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1.0 Physics Issues on ELF/VLF Generation

1.1 Overview

3eneration of ELF/VLF waves by utilizing the properties of the ionosphere as an active
medium has been extensively studied theoretically and experimentally during the last decade

(Stubbe et al 1982; Barr and Stubbe 1984 ab; Ferraro et al 1982; Belyaev et al 1987; Chang

tt al 1982; Tripathi et al 1982; Papadopoulos et al 1983; Papadopoulos and Chang1985;
Papadopoulos et al 1990). Among the various techniques proposed for converting RF to

low frequency power the most successful to-day has been the modulation of quasi-

stationary ionospheric currents flowing in the lower ionosphere (h=65-100 kin). These
currents are driven by winds in the middle and lower latitude ionosphere (often called Sq -

currents), and by the field aligned mapping of magnetospheric electric fields in the high
latitude ionosphere. Figurel shows the experimental set up for typical ionospheric

ELF/VLF generation by current modulation.

The practicality for utilization of the concept as a communication technique depends

critically on the efficiency with which ground RF power can be converted to ELF/VLF
power in the ionosphere, and subsequently coupled and propagated in the wave-guide

formed by the conducting earth and the ionosphere. Current experimental evidence from

-.he Tromso RF heater operated by the Max Planck Institute (Barr and Stubbe 1991) and

from the recent experimental campaigns using HIPAS (Bannister 1990, Papadopoulos

1990, McCarrick et al 1990) indicates that the observed ELF radiation fields are consistent
with an equivalent horizontal magnetic dipole (HMD) situated at an altitude of 75 km and

hiaving a magnetic moment M = 2-4x 108 A-m 2. The polarization of the observed radiation

is interpreted as produced by a modulated Hall current. Since the value of M quoted above

was achieved at the expense of 1 MW RF power on the ground, the resultant conversion

efficiency is of the order of

11=5x 102 A-m 2/W (1)

To place this into prospective we note that the current ground based Navy "ELF" facility in
Michigan has a of :. ;e -f M = 2x10 10 A-m 2 . As a result, unless the conversion efficiency
can be substantially improved, ground RF power in excess of 50 MW will be required in
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order to achieve ELF radiation power comparable to the ground based "ELF".

practicality of the ionospheric source for ELF communications depends critically )a

improving dramatically the currently achieved conversion efficiency.

1.2 Ideal Efficiency Limits - Scalings

A measure of the potential efficiency improvement and the parameters on which it depends

can be found by comparing the value of the efficiency given by Equation 1 to the one

expected under the following conditions:

1. The electron energy content Q at the end of the RF pulse, which is taken as half the

period rt of the ELF wave, is equal to

Q 2 --  (2)
2

where a is the efficiency with which energy is transferred from the RF to the electron gas

on a time TV2 and P is the ground RF power.

2. The electron gas cools on a time scale comparable to T/2 following the termination of the

RF pulse.

3. The energy is absorbed at altitudes where the electrons were and remained magnetized

during the pulse (magnetized in the sense that the electron neutral collision frequency

remains smaller than the cyclotron frequency).

4. The ionospheric ELF source can be represented as an horizontal magnetic dipole M,

given by

M=E _pSAz (3)
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where E is the value of the ambient ionospheric electric field, S is the modified area, .p is

the modified height integrated Pedersen conductivity, and Az the width in altitude of the

energy deposition rate.

The height integrated Pedersen conductivity is given by

pmJ ) (4)

where v(s) is the electron neutral collision frequency as a function of the energy E , a the

electron cyclotron frequency and the electron distribution function f(e,z) is normalized to the

local electron density n(z) as

n(z) = Jde f(z) (5)

We assume next that Q>>v, and that, for the relevant energy range, v is proportional to

energy so that

14C) = 'Do (F/To) (6)

where vo and To are the ambient values of the electron collision frequency and temperature

in the modified region. From Equations (4-6) we find that

S -p = & -(S dzj f(e)) (7)
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Notice that

Q =SIdzJdef(E) (8)

The value of the magnetic moment M in units of A-m 2 can thus be written by using

Equations (2, 3, 7, 8) as

-2 tB/ TO

In Equation (9) To is expressed in units of eV, while the rest of the quantities are in MKS

units. Using To = .02 eV and B = 3x10-5 Tesla, Equation (9) gives the following

expression for the conversion efficiency

ri=4x 105 x[Vol Az _ (10)k a/ 1 nJ3 msec) W

Taking the value of vo /Q as 1/4, we find that, for typical values of the electric field, the ideal

efficiency is by more than 200 times larger than the observed one, which corresponds to to

larger ELF power by a factor of 4x104 .

The above simple analysis highlights the overall energetics of the conversion, as well as its

scaling with ambient parameters, and identifies the critical research issues that will lead to
improved efficiency. It is clear current facilities achieve values of c of 5x10 "3 . This is

approximately the ratio of the time required to heat their electrons to their saturated value

(50 gsec) to the ELF period. A research priority is thus, the development of techniques that

improve the value of . Studies using the limited capabilities of HIPAS should attempt to

explore control of the altitude of the energy deposition, so that the cooling rates are close to

the desired ELF frequencies, and procedures (e.g. fast transmitter sweeping) that maximize
the energy deposition of the RF into the electron gas.
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1.3 Critical Physics Issues Related to Practical ELF Implementation

In order to optimize the conversion efficiency and assess the availability of the ionospheric

ELF channel, several experimental and theoretical studies related to the physics of the RF to

ELF conversion and to the coupling and propagation in the earth-ionosphere wave-guide are

required. It is expected that the planned HAARP facility will allow for a comprehensive

study of these issues. It is, however, possible, in the interim, to address some of the issues

using existing RF heaters, such as HIPAS or the HEATER facility in Tromso. Both

facilities have limited maximum ERP and frequency range, so that extreme care is required

in the planning as well as the interpretation of the experiments. We list below some

important physics issues that can be addressed, at least to some extent, with the current

facilities.

1. What is the dominant equivalent ELF radiating moment in the ionosphere and how does

it depend on ambient conditions, modification height, RF mode polarization, frequency, ERP

and gain?

The initial thinking was that the ionospheric ELF source could be modeled as an equivalent

horizontal electric dipole (HED) (Barr and Stubbe 1984b; Papadopoulos et al 1990). This,

however, led to inconsistencies between ground observations and simultaneous observations

from satellites (James 1985), which can be reconciled if the radiating source is an HMD

rather than an HED (Papadopoulos et al 1990). The measurements from the latest series of

HIPAS experiments appear to be consistent with a radiating HMD (Bannister 1990,

Papadopoulos 1990). Further confirmation of the nature of the source is required as well as

its rtsolution into VED,HED and HMD components. An important issue concerns the

controllability of the source components.

2. What is the polarization of the low frequency horizontal magnetic fields on the ground

and how does it vary with the modification altitude?

The ionospheric ELF source is located in a strongly anisotropic medium. This anisotropy

is reflected in the structure of the ambient ionospheric currents shown schematically in

Figure 2. There :... c itic:al altitude zo, typically between 70-75 kin, at which vo = f. At

this altitude the ambient current flows at a 450 angle relative to the ambient electric field (ie
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the Hall and Pedersen currents are equal). For altitudes much below the critical altitude the

current flows along the direction of the ambient electric field (Pedersen current), wh c.c -t

altitudes much higher than zo, the current flows perpendicular to both the electriv aw1

magnetic field (Hall current). Thus, the anisotropy of the medium creates a rotation of the
ambient current by a 900 angle. The modification affects predominantly the weaker current

(Papadopoulos et al 1990), so that at low altitudes the perturbed current is the Hall current,
while at high altitudes it is the Pedersen current. One can define a new critical altitude zi,

where the value of Q equals the modified value of v. If the dominant energy deposition is in

the vicinity of z I the observed polarization will be close to circular, while it will be elliptical

otherwise. The polarization axis of the ellipse will rotate counterclockwise with source

altitude. The detailed polarization structure will, of course, depend on the ELF frequency,

whether the measurements were in the near or far zone, phase lags due to propagation,

reflection etc. We, however, believe that in conjunction with propagation and other

theoretical studies polarization measurements can provide a unique way to characterize the

source and its properties using HIPAS or Tromso. Such studies could, furthermore, lead to

important novel ionospheric diagnostic techniques.

3. What is the scaling of the ELF signal with the incident RF power density, RF frequency,

and ELF frequency?

This is, perhaps the most important issue in terms of practical ELF implementation.

Papadopoulos et al (1989, 1990) introduced an index n that connects the ELF strength to

the incident power density S and modified area A as

ELF signal strength - Ax S n (11)

This is related to to the total HF power P as

ELF signal strength - Ax (p/A)n -AI -nx pn (12)

Notice that for constant P and for values of n approaching or larger than one the conversion

efficiency increases by increasing the power density. For values of n smaller than .5 the
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opposite is true. A theoretical analysis of this scaling can be found in Papadopoulos et al
(1989,1990), while some recent experimental results in Barr and Stubbe (1991).

4. What is the coupling efficiency of the ionospheric source to the earth-ionosphere wave-

guide as a function of the source altitude, frequency and polarization? Are there any
techniques to improve it?

For an ionospheric source located on the bottom part of the ionosphere, most of the energy

enters the wave-guide. For a higher altitude source the fraction of the energy that enters the
wave-guide depends on whether the ionospheric source generates a propagating or

evanescent mode, the form and scale of the gradient of the local refractive index, and the
frequency and polarization of the low frequency waves. It has, furthermore, been suggested
(Gurevich et al 1991) that by sweeping the ionospheric source at a speed that matches the

phase velocity of the excited wave dramatic directional increases in the coupling efficiency

can be achieved. These issues require proper experimental investigation.

5. What is the extent of availability of a useful ELF signal and how can we reduce its

dependence on the ambient ionospheric conditions?

In addition to these issues, investigations should be conducted to determine:

i. The absolute phase of the ELF signals with respect to the HF modulation as a function of

the frequency, polarization, distance etc.

ii. The variation of of the major axis of the ELF polarization as a function of the ionospheric

conditions and ELF parameters.

iii. The phase stability of the signal at various frequencies and modulation modes, etc.

A comprehensive plan on performing these investigations as well as identifying the required

diagnostics is a major goal of APTI's research plan for the current year.
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2.0 Experimental Campaigns

2.1 Goals and Limitations

Two experimental campaigns were conducted during the May-September 1990 time frame

using the HIPAS facility in conjunction with diagnostic ELF receivers provided by NUSC.
Each campaign covered 12 days with approximately six hours of operation daily. The two

campaigns can be characterized as preliminary to a more comprehensive plan for continuous

operation using permanent ELF/VLF receivers.

The first campaign conducted in May 1990 had as goals the unambiguous confirmation that

the signals received were real ELF signals rather than spurious modulated HF reflections,

the characterization of the ELF equivalent moment and radiation pattern for frequencies in

the range of 40-200 Hz, and the absolute calibration of the UCLA ELF receiver. This range
was not available to the Tromso facility. Measurements were performed using the UCLA

ELF receiver located at the NOAA tracking station in Gilmore Creek. This site is 35 km

northwest of the HIPAS heater. During the May campaign, the NUSC receiver was

positioned at a variety of distances between 20 and 200 km (Figure 3 from Bannister 1990).

The second campaign conducted in September 1990 (Sept. 15-26) had as goals continuous

monitoring of the signal from two sites, one located in the near and the other in the far field,

with calibrated receivers, a test of the improvements of the HIPAS transmitter, identification

of the polarization, examination of phase stability and a preliminary study of the scaling of
the magnetic moment with frequency and mode of operation (eg sweeping operation). The

near site was the NOAA site, while the far site using the NUSC receiver, was located in

Talkeetna, 3W) km south of tIlPAS (Figure 3).

The HIPAS heater was used in both campaigns. During the second campaign a new ground

screen was installed under two of the eight antennas of the transmitting HIPAS array. As a
result the total ERP might have increased by 20%. Furthermore, the limit on beam scanning
time, controlled now by the bandwidth of the final amplifiers, was reduced to about 5 psecs.

In terms of studying the conversion efficiency scaling, the HIPAS facility was limited by
ERP, and frequency range. In terms of interpreting the experimental results an important

limitation of HIPAS is that the power distribution in the far zone has not yet been measured.
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A description of the UCLA and NUSC ELF sensors utilized in the campaigns can be found

in McCarrick et al (1990). We simply note here, that the UCLA receiver was

simultaneously measuring the north-south and east-west magnetic fields with calibrated

coils. Maximum sensitivity was achieved for frequencies between 5-50 Hz. The vertical

electric field was also measured but the sensor was not calibrated so that only relative local

measurements are mea:,iingful. The NUSC ELF receiver consisted of a single air-core loop

and had maximum sensitivity in the range of 70-200 Hz.

Measurements and various preliminary conclusions of the campaigns have been discussed

in Bannister (1990), McCarrick et al (1990), and Papadopoulos (1990). For completeness

we present below the data set of measurements for both receivers as presented in McCarrick

et al (1990). As will be discussed later the variability of the ionospheric conditions makes

the physical interpretation of the results and the resultant scaling rather difficult. This was

in particular true during the second campaign due to lack of communications between the

far site and HIPAS. As a result only prearranged operational modes were used and no

adjustments due to variation in the ambient conditions was used.

2.2 Data Sets

A comprehensive set of data for the two campaigns was presented and partly analyzed in

McCarrick et al (1990) and Bannister (1990). For completeness and archival reasons as
well as consistency in our presentation and discussion we reproduce them below.

Figures 4 and 5 refer to results and analysis from the May campaign. Figure 4 shows the

instantaneous ELF signal and phase measured at the NOAA site along with three axis

magnetometer data from the College Alaska Geophysical Observatory (McCarrith et al

1990). The magnetic perturbations measured on the ground are resolved along the

geographically north-south (positive north), east-west (positive east), and vertical (positive

down) directions and are conventionally denoted by H, D, and Z, respectively. To facilitate
their interpretation Figure 6 shows their latitudinal profiles for a current jet in the

ionosphere (Kisbeth and Rostoker, 1971). Figure 5 shows nightly averaged measurements

from the NUSC receive: as a function of the receiver location along with a comparison

based on simpi." -ANID i,"nospheric source as presented by Bannister (1990). The
coordinate systen used in the notation is shown in Figure 7.

9



The data from the September campaign are shown in Figur-s 8-10. Figure 8 shows tt.e

summary of the ELF data received at the NOAA site and at Talkeemna, with the frequency

and modulation sequence shown at the top of each plot. The Talkeetna data were mostly

five minute samples although some 100 sec samples were also taken. Figure 9 shows the

complete set of data received at the NOAA site along with th three axis magnetometer and

30 MHz riometer data from College, Alaska. Averaged data are shown in Figure 10.

All of the above data were obtained with HIPAS operating at a frequency of 2.85 MHz and

a power level of 8x100 kW with an effective radiated power (ERP) of 50 MW. In the

absence of absorption this corresponds to a power density S = .7 mW/ m2 and an

equivalent quiver energy of 5x 10-4 eV for X-mode polarization.
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3.0 Analysis of the Results - Issues - Uncertainties-Conclusions

3.1 Verification of Ionospheric ELF Source

There have been occasional doubts as to whether the origin of the received ELF signals is

ionospheric or plain ionospheric demodulation of the amplitude modulated HF. As

discussed by the NUSC and UCLA groups in the ONR review, laboratory tests of the ELF
receiver response to HF power levels, lack of correlation between the ELF signal and the

demodulated HF signal and far zone (ie New London) detection of the signals leaves no
doubt as to the ionospheric origin of the source.

A particularly convincing example of the ionospheric nature of the ELF source is presented

by the data shown in Figure 11 from McCarrick et al (1990). The figure shows the NS
component of the ELF signal and its associated phase. It, also, shows the College station

magnetometer traces and the 30 MHz riometer absorption. Of importance is the

magnetometer H-trace, which shows the horizontal NS component of the magnetic field.
The positive direction is defined as northward. Eastward electrojet currents cause positive

deviation on the value of H, while westward produce negative bays. In Figure 11 it is clear
that when the H component oscillates through zero the ELF phase oscillates between -90
and +90 degrees till it, finally, locks at +90 when the westward electrojet dominates.

Similar behavior has been detected during the other runs. This reinforces previous

confirmation by the USSR and Max Planck groups.

3.2 Dominant Moment

Bannister (1990) analyzed the signals received by the NUSC receiver during the two

campaigns, using a simplified propagation model based on radiation due to an HMD in the
ionosphere. An examination of the data shown in Figures 5 and 10 leads to the conclusion

that the radiation pattern observed can be accounted by an ionospheric source located at an

altitude of 75 kin, in the form of an HMD making an angle of 170 north of east, with an

average value of M=1.7xl0 8 A-m 2 for the May campaign and of 6x10 8 A-m 2 for the

September c." -i i Table 1 reproduced from Bannister's presentation shows several

types of averaged values of M as well as the peak values observed during the campaign.
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Table I

September 1990 Nightly Averages

35 km 330 km

Date Hns (dBA/m) HO (dB A/m)

9/15 -137.1(12) -159.6(10)

9/16 -136.5(12) -156.2(6)

9/17 -138.3(12) -161.6(10)

9/18 -136.1(12) -153.9(12)

9/19 -138.1(12) -161.2(9)

9/20 .- 161.6 (5)

9/21 -134.4(12) -158.3(12)

9/22 -139.7 (8) -160.2 (5)

9/23 -135.9(9) -161.0(6)

9/24 -137.6(12) -157.4(12)

9/25 -136.6 (6) -163.4 (6)

September

Average -136.9 -158.6

The implications of these results to the physics issues can be seen by expressing the

magnetic moments due to the Hall and Pedersen conductivity modifications as

MH = Ex5y-HxAxA (13)

Mp = Ex8YpxAxA (14)

Since the direction of the observed M is 170 the ratio
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MHl/Mp = 8UH/8yp =tan 170 =3

but
8* -I/1P = Sv/ =1/3

where 8v is the average change in the collision frequency at the modified height. These

lead to the following two possible conclusions:

i. If we assume that the modification height was at 75 km where the neutral density is - 6x
1014 #/cm3 the average effective temperature modification is of the order of 230 K. This

temperature is by a factor of three lower than predicted by the one dimensional heating

model.

ii. The alternative is to accept the modified temperature of approximately 800 K and accept

that the neutral density in the modified region is 2x10 1 4 #/cm 3 , which will either place the

modified region at 80 km or revise the neutral density profile.

We utilized APTI's one dimensional code to simulate the modifications resulting with the

HIPAS parameters used in the experiment. Since the density profile of the D region was

not known we used profiles 3 and 5 from Barr and Stubbe (1984) which correspond to

nighttime with 1.8 dB absorption and to daytime with .8 dB absorption. These allow us to

bracket the changing ionospheric profile. Figure 12 shows the results from profile 3.

Figure 12 a-c show the modified temperature, and Hall and Pedersen conductivities as a

function of altitude and time to saturation. The dominant modification is at about 72 krn

altitude. The ratio of Hall to Pedersen conductivity is close to 2 corresponding to about 260

direction of M. The extent of the modification gives a value of M of about 6xl08 A-m 2 if

we assume that the ionospheric electric field was 10 mV/m. Figure 13 shows the same

quantities as Figure 12 but for profile 5. Note that the maximum modification occurs now

near 66 km. The ratio of Hall to Pedersen conductivity is approximately 12 giving an angle

of about 50, while for an assumed electric field of 10 mV/m the value of M is approximately

2x10 8 A-m 2 . More detailed comparison of the experimental and theoretical results is

ongoing.
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3.3 Correlation Between Far and Near Site Measurements

Figures 14 a-d show a comparison of the signals received in the NOAA site and the far site

at Talkeetna during the September campaign for selected intervals all with vertical operation

of the heater. The intervals have been selected to highlight variations in the relative strength
of the received signals. Figure 14a was taken for 154 Hz modulation with the transmitter
operation alternating every 1/2 hour between normal and 30% duty cycle (544jts on and

1681gsec off). Notice that over the entire period of 6 hours the ratio of the two signals was

essentially constant at about 15 dB. This is consistent with the loss expected at the far site.

Figures 14b-d were taken for 154 Hz modulation and normal operation. Notice that the
signal ratios had extremely large variations during the 18 hours of data shown. The
variation was at times larger than 40 dB. It is very difficult to draw reliable conclusions

from these data. From basic physics considerations we expect that the variation is

predominantly related to changes in the heating altitude due to modifications of the ambient
electron density profile. This changes the ratio of the Hall to Pedersen conductivity and the

direction of the equivalent HMD. It could also affect the near site measurement due to

finite effective antenna effects, although we do not expect major variations for normal
vertical incidence operation. For example in Figure 14d we note that following 10.30 pm
while the field intensity is increasing in the near zone it is reduced by almost 10 dB in the

far zone. Since the near field is measured by cross dipoles we can attribute the difference to

rotation of the HMD due to variation of the heating altitude. The September data guide us

towards exploring the properties and scaling of the ionospheric source by simultaneous
measurements at more than two sites with crossed dipoles of the relative ratios of the NS

and EW field components. Vertical electric field measurements would also aid in

diagnostics. We are currently exploring the far to near site ratios using a ID code to
determine the causes of the variability.

3.4 Scaling of X vs 0 Polarization

The physical basis of the differences between modulation with X vs 0 mode polarization
lies in the fact that the quiver energy, which determines the interaction strength, is weaker for
the 0-mode than the X-mode by a factor p2 given approximately by

4(15)
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where Up are the electron cyclotron and HF frequency. For the 2.8 MHz case the O-mode

quiver energy is reduced by a factor of 1/9. As a result, one expects lower values of the

peak temperatures. On the other hand the O-mode is equivalent to a higher frequency,
resulting in a larger value of A. The scaling and direction of M with respect to 0 and X

mode polarization is an important issue. As noted in Papadopoulos et al (1990), we expect

X-mode to produce larger values of M and large NS signals for low frequencies and low

ERP's, when the modified Hall conductivity dominates. The opposite is true for the high

frequency high ERP case.

During the September campaign only one night was devoted to this experiment. The results

are shown in Figure 15. Although it appears that the X-mode signals are higher it is

difficult to derive any serious conclusions. It would be of interest to examine the variation

in the ratio of the NS to EW signal with polarization. We do not, currently, have these data.

As a benchmark we present in Figure 16 the results of the one dimensional code using the

ionospheric model #3 and O-mode polarization for HIPAS parameters similar to to the ones

shown in Figure 14. The modeling shows the expected lower temperatures and and

broader absorption layer. However, for the model #3 electron density profile, shows that the

Pedersen conductivity is by a factor of 4 larger than the Hall, corresponding to a direction of

M of 750, while the magnetic moment is three times larger than the X-mode.

It is clear that systematic investigations related to the ELF polarization and signal strength as

a function of the RF polarization are very important and should be pursued in the future.

3.5 Low Duty Operation Scaling

One operating session was devoted to low duty cycle operation. The results for the only

case tested are shown in Figure 17 along with type of pulsed sequence used. As discussed

previously, this was the best case for consistent tracking of the far and near field results, as
well as one the most stable electrojets. Contrary to previous experiments there was no

evidence for increased conversion efficiency with the low duty cycle operation.
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3.6 Painting Operation

Preliminary painting experiments with three spots are shown in Figure 18. The perturbed

region was located overhead, 10 degrees north, and 10 degrees south. The dwell time was

54 lisec per spot. It is rather difficult to interpret the results. They show clear differences

between the near and far site. The far site shows a systematic, marginal, gain with painting,

while the near site a loss. It is unclear whether these can be attributed to finite source size

effects in the near zone, or directional gains in the far zone. The situation is clearer for the

second day of painting runs shown in Figure 19 which, unfortunately, were performed

under rather weak ionospheric electric field conditions. In this case the relative efficiency of

3 and 12 spot painting for long and short dwell times was tested. Sequences with 12 spots

and long dwell time seemed to give strong signals in the far site while the 12 spot painting

produced substantially better efficiency than the other operating modes at both sites. For

the data of Figure 18 there was a 3 dB improvement on the average signal with 3 spots for

the Talkeetna site. For the data of Figure 19 the 12 spot average signal at the far site was 12

dB higher than the normal operation and 7dB higher than the 3 spots. However, the data

base is too small to draw any serious conclusions.

3.7 Effect of Ambient Conditions

McCarrick et al produced data correlating the ELF signals to riometer absorption,

photometric, and magnetometer data for few cases. There were no significant systematic

trends in the data. There is, however, one exception. A systematic reduction of the signals

appeared when a strong aurora was overhead of HIPAS. This confirms theoretical

predictions (Papadopoulos et al 1990) that electron profiles containing significant electron

densities at low altitude (ie 60-70 kin) result in low conversion efficiency.

3.8 Scaling with ELF Frequency

A very limited set of runs were performed with varying the ELF frequency. The three

frequencies tested were 78, 154, and 198 Hz. Figure 20 shows the results. Fitting the

values of 78 Hz and 154 Htz to a simple propagation model (Figure 21), Bannister

concludes that the value of M at 78 Hz is by 3 dB larger than the one at 154 lHz. However,

the limited data base does not allow for a definite conclusion. On a theoretical level scaling

16



with frequency can arise due to propagation effects or due to different heating and cooling

to ELF time ratios. These phenomena need to be investigated in future campaigns.
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Figure 4 (a) Instantaneous ELF Signal and Phase Measurements at the
NOAA Site Along with Magnetometer Data from the May
1990 Campaign (McCarrick et al 1990)
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ELF Receiver: NS-Mog chan. 154 Hz. 100 sec integration
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ELF Receiver: NS-Mog chon. 154 Hz. 100 sec integrotion
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ELF Receiver: NS-Mog chon. 154 Hz. 100 sec integrotion
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ELF Receiver: NS-Mog chor. 1.54 Hz. 100 sec integration
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MAY/JUNE 1990 CAMPAIGN
2100-0300 ADST NIGHTLY AVERAGES

(ACTUAL MEASURED DATA)
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Figure 5 (a) Nightly Average Measurements from the NUSC Site
Compared to Predictions from a Simple HMD
Ionospheric Source at 75km, for the May 1990 Campaign
(Bannister 1990)
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MAY/JUNE 1990 CAMPAIGN
HIGH VALUE AVERAGES
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CLF Receiver: NS-Moa chon. 154 Hz. 100 sec ,tterCtion
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