominated by backscattering.

As predicted by analytical solutions, low frequency energy is more effectively

backscattered than high frequency energy. This is a geometric effect which

occurs because waves scattered from an elemental part of the scatterer add

destructively in the backward direction, but constructively in the forward di-

rection.
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* As a result of the frequency dependent backscattering, the attenuation param-

eter Q- 1 is peaked at low frequencies, then falls off quickly with frequency.

The implication of the work in Chapter 3 is that the single scattering theory is

probably insufficient to accurately describe scattering in the earth. If this is true,

;+ calls into question nearly all analytical studies of wave propagation in random

earth models, since they generally rely on the single scattering approximation. In

order to avoid any inaccuracies which might be introduced by the single scattering

approximation, we make use of the finite difference technique for all the modeling

done in Chapter 4. Finite difference modeling is particularly well suited to modeling

wave propagation in heterogeneous media because it solves the full elastodynarnic

equation of motion directly.

The primary goal in Chapter 4 was to construct a random lithospheric model which

was representative of the region below NORSAR. Several studies have suggested that

the travel time and amplitude fluctuations observed at NORSAR are manifestations

of scattering from small-scale structure beneath the array (e.g., Berteussen et al.,

1975b; Aki, 1973; FlauIu and Wu, 1988). It is generally agreed that the magnitude of

the velocity anomalies are on the order of 1-4%, but there is no general consensus on

the spatial correlation of the anomalies. farly studies suggested that the Gaussian

correlation function was capable of explaining the observed amplitude and travel time

fluctuations at LASA and NORSAR (Aki, 1973). Using a different statistical theory,

Wu and Aki (1985a) modified that conclusion and suggested that there is probably

more variability in the lithosphere and therefore a more textured model like the von

Kirmin function was in order. Evidence from forward modeling seems to corrobo-

rate this hypothesis (Frankel and Clayton, 1986). All of these studies assumed the

lithosphere could be modeled by a randomly heterogeneous region which had constant

statistical properties (i.e., the random medium was assumed to be stationary). Flatt6

and Wu (1988) developed a set of equations which allowed them to invert for the sta-

tioical properties of a non-stationary medium. Using this technique, they found that

158



the variability between waveforms observed at NORSAR could be explained by a

two-layer random model.

It Chapter 4, we use finite difference modeling to lest the suitability of several

random models. As a result, we were able to produce a three layered lithospheric

model which both matched the observed travel time and amplitude variations ob-

served at NORSAR and is consistent with seismic reflection data. The model, we

propose has three random layers. The top layer is 3 km thick and described by a

bandlimited white spectrum. The second layer extends from 3 km to the bottom of

the crust (35 km) and can be described by the 0th order von Kirmhn autocorrelation

function. Velocity fluctuations in this layer are fairly strong (3% rms variation) and

span a wide range of length scales. The third layer extends from the base of the crust

to a depth of 250 km and was determined to have an anisotropic Gaussian correla-

tion function. We found the best results when we specified the horizontal correlation

length to be 20 km and the vertical correlation length to be 5 km. Best results were

found when both the bottom and top layers had 2% velocity variations.

The white spectrum in the uppermost layer produced localized variations in the

waveforms. During the course of this investigation, we found that the modeling was

not very sensitive to the thickness of this layer, nor the magnitude of the velocity

fluctuations in this layer. However without it, we could not explain the falloff in

coherency which was observed at NORESS. The middle layer represents the bulk of

the crust. After experimenting with several autocorrelation functions and numerous

correlation lengths, we found the von Kirmin function best suited to explain the vari-

ations in the crust. Media described by this function effectively generate coda, but

have a relatively small effect on the time and amplitude of the incident wave Frankel

and Clayton (1986). Together, these two layers generated reasonable amounts of coda

and localized variations in the wavefield, but did not duplicate the travel time and

amplitude variations observed at NORSAR. In order to explain these features, it was

necessary to include a third layer which was capable of producing travel time and
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amplitude fluctuations, but did not contribute greatly to the amount of coda in the

wavefield. Numerous studies have shown that a Gaussian medium has these prop-

erties. After much experimenting, we found that a model with different correlation

lengths in the horizontal and vertical directions was able to match the observed data

well.

It is important to state that since this model is based on forward modeling only, we

cannot guarantee its uniqueness. However, it fits the observed travel time and ampli-

tude variations, waveform coherency and coda better than any previously published

models. No formal attempt was made to determine the sensitivity of the modeling to

slightly different velocity model. The reason for this was twofold. First, each different

realization of the same random model produced some differences, thus complicating

the notion of sensitivity. Second, for computational reasons, it was not possible to

run and store the results from numerous simulations. We did however examine three

different realizations of the final model to insure that the results were consistent.
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Appendix A

Born Scattering

A.1 Introduction

Rayleigh (1871) used dimensional analysis to show that when the size of a scatterer

is small compared to a wavelength, the scattered field is proportional to Vr-lk2 ,

where V is the volume of the scaLterer, r is the distance to the observation point

and k(= 2r/wavelength) is the wavenumber of the incident wave. He later solved

the acoustical (longitudinal waves only) and optical (transverse waves only) problems

exactly (Rayleigh, 1896). Through his analysis, Rayleigh was able to show that

variations in compressibility act as simple isotropic point sources, while variations

in density act as dipole sources. Central to Rayleigh's solution was the limitation

that the amplitude and phase of the incident wave (i.e. the Green's function of the

backgrcind wave) is constant over the entire extent of the scatterer. This is accurate

only when the spatial extent of the scatterer is small compared to a wavelength

(Skolnik, 1970). For larger scatterers, amplitude and phase variations in the incident

wave cause the radiation pattern of the scattered waves to be more complex.

Several techniques have been introduced to solve the problem of scattering from a

sphere which is similar in size to a wavelength. An exact solution has been presented

for both the case of an incident P-wave (Ying and Truell, 1956; Yamakawa, 1956) and
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an incident S-wave (Eispruch et al., 1960). The exact solution is obtained by formu-

lating the problem in spherical coordinates and matching the boundary conditions at

the surface of the sphere. Solutions derived by this technique are slowly converging

infinite series which cannot be expressed simply, except in the low frequency limit

(i.e. Rayleigh scattering limit). Besides giving extremely cumbersome results, the

technique is limited to only spherical or cylindrical heterogeneities (Pao and Mow,

1973).

A second technique uses the elastodynamic equation of motion and the Born ap-

proximation to calculate the equivalent body force due to the heterogeneity. Once

the body force is available, it can be convolved with the Green's function and inte-

grated to obtain the scattered field. The same technique can be used to solve both

the Rayleigh and Mie scattering problems, depending on the assumptions made con-

cerning the incident field. In Rayleigh scattering the incident field is assumed to be

constant across the scatterer, where as in Mie scattering that restriction is lifted. In

this appendix, we will closely follow the work of Wu and Aki (1985c) which itself was

based on the pioneering work of Miles (1960) and Gubernatis et al. (1977b). The

goal then is to use this perturbative technique to obtain simple closed form solutions

to the general Rayleigh scattering problem, as well as scattering from from obstacles

with Gaussian, and exponential distributions.

A.2 The Born Approximation and Single Scat-

tering

It was shown in Chapter 3 that if the heterogeneities are weak, the scattered field

obeys an ' crnogeiieous wave equation

poii - (A0 + ,o)(V -Lt'), - joVi,, = Q,, (A.A)
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where

Q= -bpi° + (bA + bl,)(V. u ° + 5pVu4 + ( A),iV -u ° + (6i)j(u +
"_ )i _ ), i°j + ujoi). (A.2)

The far-field displacements due to the body force Qj can be obtained by integrating

the body force over its volume,

= Iv Qj( G) * , )dV(). (A.3)

Here G is the homogeneous Green's function, x is the receiver location, _ is the

position within the heterogeneity, and "'" is the convolutional operator. Substituting

Equation A.2 into Equation A.3 and integrating by parts yields,

=p *i( Gi ( )dV(~
= -/1 )

V f jbA )(V.- u(') + 6ba(j)(UJ9k(_.) + oj ]• Gj,k(Z ,  )rig( ). (A.4)

The first integrand is a simple point force convolved with the Green's function. The

force is oriented in the particle motion direction of the incident wave and depen-

dent on the the density perturbation of the medium. The second integrand is more

complex, but can be shown to represent the equivalent force moment tensor for the

the elementary volume dV( ). Convolved with the Green's function, it represents

the portion of the scattered field due to the perturbations in A and /. Thus, Equa-

tion A.4 is the integrated field due to the interaction of the incident wave with the

heterogeneity.

If the volume V is sufficiently small, the incident wave and the Green's function

can be considered constant across the scatterer. Ignoring the positional dependence

on these parameters, the total uni-directional body force E can be calculated by

integrating the first term in Equation A.4. Assuming the incident field has a simple

harmonic time dependence,

F.= - i= W u,.V, (A.5)
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where 3p is the average density perturbation over the heterogeneity. Similarly, the

force moment tensor can be written as,
= - (,A( )(V- uO( )) + + (',u(()+

-bk3TV(V - 6p- V [U,,k + U41] (A.-6)

Then the far-field displacements are given by (Aki and Richards, 1980),

1
- 4rpor1 -tyjFj(t - r/ao)

1 fI o o (-fiyj -6, )Fj( t - r / o)
-47rpo/I02r (~v~--r/ 01

+ 4 rpoao -ri-iYjYkMjk(t - r/ao)

+ 1 4/ filj - ij)_kMjk(t - r/3o), (A.7)-417rpolar( /* -

where r is the distance from the center of the scatterer, and 7i are the directional

cosines between the ray to the observer and the i axis. The first and third terms in

Equation A.7 are the displacements arising from P-waves and the second and fourth

terms are associated with S-waves.

The effects of the three anomalies 6 p, rA, and Tp are completely separated in Equa-

tions A.5 and A.6. The three orthogonal forces associated with perturbations in A are

of equal strength and affect only the diagonal elements of the force moment tensor,

therefore this source can be interpreted as an isotropic point source. Perturbations

in p can produce both on and off diagonal elements in the force moment tensor. The

on-diagonal elements correspond to on-line force couples and the off-diagonal pairs

(which must be equal, due to the symmetry of the force moment tensor) correspond

to double couple sources.

A.2.1 Plane P-Wave Source

In this section we will investigate the far-field displacements which arc generated when

a plane P-wave interacts with the heterogeneity in the medium. The displacements

174



due to a plane P-wave traveling in the +xj direction is written as,

un O e-iw(t - x1/ao) (A.8)

The equivalent body force can be calculated by inserting Equation A.8 into Equa-

tion A.2,

Qj=
[/1j o2 (FA + 20"-)w 02  1W(

r 1 a2 - +a2 + 2i W(')J) + i () 'j e-iw@ - xI/aO).(A.9)

From Equations A.5 and A.6, the equivalent force and moments are given by,

F = b 5w2-FpVe -?Wt (A.10)

bA+26p 0 0

M = 0 TA 0 ie (A.11)

0 0 A

and the far-field radiation pattern by,

2t- 2] W2Ve-ioW(t - r/ao)

LPO -o+ 2 + 47rrao
[ ,- 2,3l°- 2 ~w2Ve-W(t - r/ 0 )
SPO a0P0  4rr302 (A. 12)

The far-field scattered waves depend on both the distance from the perturbation and

the angular arc between the ray to the receiver and the particle motion direction of

the incident wave. This suggests that Equation A.12 can be simplified by changing to

polar coordinates. Choosing the coordinates such that the polar axis is in the particle

motion direction of the incident wave (Figure A-I), and separating the P and S waves

in Equation A.12 yields,
S= [ cosO- - A2 s 2  1 'w (t - r/oo)

os 01 (A.13)
Po o +2 p o Ao + 2,uo 4rra
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Figure A-i: The coordinate system used for an incident P-wave.
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PuS =o[L--sin 0 - - sin 20 Vw2e W(t- r/) (A.14)
pO 00/10 47rr302 ,

where PU P are the displacements due to P-wave to P-wave scattering and Pus are

displacements due to P-wave to S-wave scattering. It is clear from these equations that

regardless of the nature of the anomaly, the particle motion of the scattered P-wave

is always in the radial direction, and that of the scattered S-wave is always in the

direction. Furthermore, the cosine dependence of the scattered P-wave indicates that

P-wave scattering is most intense in the forward and backward directions, and is zero

in the plane orthogonal to the incident particle motion direction. Conversely, the sine

dependence in the S-wave terms indicates that the scattered S-wave is strongest in the

plane perpendicular to the scattered P-wave lobes and is zero in the incident particle

motion direction. It is interesting to note that for most materials (i.e., A a Tu) the

scattered S-wave is larger than the scattered P-wave.

The exact form of the total scattered field will depend on the magnitude and

polarity of the various perturbations. We will discuss only a few of the infinite number

of possibilities here.

When TX , Tp7, and bp all have the same algebraic sign, (i.e. the inclusion is harder

and heavier, or softer and lighter, than the background medium) P-wave scattering is

greatest in the backwards direction. This occurs because at 0 = 7r the three terms in

Equation A.13 all have the same sign and therefore are in phase. As a special case,

consider a heterogeneity in which

- bp bp (A.15)

The velocity within the anomaly can be written as,

2 =o + 6A + 2(po + 6,u) ( o + 2po)(1 + bp/po) 2

Po+= P po(l + bp/po)

and the impedance by,

pa = (po + bp)co # poao. (A.17)

177



This combination of perturbations results in only an impedante contrast across the

inclusion. Any scattering which takes place is then due to the impedance mismatch

of the inclusion, hence the name "impedance scattering". The scattered field from

the perturbations in A, ti and p are shown individually in Figure A-2 and the to-

tal scattered field is shown in Figure A-3. Notice that for this particular choice of

parameters, the total scattered P-wave is confined to the back-scattered direction.

The scattered S-wave is considerably larger than the P-wave and is strongest in the

side scattered direction. Notice, too, that no scattered S-wave is generated in the

forward-backward direction and no P-wave is side-scattered.

Also of interest is the case when the inclusion is lighter and harder or heavier and

softer than the surrounding material. Consider the special case when

TA T =- . (A. 18)
A0 /go P0

It is easy to show that there is no impedance change across the inclusion, only a veloc-

ity perturbation. This situation is often termed "velocity scattering". The radiation

pattern due to velocity scattering is identical to that for impedance scattering, but

rotated 180°(Figure A-4).

Velocity scattering is characterized by strong forward P-wave scattering, while

impedance scattering gives rise to strong back-scattering of P-waves. In both cases,

there is no scattered S-wave in either the forward or backward directions. The S-wave

displacements are concentrated in the side-scattered directions, and are considerably

larger than the scattered P-waves. The larger amplitude of the scattered S-wave

should make it more visible/useful in some experiments, but its radiation pattern will

make it difficult to observe in limited aperture transmission and reflection geometries.

Similarly, the strong back-scattering characteristics of impedance scattering will make

these anomalies difficult to quantify in most transmission experiments, and more

easily quantified in reflection experiments.
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P -> P Scattering P -> S Scattering

V

7-)x

z

2X
&/

S 2X

Ix

Figure A-2: Rayleigh impedance scattering due to variations in A, p and p. The incident
wave was a P-wave traveling in the +x direction and 6A/Ao = bs/po = bpipo. Notice
P-waves are displayed at 2X the S-waves.
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P -> P Scattering

z

P -> S Scattering

Figure A-3: The total scattered field from Figure A-2. In impedance scattering the P-wave
is directed backwards, and the S-wave is strongest in the side-scattered direction.
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P -> P Scattering

y

P -> S Scattering

Figure A-4: Rayleigh velocity scattering of a P-wave results in a fore-scattered P-wave and
a strong side-scattered S-wave. This scattering pattern is identical to Figure A-3, but
rotated 1800.
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A.2.2 Plane S-Wave Source

The same analysis can be applied for the case of an incident S-wave. Consider an

S-wave propagating in the +xj direction, with particle motion in the X2 direction,

o =2ie-iW(t - x1/'30 ) (A.19)

Again, we can solve for the body force vector Q by inserting Equation A.19 into

Equation A.2,

22 eiw(t - X1 /3 0 )
Qi [Ob~i(Tpw - 0 + 6 2iTA'i)bi'), + A.0

Then the forces are,

Fi = 6i2w2Tpve-iWt (A.21)

0 T6 U 0
M - p 0 0 e

0 0 0

(A.22)

and the far-field displacements are given by,

Sw2 -V [IIf2e-iw(t - r/ao) -(i/2 
6 i2)e-iw(t - r/o)(A.23)Ui - 2e02 e(.3

47rpor I. a0 rII~
W 2 -V - 2 7 7172 -iw(t - r/ao) + (2yi77y2 - 6biY2 - 612-tj)e-iw(t - r/,30)

+ o47r a3 e +3I

Switching to spherical :oorlinates (Figure A-5), with the polar axis pointing in the

direction of the incident particle motion yields,

SUP  JV [Cos 0 - sin 20 sin e-iw(t - r/ao) (A.24)
47rrao 2 o 0 oIo ]2sn

SuS . " V'w2',r [ 6Uo n--j e iw(t - '/f3° )

u = - P sin 0 + - cos 20 sinq z
47r rl 0 ,2 I.Po /1J0

- V -w 2 [T cos 0 cos0]c-w(t - r/ o) (A.25)

4rrO2 [aO 8
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y

r

e0

Incident
S-wave

z

Figure A-5: The coordinate systemn used for a~n incident S-wave.
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Interestingly, both the scattered P-wave and scattered S-wave are independent of

perturbations in A. The scattered P-wave results from variations in density and shear

modulus. The equivalent force due to the variations in density point in the particle

motion direction of the incident wave. This force creates a radiation pattern which

has a simple cosine dependence for P-waves and sine dependence for S-waves.

The scattering pattern due to variations in y are more complex. These pertur-

bations create a double couple source in the xI-X 2 plane. The double couple source

causes the S-wave to have displacements in two directions, 0 and 0. The double cou-

ple force can be decomposed into two single couple forces by rotating the coordinate

system, so that the polar axis is parallel to the force direction. Then, the S-wave

displacements for each force couple can be calculated separately. Consider the dis-

placements due to the element M 12. The displacements in the new coordinate system

are given by,

sur p2V 1Aio4irrpo3 -o) (-y,-y1 - 6,l)y2 (A.26)

or in polar coordinates about the new polar axis by,

SUS W2 V n ' 2 0 o (A.27)
41rrpo I Lsn sw

Similar results can be found for the other force couple 121 and the total scattered

field from the variations in y is given by the vector sum of the two single couple forces

(Figure A-6).

The terminology introduced for P-wave scattering can also be used in S-wave

scattering. When

- 7(A.28)
P0 /to

there is no discontinuity in velocity and only impedance scattering. In impedance

scattering, S-wave to P-wave conversion is strongest in the back-scattered direction.

S-wave to S-wave scattering is more complex and has three main lobes. The largest

lobe is in the backward direction and the two smaller lobes are in the side-scattcred

direction (Figure A-7).
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S -> P Scattering

y

_X

S -> S Scattering

Figure A-7: The total scattered field from Figure A-6. Notice the strong back-scattered lobe
which occurs for S-wave to S-wave scattering.
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As was the case for P-wave scattering, the scattering pattern due to velocity scat-

tering is opposite that for impedance scattering, Figure A-8. The large forward scat-

tered S-wave suggests that these anomalies will be easiest to identify in transmission

experiments, such as cross-well or VSP geometries.

A.3 Mie Scattering in a Weakly Heterogeneous

Media

In the last section, a series of simple closed form solutions were obtained for elastic

wave scattering from a small isolated heterogeneity. The metric used to define small

was the wavelength. If the scatterer is small enough that the phase of the incident

wave is nearly constant across the scatterer, the scattered field can be adequately

described by Rayleigh scattering. However, when the size of the scatterer approaches

that of a wavelength, the incident field will have significantly different phase at dif-

ferent points in the scatterer, resulting in a more complex scattering pattern.

Using the results from the previous section, the Born approximation can be used

to calculate the scattered field for a general elastic heterogeneity,

= V Qj (j) * Gi,(x, )dV(I)" (A.29)

If the size of the scatterer is on the order of a wavelength, the incident wave and

Green's function can no longer be considered constant about the scatterer. Equa-

tion A.29 can be solved approximately using the Fraunhofer approximation to the

Green's function. Then,

Ui = + 4
w2e-iw(t- r/¢ao)

4irrao Iv [ PO
- y(V.u°j( ))± co (j .u (

+iatobA ( . 7i U) ) + iaoby]( _) ..NiYjA~k(Uj,k( _) +- Uk,A())

+ Ao60 + 2y0) w(Ao + 210)

e-io( - ." )1dV(7) (A.30)
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S -> P Scattenng

Y

S -> S Scattering

Figure A-8: Rayleigh velocity scattering of a S-wave resul~s in a side-scattered P-wave and
a strong fore-scattered S-wave. This scattering pattern is identical to Figure A-7, but
rotated 1800.
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uS(z) = wO2e iw(t - 7r/ilo) [~~ ~~~~~

41rrO32 PO (bi PoyiW

+ 004o6(0(bi - 11 1)Ik(jl + kjV

',~ x sYII.dV(kx.(A.31)

When the incident wave is a plane P-wave (Equation A.8), these equations can

be simplified to,

PUP w2e-iw(t - r/ao) (A.32)
=2

4rrao

PO V:ih - A0 + 2pt0 IN - A0 + 2 1 ydew' " -cdV

=u w2e-iw(t r/3o) (A.33)

J p~l [6 (bi _ _tir) _ #o2bp4 ) (6i -'V~a - (. 1i)I0)dV(

For an incident S-wave,

-w2eizw(t - r/oro) (.4

Iu =iY --- Y

sus = wj2eizw(t -r/3o) 
(.5

IV I P~i - -Yi72) - L/(bi172 + bi2711 - 27j7-17v2)]e(1/o-(5 )/od()

Now, suppose all three parameters A, ps and p share the same parameter distribu-

tion function P( ) such that,

bA( ) = bA 0P(Oj (A.36)

bl(40) = bpoP(D) (A.37)

WO = bpoP(O), (A.38)
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where 6Ao, 6,uo, and 6 po are the parameter values at the center of the inhomogeneity

and

6Ao j P( )dV(_) = --AV (A.39)

l'o vP( )dV( - ) = 3"pV (A.40)

Spo/ P( )dV( ) = SpV. (A.I 1)

Using these definitions, the scattered field for an incident P-wave can be written as,

Pu P = r[POcosO- ao 2bito cos 0]w e- iW (t - r/a )

Sp Ao + 21 o Ao + 2po . 47rra

v P( ) ( - l " a dV ( )  (A.42)

Pu s  -= [ sin 0 - 6tOsin 2 0] --Z2W(

I-PO aomZo 0 7r
fP (j )eiLOWl/ - "0)10O) dV (j) (A.43)

and those for an incident S-wave as,

S W
2  [2POcos0 - P°'uo sin 20 sin€]41rra I r PO ao/10o0

j P(o- )e iw( 1I/ - ( /aodV(_) (A.44)

SuS W r3 2 snO +t°co sn it

i n 0 +-cos 200sinl + 4  cos 0 cos ]
47rrP6 L PO YO [PO

e-iW(t - rI/3o) J, P()ew( ' - ("' "W))/OdV(4) (A.45)

(A.46)

These equations are similar in form to the equations for Rayleigh scattering. The only

difference is the volume V in those solutions has been replaced by a volume integral
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of the form

= f P(e iwj S dV( ), (A.47)

This term has been identified as a shape (Gubernatis et al., 1977a), or volume (Wu and

Aki, 1985c) factor. The volume factor modulates the Rayleigh solution. It accounts

for the fact that the total scattered field is an integrated sum of scattered waves

from all parts of the heterogeneity. Since the incident wave may not have constant

phase across the heterogeneity, the total scattered field will be a superposition of

waves which have different phase delays. As a result, this method of calculating the

scattered field will always produce a smaller scattered wave than the Rayleigh solution

(for similar sized scatterers). For common-mode scattering the volume factor is largest

in the forward direction and smallest in the backward direction. This occurs because

in common-mode scattering, the incident and scattered waves travel with the same

slowness, and therefore always add constructively in the direction of propagation.

In Equation A.47, the term S,, is the exchange slowness vector. From Equa-

tions A.42 - A.45 the slowness vectors are given by,

I p I (A.48)
a 0

S2 = [},/1o- i/1 (A.49)

S3 = [;i/ - -/ao] (A.50)

a4 = 1o[p - i1. (A.51)

The form of Equation A.47 is similar to that of a spatial Fourier integral, where

the wavenumber vector k equals wS,,. Then, for a specified scattering angle 0, the

volume factor 0,, is equal to the spatial Fourier component of the parameter variation.

When the spatial variation is spherically symmetric, the volume factor can be written

in terms of a 1 D Fourier transform,

0S(0) 2 ( 9) (A.52)
WS,, (W;S,,)P(~

where P is the Fourier transform of the material perturbations and a, is the norm

of the vector 5,.
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A.3.1 Mie Scattering from a Gaussian Inclusion

Several statistical models have been put forth to describ, the ;tatistical distribution of

scatterers in the lithosphere, (Aki et al., 1977; Aki, 1980; Ringdal and Husebye, 1982;

Wu, 1982a; Frankel and Clayton, 1984; Frankel and Clayton, 1986; Charrette and

Toks6z, 1989; Toks6z et al., 1991). In crystalline rocks, the heterogeneities are prob-

ably broad smoothly varying features. It is speculated that these heterogeneities can

be described by a Gaussian autocorrelation function. In sedimentary rocks, however,

the heterogeneities might be more "rough" and better described by the exponential

function. In this section we derive the volume factors for both the Gaussian and

exponential functions and show their effects on the scattered waves.

A.3.2 Gaussian Parameter Function

For a spherical inclusion, the Gaussian parameter variation function is given by,

P(r) = e/a2, (A.53)

where a is the correlation length of the heterogeneity (Figure A-9). The one-dimensional

Fourier transform of the parameter function is,

P(k) = V/ae -k a /4 (A.54)

and the volume factors are given by,

0,, = (v~ra)3e - (wSa) / 4. (A.55)

At low frequencies (i.e. when the wavelength is large compared to the size of the

scatterer) the volume factor is nearly isotropic and the Mie solution is much like the

Rayleigh solution (Figure A-10). As the frequency of the incident wave increases, the

scattering pattern becomes more forward directed, until no energy is backscattered

at all. The volume factor for an incident S-wave is similar to that for an incident

P-wave (Figure A-11). In both cases, the volume factor has only one main lobe. The
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Gaussian and Exponential Functions

space domain

0,75 - Gaussian

0.5-

0.25

Cxponleflial

I)2 3 4 5

Nortnahzed Distance

exponntialwavenumber domain

0.01

0.001 001 0.1 1 10 100
waventimber

Figure A-9: Space and wavenumber domain representations of the Gaussian and exponential
functions.
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Incident P-Wave

0.75 -1

5

S 0 5 1.0

.025

10.0

S 0.25

0.5 .5 /

a. 0.75 .25

1-

Figure A-10: The volume factors for a P-wave incident on a spherical inclusion with a
Gaussian parameter function. The upper half of the diagram is for P to P scattering and
the forward scattering direction is to the right. The volume factor varies smoothly with
angle and strongly favors rorward scattering of both P and S waves.
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Incident S-Wave

1-

0.75 -  '/5

0.5

A L

C" 0.75
0 5

Figure A-11: The volume factors for an S-wave incident on a spherical inclusion with a
Gaussian parameter function. The upper half of the diagram is for S to S scattering anu
the forward scattering direction is to the right. As for an incident P-wave, the volume
factor varies smoothly with angle and strongly favors forward scattering of both P and
S waves.
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main lobe is oriented in the forward scattered direction and varies smoothly with

scattering angle. Other parameter functions, especially those with sharper space

domain features (e.g., a spherical boxcar function) have been shown to produce much

more complex volume factors (Gubernatis et al., 1977a; Wu and Aki, 1985c).

In the back-scattered direction, the volume factor decreases as the size of the

heterogeneity increases (Figure A-10). This has the effect of severely reducing the

amiplitude of both the scattered P (Figure A- 12) and scattered S waws, ( Figure A-13).

The effect of the volume factor on velocity scattering is similar for S-waves (Fig-

ure A-15), but quite different for P-waves (Figure A-14). Since in velocity scattering

the P-wave is strongly foi ,,ard scattered the effect of the volume factor is small. In

both impedance and velocity scattering the Mie solution approaches the Rayleigh

solution as the size of the scatterer decreases.

A.3.3 Exponential Parameter Function

The exponential function,

P(r) = e ,(A.56)

is similar to the Gaussian, but is not as well localized in the space (or wavenumber)

domain (Figure A-9). The one-dimensional Fourier transform of the exponential is,

P(k,) = 2a/(I + k2a'), (A.57)

and the volume factors are given by,
8 Sra3

0, [1 +w Sa] (A.58)

The volume factors for incident P and S waves are shown graphically in Figure A-

16 and Figure A-17 respectively. The scattering patterns from an inclusion with an

exponential parameter function (Figures A-18-A-21), are much like those from an

inclusion with a Gaussian parameter function. For velocity scattering, the scattered

P-wave is noticeably more forward directed, but otherwise it is very similar to the

Gaussian case.
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P -> P Scattering

V

ac/a = 0.5

awo/t= 1.0

Figure A-12: Mie scattering includes the effects due to the finite shape of the scatterer.
Shown are P to P impedance scattering patterns (magnified 4X) which result from two
different sized inclusions with Gaussian parameter functions. Note the strong reduction
is the amount of back-scattered energy as the size of the inclusion is increased. For
infinitely long wavelengths, this solution reduces to Figure A-3.
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P-> S Scattering

ao(a= 0.5

aO3/c = 1.0

Figure A-13: P to S impedance (Mie) scattering patterns (magnified 2X) which result from
two different sized inclusions with Gaussian parameter functions. Note the near extinction
of the scattered S-wave when the size of the inclusion is larger than 1/6 of a wavelength.
For infinitely long wavelengths, this solution reduces to Figure A-3.
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P -> P Scattering

by

acWa= 0.5

aoua= 1.0

Figure A-14: P to P velocity (Mie) scattering patterns (magnified 4X) which result from
two different sized inclusions with Gaussian parameter functions. Unlike the impedance
scattering case, the size of the scattered wave is not greatly affected by the size of the
scatterer. For infinitely long wavelengths, this solution reduces to Figure A-4.
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P -> S Scattering

aw/a =0.5

aoa = 1.0

Figure A-15: P to S velocity (Mie) scattering patterns (magnified 2X) which result from
two different sized inclusions with Gaussian parameter functions. Again, note the near
extinction of the scattered S-wave when the size of the inclusion is larger than 1/6 of a
wavelength. For infinitely long wavelengths, this solution reduces to Figure A-4.
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Incident P-Wave

1 2,

0 0.75=

S 0.5 "

0.0

s-- 0-25
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A - 2

0.75 
2

1 (ova=0

Figure A-16: The volume factors for a P-wave incident on a spherical inclusion with an

exponential parameter function. The upper half of the diagram is for P to P scattering

and the forward scattering direction is to the right. The volume factor varies smoothly

with angle and strongly favors forward scattering of both P and S waves.
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Incident S-Wave

0.75 O

l 0.5 .

0.25 1.0

0
0.25 1 !.0

(A 0.5 .25

A 0.75 "t a/B=O

Figure A-17: The volume factors for an S-wave incident on a spherical inclusion with an
exponential parameter function. The upper half of the diagram is for S to S scattering
and the forward scattering direction is to the right. As for an incident P-wave, the volume
factor varies smoothly with angle and strongly favors forward scattering of both P and
S waves.
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P-> P Scattering

Y

aw/a = 0.5

aco/a- 1.0

Figure A-18: P to P impedance (Mie) scattering patterns (magnified 4X) which result from
two different sized inclusions with exponential parameter functions. Note the strong
reduction is the amount of back-scattered energy as the size of the inclusion is increased.
The scattering pattern is similar to Figure A-12.
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P .> S Scattering

y

ao,/a = 0.5

aO3 = 1.0

Figure A-19: P to S impedance (Mie) scattering patterns (magnified 2X) which result from
two different sized inclusions with exponential parameter functions. Note the near ex-
tinction of the scattered S-wave when the size of the inclusion is larger than 1/6 of a
wavelength. The scattering pattern is similar to Figure A-13.
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P -> P Scattering

aco/- 0.5

a0/a = 2.0

Figure A-20: P to P velocity (Mie) scattering patterns (magnified 4X) which result from two
different sized inclusions with exponential parameter functions. Unlike the impedance
scattering case, the size of the scattered wave is not greatly affected by the size of the
scatterer. The scattering pattern is similar to Figure A-12, but slightly more concentrated
in the forward direction.
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P-> S Scattering

I 'C

awc0/= 0.5

aca = 2.0

Figure A-21: P to S velocity (Mie) scattering patterns (magnified 2X) which result from
two different sized inclusions with exponential parameter functions. Again, note the near
extinction of the scattered S-wave when the size of the inclusion is larger than 1/6 of a
wavelength.
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Appendix B

Finite Difference Modeling

B.1 Introduction

Finite difference modeling has proven to be an effective technique for numerically

simulating wave propagation in the earth. The popularity of the technique stems from

its ability to generate a complete solution to the elastic wave equation. Thus direct,

reflected, diffracted, and guided modes are all accurately modeled. The technique

is also easy to implement and accurate over a wide range of wavelength to scatterer

ratios. The latter is not true of high frequency techniques, such as raytracing. The

chief disadvantage of the finite difference technique is its computational intensity. As

a result, large scale three dimensional simulations can be done only on state of the

art supercomputers and require prohibitive amounts of CPU time.

A great number of finite difference schemes have been introduced in the literature.

These schemes are generally divided into two broad classes; explicit schemes and

implicit schemes. Both iteratively solve the wave equation, but in explicit schemes it

is possible to calculate displacements at a later time from only earlier displacement

values. This leads to easier implementation and may explain their widespread use in

geophysical problems. Implicit schemes use both future and past time steps to provide

unconditional stability. However, seismic wave simulation is bound by dispersion
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error, not by stability, so the increased complexity of implicit schemes has not been

justified.

Finite difference schemes can be further categorized by their order of accuracy.

Since the value of a continuous function sampled on a discrete grid is known only

at the node points, the usual method of deriving finite difference operators is to

assume an interpolating function then exactly differentiate that function. The most

commonly used interpolant is the Lagrange polynomial. Bickley (1941) gives the

general form of the differentiated Lagrange polynomial as
d k f (X kw I m! d' +1fdfxj h ,__Afx) El'dk+ f(x) \

dXk mhk Af(x) E h d-k+i (.1)

where k is the order of differentiation, m is the order of accuracy, and h is the sample

spacing. It is clear from Equation B.1 that the size of the error term E decreases

as the order of the interpolant increases. It is also clear that as the order of the

interpolant increases, the number of computations increases.

All forward modeling presented in this thesis made use of an explicit second-order

finite difference technique on a non-staggered grid. This approach allows both com-

ponents of the displacement vector to be specified at the same point in space, making

the implementation of boundary conditions and subsequent processing considerably

easier. The cost of this simplification is a slight loss in accuracy, especially in areas

with sharp spatial gradients in material properties (Virieux, 1986). A second reason

for choosing this formulation is that both absorbing and free surface boundary con-

ditions are far easier to incorporate into low order finite difference schemes. Lastly,

in order to accurately describe some of the random media, it was necessary to sample

the medium at a very high spatial sampling rate. In light of the high sampling rate,

low order schemes were more efficient than high order schemes.

Other schemes are also commonly used in seismic applications. Currently, the

most popular schemes seem to be fourth-order explicit schemes (e.g., Frankel and

Clayton, 1984; Frankel and Clayton, 1986; Gibson and Levander, 1988). The popu-

larity of these schemes stems from the fact that they provide sufficient accuracy with

208



a larger step size. The pseudo-spectral method, the high order end member in the

family of finite diifference schemes, has also generated sonic interest in the seisinic

literature (e.g., Fornberg, 1987; Witte, 1989). This method uses a Fourier series as

the interpolation function. The Fourier transform is efficiently calculated using the

Fast Fourier transform. The derivative of the interpolant is simply its Fourier spec-

trum times ik, where k is the wavenumber. The pseudo-spectral technique has the

advantage that it exactly differences any spatial fr,.quency which is not aliased, but it

has the disadvantage that it implicitly assumes periodicity, thus making free surface

and absorbing boundaries difficult to implement.

The trade-off between high and low order finite difference schemes has been in-

vestigated in the seismic literature (Fornberg, 1987; Daudt et al., 1989; Vidale, 1990)

but it appears the optimal choice for the order of accuracy may be application as

well as machine dependent. The latter point has important implications for three-

dimensional finite difference work, where parallel computers will likely dominate. On

most parallel computers, individual nodes can perform local calculations orders of

magnitudes faster than they can access data from neighboring processors. In light

of this, it seems low order finite difference schemes might be more efficient on these

machines. Conversely, machines with high speed vector processors and fast RAM

(memory) can compute and access memory at high speed and may favor higher order

schemes.

B.2 2-D Finite Difference Modeling

The wave equation for a linearly elastic, isotropic, heterogeneous medium can be

written as (Aki and Richards, 1980)

piii - (AV. u).i - [p(ui,j + u3,i)I1j = 0, (B.2)

where _U = u (x, t) is the displacement vector, A and p. are the Lam6's parameters,

and p is density.
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Most features in the Earth's crust are fully three dimensional in nature. How-

ever, due to computational limitations we wlr-' only able to model two-dimensional

geometries. We have chosen to use the two-dimensional plane stress equations in a

Cartesian coordinate system. All stresses are assumed to be invariant in the y direc-

tion. It should be noted that the Green's function for a two-dimensional system is

scaled by 1/ir, as opposed to 1/r for a three-dimensional medium. As a result, some

care must be exercised when comparing synthetic 2-D results to actual field data.

We follow the coordinate system commonly used in seismology; x is the horizontal

offset and z is depth. Expanding Equation B.2 and setting displacements and stresses

in the y direction equal to zero gives

p~ttu = 9.[(A + 2p)8,u + AOew] + O[y(Ozu + O.w)] (B.3)

p~tw = o9[(A + 2pu)dlw + Ae9,uJ + Ozfu(d~u + 0.wi)],

where u and w are the horizontal and vertical components of the displacement vec-

tor. These equations fully describe the motion of compressional (P) and vertically

polarized shear (SV) waves within the medium. There is no need to consider the

horizontally polarized shear (SH) waves since that motion is completely decoupled in

two-dimensional systems and will not be excited by our source.

All finite difference modeling in Cartesian coordinates was done using the explicit

second order scheme introduced by Kelly et al. (1976). In that scheme, displace-

ments, stresses, and the material properties are all specified on the same grid. The

scheme uses midpoint finite difference operators to approximate second order partial

derivatives with only one independent variable,

(9,A(x,z)8xu(x,z,t) D,A(x,z)V,u(z,z,t) (B.4)
1
I [A(x + dx/2, z)(u(x + dx, z, t) - u(x, z, t))

- A(x - dx/2, z)[u(x, z, t) - u(x - dx, z, t)], (B.5)

but a less accurate full step stencil to approximate mixed derivatives

0'(x, z)0 2u(xz, 1) D~t(x, )Du(xz, )(13.6)
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1
xdz [jt(x + dx, z)(u(x + dx, z + dz, t) - u(x + dx, z - dz, t))

u(x - dx, z)(u(x - dx, z + dz, t) - u(x - dx, z - dz, t))]. (B.7)

Inserting the finite differences into Equation B.3 yields

pDttu = [Dx(A + 21i)Du + DxAD~w

+ DpDu + D2 luD.wI (B.8)

pDttw = [Dz(A + 2,i)Dw + DAD~u

+ DItDw + D.,yDzu] (B.9)

B.2.1 Numerical Dispersion

Trefethen (1982) showed that finite difference approximations to the elastic equation

of motion produce a medium which is both dispersive and anisotropic. That analy-

sis was presented for the acoustic wave equation, but used a finite difference scheme

similar to that used here. Prange (1989) followed that procedure and obtained sim-

ple closed form expressions for both the phase and group velocity of elastic waves

traveling on a staggered finite difference grid. He was able to obtain simple closed

form expressions because the second differences in his equations were obtained by

recursively applying the first difference equations. The finite difference scheme used

here does not have that property, thus its dispersion relation is more complex.

Numerical analysis of the dispersion equation for the inhomogeneous wave equa-

tion is extremely complex. Therefore, most studies concentrate on the homogeneous

form of the isotropic elastic wave equation

(2 - ,32)9 a2z + w

The dispersion relation for the homogeneous elastic wave equation can be found by

inserting a trial solution of the form ei( - ' - t) into Equation B.10. After simplification,
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it can be shown that the eigenvalues are gi vea by

w2 = _ 2(R ". (B l

w2 -f 2 (kk) (B.12)

where w is the angular frequency and k is the wavenumber vector. Notice that in a

purely elastic medium, the phase velocity is independent of frequency and therefore

equivalent to the group velocity. Also notice that the dispersion curve is a circle,

indicating the medium is isotropic. Since Equation B.10 is Hermitian, its eigenvectors

are orthogonal. The first eigenvector points in the direction of k (i.e. P-wave motion

is longitudinal) and the second is orthogonal to k (i.e. S-wave motion is transverse).

The eigenvalues for the finite difference equations can be found by inserting the

finite difference approximations (Equations B.4 and B.6) into Equation B.10. Taking

the limit as At --- 0 and using the same trial solution results in extremely complicated

analytic forms for the eigenvalues and eigenvectors. Due to the complexity of those

equations, the error in phase velocities for the compressional and shear modes are

displayed graphically in Figures B-1 and B-2. The phase velocities of the medium

depend on the eigenvalues, and are given by C(k) = w/ kI. In the analytic form

of the elastic wave equation, the phase velocities are constant. Figures B-1 and B-2

show this is not the case for the finite difference wave equation. In the wavenumber

domain, the error in phase velocities is shown to be a function of the finite difference

grid spacing. At small spacings, the error in phase velocity is small for both P and

S waves. At larger step sizes, the error contours for the compressional phase velocity

slowly become less circular. This is numerically induced anisotropy. The shear phase

velocity is even more anisotropic. Along the axes of the grid, the shear wave can be

seen to travel too slowly, while at 45°to the axes, the shear wave velocity is too fast.

The group velocity vector is defined as

L(k) = Vkw. (B.13)

For an elastic, homogeneous, isotropic medium, the group velocity vector is inde-
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Error in Phase Velocity
(Compressional Waves)

Horizontal Wavenumber

-pi/h -pi/2h 0.0 pi/2h pi/h
pi/h

pi/2h
-5%

0.0

-pi/2h

'-pith

Figure B-i: In wavenumber space, the dispersive and anisotropic nature of the finite

difference grid is clear. This plot contours the errors in compressional phase velocity as

a function of wavenumber. In all modeling the spatial step size h was chosen so that no

frequencies had phase velocity errors greater than 1%.
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Error in Phase Velocity
(Shear Waves)

Horizontal Wavenumber

-pith -pi/2h 0.0 pi/2h pi/h
------- -pi/h

+ 10%

K? pil h

0.0

-pi/2h

-pi/h

Figure B-2: Similar to Figure B-1, but for the shear wave. Notice the highly anisotropic

nature of the finite difference grid. Also notice that shear waves tend to travel fastest at

45°and slowest along the axes of the grid.
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pendent of frequency and direction. These properties are only observed in the finite

difference equations when the spatial step size is very small (Figures B-3 and B-4).

At larger step sizes, the magnitude of the group velocity vector is generally underes-

timated for both P and S waves. These errors are shown graphically in Figures B-

5 and B-6. In addition, there is a consistent error in the direction of the group velocity

vector. Only iih . few directions (00, 450, and 900) are the group velocity vectors ori-

ented correctly. Energy traveling in other directions will tend to be focused towards

the diagonals of the grid. As a result, there may be too much energy traveling in

these directions

Both these errors can be minimized by maintaining a sufficiently high sampling

rate. Throughout this thesis, we sustained a sampling rate of at least 10 points per

wavelength (PPW) for the shortest wavelengths on the grid (i.e. k = 7r/5). For

P-waves, this resulted in phase velocity errors of less than 1.5% and group velocity

errors of less than 5.0% (Figures B-1 and B-6). Errors were much smaller at the

center frequency of the source wavelet.

B.2.2 Sources and Boundary Conditions

Energy can be introduced into a finite difference simulation in two ways, either by

specifying the initial conditions (i.e. the displacement and the time derivative of dis-

placement) over the whoje grid, or driving one or more nodes with a time varying

displacement function. In general, we use the first technique when modeling phe-

nomena in which the source is a plane wave. The second technique is reserved for

situations when the desired source is a line source (2-D equivalent of a point source).

The source function most commonly used is the Ricker wavelet (Ricker, 1977), since

it is well localized in both the spatial and Fourier domains (Figure B-7).

To minimize computational time and storage, artificial boundaries must be intro-

duced along the "edges" of the grid. Throughout this thesis we use a second-order

paraxial elastic wave equation at all boundaries from which we desire no reflections
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Group Velocity Vector
(Shear Waves)

Horizontal Wavenumber
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Figure B-4: For a non-dispersive isotropic medium, the shear wave group velocity vector

points radially away from the origin and has constant length. Note that only at 00,
450, and 900do the group velocity vectors point in the radial direction. Along all other

propagation directions, the group velocity vectors are biased towards 45*0
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Error in Group Velocity
(Compressional Waves)

Horizontal Wavenumber

-pi/h -pi/2h 0.0 pi/2h pi/h
pi/h

pi/2h

-5%b

0.0

-pi/2h

*-pi/h

Figure B-5: The errors in group velocity are frequency and azirnuthall . dcpcndent. In

general, errors are largest for P-waves traveling along the axes of the grid and smallest

for those traveling at 450*
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Error in Group Velocity
(Shear Waves)

Horizontal Wavenumber
-pi/h -pi/2h 0.0 pi/2h pi/h

-pi/h

10%
+15%

Pi/2h

-pi/2h

Figure 1B-6: Same as Figure B-5, but for shear waves. Notice that largest errors in shear
wave group velocity, occurs at 45'.
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Ricker Wavelet
1.00

0.50

0.00

-0.50 .,II

-1.50 -1.00 -0.50 0.00 0.50 1.00 1.50

Normalized Time (t-fo)

1.00

0890

S0.60

0.40

z
0.20

0.00
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Normnalized Frequency (f/f0)

Figure B-7: The Ricker wavelet in time and frequency domains.
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(Clayton and Engquist, 1977). To minic a free surface, we make use of a row of

pseudo-nodes above the grid and solve the zero stress equations,

0 = o 'u + a"w (B.14)

0 = AOau + (A + 2)a9w, (B.15)

at the free surface (Munasinghe and Fartiell, 1973).

B.3 A Point Diffractor

To investigate the accuracy of the finite difference technique a series of simulations

were made to study the scattering from a point diffractor. Sharp contrasts are known

to lead to inaccuracies in most finite difference algorithms. These errors are due to

spatial aliasing of the high wavenumbers, which are folded into the low wavenumber

components (Witte, 1989). A point diffractor on a discrete grid is an extreme example

of this phenomenon, since in the Fourier domain the spectrum of the medium is

constant out to the spatial Nyquist frequency.

In all three simulations a plane P-wave was incident on a point diffractor which

had no perturbation in A\ or p, but a 33% perturbation in p. The source-time function

of the P-wave was a Ricker wavelet (Figure B-7) which was sampled at 25, 50 or 100

points per wavelength (PPW) at the center frequency. Figures B-8 and B-9 show the

radiation patterns for P-P and P-S scattering. At coarse sampling rates, the solutions

differ considerably from the analytical solutions. Note the large errors at 45°in the

S-wave solution. These secondary lobes occur because the higher frequencies in the

S-wave were under-sampled. For these frequencies, the group velocity vector is biased

away from the axes of the grid. As the sampling rate is increased, the solution is seen

to converge towards the analytic solution.
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Scattered P-wave
(Finite Difference Method)

1.00 10"3  Backward Forward

8.00 10- 4

6.00 10- 4

4.00 10-4

2.00 10-4

* . o.oo iO0

2.00 1&

4.00 10 4

6.00 1-4 25 ppw

8.00 10 4  - -50 ppw
-100 ppw

1.00 10-3  - Analytic Solution

Figure B-8: Comparison of the finite difference solutions at 3 different grid spacings, 25
PPW, 50 PPW, and 100 PPW. Shown is the scattered field resulting from a plane P-wave
incident on a point diffractor (33% variation in p). The scattered field was generated by
subtracting the incident field from the total scattered field.
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Scattered S-wave
(Finite Difference Method)

1.50 10. 3  Backward Forward

1.13 10 3

7.50 1 4

3.75 10 .4  x'

- 0.00 100

3.75 10'

7.50 10-4

1.1310
3

----- 25 ppw

1.50 1 - - -50 ppw
- -100 ppw

Analytic Solution

Figure B-9: The scattered S-wave for a plane P-wave incident on a point diffractor (33%
variation in it). The scattered field was generated by subtracting the incident field from
the total scattered field.
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EFFECTS OF AN EXPLOSIVE SOURCE IN AN ANISOTROPIC MEDIUM

Batakrishna Mandal and M. Nafi Toksoz

Earth Resources Laboratory, Department of Earth, Aunospheric, and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Abstract. Numerical experiments have been conducted to study the 1988; Charrette and Toksoz, 19891. Furthermore, since cavity collapses
effects of anisotropy for a seismic source in an anisotropic medium. An that accompany some explosions do not produce Love waves, while
algorithm has been developed to compute complete seismic waveforms in explosions do, SH waves cannot be attributed to scattering alone. The
general anisotropic media (Mandal and Toksoz, 1990]. Using this tool, tectonic strain release by explosions seems to be controlled by the local
we have shown that placing the source in an anisotropic medium affects state of stress. The strain energy released due to an explosion-created
dhe seismic waveforms significantly. An explosive source in an cavity [Press and Archambeau, 1962] contribute to the radiation of SH
anisotropic medium produces an azimuthally dependent radiation pattern, waves but it is not clear if this mechanism alone can account for all the
for P. SV, and Rayleigh waves, and also generates SH waves. In some long-period Love waves.
cases of anisotropy, the radiation pattern may be similar to those of An important mechanism that can be responsible for non-uniform
eatiquakes. radiation patterns of P. SV, and Rayleigh waves, and the generation of SH

waves from explosions is seismic anisotropy of the medium in which the
Introduction explosion Lakes place. Recent observational studies show that most

crustal rocks have some degree of seismic anisotropy due to randomly
The azimuthal dependence of radiation patterns of P, SV. and Rayleigh distributed aligned fractures [e.g., Stephen, 1981, 1985; Crampin. 1984:

waves and the generation of SH and Love waves by underground nuclear Lo e al., 1986; Thomsen, 1986; Winterstein, 1986; Martin, 19901.
explosions have been studied extensively [e.g., Kisslinger et al.. 1961; Several major factors contribute to seismic anisotropy: (I) preferred
Press and Archambeau. 1962; Toksoz et al., 1964; Archambeau and orientation of the minerals due to deposition or metamorphism; (2)
Sammis, 1970; Toksoz and Kehrer, 1972; Massd, 1981; Wallace et al., geometric effects, such as alternating high-and low-velocity thin beds
19s., Gupta and Blandford, 1983; Lynnes and Lay, 1998; Johnson, 1988; (e.g., shales, carbonates); and (3) tectonic stress-induced preferred
Priest. -N et al., 1990]. Various mechanisms, including tectonic strain orientation of micro- and macro-fractures in shallow crust For example,
encrg, 'clease by relaxation of the medium around the exploration- the Topopah Spring Member Tuff from Nevada has a velocity anisotropy
geneated cavity, triggering of an earthquake, dislocation across cracks, of 8% and differences in linear compressibilities in two directions of 18%
spay ation and "dapdown," and scattering from heterogeneities, have been (Martin, 1990]. In the presence of local or regional tectonic stress, most
provosed and found to explain some of the data. No single mechanism hard rocks will have significant anisotropy. An explosion detonated in an
has been identified that could satisfactorily explain all of the data [Mass6, anisotropic medium will have a non-isotropic radiation pattern due to the
1981; Gupt and Blandford, 1983; Johnson, 1988]. directional dependence of the compliance of the material around it.

The complexity of the explosion-source phenomenon in heterogeneous The complexity of seismic radiation patterns and the generation of
and pre-stressed media was reviewed at the March, 1989, Lake Tahoe truansvcrsely polarized waves from explosions were investigated for
Symposium [Patton and Taylor, 1989]. There is some consensus that at transversely isotropic media with vertical axis of symmetry by Mandal
long periods the non-uniform radiation pattern of Rayleigh waves and the and Mitchell [19861 and by Ben-Menahem and Sena 11990, and for
generation of Love waves for explosions, such as Boxcar, Benham, general anisotropic media by Mandal and Toksoz [1989,1990]. Mandal
Greeley, etc., are due to tectonic strain release, and can be modeled as a and Toksoz ( 1990] calculated synthetic seismogram for sources embedded
combination of an explosion plus a double-couple source that may be due in the anisouropic medium. The radiation patterns are different from those
to fault slip (Toksoz and Kehrer, 1972; Wallace et al.. 1983. 1985; of isotropic space. An explosion source in an anisotropic full space can
Mass, 1981; Burger et al., 1986; Johnson, 1988]. At short periods there generate a significant amount of shear wave energy where none would be
is azimuthal dependence of body wave amplitudes of explosions, such as generated in an isotropic medium [Mandal and Toksoz, 1989: Ben-
Greeley. that may fit the tectonic strain release pattern (Lay et al.. 1984]. Menahem and Sena. 1990; Mandal and Toksoz, 1990]. These studies
The structure under the NTS is complex and scattering due to also show that the radiation pattern of P waves from an explosion in an
heterogeneities near the source that can produce an azimuthal variation of azimuthally isotropic medium is not spherical. Mandal and Toksoz
amplitudes [Lynnes and Lay, 1988; Taylor, 1983]. Although the [1990) showed that the radiation patterns vary azimuthally and a
scattering by heterogeneities near the source can complicate the radiation significant transveuse component is generated when an explosive source is
pattern, the transverse (SH) waves produced are generally much smaller in an azimuthal anisoeropic medium.
than the radial component (McLaughlin et al., 1987; McLaughlin and Jih, Interest in seismic anisotropy increased rapidly among both solid-earth

and exploration seismologists in the past decade. We suggest to new
Explosion Source Pheaomenology readers two articles by Crampin [1989] and Winterstein (1990] of various

9Oahy.sical Monoraph 65 anisotropic terminology. These articles will help to understand general
Copyright 1991 American Geophysical Union idea of wave propagation in anisotropic media.

224



SOURCE IN AN kNISO [7OPIC ', E.D',,

Computation of Complete Waveforms n An is m)p, %I Mcdia dillerential system of a displacement-stress vector in a special form. They
calculated the clastodynamic solutions by computing the eigenvalues and

The theoretical developmenLs of wave motion in anisotropic media for cigcnvecLors of the system matrix A using the QR algorithm [Golhb and
the ! ' 0 years were reviewed by Crampin j1977,1911 and Pao 119831. Van Loan, 1983). This method is very stable. The eigcnvalucs and
The following articles describe the computation of synthetic waveforms cigenvectors are computed simultaneously. These eigensolutions are used
in layered anisotropic media: (I) for surface waves [Crampin, 1970]; (2) to propagate a wavefield from source to receiver by a recursion scheme
body waves [Keith and Crampin, 1977ab.c]; (3) point source solutions with scatterer operators and scatterer products.
for Aave propagation only in the sagittal plane [Booth and Crampin. The problem of wave propagation in general anisotropic media is
1493a bI (4) scheme of synthetic waveforms in layered anisotropic media conveniently addressed in Cartesian coordinates. This coordinate system
[Frer and Frazer, 1984]; (5) complete waveforms in transversely isotropic is useful to introduce a point source in an anisotropic medium as
layered media with vertical axis of symmetry [Mandal and Mitchell, discussed by Fryer and Frazer [1984]. For each wavenumber and
186,, ai-d (6) complete synthetic seismograms tor general anisotropic frequency, an equivalent wave vector discontinuity can be established
media where the source can also be placed inside the anisotropic medium through a displacement-stress discontinuity at the source depth. i he
[Mandl and Toksoz, 1990). displacement-stress discontinuity is represented by a point force and a

In general, wave propagation in anisoropic media is a three- moment tensor with a body force equivalent, given by Burridge and
dimensional problem. For an isotropic or transversely isotropic medium Knopoff [1964]. In this way a point force can be introduced within a
witn a vertical axis of symmetry, the energy propagating from the source stratified anisotropic medium for each wavenumber and frequency. The
to roceiver is restricted to the sagittal plane (propagation plane). In these point force response of a source is evaluated when all possible
casy. ,he computation is straightforward and the mathematics of wave wavenumbers and frequencies are included in the computations. An
motion have been established for the last few decades. However, in asymptotic analytic solution of a point source in a transversely isotropic
azimuthal anisotropic media, the energy generally propagates out of the medium with a vertical axis of symmetry has receaiy be-- established
sagittal plane, causing the transverse component of the wavenumber [Ben-Menahem and Sena, 1990]. However, this meu., hai not been
vector to be non-zero [e.g. Auld, 1973]. This phenomenon complicates extended to general anisotropy. For a general anisotropic medium, a point
the computational problem of wave propagation in anisotropic media, source analytical solution has not yet been developed for possible

The details of the numerical procedure of computing complete computer implementation.
synthetic seismograms is described in detail in our earlier paper [Mandal
and Toksoz, 19901. Our algorithm for computing complete synthetic Synthetic Waveforms Due to an Explosive Source
seismograms has been implemented for general anisotropic layered media in an Anisotropic Medium
using extended reflectivity theory [Kennett, 1983] and numerical
wavenumber integration (Bouchon and Aki, 1977]. The displacement This shows theoretical examples of synthetic seismograms due to an
stress vectors are calculated for different wave numbers and frequencies. explosion source in an anisotropic medium. In this paper we show
The final solutions in the time domain are computed by double examples only for explosive sources. Three anisotropic models are used
itegrations in the wavenumber and frequency domains. These for the theoretical examples. The first two examples demonstrate the
integrations may be carried out by: (I) contour integration in the complex source radiation pattern in an infinite anisotropic medium. The third
plane; (2) Founer transform; and (3) numerical wavenumber summation. example is a layered anisotropic medium where the effect of anisotropy
The numerical wavenumber summation is a common method for can be investigated both on body waves as well as on guided waves such
computing complete waveforms where all possible waves (e.g., body as Lg. We have chosen anisotropic media having hexagonal symmetry
waves, surface waves, interface waves, multiples, etc.) are included in the with two symmetry axes. One axis is vertical known as azimuthal
computations. In summary, our computational algorithm is divided into isotropy or transverse isotropy with vertical axis of symmetry. In this
three steps. First, the steady-state wave field ,idiaion produced by a case, the medium is an anisotropic medium where no variation of
seismic source is represented as a superposition of waves propagating properties with azimuth in the horizontal plane. This type of anisotropy
with discrete phase velocities. In this way a single source is replaced by a
penodic array of sources. The effect of secondary sources is removed by
introducing both a small constant imaginary part of the frequency and Azimuthal isotropic medium
proper wavenumber step size. Second, each ph -, velocity component of
the wavefield is propagated through a stack of layers using the reflection
and transmission properties of individual interfaces by a recursion scheme
with scatterer operators and scatterer products [e.g.. Saastamoinen, 1980;
Kennett. 1983; Fryer and Frazer. 19841. The resulting contributions are /
summed for each wavenumber to transform them from the wavenumber
domain to the space domain. Third. the 5 lution is Fourier-transformed to o.u K.
the time domain, and the unwanted effects of source periodicity and the Sue j
imaginary par of frequency are removed. This final solution yields the
complete wavefield within the medium for the particular source
considered. This procedure is common for isotropic and anisotropic media E\
except for the computation of the eigensolutions. In an isotropic medium
or transversely isotropic medium with a vertical axis of symmetry, this
compuLauon of eigensolutions can be performed analytically [e.g., Manda
and Mitchell, 19861. In a general anisotropic medium, the elastodynamic

solutions are computed from a Christoffel equation of a six-order
polynomial form [Fedorov, 1968; Musgrave, 1970; Auld. 1973; Fryer and Z
Frazer. 19871. This procedure needs a high degree of numerical precision.
To avoid these problems Mandal and Toksoz [1990] derived the system Fig. 1. Source and receiver geometry in a transversely isotropic medium.
matrix A (function of medium parameters and phase slownesses) of the The Z axis is the symmetry axis.
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75, Fig. 3. Amplitude radiation patterns of P- and S-waves in vertical plane.

Subscripts Z and R stand for vertical and radial components, respectively.
Dashed circles are for reference. In an isotropic medium, the P-wave

I' M radiation pattern would be circular and there would be no S-waves. Note
0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6 that P-wave amplitudes are magnified by a factor of five in the plot.

Fig. 2 Synthetic seismograms at the receivers on an arc of radius 0.5 km
from an explosion source (Figurel). The 0-50 Hz responses arc convolved for the range from 5* to 850 in one quadrant. Because of symmetry, the
with a Ricker wavelet of 20 Hz center frequency. responses in the other quadrants are the same. The arrival times for both

P and S waves vary as a function of angle 0. as do the amplitudes. The
P- and S-wave amplitude radiation patterns for both vertical and radial

could be found due to presence of fine or periodic thin layers in the crust, components are shown in Figure 3. They are measured from peak

specially in sedimentary besins [e.g., Postma, 1955], and in the upper amplitudes in P- (.2-0.7 S) and S-wave windows (1-1.6 S) of the
mantle [e.g., Anderson and Regan, 1983]. The other axis is horizontal seismograms shown in Figure 2. The P-wave radiation patterns do not
which displays (azimuthal anisotropy). This type of anisotropy could be differ significantly from the isotropic case. The S-wave radiation patterns
present in the crust where fluid-filled cracks, microcracks, or pore spaces are similar to those of a double-couple source. (Note that if the medium
are expected to align vertically perpendicular to the minimum horizontal were isotropic there would be no S waves at all.) Ben-Menahem and Sena

stress [e.g., Crampin, 1984]. [19901 found similar results with their asymptotic analytical solutions for
a source in an azimuthally isotropic medium.

I. Azimuthal Isotropy

For the azimuthal isotropic model, we use medium parameters
measured in the field at relatively shallow depths in the Eocene Wills Azimuthal anisotropic medium
Point formation at Sulphur Springs, Texas [Robertson and Corrigan,1983]. The medium is a soft shale containing minor amounts of silt and

sand. Robertson and Corrigan calculated the five elastic constants. The
density normalized elastic constants are:

Cij/p (km 2 S- 2 ) = e

1.96 1.50 1.13 0 0 0
1.96 1.13 0 0 0

1.12 0 0 0
0.15 0 0 Perpe dicu r

0.15 0
0.23

To study the radiation pattern from an explosion source in this medium,
we computed synthetic seismograms for receivers distributed on a vertical
plane at a radial distance of 0.5 km. The source-receiver in the vertical Z
plane is shown in Figure 1. The frequency responses are calculated from
0-50 Hz. To calculate the synthetic seismograms a source wavelet with a Fig. 4. Source and receivers arrangement for azimuthal anisotropic
center frequency of 20 Hz is convolved with the medium response. The medium. This case represents a horizontal maximum principal stress
vertical and radial components of the seismograms are shown in Figure 2 with microcracks aligned vertically and parallel to is stress axis.
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Fig. 5. Three-component synthetic seismograms at three different vertical planes: (a) 0 = 90'. (b) 0 = 6'.5*. and (c) 0 = 450 from
the crack plane (Figure 4). The source center frequency is 50 Hz. chosen to clearly separate the phases at the short (0.5 km)
source-receivw distance.

II. Azimuthal Anisotropy 0= 0 22.5 45'

In this case, we focus on the problem of an anisotropic medium with a
horizontal symmetry axis. Such a medium might be appropriate for
models where there are tectonic stresses in the medium and the maximum
stress is horizontal. This type of anisotropy can be explained by five ,,\ '
elastic constants at its symmetry axis direction. The anisotropic \ .
constants are derived from the theory developed by Hudson 11980,1981] , " .,

using a "cracked solid" approximation. It is assumed that anisotropy is "
due to vertical cracks and microcracks oriented preferentially by the
horizontal principal stess. This approach provides a convenient way to 67.51 0 90'
calculate the elastic constants. The actual mechanism producing the
anisotropy could be verticall dikes or any other geologic process. We
assume the host rock matrix is isotropic with parameters Vp = 6.132
km/s, Vs = 3.266 km/s, and rho - 2.7 gm/cc. To introduce anisotropy
we assume the crack density and aspect ratio to be 0.1 and 0.001,
respectively, The density normalized elastic constants ame: . , ,' "
Ciu/p (km2

S5-2) =-
22.1 9.56 9.56 0 0 0

34.7 13.37 0 0 0
34.7 0 0 0 Fig. 6. Amplitude radiation patterns at five different azimuthal vertical

10.66 0 0 planes (Figure 4). Solid lines are the P-wave radiation patterns. Long
8.57 0 dash lines represent the S-wave radiation patterns. Small dash lines

8.57 represent the reference circle.
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Perpencc:ular ,hc sourcc and ,..eiver georetry used in this case to study the radiation
to the fracture pattern are shown in Figure 4. We calculate synthetic seismograms at

fi;e different ,,extical ;Iancs, 0 = 0. 22.5 , 45 , 67.5 and 91o. here are
22 receivers placed at equal angular spacing in each quadran! of each
azimuthal vertical plane. The receivers are placed on an arc cf radius 0.5
km. The impulse response is calculated for 0-140 Hz frequency range,
and these are convolved with a Ricker wavelet-type source time function

to the r etu with 50 Hz center frequency. Three-component seismograms are shown
I krn in Figures 5a-c for thre different azimuthal planes. The azimuth o =

90 represents the plane of propagation perpendicular to the crack
orientation. In this plane (Figure 5a), the transverse component is zero.
The vertical and radial components show shear wave arrivals which would
not be present in an isotropic medium. Travel times depend on the
direction for both P and S waves. For the plane 0 = 67.5 (Figure 5b).
there are significant transverse components for S waves. These are due to

2 kn the anisotropy of the medium. Similar r- ,ults are also observed at the
plane 0 = 450 (Figure 5c).

Anisolropic Figure 6 shows the radiation patterns of rms amplitude of P- and S-tayer

waves A = -g + A + A where A is the total rms amplitude

hall-s.pace and suffixes Z,R.T are z-, r-, t- component responses at five different
azimuthal vertical planes. The P- and S-wave amplitudes have been
measured in different azimuthal planes from the time domain responses of

Fig. 7. Schematic diagram of an anisotropic layer over an isotropic half- the complete waveforms (Figure 5). The time windows for P- and S-
space. waves are (.08-.16 S) and (.16-.28 S) respectively. Diagnostic features

1 Hz 2 Hz

44

67.5

90

0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5

3 Hz 0 4 Hz

22.5

45

67.5

90 

i
0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5 0 2.5 5

Z R T Z R T

Dist = 5 Kin, Layer over Half-space, 20% crack density

Fig. 8. Three-component synthetic seismograms for the layers over half-space model of Figure 7 at 5 km
epicentral distance, for five azimuths and at frequencies of 1, 2, 3, and 4 Hz. Note the presence of
significant transverse shear waves at= 67.50 azimuth.
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+ -- 90
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0

22.5

45

- -67.5
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I I

6.3 16 26 6.3 16 26 6.3 16 26 6.3 16 26 6.3 16 26 6.3 16 26

Z R T Z R T

Dist = 50 Kin, Layer over Half-space, 20% crack density

Fig. 9. The-component synthetic seismograms for the Layer over half-space model of Figure 7 at 50 km epicentral
distance, for five azimuths and at frequencies of 1, 2, 3, and 4 Hz. The transverse (SH) component of Lg waves are

especially dominant at 0 = 57.5 and 2= 22.5° azimuths.

arc as follows: model cons;.,b of a 2-km-thick azimuthally anisoropic layer over an

(I) At the crack plane (0 = 00) there are no shear waves, i.e., isotropic half-space. Such a model may represent an anisotropic tuff over

behavior is the sme as the isotropic medium. an isotropic basement, or a shallow layer with open microfractures

(2) The radiation patterns of P-waves do not differ significantly oriented preferentially due to tectonic stresses. At greater depths the

between the planes. microfractures close due to overburden pressures and the medium becomes
(3) The shear wave radiation pattern changes with the plane of isotropic. The source is an explosion at 1 km depth in the anisotropic

propagation. layer of 2 km thickness, as shown in Figure 7. The anisotropic layer

(4) The shear wave radiation pattern changes from none (at 0 = 0°) to parameters are calculated using a model of aligned, vertical, fluid-filled

monopole (0 = 22.5*), to intermediate (0 = 67.50), to dipole fractures (aspect ratio of 0.001 and fracture density 20 per cent). The

(0 - 90') type of source. density normalized elastic constants of the top layer are:

These features of source radiation patterns in anisotropic media, combined
with the anisotropic interface effects (free surface, isotropy-anisotropy. Cij/p (km 2 S- 2 ) =

and anisotropy-nisotrpy) and propagation effects in anisotropic media. 28.7 11.6 11.6 0 0 0

will complicate the total responses at the receivers. Some of these 30.0 12.0 0 0 0

features are discussed in Mandal and Toksoz [1989,1990) and Mandal 30.0 0 0 0

t19911. 9.0 0 0
5.86 0

II. Anisorropic Layer Over an Isotropic Half-Space 5.86

To understand the effects of anisotropy (source radiation and The isotropic half-space has P- and S-wave velocities of 6.2 km/s and 3.5
propagation including interface effects) on seismic waves from an km/s respectively, and the density of 2.8 gm/cc.
explosive source, we present an example of theoretical seismograms from In the geometry considered the fracture planes are parallel to the east-

an explosive source in a layered. azimuthally anisotropic medium. The west direction as shown in Figure 7, and the north-south is normal to the
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ABSTRACT

On short-period seismograms of regional seismic events, Lg is the most dominant phase. Lg

waves can be interpreted as a superposition of higher mode surface waves, or equivalently, as

an interference of multiply reflected S waves in the crust. Lg waves are widely used to evaluate

the mean value of attenuation (Q-1) of S waves in the crust as a function of frequency. They

are also used to determine earthquake magnitudes (mbLg). Several observations indicate that

lateral structure variations have major effects on Lg wave propagation and attenuation. The

exact mechanisms responsible for this attenuation are not well understood and have not been

modeled adequately.

In this paper we use the mode summation approach to model the Lg waves. Using the

flat-layered model with frequency dependent Q, the synthetic seismogram of Lg and Rg are

calculated. These are in good agreement with observed data recorded at Fenoscandian array

FINESA. We found that, in these data, modes 1 to 14 make up most of the Lg waves.

For laterally heterogeneous crustal models, the coupled mode method is used to synthesize

the vertical component of Lg waves. This is applied to propagation across a sedimentary

basin in a flat-layered reference structure. There is substantial attenuation of the Lg phase

across the basin. The attenuation of the Lg phase across the central graben of the North

Sea is studied by modeling Lg propagation across the laterally varying structure. The Lg

attenuation can be explained by the effects of sedimentary layer thickening and Moho surface

uplift associated with the graben.
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INTRODUCTION

On the short-period seismograms of local and regional seismic events, the Lg phase usually

has the largest amplitude. Press and Ewing (1952) first identified the Lg phase associated

with continental structure. Based on a number of theoretical studies, the Lg phase has been

explained as a combination of higher mode surface waves (Oliver and Ewing, 1957, 1958;

Knopoff et al., 1973; Panza and Calcagnile, 1975). Using the multi-mode analysis method,

Cara et al. (1981) showed that Lg waves, recorded in California networks (SCARLET and

CALNET), propagate with a group velocity of 3.2 to 3.5 km/s, can be identified as higher

mode surface waves. Herrmann and Kijko (1983) simulated some empirical vertical com-

ponent Lg relations observed in eastern North America with the higher mode surface wave

theory. Synthetic seismograms of the crustal phases at a regional distances calculated by the

discrete wavenumber method are in very good agreement with data from the French seismic

network, especially the Lg phase (Bouchon, 1982). Lg waves are viewed as guided waves

made up of S waves incident on the Moho at angles more grazing than the critical incidence

and multiply reflected within the crust (Bouchon, 1982; Olson et al., 1983). Also the method

of ray diagrams applied to the Lg waves propagation in 2-D and 3-D structures provide a

graphic representation of the nature of Lg waves travelling within a heterogeneous medium

(Kennett, 1986; Bostock and Kennett, 1990).

Because the Lg phase propagates efficiently over long distances and samples the whole

crust, its amplitude analysis is widely used to evaluate the mean quality factor (Q) of S waves
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in the stable continental crust. This analysis c:n he done either in the time domain or 'in

the frequency domain. These studies are carried out in areas such as North America (Street,

1976; Jones et al., 1977; Bollinger, 1979; Mitchell, 1980; Dwyer et al., 1983; Hasegawa,

1985; Chavez and Priestley, 1986, Toks6z et al., 1990), Western Europe (Nicolas et al., 1982;

Campillo et al., 1985), and Asia (Nuttli, 1980, 1981). The most common feature of these

studies is the quality factor Q dependent on frequency is in the form Q = Qof , where is

around 0.5.

On the other hand, observations showed that over some regions Lg waves are strongly

attenuated. It has been difficult to determine whether this Lg attenuation is due to structure

change or a very low Q zone. These observations motivated studies on Lg propagation in

laterally heterogeneous crust. Current models have been limited to the 2-D SH case (Kennett

and Mykkeltveit (1984). Kennett and Mykkeltveit applied the coupled niod method to

the Lg phase across the central graben of the North Sea and shewed a very poor mode

transmission at 1 Hz for Love modes. Campillo (1987) synthesized the SH seismogram

with a combination of the discrete wavenumber method and the boundary integral equation

approach for the uprise of the Moho and the basin model in a 0-1 Hz frequency band.

In this paper the mode summation (higher mode surface wave) is used to to synthesize

Lg wave seismograms for the P-SV case. In the first part of the paper, the flat-layered crust

model is considered. Synthetics are compared with the observations at the FINESA array.

The mode analysis of Lg waves is provided. Then the coupled mode method is applied to
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the Lg phase in the laterally varying crust. The synthetic vertical component of the Lg

seismogram and mode transmission matrix is obtained. The basin model and the North Sea

(ase are considered.

Lg WAVES IN FLAT-LAYERED CRUST

In this section the flat-layered crust model is used to synthesize seismograms of Lg waves by

mode summation. Green's function of Rayleigh wave term is given. Synthetic seismograms

of Lg and Rg are compared with the observations. The mode composition of the Lg phase

is analyzed.

Green's Function of the Rayleigh Wave Term

Green's function for the Rayleigh wave term in a homogeneous elastic layered medium has

a closed form in the frequency domain (Aki and Richards, 1980).

N

Go(i, (i;', w) = p'(z, k)p'(z,, 0) e1 2
n=O , rkD(

where the source is at fr with depth z, and the receiver is at F' with depth z, and

r'(z) cos 0

PN(z, ) r n(z) sin 0 (2)
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0 and D are the azimuth angle and the horizontal distance between the source and ihe

receiver. Index n refers to the mode number with total N modes at frequency w. rn(z) and

r (z) are the radial and vertical displacement eigenfunctions of the Rayleigh wave. c and U

are the phase and the group velocity of the Rayleigh wave. Integral I, is defined by

1 = fj p(z)[(r'(z)) 2 + (r (z)) 2]dz. (3)

The displacement field excited due to differcnt types of sources can be obtained from the

Green's function. For a point explosion source, where the moment tensor is a diagonal matrix

with equal elements M, = Mjv = M22 = M, the vertical displacement in the frequency

domain is given by:

N ,2 -,dr
2

UZrTW)n=) 8 UI kDM(w)e ( [k r,(z,) + d z.]. (4)

The summation is taken from n = 0 to N to get both the Rg and Lg waves. The fundamental

mode (n = 0) corresponds to the Rg wave part and n = 1,2,- ... N make up the Lg waves.

The Green's function provides a fast way to synthesize the T g and Rg waves if eigenfunctions

of the surface wave are known.

Mode Analysis of the Lg Phase

To determine which modes contribute most strongly to Lg waves we use Lg seismograms from

known sources, such as quarry blasts, and study these using synthetic seismograms. A typical

crust model with a sedimentary layer (Figure la) is chosen for this purpose (Bouchon, 1982).
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The model is purely elastic, with no attenuation. The dispersion curves of fundamental mode

Rayleigh waves and higher modes are plotted in Figure lb. At 5 Hz there are a total of 57

modes. Energy distributions of the modes at each layer are shown in Figure 2 for frequency

1 Hz. The energy of each mode is normalized to 1. For the fundamental mode almost all the

energy is confined to the top sedimentary layer. As the mode number goes up the energy

tends to be distributed more evenly between layer.

Next we show the synthetic seismograms for a double-couple point source with a step time

function. The source parameters are: strike 450, dip 900 and rake 0'. Vertical displacement

of Lg waves is calculated at a distance of 150 km with 0' azimuth at a 0-5 Hz frequency

band. Different source depths (1 km, 10 km and 20 km) are considered (Figures 3a,b,c).

The sources are located at the different layers of the model. Mode contributions from the

fundamental mode-modes 1 to 10, modes 11 to 20, and modes 21 to 30-are compared with

the summation of total modes. For the source at the depth of 1 km the amplitude of the

fundamental mode is very large. It is not surprising because the shallow source excites the

lower-order surface mode efficiently. Most parts of the Lg waves come from modes I to 10.

Modes 11 to 20 have some contribution to the early part of the Lg phase. However, for the

sources at the depths of 10 and 20 kin, contributions to Lg can come from modes up to 30.

For the shallow source Lg energy spreads over a longer time domain than the deep source.

In Figure 4 we compare the radial and vertical component of Lg waves with the source

depth at 10 km. The radial component of Lg waves shows the same pattern as the vertical
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component. This explains why the observed Lg waves look about the same on vertical and

horizontal seismograms.

Comparison With Data

To compare the synthetic seismogram of Lg waves with the observed data, two quarry blasts

from Leningrad recorded at the FINESA array were chosen. The velocity and attenuation

models for Scandinavian crust given by Toks6z et al. (1990), and are plotted in Figures 5

and 6, respectively. The feature of the attenuation model is that Qp and Q, have the same

form of frequency dependence,

Q = Qof (5)

with different values of Qo and at each layer. It is assumed Qp = 2Q,. The quarry blast is

modeled as a vertical point force at a depth of 40 m. The synthetic and observed seismograms

at distances of 200 and 250 km are compared in Figures 7a and 7b, respectively. Since the

site and instrument responses are not known exactly at very high frequencies, both synthetic

and observed seismograms are band pass filtered between 0.5 to 5.0 Hz. Furthermore it is

important to keep in mind that the synthetic seismograms include only the Lg and Rg waves

and not the direct (Pg, Sg), refracted (Pn, Sn), or reflected body waves (PmP, SmS). The

comparisons should be limited to Lg and Rg waves. Agreement between the observed Lg

and Rg seismograms and the synthetics is very good, especially when we look at the relative

amplitudes of Lg and Rg waves and the time durations of these phases. Since no scattering is
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included in synthetics, there is no scattered coda iii the synthetic models. Given the quality

of the agreement, we can also state that for these paths the frequency dependent Q model

is consistent with the observations. Mode analysis of Lg waves for a distance of 200 km

(Figure 8) reveals that modes I to 14 make up most parts of the Lg phase.

CRUST MODEL WITH LATERAL HETEROGENEITY

Lg waves, interpreted as a superposition of higher modes surface waves, are sensitive to

variation in crustal structure. Although this problem has been looked at for the simpler

problem of SH waves (Kennett and Mykkeltveit, 1984; Campillo, 1987), no such studies

have been carried out for the P-SV case. Since most observational data are in the form of

vertical component seismograms, it is important to carry out this study. In this section we

first outline the observations of the Lg phase across the regions with strong lateral variations

of the crustal structure, and then use the coupled mode method to calculate the surface

wave mode propagation in laterally heterogeneous crust. The lateral structures considered

include a sediment filled basin, a thinned crust due to shallowed Moho ("Moho bump") that

would result from crustal stretching. As an application we concentrate on the modeling of

the extinction of the Lg phase across the central graben of the North Sea.
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Observations of Lg in Strong Laterally Varying Crust

We focus observations at the area where Lg waves are strongly attenuated or become com-

pletely extinct. These areas are associated with active tectonic regions. For paths crossing

the Tibetan Plateau the Lg phase was not observed (Ruzaikin et al, 1977; Ni and Barazangi,

1983). There are three possibilities for the absence of Lg: (1) change in the crustal structure

on the margins of the Tibetan Plateau disrupting the waveguide for the Lg; (2) a complex

velocity structure inside the thickened crust; and (3) high attenuation in the crust. The Lg

waves crossing the Turkish and Iranian Plateaus were highly attenuated (Kadinsky-Cade et

al., 1981). This may also be due to the above causes associated with a partial underthrusting

of the Arabian Continental plate beneath the Iranian and Turkish continental blocks. The

Lg phase was not observed when the path of propagation crosses the southern Caspian Sea

and the Black Sea (Kadinsky-Cade et al., 1981). These are consistent with the evidence

of oceanic-type crustal structure beneath these seas. An interesting observation is that Lg

propagated efficiently when the direction is parallel to the strike of the Andes and the Lg

phase was not observed for paths crossing the Andes (Chinn et al., 1980).

Another region of Lg observations is near Denmark and the North Sea (Gregersen, 1984).

The poor propagation of Lg across the North Sea is similar to that observed across a sedimen-

tary basin in eastern Greenland. The sedimentary basin in eastern Greenland is in a similar

tectonic setting, along a passive continental margin, to that of the graben in the North Sea.

Both developed before seafloor spreading separated Greenland from Europe (Barton and
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Wood, 1984).

Method of Coupled Modes

The method of coupled modes was first used for seismological purposes by Kennett (1984).

In this application to 2-D laterally varying structure, we neglect body waves and restrict

calculations to the modal part of the wavefield. Following Kennett (1984) and using the

Cartesian (x,z) coordinate system we express the wavefield as a sum of modes travelling

both in the positive and the negative x direction with the modal coefficient dependent on x.

N

W(x,z) = Z X[c (x)eiknIWn(k,, z) + C-(X)e-knxV(-kn, z)] (6)
n=O

where W(k,,, z) is the displacement eigenfunction associated with wavenumber kn. N is the

total number of modes at frequency w. The details of the method are given in Appendix A.

Using the equation of motion and orthogonality of the eigenfunctions, we consider the re-

flection and transmission problem of the heterogeneous region confined between xj and x,

as shown in Figure 9. We obtain the coupled Ricatti equations:

DR-- + RB++ - B-- + RB+-R - B - + = 0 (7)
OxS

as- + SB++ + SB+-R = 0 (8)
OX2
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where R and S are mode reflection and transmission matrices with initial conditions

S(a, Xr) = I
(9)

R(xr,x,) = 0

where I is the identity matrix. Coefficients B ++ , B +- , B-+ and B-- depend on hetero-

geneity, as explained in the appendix.

After we calculate the mode transmission matrix at each frequency, the displacement

in frequency domain can be obtained by adding all the transmitted modes together. For

example, vertical displacement due to a point explosion source across a heterogeneous region

with the mode transmission matrix S(w) can be written explicitly as:

N N 2 e ~ d 2 (M) (0
u2 (f,w) = [ s(w)r"'(z)ekDI D 8 0[kr

n=0 m=O 2" C ,[,r(:)+d

The seismogram in the time domain is obtained by the inverse Fourier transform.

Lg Waves Across a Sedimentary Basin

We apply the coupled mode method to the Lg waves that cross a basin (Figure 9). The

reference model is the central France model [Bouchon, 1982 (Fig. la)]. There is no intrinsic

attenuation in this model. The basin is modeled as a block of sendimentary layers. A

sedimentary basin of width TV, and a thickness of 5 km is below the top layer, as shown

in Figure 9. This kind of riodel can be found in Kennett's paper (1984). The source is

an impulse point explosion source at a depth of I kin. The coupled Ricatti equations are
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solved numerically by the Runge-Kutta method with initial conditions given in equation 9

to obtain a Rayleigh mode transmission matrix,

The synthetic seismogram is calculated at a distance of 150 km at a frequency band of

0-2.5 Hz. Lg seismograms for the reference structure (without sedimentary basin, IV = 0)

and those crossing the 20 km wide and the 40 km wide basins are shown in Figure 9b. The

fundamental mode (n = 0) is not included in these seismograms. The waveform change

reflects the mode conversion. There is substantial attenuation of the Lg waves across the

basin. In Tables 1, 2, 3 and 4 we list the Rayleigh mode transmission matrix at frequencies

0.5, 1.0, 1.5 and 2.0 Iz. In these tables the absolute value of each complex element of

the matrices are shown and discretized with unity represented by 100. Each column 3f the

matrix shows the transmission amplitude of modes corresponding to the incidence of the

pure mode of that column number. The fundamental mode is almost totally transmitted

through the basin because most of the energy of the fundamental mode was confined near

the surface, especially at high frequencies. For the 40 km wide basin the transmission is

poor at high frequencies and high mode numbers. It is obvious from the band-limited two

digits of the transmission matrix that the most Rayleigh mode conversion occurs by energy

transfer between the neighboring modes.

From the mode composition of Lg waves it is expected that there should be more at-

tenuation for a deeper source, which concentrates more energy in higher modes with poor

transmission. The Lg phase as well as the Rg phase transmitted across the basin are shown
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in Figure 9c. The basin has little effect on the Rg phase. Because of the shallow (h = I km

deep) source, the fundamental mode (Rg) has the most energy. The shape and amplitude of

seismograms dominated by the Rg do not show any change. Please note that since there is

no intrinsic attenuation (Q = oc) in the model, Rg looks stronger than what it would be in

the case of the real earth with strong attenuation near the surface.

The North Sea Case

An excellent data set for the study of Lg attenuation comes from seismic refraction experi-

ments in the central North Sea area recorded at the NORSAR array in Norway. The vertical

component seismograms and the location of the shots on the map of the North Sea are

shown in Figures 10a and 10b, respectively [from Kennett and Mykkeltveit (1984)]. Plotted

seismograms are band-pass filtered between 1.5 and 5.0 Hz and each trace is normalized to

its own maximum amplitude. The paths that cross the central graben (shot DI, D2 and

F4) show no distinct Lg arrivals. The attenuation of Lg across the central graben is also

observed by Gregersen (1984) from the study of regional seismic events.

In order to understand the extinct ion of t hI' Lg wave cross t he u it ral grahen we used

a simplified structural model of the central graben. A profile of the crustal structure of the

central graben was obtained by a long-range seismic reflection and refraction experiments

(Barton and Wood, 1984). A cross-section of the structure with velocity contours is shown

in Figure I Ia. The thickening of the sediments anid thining of the crust is clearly shown in
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this figure. Our simplified reference velocity model of the North Sea crust has three layers

with a 2 km thick sedimentary layer on top (Figure 1 lb). The central graben is represented

by a rectangular block of sediment pencentrated down to 7 kni. The thinning of the crust

is done by raising the Moho from 30 km to 20 kin, as a rectangular block. The model used

for calculations is shown by Figure llc. A similar model was also used by Kennett and

Mykkeltveit (1984) to calculate a Love modes transmission matrix at 1 Hz.

Lg waves propagate with little attenuation across the North Sea paths without the central

graben, as shown in Figure 10a. We calculated Lg propagation using the simplified central

graben model, shown in Figure lc. The source is an impulse point explosion at a depth

of 1 km and the distance is 600 km. The seismograms bandpass-filtered between 0.8 and

2.4 Hz are shown in Figure 12 for three values of basin width: W =0 (reference model),

IV = 30 km and W = 60 km. In these calculations we included attenuation. In the reference

structure, Q, equals 300, 1500, and 2000 for layer 1, 2 and 3, respectively. It is assumed

that Q; = 2Q, and in all cases Q is independent of frequency. Both 30 km and 60 kin wide

central graben models significantly attenuate the Lg phase. The actual central graben is

about 100 km wide, but with much smoother change in crustal thickness than our simplified

model. The attenuation effects of the central graben are increased by our block-like model.

Thus, getting significant attenuation with a 60 km wide model is not surprising.

We investigated the relative effects of different aspects of lateral structural change on

Lg phase propagation. These include having only the sedimentary basin, the Moho bump,
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and the combination of the two. The results are shown in Figure 13. The Moho bump has

a greater effect on Lg attenuation than the sedimentary basin thickening. We note that in

our model the Moho bump is 10 km in height but the sedimentary basin is only 5 km deep.

The higher-order modes are more strongly affected by the Moho bump and the lower-order

modes by basin thickening.

To compare the theoretical results with the observation shown in Figure 10, we calculated

Lg wave synthetics as a function of distance. Two sets of seismograms were calculated, the

first set using the flat layered reference model shown in Figure 11b, and the second set

with the graben (Figure lc) centered at x = 700 km distance. Both models have the

intrinsic attenuation used in previous figures. The sources are explosions at 1 km depth.

Figure 14 shows the Lg synthetic seismograms for both "reference" and "graben" models

in the distance range of 554 km to 882 km, corresponding to the distances of observed

seismograms (Figure 10a). In the synthetic seismograms the amplitudes are normalized to

the same maximum amplitude at 554 km.

Intrinsic attenuation reduces the amplitude of Lg waves, as shown in Figure 14a, for

the reference model. lowever, a clear Lg phase, with longer duration due to dispersion is

visible at 882 km distance. With the central graben, the Lg waves become almost completely

extinct once they cross the graben. The synthetic Lg scismogranis shown in Figure 14b are

very similar to the observed one shown in Figure I Oa. The extinction of Lg across the North

Sea Central Graben can be explained by the lateral structure change due to crustal thinning.
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From a computational view point, the coupled mode method is time consuming because

at each frequency we have two N2 coupled first order differential equations to solve, and N

increases rapidly as frequency goes up (N is the number of modes at a given frequency).

To obtain a realistic time domain seismogram we have a large number of frequencies. For

example, for the North Sea reference model, N = 43 at a frequency of 2.5 Hz. Fortunately

the computations are independent at each frequency, and calculations can be made efficiently

on a parallel machine. Using the 64 nodes of the nCUBE at the Earth Resources Laboratory

(ERL), the North Sea model with the 60 km wide central graben took 3-1/2 hours of CPU

time.

CONCLUSIONS

Mode summation provides a method to synthesize seismograms of Lg wave propagation in

the flat-layered or laterally inhomogeneous crust. Synthetic Lg and Rg waves, calculated

using a flat-layered crustal model of Fennoscandia with frequency dependent attenuation,

are in good agreement with observations of quarry blasts recorded at the FINESA array.

Mode analysis of composition of Lg phase shows that as the source goes deeper, the higher

modes become important. With the coupled mode method, synthetic Lg waves show an

attenuation and the modes conversion across the basin model. Using a model in which

there is a thickening sedimentary layer and crustal thinning, synthetic Lg wave seismograms

explain the observed extinction of Lg waves across the central graben of the North Sea.
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APPENDIX

Method of Coupled Modes

In this appendix we present the theoretical equations for the coupled modes as applied

to Rayleigh waves following Kennett (1984) and then briefly describe the numerical imple-

mentation for calculating the Lg and Rg synthetic seismograms.

In the Cartesian coordinate system in which z is the depth variable, we introduce dis-

placement vector IV = (i, v, w) and stress vector T = (t.., t tz). The equation of motion,

in terms of W and T and keeping all derivatives with respect to x on the left-hand side, can

be written as:

x T Atw Att T

where Aw, Awt, Atu, and At, are operators which depend on , , frequency w and elastic

constant A and p.

In the two-dimensional (2-D) situation where the structure is independent of y, the

wavefield, restricted to the modal part, can be expressed as a sum of modes travelling in

both the positive x and negative x directions:

N

W(x, z) = .[c(x)e ,n(k,,z) + c(x)e-k"W,(-k,, z)] (A.2)
n~ l

N
T(x, z) Z[c(x)ekxTn(kn, z) + c(X)C-ikn'Tn(-k,,, z)] (A.3)

n=I

where N is the mode number at a given frequency. 11'(kn, z) is the displacement eigenfunc-

tion. Stress vector T1,(k, . z) can be obtained from W(kn, z). We assume that the model
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consists of a region of heterogeneity superimposed on a stratified medium, it is easy to work

in terms of the modes in the reference structure. The orthogonality of the eigenfunctions at

a fixed frequency requires

j [Wp(k,, z)Tq(- k,, z) - Tp(kp, z)Wq(-kq, z)]dz= bpq (A.4)

i [W(kp, z)T(k,,z) - Tp(kp, z)Wq(k.,z)Idz = 0. (A.5)

After some algebra, we get:

(c.e) = i dz E.[T; (A. W - AWtr) - Vv;(A, .tI' + AtT)]c e,
0 n=O

, N

+i] dz -[T;(A,,W.- - A.tT.) - W (At -+ AttTn-)]cn-e-(A.6)
n=O

For brevity we set W; = 1,V(-k., z), Tn = T(-k,, z), en = eknx and e- = eikx.

In the absence of heterogeneity, c+ is a constant and c- equals zero. In the reference

structure the corresponding operators are A,,, At, A', and A'. The effect of heterogeneity,

which only depends on the local departures from the reference structure, can be expressed

by:

AA4WW = A,,,.- A °

A A.. = Au,t -A0t
(A.7)

AA, =A, - A°,I,

AAt = At - Att

For the laterally heterogeneous model the modal equations are

, + N N

IjKmne C C + E I lLr mn en (A.8)
x -n-O n=O
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acm  N NI ,ec(A9

.r - Z L " "(m+n( -+ iK ,,,ene,, c, (A.9)
n=O n=O

where

Kmn = dz[T,4(AA ,,,IV, + AAt.I&) - 1V-(AAt VV,, + AAttT,)] (A.10)

L,,, = dz[T;(AA,,,Wn + AAWiT,) - ,(AAt,ojV7, + AAtT,;)]. (A.11)

Introducing two new N dimensional vectors: C+ = (c+), C- = (c-) , we obtain a more

compact form of modal equations:

B- (A.121ax C+ B + - B-- C+

where

( B++ )i j = iKjej e j

(B+-)ij = iLije e-
(A.13)

= -iLijeiej

( B-- )ij : -iKijce'f

We assume that the region of heterogeneity is restricted between x, and x, as shown

in Figure 9a, and consider the surface wave incident from the left. Defining transmission

matrix S(x,, x) and reflection matrix R(x,, xj) as:

C+ (x,) = S{.r,.r)C+ (xI) (A.14)

C-(xj) = R(x,i)C+(x)
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we obtain the coupled Ricatti equations for R and S:

OR
- + RB++ - B--R + RB+-R - B -+ = 0 (A.15)
7XS

as + SB++ + SB+-R = 0. (A.16)
axj

We need to integrate these equations starting at x, with the initial conditions:

Zr ,x) =I

(A.17)
R(x, x) 0

where I is the identity matrix.

For the P-SV case, the equation of motion is:

u 0 -A(A + 2p)-lOa -(A + 21)- 0 u

o w -d, 0 0 - w
= (A.18)

X tXX -p 2 0 0 -0 t

0 2 _ O(VOa -OJ[A(A + 2p)-1 0

where v = A+2s
A+21A

The coefficients of K" and Lij in the terms of Ap, AA and Ali are

J dz,-(r + r rj) - AA(k r L O-(k,) 7 2,

-Ay~jr2' )(kjOs O2 Os
- 2 + )(kAp' J Or2  Or )]  (A.19)
Z 2 Z O± -r]

I dz[A p, 2(Ir + r2r) - A(-k I- , + Lr p + O )
.1D, 1 22 OzOz

rr + - ) - 2Aji(-k, kjr 2 2 t0 (A.20)

2)8



where D is the region of heterogeneity in the z direction. k is wavenumber. ri, r 2 are the

radial (x) and vertical (z) displacement eigenfunctions of the Rayleigh wave.

Since each frequency is independent in the method, this provides a natural level at which

to parallelize the algorithm. The approach used here is the master/slave algorithm. The

master reads the input file, calculates some of the global variables and passes them to the

slaves. Then each slave is given a frequency to work on. At each frequency the coupled

Ricatti equation is solved numerically by the Runge-Kutta method. When finished, the

slave returns its results to the master program, then queues up for more work. After all

the frequencies are calculated, the data which has been collected by the master program is

in nverse-Fourier transformed into time domain seismograms.
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MODE F 1 2 3 4 5 MODE F 1 2 3 4 5

F 95 3 2 5 3 5 F 92 4 5 8 1 2
1 2 94 22 13 3 0 1 4 84 41 15 0 0
2 2 21 93 13 3 0 2 4 40 84 19 2 0
3 4 11 "11 95 2 0 3 5 13 17 93 2 0
4 0 2 2 2 98 0 4 0 0 1 4 96 1
5 7 1 2 2 1 99 5 3 1 0 2 2 98

(a) (b)

Table 1:. The mode transmission matrices of the basin model at 0.5 Hz. The absolute value
of each complex element of the matrices are shown and discretized with unity represented
by 100. (a) 20 km wide basin. (b) 40 km wide basin.
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MWIO F 1 2 3 4 5 6 7 8 9 10 11 MODE F 1 2 3 4 5 6 7 8 9 10 11

r 99 5 0 0 0 0 0 0 0 0 00 F 98 5 0 0 0 0 0 0 0 0 0 0
1 4 64 13 16 4 7 11 10 5 2 2 0 1 5 40 15 15 5 13 7 3 6 3 3 0
2 0 14 86 29 21 11 3 1 1 1 1 0 2 0 17 61- 54 24 5 4 0 2 2 1 1
3 0 17 29 72 33 20 7 1 2 1 1 1 3 0 15 53 36 42 12 2 1 1 1 1 0
4 0 4 20 32 80 19 9 2 0 0 0 1 4 0 6 23 41 72 23 6 1 1 1 0 1
5 0 7 10 18 18 89 8 4 3 2 0 0 5 0 13 4 11 22 85 10 2 1 3 1 0
6 0 12 2 6 8 8 91 8 8 6 1 1 6 0 7 3 2 5 9 88 11 6 2 2 2
7 0 10 1 0 1 5 9 91 14 11 3 4 7 0 3 1 1 1 3 12 86 20 8 3 3
8 0 4 1 2 1 4 9 14 89 18 8 4 8 0 6 2 1 2 1 7 21 80 27 7 1
9 0 2 1 1 0 2 7 13 19 87 18 1 9 0 3 2 1 2 4 2 9 29 73 29 3
10 0 2 1 1 0 0 1 3 9 19 90 16 10 0 2 0 1 0 0 3 4 8 31 78 24
11 0 1 2 4 3 1 2 5 4 3 17 89 1 00 1 2 0 3 3 2 4 26 78

(a) (b)

Table 2: The mode transmission matrices of the basin model at 1.0 Hz. The absolute value
of each complex element of the matrices are shown and discretized with unity represented

by 100. (a) 20 km wide basin. (b) 40 km wide basin.
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MODE F 1 2 3 4 5 6 1 8 9 10 11 1 13 14 15 16 17

F 99 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 40 9 15 22 18 6 2 4 2 0 1 1 1 1 1 0 1
2 0 9 75 31 12 15 15 10 5 1 0 0 0 0 0 0 0 0
3 0 15 31 64 20 4 13 13 9 3 0 0 0 0 0 0 0 0
4 0 21 12 19 70 30 14 8 8 5 0 1 1 1 0 1 1 0
5 0 17 15 4 30 53 40 24 8 3 2 0 1 2 0 1 1 1
6 0 6 15 12 13 39 65 30 16 3 1 1 0 1 0 0 0 1
7 0 2 10 12 7 23 29 76 20 8 1 1 0 0 0 0 0 0
8 0 3 4 8 8 7 16 20 81 14 6 3 1 0 1 1 1 1
9 0 2 1 2 4 3 3 8 14 84 11 9 5 1 1 1 1 2
10 0 1 0 0 0 2 1 2 7 12 88 11 8 5 1 2 1 1
11 0 1 0 0 1 0 1 1 4 0 12 86 13 10 4 1 2 0
12 0 0 0 0 2 2 0 0 1 6 9 13 85 16 11 3 2 3
13 0 1 0 0 1 2 1 0 0 1 6 12 17 79 23 14 5 5
14 3 2 0 0 1 1 1 0 1 2 1 5 12 24 74 27 18 8
15 3 1 0 0 1 1 0 1 1 2 2 2 4 15 29 65 36 23
16 3 1 0 0 1 2 1 0 2 1 1 3 3 6 19 37 59 36
17 ; 1 0 0 0 2 2 0 2 3 1 0 4 6 9 23 36 69

(a)

MODE 1 2 3 4 5 6 8 9 10 1 12 13 14 15 16 17

F 99 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 20 14 12 11 8 1 3 0 2 0 0 0 0 0 0 1 1
2 0 13 60 41 1 24 9 3 4 1 1 0 1 0 0 0 0 0
3 0 12 41 45 26 12 17 7 3 3 1 1 0 0 0 0 0 0
4 0 11 1 26 45 39 19 16 6 3 1 1 2 0 1 0 1 0
5 0 8 23 12 38 34 38 14 5 3 1 1 1 1 1 0 0 0
6 0 1 9 16 18 38 58 35 12 3 1 1 1 1 0 1 1 0
7 0 3 2 7 16 13 35 69 25 4 2 1 1 0 1 0 1 0
8 0 0 4 3 5 5 12 25 73 18 4 1 2 0 0 1 1 2
9 0 1 1 3 3 2 3 4 19 74 17 8 0 3 0 1 1 0
10 0 0 1 0 1 1 1 2 5 17 79 17 8 1 3 1 1 1
11 3 0 0 0 1 1 1 1 1 9 18 16 19 7 4 2 2 0
12 3 0 0 0 2 1 1 1 2 0 9 20 76 23 4 6 2 3
13 3 0 1 0 1 1 1 0 0 4 1 8 25 64 31 3 8 4
14 0 1 1 0 2 1 1 1 1 0 4 5 5 33 55 36 4 12
15 1 0 1 0 1 1 1 1 1 1 1 3 7 4 37 45 42 12
16 0 1 0 0 1 0 1 1 1 1 1 3 2 9 4 43 37 44
17 3 1 0 0 0 1 0 1 3 0 2 0 4 5 12 13 45 29

(b)

Table 3: The mode transmission matrices of the basin model at 1.5 Iz. The absolute value

of each complex element of the matrices are shown and discretized with unity represented

by 100. (a) 20 km wide basin. (b) 40 km wide basin.
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1,OO0 F 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

F 99 0 0 0 a 0 a 0 0 0 0 a 0 a 0 0 0 0 0 0 0 0 0 0
1 0 6123 2 4 4 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 1 1 1
2 0 22 12 5 12 17 14 5 2 3 3 1 2 2 1 1 1 1 1 0 0 1 1 0
3 0 2 5 78 29 17 4 15 10 7 3 3 2 0 0 1 0 0 0 0 0 a 0 0
4 0 4 12 29 57 31 7 14 12 10 4 3 3 1 0 1 1 00 0 0 0 0 0
5 0 4 17 17 31 65 26 7 4 7 6 1 2 2 1 1 1 0 0 0 0 0 0 0
6 0 4 14 4 7 25 60 34 17 11 6 5 1 1 2 2 1 1 1 1 0 0 0 0
7 0 3 5 15 14 6 34 54 29 23 10 1 3 2 0 1 1 0 1 1 0 0 0' 0
a 0 2 2 10 12 4 16 29 76 22 15 5 1 2 1 0 0 0 0 0 0 0 0 0
9 0 2 3 7 10 7 11 23 22 76 21 12 2 2 2 1 0 1 0 0 0 0 0 0
10 0 2 3 3 3 5 6 10 15 21 77 20 10 3 1 0 1 0 1 1 0 0 0 1
11 0 2 1 3 3 1 5 2 5 12 20 78 18 10 6 2 0 1 0 2 2 0 0 1
12 0 1 2 2 3 2 1 3 1 3 11 18 78 17 12 8 3 1 1 1 3 1 0 0
13 0 1 2 0 1 2 1 2 2 2 4 11 17 81 15 13 8 1 2 1 2 3 0 2
14 0 1 1 0 0 1 2 0 1 2 1 6 13 15 85 15 11 4 0 2 1 3 1 2
15 0 1 1 2 1 " 1 0 2 2 2 9 14 16 80 19 11 3 2 1 3 3 1
16 0 1 1 3 0 ! 1 0 0 2 1 3 9 12 20 75 21 13 1 4 4 1

17 3 0 1 0 3 1 0 1 1 1 1 1 1 4 12 22 74 25 12 3 1 4
18 0 0 1 3 0 0 2 1 0 1 2 1 1 2 1 4 14 25 71 25 .6 1 2
19 0 0 1 0 0 0 1 1 0 0 2 3 1 1 2 3 1 13 26 69 24 1 10
20 0 0 1 0 0 0 1 1 0 0 1 3 4 3 1 2 5 3 6 25 65 24 1 20
21 0 1 1 0 0 0 0 0 0 0 1 0 2 4 4 4 1 7 10 1 25 60 30 3
22. 0 11. 0 0 0 0 0 0 0 0 0 0 0 1 4 4 1 8 13 0 31 58 33
23 0 1 0 0 0 0 0 0 0 1 2 2 1 2 2 1 1 4 2 11 20 4 34 45(a)
MOOK F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

F 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 043 17 1 3 4 4 3 2 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1
2 016 9 0 3 6 1 3 3 2 1 2 2 1 1 2 1 1 1 0 0 0 0 1
3 0 1 1 69 39 15 13 8 4 7 3 2 1 1 1 0 1 0 0 0 0 0 0 0
4 0 3 3 39 45 35 9 14 1 4 5 0 2 0 1 0 0 0 0 0 0 0 0 0
5 0 4 6 15 35 56 23 11 12 7 4 4 0 1 0 1 1 0 0 0 0 0 0 0
6 0 4 1 .3 9 23 55 31 9 8 7 2 2 0 1 1 0 0 0 0 0 0 0 0
7 0 3 3 8 14 10 31 40 38 24 5 8 1 3 1 1 1 1 1 1 0 0 0 0
8 0 2 3 4 1 11 9 37 62 35 15 3 4 1 2 0 1 0 1 0 0 0 0 0
9 0 1 2 7 4 7 8 23 35 60 30 6 5 2 1 1 0 0 0 1 0 0 0 0
10 0 1 2 3 5 4 7 5 15 29 64 25 5 4 3 1 1 0 1 1 1 0 0 0
11 0 1 2 2 0 4 2 8 3 6 25 65 23 6 1 4 1 1 0 1 1 1 1 0
12 0 1 2 1 2 0 3 1 4 5 5 24 65 23 12 0 5 0 2 1 2 2 0 0
13 0 0 1 1 0 1 0 3 1 2 4 7 24 70 23 14 0 4 0 2 3 0 2 0
14 0 0 1 1 1 0 1 1 2 1 4 1 12 24 75 22 8 3 2 2 1 2 1 0
15 0 1 2 0 0 1 1 1 0 1 2 5 0 14 22 67 26 4 5 0 2 3 1 2
16 0 0 1 1 0 1 0 1 1 0 1 2 5 0 9 27 60 26 3 7 3 1 5 1
17 0 0 1 0 0 0 1 1 0 1 C 1 0 5 4 5 27 59 32 4 5 6 1 4
18 0 0 1 0 0 0 0 1 1 0 1 0 2 0 2 6 3 33 51 31 7 3 8 2
19 0 0 0 0 0 0 1 1 1 1 1 2 1 2 3 0 8 4 33 45 30 12 4 9
20 0 0 0 0 0 0 0 1 1 0 2 2 2 4 1 3 4 6 7 31 40 23 16 4
21 0 0 0 0 0 0 0 0 0 1 0 1 2 0 3 4 2 6 3 12 25 41 34 14
22 0 0 0 0 0 0 0 0 0 0 0 1 1 3 2 2 5 1 8 4 16 35 39 26
23 0 1 1 0 0 0 0 0 0 0 1 0 1 1 0 2 1 5 3 9 4 14 27 14

(b)

Table 4: The mode transmission matrices of the basin model at 2.0 Hz. The absolute value

of each complex element of the matrices are shown and discretized with unity represented

by 100. (a) 20 km wide basin. (b) 40 km wide basin.
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Figure 2: Energy layer distribution for different modes at 1 Hz. Energy of each mode is

normalized to 1.
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Figure 3a: Synthetic vertical component seismograms of Lg and Rg by mode summation.

Contributions from fundamental mode, modes 1 to 10, modes 11 to 20 and modes 21 to

30 are compared with total mode summation. Source depth 1 km.
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Figure 3b: Same as Figure 3a with source depth 10 km.
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Figure 3c: Same as Figure 3a with source depth 20 km.
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Figure 4: Synthetic vertical (top) and radial (bottom) component seismograms of Lg and
Rg with source depth 10 km by mode summation. Contributions from fundamental
mode, modes 1 to 10, modes 11 to 20 and modes 21 to 30 are compared with total mode
summation.
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Figure 6: Frequency dependent Q model for Scandinavia. Q Qof (a) versus depth. (b)
Qo versus depth. It is assumed that Qp = 2Q,.
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Figure 7a: Comparison of observed and synthetic seismograms of Lg and Rg waves for quarry

blast at Leningrad recorded at the FINESA array. Distance 250 ki.
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Figure 7b: Same as Figure 7a with distance 200 km.
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Figure 8: Mode analysis of quarry blast recorded at the FINESA array at distance 200 km.
Summation of fundamental mode, modes I to 4. modes 1 to 9, modes 1 to 14 and all
modes are shown.

274



X Xr

2km

16 km 
5km

W

6 km

6 km

MOHO

(a)

w=4Okm __ __ _ _ _ _

w=Okm

0 20 40 60 80 100
TIME (seC)

(b)

Figures 9a,b: Propagation of Lg and Rg waves across a sedimentary basin. (a) The basin
model. (b) The vertical component seismograms for Lg phase computed by the coupled
mode method in the frequency range 0-2.5 Hz. The cases of no basin (W = 0), a 20 km
wide basin and a -10 km wide basin are shown.
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Figure 9c: The vertical component seismograms for Lg and Rg phase computed by coupled

mode method in the frequency range 0-2.5 Hz. The cases of no basin (W = 0), a 20 km

wide basin and a 40 km wide basin are shown.
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Figure 10: (a) Seismograms from the refraction shots in the central graben zone. Each trace
is normalized to its maximum amplitude and aligned on the P-wave onsets. An arrow
indicates a group velocity of 3.5 km/s corresponding to Lg arrivals. (b) map of the central
North Sea basin and the position of the shots (star). (After Kennett and Mykkeltveit,
1984.)
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Figure 11: (a) Cross-section of structure across the central graben with velocity contour.

Sediments slashed. (After Barton and Wood, 1984.) (b) Reference velocity structure

used to model the central graben of the North Sea. (c) Illustration of the model for the

central graben crustal pinch.
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Figure 12: The vertical component seismograms for the Lg phase across the central graben

of the North Sea model. Distance is 600 km. The casc of 0 30 km and 60 km wide

central graben are shown.
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Figure 13: Effects of the lateral structure changes on Lg wave propagation in the North
Sea case. a: flat-layered. b: sedimentary basin thickening. c: Moho uplift. d: both
sedimentary basin thickening and Moho uplift. Distance is 600 km. Width of structure
variation is 30 km.
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Figure 14: Vertical components of synthetic seismograms in the North Sea area. The dis-
tances is indicated at the end of each trace. The time axis is the reduced time-scale using
4 km/sec velocity. (a) Without the central graben. (b) With the 60 kmn wide central
grab en.
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ABSTRACT

This study utilizes ultrasonic water tank modeling to examine three-dimensional scattering

trends from a random set of parallel grooves, and compares this with theoretical results

obtained from two-dimensional finite-difference calculations. Ultrasonic laboratory model-

ing is carried out using computer-controlled source and receivers with an aluminum bock

submerged in a water tank. The block's upper interface is plane for the reference model

and grooved for the test model. The grooves measure about one-third the center source

wavelength and have a Gaussian distribution with a mean of 1 wavelength and a standard

deviation of 1/3 wavelength. This experiment places both the source and receiver at the

water's surface with the receiver array in the horizontal plane. The receiver line is then

positioned at various angles to grooves. A staggered-grid finite-difference scheme is used for

theoretical computations and comparisons with laboratory data. These theoretical results

matched experimental data well for both the plane interface and the grooved model. Specif-

ically, this study shows that scattering mechanisms are different for propagation normal to

grooves than those parallel to the grooves. In the first case scattering takes place in the

form of point diffractors. This causes reduction of the specular reflections. Amplitudes de-

crease by more than 60%, relative to a plane interface, when the incidence angle exceeds

45'. "Snapshots" of finite-difference synthetics helped to clarify details of scattering. In

the second case, where the wave front is parallel to the grooves, scattering takes e form of

guided head waves and continuous diffractions giving rise to constructive and destructive
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interference. This gives the illusion of "broken" reflectors at depth. Amplitude differences

appear as large oscillations about a zero mean as head waves refract individually along each

groove radiating energy back into the sagital plane.
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INTRODUCTION

The scattering of a seismic wave from irregular interfaces has become a topic of critical

importance in understanding nonuniform, low amplitude arrivals which tend to complicate

ocean seismograms. A number of basic theoretical approaches have been developed to model

this scattering. When interface irregularities are small with respect to the seismic wave-

length, small perturbations to velocity and density allow a single scattering approximation.

Kennett (1972) and Kuperman and Schmidt (1989) have applied the Born approximation

to 2-D cases. Prange (1989) has perturbed material parameters and interface height to

describe 3-D scattering from randomly rough interfaces in terms of simple matrix opera-

tors. Both techniques have the advantage of separating the scattered wavefield from the

background field. However, when the size of an interface irregularity approaches the incom-

ing wavelength and impedance contrasts are large, the above approximations break down

and complete waveform modeling must be introduced to understand the multiply scattered

waves. This involves implementing full waveform numerical techniques such as the discrete

wavenumber-boundary integral (Bouchon et al., 1989), boundary element (DeSanto, 1985;

Campillo and Bouchon, 1985; Paul and Campillo, 1988), or finite-difference (Virieux, 1986;

Bayliss et al., 1986; Stephen, 1988) methods. Stephen (1988) gives an excellent summary

of current acoustic-elastic finite-difference techniques, and Axilrod et al. (1990) compares

run time and accuracy between the various discrete wavenumber techniques. Although com-

putational constraints usually require two-dimensionality, spreading factor corrections can
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give reasonable amplitude data for comparison with three-dimensional point sources. Un-

fortunately, the inability of full waveform techniques to model three-dimensionally irregular

interfaces is difficult to avoid. In this respect ultrasonic modeling has become an important

tool for 3-D modeling, approaching the geometrical, source, noise, and material property

control enjoyed by the numerical techniques above.

This study utilizes ultrasonic water tank modeling to examine three-dimensional scat-

tering phenomena from a random set of deeply cut parallel grooves, labeled as a "random

diffraction grating," and compares them with theoretical results obtained from numerical cal-

culations. These grooves measure about one-third the incoming wavelength and have a Gaus-

sian spatial distribution. These properties place the interface in the "full waveform zone"

of Aki and Richard's scattering classification (Aki and Richards, 1980). Finite-difference

modeling is therefore incorporated in the two-dimensional scattering case, with a seismic

line perpendicular to groove strike. These synthetis also avoid the source-receiver effects

that arise in the experimental data. Amplitude versus distance (A VD) curves then sow the

reflected amplitude variations in both the two- and three-dimensional grooved cases.

The random diffraction grating, in this case with "V" shaped grooves, may be related to

many different structural regions. In extensional zones, such as the Basin and Range province

of the western United States, extensive normal faulting occurs over short distances. This

may leave jagged boundaries between the layers severed by faulting. Mid-ocean ridges and

continental rifting areas with extensional faulting may similarly result in irregular interfaces,
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giving the effect of elongated grooves. In addition, poorly understood deep boundaries, such

as the Mohorovi6i: discontinuity, may be highly irregular, possibly explaining coherent noise

encountered on short-period seismograms. Similar situations exist in all frequency ranges

including the ultrasonic range investigated here.

ULTRASONIC MODEL DESCRIPTION

Ultrasonic modeling is carried out in our in-house water tank, where computer-controlled

transducer holders can move the source and the receiver in all coordinate directions. An

aluminum block with 30 x 30 cm area and 15 cm height is used as the ultrasonic tank

model. This model has physical properties similar to upper crustal rocks, thus giving a large

impedance contrast with water and large reflected amplitudes.

Figure 1 shows a two-dimensional view of the block studied. Figure la shows the control

case with a plane interface on both the upper and lower boundaries. Figure lb illustrates

the block with an irregular upper interface. The interface consists of parallel "V" shaped

grooves, each with a consLant depth of 3 nmn and a 600 lower acute angle. The grooves

form a Gaussian distribution with a 1 cm average standard deviation of 3 mm, and the

constraint that grooves do not overlap. Due to this spatial randomness the interface is

termed a "random diffractior, grating." Although the slope discontinuities and steepness

of each groove allow for local multiple scattering effects, we focus only on the interference

caused by the groove distribution as a whole.
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EXPERIMENTAL METHODS

Ultrasonic water tank modeling involves submerging a structure, in this case the aluminum

block described above, in a water tank. Although the tank is of finite dimension, any

reflection from its sides arrives outside the desired time window. Piezoelectric transducers

act as the source and receiver. A vertically polarized cylindrical transducer generates the

sharp pulse that is important in resolving multiple scattered trends. However, in making

the source impulsive, the source radiation pattern becomes a strong function of the angle

from the axis. This pattern will be important later in comparing experimental amplitudes

with synthetic results. For now we only note that a large amplitude oriented downward in

the radiation pattern renders amplitudes in the first few traces useless. These traces are

therefore muted from the ultrasonic results.

Placing the transducers just beneath the surface eliminates scattering from the source

and receiver supports. Unfortunately, this source position distorts recorded wave amplitudes

as the incident and surface reflected waves interact near the receiver. The analysis of this

effect discussed in detail in the next section, shows that, although the surface distorts the

appearance of the seismogram as a function of source receiver separation, it has little effect

on the comparison of relative amplitudes between different interfaces.

The experiments involve a single source and a line of multiple receivers. As shown in

Figure 1, the source is positioned over the interface, 5 cm from the block's edge. The

receiver array begins at the source and extends 5 cm past the opposite corner with 2.85 mm
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spacing. The source wavelet is a narrow band pulse with 0-300 kHz frequency range and

peak amplitude at 185 kHz. The center wavelength measures 1 cm and varies from 1.5 to

.5 cm over the effective frequency range of the source. The grooves therefore range from

one-fifth to three-fifths the width of the incoming wavefield. All traces are averaged over

1,024 source sweeps, reducing random noise amplitudes far below that of the scattered field.

Plane Interface

Figure 2a shows the experimental results from the plane interface control block. The re-

flected wave appears earliest in the seismogram with the largest amplitude. Other phases

are identified by looking at their apparent velocities. Refracted P-wave energy is barely

identifiable at this scale, while the shear head wave exhibits much larger excitation. This

is common with acoustic-elastic boundaries as normal displacement and normal tractions

at the boundary have major components in the direction of shear head wave displacement.

Due to its phase shift and large amplitude, this head wave interferes with the reflected wave

amplitudes destructively and then constructively over a large distance. Reflected amplitudes

cannot be studied in this range.

Following the primary reflection, diffractions occur from both corners of the block. The

hyperbolic trend and limiting water velocity at large distances identify the diffraction nearest

the source. The opposite corner diffraction appears at about 265 ,is. The low energy

bottom of the block reflection arrives at 190 hs. Due to the high acoustic impedance, one
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reverberation from within the block is also observed at 230 ps. The first water multiple is

muted along the top of the seismogram starting at 250 jas.

Grooved Interface

Three groove geometries are studied in this section. We begin by examining the two-

dimensional diffraction grating. Turning to the limiting 3-D case, with the grooves parallel

to the seismic line, we take advantage of the simplified geometry to understand the different

style of scattering. These two limiting cases become very valuable because they form a tool

for explaining scattering phenomena observed in the third case, where the grooves strike is

diagonal to the source-receiver line.

Perpendicular to the Grooves

Figure 3a shows the seismogram recorded along a receiver line oriented perpendicular to

the groove strike. The primary reflected wave still dominates the seismogram. However,

its amplitude varies nonuniformly as scattered energy interacts with and trails the initial

reflection. These scattered arrivals persist until the seismogram ends. Comparing these

traces to those in the plane interface case suggests that the grooves completely obstruct

both S and P head wave propagation. Some of this energy most likely appears as time-

delayed low energy arrivals.

Scattered energy, immediately following the primary reflection, exhibits distinct trends.
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Hyperbolic arrivals (all originating within the primary reflection) appear, paralleling the

trend of the corner diffraction identified in the control case. Since each hyperbola follows a

point diffractor trajectory with a limiting water velocity, these arrivals appear to be multiple

scattered diffractions originating from the grooves. The difficulty in correlating any one

diffraction with a specific scatterer suggests that each groove acts as a complex multiple

diffractor. Futhermore, the energy coalesces into a narrow wedge of high amplitude trailing

the primary reflection, causing a large amount of interference. Although the bottom of the

block reflections are still identifiable, the larger amplitude diffractions muffle their presence.

Migration may act as a tool in bringing out the bottom of the block reflector as diffractions

collapse back into grooved secondary sources.

Parallel to the Grooves

The simplest three-dimensional case arises when the seismic line extends parallel to the

groove strike. As shown in Figure 4a, scattered energy appears following a large amplitude

reflection from the irregular boundary. The trends, although taking the form of continuous

hyperbolic curves, differ greatly from the two-dimensional situation. The hyperbolas do not

originate within the primary reflected wave. Instead, they intersect the first trace with a

distinct time delay and tend to parallel the primary reflection at small offsets. At larger

offsets, these trends converge on the primary reflection instead of diverging like the point

diffractors in the two-dimensional case. This smears the primary reflected wavelet so that
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it shows little similarity to the incident wavelet. The convergence of these hype-bolas to

one another results in additional interference, giving the appearance of broken reflectors at

depth, not an irregular interace.

The S head wave is still prominent in the profile. At later times secondary arrivals

paralleling the initial head wave branch also appear. Each later branch can be traced back

to its origin which lies within the trailing hyperbolas described above. This intersection

with the hyperbolas smears the constructive-destructive interference between the primary

reflected and earliest head wave to larger times.

The above observations suggest that each individual groove acts as a continuous diffractor

of energy. The geometry for a continuous groove diffractor allows a number of paths to exist,

each having slower moveout than the primary reflected arrival. This explains the observed

convergence of individual hyperbolas at large distances. In addition, the parallel head wave

arrivals and the extension of constructive head wave interference both suggest that each

groove acts as a head wave guide, continuously releasing energy back into the vertical plane

of the receiver array.

Diagonal to the Grooves

Utilizing our knowledge from the two limiting cases described above, one can understand

scattered trends recorded at intermediate receiver array azimuths. We now describe the

trends on a seismic line positioned diagonal to the grooves.
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Figure 4b shows the seismic data recorded with a receiver line oriented 450 to groove

strike. The trends display more complexity than the first two cases. The primary reflection

contains the largest amplitude, and scattered arrivals again form hyperbolic trends. Some

hyperbolas never intersect the primary reflection but instead intersect the first trace with

some time delay. Other trends originate within the primary reflection and appear more as

point diffractions from the interface. In both cases the hyperbolas are divergent from the

primary reflection branch, with a slope between the limiting cases studied previously. Head

waves also appear, but they dissipate within a few traces after they are formed.

The two limiting cases above suggest an explanation for these observed trends. Compo-

nents of both cases are clearly present, suggesting that scattering from a random diffraction

grating can be explained in terms of the multiple point diffraction and head wave obstruc-

tion observed in the two-dimensional case along with the continuous diffraction and head

wave guidance for the case parallel to the grooves. More specifically, shooting diagonal to

the grooves gives the appearance of 450 dipping reflectors at depth as each groove contin-

uously diffracts energy. However, some diffractions give the impression of interface origin.

The slight persistence of head waves suggests that energy radiates into the sagittal plane

as groove-guided refractions cross underneath the receiver line. Head waves propagating

parallel to the seismic line are obstructed.
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Amplitude Versus Distance

In this section we investigate how a random diffraction grating changes reflected wave ampli-

tude with distance from the source. AVD curves for the grooved interface are compared with

the amplitude curve for a plane reflector. More useful, however, is the "relative difference"

in amplitude between the plane and grooved reflection. This gives an accurate measure of

amplitude variation induced by the random diffraction grating.

Figure 5a shows the AVD curve for the plane layer control case. Destructive and con-

structive interference of the shear refraction affects amplitudes from the critical angle at

300 to about 400, as marked on the graph. In the scattered cases, this destructive null and

constructive buildup is greatly reduced, causing amplitude differences as high as 100% in

this range. Therefore, amplitudes in this region are not studied. The measured amplitude

over the two-dimensional grooved interface is also shown. Comparing the primary scattered

reflection to the control case reveals a decrease in reflected amplitudes at most offsets. The

reflection amplitude rises above the control case only during the S head wave interference

zone. Notice that the grooved interface also appears to shift the head wave interference zone

to larger incident angles. (Part of this offset appears to result from a difference in velocity

between the two blocks and will be corrected in any future work. However, another portion

of this offset may also represent anisotropy created directly by the grooved interface. This is

supported by the smaller lag ir, crossover distance when shooting diagonal to the grooves in

the next section.) The relative difference between the two curves, also shown in Figure 5a,
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strongly depends on offset. Waves near normal incidence lose an average of 10-15% of their

amplitude. At angles greater than 400 the difference quickly climbs to values as large as

G0%. Clearly, increasing the incident angle greatly reduces reflected amplitudes.

Figure 5b plots the AVD curves for the three-dimensional geometries studied. In the

limiting case, parallel to groove strike, an average of 15% loss in amplitude is recorded

at small incident angles, most likely resulting from interference with diffractions from the

nearest grooves. At larger angles, amplitudes start oscillating rapidly about the plane AVD

curve causing relative differences larger then 80%. This oscillation is apparently due to

the multiply refracted S head wave arrivals crossing the primary reflection. Turning to the

intermediate case, with grooves striking 450 under the seismic line, scattering causes reflected

amplitudes to rise by about 15% at lgwer incident angles. The amplitude decreases below

the control case only after the refractive critical angle. At large angles amplitudes are very

similar to the two-dimensional case, approaching 50-60% lower amplitude at angles greater

then 45'.

In all cases, the AVD curves establish 10-15% amplitude variations at low angles of

incidence. Increasing the incident angle reduces amplitudes by as much as 60%. Although

this maximum deviation of 60% appears similar between models, AVD signatures vary

greatly between different groove azimuths.
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COMPARISON WITH FINITE-DIFFERENCE

Two-dimensional finite-difference techniques allow full waveform modeling in both water and

the aluminum block. In addition, source-receiver distortions, which noticeably affect experi-

mental data, are not present in these synthetics. In the next section we investigate the nature

of distortions present in the experimental tank. These distortions are then applied, using

various approximations, to the finite-difference synthetics. Amplitudes are then compared

to the experimental results of the previous section.

Finite-Difference Algorithm

One of the fundamental problems with the finite-difference technique occurs when modeling

a sharp interface between two media with widely varying elastic constants. Two difficulties

in particular arise when dealing with the acoustic-elastic boundary on a non-staggered grid.

First, a boundary condition with continuous normal stress and displacement must be ap-

plied. For a non-staggered grid this boundary condition must be set up artificially by the

programmer. Second, large impedance contrasts can cause large instabilities at the interface

rendering some results useless (Stephen, 1988). Fortunately, the staggered grid solves these

two problems naturally by offsetting horizontal and vertical displacement grids; no explicit

boundary condition is required. However, the boundary condition is not absolutely abrupt

and is approximated over one finite grid spacing, allowing some averaging to occur. The

models in this paper were created using a stress-displacement finite-difference algorithm.
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This algorithm was adapted to an nCUBE2 multiple instruction, multiple data, parallel

processor.

This staggered-grid scheme is stable for the high impedance contrast, acoustic-elastic

boundary encountered in this study. First-order absorbing boundaries developed by Lind-

man (1975) and later introduced to geophysics by Randall (1989) are implemented. These

boundaries give reflection amplitudes less then one percent the incident wave amplitude at

all angles less then 900.

The synthetic model parameters were chosen to minimize grid dispersion. The grid mea-

sures 960 by 813 points with a grid spacing of .375 mm. The time increment is approximately

.03 ps, where the actual sampled time interval is .4 ps. Therefore the shortest wavelength of

5.0 mm is sampled with 13 grid points. The smallest time period is sampled 110 times, which

is well within the stability limits. A windowed Ricker wavelet with a 0-300 kHz frequency

range and 185 kHz peak amplitude is used to approximate the transducer source wavelet.

Numerical Results

Figure 6 shows two finite-difference time slices of a wave reflecting from the plane-bounded

block (Figure la). The grey scale plots vertical displacement resulting from a vertical point

source and is scaled to one-half the maximum amplitude on the grid. Each feature present

in the experimental data is identified in Figure 6. Figure 7 gives similar time slices for the

random diffraction grating. Scattered energy takes the form of large amplitude diffractions
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trailing the primary reflected wave. A large amount of reverberative energy trapped witljin

the block also results from transmission through the irregular boundary. A few broken

multiple head waves project from the primary reflected wave like faint spears. This suggests

that each groove acts as its own secondary source for head wave energy, which the remaining

grooves quickly obstruct.

Figure 2b presents the synthetic pressure record for the plane-bounded aluminum block

and compares this with the experimental recordings. The synthetic emphasizes diffractions

and refractions created by the block corners, again demonstrating how a slope discontinuity

can create head waves and diffractive waves. Figure 3b illustrates synthetics recorded over

the grooved interface. Scattered trends are accentuated. These trends are similar to those

observed in the experimental data with a narrow zone of coalescing diffractions trailing

the primary reflected wave. Lower amplitude, backscattered energy appears sloping toward

a larger offset. Figure 8 gives the pressure field recorded over the same block, but with

a volume source. The volume source, in comparison to the vertical point source, creates

much greater backscattered diffractive energy at a large offset. Note that, although a three-

dimensional spreading factor (discussed below) has I een applied to both seismograms, the

scattered amplitudes exhibit higher amplitude than the experimental case. Two additional

first-order tank distortions must be applied to the finite-difference results before the primary

reflected and later scattered arrival amplitudes can be compared to the experimental data

of the previous section.
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A total of three corrections applied to the volume source synthetics for comparison with

experimental data. rhe first correction accounts for the transducer source radiation pattern

and the receiver sensitivity pattern; both vary strongly as a function of inclination. We

assume that the energy contributing to the primary reflected amplitude comes from a small

zone about the path that a plane-reflected wave would follow. Each trace is multiplied by

a single scaling factor based on the transducer source amplitude in the direction of that

path. This geometrical correction is valid only in the vicinity of the primary-reflected wave

as later scattered arrivals do not follow this assumed path. This correction demonstrates

the distortion of experimental scattered arrivals as a function of a ray's emergence from the

source. Notice that the amplitude of head waves and the bottom of the block reflections are

not properly corrected because these paths also differ from the specular field. The second

correction, already implemented above, involves correcting the 2-D synthetic data for 3-D

spreading. If the scattered wave travels exclusively in the water, multiplying amplitudes by

an r - 1/2 factor corrects for spreading of the specular wavefield. In this case, r is the total

distance traveled in the water.

The third correction factor involves correcting for wavefield interference at the water's

surface. The boundary conditions at the free surface give the pressure field near the receiver.

P = exp[-iwt + ik~x](exp[ikzz] - exp[-ikz]), (1)

assuming a plane incident wave with wavenumber k = (k,, k,). Taking z to be small the

299



pressure depends only on vertical wavenumber and receiver depth,

P oc Iklzcos(a), (2)

where a is the incident angle of the wave impinging on the receiver, measured from normal.

Notice that the pressure field goes to zero at the surface as expected. This correction

is applied using the geometrical ray angle approximation summarized above for the first

correction. Expression (2) shows no amplitude distortion at normal incidence but accounts

for one-half the wave amplitude at a 600 incident angle. This corresponds to the last receiver

on the profile. Note that the relative difference in amplitude due to scattering is not changed

(to first-order) by the above distortions in the tank since the distortions appear as identical

multiplicative factors in both the scattered and the plane layer case (the corrections factor

out and cancel in the relative difference calculation).

It is important to emphasize that the corrections implemented above apply only in the

vicinity of the first-reflected energy. It is difficult to determine the exact path a scattered

wave traverses in traveling from source to receiver. Therefore, these corrections hold only

near the specular field. Since finite-difference avoids these distortions, it may be useful for

future amplitude analysis. However, the correction for spherical spreading is a good approx-

imation only where an unperturbed wave travels exclusively in water. The 3-D spreading of

diffractions are also left uncorrected. In addition, waves traveling through any part of the

block, such as the bottom of the block reflections, are under-corrected.

Figures 9a and 9b show the two-dimensional experimental AVD curves overlaid on the
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corrected finite-difference results. For a plane layer (Figure 9a) the curves agree within

15% at most angles. In the area of head wave interference, rapid changes in amplitude

cause larger differences. Comparing the results for the random diffraction grating with

the synthetics (Figure 9b), they match very well at wide angles. A larger disagreement,

however, occurs at low incident angles where finite-difference predicts greater then 30%

lower amplitudes in some regions. These differences may result from rapid changes in the

transducer radiation pattern and slight variations between the filtered Ricker wavelet and

the transducer wavelet. Figure 9c shows the AVD signature predicted by finite-difference.

As expected, finite-difference predicts 5-10% more scattering about the lower incident angles

than experimental data. The synthetics support a maximum amplitude change of 60% for

wide angle reflections approaching 600.

Discussion

Ultrasonic water tank experiments reveal that waves scattered from a random diffraction

grating can be understood in terms of two simple models. First, in the case where the

incoming wavefield travels perpendicular to the grooves, scattering takes place in the form of

point diffractors and obstructed refractions. Amplitude variations relative to the the control

case of a plane reflector average about 10-15% at lower incident angles (0-20° ) and rise as

high as 60% at angles greater than 45 . Second, in the case where the receiver array is parallel

to the grooves, scattering takes the form of guided head waves and continuous diffractions,
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giving the illusion of broken reflectors at depth. The relative differences reach magnitudes

similar to the two-dimensional case above. However, at a large offset this difference takes the

form of large oscillations about zero as multiple head waves intersect the primary-reflected

wave. Diagonal to the grooves, scattering becomes a combination of trends identified in

the two limiting cases above, and amplitudes show an AVD signature similar to the two-

dimensional case.

Finite-difference modeling gives primary reflected wave amplitudes that match experi-

mental results to within 15% over most angles in both the plane and grooved cases. However,

in some small offset regions over the grooved interface, finite-difference predicted 30-40%

lower amplitudes than were observed. Larger differences were also observed due to rapid

variation in head wave interference zones.

Numerical calculations have since been carried out for models with different velocities,

including cases where the shear velocity of the solid is above and below the P-velocity in

water. These show distinct trends in amplitude variation and have implications for AVD

analysis. Further studies may include the frequency analysis of diffracted and transmitted

waves at the interface. In addition, the effect of migration on reducing scattered noise may

serve as an interesting test for the resolving power of techniques such as Kirchhoff migra-

tion. Although this study keeps groove geometry constant to allow for careful comparison

with experimental data, further studies will use more general, random interfaces to study

scattering amplitudes and trends.
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APPENDIX A. ABSORBING BOUNDARY CONDITIONS

The paraxial approximation to the one-way equation is the foundation for absorbing bound-

aries on a non-staggered grid. This method is known in electromagnetic theory as the

Enquist-Majda absorbing boundary. In elastodynamics it is better known as the Clayton-

Enquist absorbing boundary. Unfortunately, the second-order Clayton-Enquist scheme is

unstable for our staggered differencing scheme (when applied to the displacement field).

However, the Lindman boundary condition referenced in the text is stable for a homoge-

neous elastic medium represented on a staggered grid. Unfortunately, the use of potentials

makes it unstable when inhomogeneous boundary conditions -- present. The water tank

has water bounding all sides of a solid object Therefore, the homogeneity requirement is

satisfied and only the acoustic portion c' the boundary condition is implemented.

The Lindman absorbing boundary condition attempts to adapt the one-way wave equa-

tion to larger incident angles, where the paraxial approximation breaks down. The one-way

wave equation for a wave traveling in the negative x direction (applicable to the left grid

boundary) can be written as

0 + ] c W) = 0, (3)

where 0 is the angle between the incoming wavenumber and the normal to the boundary

surface, c is the velocity of acoustic medium, and kx = L cos O/c. Approximating [cos 0]1
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by the rational expression

+ isn 20

[Coso 0] + E 2  (4)
i=1 I- /iszn 0

where ai and 3i are constants to be determined. Substituting sin2O = (ck 2 /w) 2, letting

/, = O,and converting back to the time domain,

ai- ]= hi(r, t) (5)
i=1

where

hi(r, t) - #iC 2 9.zhi(r, t) = aic28zz9t(r, t), (6)

and hi is now independent of the angle of incidence and can be applied to any wave incident

on the boundary. Lindman (1975) calculated the constants that minimize the reflection

coefficient over the widest range of angles. Expansion to n = 3 gives reflection coefficients

less then one percent for all incident angles less then 890. In this case the constants become

a, = 0.3264, 0.1272, 0.0309 and #j3 = 0.7375, 0.98384, 0.9996472. Once the potential has

been calculated, its gradient gives the displacement boundary value actually assigned to the

grid's edge.

Large amplitude bursts from the grid corners are almost always a large problem in any

finite-difference code. They are also poorly documented. We note that one stable scheme

involves approximating equation A-11 directly (Sergio Kostek, pers. comm.). The left-hand

side of A-4 represents the two-way wave equation. We approximate the left side with the

307



one-way wave equation and set the right-hand side of A-4 to zero,

h(r, t) - cV(/3)oahj(r, t) = 0. (7)

This is implemented with a forward difference scheme and is good to first order in grid

spacing. Note that the sign preceding the second term in A-5 changes for opposite corners

of the grid.
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a)

ALUMIN

b)

Figure 1: Two-dimensional cross-section of block geometry used for ultrasonic water tank
and finite-difference modeling. (a) The control case with an upper ard lower plane
boundary. (b) The randomly grooved interface, looking down the strike of the grooves.
The boundary in both cases is acoustic-elastic.
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Figure 2: Seismogram. recorded 10 cm above the smooth interface using a small pinhead

transducer. The record starts at 125 microseconds, trincating the direct arrival. Am-

plitudes are trace normalized to 1.0 and all recordings over the grooved interface are

scaled with this same factor. (a) corresponds to the experimyental control case while (b)

corresponds to finite- difference synthetics.
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Figure 4: Similar to Figure 2 but for (a) the simiplest three-dimensional experimental rase
with the seismic line parallel to the grooves, anid (b) the miore rornJplex experimental case
of a seismic line oriented at 450 with respect to groove strike.
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Figure 5: Wavefield amplitude in the acoustic medium versus distance from the source for
a primary reflected wave: (a) Plots the experimentally derived curves for both the plane
interface and the two-dimensional grooved surface along with their relative difference as
a function of incidence angle. (b) is similar to (1), except the curves are for a seismic line
oriented both parallel and 450 to groove strike.
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a)

(Figure 1).
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a)

Figure 7: Similar to Figiir- 6, but for the two-dimensional random diffraction grating.
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ABSTRACT

The spatial energy density distribution in 2-D random medium is derived for a point source

using the radiative transfer theory. Synthetic data calculated by an exact discretized theory

for 2-D and 3-D acoustic media are used to test our (2-D) and Wu's (3-D) radiative transfer

theory. The results show that the energy transfer theory gives reasonable results and allows

the separation of scattering effect from anelastic attenuation in the case of high seismic

albedo (strong scattering) and sufficiently large observation range (the range must be longer

than the extinction length). The 2-D theory is applied to R9 data from Maine.

INTRODUCTION

Energy losses of seismic waves can be due to anelasticity (frequency independent or fre-

quency dependent), or frequency dependent scattering (Aki and Chouet, 1975; Aki, 1980;

Toks6z and Johnson, 1981; Sato, 1982, 1984; Toks6z et al., 1990; Campillo, 1990). The latter

is an energy redistribution process in space, and is difficult to separate from the anelastic

attenuation. If there is no scattering, the energy intensity after geometrical correction will

exponentially decay in space due to anelastic attenuation. Unfortunately, scattering is strong

in the Earth at the local scale (0-100 Kin), especially in tectonically active areas, and scat-

tering attenuation can make a large contribution to the apparent attenuation (Wu and Aki,

1988; Toks6z et al., 1988). In general, an exponential form will not fit the data: because of
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scattering, the received energy near the source may actually increase and reach a maximum

value, then decay with distance, and will only fit an exponential in the far field (Wu, 1985).

In this case, the geometrical-spreading corrected energy distribution will have an arch shape

as a function of distance, i.e., there is an maximum at non-zero distance (Figure 1); and

is critically dependent on two parameters: extinction length (the distance over which unit

incident wave intensity is attenuated by e- 1 due to both scattering and anelastic attenua-

tion) and seismic albedo (the ratio of extinction length to scattering length; the scattering

length is defined similarly to the extinction length). The theoretical formulation and plots

of this arch shape can be found in reference texts such as Ishimaru (1978). Wu and Aki

(1988) were among the first to recognize its usefulness in seismology; recently Zeng et al.

(1990) develol d a general theory of which Wu's formulation is a special case. Theoretically,

by matching .he observed data with the theory, we can uniquely obtain the scattering co-

efficient and absorption coefficient, thus separating out the scattering effect in the apparent

attenuation.

On of the most effective methods of computing intensities in multiple scattering situations

is the radiative transfer theory. The objective of this paper is to numerically study the

ability of this theory to accurately predict the variation of intensity with distance in multiple

scattering situations and thereby to separate scattering and intrinsic attenuation. We extend

this theory to the case of two dimensional wave scattering. We test this case and the

three dimensional case of Wu (1985) using synthetic seismograms calculated for a discrete
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scattering media by an exact method (Peng et a1., 1992). As a practical example, we apply

the 2-D transfer theory to R. waves from a USGS refraction experiment in Maine, U.S.A.

THE SPATIAL ENERGY TRANSFER (SET) THEORY

In this section, radiative transfer theory is applied to the problem of finding the variation

of intensity of scattered energy (coda) with distance from a point continuous and isotropic

source; we call this Spatial Energy Transfer (SET) theory.

For multiple scattering to be well approximated by radiative energy transfer theory re-

quires that (Ishimaru, 1978): (1) the locally modified far field approximation is valid, (2)

the correlation function of the scattered wave varies slowly with distance. Also we ignore

wave conversion. Under these assumptions, the mutual coherence function in multiple scat-

tering theory is the Fourier transform of the specific intensity in transfer theory. The great

advantage of the radiative transfer theory is that it gives analytical formulations that may

be efficiently calculated. This is an important consideration for parameter estimation or

inversion, for example.

Below, we first derive expressions for the 2-D case, which has not been treated in the

literatures. Then we test both the 2-D and 3-D cases against synthetic data calculated by

exact formulations.
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Seismic Wave Energy Transfer in 2-D Random Medium

The two dimensional energy transfer equation can be written in the frequency domain as

(Ishimaru, 1978)

dI(I(f ) / p(,,')')d9±e(F,
ds 2wrJi

where I(r-, ,S) is the specific intensity, which is the average power flux density within a unit

frequency band for a unit angle; p is the number density of the scatterers and will be taken

as a constant because we only deal with wave propagation in spatially stationary media; at

is the total cross section of a scatterer; a. is the scattering cross section of a scatterer; p(.S, .')

is the phase function; and S(, ) is the interior source. The first term in (1) represents the

energy attenuation due to absorption and scattering, the second term represents the energy

increment from other directions due to scattering, and the third term is the energy increase

due to interior sources.

To solve (1), we follow a similar procedure to that of Wu (1985) for the 3-D case, assuming

a continuous source in time.

Using average intensity U(r)

1v(r ]2 I (F' A)dO (2)

the solution of (1) is

U(F) = j Vr~P(* ')I( ') ±E(1 )] exp(-pat r - ' d (3)
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where dO = da/ f - r' , dads = dv. Here we have assumed no external incident waves

other than the interior source.

For isotropic scattering, p(g, i') is constant. Then

U() = Go(ir- rI)[paoU(r) + E(r' )]dv (4)

Here

Go(r) = exp(-poatr) ()
2rr

Consider the radiation from a point source with power Po, i.e.,

M = (f- ?) 
(6)

27r

then

U(r) = 2ro(r + pa. )Uo(- )U(r')dv (7)

If we denote by G(rj the intensity U(rj when the source is located at the origin with power

Po = 21r, we obtain

G(F) = Go(rj + po. z G0(F - rI)G(rI)dv (8)

Define pa, = 17, the scattering coefficient, po t = 7, the extinction coefficient. The equiv-

alent lengths (scattering length and extinction length) are the reciprocals of the coefficients.

The above equation can be then written as

G(r) = Go() + Go(f- r')G(r)dv (9)
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Taking the Fourier transform in space, we get,

G(K) = (10)

In hrm Fourier transform yields,

G( = 1 1 -G exp(iK. F)dR (11)
T2_702 %Go(K)

It i easy to find

G.(k) j Go(r-)exp(-iK. )d= 1 (12)
yK2 +21

Then we obtain

1 (o KJo(Kr) dK (13)7r' or V W2 + 71,2 -

Let B0 = ,. the seismic albedo; De = qlr, the numerical extinction distance (Wu,
77e

1985), and define the normalized (meaning correction for geometrical spreading) energy

density G,,(r) = 27rrG(r), then

=D ds (14)e (-'=D VfS+ I1- Bo

In an alternative form which is numerically stable for computation, (14) can be decom-

posed as,

G, = D.,BoK o (D, e G + e-D + DeB [ 2 + D2 dx (15)(X D2B2) x 2 + D1

The first two terms describe the energy decrease due to scattering and intrinsic attenua-

tion, and the third term represents the energy increase due to multiple scattering.
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figure 1(a) shows the theoretical normalized energy intensity curve. Compared with its

3-D counterpart shown in Figure 1(b) (Wu, 1985), for the same B0, Figure 1(a) decays with

distance more rapidly at large distance and has a maximum at shorter distance. This is due

to the loss of freedom in the 2-D case (energy can't arrive at the receiver from the out-of-plane

direction). The shape of G,,(r) is sensitive to the seismic albedo of the medium, especially

for B0 > 0.5 (i.e., the scattering coefficient is greater than the attenuation coefficient). The

arch shape of the energy transfer curves (Figure 1) is determined by B0 and L, = 1/77e.

By matching the theoretical curves with observations, one can infer the seismic albedo and

extinction length. Other parameters can be calculated by the following two relationships:

77, = 77. + 77,

B3o = 7o (16)77. + 77,

where 77. is the absorption coefficient.

Test of Spatial Energy Transfer Technique (SET)

Unlike anelastic attenuation, the scattering attenuation is an energy redistribution in time

and space. The wave energy is scattered by the heterogeneities from the propagation direc-

tion to other directions, and may be re-scattered back to the propagation direction and arrive

at the receiver at a later time. This is expressed in Figure 1 by the arch shape of the curves

at high seismic albedo. This observation can be used to separate the scattering coefficient
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from the absorption coefficient (Wu and Aki, 1988; Frankel and Wennerberg, 1987; Toksbz

et al., 1988, Hoshiba, 1991).

The essence of the spatial energy transfer technique (SET) is to match the energy intensity

distribution in space at a set of frequencies with the theoretical curves of Figure 1. The energy

intensity can be obtained by taking the square of the Fourier transform of all (or part) of

a seismogram after geometrical correction. By using the Fourier transform, we turn the

transient source into a continuous harmonic source at a practical frequency. In this section

we test this technique using exact synthetic seismograms calculated for discrete scattering

media. We will particu!arly focus on the estimation of intrinsic Q, both because it is an

important quantity in the earth and because the comparison of the model and the estimate

is unambiguous.

2-D case

Synthetic seismograms are computed by the method of Peng et al. (1992). The model has

a constant velocity background with 600 homogeneously and randomly distributed isotropic

scatterers in a 50 Km x 50 Km area. The size of the scatterers is 1/16 of the wavelength

associated with the central frequency. The background velocity is 5.0 Km/s, the velocity of

the scatterers is 2.0 Km/s and the intrinsic Q is 100. The source time history is the derivative

of a Gabor wavelet with central frequency 1 Hz. Figure 2 shows one of the eight sections of

complete synthetic seismograms, together with the scattering contributions. After Fourier
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transform of whole seismogram being taken, an average is performed over receivers that are

located at a given radius around the source to get a statistically reasonable data set for the

SET technique.

Figure 3 shows the measured intensity (hereafter called numerical intensity) and best

theoretical fit in the frequency band 0.6-2.6 Hz. Generally the fit is very good except at 2.6

Hz, where the source energy is very small.

Table 1 lists the estimated seismic albedo BO, extinction length L,, scattering length

L,, absorption length L,, intrinsic Q and the error in Q estimation. The SET technique

shows a reasonable ability to separate the scattering effect from intrinsic attenuation at high

frequency. It underestimates the anelastic Q at low frequency, probably because in this case

the extinction length is close to or larger than the maximum source receiver distance and

the shape of the normalized energy intensity curve is insensitive to the seismic albedo and

extinction length (or trade-off between these two parameters). The seismic albedo estimated

by SET in this case increases with increase of frequency, and the extinction length and the

scattering length decrease with increase of frequency with negative power slightly greater

than 1. This probably means that the derived parameters are tending to the correct answer

at high frequencies - the scattering length is expected to be constant with frequency for point

scatterers (Dainty, 1981)
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3-D case

The model and physical parameters chosen for synthetics (Peng et al., peng) is similar to

the 2-D case except in the 3-D case 600 scatterers are randomly distributed in a volume of

50 x 50 x 50 Km'. The fraction of volume occupied by scatterers is much smaller than

the fraction of area in the 2-D case. Thus the multiple scattering is correspondingly much

weaker. Figure 4 shows the numerical intensity from the synthetics and its best theoretical

fit by Wu's 3-D formulation of SET theory (Wu, 1985; Wu and Aki, 1988) in the frequency

range between 0.6-2.6 Hz for 3-D acoustic wave scattering. Table 2 lists the estimated

parameters, Bo, L., L., L. and estimated intrinsic Q as well as the error in intrinsic Q

estimation. Again the SET technique gives a reasonable separation of intrinsic attenuation

and scattering attenuation at high frequency. The problem of the extinction length being

close to the source-receiver separation (aperture of observational array) is particularly evident

in this case - good estimates of the extinction length are probably only being acquired at

the high frequencies.

Summary

These two numerical tests show that the Spatial Energy Transfer (SET) technique has a

reasonable ability to separate the scattering attenuation and anelastic attenuation for certain

combinations of the seismic albedo and extinction length. In the case of strong scattering

(B0 > 0.5, the 2-D case), the quality of parameter estimation as indicated by estimation
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of intrinsic attenuation is good provided that the aperture of seismic array is significantly

greater than the extinction length. In the case of weaker scattering (Bo < 0.5, the 3-D

example), the seismic albedo decreases with increase of frequency, and the estimation of

parameters, as shown by the case of intrinsic Q, is subject to larger error due to insensitivity

or trade-off in the SET technique. In this case, no maximum exists anywhere.

USGS REFRACTION DATA IN MAINE

We test the usefulness of the SET technique by applying it to some observed data. The data

comes from a refraction survey conducted in Maine by the USGS; a complete description can

be found in Murphy and Luetgert (1986, 1987). We use only a subset of the experimental

data shown in Figure 5 after 1-10 Hz bandpass filtering and 10 second time windowing. This

data has previously been interpreted by Reiter et al. (1988) and Toks6z et al. (1988). In this

data set, the R., phase is particularly well recorded, and is very suitable for the application

of our 2-D SET technique. We intend to compare the attenuation estimates by the SET

technique to those of Reiter et al. (1988) and Toks6z et al. (1988). We also obtain other

parameters which cannot be determined by the methods used before.

Shown in Figure 6 is the measured energy intensity (black circles) and the best fit by our

2-D energy transfer theory (empty triangles) in the frequency range 2.0-5.5 Hz. Generally

the fit is good with the correlation coefficient greater than 0.80. Table 3 lists the estimated

seismic albedo, extinction length, scattering length, absorption length, and apparent and
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intrinsic Q. It should be noted, however, that scattering of R" to body waves (P or S)

could appear as intrinsic attenuation, since this type of wave conversion is not included

in our theory. The seismic albedo is less than 0.5 except at 2.5 and 3.0 Hz, suggesting

the scattering effect is weak compared to the intrinsic attenuation for this data, thus the

exponential formulation used in Reiter et al. (1988) and Toks~z et al. (1988) is applicable.

This contrasts with the 2-D synthetic case where scattering is very strong, but is similar

to the 3-D case. The extinction length decreases with frequency. Based on our experience

with the synthetic examples, parameter estimation will certainly be worse at low frequencies

due to the extinction length being of the same order as the observation distance. At high

frequency (above 3 Hz), the attenuation (extinction) Q 1 (solid circle) agrees well with that

estimated by Toks6z et al. (1988) (open circle) as shown in Figure 7a, while it is not true

for points associated with low frequencies. Figure 7b shows the intrinsic attenuation as a

function of frequency; the high frequency portion can be fitted by a power law with a power

index C ; 0.90. This is larger than that predicted by the fluid flow relaxation model (0.5,

Toks6z et al. 1988) but does indicate frequency-dependent attenuation. We also have not

considered depth-dependent attenuation properties in this study, as was done by Toks6z

et al. Because of the large error of the SET technique in separating scattering effect from

intrinsic attenuation at low frequency, the low frequency portion in Figure 7b is least reliable

and does not fit the power law.
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SUMMARY AND CONCLUSIONS

In this paper, we have extended the energy transfer theory to 2-D wave scattering and given

two numerical studies of the SET technique. We have applied this technique to the UJSGS

refraction data in Maine to study the attenuation of the R. wave and compared our results

with previous work. Summing up,

" Numerical tests show that the Spatial Energy Transfer (SET) technique has a reason-

able ability to separate the scattering attenuation and anelastic attenuation at high

albedos and extinction lengths shorter than the observation range.

" The 2-D energy transfer theory fits the field data. The attenuation estimated by the

SET technique in the Maine data is consistent with the results obtained by other

methods at high frequency.
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Table 1: Estimated parameters by matching the synthetic and theoretical
energy transfer in space in 2-D case

i Freq.(Hz) Bo L, (Kim) L,(Km) L,(Km) Intrinsic Q True Q Error
0.6 0.80 12.33 15.42 61.66 46.50 100 53.50%

10.8 0.75 13.67 18.63 51.25 51.52 100 48.48%
1.0 0.83 8.67 10.40 52.00 65.43 100 34.57%
1.2 0.85 6.33 7.48 41.30 62.30 100 37.70%
1.4 0.89 5.00 5.60 46.87 82.46 100 17.54%
1.6 0.89 4.33 4.87 39.39 79.21 100 20.79%
1.8 0.90 3.33 3.68 35.72 80.78 100 19.22%
2.0 0.93 3.17 3.42 43.18 119.38 100 19.38%
2.2 0.92 3.00 3.23 40.90 113.10 100 13.10%
2.4 0.89 3.50 3.93 31.82 95.96 100 4.04%
2.6 0.92 3.00 3.23 40.91 133.66 100 33.66%

V

Qa
V

Qa
wLe

V

Q Q1 = +Q

where v is velocity and w is angular frequency.
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Table 2: Estimated parameters by matching the synthetic and theoretical
energy transfer in space in 3-D case

Freq.(Hz) Bo Le (Kin) L.(Km) L0(Krm) Intrinsic Q True Q Error
0.6 0.87 8.67 9.96 66.67 50.26 200 74.87%
0.8 0.88 8.67 9.85 72.22 72.60 200 63.70%
1.0 0.79 16.66 21.18 78.13 98.17 200 50.92%

1.2 0.74 28.00 37.67 109.10 164.50 200 17.75%
1.4 0.62 26.67 43.01 70.18 132.28 200 33.86%
1.6 0.66 18.00 27.14 53.46 107.50 200 46.25%
1.8 0.61 16.33 26.77 41.88 94.73 200 52.64%
2.0 0.54 30.33 57.59 64.08 161.06 200 19.47%
2.2 0.66 18.00 27.13 53.46 147.81 200 26.10%
2.4 0.45 34.67 76.47 63.42 191.25 200 4.38%
2.6 0.46 29.67 64.49 54.94 179.50 200 10.25%

Table 3: Estimated parameters by matching the observed (R.) and theo-

retical energy transfer in space(USGS Refraction Data in Maine.1986)

Freq.(Hz) Bo Le (Kin) L,(Km) L (Km) Apparant Q Intrinsic Q

2.0 0.45 14.33 32.09 25.90 76.63 138.52

2.5 0.65 9.33 14.43 26.42 63.17 178.85

3.0 0.75 4.00 5.33 16.00 32.64 130.56
3.5 0.18 4.00 22.20 4.88 38.25 46.64
4.0 0.25 2.68 10.52 3.57 29.14 39.03
4.5 0.13 3.00 23.07 3.45 36.88 42.39
5.0 0.36 3.00 8.33 4.68 40.97 64.02
5.5 0.05 4.00 75.00 4.23 60.10 63.49
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Figure 1: Theoretical normalized (i.e., corrected for geometric spreading) energy intensity

curve: (a) 2-D case, (b) 3-D case.
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Figure 2: Synthetic whole waveforms (a), total scattering contributions (b), multiple scatter
ing contributions (c) and single scattering contributions (d) along a cross section through
the point source.
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Figure 2, continued.
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Figure 3: The observed intensity (from synthetic: data, referred as nunmerical intensity in the(.
figures) and the best theoretical fit in the frequency range between 0.6-2.6 Hz for the
2-D case.
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3-D case.
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Figure 4, continued.
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Figure 6: The measured Rg intensity and its best theoretical fit by the 2-D radiative energy
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Figure 7: (a) Apparent attenuation estimated by the SET technique (black circles) and by
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