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1.0 Physics Issues on ELF/VLF Generation

1.1 Overview

Generation of ELF/VLF waves by utilizing the properties of the ionosphere as an active
medium has been extensively studied theoretically and experimentally during the last decade
(Stubbe et al 1982; Barr and Stubbe 1984 a,b; Ferraro et al 1982; Belyaev et al 1987; Chang
=t al 1982; Tripathi et al 1982; Papadopoulos et al 1983; Papadopoulos and Chang198S;
Papadopoulos et al 1990). Among the various techniques proposed for converting RF to
low frequency power the most successful to-day has been the modulation of quasi-
stationary ionospheric currents flowing in the lower ionosphere (h=65-100 km). These
currents are driven by winds in the middle and lower latitude ionosphere (often called Sq -
currents), and by the field aligned mapping of magnetospheric electric fields in the high
latitude ionosphere. Figurel shows thc experimental set up for typical ionospheric
ELF/VLF generation by current modulation.

The practicality for utilization of the concept as a communication technique depends
critically on the efficiency with which ground RF power can be converted to ELF/VLF
power in the ionosphere, and subsequently coupled and propagated in the wave-guide
formed by the conducting earth and the ionosphere. Current experimental evidence from
-he Tromso RF heater operated by the Max Planck Institute (Barr and Stubbe 1991) and
from the recent experimental campaigns using HIPAS (Bannister 1990, Papadopoulos
1990, McCarrick et al 1990) indicates that the observed ELF radiation fields are consistent
with an equivalent horizontal magnetic dipole (HMD) situated at an altitude of 75 km and
having a magnetic moment M = 2-4x 108 A-m2. The polarization of the observed radiation
is interpreted as produced by a modulated Hall current. Since the value of M quoted above
was achieved at the expense of 1 MW RF power on the ground, the resultant conversion
efficiency is of the order of

n=5x 102 A-m%W (1)

To place this into prospective we note that the current ground based Navy "ELF" facility in
Michigan has a of ... : of M =2x1010 A-m2. As a result, unless the conversion efficiency
can be substantially improved, ground RF power in excess of 50 MW will be required in




order to achieve ELF radiation power comparable to the ground based "ELF". " ..
practicality of the ionospheric source for ELF communications depends critically on
improving dramatically the currently achieved conversion efficiency.

1.2 Ideal Efficiency Limits - Scalings
A measure of the potential efficiency improvement and the parameters on which it depends
can be found by comparing the value of the efficiency given by Equation 1 to the one

expected under the following conditions:

1. The electron energy content Q at the end of the RF pulse, which is taken as half the
period t of the ELF wave, is equal to

Q=9Pt (2)

where a is the efficiency with which energy is transferred from the RF to the electron gas
on a time 1/2 and P is the ground RF power.

2. The electron gas cools on a time scale comparable to %/2 following the termination of the
RF pulse.

3. The energy is absorbed at altitudes where the electrons were and remained magnetized
during the pulse (magnetized in the sense that the electron neutral collision frequency
remains smaller than the cyclotron frequency).

4. The ionospheric ELF source can be represented as an horizontal magnetic dipole M,

given by

M=E Z,S Az 3)




where E is the value of the ambient ionospheric electric field, S is the modified area, Zp is
the modified height integrated Pedersen conductivity, and Az the width in altitude of the

energy deposition rate.

The height integrated Pedersen conductivity is given by

% =2 { s dsE}—:(—i—)z‘—s)ﬂe) @)

where Vv(g) is the electron neutral collision frequency as a function of the energy € , Q the
electron cyclotron frequency and the electron distribution function f(€,z) is normalized to the
local eiectron density n(z) as

n(z) = | de flez) (5)

We assume next that Q>>v, and that, for the relevant energy range, V is proportional to
energy so that

qE) =1 (8 /ro) (6)

where vg and To are the ambient values of the electron collision frequency and temperature
in the modified region. From Equations (4-6) we find that

SEP=%"-r—nQQZ——T1;(S]dz]d£eﬂE)) (7)




Notice that

Q=S [dz| de effe) 8)

The value of the magnetic moment M in units of A-mZ can thus be written by using
Equations (2, 3,7, 8) as

M=1as(E)(3s) 2x )

In Equation (9) Tq is expressed in units of eV, while the rest of the quantities are in MKS
units. Using To =.02eV and B = 3x10-5 Tesla, Equation (9) gives the following
expression for the conversion efficiency

n=4x105x(%§-)

A-m2
lol%lz]l)(?) rrfsec) W (]0)
m

Taking the value of vg /€ as 1/4, we find that, for typical values of the electric field, the ideal

efficiency is by more than 200 times larger than the observed one, which corresponds to to
larger ELF power by a factor of 4x104.

The above simple analysis highlights the overall energetics of the conversion, as well as its
scaling with ambient parameters, and identifies the critical research issues that will lead to
improved efficiency. It is clear current facilities achieve values of a of 5x10-3. This is
approximately the ratio of the time required to heat their electrons to their saturated value
(50 psec) to the ELF period. A research priority is thus, the development of techniques that
improve the value of .. Studies using the limited capabilities of HIPAS should attempt to
explore control of the altitude of the energy deposition, so that the cooling rates are close to
the desired ELF frequencies, and procedures (e.g. fast transmitter sweeping) that maximize
the energy deposition of the RF into the electron gas.




1.3 Critical Physics Issues Related to Practical ELF Implementation

In order to optimize the conversion efficiency and assess the availability of the ionospheric
ELF channel, several experimental and theoretical studies related to the physics of the RF to
ELF conversion and to the coupling and propagation in the earth-ionosphere wave-guide are
required. It is expected that the planned HAARP facility will allow for a comprehensive
study of these issues. It is, however, possible, in the interim, to address some of the issues
using existing RF heaters, such as HIPAS or the HEATER facility in Tromso. Both
facilities have limited maximum ERP and frequency range, so that extreme care is required
in the planning as well as the interpretation of the experiments. We list below some
important physics issues that can be addressed, at least to some extent, with the current
facilities.

1. What is the dominant equivalent ELF radiating moment in the ionosphere and how does
it depend on ambient conditions, modification height, RF mode polarization, frequency, ERP
and gain?

The initial thinking was that the ionospheric ELF source could be modeled as an equivalent
horizontal electric dipole (HED) (Barr and Stubbe 1984b; Papadopoulos et al 1990). This,
however, led to inconsistencies between ground observations and simultaneous observations
from satellites (James 1985), which can be reconciled if the radiating source is an HMD
rather than an HED (Papadopoulos et al 1990). The measurements from the latest series of
HIPAS experiments appear to be consistent with a radiating HMD (Bannister 1990,
Papadopoulos 1990). Further confirmation of the nature of the source is required as well as
its resolution into VED,HED and HMD components. An important issue concerns the
controllability of the source components.

2. What is the polarization of the low frequency horizontal magnetic fields on the ground
and how does it vary with the modification altitude?

The ionospheric ELF source is located in a strongly anisotropic medium. This anisotropy

is reflected in the structure of the ambient ionospheric currents shown schematically in
Figure 2. There .. .. ciitical altitude zg, typically between 70-75 km, at which vo = Q. At

this altitude the ambient current flows at a 450 angle relative to the ambient electric field (ie




the Hall and Pedersen currents are equal). For altitudes much below the critical altitude the
current flows along the direction of the ambient electric field (Pzdersen current), wh :¢ ~t
altitudes much higher than zg, the current flows perpendicular to both the electric anc
magnetic field (Hall current). Thus, the anisotropy of the medium creates a rotation of the
ambient current by a 90° angle. The modification affects predominantly the weaker current

(Papadopoulos et al 1990), so that at low altitudes the perturbed current is the Hall current,
while at high altitudes it is the Pedersen current. One can define a new critical altitude z;,

where the value of Q equals the modified value of v. If the dominant energy deposition is in
the vicinity of z} the observed polarization will be close to circular, while it will be elliptical
otherwise. The polarization axis of the ellipse will rotate counterclockwise with source
altitude. The detailed polarization structure will, of course, depend on the ELF frequency,
whether the measurements were in the near or far zone, phase lags due to propagation,
reflection etc. We, however, believe that in conjunction with propagation and other
theoretical studies polarization measurements can provide a unique way to characterize the
source and its properties using HIPAS or Tromso. Such studies could, furthermore, lead to
important novel ionospheric diagnostic techniques.

3. What is the scaling of the ELF signal with the incident RF power density, RF frequency,
and ELF frequency?

This is, perhaps the most important issue in terms of practical ELF implementation.
Papadopoulos et al (1989, 1990) introduced an index n that connects the ELF strength to
the incident power density S and modified area A as

ELF signal strength ~ Ax S It (1

This is related to to the total HF power P as

ELF signal strength ~ Ax (P/A)" ~Al-nx pn (12)

Notice that for constant P and for values of n approaching or larger than one the conversion
efficiency increases by increasing the power density. For values of n smaller than .5 the




opposite is true. A theoretical analysis of this scaling can be found in Papadopoulos et al
(1989,1990), while some recent experimental results in Barr and Stubbe (1991).

4. What is the coupling efficiency of the ionospheric source to the earth-ionosphere wave-
guide as a function of the source altitude, frequency and polarization? Are there any
techniques to improve it?

For an ionospheric source located on the bottom part of the ionosphere, most of the energy
enters the wave-guide. For a higher altitude source the fraction of the energy that enters the
wave-guide depends on whether the ionospheric source generates a propagating or
evanescent mode, the form and scale of the gradient of the local refractive index, and the
frequency and polarization of the low frequency waves. It has, furthermore, been suggested
(Gurevich et al 1991) that by sweeping the ionospheric source at a speed that matches the
phase velocity of the excited wave dramatic directional increases in the coupling efficiency
can be achieved. These issues require proper experimental investigation.

5. What is the extent of availability of a useful ELF signal and how can we reduce its
dependence on the ambient ionospheric conditions?

In addition to these issues, investigations should be conducted to determine:

i. The absolute phase of the ELF signals with respect to the HF modulation as a function of
the frequency, polarization, distance etc.

ii. The variation of of the major axis of the ELF polarization as a function of the ionospheric
conditions and ELF parameters.

iii. The phase stability of the signal at various frequencies and modulation modes, etc.

A comprehensive plan on performing these investigations as well as identifying the required
diagnostics is a major goal of APTT's research plan for the current year.




2.0 Experimental Campaigns

2.1 Goals and Limitations

Two experimental campaigns were conducted during the May-September 1990 time frame
using the HIPAS facility in conjunction with diagnostic ELF receivers provided by NUSC.
Each campaign covered 12 days with approximately six hours of operation daily. The two
campaigns can be characterized as preliminary to a more comprehensive plan for continuous
operation using permanent ELF/VLF receivers.

The first campaign conducted in May 1990 had as goals the unambiguous confirmation that
the signals received were real ELF signals rather than spurious modulated HF reflections,
the characterization of the ELF equivalent moment and radiation pattern for frequencies in
the range of 40-200 Hz, and the absolute calibration of the UCLA ELF receiver. This range
was not available to the Tromso facility. Measurements were performed using the UCLA
ELF receiver located at the NOAA tracking station in Gilmore Creek. This site is 35 km
northwest of the HIPAS heater. During the May campaign, the NUSC receiver was
positioned at a variety of distances between 20 and 200 km (Figure 3 from Bannister 1990).

The second campaign conducted in September 1990 (Sept. 15-26) had as goals continuous
monitoring of the signal frcm two sites, one located in the near and the other in the far field,
with calibrated receivers, a test of the improvements of the HIPAS transmitter, identification
of the polarization, examination of phase stability and a preliminary study of the scaling of
the magnetic moment with frequency and mode of operation (eg sweeping operation). The
near site was the NOAA site, while the far site using the NUSC receiver, was located in
Talkeetna, 300 km south of HIPAS (Figure 3).

The HIPAS heater was used ir. both campaigns. During the second campaign a new ground
screen was installed under two of the eight antennas of the transmitting HIPAS array. Asa
result the total ERP might have increased by 20%. Furthermore, the limit on beam scanning
time, controlled now by the bandwidth of the final amplifiers, was reduced to about 5 psecs.
In terms of studying the conversion efficiency scaling, the HIPAS facility was limited by
ERP, and frequency range. In terms of interpreting the experimental results an important

limitation of HIPAS is that the power distribution in the far zone has not yet been measured.




A description of the UCLA and NUSC ELF sensors utilized in the campaigns can be found
in McCarrick et al (1990). We simply note here, that the UCLA receiver was
simultaneously measuring the north-south and east-west magnetic fields with calibrated
coils. Maximum sensitivity was achieved for frequencies between 5-50 Hz. The vertical
electric field was also measured but the sensor was not calibrated so that only relative local
measurements are mea:tingful. The NUSC ELF receiver consisted of a single air-core loop
and had maximum sensitivity in the range of 70-200 Hz.

Measurements and various preliminary conclusions of the campaigns have been discussed
in Bannister (1990), McCarrick et al (1990), and Papadopoulos (1990). For completeness
we present below the data set of measurements for both receivers as presented in McCarrick
et al (1990). As will be discussed later the variability of the ionospheric conditions makes
the physical interpretation of the results and the resultant scaling rather difficult. This was
in particular true during the second campaign due to lack of communications between the
far site and HIPAS. As a result only prearranged operational modes were used and no
adjustments due to variation in the ambient conditions was used.

2.2 Data Sets

A comprehensive set of data for the two campaigns was presented and partly analyzed in
McCarrick et al (1990) and Bannister (1990). For completeness and archival reasons as
well as consistency in our presentation and discussion we reproduce them below.

Figures 4 and 5 refer to results and analysis from the May campaign. Figure 4 shows the
instantaneous ELF signal and phase measured at the NOAA site along with three axis
magnetometer data from the College Alaska Geophysical Observatory (McCarrith et al
1990). The magnetic perturbations measured on the ground are resolved along the
geographically north-south (positive north), east-west (positive east), and vertical (positive
down) directions and are conventionally denoted by H, D, and Z, respectively. To facilitate
their interpretation Figure 6 shows their latitudinal profiles for a current jet in the
ionosphere (Kisbeth and Rostoker, 1971). Figure 5 shows nightly averaged measurements
from the NUSC receive: as a function of the receiver location along with a comparison
based on simpl: IAMD 1onospheric source as presented by Bannister (1990). The
coordinate system used in the notation is shown in Figure 7.




The data from the September campaign are shown in Figur=s 8-10. Figure 8 shows th.e
summary of the ELF data received at the NOAA site and at Talkeetna, with the frequency
and modulation sequence shown at the top of each plot. The Talkeetna data were mostly
five minute samples although some 100 sec samples were also taken. Figure 9 shows the
complete set of data received at the NOAA site along with the three axis magnetometer and
30 MHz riometer data from College, Alaska. Averaged data are shown in Figure 10.

All of the above data were obtained with HIPAS operating at a frequency of 2.85 MHz and
a power level of 8x100 kW with an effective radiated power (ERP) of 50 MW. In the
absence of absorption this corresponds to a power density S = .7 mW/ m2 and an
equivalent quiver energy of 5x10-4 eV for X-mode polarization.

10
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3.0 Analysis of the Results - Issues - Uncertainties-Conclusions

3.1 Verification of Tonospheric ELF Source

There have been occasional doubts as to whether the origin of the received ELF signals is
ionospheric or plain ionospheric demodulation of the amplitude modulated HF. As
discussed by the NUSC and UCLA groups in the ONR review, laboratory tests of the ELF
receiver response to HF power levels, lack of correlation between the ELF signal and the
demodulated HF signal and far zone (ie New London) detection of the signals leaves no
doubt as to the ionospheric origin of the source.

A particularly convincing example of the ionospheric nature of the ELF source is presented
by the data shown in Figure 11 from McCarrick et al (1990). The figure shows the NS
component of the ELF signal and its associated phase. It, also, shows the College station
magnetometer traces and the 30 MHz riometer absorption. Of importance is the
magnetometer H-trace, which shows the horizontal NS component of the magnetic field.
The positive direction is defined as northward. Eastward electrojet currents cause positive
deviation on the value of H, while westward produce negative bays. In Figure 11 it is clear
that when the H component oscillates through zero the ELF phase oscillates between -90
and +90 degrees till it, finally, locks at +90 when the westward electrojet dominates.
Similar behavior has been detected during the other runs. This reinforces previous
confirmation by the USSR and Max Planck groups.

3.2 Dominant Moment

Bannister (1990) analyzed the signals received by the NUSC receiver during the two
campaigns, using a simplified propagation model based on radiation due to an HMD in the
ionosphere. An examination of the data shown in Figures 5 and 10 leads to the conclusion
that the radiation pattern observed can be accounted by an ionospheric source located at an
altitude of 75 km, in the form of an HMD making an angle of 170 north of east, with an
average value of M=1.7x108 A-m2 for the May campaign and of 6x108 A-m2 for the
September czm-aien  Table 1 reproduced from Bannister's presentation shows several
types of averaged values of M as well as the peak values observed during the campaign.

11




Table 1
September 1990 Nightly Averages

35km 330 km
Date Hns (dBA/m) HO (dBA/m)
9/15 -137.1(12) -159.6(10)
9/16 -136.5(12) -156.2 (6)
9/17 -138.3(12) -161.6(10)
9/18 -136.1(12) -153.9(12)
9/19 -138.1(12) -161.2 (9)
9/20 — -161.6 (5)
921 -134.4(12) -158.3(12)
9/22 -139.7 (8) -160.2 (5)
923 -135.9 (9) -161.0 (6)
924 -137.6(12) -157.4(12)
9725 -136.6 (6) -163.4 (6)
September
Average -136.9 -158.6

magnetic moments due to the Hall and Pedersen conductivity modifications as

MH = Ex8ZHxAxA

Mp = Ex8ZpxAxA

Since the direction of the observed M is 170 the ratio

12

The implications of these results to the physics issues can be seen by expressing the

(13)

(14)




Mp/Mp = SZH/8Zp =tan170=3

but
SIZHOZLP =dviIQ=1/3

where dv is the average change in the collision frequency at the modified height. These
lead to the following two possible conclusions:

i. If we assume that the modification height was at 75 km where the neutral density is ~ 6x
1014 #/cm3 the average effective temperature modification is of the order of 230 K. This
temperature is by a factor of three lower than predicted by the one dimensional heating
model.

ii. The alternative is to accept the modified temperature of approximately 800 K and accept
that the neutral density in the modified region is 2x1014 #/cm3, which will either place the
modified region at 80 km or revise the neutral density profile.

We utilized APTT's one dimensional code to simulate the modifications resulting with the
HIPAS parameters used in the experiment. Since the density profile of the D region was
not known we used profiles 3 and 5 from Barr and Stubbe (1984) which correspond to
nighttime with 1.8 dB absorption and to daytime with .8 dB absorption. These allow us to
bracket the changing ionospheric profile. Figure 12 shows the results from profile 3.
Figure 12 a-c show the modified temperature, and Hall and Pedersen conductivities as a
function of altitude and time to saturation. The dominant modification is at about 72 km
altitude. The ratio of Hall to Pedersen conductivity is close to 2 corresponding to about 260
direction of M. The extent of the modification gives a value of M of about 6x108 A-m?2 if
we assume that the ionospheric electric field was 10 mV/m. Figure 13 shows the same
quantities as Figure 12 but for profile 5. Note that the maximum modification occurs now
near 66 km. The ratio of Hall to Pedersen conductivity is approximately 12 giving an angle
of about 50, while for an assumed electric field of 10 mV/m the value of M is approximately
2x108 A-m2. More detailed comparison of the experimental and theoretical results is
ongoing.

13




3.3 Correlation Between Far and Near Site Measurements

Figures 14 a-d show a comparison of the signals received in the NOAA site and the far site
at Talkeetna during the September campaign for selected intervals all with vertical operation
of the heater. The intervals have been selected to highlight variations in the relative strength
of the received signals. Figure 14a was taken for 154 Hz modulation with the transmitter
operation alternating every 1/2 hour between normal and 30% duty cycle (54ts on and
168usec off). Notice that over the entire period of 6 hours the ratio of the two signals was
essentially constant at about 15 dB. This is consistent with the loss expected at the far site.
Figures 14b-d were taken for 154 Hz modulation and normal operation. Notice that the
signal ratios had extremely large variations during the 18 hours of data shown. The
variation was at times larger than 40 dB. It is very difficult to draw reliable conclusions
from these data. From basic physics considerations we expect that the variation is
predominantly related to changes in the heating altitude due to modifications of the ambient
electron density profile. This changes the ratio of the Hall to Pedersen conductivity and the
direction of the equivalent HMD. It could also affect the near site measurement due to
finite effective antenna effects, although we do not expect major variations for normal
vertical incidence operation. For example in Figure 14d we note that following 10.30 pm
while the field intensity is increasing in the near zone it is reduced by almost 10 dB in the
far zone. Since the near field is measured by cross dipoles we can attribute the difference to
rotation of the HMD due to variation of the heating altitude. The September data guide us
towards exploring the properties and scaling of the ionospheric source by simultaneous
measurements at more than two sites with crossed dipoles of the relative ratios of the NS
and EW field components. Vertical electric field measurements would also aid in
diagnostics. We are currently exploring the far to near site ratios using a 1D code to
determine the causes of the variability.

3.4 Scaling of X vs O Polarization

The physical basis of the differences between modulation with X vs O mode polarization
lies in the fact that the quiver energy, which determines the interaction strength, is weaker for
the O-mode than the X-mode by a factor ﬁ2 given approximately by

B= (1-Qw)/(1+Q/w) (15)
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where Q,m are the electron cyclotron and HF frequency. For the 2.8 MHz case the O-mode
quiver energy is reduced by a factor of 1/9. As a result, one expects lower values of the
peak temperatures. On the other hand the O-mode is equivalent to a higher frequency,
resulting in a larger value of A. The scaling and direction of M with respect to O and X
mode polarization is an important issue. As noted in Papadopoulos et al (1990), we expect
X-mode to produce larger values of M and large NS signals for low frequencies and low
ERP's, when the modified Hall conductivity dominates. The opposite is true for the high
frequency high ERP case.

During the September campaign only one night was devoted to this experiment. The results
are shown in Figure 15. Although it appears that the X-mode signals are higher it is
difficult to derive any serious conclusions. It would be of interest to examine the variation
in the ratio of the NS to EW signal with polarization. We do not, currently, have these data.

As a benchmark we present in Figure 16 the results of the one dimensional code using the
ionospheric model #3 and O-mode polarization for HIPAS parameters similar to to the ones
shown in Figure 14. The modeling shows the expected lower temperatures and and
broader absorption layer. However, for the model #3 electron density profile, shows that the
Pedersen conductivity is by a factor of 4 larger than the Hall, corresponding to a direction of
M of 75°, while the magnetic moment is three times larger than the X-mode.

It is clear that systematic investigations related to the ELF polarization and signal strength as
a function of the RF polarization are very important and should be pursued in the future.

3.5 Low Duty Operation Scaling

One operating session was devoted to low duty cycle operation. The results for the only
case tested are shown in Figure 17 along with type of pulsed sequence used. As discussed
previously, this was the best case for consistent tracking of the far and near field results, as
well as one the most stablc electrojets. Contrary to previous experiments there was no
evidence for increased conversion efficiency with the low duty cycle operation.
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3.6 Painting Operation

Preliminary painting experiments with three spots are shown in Figure 18. The perturbed
region was located overhead, 10 degrees north, and 10 degrees south. The dwell time was
54 pusec per spot. It is rather difficult to interpret the results. They show clear differences
between the near and far site. The far site shows a systematic, marginal, gain with painting,
while the near site a loss. It is unclear whether these can be attributed to finite source size
effects in the near zone, or directional gains in the far zone. The situation is clearer for the
second day of painting runs shown in Figure 19 which, unfortunately, were performed
under rather weak ionospheric electric field conditions. In this case the relative efficiency of
3 and 12 spot painting for long and short dwell times was tested. Sequences with 12 spots
and long dwell time seemed to give strong signals in the far site while the 12 spot painting
produced substantially better efficiency than the other operating modes at both sites. For
the data of Figure 18 there was a 3 dB improvement on the average signal with 3 spots for
the Talkeetna site. For the data of Figure 19 the 12 spot average signal at the far site was 12
dB higher than the normal operation and 7dB higher than the 3 spots. However, the data
base is too small to draw any serious conclusions.

3.7 Effect of Ambient Conditions

McCarrick et al produced data correlating the ELF signcls to riometer absorption,
photometric, and magnetometer data for few cases. There were no significant systematic
trends in the data. There is, however, one exception. A systematic reduction of the signals
appeared when a strong aurora was overhead of HIPAS. This confirms theoretical
predicuons (Papadopoulos et al 1990) that electron profiles containing significant electron
densities at low altitude (ie 60-70 km) result in low conversion efficiency.

3.8 Scaling with ELF Frequency

A very limited set of runs were performed with varying the ELF frequency. The three
frequencies tested were 78, 154, and 198 Hz. Figure 20 shows the results. Fitting the
values of 78 Hz and 154 Hz to a simple propagation model (Figure 21), Bannister
concludes that the value of M at 78 Hz is by 3 dB larger than the one at 154 Hz. However,

the limited data base does not allow for a definite conclusion. On a theoretical level scaling

16




with frequency can arise due to propagation effects or due to different heating and cooling

to ELF dme ratios. These phenomena need to be investigated in future campaigns.
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ELF Receiver: NS—Mag chon, 78 Hz, 100 sec integration
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ELF Receiver: NS—Mog chan, 154 Hz, 100 sec inlegration
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ELF Receiver: NS—Mag chon, 154 Hz, 100 sec integration
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ELF Receiver: NS—Mag chon, 154 Hz, 100 sec integration
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ELF Receiver: NS—Mag chon, 154 Hz, 100 sec integration
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ELF Receiver: NS—Mog chan, 154 Hz, 100 sec integration
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THEORETICAL PROFILE
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CLF Recewver: NS~Mag chan. 154 1z, 100 scc integretion
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