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FOREWORD

This report describes work done at the Technology Laboratory

for Advanced Composites (TELAC) at the Massachusetts Institute of

Technology for the Air Force Office of Scientific Research under Grant

No. AFOSR-91-0159. Dr. Spencer Wu was the contract monitor.

The work reported herein, was performed during the period,

2 February 1991 through 31 October 1991, and represents a Ph.D.

thesis by Peter E. Dunn entitled, "Nonlinear Stall Flutter of Wings

with Bending-Torsion Coupling", December 1991, which was

completed during this period. This work was a completion of an

investigation started earlier under a previous AFOSR contract,

No. E49620-86-0066, and was done under the supervision of

John Dugundji, the Principal Investigator, and the supporting

laboratory staff.
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The nonlinear, stalled, aeroelastic behavior of rectangular,
graphite/epoxy, cantilevered plates with varying amounts of
bending-torsion stiffness coupling and with NACA 0012 styrofoam
airfoil shapes is investigated for low Reynolds number flow
(<200,000). A general Rayleigh-Ritz formulation is used to calculate

i point load static deflections, and nonlinear static vibration frequen-
cies and mode shapes for varying tip deflections. Nonlinear lift and
moment aerodynamics are used in the context of the Rayleigh-RitzI formulation to calculate static airload deflections. The nonlinear,
stalled ONERA model using non-constant coefficients - initially
developed by Tran & Petot - is reformulated into a harmonic balance
form and compared against a time-marching Runge-Kutta scheme.
Low angle-of-attack, linear flutter calculations are done using the
U-g method. Nonlinear flutter calculations are done by applying
Fourier analysis to extract the harmonics from the ONERA-calculated,
3-dimensional aerodynamics, then applying a harmonic balance
method and a Newton-Raphson solver to the resulting nonlinear,
Rayleigh-Ritz aeroelastic formulation.

Test wings were constructed and subjected to static, vibration,
and wind tunnel tests. Static tests indicated good agreement
between theory and experiment for bending and torsion stiffnesses.
Vibrations tests indicated good agreement between theory and
experiment for bending and torsion frequencies and mode shapes.
2-dimensional application of the ONERA model indicated good
agreement between harmonic balance method and exact Runge-Kutta
time intefation. Wind tunnel tests showed good agreement between
theory and experiment for static deflections, for linear flutter andI divergence, and for stalled, nonlinear, bending and torsion flutter
limit cycles. The current nonlinear analysis shows a transition from
divergence to stalled bending flutter, which linear analyses are
unable to predict.
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Chapter I

Introduction
The analysis of aircraft flutter behavior is traditionally based

on small amplitude, linear theory, in regards to both structural and

aerodynamic modeling. However, if the wing is near the stall region,

a nonlinear stall flutter limit cycle may occur at a lower velocity than

linear theory would suggest. Moreover, near the divergence velocity,

large deflections producing angles of attack near the stall angle may

also trigger a flutter response. Since some current aircraft are

achieving high angle of attack for maneuvering, and since rotorcraft

may use long, highly-flexible blades for their rotors, it is of interest

to investigate both this nonlinear stall flutter behavior and this large

amplitude deflection behavior, and their transitions from linear

behavior. The development of advanced composite materials allows

the aircraft designer another parameter by which he might control

these new behaviors - his ability to control the anisotropy of

advanced composite materials through selective lamination makes

these materials attractive for aeroelastic tailoring.

The present research is part of a continuing investigation at the

Technology Laboratory for Advanced Composites at M.I.T. into the

aeroelastic flutter and divergence behavior of forward-swept.

graphite/epoxy composite wing aircraft. The specific objectives of

the current investigation are to explore experimentally and analyti-

cally the roles of nonlinear structures and nonlinear aerodynamics in

high angle-of-attack stall flutter of aeroelastically tailored wings.

while attempting to develop a nonlinear method of analysis that is



I
not overly computationally intensive, i.e. that is suitable for routine

aeroelastic analysis.

Chapter 2 describes some of the previous work and analytic

approaches used to grapple with the problem of stall flutter of com- I
posite wings. This chapter includes a description of some of the

previous work at TELAC that has concentrated on the beneficial

effects of the bending-torsion coupling of composite wings, but that

has mostly been relegated to linear analysis. It also describes pre-

liminary work in the current investigation that sets up some of the

analytic models that have been chosen to approach the stall flutter

problem. I
Chapter 3 describes the theory involved in the current work

that seeks to expand on and improve the efforts of the previous

investigations, described in Chapter2. Analytically, it was endeav- 3
ored to more accurately model the nonlinearities over the prelimi-

nary investigation: aerodynamic nonlinearities were incorporated in I
both the forcing terms and in the equations of motion; structural

nonlinearities were developed analytically from geometric consid-

erations.

Chapter 4 describes the experiments performed so as to cor-

roborate the theoretical analysis. As with the previous work, static

tests and vibration tests were employed to verify mass and stiffness

properties. Experimentally, the wings were designed so as to better I
allow an investigation of the linear-to-nonlinear transition, while also

improving the Reynolds number range. The experimental procedure

was also modified so as to acquire more data on larger amplitude

flutter oscillation.

2I
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I Chapters 5 and 6 detail the products of the theoretical and

experimental investigations, comparing the results of the two, with

concluding remarks on the significant contributions of the current

* investigation and recommendations for further work.

I3
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Chapter II

] Summary of Previous Work

2.1 Dynamic Stall Models

Much work has been done in creating a large base of dynamic

stall experimental data for airfoils in sinusoidal pitch motion, from

which might be developed models to analytically reproduce their

behavior. The intent of this experimental work was to observe the

2-dimensional dynamic stalling behavior of various airfoils while

varying a large number of parameters - such as airfoil shape, mean

angle of attack, amplitude of oscillation of angle of attack, reduced

I frequency, Mach number, Reynolds number, leading edge geometry,

et cetera. Initial work was done Liiva & Davenport [Ref. 1], with dis-

cussion of the effects of Mach number. Extensive work was done by

McAlister, Car, & McCroskey [Ref. 2] in producing a data base for

the NACA 0012 airfoil, and extended by McCroskey, McAlister, Carr,

Pucci, Lambert, & Indergrand [Ref. 3] and by McAlister, Pucci,

McCroskey, & Carr [Refs. 4 and 5] to include other airfoil shapes and

a wider range in the variable parameters. The general conclusion of

these experiments was that the parameters of the unsteady motion

itself appear to be more important than airfoil geometry - however,

3 most of these experiments were conducted for deep dynamic stall,

i.e. vortex-dominated cases. Light dynamic stall cases, which are less

I severe and more common for practical applications, appear to

depend on all the parameters of the unsteady motion.
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Coincidentally with these experiments, attempts were made to

identify the processes that make up the dynamic stall event. With

the aid of chordwise propagation of pressure waves [Ref. 6], flow

visualization [Ref. 7 and 8], and data from hot-wire probes and I
surface pressure transducers [Ref. 2], Carr, McAlister, & McCroskey

[Refs. 9 and 10] identified the characteristic processes illustrated in

Fig. 1 [Fig. 27 from Ref. 9]. However, it should be noted that the

NACA 0012 airfoil exhibits trailing-edge stall - i.e. the dynamic stall

phenomenon originates from an initial boundary layer separation at

the trailing edge - while other airfoil shapes might exhibit leading-

edge or mixed stall behavior. I
Because of the prevalence of dynamic stall in rotorcraft, where

the drop in dynamic pressure for a retreating blade might necessi-

tate angles of attack beyond the stall angle so as to maintain lift,

appropriate modeling of the dynamic stall phenomenon has been a

primary concern in helicopter design for over two decades. Research I
in this area has followed two approaches, one theoretical [Refs. 11

to 30], and the other based on experimental data, also called semi-

empirical [Refs. 31 to 59]. These research efforts are well summa-

rized, and their advantages and disadvantages compared, in Refs. 10

and 60-65.

The theoretical approaches are the discrete potential vortex

approach, zonal methods, and Navier-Stokes calculations. The dis- I
crete potential vortex approach [Refs. I1 to 17] ignores the viscous u
terms in the fundamental equations and assumes potential flow

without the boundary layer. This type of model takes its cue from

6I
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(a) STATIC STALL ANGLE EXCEEDED
(b) FIRST APPEARANCE OF FLOW

REVERSAL ON SURFACE

(c) LARGE EDDIES APPEAR INBOUNDARY LAYER
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(e) MUCH OF AIRFOIL CHORD
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0 5 10 15 20 25S____________

INCIDENCE, a, dog (1) RETURN TO UNSTALLED VALUES

Fig. 1 Dynamic Stall Events on NACA 0012 Airfoil
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the discrete vortex model that has been applied to bluff body sepa- I
ration - the viscous part of the flow is taken into account by the

generation and transport off the leading and trailing edges of dis-

crete combined vortices, governed by semi-empirical or boundary

layer considerations. Zonal methods [Refs. 18 to 23] model sepa-

rately the viscous, nonviscous, and transition regions of the flow, I
under the assumption that the viscous region usually remains rela-

tively thin. The limitations and approximations of the discrete vor-

tex and zonal methods can, in principle, be avoided by solving the

full Navier-Stokes equations [Refs. 24 to 301. However, turbulence

must be modeled - many solutions incorporate the so-called i
Reynolds-averaged, Navier-Stokes equations so that the Reynolds

stress, which vanishes in laminar flow, can be modeled in the turbu- I
lent case.

These three theoretical models are computationally intensive

and are limited by the approximations and restrictions of their for- -
mulations, thus usually making them unsuitable for routine aero-

elastic analysis. I
The semi-empirical methods attempt to use static data with

corrections for the dynamic nature of the dynamic stall event,

choosing to model only the gross characteristics of the phenomenon 3
while ignoring the fine details of the fluid flow. This is advantageous

because the static data already takes into account the effects of

Reynolds number, Mach number, and airfoil shapes, and because the

methods are therefore not as computationally intensive as the theo- I
retical methods, thus making them more suitable for routine aero-

elastic analysis. These semi-empirical methods are the Boeing-Vertol

8
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gamma function method, the UTRC or UARL method, the MIT Method,

the Lockheed method, time-delay methods, and the ONERA method.

The Boeing-Vertol gamma function method [Refs. 31 to 33]

uses a corrected angle of attack - calculated as a function of the rate

of change of the angle of attack - when the angle exceeds the static

stall angle, based on y, the essential empirical function of airfoil

geometry and Mach number. The UTRC or UARL a, A, B method

[Refs. 34 to 36], developed at United Technologies Research Center,

is a table-lookup correlation method based on a 3-dimensional array

of measured data (angle of attack, reduced pitch rate, reduced pitch

acceleration), and therefore requires a large amount of data storage

for each airfoil, frequency of oscillation, and the associated interpo-

lation. Recent advances have been made on the UTRC method

[Refs. 37 to 39] to reduce these large volumes of data into compact

expressions (synthesization). The MIT method [Refs. 40 and 411,

like the Boeing-Vertol method, corrects the angle of attack as a func-

tion of its rate, but empirically represents the forces due to the vor-

tex shedding phenomenon for ramp changes in angle of attack, such

that they increase linearly to the peak CL and CM values observed

from ramp experiments. The Lockheed method [Refs. 42 to 45] is a

combined analytical and empirical modeling that incorporates phase-

lag time constants and pitch-rate-dependent, stall-angle delay

increments into an effective angle of attack, together with a number

of separate dynamic stall elements - based on analogy to other

dynamic and/or turbulent flow phenomenon - to construct the aero-

dynamic forces. Time delay methods [Refs. 46 to 481 assume that

9
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each dynamic stall event is governed by a universal, dimensionless

time constant, regardless of the time history of the motion.

Finally, the ONERA method [Refs. 49 to 551, developed by

Tran, Petot, & Dat of Office National d'Etudes et de Recherches

Aerospatiales, uses a second-order differential equation with non-

constant coefficients to model the deviation of the dynamic stall I
behavior from that of the theoretical linear behavior, with a fixed-

time stall delay, Ar (usually 5 or 10). The parameters/coefficients of

the differential equations are derived empirically, usually from small

amplitude-of-oscillation experiments, and are meant to reflect the

frequency and damping of the dynamic stall processes. Petot & I
Loiseau [Ref. 51] indicate how the ONERA method might be adapted

for Reynolds numbers below the critical Re value. Petot [Ref. 52]

demonstrates how the coefficients of the differential equations might

be derived from a few large-amplitude-of-oscillation cases, instead

of a large number of small-amplitude-of-oscillation cases, thus taking

advantage of a smaller data base of such types of experiments.

McAlister, Lambert, & Petot [Ref. 53] demonstrate a systematic pro- I
cedure for determining the empiric parameters, approaching the

problem from an engineering point of view. Petot & Dat [Ref. 54]

reformulate the differential equations so that they reduce to the

Theodorsen and Kussner functions in the case of a flat plate in the

linear domain.

Some work has been done to extend these empirical methods

from purely sinusoidal pitching motion to pitch & plunge motion I
[Refs. 55 to 59]. In particular, Peters (Ref. 55] and Rogers [Ref. 561

present physical arguments for the manner in which the pitching and

10 |I



plunging motions should be separated in the ONERA differential

equations. In general, these empirical methods are employed is

some type of stripwise theoretical fashion, since little experimental

or analytical work has been done on the 3-dimensional effects of

dynamic stall.

2.2 Structural Models

For a flutter analysis, it is first necessary to correctly describe

the linear structural equations of motion of the wing. In general, this

entails accurately modeling the linear frequencies and mode shapes,

since linear flutter usually involves the coalescence of modes, while

nonlinear stall flutter usually involves single degree-of-freedom

I behavior.

The modeling of bending and torsion modes for uniform beams

and plates is already well established [Refs. 66 and 671. However,

for plates which are uniform along the span but anisotropic in

nature, the analytic tools have only recently been developed because

of the relative newness of composite materials. Crawley, Dugundji, &

Jensen [Refs. 68 to 71] have set up the appropriate equations of

motion and have determined the types and number of modes to

accurately evaluate the natural frequencies and mode shapes of

composite plates.

Several approaches have been taken to account for the geo-

metric, structural nonlinearities that can become important for

I aeroelastic analysis with large deflections. Some work has been done

* using the Finite Element method with application to rotor blades

[Refs. 72 and 731. Dugundji & Minguet [Ref. 74] have developed a

I1



model based on Euler angles which can account for arbitrarily large i
deflections, and in which the equations of motion are solved by a

Finite Difference scheme.

However, many of the approaches for long, flexible blades

involve ordering schemes, which rely on being able to identify non-

linear terms of various orders, and truncating the equations of i

motion accordingly [Refs. 75 to 77]. Such a formulation, by Hodges

& Dowell [Ref. 75], can be implemented for an analysis where it is

assumed that out-of-plane bending is moderate in amplitude, while

torsion and fore-&-aft bending are relatively small. This model

derives the equations of motion by Hamilton's principle for long,

straight, slender, homogeneous, isotropic beams, and is valid to

second order. Its ordering scheme assumes that the squares of the I
bending slopes, the torsion deformation, and the chord/radius and i

thickness/radius ratios are negligible with respect to unity. The

equations can also be converted into a modal formulation, as has

been done by Boyd [Ref. 78]. However, little work has been done to

modify these nonlinear structural equations to account for the i
anisotropy of composite materials.

Other nonlinear work, such as that by Tseng & Dugundji

(Refs. 79 and 801, has noted the often encountered, cubic stiffening

phenomenon of many nonlinear, structural vibration problems.

2.3 Stall Flutter Analysis U
The characteristics of - and factors affecting - stall flutter

have been identified in early work by Halfman, Johnson, & Haley

[Ref. 81] and by Rainey [Refs. 82 and 83]: (i) there is a sharp drop i

12



in the critical flutter speed, (ii) the flutter frequency rises toward the

I torsional frequency, and (iii) the motion is predominantly torsional,

i.e. single degree of freedom flutter. These characteristics are quite

distinct from those of classical linear flutter where the unsteady

i instability is generated from the coalescence of bending and torsion

modes and frequencies. Additional experimental work has been

I done by Dugundji, et al. [Refs. 84 and 85] to investigate the

2-dimensional, large-amplitude, stall flutter behavior of a flat plate

I with a linear torsional spring.

Weisshaar, et al. [Refs. 86 to 89] have concentrated on the

aeroelastic advantages of using composite materials. This work has

investigated the parameters of layup, sweep, taper, aspect ratio, etc.

for such applications as flutter & divergence suppression, lift effec-

tiveness, control effectiveness, and mode shape & frequency tailor-

ing. In general, the models used were 2D strip theory for aerody-

namics, and a comparison of high aspect ratio plate, chordwise rigid,

and laminated tube models for structures.

Recent work at M.I.T. by Dugundji, et al. [Refs. 90 to 92] has

concentrated on taking advantage of bending-torsion coupling for

flutter modeling. These investigations at the Technology Laboratory

for Advased Composites (TELAC) looked at the aeroelastic flutter

and divergence behavior of cantilevered, unswept and swept,

graphite/epoxy wings in a small, low-speed wind tunnel. The wings

were six-ply, graphite/epoxy plates with strong bending-torsion

coupling. Experiments were conducted to determine the flutter

I boundaries of these wings both at low and high angles of attack, stall

flutter often being observed in the latter. Hollowell & Dugundji
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[Ref. 90] presented the first of these aeroelastic investigations, with 1
linear structures and V-g linear flutter analysis applied as strip

theory. Selby [Ref. 91] extended this same aeroelastic analysis by

applying a doublet lattice aerodynamic model. Landsberger &

Dugundji [Ref. 921 further extended this analysis to include wing

sweep, with the 3D Weissinger L-method for steady aerodynamics. 6

The divergence and flutter results at low angles of attack correlated

well with linear, unsteady theory, indicating some beneficial effects

of ply orientation in aeroelastic behavior. Steady, nonlinear aerody-

namics correlated reasonably before the onset of flutter, but none of

these previous analyses attempted to tackle the nonlinearities that I
occurred due to dynamic stalling and large amplitude deflections.

Harmonic balance methods have been used as a means to I
approach such nonlinear problems [Ref. 931. While these methods 3
do not model the fine details of the nonlinear motion, as would time

marching schemes, they are suitable for describing the gross aspects

of the solution if the nonlinearity is sufficiently moderate. Therefore,

they seem particularly suited to stall flutter analyses, since most of I
the semi-empirical aerodynamic models likewise choose to ignore the

fine details of the fluid flow.

Most recently the work at M.I.T. has been extended by Dunn &

Dugundji [Refs. 94 and 95] to investigate the nonlinearities in the

flutter behavior of composite wings - this constituted a preliminary I
effort toward the current investigation. The ONERA, semi-empirical,

aerodynamic model was applied in a 2D stripwise fashion, with I
empirical corrections for Reynolds number and 3D effects. However,

the aerodynamic nonlinearities were modeled in the aerodynamic

14
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forcing terms only, i.e. the nonlinear effects on the natural frequency

and damping of the stalled behavior were not modeled in a time

varying fashion and would therefore break down for large ampli-

tudes of oscillation. The structural model was linear, with empirical

corrections for cubic stiffening, and the combined equations of

motion were reduced algebraically by a harmonic balance method.

Corresponding to this analytic work, experimental work was

conducted to verify these analytic models. Experimental static tests

and vibration tests were conducted to verify the mass and stiffness

properties of the wings. Small-amplitude flutter experiments were

conducted to corroborate the analytic flutter model. However, the

linear flutter velocity of the wings was above the wind tunnel veloc-

ity, precluding experimental investigation of transition from pure

linear to stalled, nonlinear behavior. Also, while the analytic model

existed to investigate larger amplitude flutter oscillation, little of

such data was taken experimentally.

The principal contributions of this preceding work were the

reduction by harmonic balance and Fourier analysis of some of the

parameters of the nonlinear ONERA equations; the analytic investi-

gation of some of the single degree of freedom, stall flutter phenom-

ena; and the preliminary development of an experimental base of

data for stall flutter of composite wings. However, this initial work

fails to incorporate any analytic, structural nonlinearities; ignores

some of the salient features of the ONERA equations in its application

of the harmonic balance method; and requires further accumulation

of large amplitude of oscillation data.
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Chapter III

I Theory
3.1 Structural Model

3.1.1 Anisotropic Plate Modulus Components

The flexural modulus components of a laminated,

graphite/epoxy plate depends on both the fiber orientations and

stacking sequence of the individual plies. Only laminated plates with

mid-plane symmetric stacking sequences were constructed in this

study. The ply angles (0) follow the sign convention in Fig. 2.

The in-plane, unidirectional modulus components Qij were
obtained from the orthotropic engineering constants for Hercules

AS4/3501-6 graphite/epoxy, from which the test specimens were

fabricated. These engineering constants take on different values

depending on whether they are obtained from out-of-plane bending
or in-plane stretching tests. Engineering constants obtained from

I each type of test appear in Appendix A, and the out-of-plane values

were used in the current analysis because in-plane stretching was

Iassumed to be negligible. The Qij terms are defined in terms of the

engineering constants as,

(3-1) Q =  L

1- LTVT L

(3-2) Q22 Er
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Fig. 2 Sign convention for ply angles and axes
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(3-3) Q12 = Q21 VLTVL

(3-4) Q66 = GLT

Iwhere,

I (3-5) VTL = VLT

The in-plane, rotated modulus components were obtained by

first defining a set of invariants,

(3-6) i1 = [Q + Q22 
+ 2Q1 2 ]

I (3-7) 2 =I" Q,, + Q22" 212 + 4Q66]

II
I (3-8) R1 2 AQI "Q22 ]

1

(3-9) R2 = 8Q 1 1 +Q 2 2 2Q 12 -4Q66]

The invariants are transformed to the rotated modulus compo-

nents using the relations,

(3-10) Q() + 1 2 + R 2cos20+ s4

)=I + - Rjcos2O + R2cos40

I(3-12) =11-12 - R
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I
(3-13) =-2- R2cos4O

(3-14) Q i)=R sin28 + R2sin46

(3-15) -"R sin20 - R2 sin40
I

where 0 is the ply angle.

The flexural modulus components, Dij, for an n-ply laminate

with arbitrary ply angle orientation are obtained from,

n
(3-16) A = XQ!)(zk- Zk.) i,j = 1,2,6I

k= I

n 2 2

(317() i~j : 1,2,6

(3-18) Dij=. '".i 3k= I 2

where,I

0 k = ply angle of the k-th ply

k-th pl1y (positive above mid-plane, negative belowI

Zk1=distance from the mid-plane to the lower surface of the I
Zk.1 =k-tb ply

I
I
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3.1.2 Equations of Motion with Geometric Nonlinearities

The equations of motion for a cantilevered beam are obtained

I from Hamilton's principle. This representation can include spanwise

variations in mass and stiffness properties. The usual expression for

strain energy - in local coordinates x spanwise, rj chordwise, and

out-of-plane (see Fig. 3, taken from Hodges & Dowell [Ref. 13]) - in

terms of engineering stresses and strains is,

I (3-19) U = I xxC + ao1 e +0 E ++ Cy )dV

I For an isotropic material, one usually sets E n = x , = En = 0 for

beam theory. For an anisotropic material, however, it is usually nec-

essary for consistency to instead set Tn = a X =o an = 0 - since the

relations a --= Ee n, etc. no longer hold - and then condense the

stress strain relationships so that el , exc, and en, are eliminated. For

I the current investigation, this more exact procedure of condensation

has been avoided, although all the relations that will be derived are

still valid, simply with condensed values (DII, etc.) replacing non-

condensed values (DII, etc.) as in Ref. 74. After having eliminated

e I, e,,, and en, whether by condensation or by setting to zero, the

I first variation of the strain energy is given by,

(3-20) 5U= I f(oXXeXX + a 1 18e)dV

The strain components, after having been reduced to second

order by the appropriate ordering scheme, are as given by Hodges &

I Dowell [Ref. 75],

I
[ 21
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Fig. 3 Local coordinates and stress & moment resultants
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v'12  w 2  2
(3-21) e += T + (n2+j 2 -- X.o" -(TCos 0- sin 0] v"

-[i sin e + cos 61 w"

(3-22) +

For a thin plate the warping function can be approximated by,

. ; 2+2 -. T, and therefore the strain components can be approx-

imated by,

(3-23) e =-+- + (T 2+1) -I;e" - (TIcos e- sin 0] v"
XX2 2 2

-['i sin 0 + 4 cos 01 w"

(3-24) e, =-2;'

Taking the variational of the strain components gives,

(3-25) B = v'8v' + w'8w' + (12.+2)e'8 ' - Too"

- [TI cos 0 - sin 0] (Sv" + w"80)

-[TI sin 0 + cos 01 (8w" - v"88)

(3-26) en =-2460'

Subtituting the expressions for the variational of the strain

components, Be,, and Ber,, into the equation for the strain energy

variation, BU, we get an expression in terms of the stress and

moment resultants (see Fig. 3),
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(3-27) 8U = J{ V(v'8v' + w'8w') + (SX T )' + PX18"

0 + [M;Cos 0 + M sin 01 (8v"+w"80)I

+ [M sin 0 - M11cos 0] (8w'-v"80) } dx

where the stress and moment resultants are defined as,

(3-28) V --J'aff dri d =,Jf(Qk)r + Q(k)e TI) d dii

(3-29) S, -fJ-2;(xrl dii d = fJf-2 (Qk )Cxx + Q(k)F 1 ) d d

(3-30) TX  f fo'a1 x( 2+ 2)d d U
= yJ'(i2+ 2)e'(Qk)1 + Q(k)c 1 ) d dii

(3-31) P as JJ -Ti oxx dil d = .JX'-iin(Q~kk)EX + Q(k))

I
(3-32) M a f fcxx d~ld = fJ' y;Q~k)exx + Q (k )exn ) d d'n

(3-33) M" a f f-,n oxx dnl d = fj" k f--(Q~k)Fxx + Q(k) Exq) d dil

From equations (3-27), (3-29), and (3-30) one can see that St

and Tx are respectively the shear and longitudinal stress contribu-

tions to the twisting moment resultant, i.e. M. = Sx + T. Also, from

equations (3-27) and (3-31) one can see that P. is the torsional I
warping term in the strain energy equation. Finally, note that the

axial stress and moment resultants use the subscript x instead of 4 as
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in Fig. 3, because the deflections are only moderate and so they are

almost equal, i.e. VX - Vt, et cetera.

Substituting the previous nonlinear values for exx and ex- and

the evaluation of the integrals through the thickness by the appro-

priate flexural stiffness values, we get,

(3-34) VI1 = EA 2 + 2 0k Awcs - v"sinO] I

-EB 0'

(3-35) Sx = GJx0' + E116(w"Cos0 - v"sin0)

** V4 + - -E

3(3-36) T1 =EAk2 0{-+ ' -EB0*'(w"cosO v"sinS)

- EB, *0'2I 4

(3-37) Px ECIO" + ECj(v"cos0 + w"sinO)

(3-38) M EI.(v"sin0 - w"cos0) - E1160'

* EAe% 2 j) + EB -

(3-39) Mc -EI,(v"cos0 + w"sinO) + EC1 8"

where the stiffness properties are defined as,

(3-40) EA = jQk)d dn = cA1
2k
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(3-41) EAe = fyXJqk)d di = cB1 ,

(3-42) EI = f Jf 2q') d;, dii cD, ,

(3-43) EI = fl: f 2qk) d dii I
k C3

(3-44) E4t=yJX, 2 (qk'd dii =j-B 1

(3-45) EC 1 =f Jii2 ;2 qk)d dii DI

22 1

(3-46) EAk2 =y f Tr 2)k ;dr A+c

fL~i y +2 qk dl df ;3QA11 + D1

(3-47) EB; f JCf( 2 + C2)Qfk) d dii TCB +X~Q)d

(3-48) GJ= f~OQg~) dC dii 4cD6

k

(3-50) EJ 2 (Q)d di =2cB1D

k
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(3-51) EB = ff 2(Tj2 + 2)Q(k) d dn
k

_B + CY r3Q(k) d
12 T 16 +1 Z6 d

It should be noted here the differences between the above

formulation and that derived by Hodges & Dowell [Ref. 751. Firstly,

the derivation and values for EA, EAk 2 , El, Ec GJX, and EC1 are the

same. Secondly, the derivation and values for EAeA , EBI, and EC

are not the same as for EAeA, EB 2 , and EC, in Ref. 75 - but they are

of the same form because the constants in the first set are derived

from the asymmetry in stiffness in the through-the-thickness

c-direction, in fashion similar to that in which the constants in the

second set are derived from the asymmetry in geometry in the

chordwise il-direction. Lastly, the EI 6 , EB, and EB4 are new con-

stants, not appearing in the Hodges & Dowell formulation, that result

from the bending-shear coupling from the stacking sequence of an

anisotropic material.

For a symmetric layup such as those considered in this investi-

gation, EAeA , EBE*, EC , EB3 *, and EB 1 * are all zero. Also, there is no

spanwise loading in the x-direction, so V. is constant along the span,

which indicates that V2 =0 from the root cantilevered conditions.

Incorporating the easily-derived kinetic energy and generalized

force terms, and applying integration by parts, yields,

(3-52) [McsinO - McosOJ" + m, =L w

(3-53) [M~cose + Msine'" + my = Lv
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(3-54) PX - (Sx+Tx)' - v"[M;sine - M-ncosO]

+ w"[M;cosO + MsinO] + ix0 = M 9

Substituting in the previously derived stress and moment

resultants gives,

(3-55) [(Elcos28 + EIsin2q) w" + (Elt-EI,)cosO sine v" 3
+ El 16 O' cosO] + r Lw =

(3-56) [(El cos 2O + Elnsin 2 O)v" + (El-El,)cosO sine w"

- E 116 0' sine] + mV = Lv

(3-57) E420 ' j-(. +(Co)L A (T+ 2) -(c 6607' (E 1 "

+ (El -EZ l)[(w"2-v" 2) cose sine + v"w" cos2]

- [E1 6(w"cosO'v"sin9)]' I

- Ell 6 e'(v"cose+w"sin0) + i 9 =

Assume first a small amplitude vibration problem around a

mean deflection. Now also assume an ordering scheme such that the

mean out-of-plane deflection is moderate, while the torsion and fore-

&-aft mean deflections are very small - i.e. that w=*,+,, v=V+V, and

e04, where the overbar indicates mean and the tilde indicates

small deviation, and /=O(1), V/e=O(e), and =O(e). With these

assumptions, and dropping the tildes to indicate small deviation, the I
linearized form of the above equations is, i
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(3-58) E I wi v + E1160"' + mw' = Lw

(3-59) ElViv + (EI -EI)(W"@)" + my = Lv

(3-60) -GJxO" + ECIO' v + (EI -EI )(w"2 w+v"w") - EI16w'" + ixO = Me

Note first that, again because V. is zero, the first term from

equation (3-57) - involving v' 2 and w' 2 - drops out. This is because,

as can be seen from equation (3-34), if V--0 and the layup is sym-

metric then the first term in equation (3-57) becomes -EAk O'3,

which drops out as a higher order term. Note also that equations

(3-58) to (3-60) involve only the dynamic, small deviation terms of

equations (3-55) to (3-57) - another three equations, similar in form

but without the mass terms, also result so as to describe the mean

deflections.

3.2 Aerodynamic Model

3.2.1 The ONERA Aerodynamic Model

The aerodynamic model used for this study was initially devel-

oped at Office National dEtudes et de Recherches Airospatiales by

Tran & Petot [Ref. 49] and by Dat & Tran [Ref. 501. This ONERA

model is a semi-empirical, unsteady, nonlinear model which uses

quasi-linear, small amplitude of oscillation, experimental data to

predict aerodynamic forces on an oscillating airfoil which experiences

dynamic stall. The model incorporates a single lag term operating on

the linear part of the airfoil's static force curve, thus analogous to the

Theodorsen function for linear theory, and a two lag term operating

29



I

on the nonlinear (i.e. stalling) portion of the airfoil's static force

curve.

The ONERA model was later investigated by Peters [Ref. 55]

who differentiated the roles of angle of attack due to pitching (0) and

angle of attack due to plunging (h/U). The final form of the ONERA

model used for this study incorporates all terms needed such that it I
fits the theoretical Theodorsen and Kussner coefficients within the

linear domain of operation [Ref. 54],

(3-61) Cz = Cz + C I

(3-62) Cz1 = sz + kvz 0 + Cz.

I(3-63) 4;.f + xzC ZY = Xzlaoz,,, + CIz;] + ajza + Oz 0*]

(3-64) Cz2 + aCz2 + rCz2  - rACzj -e ot Ic

where the effective angle of attack and time derivative are, I

(3-65) a3

(3-66) (*) . Ut

and, 3
a = instantaneous angle of attack

h = instantaneous deflection of 1/4-chordhI

Ii a" = non-dimensional deflection

ct = effective angle of attack I
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Note first that in equation (3-64) both forms of notation for the i

non-dimensional time derivative have been used, a/a'r and (*) - this

is only a matter of convenience of notation since it is awkward to use

the (*) notation over ACz , and there is in fact no difference in the two

time derivatives used on both sides of equation (3-64).

CZ represents any of the three relevant non-dimensional force

coefficients: CL, the coefficient of lift, or CD, the coefficient of drag, or

CM, the moment coefficient. a0z is the slope of the linear part of the

static force curve, ACz is the nonlinear deviation from the extended

linear force curve, and sz , kvz, Xz, Oz, az, a, r, and e are the coefficients

associated, with the appropriate force coefficient, determined empiri-I

cally by parameter identification. These force coefficients are listed

in Appendix D.

Equations (3-62) and (3-63) describes that part of the force i
coefficient associated with the linear model Czi, and are similar in

form to the description of unsteady, linear theory with a first order

lag for the Theodorsen function. Cz , is the linear circulatory contri-

bution, while Czi is the total linear contribution, also incorporating

the apparent mass terms. Equation (3-64) describes that part of the

force coefficient associated with the nonlinear model Cz 2 , and is

dependent on the deviation of the actual static curve from the linear

static curve, ACz, as shown in Fig. 4. It also includes a second order

lag for C. 2 . Equation (3-61) combines these linear and nonlinear

terms of the force coefficient into the total coefficient Cz .

For implementation of the ONERA aerodynamic model, it is nec-

essary to describe the static aerodynamic force curves in terms of I
the linear domain, described by the linear slope aoz, and the non-
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I linear domain, described by the deviation from the linear curve AC

3 The deviation ACZ is defined as positive for a decrease in the aerody-

namic force, as shown in Fig. 4. The general description of the static

aerodynamic force curve is then given by,

3 (3-67) Czs(a) = a0 za - ACz(a)

* where,
dCze

(3-68) a0 - linear aerodynamic force slope

In general, the deviation ACZ can be described in any manner

I desired. In the current study, the deviation AC z was described by

simple straight line fits between discrete points (see Appendix C).

More generally, the ACZ could be described by polynomials in several

regions of the aerodynamic force curve. Polynomials of order Jiare

used for ease of algebraic manipulations in the Fourier analysis,

n described later in Section 3.2.2.

The general formula for the deviation ACZ in the i-th region can

I then be expressed as,

(3-69) ACz(a) = ai2 1 a i);a i Sa<i+

* j=O

where,

(3-70) ai0 a ACz(ai)

(3-71) ACz(a=al ) z 0

33



Equation (3-68) ensures that the description of the aerody-

namic force curve is continuous at the juncture of the describing

domains. Equation (3-69) ensures that the deviation AC Z is identi-

cally zero in the linear region before stall. The description of the

aerodynamic force coefficients used in the current study is more I
fully described in Appendix C.

3.2.2 Fourier Analysis of Nonlinear Aerodynamic Forcing Terms !I
For later use in the Harmonic Balance Method, it is necessary to

be able to evaluate the lowest order frequency components of the

nonlinear aerodynamic force coefficients when given a harmonic

input. First, harmonic motion is assumed for the angle of attack and

the non -dimensional, 1/4-chord deflection,

(3-72) 0(t) = 00 + Ossin(kt) + Occos(kt) I
(3-73) E(r) = o + fissin(kr) + ricos(k)

where,

co bI
k = reduced frequency =--

= non-dimensional time = Ut

The effective angle of attack, a, which combines both the I
instantaneous angle of attack and the angle of attack due to the

velocity of the 1/4-chord deflection, is given by,

(3-74) a(T) = ao + assin(kr) + accos(kr) U
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I
where equation (3-65) gives,

(3-75) a. =e 0

I
(3-76) a s =0es + ki cI
(3-77) ac = e c - idis

Manipulations of the formulas are further simplified if the

I angle of attack is put in the form where it is purely sinusoidal,

(3-78) a(r) = a o + avsin(kr+4) = ao + avsinp(

I where,

I (3-79) av = /a2 + a2

(3-80) = = tan- l a c

a

(3-81) p=kr+

Next, assume harmonic motion for ACz as well,

(3-82) ACz(r) = ACzo + ACzvIsi np + ACzv2cos2(p + HHT

Note that equation (3-82) contains no cosp and sin2q, terms, i.e.

no out-of-phase terms. This is because ACz is a direct function of

angle of attack a only - that is, ACZ=ACz(a) and ACz*ACz(a,t) - without

any lag terms, so the two are always in phase. If, however, a time

dependence were added as well, for instance from a fixed-time stall
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delay Ac, then there might be additional out-of-phase terms. I
Substituting equation (3-78) into equation (3-69) and carrying out

the Fourier expansion yields,

(3-83) AC 1 iI

AC 0o X bimli m
i m=0

where the him s are the j-dependent terms, and the lim'S are the

j-independent terms, i.e. dependent or independent of the power of I
the describing polynomial. These terms are given by,

J.

(3 -8 4 ) b im j--i av a j m

msinm'lq4cos9 I i+1 m-1
(3-85) 1ir Jsinmp dq - M" + m i,m-249i 4pi I

where the limits of integration are given by transforming the region

limits into the phase domain,

I

(3-86) i = +z12 if to+av<ct i i.e. a-ao>a v

-x/2 if ao-a,>a i i.e. ai-ao<-a v

and where the binomial coefficients are defined as, U
(3-87) (m)= m ! 

I
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The first two values required for the recursive formula in

equation (3-85) are given by,

qli 1

(3-88) li0 Jdp = pi+1 -p i

(3-89) Iii fsinpdcp = cosqpi - coscpi+ I

'P.

Similarly, using the same calculated bij and Iij values, the first

and second harmonic terms are given by,

I J.2 ji
(3-90) ACzvI 1i m=0

J.2
(3-91) ACz, 2  -bim(Iimrn 21ijz 2)

i i m=0

It is unnecessary to also carry out the full Fourier analysis for

the time derivative of AC, because of the mathematical identity that

the Fourier expansion of the derivative of a function is equal to the

derivative of the Fourier expansion. Hence, equation (3-82) gives,

I (3-92) = -kACvlcos(kt) + 2kACz, 2sin(2kr) + H.H.T.

U where ACzv I and ACzv2 are again given by equations (3-90) and

3 (3-91). Simple examples for a force curve with only one and two

break points are given in Appendix E.

I
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I
3.2.3 Harmonic Balance Applied to ONERA Model

The harmonic balance method as applied to solving equation

(3-64) begins by first assuming an infinite harmonic expansion for

ACz , as is given by equation (3-82). It is also assumed that Cz2 can be

expressed as an infinite harmonic series in the phase-shifted domain, I
i.e. in terms of 9=kt+4 instead of kt - this is more convenient since

the expression for AC, is more simple in the phase-shifted domain,

(3-93) Cs = +  I C()msin(m,)+ X C (T) cos(n,) I
m n

As noted in previous studies [Ref. 53], it is most convenient to

describe the nonlinear aerodynamic coefficients, a, r, & e, in terms of 3
polynomial expressions in the lift deficit coefficient, ACL. For a sym-

metric wing, the expression should be symmetric about ACL =0, I
therefore a polynomial in even powers only, and it has generally

been found that a simple parabolic is sufficient to describe these I
coefficients. 3
(3-94) a= a. + aAC2

(3-95) r + riAC2j2  1

(3-96) C2 I
Substituting the harmonic series for ACL from equation (3-82)

into the above equations yields expressions for a, r, & e in terms of I
the products of harmonic series, instead of constant coefficients
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I Substituting these harmonic expressions for a, r, & e, along with theu harmonic series for AC Z and Cz 2, from equations (3-82) and (3-93),

into the unsteady, stalled ONERA equation (3-64), and then applying

the trigonometric product identities,

1sin(x) sin(y) = j cos(x-y) - cos(x+y))

cos(x) cos(y) = 2.cos(x-y) + cos(x+y))

sin(x) cos(y) = j(sin(x-y) + sin(x+y))

yields an infinite harmonic matrix equation for finding the harmonicIcomponents, Czo C (),C 09)
C z2sl' z2cl etc., of the nonlinear contribution to the

aerodynamic force, Cz 2, given by equation (3-93). After allowing

Mathematica TM to carry out the tedious algebra of multiplication of

harmonic expansions and reduction of trigonometric products, the

resulting equation is,

I (3-97) [-k2[I'1 + [,4(r~a)]](c(9))

where -k2[I']tC.z) comes from Cz2; [(raq 2  comes from

(aCz 2+rCz2); and [4(r'e)](ACz) from (rACz+ra(ACz)/a). The elements of

the nonlinear aerodynamic matrix [,4] truncated to two harmonics

(i.e. 5x5) are,

(3-98) "11 R 1+2(A + 83-A - 340AIA 2

+ 4 + ~ + -2)3
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(399) (r. ) R[02(260 A " 2) + (3 3 22 3
(3-99 1 =oIA2

3,o,4 (r a)> I+ 3A 1 2 - 4-A 2)

(3-100) 13 = -kA1(4 , - A

I
(r,a) RAP -1 +02 )

(3-101) g14 = 2A(A 1 + I

(3-102) "15 = R 32(12A + 240A 2) + 02(-AOA I -A I + 360A

(r+a 2AI)

3 213_3 3
S2A A2 + 6 AA 2 A A,J

(3-104) a22 = RD + (jA2 - 2 2 2 22 + 1

- A2 222122 3 3 34
61 2 + + ,A,. .A2 jA A2 + SAI]

(3-105) 4 ra - i 0A+~l) I+ l321223 ZA I - AO 2 k

(3-106) 4 (r'") 2kAot(-b0al + AA2)I

I
I

I



(3-107) 4(2'a = R[132 (-260A, + 2A, 22) + p2(60A3 2

7 3 9 2 3 3
+A A2 - a OlA2 + iAA2 )]

(3-108) (r.a)

(3-109) 4(r-a) k ~ ~ ~ + A A- 6A IAD2

33 2 + 2 222 1 4 22

322 3 3
P ( A 2 + 1 1A2 + +2)]

(r.a) 2 13 3(3- 1) 4 ~ R[2f 2 4IbA l 3~ 2

(3-112) 4 r a = a)

(3-113) 4(r. a)

~41 =0

(3-114) 4(r.&)
-42 kA 1 0A

(3-115) 43 R[202 '60161 + 4 i 2 + ,&0 ,& A2 )
I = . ala + £oa~2)]

24242 22 5 4 3 2
(3-11+ 02~aR~ +~ 1  +2A2) +02 (2AOA + i &1 A0A I 2

+2 2 3 22 1_41
A64 + ZA I2 ~8'2)J

I
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(3-117) ~(r. a) =-2kA1l + 51 I

(r,a) 2 2 2214 2

(3-118) =1 R [ (A1 + 44 + 0(- 4 0 1 jAI + IA

-AIA2 + MOD]

I
(3-119) = 'a) R[(-24A + 2A )+ P,(-2kA' + 4 &2,&1 &

7 3 9 2 3 3
+ AA- 2A0A1A2 +2 1AA2)]

(3-120) g(ra) =A53 -kAA (0Al + ) 3

(3-121) (r'a) =2kA1+ 1(12+ A 2

S(r.a) 32 2 22 749 2 i(3-122) 455 =R11 + 02(Al +A 2 )+ 2(2AoA I+ -16  - AoAIA 2

2292 2 4
+ 3 A2 + 4a'IA2 + 8

where the intermediate variables are given by,

2(3-123) A = (aO+ aA) 51 = aIA

(3-124) R= ro +rA202 ; 2 =rl/4R

(3-125) E = (e0 +e t) ;1 3 =e1 /E I
and the shorthand notation AO=ACLO. Al=ACLvl, and A2=ACLv2 has

been used, as derived in Section 3.2.2, and given by equation (3-82).

The magnitudes of the nonlinear coupling terms, OP 2' & 03, go like I
42 3
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al/a 0 , rl/r 0 , & el/e 0 because the flutter analyses are usually only in

light stall, i.e. when AO is relatively small. Therefore, from

Appendix D, the nonlinear coupling terms are of the order of 132,

132-10, and 133-.
Note that A, R, & E are the values of a, r, & e based only on the

mean value of ACLO - i.e. they are the simplitied values used in

Refs. 94 and 95, and that same analysis can be reproduced by sim-

ply setting OP 12' & 33 to zero. Moreover, for small amplitudes of

oscillation, i.e. on the flutter boundary, Al1 & A2 are negligible relative

to A0, and again the analysis can be much simplified by setting PP 02'

& 133 to zero.

The aerodynamic matrix [4 (r'e)] governing the right hand side

of equation (3-97) is identical to the aerodynamic matrix [ (ra)] just

derived, only with all a values substituted by e values. This would

not be the case unless the nonlinear coefficients a & e both had the

same parabolic form, as in equations (3-94) and (3-96). Hence,

(3-126) [P(r.e)] = {[,(ra)]: aO-*e 0 , al-e 1 }

f p [ (r~a)]: A-+E, I

The [I] matrix is like an identity matrix, but with squares of

the ascending integers taking up every two diagonal elements (one

each for the sine and cosine components). This matrix results from

taking the second derivative of the harmonics with respect to time.

Truncated to the second harmonic, it looks like,
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01000

(3-127) (I']= 0 0 1 0 0
00040
-00 0 0 4l 

The [ }
2 and [ACz) column vectors of equation (3-97) are

made up of the harmonic elements of Cz2 and AC Z  from equations

(3-82) and (3-93),(40 00 ,(P) ,(40 ,(p) ..

(3-128) ((;2} =LCz20 
I2s 

Iq2c Iq2s2 q 2c2 .j

(3-129) (ACz) = LACzo ACzvI 0 0 ACzv2 ...

Matrix equations (3-97) is solved to find the phase-shiftedI

harmonic components of Cz21 and these are then converted into the

real-time domain,

(3-130) CZ2sl =C( ) cost - C(P)1 sin4

(3-131) C 21  Cc2 Iost + C (T) sin

(3-132) C2 C (V) cos24 - C(9 2 sin2I

(3-133) Cz2c2 C (P) cos24 + C sin24

3.3 Algebraic Reduction by Modal Analysis

3.3.1 Rayleigh-Ritz Analysis I
The direct Rayleigh-Ritz energy method is a relatively simple,

straightforward approximation for the plate deflections, as required

for the static deflection, free vibration, and flutter analyses in this
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study. The Rayleigh-Ritz method also has the advantage of showing

the effect of the individual variables on the solution more clearly

than other more accurate methods, such as finite element analysis.

The "wing" is idealized by a rectangular, cantilevered,

graphite/epoxy flat plate of uniform thickness, with styrofoam fair-

ings covering the entire chord but only part of the entire span.

The Rayleigh-Ritz analysis begins by assuming a deflection

shape for the structure. If only out-of-plane deflections, w, and fore-

&-aft deflections, v, are allowed, the deflection equations, written in

generalized coordinates, are,
n

(3-134) w = y(x,y)qi(t)I ~i=lI

(3-135) v yv=I ~i=l1

where Yw'(x,y) and Yi(x,y) together are the non-dimensional deflec-

tion, or mode shape, of the i-th mode; qi(t) is the generalized dis-

placement, or modal amplitude, of the i-th mode; and n is the num-

ber of mode shapes.

For simplicity, it is further assumed that the mode shapes are

separable in the chordwise, spanwise, and through-the-thickness

directions - x, y, and z - namely that the mode shape can be written

in the form,

(3-136) 'Yi (x,y)= 0i (x)wi (y)
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I
(3-137) Yi (x,z) = OiV(x) iV(z)

I
The nonlinear equations of motion are thus transformed from

equations that are differential in both space and time, to equations

that are algebraic in space and differential in time. These equation

relating the modal amplitudes to the modal forces (Ref. 701 - are, I
(3-138) 1 M ijj + 1 Kjjqj = Qj i=l,...,n

j=1 j=1

or, in matrix form, H
(3-139) [M][q + [K](q) = (Q) I

The mass and stiffness matrices are comprised of contributions

from the graphite/epoxy flat plate, the styrofoam fairings, and

effects of geometric nonlinearities, while the aerodynamic forces I
contribute to the modal forces,

(3-40Ii Ii IJ Ii

fp t geo
(3-141) K.Kij K +  ij +K

The derivations of these mass and stiffness contributions and U
of the modal forces are described in Section 3.3.3.

3.3.2 Selection of Rayleigh-Ritz Modes

To sufficiently describe the deflection of the wing in the static

bending, free vibration and flutter tests, beam out-of-plane bending U
46
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modes, beam torsion modes, chordwise bending modes, and beam

fore-&-aft bending modes were chosen. Previous studies used sim-

plified, sinusoidal torsional mode shapes [Ref. 92] that did not meet

the cantilevered root conditions, but with a torsional stiffness cor-

rection which accounted for the effect of root warping stiffness

[Ref. 70]. Vibrations tests, where the modal amplitudes were very

small and the modal forces identically zero, showed that this tor-

sional stiffness correction sufficed to accurately predict the natural

frequencies and modes of vibration of the wings.

However, static bending tests and low speed, steady deflection,

wind tunnel tests conducted in this study, where the modal ampli-

tudes and modal forces were no longer insignificant, showed that the

use of mode shapes which did not meet the cantilevered root condi-

tion adversely affected the Rayleigh-Ritz prediction of modal deflec-

I tions. Therefore, the more complex torsional modes, with similar

spanwise form as the beam bending modes, were used instead of the

simplified sinusoidal mode shapes. The selected mode shapes are

3 listed in Table 1.

The parameters of the beam torsion modes are derived from

3 the definition of P and the relationship between fj and g ,

I(3-142) D1= 1c 2
~48D 66e

(3-143) f2 g2 +1
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Out-of-plane bending: mode # = i = j = I to nb I
OW() =cosh - cos(EilJ - az[sinh j - sin )jJ]

i W(y) . 1
'Y'(x,z) = 0i

sinh c, - sin eI
j= p ; aj- cosh E + Cos Li

pi = 0.596864162695, 1.494175614274, 2.500246946168, 3
3.499989319849, 4.500000461516, 5.5, 6.5,

Torsion* mode # = i =nb+j ; i = 1 to nt  i
0,W(x) =B icos(g j + Bj2 sin(gjl + Bj 3cosh + Bsj4sinh

w
V (Y)-cVI
-f (xz) 0

Chordwise bending: mode # = i = nb+nt+j ; j = I to nI

±X 42 I v

01W) = - ; W(Y)= -c2  ; T(x,z)=0

x2 4Y02W- = - 1e2 V2(y) = 4 y2  (XZ =I
*2(x=e2 1= v 2(y=- I ; , (x,z)=0

e-&-aft: mode # =i = nb+nt+nc+j ; j = 10 tnf 3
= 0-i"( ) 0o h e X, ) X E ) Xe )

(x) =cosh(ei) - cos(Ej - aj sinh(Ej) - sin e

=fvz 13

e. and a. same as above

Table 1. Assumed mode shapes I
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and by solving the coupled equations which ensure that the mode

3 shape meets the plate boundary conditions at the root and tip. For

the assumed torsional mode shapes, the equations that describe the

boundary condition that must be met can be written in matrix form

as [Ref. 69],

1 F 0 1 0 B11ro-
0 0 f Bj2  0

( 4 "2csg g2sing f2 coshf f2 sinhf IIBj3 =
I gf 2sing gf 2cosg g2fsinhf g2fcoshf LBj4J

The first two lines of the matrix equation (3-144) ensure that

the deflection and slope at the plate root are zero. The last two lines

of the matrix equation ensure that the internal forces at the plate tip

are also zero.

I Since f and g are related through equation (3-143), the non-

trivial solution to the eigenvalue problem is found by setting the

determinant of the matrix in equation (3-144) to zero. The values

for f and g can be found by a simple Newton solver scheme. Once the

f and g values are found, the Bij coefficients are determined through

* the following matrix equation,

I Fl 0 1 0 ir , 1 ol
0 g 0 f /Bj2  0

(3-145) -g2cosg -g2 sing f2coshf f2sinhf /Bj 3  0

L cosg . sing coshf sinhf -LBj4J  LIJ

I The fourth line in equation (3-145), which normalizes the

modal tip deflection to one, replaces the fourth line of equation
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(3-144), which becomes redundant when f and g are solved so as to 1
make the matrix singular.

It is clear from equation (3-145) that Bit and BO are equal in

magnitude but opposite in sign. It is also generally found that f is

order of magnitude 10, so that the cosh(f) and sinh(f) terms domi-

nate the third line of the matrix equation, making B 3 and Bi4 oppo- I
site in sign and almost equal in magnitude. It is important to note

for purposes of calculating the tip deflection that Bi3 and Bi4 are not

exactly equal in magnitude, since this difference is magnified expo-

nentially by the cosh and sinh terms near x/2=1. Values of 03, f, g,

and Bij for the layups used in this study are listed in Appendix B. I

3.3.3 Mass & Stiffness Matrices and Modal Forces

For the flat plate, the symmetric mass coefficients, MKf , and the

symmetric stiffness coefficients, Kifp . are defined as, I
(3-146) M!P = f fp yw^f dxdydz for i,j 5nb+n t+nc

I
(3-147) M = JiJ p y dxdydz for nb+nt+nc <ij

(3-148) Y,' f =JJ(Dllwxx +Dj, w y4
I

(3-48 Ir+ = '"{l x x + Dw y'jY +wD6f'x'Jx
WD W W W

l2[*A,,,^j,yy + Yi~yy~fjxx]

2DI6'Iix Y + ri'Wx yj'XX]

2D W W W dd

2D261XwYYYjbxy + 'xYYj)YY dxdy I

for ij sn b+nt+nc
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fp -2  v v v v v v
(3-149) Kj =12 xxYjxx 22 zz 66,xzyjxz

+ A v v + 2A V V

A2[ 4vxx~jzz + A=zjmxxI + 2 A6vxxyvjxz + Yf=xzy~xx]

V V V+ 2A26[,zz,xz + *,xzjzz Idxdz for nb+nt+nc < ij

where p is the density and the subscripts following the commas

denote partial differentiation with respect to the spatial coordinates,

x, y, and z. A 12-point Gaussian quadrature scheme was used to

evaluate the above integrals.

The styrofoam contributions to the mass matrix can be calcu-

lated in the same form as equations (3-146) and (3-147) using the

known thickness of the styrofoam and the chosen mode shapes from

Table 1.

(3-150) MiSty = Psc(O.6 8 5 tmax-tfp) f~jOidx
xsty

for ij5nb or nb +nt+nc<i,j

(3-151) MS~t y  pc'-05 _t) .~od

11= s-(2 0. 6 tmax tfp) Jdx
xsty

for nb<i,j:nb+nt

(3-152) MiJtY = -0.0545Psctmax J.jojdx
Xsty

for i5nb; nb<j!nb+nt
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I

The calculations of the styrofoam contributions to the mass

matrix from the chordwise bending modes are more cumbersome

because of the complicated chordwise variation of the mode shape.

Therefore, for those components of the mass matrix involving the I
chordwise bending modes, the styrofoam thickness is assumed to be

uniformly half the maximum thickness, tmax , as might be suggested

by equation (3-151).

In the same manner, the contributions of the styrofoam to the

stiffness matrix can be calculated, giving,

(3-153) sty 2 
(3Si3 1- 2CQ4 1  3 j iiX~0, 1 dx

Xsty I
for i,jnb or nb+nt+nc<i,j

(3-154) .sty sty 3 0 dxI" .01585cQ1 1 tmax ,xjx

for Lnb; nb<j!nb+nt

824t maxf t-
st (y ±~aJ (Lf

(3-155) Kiy _ ty Qi 1 3 / *i,'xx~j xxdx +
xsty

3 Jtt 6 3

for nb<i,jsnb+nt 
xty
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sty stywhere QtY and QS6 are the styrofoam engineering constants, defined

in the same manner as for the graphite/epoxy in equations (3-1) and

(3-4), as listed in Appendix A.

Again, the calculations involving the chordwise bending mode

are quite cumbersome, so for these purposes the styrofoam is

assumed to be uniformly 80% its maximum thickness, as might be

suggested by equations (3-153) and (3-155).

The contributions from the geometric nonlinearities can be

added by applying the same Rayleigh-Ritz method to the nonlinear

equations of motion derived in Section 3.1.2. There are no nonlinear

contributions to the mass matrix, <;=0. The nonlinear contribu-

tions to the stiffness matrix, similar to those derived by Boyd

[Ref. 78], are,
n nb

1 Rmnijqmqn for nb<i,jgnb+nt
mIl n=1

(3-156) Kige°= Hmijqm for nb<i:nb+nt; nb+nt+nc<j
m-I

.0 otherwise

where the coefficients of geometric nonlinearity - Rmnij resulting

from modal analysis applied to (El-EIq)(%,"20) in equation (3-60),

and Hmij rsulting from modal analysis applied to (El-EI,)(%"v") in

equation (3-60) or (EICEII)(%"O)" in equation (3-59) - are,

(3-157) Rmnij (EI'EIli)Jm xx0n ljdx

for m,n5nb; nb<i,jsnb+n t
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(3-158) Hmij = (EI;-En)f0mxxIi~jOxxdx Ix
for m:nb; nb<i:5nb+nt; nb+nt+nc< j

The modal forces are then finally obtained by integrating the

aerodynamic force coefficients, as determined in Section 3.2, with

the mode shapes over the span. This integral also incorporates the

spanwise correction to strip theory described by Landsberger

[Ref. 92] and described in Appendix C.

(3-159) Q1 PU~ f ( C[CL(X)cosOR + CD(x)sin6R]1 i*(+4)

0

c2CM(x) ,(+ ) }W(x)dx for ijn b+n +n c

I oI

(3-160) Qi --"U2 c[-CL(X)sinOR + CD(X)c°SeR11i (0),'(x)dx

for nb +n(nc <i,j I

3.4 Pre-Flutter Analyses

3.4.1 Static Deflection Problem

The static deflection problem is formulated as an analytical

model of the experimental deflection tests described in Chapter 4.

For a pure force test, the cantilevered plate or wing is subjected to a

concentrated load at the specimen tip (x---e), at the elastic axis (y=O).

For a pure moment test, the cantilevered plate or wing is subjected I
to equal and opposite concentrated loads at the specimen tip (x--), at

the leading and trailing edges (y=±c/2). The accelerations are zero
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for static deflection, and the real forces are point loads, so equation

(3-138) for a pure force reduces to,

n

(3-161) Kijqj = Q= = F 0j()Wj(O) i=l,...,n
j=1

where F is the concentrated load applied at the wing tip. Similarly for

a pure moment, where M is the moment applied to the wing tip,

equation (3-138) reduces to,

nM -C

(3-162) - Kjqj = Qj = - i )-wi(2)l i=l,...,n
j= I

3.4.2 Free Vibration Problem

The free vibration problem is formulated as an analytical

model of the experimental vibration tests described in Chapter 4.

The problem is formulated by setting the modal forces, Qi, equal to

zero in equations (3-138) and (3-139). The equations of motion are

reduced from differential form to algebraic form by assuming har-

monic (sinusoidal) motion. The modal amplitudes can be expressed

as,

(3-163) q flimt

where w is the frequency. These assumptions are substituted into

the differential equations of motion, (3-138), to obtain the sinusoidal

equations of motion,

(3-164) )2 M + ij)j 0i.
j=5
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or, in matrix form,

(3-165) [-o2[M]+[K]](4) = (0)

Equations (3-164) and (3-165) describe an eigenvalue problem

which can be solved by using a numeric eigenvalue solver, for

example EISPACKTm .

The linear free vibration problem about the nonlinear static

deflection is carried out in the same manner as the linear free vibra-

tion problem, with the exception that the stiffness matrix is changed

according to the geometrically nonlinear effects of a nonzero tip

deflection. For this analysis, the tip deflection was effectuated by I
increasing only the static deflection in bending of the first n,

shape, q10 , in other words,

p+ K sty + Rjq2 0 for nb<ij-nb+n 3" i + ij I bl bjql

fp Styfo
+ K1  + Hijql0 for nb<ignb+nt; nb+nt+nc<j

(3-166) Ki. -- N

fYP+ -sty otherwise

I
3.4.3 Two-Dimensional Aerodynamic Problem

Three approaches to the ONERA method of calculating the I
2-dimensional force hysteresis were compared: a 4th-order Runge-

Kutta time marching scheme, the 2-harmonic scheme described in

Section 3.2.3 (denoted "non-constant" because a, r, & e are not con-

stant through the hysteresis cycle), and a 2-harmonic scheme with

constant coefficients a, r, & e (i.e. 0 1, P2 , & 03 set to zero). The pur- I
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poses of this comparison were, first, to determine if the harmonic

schemes accurately matched the "exact" Runge-Kutta time marching

scheme and, second, to determine if :ing non-constant coefficients

provided significant improvement over constant coefficients in the

harmonic schemes.

The 2-harmonic, non-constant approach is as described in

Section 3.2.3. The 2-harmonic constant coefficient scheme is merely

a simpler subset of the non-constant approach. Several approaches

can be taken to "smearing" the nonlinear coefficients through the

hysteresis cycle,

(3-167) a = a0 + al(ACL(<ct>)) 2 = a0 + aI(ACL(czo)) 2

(3-168) a = a0 + al(<ACL()>)2  a+

(3-169) a =<a + aj(ACL(a)2> = a+al(G6+ 1A +.)

Equation (3-167) bases the constant coefficient on the mean

angle of attack. This approximation seems poor because there are no

effects when the mean angle is below the stall angle but the ampli-

tude of oscillation is large enough to cross into the stall region.

Equation (3-168), based on the mean force deficit, and equation

(3-169), based on the mean coefficient through the cycle, account for

this effect, and are likely more accurate approximations. Of the two,

that described by equation (3-169) is likely a better approximation,

but that described by equation (3-168) was used because it was

easier to implement in the current formulation: it could be achieved

by simply setting 0 1=P 2 =0 3 =0 in equations (3-123) to (3-125). It
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should be noted that no matter which approach is taken, there is no I
dependence on the reduced frequency k because the values of the

harmonic components of the lift deficit, A0 , Al, & A2 , are independent

of the reduced frequency.

The 4th-order Runge-Kutta scheme is typical for that used for

second order differential equations. The stalled ONERA equation I
(3-64) is set up in terms of the state vector,

o- 0]1(3-1 I) y = ?7'] = -r a + [-or -e

with, y and x =
-k2- L(Acz)-

and the time marching substeps are given by,

k [- n' Cr)

_+ A(k ) -[-+r+) I
k2 = k Ly n+ 2k 1,x (C4 n+ "k-"

A~ ?' 1 --+ -+ A(kO)
( 3 -7 1)3 = k ) Y,[ n + l-k 2 , x ( t n + -k )]I(3-171) kAk) 4Lj 2'@ LAk

j! A(kt) + Zk3 XI + A(kt)

+ 2 k+r4
-4 - 4 1-
-y n4 = y n + 6kI+ 2 2 3 4

For the Runge-Kutta scheme, each cycle of the hysteresis was

divided into 360 time steps, i.e. 1° change in k% for each time step.

In general it was found that 3 cycles were required for convergence
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to a steady hysteresis loop, although more were required as the

reduced frequency pushed past 0.2. Therefore, approximately 1000

time steps were required to reach convergence. Each time step

required 4 substeps, and each substep required on the order of 10

multiplication operations (approx. 5 to calculate the updated a, r, e, &

x values, 5 to update the state vector derivative). So, in total, the

Runge-Kutta scheme takes on the order of 40,000 operations.

However, executing a time step per IP change in kc is likely too con-

servative an time marching scheme, despite the high nonlinearity of

the formulation. On the order of 4,000 operations would be more

realistic.

For the 2-harmonic non-constant scheme, with a single break

point lift model as described in Appendix E, setting up the binomial

and integral coefficients bij and lij requires 9 operations while eval-

uating the harmonic coefficients of the force deficit, A0 , A 1 , etc.,

requires another 13 operations, bringing the total number of opera-

tions to approximately 20. For an n-harmonic scheme, the number of

operations in evaluating the harmonic coefficients of the force deficit,

A0 , A l , etc., goes like 8(n+l). In evaluating the aerodynamic matrix,
I n (r,a)

the worst case is like the 1a component, which requires 30 mul-

tiplication operations. There are 25 such components, thus requiring

750 operations to evaluate the entire matrix. The real number of

3 operations is likely closer to 500 because of smaller expressions for

other elements such as 4  a). For an n-harmonic scheme, the num-

ber of operations in evaluating the aerodynamic matrix goes like
I
(n+l)4(2n+l) 2 . The factor of (2n+1) 2 comes from the number of

components in the matrix, the factor of (n+l) 4 comes from multiply-
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ing out the A0 , A I, etc. terms in ACL in r, while the factor of I is

because not all the elements of 6C contribute to all the components

of the aerodynamic matrix. Finally, Gauss elimination to solve the

matrix equation requires approximately I(2n+1)3 operations, i.e.

approximately 60 operations for a 2-harmonic analysis.

Therefore, in total, the 2-harmonic analysis with non-constant

coefficients requires somewhere on the order of 600 operations. This

is about an order of magnitude fewer operations than the Runge-

Kutta scheme. However, for a 3-harmonic analysis, the (n+l) 4 (2n+l) 2

term grows very quickly and on the order of approximately 3,000

operations are required, making the tradeoff with the Runge-Kutta I
scheme much less beneficial.

3.5 Flutter Analyses

3.5.1 U-g Method

As a starting point from which to investigate the full, nonlinear i
flutter problem, it is useful to look at the linear, small-amplitude,

zero root-angle-of-attack flutter and divergence problem, which can

typically be solved using what is called the U-g method.

First, because the problem is linear, the steady problem is

completely uncoupled from the unsteady problem, and the two can

be considered separately. So, for the unsteady problem, sinusoidal

motion is first assumed, i

(3-172) qi = 1i
ei t

i

After some algebraic manipulation, it is derived that the aero- -
dynamic modal forces are given by,60 I
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I b[L +iL I 3 L 4 i e it
(3-173) Qi = coSLpb Lb qJ+ c e

for ilnb

(3-174) Q= 2pb4 [MI+iM2J  q + [M+iM i

for nb<i:5nb+n t

Iwhere the complex lift and moment terms are,

I (3-175) [LI+iL 2 ] =1- (k)

(3-176) 2C(k) + 1 + - C(k)
( 7 [L 3+iL4]= 2 - SL k 2 2sL k LSL 2 sLJ (

I
(3-177) [MI+iM2]= +L k S(k)

(3-178) [ M+Ck a
[3+M4] =4- 2sL +SL - SM k2 2 SL

+ +kv + 21kv+L_ -a k. [pk 2 SL sL  2 IsL -2s L]I
and where the approximation to the Theodorsen function and the

Imode shape integrals corrected for spanwise effects are given by,

-%)L + a ik
(3-179) C(k) = )L + ik
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(3-180) Iij= -t 1 l 1-(2) loi4jdx

1AR 0

Note at this point that if the linearly derived coefficients areI

inserted into equations (3-175) to (3-178) [aoL= 2 x; SL=X; kvL=x/2;

OL= 2 nt; SM=-n/4; kvM=-3 g/16; aM=-x/ 4], then the typical

2-dimensional, linear relations, as shown in Refs. 90 and92, are

recovered.

Inserting these into the equations of motion and canceling the I

eiot, yields the following form of the equations of motion, written in

contracted matrix form,

(3-181) [[K] - , 2 [A1]41 = 0

where the combined aerodynamic/mass matrix is, I
(3-182) Aij = Mi + sLPeb21ij[Ll+iL 21 for ijsnb 5
(3-183) Aj = e+ sLP-Ij[L3+iL4] for ifnb; nb<j~nb+nt

Rb
3

(3-184) A I = Mi + SLP iJI[M I+iM 21 for nb<i:nb+nt; jgnb

Lb4

(3-185) Ai. =Mij + sLPC2 ij[M3+iM41 for nb<ijnb+nt I

Structural damping is then introduced into equation (3-181) by I
multiplying the [K] matrix by (lI+ig). Introducing the complex eigen-

value Z, equation (3-181) then becomes,
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(3-186) [[A] -[K]Z]{(4 =0

where,

1+ ig
(3-187) Z =

The solution method is to pick a value of reduced frequency,

and solve equation (3-186) for all the corresponding complex eigen-

values Zi (in this case by using a complex eigenvalue solver in

EISPACK'7M). Then, for each Z, the associated frequency, structural

damping, and velocity are given by,

(3-188) w; = ImZ} ;[ U bI~ W-- - Re (Z) ' .k

The procedure is repeated for several values of the reduced

frequency k, until enough values have been generated to plot a

smooth U-g diagram. The divergence points are those locations

where the structural damping and frequency simultaneously go to

zero. The flutter points are those other locations where the struc-

tural damping goes to zero but the frequency is non-zero.

IA similar analysis, involving linear aerodynamics but nonlinear

Istructures, can also be implemented so as to incorporate geometric

nonlinearities. The procedure is to first run the purely linear U-g

analysis. Now, since the problem is coupled to the steady solution

through the structural nonlinearities, the next step is to determine

the steady deflection at the flutter velocity and desired root angle of

attack. The stiffness matrix is then updated according to these

steady deflections and the U-g analysis run anew. Again, the steady
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deflections at the newly calculated flutter velocity are incorporated

to update the nonlinear stiffness matrix, and thus the procedure is

repeated until it converges.

3.5.2 Harmonic Balance Applied to Nonlinear Flutter Analysis

All the components of the flutter problem have been stated in

differential form and now it remains to reduce the problem to an i
algebraic form so that it is more easily solved computationally. The

general form of the differential equation describing the motion of the

wing is given by equation (3-138). The left hand side of equation

(3-138) contains the structural information of the problem and is

described by the definitions of the stiffness and mass matrices given

in Section 3.3.3. The right hand side of equation (3-138) contains

the aerodynamic information of the problem, in the form of the i
modal forces, and is described also in Section 3.3.3.

In general the aeroelastic problem is reduced from differential

form to algebraic form by assuming harmonic motion in the same

manner as for the free vibration problem in Section 3.4.2 or the U-g

method in Section 3.5.1. This method is acceptable for the linear I
flutter problem where the steady part of the solution is uncoupled

from the unsteady part of the solution. However, for the nonlinear

flutter problem, these two are no longer uncoupled and both must be

considered at once.

First, the modal amplitudes are put into harmonic form,

(3-189) qi( c) = cio + qi~sin(kt) + qiccos(kc)
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From the modal amplitudes, the angle of attack and 1/4-chord

deflection at each spanwise location are also put into harmonic form,

(3-190) fif(x,tr) = 110(x) + 1iS(x)sin(kr) + R C(x)cos(kc)

(3-19 1) O(x,,t) = 00(x) + Os(x)sin(kr) + ec(x)cos(kr)

where the harmonic components of the 1/4-chord deflection are,

(3-192) '1 qj-2 (x)WwA(+c/4)

(3 -194) s~ I b~t i(x)Wi (+c/4)

inI

(3-195) i()w(c4

fi b

i- I

(3-195) 0 ww(c4

(3-196) 0 = n qis wxW (c4
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Substituting equations (3-190) and (3-191) into the formula

for the linear aerodynamics, equation (3-63), gives,

(3-19 8) C (x,') = CzYO(x) + Czr(x)sin(kr) + Czx(x)cos(kc)

where the harmonics of the circulatory force coefficient are,N

(3-199) Cz,,(x) = a0z(90(x)I

(3-200) Cz-.,(x) = F(k)Ls(x) - G(k)Lc(x)

(3-201) Cz-,C(x) = G(k)Ls(x) + F(k)Lc(x)

and where, in the present analysis, the F and G functions are the

resulting single lag approximations to the Theodorsen function,3

C(k) = F(k)+iG(k), namely,

(3-202) F(k) = 2

x+ k2

(3-203) G(k) X k(-a-"
z+ k

and where the other intermediate variables are,

(3-204) L,(x) =a,,[O,(x) + kfi,(x)] - ozkOc(x)I

(3-205) Lc(x) =aoz[Oc(x) - k~is(x)] + azk95(x)I
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Finally, the apparent mass terms are added to give the usual

harmonic form of the linear aerodynamics derived from equation

(3-62),

(3-206) CZlO(x) = C (x)

(3-207) Czls(x) = Cz-(X) - sz[kOc(x)-k 2 is(x)] - kvzk 2 es(x)

(3-208X) C = Cz(X) + Sz[ks(x)+k2gc(x)] - kvzk 2 0C(x)

Cz2o(x), Cz2s(x), and Cz2c(x) are the spanwise location values of

Cz2o' Cz2s, and Cz2cl as derived in Section 3.2.3. They are added to

the results of the linear aerodynamics to give the combined

spanwise-varying and time-varying force coefficient,

(3-209) Cz(x,r) = Czo(x) + Czs(x)sin(kt) + Czc(x)cos(kt)

where the h.rmonic components of the force coefficient are,

(3-210) Czo(X) = Czlo(x) + Cz2o(x)

(3-211) Czs(X) = Czls(x) + Cz2sl(x)

(3-212) Czc(x) = Czlc(x) + Cz2cl(x)

The harmonic form of the aerodynamic forces is then placed

into equation (3-159) to give the harmonic form of the modal forces,

(3-213) Qi( t) = Qio + Qissin(kc) + Qiccos(kt)
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where the harmonic components of the modal force are,

(3-214) Qjo =pU2f{ [ec=p Jc[CL0(X)COSeR+CD0(X)Sin0R]Vi(+rc) +

c2CMO(X)Vi,Y ( +4) ) *i(x)dx

9
(325 Qj 2 +

(3-215) Qis =2p J {C[CLs(X)CoSR+CDs(x)sineRvi(+4) +

c2CMs(X)Vi.y(+) I *i(x)dx I
(3-216) Qic =I u2 C[C(X)COR+Co(x)sineR]i(+4) +

0
c2CMc(x)wi,y(+Z) I *1(x)dx

The general equations of motion, described in matrix form in

equation (3-139), are converted into the final harmonic form by I
substituting the harmonic forms of the modal amplitudes and modal

forces from equations (3-189) and (3-214) to (3-216),

(3-217) L0 _. +[K] 0oJL / U) I,)/
LO 0 -,02M+IK -JL (qC).J LiQ'CJ

Equation (3-217) might look deceivingly linear, but this is not i
so. First, because of the static aerodynamics, there is a nonlinear

dependence of the mean modal forces (Qo) on the mean modal ampli-

tudes 1qo), and similarly in a quasi-steady sense for the harmonics

(qs) & (%) on (Q.) & (Qc). Second, because of the nonlinear formula-

tion of the ONERA aerodynamic model, there is also a nonlinear
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dependence across the harmonics - that is, there is a dependence of

(Q01 on {qs) & {qc) and of {Q.} & fQc} on (q"). Third, because of the

geometric nonlinearities, there is a nonlinear dependence of the

stiffness matrix [K] on the mean modal amplitudes (%).

3.5.3 Parameters of Analysis and Implementation

Once the governing equations are set up for the various prob-

lems of static deflection, free vibration, 2-dimensional aerodynamics,

and flutter, it still remains to be determined the desired parameters

to solve those problems.

As discussed in Section 3.3.2, beam bending modes and root-

warped torsional modes were chosen to model the structural

dynamics. Alternatively, torsional modes with warping terms ig-

nored - i.e. pure sine mode shapes - could have been used but,

while these would have accurately predicted natural frequencies,

they would have overestimated static deflections because of the lack

of stiffness from root warping.

In general, since the final stalled flutter problem is expected to

yield a single degree of freedom motion in either the first torsional

or first bending mode, it was deemed necessary to only model the

first torsion and first bending modes accurately. For an uncoupled

wing, such as the [03/901S , it would therefore only be necessary to

include those two modes to get the frequencies correct. However,

other factors necessitate larger numbers of modes. First, because of

the bending-torsion coupling of the other layups, larger numbers of

modes were required to get even the first torsion and first bending

frequencies accurately. Second, because of the distributed natures of
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the aerodynamic loading of the linear & nonlinear flutter analyses,

larger numbers of modes were required to accurately model the dis-

tributed loads as the summation of modal forces. In other words,

because of the bending-torsion coupling the mass & stiffness matri-

ces - i.e. the left hand side of equation (3-138) - indicate a need for

a larger number of modes, while the accurate modeling of the modal i
forces - i.e. the right hand side of equation (3-138) - also indicates a

need for a larger number of modes. It was decided from these con-

siderations that three bending and three torsion modes would suffice

to accurately model the first bending and first torsion modes through i
all the analyses.

Again, because the flutter solution is expected to be "locked" at

the torsional frequency, only one harmonic would seem necessary for

the final analysis. And again, because of the coupling between har-

monics inherent in the nonlinear problem, higher harmonics would 3
seem necessary. However, the nonlinear coupling between harmon-

ics only occurs through the aerodynamics, and hence the aerody- •

namic analysis by itself can use several harmonics, while the total

flutter analysis can use fewer harmonics so as to save computational

time.

The gross harmonic characteristics that the aerodynamic anal-

ysis is trying to capture are described graphically in Fig. 5. As I
already noted by Petot [Ref. 521, even within the framework of a

time-marching scheme, the ONERA model does a poor job of predict-

ing any finer details (i.e. higher harmonics) of th.: hysteresis cycle. 3
In terms of harmonics, the important characteristics can be loosely
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a (deg)
'in phase* - sin(kT) 'out of phase' - cos(kT)

I , I I I I I I I

a(do) a(dsg)

I I l
u (ding) G(dleQ)

"gure 8" - sln(2k'c) "banana' - cos(2k,)

Fig. 5 Gross characteristics of force hysteresis
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labeled as "in-phase" for the first sine harmonic, "out-of-phase" for

the first cosine harmonic, "fiure eight" for the second sine harmonic,

and "banana" for the second cosine harmonic.

Physically, the first sine and second cosine harmonics are the

effects of the static curve on the hysteresis - the first sine harmonic

falls generally along the linear force curve, while the second cosine

harmonic is affected by the deviation due to the static stalling. The

first cosine and second cosine harmonics are the work terms - that I
is, they give the cycle its hysteretic nature and the area mapped by

each cycle gives an indication of the work done by the flow on the I
airfoil. In general, the first harmonics can be loosely associated with

the linear aerodynamics (so the first cosine term is associated with

the "linear" work), while the second harmonics can be loosely asso-

ciated with the nonlinear aerodynamics (so the second sine term is

associated with the "nonlir-. r" work or work due to stalling). I
Obviously, these are just the lroad generalities associated with each

harmonic since, in reality, all the physical aspects couple into all the

harmonuics because of the nonlinear nature of the fluid flow.

However, it seems reasonable that to capture all these physical

aspects it would be necessary to incorporate at least the first two

harmonics.

So, in calculating the 2-dimensional aerodynamics at each

spanwise location, it was decide!d to use a two harmonic analysis.

However, for the full flutter analysis only one harmonic was used.

That is, the 2-dimensional aerodynamic analysis took a single har-

monic angle of attack oscillation as its input, and calculated the

resulting two harmonic components of the force coefficients (as I
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described in Section 3.2.3), but the flutter analysis only used the

first harmonic results from these. As with the modal analysis for the

structural part of the problem, it might in fact be necessary to

include even higher harmonics to capture the proper physical aspects

of the two lowest order harmonics. This aspect of the problem was

not probed in the current investigation.

The theory described in all the previous sections was imple-

mented using MacFortran'- code on a Macintosh IIfx at the

Technology Laboratory for Advanced Composites at the Aeronautics

& Astronautics Department of M.I.T. The source code of these

MacFortranh4 programs is listed in Appendix G. A 12-point Gauss

quadrature scheme was used for all integrations that could not be

easily evaluated in closed form - eg. mass & stiffness integrals

(equations (3-146) to (3-158)), modal force integrals (equations

(3-214) to (3-216)), or U-g method aerodynamic integrals (equation

(3-181)). The Gauss points and weights are listed in the include file

"GAUSS.INC" in Appendix G. It is known that in order to accurately

integrate higher order polynomials, the Gauss quadrature scheme

places more emphasis toward endpoints with higher clustering and

weighting there - this is appropriate for the current analysis because

of the evanescent contributions to the mode shapes (sinh & cosh) and

because of the aerodynamic force dropoff at the tip.

I
I

I 73

I



I
I
I
I
I
I
I
I
I
I
I

74 I
I



Chapter IV

Experiment
4.1 Test Specimen Sizing

The objectives of redesigning the test specimens were twofold:

first, to decrease the linear flutter velocity to within the limits of the

available wind tunnel facilities (approx. 30 m/s); second, to increase

the Reynolds number at flutter to a value closer to that for which the

ONERA aerodynamic model was developed. These two objectives led

to a single overall objective: keep the linear flutter velocity just

under the wind tunnel limit - thus pushing the Reynolds number as

high as possible by means of the wind velocity - and increase the

chord as much as possible. These design objectives were constrained

by several limitations.

Choice of layup - to ensure a wide enough range of bending-

torsion coupling, and because of the manufacturing errors inherent in

the layup procedure, we chose to limit ourselves to ply angles in

increments of 150 only; moreover, we desired to choose our layups

such that one had a divergence velocity above the wind tunnel limit,

a second had a divergence velocity very near its flutter velocity, and

a third had a divergence velocity below its flutter velocity, but not

below the lower wind tunnel limit (approx. 10 m/s).

Number of plies - in general, an increase in number of plies

increased the bending and torsional stiffnesses of the wings.

Therefore, on the one hand, we wished to decrease the stiffness so as

to keep the flutter velocity within the wind tunnel limits and to

allow the wing to twist enough to reach the stall angle. On the other
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hand, we wished to keep the stiffness high enough so that gravity

bending effects would be negligible and so that bending deflections

would not diverge too quickly. I
Span - it was desirable to increase the span as much as

possible, for purposes of observability, but we were restricted by the

size of the wind tunnel (approx. 3 feet, to allow for wall effects) and

by the flexibility of the specimen: we did not want it to become so

long and thin that it would break at divergence or flutter.

Chord - again, it was desirable to increase the chord as much

as possible, so as to increase the Reynolds number, but it was also

necessary to keep the chord smali enough such that the wing would I
be torsionally soft enough to reach flutter within the wind tunnel

limits. Both the chord and the span were also limited by the size of

the available autoclave at the Technology Laboratory for Advanced

Composites manufacturing facility. I
Most of these goals were achieved, and improved upon the

layups of Refs. 94 and 95, with the following designs: layups of

[0 3/ 9 0 ]S, [+ 1 5 2/ 0 2] S , and [- 1 5 2/ 0 21 S with the span doubled from 1 ft.

to approximately 2 ft., and the half-span aspect ratio kept at 4.

4.2 Test Specimen Preparation

The test specimens were constructed from Hercules

AS4/3501-6 graphite/epoxy prepreg tape from Lot No. 5874-2,

Spool No. 4 and Lot No. 6075-2, Spool No. 5D, using the standard I
TELAC manufacturing procedure [Ref. 96]. The laminates and curing

materials were arranged on an aluminium curing plate as shown in

I
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Fig. 6 and cured in a Baron model BAC-35 autoclave using the

standard TELAC curing cycle described by Fig. 7. After curing, the

laminates were post-cured in a forced air circulation oven at 3500 F i
for eight hours. After post-curing, rectangular test specimens

584 mm (23 in) long and 140 mm (5.5 in) wide were cut from the

laminates using a diamond-coated cutting wheel mounted on an

automatic feed, milling machine.

Loading tabs 152 mm (6 in) by 25.4 mm (I in) were

machined from 3.2 mm (1/8 in) aluminum plate and bonded to the

base of each test specimen with FM-123-2 film adhesive, cured using i
the standard TELAC bond curing cycle. The loading tabs were

intended to aid in aligning the test specimen in the clamping fixture

and to prevent damage to the plate surface fibers.

To get an indication of the lateral deflections, strain gauges

were attached to the base of each test specimen at the midchord, asI

shown in Fig. 8. Two Micro-Measurement EA-06-125AD-120 strain

gauges, from Lot No. R-A38AD605 with a gauge factor of 2.055, were

attached to both sides of each specimen near the root to measure

bending strain. Two Micro- Measurement EA-06-250TK-120 strain

gauges, from Lot No. R-A38AD399 with a gauge factor of 2.02, were

attached to both sides of each specimen near the root to measure

torsion stain. The two bending gauges were wired together as a i
two-arm bridge circuit with three external lead wires. The two

torsion gauges were wired together as a four-arm bridge circuit with

four external lead wires. Wiring the strain gauges in this manner

provided automatic temperature compensation. Finally, the gauges

I
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and exposed wiring were coated with Micro-Measurement M-Coat A,

an air-drying polyurethane.

The NACA 0012 fairings were cut from 508 mm (20 in)

blocks of styrofoam using a computer controlled hot wire cutter and

were then epoxied to the top and bottom of the graphite/epoxy

plates.

4.3 Static Deflection Tests

The static deflection test setup (see Fig. 9) consisted of a

clamping device bolted to a large aluminum table (the "optics bench"

at M.I.T.'s Space Engincering Research Center). Two low friction

pulleys were attached to vertical rods such that a force or moment

could be applied to the test specimen at its tip. Rulers, graduated in

millimeters. were attached to Dexion angle-iron to facilitate

measuring the test specimens' tip deflections. Threads, routed over

the pulleys and attached to weights, could be attached at any point

along the wooden dowels so as to transfer either a force or a moment

to the test specimen.

The deflection indicator was aligned with the tip of the test specimen

and the test specimen clamped in the vise. For the tip force test, the

pulleys were aligned with the plate midchord and threads from the

center of the wooden dowels were routed over the pulleys. Weights

in increments of 100 grams were successively attached to the

threads, first to give positive deflections, then to give negative

deflections. As each weight was attached, the readings from both

pointers were recorded, along with the applied weight and the

measured bending and torsion strains.
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Next, the pulleys were aligned with the leading and trailing

edge of the plate tip and the threads routed from the plate corners

over the pulleys, so as to produce a positive moment when equal

weights were attached. Weights of 20 gram increments were

successively attached to each thread of the couple, and readings from

the pointers and the strain gauges were again recorded along with

the applied weights. The pulleys were then switched to diagonal

opposites of the plate so that negative moments could be applied,

and the same procedure applied.

For each data point, the lateral deflection of the elastic axis and

the rotation about the elastic axis were calculated from the pointer

measurements. The lateral and angular deflections were plotted

versus applied tip force for each test specimen, and compared

against the Rayleigh-Ritz analysis. Similarly, the lateral and angular

deflections were plotted versus applied tip moment for each test

specimen, and compared against the same analysis. Linearized fits

between lateral deflection and bending strain, and between angular

deflection and torsion strain, were conducted so that a linear relation

could be later applied to the flutter tests. The results of the static

deflection tests are discussed in Section 5.1.1.

4.4 Free Vibration Tests

"Pluck" tests were conducted before each flutter test to verify
the free vibration frequencies of the wings. After the wings had

been clamped ve:tically in the specimen stand, they would either be

sharply tapped or given a brief, sharp torsional force, thus exciting

several of the lower bending and torsion modes. The strain gauges
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were wired to 2120 Strain Gauge Amplifiers, with a two-arm D.C. I
bridge for the bending gauges and a four-arm D.C. bridge for the tor-

sion gauges, and their readings were recorded on floppy disk using a I
Nicolet digital oscilloscope.

Later, these signals were passed through a Fourier analyzer so

as to decompose the frequency content of the signal. Since the free

vibration modes would presumably have been excited by the sharp

taps, the peaks of the resulting frequency spectrum of the FFT would I
correspond to the natural frequencies of the specimens. The signals

were made up of 2048 data points taken at 5 ms between data

points, thus corresponding to 2048 data points over 10 seconds or,

approximately, a frequency range of 0-100 Hz with a frequency

resolution of 0.1 Hz. The results of the free vibration tests are I
discussed in Section 5.1.2.

4.5 Wind Tunnel Tests

All wind tunnel tests were conducted in the M.I.T. Department I
of Aeronautics and Astronautics acoustic wind tunnel. The acoustic

wind tunnel is a continuous flow tunnel with a 1.5 m (5 ft) x 2.3 m

(7.5 ft) free jet test section 2.3 m (7.5 ft) long. The tunnel was

powered by a 100 HP motor giving it a continuously variable

velocity range of 0 m/s to 30 m/s (0 ft/sec to 105 ft/sec). The

tunnel control panel was located inside the chamber and the velocity

was controlled by two knobs (coarse and fine speed control). I
The test setup, shown in Fig. 10, consisted of a turntable

machined from aluminum, mounted on a 914 mm (36 in) tall,

cylindrical pedestal made of 51 mm (2 in) thick steel pipe, 305 mm
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(24 in) in diameter. The pedestal was mounted to the floor of the

wind tunnel section. A wooden cover disk 762 mm (30 in) in

diameter was used to ensure the pedestal did not affect the flow

over the test specimen, and thus provided smooth airflow past the

test specimen. A pointer attached to the free rotating portion of the

turntable, and an angle indicator attached to the fixed base of the

turntable, provided a consistent means of reading the angle of attack

of the test specimen.

The bending and torsion strain gauges were wired to a terminal

strip attached to the fixed pedestal, which was in turn wired to 2120

Strain Gauge Amplifiers. The amplifiers had a two-arm D.C. bridge

installed in channel 1 for the bending gauges and a four-arm D.C.

bridge installed in channel 2 for the torsion gauges. The bending

and torsion outputs from the Strain Gauge Amplifiers were fed to a

Nicolet Digital Oscilloscope where the signals could be recorded on

floppy disk. Visual data was recorded by placing a mirror at a 450

angle above the test setup, and recording onto 8mm videotape the

overhead view of the tip deflections. For sinusoidal flutter motion, a

strobe light was used to help visualize the oscillations.

The procedure for running the flutter tests was done in two

steps. First, the flutter boundary was determined. The root angle of

attack was increased by increments of 10, and at each angle of

attack the velocity was slowly increased until the onset of flutter was

observed, marked by a visually noticeable amplitude of oscillation

and a clear frequency of oscillation (as distinguishable from wind

tunnel turbulence). Next, static and flutter data was taken at 10, 50 .

100, and 150 root angles of attack. At each of these, the velocity was
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increased in increments of 1 m/s and visual and strain gauge data

taken at each velocity value. This was continued up to the flutter

boundary. The procedure was also continued past the flutter

boundary, for larger amplitudes of oscillation, but care was taken not I
to remain too long past the flutter boundary, for fear of damaging

the specimens.

I
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Chapter V
Results and Discussion

The Results & Discussion chapter is divided into two sections:

pre-flutter results and flutter analysis. The objectives of the section

on pre-flutter results is to verify individually the various compo-

nents that make up the flutter analysis - stiffness properties, mass

properties, effects of geometric nonlinearities, and 2-dimensional

aerodynamics - using the various methods of static deflection tests,

in vacuo dynamics (i.e. free vibration) at zero deflection, and free

vibration with tip deflection. Once the individual components of the

flutter analysis are verified, the objective of the section on flutter

analysis is to combine these components and move from linear anal-

ysis to fully nonlinear analysis in a stepwise fashion. This section

starts by approaching the problem using a fully linear U-g analysis;

adds nonlinearity through large mean deflections and angles of

attack while keeping oscillation amplitudes small (i.e. flutter bound-

ary analysis); then adds another level of nonlinearity by considering

large amplitudes of oscillation.

5.1 Pre-Flutter Results

5.1.1 Static Deflections

The experimental results of the static deflection tests for the

[03 /90]S, [+1 5 2/0 21S , and [-152/0 21S laminates with NACA 0012

styrofoam fairings are compared in Figs. 11 to 13 with the

Rayleigh-Ritz analysis described in Section 3.4.1. These figures show

excellent agreement between experiment and analysis.
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Because of the symmetry of the mass and stiffness matrices -

i.e. the bending-torsion coupling terms are equal to the torsion-

bending coupling terms - the analytic force-vs.-angle dF/d0 and I
moment-vs. -deflection dM/dh slopes should be equal when

expressed in the same units. For example, for the [0 3/9 0 1S layup,

both these analytic slopes are approximately zero (with some slight

bending-torsion coupling due to the chordwise asymmetry of the

styrofoam fairings), while for the [+15 2/0 2]s layup the analytic

values as seen on Fig. 12 are dF/d0=-.527 N/deg and

dM/dh=-.302 Nm/cm or, in equivalent units, -30.2 N/rad and I
-30.2 Nm/m respectively. The magnitudes of the analytically

derived slopes for the [-15 2/0 21s layup are almost exactly the same

as for the [+152/0 21S layup, just opposite in sign, as is readily seen by

comparing Figs. 12 and 13 - again, the slight difference in absolute

values is due to the slight chordwise asymmetry of the styrofoam I
fairings. The fact that the experimental values match so closely the

analytic values indicates that the assumption of symmetry is valid.

In other words, neither manufacturing defects (such as misaligned

layup, or variability of ply thickness) nor styrofoam asymmetry

adversely affect the symmetry assumption.

The force-vs. -deflection and moment-vs. -deflection experimen-

tal slopes are almost purely linear up to the expected maximum I
deflection that would be encountered during a flutter experiment, i.e.

15-20 cm or about 40% of the span. However, the force-vs.-twist

and moment-vs.-twist experimental slopes show hardening charac-

teristics as compared against the linear analysis, that is, the experi-
I

90

I



mental values require a greater force or moment to produce the

same twist than would be predicted by the analysis.

These hardening effects appear for the [03/90]S layup below
-40 and above +60, for the [+15 2/0 21s layup below -60 and above +60,

and for the [-15 2/0 2]S layup below -60 and above +60. For a tip twist

of 90, the discrepancy between the required moment from analysis

and from experiment is consistently about 30% (relative to the

experimental values) for all of the layups. This observed hardening

effect, which is not accounted for in- the analysis, would imply that in

a flutter analysis, once the magnitude of the twist exceeded 60, that

the expected experimental phenomenon would harden more quickly

that the analytic phenomenon predicted by the current analysis.

Typical twist values encountered in flutter for the current investiga-

tion are on the order of 100 for light stall flutter (root angles of

attack below the stall angle), and on the order of 50 for deep stall

flutter (root angles of attack at or above the stall angle), and there-

fore it is expected that some structural nonlinearity will be unac-

counted for by the analysis near linear flutter. Also, an amplitude of

oscillation in flutter of 60 is generally considered "moderate" in terms

of the current aerodynamic analysis, while anything larger is consid-

ered "large". That is, experimentally all amplitudes from small to

large are observed (as can be seen from the figures in Section 5.2.3),

but the aerodynamic analysis described in Chapter 3 is assumed to

be valid for moderate amplitudes and to break down for large ampli-

tudes.

Within the range of -60 to +60 twist, the analytic prediction of

the twist from the applied forces generally falls within less than 10
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of the experiment, which is less than the experimental error for the

measured angles. Likewise, the analytic prediction of the deflections

from the applied forces falls within the experimental error over the I
entire range that would be expected in flutter. Therefore, compari-

son of the experimental static deflections with their analytic predic-

tions indicates that the stiffness properties of the wings are accu-

rately predicted for most of the range for which the flutter analysis

is expected to be applied, and will only lack some cubic stiffening in

torsion at flutter values near divergence or at large amplitudes of

oscillation.

I
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5.1.2 Linear Free Vibration

Natural vibration frequencies for the NACA 0012 wings with- I
out tip deflection were determined both experimentally and analyti-

caliy, and are tabulated in Table 2. Although these are listed as Ist

bending (IB), 1st torsion (IT), et cetera, with highly coupled lami-

nates this distinction becomes much less meaningful because of the

high bending-torsion coupling. Figs. 14 and 15 show the uncoupled

mode shapes of the [0 3/9 0 ]S layup and the coupled mode shapes of

the [+152/0 2]S layup.

The experimental frequencies show excellent agreement with

the analysis for the first & second bending modes and the first tor-

sional mode. While the percentage errors for the first bending mode

frequencies might seem high, it should be noted that the frequency

resolution of the Fast Fourier Transform that was applied to the sig- I
nal from the pluck test (see Section 4.4) was about 0.1 Hz, and

therefore a large part of the 0.3 Hz discrepancy might be accounted

for by this experimental error. The analysis could not be used as

comparison against experiment for the higher modes because it was

found to be too difficult to significantly excite the higher modes by

the pluck test described in Section 4.4, but they are less important

in the final analysis since they are only intended as corrections to the I
more important lower modes. One would speculate that the higher

modes are likely less well predicted because the styrofoam fairing is

discontinuous (i.e. it does not cover the flat plate for a short span

near the root), and root warping terms become more significant for

I
96

I



higher modes because of the exponentially growing evanescent terms

I(i.e. the cosh & sinh contributions to the mode shape).

I It is noteworthy that the frequencies of all the layups fall in

almost the same range, both analytically and experimentally. For

I example, all the first bending frequencies are clustered near 4 Hz, all

the first torsion frequencies are clustered near 23 Hz, and all the

second bending frequencies are clustered near 27 Hz. The choice of

layups, picked so as to keep the flutter and divergence speeds within

the limited range of the laminar flow of the wind tunnel, is likely the

source of this coincidence.

The reasons why these frequencies remain relatively

unchanged are several. First, as indicated in Appendix B, the D1 I
values are all clustered near 10 Nm for all the layups, so it would be

expected that the first and second bending frequencies would remain

relatively unchanged. Second, again as indicated in Appendix B, the

0 values for all the layups, indicating the effect of the root warping

on the torsional frequency, all fall below 0.05, which leads to a

change in the first torsional frequency of less than 10% [Jensen,

Ref. 70]. Third, as indicated in Appendix B, while the D66 values

vary by a factor of almost two, these values are for the flat plates

only. FRom Appendix A one sees that while the shear modulus of

the styrofoam is three orders of magnitude smaller than the shear

modulus of the graphite/epoxy (8 MPa as compared to 5.3 GPa), the

graphite/epoxy is only I mm thick while the styrofoam at its widest

is 12% of the chord or 17 mm thick. Therefore, because of the z3

stiffness dependency on the thickness, the torsional stiffness contri-

bution from the styrofoam is comparable to that of the
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graphite/epoxy. (This would not be true of the bending stiffness, I
since the longitudinal modulus of the graphite/epoxy is about four

orders of magnitude greater than that of the styrofoam.) As sug- I
gested in Section 3.3.3, the contribution to the torsional stiffness

from the styrofoam fairings may be accounted for by "smearing" the

styrofoam evenly across the chord at approximately 80% of its 3
maximum thickness - this would lead to an "equivalent" D66 contri-

bution from the styrofoam fairings of approximately 1.2 Nm, which 3
is greater than the D66 contributions from the graphite/epoxy for all

of the layups (see Appendix B). For this reason, the first torsional

frequencies remain about the same, despite the difference in the flat

plate torsional properties between layups.

This small variance in frequenc;y has significant implication on 3
the linear U-g flutter analysis: if there are noticeable variations in

flutter results among the different layups, then these cannot be I
attributed to frequency coalescence (since the natural frequencies

are all almost the same), but must be dependent on the bending-

torsion effect on mode shapes as well.

I
I
I
I
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I NACA 0012 wils

Experiment Anal sis % error

IB 4.0 4.3 7.5

[03/90S IT 21.4 24.6 15.0

I 2B 27.1 27.2 0.4

lB 3.6 3.9 8.3

[+15 2/0 2]S 1 22.7 23.5 3.5

I 2B 27.1 28.6 5.5

i IB 3.6 4.0 11.1

["152/021S I T 24.5 24.1 -1.6

2B 27.4 27.8 1.5

I

I Table 2. Free vibration frequencies (all values in Hz)
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I B: 4.3 Hz

I T: 24.6 Hz

2B: 27.2 Hz

2T: 79.2 Hz3

100 Fig. 14 [0 3/ 9 0 1S analytic free vibration mode shapes



I B: 3.9 Hz

I T: 23.5 Hz

213: 28.6 Hz

2T: 89.8 Hz

Fig. 15 [+152/02]S analytic free vibration mode shapes
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5.1.3 Nonlinear Free Vibration

The nonlinear natural vibration frequencies for the NACA 0012

wings were determined analytically over a range of tip deflections

from 0 cm to 20 cm, assumed to result from a distributed load. The

analysis, as described in Section 3.4.2, was carried out using varying I
numbers of bending, torsion, and fore-&-aft modes, to determine

how many modes would be required to accurately describe the fre-

quency variation over the desired range of tip deflections. These

various analyses were compared against a finite difference method

that exactly solved the equations of motion described by Euler angles I
[Ref. 74]. However, this finite difference method ignored most

warping effects. So, for consistency, for the comparison illustrated in

Fig. 16 only, the warping term in Equation (3-58) was left out and

pure sine torsional mode shapes were used for the modal analysis

instead of the mode shapes described in Section 3.3.2.

The results of this comparison of methodologies are presented

in Fig. 16 for the [0 3/ 9 0 1S wing. Note that because the warping U
terms have been ignored, the linear natural frequencies at 0 cm do

not correspond to those in Table 2.

A minimum of two fore-&-aft modes are required to suffi-

ciently describe the proper trend in first torsional frequency varia-

tion; a minimum of three torsion and three fore-&-aft modes are I
required to sufficiently describe the trend in the second torsional

frequency; and a minimum of four torsion and four fore-&-aft modes

are required to sufficiently describe the trend in the third torsional

frequency. For accuracy, as compared to the exact analysis, three
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torsion and three fore-&-aft modes seem to be necessary for describ-

ing the first and second torsional frequency variations, while five

torsion and five fore-&-aft modes seem to be necessary for the third

torsional frequency. So, in general, a minimum of three torsion and

I three fore-&-aft modes are required to accurately predict the first

torsion frequency, with an additional torsion and an additional fore-

&-aft mode required for each subsequent torsion frequency.

The trends exhibited by both the exact and the modal analyses

indicate a softening trend in all the torsional frequencies - a drop of

approximately 10% in the first torsion frequency, a drop of approxi-

mately 30% in the second torsion frequency, and a drop of approxi-

mately 15% in the third torsion frequency. These trends reflect

those observed by Minguet [Ref. 74] for specimens of much higher

I aspect ratio - semi-span AR=18 as opposed to semi-span AR=4 for

the current analysis - but show a less marked drop in frequency as

tip deflection increases. This less noticeable coupling is likely due to

I the high stiffness of the fore-&-aft mode which comes from the large

chord-to-thickness ratio - in the current investigation, the fore-&-aft

I stiffness is four orders of magnitude greater than the out-of-plane

bending stiffness. The layups are so stiff in the fore-&-aft direction

that the v component is very small, and couples only lightly into the

I lower mode torsional 0 motion.

It should also be noted that the exact values are stiffer (i.e.

I higher in frequency) than those predicted by the modal analysis.

This is less noticeable for the first torsion frequency, but more so for

I the second and third torsion frequencies. - eg. at 20 cm tip deflec-

tion the exact and modal analyses for the second torsion frequency
103



I

differ by approximately 10 Hz, or about 20% of the exact value. This

discrepancy is rooted in the two assumptions of the modal analysis.

First, the modal analysis is based on an ordering scheme for moder-I

ate deflections, whereas the exact analysis is valid for arbitrarily

large deflections. Also, the fact that a discrete number of modes is

being used in the modal analysis will affect the final stiffness of the

problem. The first of these two effects is the major contributor to

the discrepancy, since with more and more modes the analysis is still

converging to frequency values below those of the exact analysis.

From this comparison it can be estimated that the modal anal-

ysis is accurate up to "moderate" deflections of about 10% of the span

(or about 5 cm), and are not accurate but follow the correct soften-

ing trend for "large" deflections, i.e. above 10% of the span. If the

second and third torsional modes were directly involved in the flut-

ter analysis, then this discrepancy at large deflections would

adversely affect the analysis since the wings are likely to either be

diverged or else flutter at high velocity, and thus the typical deflec-

tion at flutter would likely be above 10 cm. However, the second

and third torsional modes are only really used in the analysis as

minor corrections to the lower modes, so the previously mentioned

discrepancy is not likely to adversely affect the final flutter analysis.

It should also be noted that for very few fore-&-aft modes the I
analysis is entirely spurious, for example 3 torsion & 1 fore-&-aft for 3
the 1st torsion frequency, 3 torsion & 2 fore-&-aft for the 2nd tor-

sion frequency, and 3 torsion & 3 fore-&-aft for the 3rd torsion fre-

quency. The analyses using these parameters show a rapid harden-

ing trend instead of a slow softening trend. In these cases, there are I
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so few fore-&-aft modes that the torsion/torsion nonlinear terms
(characterized by Rmnij of equation (3-157)) dominate the torsion/
fore-&-aft nonlinear terms (characterized by Hmi j of equation

(3-158)).

In terms of application to flutter analysis, it is important that
while the second and third torsion frequencies show moderate soft-
ening, the first torsion frequency shows little change at all (only
2 Hz change over a range of 40% tip deflection, which is within the
error of the linear analysis presented in the previous section), and
the modal analysis matches closely the exact analysis. Since the first
torsion mode is dominant in both the coalescence of a linear flutter
analysis, or the single degree of freedom of a nonlinear flutter anal-
ysis, it is clear that the nonlinear geometric effects will have little
influence on the flutter solution. While it is true that not only the
torsion frequency will also be affected by the nonlinear geometric
effects, but also the torsion mode shape, again, because the fore-&-
aft stiffness if so large, the fore-&-aft contribution to the altered
mode shape is negligible. What little contribution there is from the
fore-&-aft mode has essentially no influence on the aerodynamics -
the fore-&-aft velocity is so small as compared to the free stream
velocity that the dynamic pressure is negligibly affected. There
would also be a contribution to the flapping rate by the rotation of
the fore-&-aft velocity from the local wing frame into the frame of
the free stream - again, this is second order and negligible because it
involves the product of two small quantities, the fore-&-aft velocity

and the angle from the local twist.

105



Fig. 17 shows the results of the modal analysis with the

warping terms included and demonstrates that the trends remain the

same and of the same order of magnitude as for Fig. 16. The second I
and third torsion frequencies show the same trends of moderate

softening. The first torsion frequency exhibits slight hardening

instead of slight softening, but the increase of approximately 2 Hz

over a 40% tip deflection still remains not significant enough to merit

ignoring the geometric nonlinearities in a flutter analysis. It should

be noted here the noticeable change between Figs. 16 and 17 in

linear frequency from analysis without and with torsional warping

terms included. As noted in the previous Section 5.1.2, the warping

values 0 are relatively small, so the first torsion frequency changes

only a small amount (approx. 21 Hz to 25 Hz, or 20% change).

However, the increased dependence of the higher modes on 0, and

the strong influence of the discontinuity of the styrofoam fairing I
near the wing root, cause the changes in the second and third tor-

sional frequencies to be more noticeable (approx. 63 Hz to 79 Hz, or

25% change, and 105 Hz to 145 Hz, or 40% change).

I
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5.1.4 Two-Dimensional Aerodynamics

Different analysis methods for two-dimensional coefficient

hysteresis for a NACA 0012 airfoil in low Reynolds number flow are

compared against one another in Figs. 18 and 19. The analysis

methods that are compared are constant coefficient harmonic bal-

ance, non-constant coefficient harmonic balance, and fourth-order

Runge-Kutta time marching. The purpose of comparing these analy-

sis methods is to determine first, whether non-constant coefficients

are required instead of constant coefficients, and second, whether a

harmonic analysis is sufficient to accurately describe the hysteresis

loop as compared against a method that is presumably an exact solu-

tion to the equations of motion.

Fig. 18, %. a moderate amplitude of oscillation of 40, over a

range of rtd.,;ed frequencies from 0.10 to 0.25, indicates that the

non-constant coefficient analysis compares favorably against the

exact Runge-Kutta analysis. This figure also indicates the major

deficiency of the constant coefficient analysis: since the coefficients

are constant, there is no nonlinear coupling between the mean of the

force coefficient (CLo in Fig. 18) and its other harmonic components,

and therefore there is no dependence of the mean on the reduced

frequency. However, it is clear from the non-constant and Runge-

Kutta analyses that the mean of the force coefficient is in fact

strongly influenced by the reduced frequency.

Table 3 indicates more clearly the appropriate trends for the

first harmonics, which are the harmonics that are likely to be most

dominant in a full flutter analysis. For the moderate amplitude of
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oscillation of A1=4 0 , both the Runge-Kutta and non-constant analyses

indicate a decrease in mean force coefficient as reduced frequencyi

increases (of about 20% from k=.10 to k=.25), while the constant

coefficient analysis shows no change. This is because the constant U
coefficient analysis has no coupling between the harmonics and the

mean, so the mean value remains unchanged as long as the oscilla-

tion amplitude, Al, remains unchanged. While the non-constant

analysis doesn't exactly match the exact Runge-Kutta analysis, and

drops more quickly with reduced frequency, the values are within i
10% error relative to the Runge-Kutta analysis. i

The in-phase, sine components follow the same trend for the

Runge-Kutta and non-constant analyses and are relatively close in

magnitude - there is a slight drop in sine values from k=.10 to k=.15

then an approximate doubling from k=.15 to k=.25. The Runge-Kutta I
and non-constant analyses are within 35% of one another for the sine

components. However, the constant coefficient analysis rises contin-

uously from k=.10 to k=.15 to k=.25. It would be expected that the

sine values would be fairly close for all analyses, since the in-phase

component is governed principally by the linear static slope.

The out-of-phase, co ,ine components match well for the Runge-

Kutta and non-constant analyses (within 25% of one another), show- I
ing an increasing trend with reduced frequency, while again the

slope for the non-constant analysis is greater than that for the

Runge-Kutta analysis. However, the constant coefficient analysis

shows a different trend, namely a slight rise from k=.10 to k=.15

then a large drop of approximately 25% at k=.25 - this has serious i
repercussions for a flutter analysis since the out-of-phase term is an
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important indication of the work being performed by the fluid flow.

This 2-dimensional aerodynamic analysis indicates that the constant

coefficient analysis is probably inappropriate for producing accurate

flutter results.

Fig. 19 shows that the non-constant coefficient analysis breaks

down for very large amplitudes of oscillation, in this case AI=10 0 . In

general, the non-constant coefficient analysis is only valid to ampli-

tudes of oscillation in the range of 50 or 60. Table 3 shows that the

mean and sine components are still moderately close for the Runge-

Kutta and non-constant analyses (within 10-20% of one another),

however the out-of-phase cosine component - while still exhibiting

the same increasing trend for both methods- remains about 300% off

for all values of reduced frequency. This is another indication that

I even when only considering the first harmonics, the harmonic anal-

ysis begins to break down for large amplitudes of oscillation. Again,

the constant coefficient analysis indicates an unchanging mean value

I(since there is no nonlinear coupling between the harmonics), while

the sine and cosine components are even further off the mark at

IAI=10 ° than for the moderate amplitude of AI=4° .

At first glance, from looking at the values for k=.10 and k=.15,

I one might conclude that the mean values decrease as amplitude of

oscillation increases, but this is not the case. Instead, the trend

changes with increasing amplitude of oscillation - that is, the mean

decreases for increasing reduced frequency at A1=40 , but the mean

increases for increasing reduced frequency at AI=10 0 . So, for

Iincreasing amplitude of oscillation, the mean drops at low reduced

frequencies and rises at high reduced frequencies, and there is some
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point between k=.15 and k=.25 for which it does not change at all. A I
similar change is also noticed for the sine component - the sine com-

ponent generally increases for increasing reduced frequency at

A 1=40, but the sine component decreases for increasing reduced fre-

quency at AI=10 ° . It is difficult to attribute physical interpretations

to these trends because of the high nonlinearity of the formulation.

Overall, with the two harmonics also taken into consideration,

the analytic hysteresis loops look odd at an oscillation amplitude of I
A1=10 ° in Fig. 19. The loops appear to not have enough stall delay,

drop too low and too quickly into stall after the stall delay, and

return too suddenly from nonlinear stall to linear behavior in return-

ing below the stall angle. This odd behavior is likely due to the fact

that the fixed-time stall delay, Ar. has been smeared over the entire I
cycle, making the apparent delays within specific portions of the loop

seem incorrect.

Fig. 20 is an example of experimental data from Ref. 5. While

this data does not match the analysis - 5x10 5 Reynolds number as

compared to 2x10 5 for the analysis in Figs. 18 & 19 - it is worthy to

note that the trends in the experiment are similar to that of the

analysis at moderate amplitudes of oscillation. The two harmonic I
Fourier components of the data are also presented in Fig. 20.

It was also attempted to compare the analysis against results

produced by the Upwind Approximate Factorization Navier-Stokes

(UPWAFNS, a.k.a. CFL2D) computational fluid dynamics code

[Ref. 30]. However, because of the large amplitudes being consid- I
ered here, the CFD analysis proved to be unsuccessful in satisfactorily

reproducing the experimental results of Ref. 5 presented in Fig. 18.
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mean sin(kr) cos(k'r)
I RK c ( RK N cc RK 2 x

3 A-O=10

AI=4 .699 .740 .765 .150 .098 .185 .114 .098 .218

k=.1O

AO=10

I A1=4 .690 .711 .765 .137 .091 .284 .153 .196 .236

k=.15

AO=10

A1=4 .578 .520 .765 .222 .259 .339 .229 .242 .174

k=.25

I AO=10

AI=10 .512 .509 .567 .347 .381 .223 .010 -.004 .142

k=. 10

AO=-10

AI=10 .519 .572 .567 .293 .257 .169 .023 .062 .321

k=.15 _

A O = 10 
2 -7AI=10 .644 .886 .567 .125 -.089 .317 .106 .329 .740

k=.25

RK = Runge-Kutta analysis
NC = non-constant coefficient analysis
CC = constant coefficient analysis

I Table 3. Ist harmonic components of 2.dimensional
aerodynamic analysis
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5.2 Flutter Analysis

5.2.1 Linear U-g Analysis

The analytic results for classical, linear divergence are pre-

sented in Table 4 for the laminates of interest using the three-

dimensional, linear aerodynamics described in Section 3.5.1. The

U-g plots from which these values are generated, using three bend-

ing mode shapes and three torsional mode shapes, are shown in Figs.

21 to 23. As expected, the [03/ 9 0 1 s wing has a torsional flutter

velocity very near its divergence velocity, the '+ 15 2/0 2]S wing has a

torsional flutter velocity just above that of the [0 3/9 01 S wing, and the

[- 15 2/0 2]S wing has a divergence velocity well below its torsional

flutter velocity.

For the [0 3/9 0 1S layup, the linear flutter velocity, VF, is approx-

imately equal to the linear divergence velocity, VD, because there is

no bending-torsion coupling and the elastic axis is at the midchord -

both are near 28 m/s which is just below the experimental wind

tunnel limit. The flutter frequency, CDF, is the typical coalescence fre-

quency of a linear flutter analysis and, as seen from the U-g plot in

I Fig. 21, results from the drop of the first torsional frequency COl T

i from 24.6 Hz to 11.9 Hz, while the first bending frequency coI B
drops from 4.3 Hz to 0 Hz (i.e. divergence). The combination of the

I flutter velocity and the flutter frequency yield a reduced frequency

of approximately 0.15, indicating that any nonlinear analysis applied

I at this point is within the valid range discussed in the previous

section. The divergence velocity is in fact slightly below the flutter

velocity, so in a real flutter situation one would expect stalling at the

117



I
I

point of flutter initiation, even at root angle of attack of a =O0

However, one would also expect this stalling to be light, since the I
nonlinear effects will just be beginning to come into play so as to

hinder the exponential growth in deflection due to divergence. It is

not possible to predict the dependence of the flutter characteristics

on an increasing root angle of attack aR since the aerodynamics are

stalled, and hence will likely affect both the flutter velocity and the

flutter frequency.

For the [+15 2/ 0 21 S layup the linear divergence velocity is much 1
greater than the linear flutter velocity due to the "negative" bending-

torsion coupling of the layup - that is, because positive bending

induces negative twist. As noted in Section 5.1.2, the flutter charac-

teristics have more to do with the natural mode shapes than the nat-

ural frequencies, since the natural frequencies remain relatively I
unchanged for all the layups. The behavior of the first torsion mode

is almost identical to that of the [0 3/9 01 S layup: as shown in Fig. 22,

the first torsion frequency 0 1T drops from 23.5 Hz to 11.6 Hz by the

time the damping ratio crosses the zero axis at 26.9 m/s. However,

the first bending frequency continues to rise from 3.9 Hz, and the I
damping ratio in bending continues to decrease, never crossing the

zero axis. However, this might be simply due to the fact that the U-g I
analysis has not been carried out to a high enough velocity - there

might in fact be a velocity high enough that the bending-torsion

coupling becomes too weak to counteract the positive twist created

by the increasing moment induced by the associated increasing

dynamic pressure. Therefore, the notation of "-" in Table 4 is only I
meant as an indication that the divergence velocity might be very
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large, and is certainly out of the range of the velocity plotted in

Fig. 22 and out of the range of the actual wind tunnel experiment.

In a real flutter situation with the [+15 2/ 0 2]S layup, stalling

would again be expected, but not for the same reason as divergence

as for the [0 3/ 9 0 1S layup. Instead, it would be expected that the

amplitude of oscillation would grow exponentially until it reaches the

stalling regime, at which point the stalling would hinder further

growth and induce limit cycles. Therefore, certain characteristics can

be predicted within the range of root angle of attack a R below the

static stall angle. First, it can be expected that the flutter velocity

and frequency will remain relatively unchanged since the flutter

response will be governed by linear aerodynamics (with slight cor-

rections to rotate the aerodynamic forces through aR into the local

wing coordinates), and the nonlinear aerodynamics will only act as a

limiting factor. It is in this limiting factor that the characteristics will

change with increasing root angle of attack: as aR increases, smaller

and smaller amplitudes of oscillation will be required to reach the

stalling regime and induce limit cycles. Therefore, as the root angle

of attack is increased, it is expected that the flutter velocity and fre-

quency will remain unchanged while the amplitude of oscillation

decreases. This trend seems counter-intuitive at first - one gener-

ally expects increasing response (whether steady deflection or

unsteady oscillation) with increasing load due to an increased root

angle of attack.

For the [-15 2/0 21S layup the linear divergence velocity is much

below the linear flutter velocity because of the "positive" bending-

torsion coupling - that is, because positive bending induces positive
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twist. In a general physical sense, divergence is induced because an

aerodynamic load causes a positive twist, which induces further U
aerodynamic load, which causes further twist, and so on, in a cascad-

ing effect. With the "positive" bending-torsion coupling, the increas-

ing aerodynamic load also induces an increased bending, which also

induces further twist, and thus "aggravates" the divergence effect.

That is, because of the bending-torsion coupling, the velocity at

which this effect continues to cascade (i.e. grow exponentially)

instead of converging to a steady deflection is lower than for a layup

with no bending-torsion coupling, such as the [0 3/9 0 1S layup. The

U-g diagram for the [-15 2/0 2]S layup, shown in Fig. 23, indicates a

different behavior for the torsional mode than the two previously

discussed layups. The behavior shows no sharp rise in damping

ratio, and no sharp drop in the torsion frequency MIT just before the

onset of flutter - as is the case for the [0 3/9 01S and [+15 2/0 21 S layups

in Figs. 21 and 22 - but is instead more gradual.

In a real aeroelastic situation, these results would indicate that

the wing would likely experience divergence, whose growth would

probably be limited by nonlinear aerodynamic effects. Whether such

a growth would trigger any kind of oscillatory response is not pre-

dictable by the U-g analysis. It might also be possible to achieve I
flutter at the higher, linear flutter velocity, but this is unlikely. First,

because of divergence, the wing might possibly break at such a high

velocity. Second, again because of divergence, at the higher, linear

flutter velocity the aerodynamics will be in deep stall, and will be

very different from those used to predict the linear flutter velocity m

in the first place.
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Therefore, the U-g method has various degrees of applicability

Iin predicting flutter characteristics for a range of bending-torsion

coupling. For the [0 3/9 01 S layup, the U-g method is likely to accu-

rately predict the correct flutter velocity and frequency at root angle

I of attack aR=O, but one can only estimate trends for increasing aR.

For the [+152/0 21 S layup, the U-g method will accurately predict the

Iflutter velocity and frequency characteristics over a wide range of

root angles of attack up to the static stall angle, although it can only

be used to estimate the trend in limit cycle amplitudes over that

Irange. For the [-15 2/0 21S layup, the U-g method will likely predict

the correct onset of an aerodynamic instability at the divergence

Ivelocity, but what type of instability - whether divergence or

oscillatory - is uncertain. As with the [0 3/9 0 1S layup, it is difficult to

1 predict the behavior for increasing root angle of attack aR.
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5.2.2 Flutter Boundaries

The experimental and analytic flutter boundaries (i.e. for very

small amplitude oscillation) are presented in Figs. Lo 2t. Each

graph demonstrates some of the expected trends for each of the I
[0 3/9 0 1S, [+15 2/0 21S , and [-15 2/ 0 2]s layups that wtrc predicted by

the U-g analysis, but quantifies these trends in a way that the U-g

analysis could not.

Fig. 24 for the [0 3/ 9 0 1s laminate starts at the linear flutter

velocity but immediately begins to exhibit nonlinear behavior I
because the linear flutter velocity is so close to the divergence veloc-

ity, as would be expected from the U-g analysis. That is, the diver- I
gence and exponential growth of flutter into the stalling regime only

limit the growth to limit cycles, but do not significantly alter the

linear results that could be derived by the U-g analysis, otherwise 3
the nonlinear results would be further from the linear results at root

angle of attack aR=0. An increase in the root angle of attack aR I
causes the flutter velocity to drop and the flutter motion to become

more purely torsional (denoted by a frequency closer to the first

torsion free vibration frequency and a decrease in the bending 3
amplitude).

For values of the root angle of attack up to the static stall angle,

this behavior is governed by "light" stalling, i.e. where the major

portion of the wing is oscillating across the static stall angle, back and

forth between the stalled and unstalled regions. The flutter velocity

drops smoothly and slowly as the root angle of attack increases, by

about 1 m/s per 10 increase in aR - as the root angle of attack
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increases, the distributed load consequently increases, and the wing

would twist further into stall, except that the velocity decreases so as

to decrease the dynamic pressure, thus counteracting the positive

twist, and keeps the wing only in light stalling. Also, as the flutter

velocity drops, the flutter frequency consequently rises toward the

first torsional natural frequency - again, because the stalling effects

only induce the limit cycles and do not strongly affect the linear

aerodynamics, this is the same as travelling backward along first

torsion branch of the frequency plot derived by the U-g analysis.

After the root angle of attack reaches the static stall angle, the

flutter behavior begins to be governed by "deep" stall, that is, the

changes in characteristics of the vortex shedding as the flow gets

pushed further in the stall regime - characterized mathematically by

the parameters a1, r l , and e1 in equations (3-94) to (3-96). The

flutter velocity continues to decrease smoothly, and the flutter fre-

quency continues to increase smoothly toward the first torsional nat-

ural frequency, indicating a strong dependence on deep stall charac-

teristics. If the deep stall characteristics were in fact weak, then the

flutter velocity and flutter frequency would show little change past

the static stall angle since both the aerodynamic linear characteristics

and the nonlinear stalling characteristics would changc very little (CL

levels off past stall, while CM continues to drop, but only slowly - see

Appendix C). These trends indicate that in designing an airfoil for

flutter purposes, it might be desirable to do so such that the deep

stalling characteristics change as little as possible from the light

stalling characteristics, so that the flutter velocity in deep stall

remains as high as possible. This objective, however, might not
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prove possible since, as noted in early dynamic stall studies I
[Refs. 1-51, the characteristics of deep stall tend to be independent of

airfoil geometry.

It should also be noted that experimentally, at root angle of

attack aR=l, simultaneous bending and torsion flutter were

observed at the divergence/flutter speed (although only the experi-

mental, torsional flutter speed is plotted on Fig. 24). The wing

would "flap" at large amplitudes of oscillation in bending then,

intermittently, would cease flapping and instead oscillate in a tor-

sional manner. This observation seems to indicate the strong cou-

pling of both divergence and flutter in the linear regime.

Fig. 25 for the [+152/0 21S laminate shows a more extended

range of linear aerodynamic behavior as would be expected from the I
linear U-g analysis (because the divergence velocity is very high and

the tip twist is negative) and a very sharp change in the flutter

behavior once it goes into the nonlinear stall region. The linear

region of the behavior is valid up until the root angle of attack aR

reaches the static stall angle. This behavior is because of the

bending-torsion coupling: as CXR  increases the distributed load

increases, causing increased deflection, and thus inducing negative

twist which counteracts the positive twist from the increased dis-

tributed moment. In the case of the [+15 2/ 0 21s layup, this effect is

large enough so as to actually produce a negative twist, but it would

be possible that with a weaker negative bending-torsion coupling the

effect would only cause a small, but still positive, twist.I

The analysis shows an almost linear trend up to the static stall

angle - the only deviation is due to the rotation of the aerodynamic
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loads from the free stream coordinates into the rotated, local wing

coordinates. The analysis also remains almost linear for a short

range past the static stall angle, up to about aR=130 - the negative

twist keeps the majority of the wing unstalled so that while the root

of the wing is stalled, it has little effect on the overall aerodynamics

governing the flutter behavior.

Once past the linear region, the flutter behavior goes into deep

stall very quickly. This is because by the time the tip finally reaches

stall, the root must already be in deep stall because of the negative

twist. As the root angle of attack is then further increased, the twist

remains essentially unchanged - since the force coefficient curves

level off, no more distributed aerodynamic load is generated - so

there is no longer any increasing negative twist to counteract the

increasing positive angle of attack, and the wing quickly goes into

deep stall. In other words, the transition through light stall is unlike

that of the [0 3/ 9 0 1S layup, and is very short and very sudden. As the

light stalling characteristics become less dominant (eg. for an airfoil

geometry for which ro might be smaller), it would be expected that

this quick drop would become even more sudden, since the behavior

would lock into the deep stall characteristics more quickly.

Therefore, a wing with the type of bending-torsion coupling as the

[+1 5 2/0 21S layup is beneficial in terms of divergence, but the drop in

flutter velocity due to stalling might prove to be sudden and unex-

pected. For example, a brief change in perceived angle of attack of

only 30 - eg. from cR=14 to cR=17  - might drop the flutter veloc-

ity by half its value, while such a small change in angle of attack for
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the [03/901 S layup would only induce a moderate change in flutter i
velocity.

The experimental flutter velocity values for the [+152/021 S

layup show a smoother trend from linear behavior to nonlinear,

stalled behavior than does the analytic prediction. Most noticeably,

the experimental flutter velocities drop by 4 m/s between root i
angles of attack aR=1 0 and aR= 110. There are several possible

explanations for this discrepancy. First, there might be unmodeled

structural nonlinearities that are unaccounted for in the current

analysis. The experimental drop in flutter velocity indicates that

there might be an additional softening trend - this might be

accounted for by additional geometric nonlinearities, or by cubic

stiffening. However, neither of these possibilities seems likely since I
the inclusion of geometric nonlinearities did not produce this soften-

ing trend in the linear aerodynamic region, and cubic stiffening

would produce a hardening effect instead of a softening effect.

Second, the aerodynamics might not be totally linear just below the

static stall angle. In fact, some previous investigations use a I
parabolic drop just before the static stall angle (see Appendix C),

while the current investigation overpredicts the lift coefficient near

the static stall angle. This consideration would have the same effect

as the light stalling for the [03/901 S layup, and would more smoothly

decrease the flutter velocity. This is likely to account for a large part 3
of the discrepancy, but would make the analysis more difficult since

it would require more describing regions and higher order approxi-

mations than the current analysis. Third, 3-dimensional spanwise

aerodynamics effects might also affect the flutter calculation. While
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the spanwise drop used to taper the aerodynamic load as it reaches

the tip (see Appendix C) is fairly accurate for no twist, it tends to be

I less accurate for either negative or positive twist (see Landsberger

[Ref. 92] for comparison of currently used strip theory against

3-dimensional lifting line theory). This effect might also account for

some of the discrepancy, though probably very little since the linear

I coefficients of the approximated Theodorsen function still remain

unchanged at each spanwise location.

The discrepancy in frequency in Fig. 25 is easier to account for.

I First, it is difficult to begin with to accurately get the flutter fre-

quency for frequency coalescence. As can be seen in Fig. 22, the

I flutter frequency changes very quickly in the range of the flutter

velocity, so that any slight structural damping, which might move the

zero axis of the damping coefficient and hence slightly alter the flut-

I ter velocity, will consequently strongly affect the flutter frequency.

Second, the first bending and first torsion free vibration frequencies

I of the [+152/0 21S (as listed in Table 2) are in the range of 1 Hz off in

comparing experiment to analysis, so it can only be expected for a

I frequency coalescence phenomenon that the results will show error

i in the same order of magnitude.

Fig. 26 for the [-45 2/ 0 21S laminate indicates a much different

I trend where the flutter is characterized by a low, first-bending fre-

quency and immediate nonlinear, bending stall flutter in the range of

I the divergence velocity - there is no portion of the flutter graph

here which could have been predicted by a linear analysis. As with

the [0 3/9 01S layup, the behavior seems to be governed by light stall

I dynamics for a root angle of attack up to the static stall angle. That
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is, the flutter behavior is triggered only at the very onset of diver-

gence, where the major part of the wing is just starting to straddle

the static stall angle, instead of at a higher velocity, where the wing

would be twisted even further into stall because of divergence. i
Again, as with the [0 3/ 9 01 S layup, an increase in the root angle of

attack induces a smooth decrease in the flutter velocity of just less

than I m/s per I increase in aR, as if to keep the governing behav- -
ior just bordering the stall regime, neither fully entering either the

fully linear or the fully nonlinear, stalled regions. The analytic I
behavior past a root angle of attack equal to the static stall angle, i.e.

in deep stall, also follows the same trend in flutter velocity as the

[0 319 0 1S layup, namely that the deep stall characteristics are strong

enough so that the flutter velocity continues to decrease at approxi-

mately the same rate as for light stall. The experimental behavior

for the [-15 2/0 21S layup is very different in deep stall than for the

[0 3/9 01S layup - perhaps, unlike the [03/901S layup, the aerodynam- I
ics do level off, and the flutter velocity remains relatively u
unchanged. However, the deep stall data is represented by only one

data point at R=15 ° , so it is uncertain whether the discrepancy is

due to spurious experimental data or poor analysis.

The trend in flutter frequency for the [-15 2/0 21 S layup differs I
quite makedly from that of the [0 3/9 0 1S layup. Instead of starting

at the linear frequency coalescence value, it starts at just below

2 Hz, that is somewhere between 0 Hz and the first bending natural

frequency of 4.0 Hz. The effect is likely analogous to that of the

[0 3/ 9 0 1S layup: the nonlinear stalling features do not play a signifi-

cant role in changing the linear aerodynamics, but instead govern the
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limit cycles and hence determine at which point on the U-g diagram

the solution shifts in accordance with an increasing root angle of

attack. So, near the divergence velocity, the flutter behavior is gov-

erned by the first bending mode (which has the lowest associated

damping ratio as seen in Fig. 23) and as the root angle of attack aR is

increased, thus decreasing the flutter velocity, the flutter frequency

consequently increases toward the first bending natural frequency,

as if following the first bending branch of the frequency plot for the

U-g analysis. The only portion of Fig. 26 that could directly have

been predicted by the U-g analysis is the velocity at which the

aeroelastic instability first occurs. The U-g analysis would have

predicted divergence, but could not have predicted the possible oscil-

latory nature of the instability, its frequency, or the ensuing trend

with increasing root angle of attack - these would require the non-

linear, stalled analysis.

All three figures indicate that as the root angle of attack a R is

increased, the flutter velocity - whether bending or torsional -

decreases, and the flutter frequency tends toward the associated

linear, natural frequency. The parameter of bending-torsion cou-

pling determines whether the flutter frequency will start as coales-

cence of the torsion with the bending mode, or will start near the

first bending frequency, and whether the decrease in flutter velocity

with root angle of attack will be smooth or sudden. The previous

study [Refs. 94 and 951 was unable to experimentally investigate

the phenomenon of sudden transition from linear flutter to non-

linear, stalled flutter because of the velocity limitations of the wind

tunnel.
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5.2.3 Large-Amplitude. Nonlinear Flutter

The experimental and analytic flutter characteristics for

increasing amplitudes of oscillation are presented in Figs. 27 to 32.

The pairs of figures (Figs. 27 and 28 for the [0 3/9 0 ]S layup; Figs. 29

and 30 for the [+15 2/ 0 21S layup; and Figs. 31 and 32 for the

[- 15 2/0 21 S layup) contain (a) the graphs of the time-averaged mid-

chord tip deflection and of the time-averaged total tip angle (the sum

of the root angle of attack and the tip twist), and (b) the graphs of

the midchord tip deflection amplitude of oscillation and of the tip

twist amplitude of oscillation, all for increasing velocity with constant

root angle of attack (aR=1 0 , 50, 100, and 150). For each line of con-

stant root angle of attack CaR, both the full, unsteady flutter analysis

(dashed lines on Figs. 27, 29, & 31; solid lines on Figs. 28, 30, & 32)

and the steady, static analysis (unsteady terms suppressed) (solid

lines on Figs. 27, 29, & 31) are presented, so as to show where the

two meet (equivalent to the flutter boundary). Likewise, both the

steady, static experimental data and the unsteady, flutter experi-

mental data are presented. This experimental data is gathered from

two sources: video recordings of tip deflections (hollow symbols) and

convened strain gauge readings (solid symbols). (The root strain

gauge ba.i"ig and torsion readings were convened to approximate

tip deflections by assuming the same shape for the spanwise dis-

tributed load as described in Appendix C).

Note that the analysis has been conducted without including

fore-&-aft modes, only bending and torsion modes. This is because,

as noted in previous sections. these modes have little effect on the

137



I
I

frequency and mode shape of the first torsional mode, which is the

the dominant torsional mode in both linear and stalled flutter of the

[03/901S and (+152/02] S layups, and has no effect on the first bending

mode, which is the dominant mode for the [-152/02]S layup. I
Graphs in Fig. 27 for the [03/901 S laminate show the same

trends in analysis: both the midchord tip deflection and total tip

angle show a sharp decrease when the velocity is increased past the

flutter boundary. These analytic trends compare favorably for root

angles of attack aR=10 & 50, but less well for aR=1O0 & 150.

The averaged tip deflections for the [03/901S layup show the

typical characteristics of divergence. For low root angles of attack,

the tip deflection remains relatively small just up until the point

where the divergence speed is reached. If in fact the root angle of

attack were aR=O, then the deflection would remain zero until the 3
divergence speed, then would "jump" to an asymptotic stalled behav-

ior [Ref. 94]. For higher root angles of attack above the static stall I
angle, eg. aR=100 & 150, the tip deflection variations are almost

identical - since the entire wing is past stall, the distributed load

remains the same irrespective of the root angle of attack, and conse-

quently the bending deflection is identical and only dependent on

the increasing dynamic pressure.

The experimental values show identical trends as the analysis,

although shifted slightly. At worst (i.e. at divergence/flutter for I
aR= 10 or 50) they are 5-7cm lower than the analytic predictions of

20-25cm; near moderate deflections of approximately 10cm the

experimental values are 1-2cm below the analysis. Since the 3
behavior is highly nonlinear and involves rapid changes in deflec-
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tions, these discrepancies between experiment and analysis seem

within reason. However, the discrepancy between experimental

values for a R = 10 0 and a R = 15 5 indicate that the assumption of

unchanging static aerodynamic characteristics past stall is slightly

inaccurate - since the experimental deflections for the higher root

angle of attack are in fact larger, it can be deduced that the aerody-

namic coefficients do not in fact level off, but continue to rise

slightly. The trends in averaged total tip angle for the [0 3/ 9 0 ]S layup

are essentially the same as for the averaged tip deflection, since the

two are in fact coupled in producing the divergence phenomenon, but

the correlation between analysis and experiment happens to be

much closer.

The analysis in Fig. 27 predicts a sharp drop in both tip

deflection and tip angle for czR=l° & 50 as the amplitude of oscillation

increases past the flutter boundary. The drop in deflections is likely

due to the dependence of mean load on amplitude of oscillation at

low reduced frequency, as described in Section 5.1.4 for the 2D

aerodynamic analysis. The reason the drop is so sudden is because,

as noted in Section 5.2.2 for the flutter boundaries, when the root

angle of attack is below the static stall angle the behavior is still

essentially governed by the linear aerodynamics, so the oscillation

growth i- still essentially exponential up until deep stall is reached.

Therefore, it would be expected that a small change in velocity would

produce a large increase in amplitude of oscillation. This prediction

matches the experiment fairly well for aR=I° & 50 in both Figs. 27

and 28. As the oscillation growth then continues within the deep

stall region, the intuitive physical sense is that a hardening trend will
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occur - that is, larger and larger velocities will be required to create

larger amplitudes of oscillation. This assumption is borne out by the

experiment, especially clear in the tip angle oscillation graph in I
Fig. 28, but is not well predicted by the analysis. Instead, the anal-

ysis shows hardening with a softening trend, that is, the increase in

velocity required to produce the same increase in amplitude of oscil-

lation progressively gets smaller and smaller. This is likely due to

the poor prediction of the out-of-phase terms of the nonlinear aero-

dynamics at higher amplitudes of oscillation, as discussed in

Section 5.1.4. The oscillation amplitude in bending in Fig. 28 indi- I
cates, as expected, that the nonlinear flutter phenomenon is single

degree of freedom in torsion.

The characteristics of oscillation for the [0 3/9 01 S layup for

aR=10 ° and aR=15° are essentially the same as for the low root

angles of attack of aR=l° and aR=5 ° , except that there is no sudden I
change through light stall to deep stall because the wings are already

in deep stall from the root angle of attack. This means that the

change in mean deflections is less pronounced than for aR=10 & 50, I
but still follows the trend of decreasing with increased amplitude of

oscillation, again because of the same nonlinear aerodynamic effects.

For example, at CL R=l an increase in velocity from 27 m/s to

28 m/s produces a 90 drop in twist, while at aR=100 an increase in

velocity from 17 m/s to 22 m/s is required to produce the same

drop. This tends not to match the tip deflection experimental data,

which continues to increase, while the tip angle experimental data

shows different trends for the video and strain gauge data.

I
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The discrepancy in tip deflection indicates that there should be

an increase in aerodynamic loading with oscillation amplitude in

deep stall, while the trend might be the opposite in light stall. This

discrepancy indicates a deficiency in the aerodynamic model that

might be attributed to the "smearing" of the fixed-time stall delay.

That is, it is convenient to smear the fixed-time stall delay over the

hysteresis loop when the oscillation straddles the stall angle (i.e. light

stalling), but it is probably inappropriate to do so when the entire

hysteresis is above the stall angle and there is in fact no fixed-time

stall delay (i.e. deep stall). The discrepancy in experimental data

between video data and strain gauge data indicates that the assump-

tion in converting the strain gauge data to tip angle is probably no

longer valid - there are likely higher modes that are starting to come

into play for aR=10° & 150 that drastically alter the root curvatures.

A better method of comparison would to compare the experimental

strain readings against the predicted values derived from the root

curvatures of the mode shapes.

Again, the experimental trends for aR=100 & 150 for the

[0 3/ 9 0 ]S layup follow physical intuition: they are already in deep

stall so a hardening effect is observed such that greater and greater

velocity is required to produce larger amplitudes of oscillation.

Again, as with the low root angles of attack, the analysis predicts the

initial growth fairly well but breaks down as the amplitude of oscil-

lation grows from moderate to large, showing an analytic softening

trend counter to the experimental hardening trend. And again, as

with the low root angles of attack, the small bending oscillation
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amplitudes indicate a single degree of freedom phenomenon in

torsion.

Fig. 29 for the [+152/0 2]s layup shows the characteristics typi- I
cal of negative bending-torsion coupling. Increasing velocity induces

increased negative twist, as exemplified in the tip angle plot, thus

precluding any sharp rise in tip deflection, as seen in the tip deflec-

tion plot. Even up to a root angle of attack of aR=15 0 , the flutter ini-

tiation is essentially governed by linear aerodynamics. Therefore, I
the oscillation growth is nearly exponential, until it is checked by the

stalled aerodynamics.

This exponential growth behavior is most clear on the tip angle

oscillation amplitude graph of Fig. 30, in which the oscillation ampli-

tudes continue to increase at the same velocity until deep stall has I
been reached. The corresponding points on the averaged deflection

plots of Fig. 29 are harder to identify - remembering that the

velocity remains unchanged during the exponential growth, it then

becomes clear that the tip deflections are also remaining unchanged,

even as the oscillation amplitudes pass through light stall on the way

to limit cycles at deep stall.

Once deep stall is reached, an analytic softening trend in the I
flutter characteristics is predicted - that is, once past the flutter

boundary, the analysis predicts that a decrease in velocity will

induce a jump to a larger flutter amplitude. This is a characteristic

also observed in Refs. 94 and 95 for analysis with constant coeffi-

cients and is likely unfounded (and could not be reproduc- J Cxperi- I
mentally), but might again be due to the breakdown of the

2-dimensional aerodynamic analysis at large amplitudes of oscilla-
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tion. Also, as seen in Fig. 29, the flutter velocities for the [+152/021 S

I layup are very high, thus inducing large tip deflections. It is there-

fore likely that at high amplitudes of oscillation the governing effects

are the nonlinear structural effects, not the nonlinear aerodynamic

effects, and hardening effects will be observed such as those for

cubic stiffening in Refs. 94 and 95.

I The experimental trends for the [+15 2/ 0 21S layup for increasing

amplitudes of oscillation again show hardening effects, as would be

I expected from physical intuition. However, as seen in the graph for

amplitude of oscillation in torsion, these hardening effects start to

I become noticeable even before the oscillation amplitudes reach the

static stall angle. This might also be a consequence of the inaccurate

static aerodynamic modeling below the stall angle, where in fact

there is something like a parabolic drop before stall instead of a con-

tinuous linear rise. This would mean that the stalling effects would

I start to play a role in limiting the exponential growth even before

the static stall angle were exceeded.

Fig. 31 for the [- 15 2/ 0 2]S layup shows a more gentle deviation

I from the steady analysis, as compared to the sharp change in charac-

ter demonstrated by the (0 3/ 9 0 1 S layup in Fig. 27. The experiment

I and analysis indicate that, contrary to the [0 3/9 0 1S laminate, both the

tip deflection and tip angle continue to increase once the velocity is

increased past the flutter boundary. Essentially, however, the flutter

characteristics are not unlike those of the [0 3/ 9 0 1 S layup. As with

the [0 3/ 9 0 1 S layup, the steady characteristics of the [- 15 2/ 0 21 s layup

are principally governed by divergence phenomenon. The flutter at

low root angles of attack is triggered by the transition into light stall.
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Unlike the [0 3/ 9 0 1 s layup, however, it is difficult to compare how i
well the analysis compares against experiment for the averaged

deflections past flutter initiation, since it is difficult to tell how much

the decrease in load with increasing amplitude of oscillation is coun-

teracted by the increase in deflection from increasing velocity. All

that can be concluded from Fig. 31 is that the deflections generally

continue to increase past the flutter boundary, both analytically and

experimentally, thus indicating that for the [- 15 2/ 0 21S layup the

divergence effects tend to overpower the nonlinear coupling between

oscillation and mean aerodynamic load.

Fig.32 for the [- 1 5 2/ 0 21S , showing the amplitude of oscillation

of the bending and torsion components, displays a much higher

bending component, as would be expected for this predominantlyi

bending stall flutter. In contrast to the [03/901 S and [+ 1 5 2/ 0 21 s

layups, the analysis shows more hardening than the experimental

trends - that is, the bending oscillation amplitudes grow very

quickly from just a small increase in velocity, while the analysis

would predict that a larger increase in velocity would be required.

This discrepancy might be due to two possible effects. First, the

dependence of the nonlinear aerodynamics on the difference i
between perceived angle of attack due to pitch (0) and due to plunge

rate (l/U) might not be accurately modeled, despite the physical

arguments presented in previous investigations [Refs. 55 & 561.

Second, while the geometric nonlinearities have been taken into

account for large mean deflections, the current analysis does not take i
into account large amplitudes of oscillation of the deflections, only

small amplitudes of oscillation around a large deflected mean. These
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two effects might combine so as to account for the difference in soft-

ening between the experimental and analytic values. Again, as with

the previous layups, large amplitudes of oscillation tend to produce a

Ilessening of the hardening in the analysis (i.e. the hardening with

velocity is smaller at large amplitudes of oscillation than at small

amplitudes of oscillation) that is not at all evident experimentally.

IAlso, as noted for the flutter boundary analysis, the values at root

angle of attack aR-15° are likely so disparate because of large exper-

Iimental errors.

I
I
I
I
I
I
I
I
I
I
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Chapter VI

Conclusions & Recommendations
An analytic method has been developed to include nonlinear

structural and nonlinear aerodynamic effects into a full,

3-dimensional, aeroelastic problem, using the mathematical tools of

Fourier analysis, harmonic balance, and the Newton-Raphson method

as a numerical solver. The method makes use of the geometrically

nonlinear, Hodges & Dowell structural model, based on a second-

order ordering scheme, together with the ONERA stall flutter model

for the aerodynamics. Although in the current investigation the

method is used with many simplifications - for example in the sim-

plification of the aerodynamic force curves, in the semi-empirical

nature of the aerodynamic model, and in the low number of harmon-

ics used in the harmonic balance method - the formulation can be

extended to implement more complex variations of these factors.

The current analysis extends on previous work by more thoroughly

investigating the effects of nonlinear, large amplitude deflections,

and by more accurately modeling the nonlinear aerodynamics of the

ON'ERA model within the context of a harmonic balance scheme.

As shown in Chapter5, the current nonlinear aeroelastic anal-

ysis predicts well almost all the observed, experimental, nonlinear

stall phenomena. Specifically, flutter boundaries have been obtained

which decrease with root angle of attack, limit cycle amplitudes at

flutter have been obtained, and the transitions from linear, bending-

torsion flutter to torsional stall flutter, and from linear divergence to

bending stall flutter, have been predicted analytically. In addition,
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within the range of the valid amplitudes of oscillation for the ONERA

model, the analysis correctly predicts the experimental hardening

trend as amplitude of oscillation increases. I

6.1 Aerodynamic Model

The current investigation has contributed a unique approach to

the application of the ONERA model to stall flutter analyses and has I
many advantages. First and foremost, by the use of the ONERA

model, the method is in such a form that it is generalizable for a wide

range of parameters - such as airfoil type and Reynolds number, as

long as the aerodynamic characteristics of the airfoil are available -

and thus relieves some of the cumbersomeness inherent in purely I
theoretical models. Second, by the application of harmonic balance

and Rayleigh-Ritz to the ONERA model, the method is in a simplified

form that allows the user to choose the number of mode shapes or 3
order of harmonics to suit his particular problem, while retaining the

full nonlinearity of the formulation. Third, by use of Fourier analysis

and harmonic balance, the current analysis avoids the need for time-

marching integration and avoids any computational time that might I
be needed in such a method to reach the final flutter limit cycle.

However, as currently implemented, the model still has limita-

tions (other than the limitations already inherent in a semi-empirical

model such as the ONE? A model). First, the current application of

Fourier analysis to the forcing terms ignores the fixed-time stall I
delay of the ONERA model. Second, as noted in Section 5.1.4, the cur-

rent model accurately reproduces the exact time marching solution to

the ONERA equations for moderate amplitudes of oscillation, but
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breaks down for larger amplitudes. This precludes properly predict-

ing flutter characteristics well beyond the small amplitude flutter

boundary. Third, there is little low Reynolds number data from

which to extract the ONERA nonlinear coefficients.

Fortunately, these deficiencies are not inherent to the model

itself, but are reflections of its current mode of application. The

fixed-time stall delay can be directly implemented - instead of being
"smeared" over the entire hysteresis loop - by incorporating a

Fourier series step function multiplied by the current formulation, so

as to turn "off" the nonlinearity during the appropriate lag time.

Larger amplitudes of oscillation can be handled by applying the

harmonic balance with a larger number of harmonics. However, as

discussed in Section 3.4.3, using a time marching analysis would

3 probably be more computationally efficient if more than two har-

monics are required. More accurate coefficients can be determined

by simply running the appropriate 2-dimensional aerodynamic tests

with the current wing specimens (so as to retain the correct surface

roughness, et cetera), although this is a recommendation that is

applicable to the current investigation only, and would not be neces-

sary for applications to real, operational devices, for which much

I data already exists at the appropriate Reynolds number. Further

work also needs to be done in determining 3-dimensional aerody-

namic effects, although little work in semi-empirical models has yet

been accomplished in this domain.
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I
6.2 Structural Model

The current investigation has added two contributions to the

theory of ordering schemes for application to nonlinear structural

modeling. First, it has extended the application of the Hodges &

Dowell nonlinear equations to the realm of anisotropic materials and, I
more generally, has outlined the scheme by which those equations 3
can be implemented for beams with through-the-thickness variation

or through-the-thickness asymmetry. Second, it has shown by com-

parison to Minguet's Euler angle/Finite Difference method that a

modal approach to the Hodges & Dowell nonlinear equations yields i
satisfactory results, provided that sufficient fore-&-aft modes are

used, making those equations more tractable in aeroelastic applica-

tions. i
Unfortunately, it was found in the current investigation that

the contribution of the nonlinear structures to this particular aero- 3
elastic problem was insignificant. It would be interesting to make a

further analytic and experimental investigation with wings that were I
less stiff in the fore-&-aft direction, i.e. which had fore-&-aft fre-

quencies much closer to the bending and torsion frequencies. Such

an investigation might be accomplished with wings that were more

square in cross section, instead of low thickness-to-chord ratio.

From a theoretical viewpoint, it still remains to somehow ana- i
lytically model the cubic stiffening observed in previous investiga-

tions, since this effect seems to play a large role in the hardening

phenomenon observed at larger amp!itudes , oscillation. It might

also be interesting to further delve into the effects of chordwise

asymmetry (while the through-the-thickness asymmetry has already i
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been covered), since this is taken into account by the Hodges &

Dowell equations but ignored in the current analysis because of the

low stiffness of the asymmetrical NACA 0012 styrofoam fairings.

6.3 Experiment

Experimental data have been obtained on a set of aeroelasti-

cally tailored wings with varying amounts of bending-torsion cou-

pling and matched the trends of previous studies [Refs. 90 to 921. A

more in-depth experimental investigation of the transition from

linear to nonlinear flutter behavior has been accomplished, and a

more extended set of data past the flutter boundary has been

collected.

As mentioned in Section 6.1, it would be desirable to experi-

mentally investigate the 2-dimensional aerodynamic behavior of

these same wings, so as to fine tune the ONERA model. Also, as men-

tioned in Section 6.2, it might also be desirable to make a more thor-

ough investigation of the structural nonlinearities by running exper-

iments with wings that are softer in the fore-&-aft direction. Beyond

these recommendations, further work might be focused toward the

investigation of the variation of other parameters affecting stall

flutter with composite wings: taper or spanwise variation of other

properties (such as layup or stiffness); fore and aft sweep, with large

deflection; the aerodynamic and structural effects of stores and

fuselage; the nonlinear aerodynamic and structural effects within

body 'redom flutter.
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of 78 Related Airfoil Sections from Tests in the Variable-

3 Density Wind Tunnel," NACA Report No. 460, 1933.
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Appendix A - Material Properties

The out-of-plane characteristics of graphite/epoxy laminates
(i.e. the bending curvatures due to applied moments) have been

observed to be experimentally different from in-plane characteristics

(i.e. stretching due to applied extensional forces). These differences

have also been observed to be layup and thickness dependent,

although the thickness dependency may actually be due to manufac-

turing errors compounded by the z3 factor in the Dij terms, as

hypothesized by Minguet [Ref. 74]. For the current investigation,

there is no thickness dependency since all the laminates are of the

same thickness. The layup dependency has been "smeared" across

all the layups, so that in the current investigation only the out-of-

plane bending moduli were used, no matter what the layup was.

Hercules AS4/3501-6
Graphite/Epoxy

In-plane Out-of-plane
stretching bending

EL, longitudinal modulus 143 GPa 97.3 GPa

ET, transverse modulus 9.7 GPa 6.3 GPa

LTshear modulus 4.9 GPa 5.3 GPa*

VLT, Poinon's ratio 0.30 0.28

p, density 1540 kg/m 3  1540 kg/m3

I Based on static deflection tests
Based on free vibration tests
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The styrofoam properties were determined by averaging two

tests. First, static deflection tests in bending ara in torsion were

performed on a piece of styrofoam 55 cm long and 12.7 cm by

1.6 cm in cross section. Next, vibration tests were performed on a

smaller [0 2/9 01S wing with styrofoam fairings [Refs. 94 and 95], and

the styrofoam moduli adjusted until the analytic frequencies exactly

matched the experimental frequencies. The styrofoam moduli were

then assumed to be the average of these two values. The observed

values from static deflection and free vibration were both within

25% of the final averaged values. I

HD-300 styrofoam U
Nominal Observed

EL, longitudinal modulus 24 MPa 15 MPa*

ET, transverse modulus 24 MPa 15 MPa* I

GLT, shear modulus 15 MPa 8 MPa*
vLT, Poisson's ratio 0.30 0.28

p. density 35 kg/m 3  35 kg/m 3  I
Q y =Qsty  26.4 MPa 16.5 MPa

QsY stY 7.9 MPa 11.9 MPa I
sty 15.0 MPa 8.0 MPa

* ** Average of static deflection and free vibration tests
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Appendix B - Flat Plate Structural and Mode Shape

Constants

[0/91 [+152/021S [1201

A1I1 (N/rn) 8.09 x10 7  9.96x10 7  9.96x107

A 2 2 (N/rn) 3.15x107  7.47x106  7.47x106

A 12 (N/rn) 1.91X10 6  4.59x106  4.59x106

IA 66 (N/rn) 5.72x10 6  8.40x 106  8.40x 106

A 16 (N/rn) -0- 1.08x10 7  - 1.08x 107

A26 (N/rn) -0- 1.53x106  -1.53x 106

D, , (Nm) 10.1163 9.2478 9.2478

D22 (Nm) 0.8147 0.7718 0.7718

D12 (NM) 0.1861 0.6418 0.6418

D66(Nm) 0.5564 1.0121 1.0121

DI (NM) -0- 1.8395 -1.8395

ID 26 (Nm) -0- 0.2608 -0.2608

AN AM values are zero because all layups are symnmetric
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Layup n g f Bnl Bn2 Bn 4  3
1 1.8144 6.7476 -. 24235 +.90076 -. 24219

[0 3/9 01S .02368 2 5.0358 8.2218 +.38956 -. 63637 +.38977 i

3 8.0742 10.365 -. 42572 +.54295 -.42296

1 1.7495 9.3334 -. 17845 +.94938 -. 17844

[+ 15 2/0 21S .01190 2 5.0501 10.467 +.35933 -. 73484 +.35454

3 8.1550 12.270 -. 39855 +.59909 -. 39817 I
1 1.7495 9.3334 -. 17845 +.94938 -. 17844

[- 15 2/0 2]S .01190 2 5.0501 10.467 +.35933 -. 73484 +.35454

3 8.1550 12.270 -. 39855 +.59909 -. 39817

In all cases Bn3 -Bn I

I
I
I
U
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Appendix C - Static Aerodynamic Models

Raw data for the static lift curve of the NACA 0012 airfoil is

Itaken from Jacobs & Sherman [Ref. 971 and is empirically fit using

the previously described division into polynomial regions. For the

Icurrent study, the Reynolds number is very low, always below the

critical Reynolds number of approximately 3.4x05. Therefore, no

Reynolds number dependence was incorporated for varying free

stream velocity. As illustrated in Fig. 33, the model of the

3-dimensional lift curve used in this study is divided into three

Iregions and, for simplicity, each region is defined by a straight line:

(i) below the stall angle, a, = 100, the 3-dimensional lift slope is

given by aoL a CLa = 0.8*5.9 rad-1 (where the 0.8 factor comes

from the finite-span correction for an aspect ratio of 8), (ii) between

100 and 200 the 3-dimensional lift coefficient drops linearly to 0.75,

I and (iii) above 200 the 3-dimensional lift coefficient remains con-

stant at 0.75. The 3-dimensional moment coefficient follows the

same trend: (i) it remains zero below the stall angle, (ii) drops lin-

early to -0.108 between 100 and 200, and (iii) drops linearly to

-0.150 between 200 and 37.50. The two-dimensional profile drag is

I given by .di polynomial,

(C-i) CDo = 4.923a 3 + .1473a 2 + .042a + .014

Other 3-dimensional effects are included by adding a span-

Iwise drop, as suggested by lifting line theory and approximated by a

9th order polynomial (see Landsberger [Ref. 92]). The

2-dimensional curves are already corrected for finite aspect ratio.
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Fig. 33 NACA 0012 low Reynolds number lift modelI
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(C-2) CL3D = .II - (1 1 CL2 D(O-czC)

where the corrected angle of attack included the finite-span correc-

tion, as suggested by Jacobs, Ward, & Pinkerton [Ref. 98],

I
(C-3) a - a-a

xAR

The 3-dimensional total drag is found by adding the induced drag to

the profile drag,

(C-4) cDC +

As is suggested by Petot [Ref. 52], and illustrated in Fig. 34,

more complex descriptions can be devised, and may be useful for

higher Reynolds number flows where the lift drop after stall is more

acute. A parabolic fit can be used to describe the slight drop in lift

preceding stall. A power series expansion into a high order polyno-

mial can be used to describe the exponential drop immediately fol-

lowing stall (the conversion from exponential form to polynomial

form is necessitated by the formulation of the Fourier series in

Section 3.X2). A flat line can be used to describe the fully decayed

exponenti for very high angles of attack.

The variables describing the aerodynamic force curves, such as

the maximum lift coefficient or the minimum profile drag, can fur-

ther be generalized over a wide range of free stream velocities, as

suggested by the logarithmic dependence on the Reynolds number
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I
described by Jacobs & Sherman [Ref. 97/]. Similar fits for theI

moment coefficient curve can be generated using the data fromi

McAlister, Pucci, McCroskey, & Can [Ref. 4]. I
I
I
I
I
I
I
I
I
I
I
I
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Fig. 34 Generalized lift model
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Appendix D - Coefficients of Aerodynamic Equations

Table 5 shows the coefficients of the 2-dimensional aerody-

namic equations (3-62) to (3-64), used for the lift and moment coef- -
ficients. It is assumed that there is no hysteresis in the drag coeffi-

cient. The linear coefficients ( L' L' 'L' L, a0 M' SM' XM, (M'

and oM) were taken from standard references with the following

exceptions: sL was taken from Petot [Ref. 52] although a more ]

consistent value could have been sL=Nc; aoL was derived by fitting the

NACA 0012 data from Jacobs & Sherman [Ref. 97] although the

linear value aoL= 2 x could have been used.

The nonlinear coefficients a and r for the NACA 0012 airfoil

were taken from Petot [Ref. 52] for Reynolds numbers above the I
critical Reynolds number of 3.4x10 5 . The nonlinear coefficient e for

the NACA 0012 airfoil was taken from Petot & Dat [Ref. 54] for U
Reynolds numbers above the critical Re, since the form of the forcing 3
terms used in Ref. 52 was unsuitable for determining an appropriate

value of e, as is discussed in more detail later.

Corrections for low Reynolds flow were guided by similar

values given by Petot & Loiseau [Ref. 51]. In that investigation, con- I
ducted for an OA 209 profile, ao and ro were determined to remain

unchanged from high to low Reynolds number. In other words, it

was determined that the characteristics of light stalling - i.e. when

AC, was small - were insensitive to Reynolds number.

However, it was also determined that the characteristics of I
moderate or deep stalling - i.e. when AC, was no longer insignificant

were very sensitive to the Reynolds number. The value of a1 rose
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from 0.45 to 1.75 for the OA 209 airfoil, in other words by a factor

of approximately 4. The form of the nonlinear coefficient r used in

the study was,

(D-1) Nrr = r° + ° Cz + 0 + P2~z"I with P= -I
Cz+1 CACZ -

=- ro + cACz - 1 + (-1)2 (- aAC z + (aACz)2 )

- r0 + z2(ACZ) 2

The above formulation indicates that r, corresponds approxi-

mately to a 2, for small values of ACZ. In Ref. 51, a rose from 0.65 to

1.0 for the OA 209 airfoil, indicating that the corresponding r1 would

rise from approximately 0.42 to 1.0, or by a factor of approximately

2.5.

The final value of the nonlinear coefficient e was governed by

several influences. First, several forms of the forcing - or right hand

side (RHS) - of the nonlinear ONERA equation were used in different

studies,

(D-2) RHS = -[rAC z + e(ACz)1

(D-3) RHS = -[rAC z + eO

(D-4) RHS = -r[AC z + e(ACz)]

The form used in equation (D-2) is the form used by Petot &

Loiseau [Ref. 51] for an OA 209 airfoil, in which it was determined

that the value of e' rose from -0.6 to -2.7 going to low Reynolds

number flow, in other words by a factor of approximately 4.5.

Equation (D-2) is also the form used in the current investigation.
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The form used in equation (D-3) is that used by Petot [Ref. 521. I
While this form is easier to incorporate in a harmonic analysis such

as the current investigation, it seems to be physically counter-intu- 1
itive since it indicates that there would be stalling influences due to

0 even in the unstalled region. For this reason the form of equation

(D-3) was not used in the current investigation.

The form used in equation (D-4) is that used by Petot & Dat

[Ref. 54] and seems to have a more sound physical basis: the phase- I
lag is expressed directly in relation to the force deficit ACz , instead of

in relation to rAC Z as in equation (D-2). However, this form is more

difficult to implement in a harmonic balance method since the prod-

uct of r and e would produce a sixth-order polynomial. Hence the

form of equation (D-4) was not used in the current investigation.

However, the value of the nonlinear coefficient e for a NACA 0012

airfoil above the critical Reynolds number was determined from I
Ref. 54 since Ref. 51, which uses the form of the current investiga-

tion, only looked at the OA 209 airfoil. The value of e1 =-0.6 was
taken from Ref. 54 and multiplied by r2=.04 to give the value of

e1 =-.024 used in the current investigation.

In determining the nonlinear coefficient e, the effect of the I
fixed-time delay cannot be ignored. As mentioned previously, Petot

& Loiseau [Ref. 51] determined that e, rose by a factor of approxi-

mately 4.5 for the OA 209 airfoil going to low Reynolds number

flow. However, their investigation included a fixed-time delay while

the current investigation does not. If the force deficit is approxi-

mated by only its first harmonic, i.e. using only A0 and A1, then the

forcing term in the current investigation looks like,
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(D-5) RHS = -[rAC Z + e(ACz)]
= -[rA o + rAlsin(kT) + ekAlcos(kT) + H.H.T.]

= -[rAo + jr2(ek) 2 Asin(k(T + AT))]

- -[rA0 + rAlsin(k( + AT))] for ek < r

with = IMtan.ek =• for ek x r
k r r

So, the nonlinear coefficient e can be interpreted as a fixed

time delay parameter - however, it must be realized that this anal-

ogy breaks down for higher harmonics and larger values of ek. Also,

to interpret the nonlinear coefficient as a fixed time delay parameter,

it must be interpreted as affecting the entire forcing function as a

whole, i.e. the entire right hand side of the stalled ONERA equation

(as in Petot & Loiseau [Ref. 511), and not simply the force deficit AC

(as in Petot [Ref. 521 or Petot & Dat [Ref. 54]). That is, to interpret

the nonlinear coefficient e as a fixed time delay parameter, it must

be conceded that the nonlinear coefficients r & a are not affected by

the time delay. While this assertion makes the mathematical formu-

lation easier to interpret, it makes less physical sense, since intu-

itively the frequency and damping should be functions of the devel-

opment of the stalling, and should therefore be affected by any delay

which affects AC .  In conclusion, a fixed time delay over a short

period of the hysteresis cycle, such as used in Refs. 51-56, can be

"smeared" over the entire cycle and eliminated from the mathemati-

cal formulation by appropriately adjusting the nonlinear coefficient

e. It is for this reason that the high and low Reynolds number values
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of e in Table 5 are so different, because Ar has been left in for the

former while it has been eliminated for the latter.

A sensitivity analysis was done on the flutter boundary of the 3
[0 3/ 9 0 1S wing to determine the final values of the nonlinear coeffi-

cients a, r, & e. The initial values of this sensitivity analysis were I
governed by the approximate correction factors that might be sug-

gested by the investigation of Petot & Loiseau [Ref. 511: ao remained

constant at 0.25; a, rose by a factor of 4 from 0.1 to 0.4; r. remained

constant at 0.2; r I rose by a factor of 2.5 from 0.1 to 0.25; e, rose by

a factor of 4.5 from -.024 to -0.1. The sensitivity analysis attempted I
to find the smallest adjustments to these nonlinear values which

could appropriately fit the [03/901S flutter boundary.

The values of ao and a, had little effect on the flutter bound-

ary, so they were left unchanged. The values of ro and r, were found

to affect the flutter boundary, but had little effect on the flutter fre-

quency plot, as shown in Fig. 35. Increasing ro increased the range

over which the flutter boundary was governed by light stall.

Increasing r, changed that part of the flutter boundary governed by

deep stall such that the flutter velocity would decrease at a greater

rate. Increasing el had the same effect on the flutter boundary, but

also increased the rate at which the frequency plot rose toward the

first torsion frequency.m

The procedure for making the final adjustments to the nonlin-

ear coefficients was threefold: first, el was increased from -.024 to

+.030 so as to accurately fit the rise in the flutter frequency; second,

r, was increased from 0.25 to 1.0 to account for the sharper drop in

flutter velocity; third, ro was decreased from 0.2 to 0.1 to account forn
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the shorter range of light stall behavior. The changes in ro and r,

seem reasonable in comparison to the similarly large changes indi-

cated by Petot & Loiseau [Ref. 51]. While at. first the change in sign

for e, seems odd, the "smearing" of At is also included in this adjust-

ment.

An alternative method of determining these coefficients of the

nonlinear aerodynamics would have been to base them on the flutter

boundary of the [+15 2/0 21S instead. The reasoning would be that no

matter what the root angle of attack aR would be, most of the wing

would be relatively untwisted, and so, except for 3-dimensional

spanwise corrections, the aerodynamics across the span of the wing

would be almost the same. The only problem with this approach is

that the [+15 2/0 2]S layup has a very short light stall region, that is, it

goes from the linear region to the deep stall region for only a small

change in the root angle of attack (as can be seen in Fig. 25).

Therefore, it would be difficult to determine the ao , ro , and eo values

from the [+15 2/0 21S layup.
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I
I

Lift Moment

sz  0.09*(180/x) rad" 1  -X/4 rad" I

,rkvz /2 rad" 1  -3x/16 rad" 1

_ 0.15 0

CzI 0.55 1

az 5.9 rad 1  -X/4 rad' I
a* 0.25 + O.I(ACL)2

r [0.2 + 0.1(ACL)212  I
e* -.024(ACL)2

__ _* 10 I
a 0.25 + 0.4(ACL)2

r (0.1 + 1.0(ACL)2 ?

e +.030(ACL )2

Alto 0 I
* Re > 3.4x10

* Re < 3.4x 105

I
I
I

Table 5. Aerodynamic CoefficientsI
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Fig. 35 Nonlinear coefficient sensitivity analysis
On 0/91 flutter boundary
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Appendix E - Example of Fourier Analysis

Equations (3-78) to (3-80) are still applicable:

(E-1) ac() = a o + avsin(kt+4)

where,

(E-3) 4 = tan- l ac

For a single break point model (see Fig. 36), equation (3-69)

simplifies to the following equations, where aA is the stall angle and

a, 1 is the difference in slopes between the linear region and the non-

linear region,

(E-4) ACZ={ for <cz, I

Equations (3-84) to (3-87) then give that,

(E-5) bl 0 = all(aO-aA)

(E-6) b1 1 = al1v I

(E-7) 110= -

I
(E- 8) In = cos~
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1. ir

(E-9) 112 = P1qfl9coscp, + 4 - '2W,

where equation (3-86) is,

sin-l'
(a
v

~aA-an
(E-1I0) q,=+- if> +1I

-- if < -1
2 atv

Finally, putting these expressions into the combined mean and

oscillatory components of the nonlinear aerodynamic deviations

(3-83) and (3-90), we get,

(E-1) '&Czo= al la JCC V O

(E-12) &Czv "-sinop, cosIP' + 2"- 'PA

A symmetric aerodynamic force curve can also be accounted

for by including a second stall angle at -a.. This yields expanded

versions d Equations (E-ll) and (E-12),

(E-13) AC &I- = x 1  2 t" P+ cosIP

+. x{I -~a, [ + h] cos4
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(E-14) AC v sinp cosa + - &

aa ._ +sinfl, cosi + it + i'
x L2

where the additional form of equation (3-86) that is required is,

sin'l ma-a

a+v

(E -15 ) if=  +a" if > + 1
- va-

x if -a a . < -1

I
I
I
I
I
I
I
I
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Appendix F - The Newton-Raphson Method

The Newton-Raphson method is a numerical solver used .'o find I

the roots of the implicit vector equation, f(x) = 0, wher, x is the

state vector and f(x) is the vector of residual functions that must be

driven to zero. The Newton-Raphson scheme takes an initial guess of

the state vector x and drives the vector f(x) toward zero by invert-

ing the Jacobian matrix (derivative matrix), and obtaining a correc- I
tion Ax to the current guess. The process is repeated until the cor-

rection Ax becomes negligible and the process is deemed to have

converged.

(F-i) Ax (n ) = - f(x(n)) ; x(n+ 1) = X(n) + &X( n )

The Newton-Raphson solver is applied in the current analysis 3
by rearranging equation (3-217) as lollows;

-N 0 o 1["q1F)
(F-2) (f) =o -co [M I+[K] IL Q )

I
Equation (F-2) comprises 3n equations that must be solved in

the form f(x)=0 and are nonlinear in the aerodynamic dependence

of the modal forces Qi on the modal amplitudes qi and in the struc-

tural dependence of the stiffness matrix Kij on the modal amplitudes

qi" The state vector x is comprised of the harmonic components of

the modal amplitudes, qio, qi,, and qic, with some minor adjustments

to ensure convergence to a non-trivial solution: the sine component
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of one mode qi is set to some small constant to set the amplitude

level, while its cosine component is set to zero, since the flutter limit

cycle oscillations can start at any arbitrary phase. The mode usually

chosen for this substitution is the first torsional mode, since experi-

mentally it is this mode which dominates the oscillatory motion.

These sine and cosine components are then dropped from the state

vector x and are replaced by the reduced frequency of oscillation, k,

and the flutter velocity, U. Because the sinusoidal component of one

mode shape has already been set to a non-zero value, the Newton-

Raphson scheme does not converge to the trivial steady solution.

Note that the Newton-Raphson solver is not always guaranteed

to converge, especially when the initial guess is too far from the

ultimate solution or when the derivatives used in the Jacobian matrix

are changing abruptly, which often happens with nonlinearities that

have discontinuous derivatives. In regions where convergence is

difficult (for example near the stall angle where the lift/moment

coefficient curves are discontinuous in slope), a relaxation technique,

which consists of taking only a fraction of Ax as a correction for each

iteration, is more likely to converge. When the Newton-Raphson

solver does converge to a solution, it will satisfy the equations, but

there is no indication as. to whether this solution is unique or not. If

other solisons exist, the only way to find them is to start with a

different isitial state vector.

The Jacobian matrix can be calculated either numerically or

analytically. The numerical method involves moving an incremental

distance in each direction of the state vector x, finding the resulting

incremental change in the residual vector f, and estimating each
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component of the derivative matrix as Afi/Ax . The analytic method I
involves carrying out the entire nonlinear differentiation, which is

best carried out by multiple application of the chain rule to the

equations of Chapter 3.

Both the numerical and analytic methods have their advan-

tages and disadvantages. The numerical method is easier to code on I
a computer since it involves using the already existing subroutines

which must compute the residual vector. On the other hand, the

numerical method is computationally inefficient since it requires

recalculating the residual vector for every direction of the state

vector. In addition, the numerical method is likely to be inaccurate

at points of discontinuity in derivatives, unless the user is careful to

choose appropriately small increments in the state vector. i
By contrast, the analytic model directly solves for the Jacobian

matrix without needing several iterations, and so is computationally

faster for higher numbers of mode shapes and harmonics. In addi-

tion, the analytic method is always accurate and does not depend on

any step size. Unfortunately, the analytic method cannot employI

already existing subroutines and requires cumbersome programming

for a highly nonlinear problem such as in the current study.

Both the numerical and the analytic methods were used to cal-

culate the Jacobian matrix in the current study and compared well

against each other. However, with the large complexity in calculating

the modal forces, the numerical method is more likely to have fewer

coding errors than the analytic method, despite being computation- I
ally slower. For this reason, it was used more extensively for the full

flutter analyses.
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Appendix G - Computer Code

C - FI E : FLUTTER.FOR------------------------------------------------
C

PROGRAM FLUTTER
C

INCLUDE PARAM.INC
INCLUDE GLBBLK.INC
REAL QLIT(MAXMODE,3) ,QDUM(MAXMODE,3)
REAL QALL(3*MAXQ4ODE),RES(3*MAXMODE),QBIG(MAXMODE,3)
REAL DRDQ(3*MAXMODE,3*MAXMODE) ,DQALL(3*MAXMODE)
REAL VEL,AOA,FREQ,ATIP(3),HTIP(3),VTIP(3)
REAL SMAX,RMAX
INTEGER LMAX,IERR,BEN TOR,MBT
LOGICAL CONVERGED, LNEWT, LSTRUC, LCUBE, LFLUTB, LSTART
CHARACTER LAYUP*25,ANSWER*1,FILENAME*25,CDUM*8

C
REAL AOL,AIL,ROL,RlL,EOL,tEL
REAL AOM, AIM, ROM, RiM, EOM, ElM
COMMON / COEFBLK / AOL,AlL,ROL,R1L,EOL,EIL,

& AOM, AIM, ROM, RiM, EOM, ElM
C
C OLIT(i,j): i-th modal amplitude, j-th component (1-mean,
C 2-sine, 3-cosine)
C QALL: Augmented state vector
C RES: Residual vector
C DRDQ: Jacobian matrix, derivatives of residuals (RES)
C w.r.t. the state vector (QALL)
C DQALL: Corrections to augmented state vector
C VEL: Free stream velocity
C AOA: Root angle-of-attack
C FREQ: Reduced frequency
C ATIP: Components of oscillating tip angle
C HTIP: Components of oscillating tip deflection
C IERR: Error status variable for opening of data file
C BENTOR: Integer variable denoting whether analysis assumes
C bending (BEN TOR-1) or torsional (BEN TOR-2) flutter
C CONVERGED: Logical variable to tell if Newton-Raphson solver
C has converged to a solution
C LNEWT: Logical variable to tell if diagnostics are to be
C printed to output file at each step of the N-R solver
C LSTRU: Logical variable to tell if diagnostics are to be
C printed to output file on structural variables
C LAYUP: Character variable to denote flat plate layup (eq. for
C 10:2/901:s, LAYUP might be '0290'). All data files
C must be of the form <LAYUP>.DAT.
C

FOIL - 'NAC12'
C
C Read in the layup.
C
10 WRITE(*,'(A,$)') ' Layup :

READ(*, '(A) ',ERR-i0) LAYUP
20 WRITE(*,'(A,$).') ' Newton-Raphson control file

READ(*,' (A) ',ERR-20) FILENAME
C
C Read in specifications of current run from control file.
C
30 FORMAT(/8X,5I8///8X,7LS///SX,18,2L8,18,2GB.0,I8)

OPEN (UNIT-2, FILE-TRIM (FILENAME),
& STATUS-'OLD',FORM-'FORMATTED' ,ERR-20)
READ(2,30,ERR-20) NB,NT,NC,NF,BENTOR,LATAN,LCUBE, 197



6 LINEAR, CORREC, REDUC, STEADY, VLINES, ATYPE, LCONST,I
& LGEO4, IGEOM, SMAX, RMAX, LMAX

CLOSE (2
NMODES -NB+NT+NC+NF
IF ((NB.LT.1).OR.(NB.GT.NBMAX)) GOTO 20I
IF ((NT.LT.1).OR.(NT.GT.NTMAX)) GOTO 20
IF ((NC.LT.0).OR.(NC.GT.NCMAX)) GOTO 20
IF ((NF.LT.0).OR.(NF.GT.NFMAX)) GOTO 20

C Read in nonlinear aerodynamic coefficients.
C

IF ((ATYPE.NE.0) .AND. (ATYPE.NE.1)) THEN

35 WRITE(*,1(A,$)1) I Aero control file

OPEN (UNIT-2, FILE-TRIM (FILENAME) ,STATUS- 'OLD',
& FORM-'FORMATTED' ,ERR-35)

READ(2, '(/8X,6G8.0///BX,6G8.0) ',ERR-35) AOL,AlL,I
& ROL, RIL, LOL, ElL, AOM, AlM, ROM, RiM, EOM, ElM

CLOSE (2)
ENDIF

LNEWT - .FALSE.
40 WRITE(*, '(/A,$)') I Output Newton-Raphson troubleshooting 1//

& 'diagnostics ?I
RD(,(A) ',ERR'.40) ANSWER -IREIF ((ANSWER.EQ.Y).OR.(ANSWER.EQ'y')) LNEW? TRE

C
LAEROF - .FALSE.

50 WRITE(*I(A,$)e) 'Output aerodynamics troubleshooting 'I//

READ(,' (A) ',ERR-50) ANSWER
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LAEROF - .TRU'E.

LSTRUC - .FALSE.I
55 WRITE(*,'(A,S)') 'Output structures troubleshooting 1//

& 'diagnostics ?
READ(*,'(A) ',ERR-55) ANSWER
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LSTRUC - .TRUE.

C
LSTART - .FALSE.

60 WRITE(*,'(A,,)') ' Write restart file?
READ(,'(A)1,ERR-6O) ANSWERI
IF ((ANSWER.EQ.'Y') .OR. (ANSWER.EQ.yl)) THEN

LSTART - .TRUZ.
WRITE(FILENAME,'(A,411) ') TRIM(I.AYUP)//

A 1.start ,U, NT,NC, NF
OPEN (UNIT-3, FILE-TRIM (FILENAME) ,STATUS- 'NEW',

& FO3N'' FORMATTED', ERR-6 0)

DO 65 I - l,NNODES
17 (I.LE.NB) WRIT(MLABEL(I),'(A,Ii)') 'B',I
IF ((i.GT.N9) .AND. (i.LE.NS+NT))

& URTKNABL(I),(A,IiJ') 'T',I-ND
IF ((I.GT.NR+NT) .AND. (I.LE.NB+NT+NC))

& WRIT(MA L(I),(A,I)') 'C'.I-(NB+NT)
IF ((I.GT.N+NT+NC) .AND. (I.LE.NB+NT+NC+NF))

A WRITE(MLABEL(I),'(A,Ii)') 'F',I-(NB+NT+NC)I

C
C Create mass and stiffness matrices by calling STATIC subroutine.

CALL STATIC (LAYUP, LSTRUC, TRATIO, IERR)
IF (IERR.NE.0) THEN
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WRITE(*,'(A,I2,A)') ' IOSTAT-',IE.R,' error reading 1//
& TRIM(LAYUP)//'.DAT data file.'

GOTO 10
END IF

C
C Open output file.
C

FILENAME - TRIM(LAYUP)//'WNAV.OUTI
OPEN (UNIT-2, FILE-TRIM (FILENAME),
& STATUS-'NEW',FORM-'FORMATTED', IOSTAT-IERR)
IF (IERR.EQ.0) THEN

WRITE(*,*) I Analysis results being sent to '

& TRIM(FILENAME)
ELSE

WRITE(*,'(A,I2,A)') I IOSTAT-',IERR,' error opening 1//
& TRIM(FILENAME)//' as Output file.,

GOTO 10
END IF

C
WRITE(2,1(4(/I2,A))') NB,' - number of bending modes',
& NT,' - number of torsion modes',
& NC,' - number of chordwise bending modes',
& NF,' - number of fore-&-aft modes'
WRITE(2,'(F4.Z,A)') TRATIO,' - NACA airfoil thickness ratio'

C
WRITE(2,*) 'Exact angle calculation -',LATAN
WRITE(2,*) 'Cubic stiffening -',LCUBE
IF (.NOT.LCUBE) KTTCUBE - 0.
WRITE(2,*) 'Linear aerodynamics -',LINEAR
WRITE(2,*) 'Spanwise lift correction -',CORREC
WRITE(2,*) Finite span lift reduction -1,REDUC
WRITE(2,*) 'Steady test case (no flutter) -n',STEADY
IF ((.NOT.STEAY).AND.((ATYE.EQ.0).OR.(ATYPE.EQ.1)))
& VRITE(2,*) ' Unsteady analysis type -',ATYPE,
& I (see listing of COEFS.FOR)'
IF (.NOT.STEADY) WRITE(2,*) ' Constant coeffs in I

& 'unsteady analysis -',LCONST
WRITE(2,*) ' Geometric structural nonlinearities -',LGEOM
WRITE(2,'(A,lPE6.OE1)1) I N-R max allowable step size -',SMAX
WRITE(2,'(A,lPE6.OE1)1) ' N-R max allowable residual -',RMAX
WRITE(2,'(A,15)') I Max number of iterations -',LMAX

C
C Read in the start & end values and the incremental Step size
C between each line of either Wi constant velocity or
C (ii) constant root angle of attack.
C
70 IF (VLINES) WRITE(*, '(A,S) ') ' Velocity start, end, '//

&' step size (M3) ?'
IF (.NOT.VLINES) VRITE*,(A,W)) I Root angle start,'I
l end, G step siZe (dog) ?

RZAD(*, ',ERR=70) DUMlLO,DUMlHI,DUMlINC
IF ((DUMlLW.LT.0.).OR.(DUMlHI.LT.0.)) GOTO 70
IF (((DUMlHI-DUM1LO)/DUMlINC) .LT.0.) GOTO 70

C
C Write header.
C

IF (.NOT.LNEW?) THEN
IF (STEADY) THEN

WRTE(2,'(/A,S)1) I Val AQA H avg A avgl
IF (NF.EQ.0) WRTE(2,1(A)')II
IF (NF.GT.0) WRITE(2,'(A)') I V avg'
WRITE(2,'(A,S)') ' (M/3) (dog) (cm) (deg)'
IF (NF.EQ.0) WRITE(2,'(A)')II
If (NF.GT.0) WRITE(2,'(A)') ' (cm)'
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I
ELSEIF ((.NOT.STEADY).AND.(BENTOR.EQ.1)) THEN

WRITE(2,'(/A,$)') ' Vel AOA Freq'//I H avg H amp A avg A amp A phz'
IF (NF.EQ.0) WRITE(2,*) I I

IF (NF.GT.0) WRITE(2,*) ' V avg V amp V phz'
WRITE (2, '(A,$) ') ' (m/s) (deg) (Hz)'//
I (cm) (cm) (deg) (deg) (deg) '

IF (NF.EQ.0) WRITE(2,*) I I
IF (NF.GT.0) WRITE(2,*) ' (cm) (cm) (deg)'

ELSEIF ((.NOT.STEADY) .AND. (BENTOR.EQ.2)) THEN
WRITE(2,'(/A,$) ' Vel AOA Freq'//

I H avg H amp H phz A avg A amp'
IF (NF.EQ.0) WRITE(2,*) 1 1

IF (NF.GT.0) WRITE(2,*) I V avg V amp V phz'
WRITE (2,' (A,$) ') ' (m/s) (deg) (Hz)'// I

I (cm) (cm) (deg) (deg) (deg)'
IF (NF.EQ.0) WRITE(2,*)

IF (NF.GT.0) WRITE(2,*) ' (cm) (cm) (deg)'
ENDIF IENDIF

C
C Initialize state vectors.C I

DO 80 I - 1,MAXMODE

DO 80 J - 1,3
QLIT(I,J) - 0.
QALL((I-1)*3+J) - 0. I80 CONTINUE

C
LFLUTB - .FALSE.
IF ((.NOT.STEADY) .AND. (DUMILO.NE.DUM1HI)) THEN

90 WRITE(*,'(A,$)') ' Flutter boundary analysis ?
READ(*,'(A) ',ERR-90) ANSWER
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LFLUTB - .TRUE.

ENDIF 3
C Loop through each line of either (i) constant velocity or
C (ii) constant root angle of attack, denoted by the dumny
C variable DUMO4Y1.
C

DO 999 DUMMY1 - DUMILO,DUMlHI,DUMIINC
IF (STEADY) THEN

FREQ - 0.
INCLUDE STEADY.INC

ELSE
INCLUDE UNSTEADY. INC

ENDIF
999 CONTINUE

CLOSE (2)
IF (LSTART) CLOSE(3)
STOP

C --- FI : STEADY.INC --- ------------------------------------------
C

RJGEOK - 1.

C Set the velocity VEL or the root angle of attack AOA, depending
C on whether lines of constant velocity or constant angle.

IF (VLINES) VEL - DUM4Y1

IF (.NOT.VLINES) AOA - DUMMYl'PI/180.

C Initialize to zero the augmented modal amplitude vector QALL,
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C and all the modal amplitudes QLIT.
C

IF (DUM4Y1.EQ.DUMLO) THEN
DO 1010 I - 1,NMODES

QLIT(I,1) - 0.
QALL(I) - QLIT(1,1)

1010 CONTINUE
ENDIF

C
C If steady, read in the start & end values and the incremental
C step size of the root angles/velocities for each corresponding
C line of constant velocity/root angle.
C
1020 IF (VLINES) THEN

WRITE(','(A,F6.2,A,$)') I VEL -',DUMMY1,
I ; Root angle start, end, & step size (deg) ?

ELSE
WRITE(*,'(A,F6.2,A,$)') ' AOA -',DUMMY1,

& ' ; Velocity start, end, & step size (m/s) ?
ENDIF
READ(*,*,ERR-1020) DUM2LO,DUM2HI,DUM2INC
IF ((.NOT.VLINES).AND.(DUM2LO.LT.0.)) GOTO 1020
IF ((.NOT.VLINES).AND.(DUM2HI.LT.0.)) GOTO 1020
IF ((DUM2HI-DUM2LO)/DUM2INC.LT.0.) GOTO 1020

C
C Read in the non-dimensional step size relaxation factor to
C be applied to the corrections in the Newton-Raphson solver.
C

FACTOR - 1.
IF ((DUMQ4Y1.EQ.DUMILO) .AND. (LGEOM)) THEN

1025 WRITE(,'(A,$)') ' Relaxation factor ?
READ(*,*,ERR-1025) FACTOR
IF ((FACTOR.LE.0.) .OR. (FACTOR.GT.i.)) GOTO 1025

ENDIF
C
C Loop through the appropriate variable, denoted by the dummy
C variable DUMb(Y2, for each line of constant velocity/root angle.
C

DO 1999 DUM0Y2 - DUM2LO,DUM2HI,DUM2INC
C
C Initialize the number of iterations to zero and extract the
C appropriate root angle/velocity from the dummy variable DUMMY2.
C

LOOPS - 0
IF (VLINES) AOA - DUMMY2*PI/180.
IF (.NOT.VLINES) VEL - DUKY2

C
C Loop through the Newton-Raphson scheme until it is
C converged to an acceptable limit.
C

CONVERGED - •FALSE.
DO MILE (.NOT.CONVERGED)

C
C Extract the modal amplitudes from
C the augmented modal amplitude vector.
C

DO 1030 I - 1,NMODES
QLIT(I,1) - QALL(I)

1030 CONTINUE
LOOPS - LOOPS+1

C
C Write current values of inputs to residual calculations.
C
1040 FORMAT (/A7,I5,12X,13(4X,A2,4X))
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1045 FORMAT (A23,13(1PE10.21) I
IF (LNEWT) THEN

WRITE(2,1040) ' LOOP -',LOOPS,
& (MLASEL(I),1-1,NMODES)

WRITE(2,1045) ' Avg modal amp Em]
& (QLIT(I,1),I-1,NMODES)

ENDIF
C
C Calculate the residuals from subroutine RESIDUAL, which
C are functions of the velocity VEL, root angle of attack AOA,
C reduced frequency FREQ, and modal amplitudes QLIT.
C

CALL RESIDUAL (VEL, AOA, FREQ, QLIT, RGEOM, RES, QBIG)
IF (LNEWT) WRITE(2,1045) ' Avg modal Qs (ND): ,

& (QBIG(I,l),Il, NMODES)
IF (LNEWT) WRITE(2,1045) ' Avg residuals (ND):

& (RES(I),I-l,NMODES)
CI
C Calculate the derivative matrix of the residuals wrt the
C modal amplitudes using subroutine RREDIV, which is a
C function of the velocity VEL, root angle of attack AOA,
C reduced frequency FREQ, and modal amplitudes QLIT. The
C current values of the residuals RES are also passed since
C the derivative matrix may be calculated numerically, in
C which case the current values are needed.
C _

CALL RDERIV(BENTOR,VEL,AOA,FREQQLIT,RES,RGEOM,DRDQ)
C
C Write derivative matrix.
C

IF (LNEWT) THEN
WRITE(2,'(/A)') I NUMERIC dR/dq MATRIX :'
WRITE(2,'(12X,13(6X,I1,3X)) ') (I,I-1,NMODES)
DO 1050 J - 1,NMODES I

WRITE(2, ' (4X,AS,13(1PE10.2)) ')
'dR/dq'//MLABEL(J)//'o',DRDQ(I,J),1-1,NMODES)

1050 CONTINUE
END IF cI

C Apply the Newton-Raphson scheme to figure the appropriate

C linear correction in the state vector so as to drive the
C appropriate residuals to zero. For the steady case, only
C the steady amplitudes need to be corrected.
C

CALL SOLVE (DRDQ, RES, DOALL, 3*MAXMODE, 1,NMODES)
IF (LNEWT) WRITE(2, '(/A, 13(lPE10.2)) 1)

' DELTA avg amps [m] : ',(-DQALL(I),1-1,NMODES)
C
C Vpdate the augmented state vector, at the same time
C checking for convergence of the maximum residual and
C of the relative change in the state vector QALL.
C

CONVERGED - . TRUE.
RESMAX - 0.
DO 1060 I - 1,NMODES

QALL(I) - QALL(I)-DQALL(I)*FACTOR
C
C Check relative change in state vector.
CI

IF (QALL(I).NE.0.) THEN
IF (ABS(DQALL(I)/QALL(I)) .GT.SMAX)
CONVERGED-.FALSE.

ENDIF

202

I



C Check re'Lative size of residuals.
C

IF (ABS(RES(I)/QBIG(I,1)).GT.RMAX) CON'VERGED-.FALSE.
IF (ABS (RES (I)).GT.ABS (RESMAX)) RESMAX-RES (I)

1060 CONTINUE
C

IF (LOOPS.GE.ABS(LMAX)) THEN
IF (LKAX.LT.0) THEN

1065 WRITE(*,'(A,$)') I Continue iterations ?
READ(*, '(A) '.ERR-1065) ANSWER
CONVERGED-.TRUE.
IF ((ANSWER.EQ.'Y').OR.(ANSWEREQ.'y')) THEN

CONVERGED - .FALSE.
LOOPS - 0

END IF
ELSE

CONVERGED- .TRUkL.
END IF

END IF
C
C Print current status to screen.
C
1070 FORMAT (A,F6.2,A,I4,A,1PE8.1)

IF (VLINES) WRITE(*,1070) I STEADY - AQA i'

DUMMY2,' deg ; Loop',LOOPS,' ; Rzaax - ',RESMAX
IF (.NOT.VLINES) WRITE(*,1070) ' STEAZY - VEL in',

DUMMIY2,' rn/s ; Loop',LOOPS,' ; Rmax - ',RESMAX
C

IF (LSTART) THEN
DO 1075 I - 1,NMODES

QLIT(I,2) - 0.
QLtT(I,3) - 0.

1075 CONTINUE
WRITE(3,*) &OA.'180./PI,VEL,0., (tQLIT(I,J),J-1,3),
I-1,NHODES) ,RESMAX

END IF
END DO

C
C Extract the modal amplitudes from th. final, converged
C augmented state vector.
C

DO 1080 1 - 1,NMODES
QLIT(I,l) - QALL(I)

1080 CONTINUE
FREQ - 0.

C
C Calculate the midchord tip deflection components and the tip
C twist components.
C

3?XP(1) - 0.
ATI?(1) - 0.
DO 1090 I - 1,N B+NT+NC

RIP(1) - HTIP(1)+QLIT(I,1)*FMDE(0,IXI,I,1.)*
tHODZ(0, 'Y'111O.)

ATIP(1 - ATIP(1)+QLIT(I,1)*FMDE(0,sXI,I,1.)*.
r MODE(1, 'Y', 1,0.)/CHORD

1090 CONTINUE
C

VTIP(1 - 0.
IF (NIF.GT.O) THEN
DO 1100 I1 NU+NT+NC+1,NB+NT+NC+NT

VTIP(l) -VTIP(1)+QLIT(I,1)*FMODE(0,IXI,1.)*

&FMODE(0.'IY',I,0.)
1100 CONTINUE
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I
END IF

C
C Convert tip deflection to centimeters and tip twist to degrees.
C

IF (LATAN) ATIP(1) - ATAN(ATIP(1))
HTIP(l) - HTIP(}*100.
ATIP(1) - ATIP(1)*180./PI
VTIP(l) - VTIP(1)*100.

C
C Write converged results.
C

ANG - AOA*180./PI
IF (LNEWT) THEN

WRITE(2,'(/A,I5,A)') ' After',LOOPS,' N-R iterations :'
DO 1110 I - 1,NMODES

WRITE(2,*) ' Avg ',MLABEL(I),' amp -',QLIT(I,1),' m'
1110 CONTINUE

WRITE(2,*) ' H tip -',HTIP(l),' cm'
WRITE(2,*) ' A tip -',ATIP(l),' deg'
WRITE(2,*) ' V tip -',VTIP(1),' cm'
WRITE(2,*) ' AOA -',ANG,' degs'
WRITE(2,*) ' VEL -',VEL,' m/s'

ELSE
WRITE(2,'(2F7.2,2F9.3,$)') VEL,ANG,HTIP(1),ATIP(1)

IF (NF.GT.0) WRITE(2,'(F9.3,$)') VTIP(1)
IF (LOOPS.LT.ABS(LMAX)) WRITE(2,'(A)') ' I
IF (LOOPS.EQ.ABS(LMAX)) WRITE(2,'(A)')I * Not converged I

ENDIF
1999 CONTINUE 3
C ---- FILE: UNSTEADY.INC----------------------------------------------
C
C Calculate mode number associated with BEN TOR variable, i.e.
C either first bending (#1) or first torsion (#NB+I). Ic

MBT - (BENTOR-1)*NB + 1
C
C Set the velocity VEL or the root angle of attack AOA, depending
C on whether lines of constant velocity or constant angle.
C

IF (VLINES) VEL - DU)4KY
IF (.NOT.VLINES) AOA - DUM4Y1*PI/180.

CC
C If unsteady, read in the start & end values and the incremental
C step size of the amplitude of oscillating twist for each
C line of constant velocity/root angle.
C

IF ((DU4Y1.EQ.DUMLO) .OR. (.NOT.LFLUTB)) THEN
2010 IF (BEN TOR.EQ.1) THEN

IF (VLINES) WRITE(*,'(A,F5.I,A,$)') ' VEL -',DUMMY1,
S '; Bending amplitude start, end, & step size (cm) ?

IF (.NOT.VLINS) RITE(*,'(A,FS.l,A,$)') ' AOA =',
DUISEI,' ; Bending amplitude start, end, & step '/I

& 'size (cm) ? I
ELSE

IF (VLINES) WRITE(*,1 (A,F5.1,A,$)') ' VEL -',DUMMY1,
& '; Twist amplitude start, end, & step size (deg) ?

IF (.NOT.VLINES) WRITE(*,'1(A,F5.l,A,$)') ' AOA '/
& DUMOY1,' ; Twist amplitude start, end, & step

I 'size (deg) ?
ENDIF
READ(", *,ERR-2010) DUM2LODUM2HI,DUM21NC
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IF ((.NOT.VLINES).AND.(DUM2LO.LT.0.)) GOTO 2010
IF ((.NOT.VLINES).AND.(DUM2HI.LT.0.)) GOTO 2010
IT ((DUW2HI-DUM42LO)/DUM2INC.LT.0.) GOTO 2010

END IF
C
C Determine if previous Values should be used as an initial guess.
C

IF (DUNI4Yl.EQ.DTJMlLO) THEN
ANSWER - 'N'

ELSEIF (LFLUTB) THEN
ANSWER - Y

ELSEIF (.NOT.LFLUTB) THEN
2020 VRITE(,'(A,$)') ' Use previous values as V/I

& 'initial guess ?
READ(*, '(Al) ',ERR-2020) ANSWER

END IF
C

IF ((ANSWER.NE.'Y').AND.(ANSWER.NE.'y')) THEN
C
C Read in the initial guess for root angle AOA, or for
C velocity VEL - to be Used for the first iteration of the
C Newton-Raphson solver for the first corresponding line
C of constant velocity/root angle - and insert in location
C reserved for sine harmonic of bending/tWist amplitude.
C
2021 WRITE(*,'(A,$)') I Start from restart file ?

RE.AD(*, '(A) ',ERR-2021) ANSWER
C

QLIT(1,1) - 0.
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN

2022 WRITE(,'(A,$)') I Restart filename ?
READ(*, '(A) ',ERR-2022) FILENAME
OPEN (UNIT-4, FILE-FILENAME, STATUS- 'OLD',

& FORM-'FORMATTED' ERR-2022)
2023 READ(4, ',ERR-2022,E&D)-2029) AOADUM,VELDUM,FRQDUM,

& ((QDUM(I,J),J-1,3),I-1,,NMODES)
IF (((VLINES) .AND. (DUMMYI.EQ.VELDUM)) .OR.

& ((.NOT.VLINES).AND.(DUOIYl.EQ.AOADUM))) THEN
DO 2025 I - 1,NMODES
DO 2025 J - 1,3

QLIT (1,J) - QDIM (I, J)
QALL((J-1)*NMODES+I) QLIT(I,J)

2025 CONTINUE
IF (VLINES) THEN

ADA - AOADU*PI/180.
QALL(NMODES+MBT) - AQA

ELSE
VEL - VELDUM
QALL(NMODES+MBT) - VEL**2

ENDir
2026 IF (FRQDUM.LE.04) THEN

WRIT(*,'(A,$)') ' Initial frequency guess 1//
G '(m Hz) ?I

READ(,*,ERR-2026) FRQDUM
GOTO 2026

ENDiF
FREQ - FRQDUM*2.*PI*(CHORD/2.)/VEL
QALL (2*NMODES+MBT) - FREQ

END IF
GOTO 2023

2029 CLOSE(4)
IF (QLIT(,1).EQ.0.) GOTO 2021

ELSE
C
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IF MVINES) THEN
2030 WRITE(*I '(A,$) ') I Initial root angle gUe33 (deg) ?

READ(*,*,ERP-2030) AOA
AOA - AOA*PI/180.
QALL(NMODES+MBT) -ACA

ELSEI
2040 WRITE(*''(A,S) ') 'Initial velocity guess (M/3) ?

READ(*,*,ERR-2040) VEL
IF (VEL.LT.0.) GOTO 2040

END (MDE+MT -F IE*
QAENDIS+F) EL*

C
C Query user if he wants to directly input the initial average
C dmitrge eq meoit benee ffute na h
C aditrede (el.oitb eddiffutrisna.h
C

WRITE(,(A$)') I Input initial average deflections ?
READ(*, '(Al)') ANSWERI
DO 2060 1 - 1,NMODES

IF (DUMh*Y.EQ.DUM1LO) QLIT(I,l) -0.

IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN
2050 WRITE(*,'(A,$)') I Mode '//HLABEL(I)//I

I average (m]-I

END IF
OALL (I) - QLIT (1,1)I

2060 CONTINUE
C
2070 WRITE(*,'(A,S)') I Start vibration on eigenmode '?

READ(*, '(A) ',ERR-2070) ANSWERI
IF ((ANSWER.EQ.'Y') .OR. (ANSWER.EQ.'y')) THEN

C
C Determine current nonlinear mass G stiffness matrices.

C DO 2073 11 m 1,MAXG4ODEI

Do 2073 12 - Il,MAXO4ODE
MDUI4(Il,I2) - M4(11, 12)

KDUM(I1,I2) - K(I1, 12)

C Add corrections to stiffness matrix for geometric
C nonlinearities.

C IF (LGEO4) THENI

IF ((Il.GT.N3) .AND. (Il.LE.N+NT) .AND.
£ (X2.GT.NB) .AND. (I2.LE.N3+NT)) THEN

DO 2071 13 - 1,143

DO 2071 14 - 1,143

I R(13,14,11-NB,I2-NB)*QLIT(13,1)*QLIT(I4,I)
2071 CONTINUE

ELSZIF ((Il.GT.NB) .AND.(11.LE.NB+NT).AND.
& (12.GT.N3+NT+NC) .A4D. (12.LE.NB+NT+NC+NF)) THEN

Do 2072 13 m 1,143
KDum(I,12) m KDUM(I,12) +

2072 CONTINUEI
I (1,I-1B,2-B-4TNC'QIT131

END IF

C EDM1, IFDU(1,2
NDUM(12,I1) - NDUM(Il, 12)

2073 CONTINUE
CI
C Add contribution to stiffness matrix for Cubic stiffening.
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C
KDUM(NB+1,NB+1) - KDUM(NB+1,NB+1) + KTTCUBE*

&(3.*QLIT(NB+1,1)**2+.75*QLIT(NB+1,2)**2+
6 .75*QLIT(NB+1,3)**2)

C
C Call EISPACK eigenvalue solver.
C

CALL RSG(MAXG4ODE,NMODES,KDUM,MDUM,FVIB, 1,QVIB,
&FV1,FV2,IERR)

C
C Print out choice of eigenmodes to start from (negative
C frequency to indicate imaginary).
C

DO 2076 I - 1,NMODES
QMAX - QVIB(1,I1)
DO 2075 J - 1,NMODES

IF (ABS(QVIB(J,I)) .GT.ABS(QMAX))
6QMAX - QV IBC(J,I1)

2075 CONTINUE
WRITE(*,'(5X,12,A,F9.2,A,SP,,32(lX,F4.1fl')

6 I,' Freq -',SQRT(ABS*FVIB(I)))/(2.*PI)*
6 (FVIB(I)/ABS(FVIB(I))),' Hz ; mode shape
6 (QVID(J, I) /QMAX,J=1,NMODES)

2076 CONTINUE
C
2077 WRITE(*,'(/A,S)') I Starting eigenmode number ?

READ(*,*,ERR-2077) IEIG
IF ((IEIG.LE.0).OR.(IEIG.GT.NMODES)) GOTO 2077

C
C Initialize amplitudes of vibration.
C

TWIST - DUM2LO*PI/180.
DEFLC - DUM2LO/100.
DO 2078 1 - 1,NMODES

IF (BEN ITOR.EQ.1) QLIT(I,2) - DEFLC/
6 FMOOE(6,UX',MBT,1.)/FMODE(0,IY',MBT,0.)*
6 QVIB(I, IEIG) /QVIE (MBT, IEIG)

IF (BEN TOR.EQ.2) QLIT(1,2) - TAN(TWIST)*CHORD/
& FMODE(0,'X',MBT,1.)/FMODE(1,'Y',MBT,0.)*
& QVIB (I, IEIG) /QVIB (MET, IKIG)

IF (I.NE.MBT) QALL(NMODES+I) - QLIT(I,2)
QLIT(I,3) - 0.
IF (I.NE.MBT) QALL(2*NMODES+I) - QLIT(I,3)

2078 CONTINUE
C
C Initialize reduced frequency.
C

FREQ - SQRT (TVIB (IEIG) ) *(CHORD/2.) /VEL
QALL (2*MMODES+MBT) - FREQ

ELSE
C
C Initialize reduced frequency.
C

IT (DUMfl.NZ.DUM1LO) WRITE(*,*) ' Current frequency i'

6FREQ*VEL/(2.*PI*(CIORD/2.)),I Hz'
2080 WRITE(*,.'(A,$)') I Initial frequency guess (in Hz) ?

PZAD(*,',ERR-2080) FREQ
IT (FREQ.LE.0.) GOTO 2080
FREQ - FREQ*2.*PI*(CHORD/2.)/VEL
QALL (2*NNODES+MBT) - FREQ

C
C Initialize the oscillating amplitudes to zero.

DO 2085 1 - 2,3
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DO 2085 1 - 1,NMODES
QLIT(I,J) - 0. m
IF (I.NE.MBT) QALL(NMODES*(J-1)+I) - QLIT(I,J)

2085 CONTINUE
ENDIF

ZNDIF
END IF

C
C Read in the non-dimensional step size tolerance (maximum
C delta(X)/X] to be applied to the root angle/velocity and I
C frequency corrections in relaxing the Newton-Raphson solver.
C

IF ((DUMMYl.EQ.DUMlLO) .OR. (.NOT.LFLUTB)) THEN
2090 WRITE(*,'(A,$)') ' Step size tolerance ? i

READ(*,*,ERR-2090) TOL
IF (TOL.LE.0.) GOTO 2090

ENDIF
DO 2999 JGEOM - 0,IGEOM

RGEOM - 1.
IF ((LGEOM).AND.(IGEOM.GT.0)) THEN

RGEOM - REAL(JGEOM)/REAL(IGEOM)
WRITE(*,'(A,F4.3)') 'RGEOM - ',RGEOM

ENDIF
C
C Loop through the appropriate variable, denoted by the dummy
C variable DUM4Y2, for each line of constant velocity/root angle.
C

DO 2999 DUMMY2 - DUM2LO,DUM2HI,DUM2INC
C
C Initialize the number of iterations to zero.
C

LOOPS - 0
C
C Initialize convergence. If zero velocity, automatically set
C all amplitudes to zero and skip Newton-Raphson solver.

C
CONVERGED - .FALSE.
IF ((.NOT.VLINES).AND.(DUMMY2.EQ.0.) THEN i

DO 2100 I - 1,NMODES
QLIT(I,l) - 0.
QALL(I) - 0.

2100 CONTINUE I
CONVERGED .TRUE.

ENDIF
C
C Rescale unsteady, variable amplitudes from previous values
C according to new set amplitude.
C

DO 2110 I - 1,NMODES
DO 2110 J - 2,3 I

IF ((I.NE.MBT) .AND. (DUMMY2.NE.DUM2LO)) QALL(NMODES*
(J-l)+I)-QALL(NODES*(J-1)+I)*DUMY2/(DUMMY2-DUM2INC)

2110 CONTINUE
C
C Loop through the Newton-Raphson scheme until it is
C converged to an acceptable limit.
C

DO WHILE (.NOT.CONVERGED)
CI
C Extract the modal amplitudes from
C the augmented modal amplitude vector.

DO 2120 I - 1,NMODES
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DO 2120 J - 1,3
QLIT(I,J) - QALL(NMODES*(J-1)+I)

2120 CONTINUE
C
C Extract current value of unknown root angle/velocity
C from the augmented state vector QALL, appropriate to lines
C of constant velocity or root angle. Set velocity to
C zero if Newton-Raphson solver drives VEL**2 below zero.
C

IF (VLINES) THEN
AOA - QALL(NMODES+MBT)

ELSEIF (QALL(NMODES+MBT).GT.0.) THEN
VEL - SQRT(QALL(NMODES+MBT))

ELSE
QALL(NMODES+MBT) - 0.
VEL - 0.

ENDIF
C
C Extract current value of the unknown reduced frequency
C from the augmented state vector QALL.
C

FREQ - QALL(2*NMODES+MBT)
C
C Extract the desired twist oscillating amplitudes from
C the dummy variable DUMMY2.
C

TWIST - DUMMY2*PI/180.
DEFLC - DUMMY2/100.
IF (BEN TOR.EQ.1) QLIT(MBT,2) - DEFLC/

& FMODE(6,'X',MBT,1.)/FMODE(O,'Y',MBT,0.)
IF (BEN TOR.EQ.2) QLIT(MBT,2) - TAN(TWIST)*CHORD/

& FMODE(6,'X',MBT,1.)/FMODE(1,'Y',MBT,0.)
QLIT (MBT, 3) - 0.

C
LOOPS - LOOPS+1

C
C Write current values of inputs to residual calculations.
C

IF (LNEWT) THEN
WRITE(2,'(/A,I4,11X,13(4X,A2,4X))') ' LOOP 1,
LOOPS, (MLABEL(I),I-1,NMODES)

DO 2130 J - 1,3
IF (J.EQ.1) WRITE(2,'(A,$)') ' Avg
IF (J.EQ.2) WRITE(2,'(A,$)') ' Sin
IF (J.EQ.3) WRITE(2,'(A,$)') ' Cos
WRITE(2,'(A,13(lPE10.2))') 'modal amp
(QLIT(I,J),I-1,NMODES)

2130 CONTINUE
WRITZ(2,*) ' VEL -',VEL,' m/s'
WRITE(2,*) ' AOA -',AOA*180./PI,' dogs'
WRITE(2,*) ' k '',FREQ
OMEGA - FREQ*VEL/(CHORD/2.)/(2.*PI)
WRITZ(2,*) ' w -',OMEGA,' Hz'

ZNDIr
C
C Calculate the residuals from subroutine RESIDUAL, which
C are functions of the velocity VEL, root angle of attack AOA,
C reduced frequency FREQ, and modal amplitudes QLIT.
C

CALL RESIDUAL (VEL, AOA, FREQ,QLIT, RGEOM, RES, QBIG)
C
C Write current values of residuals.
C

IF (LNEWT* THEN
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DO 2140 J - 1,3

IF (J.EQ.1) WRITE(2, ' (/A,$) ') ' Avg I
IF (J.EQ.2) WRITE(2,'(A,$)') ' Sin
IF (J.EQ.3) WRITE(2,'(A,S)') ' Cos
WRITE(2, '(A, 13(1PEI0.2)) ') 'modal Qs

& (QBIG(I,J),I-1,NMODES)
2140 CONTINUE

DO 2145 J - 1,3
IF (J.EQ.1) WRITE(2,'(/A,$)') Avg
IF (J.EQ.2) WRITE(2,'(A,$)') ' Sin
IF (J.EQ.3) WRITE(2,'(A,$)') ' Cos I
WRITE(2,'(A,13(1PE10.2))') 'residuals

& (RES(I),I-(J-1)*NMODES+1,J*NMODES)
2145 CONTINUE

ENDIFCC Calculate the derivative matrix of the residuals Wrt the

C modal amplitudes using subroutine RREDIV, which is a
C function of the velocity VEL, root angle of attack AOA,C reduced frequency FREQ, and modal amplitudes QLIT. The

C current values of the residuals RES are also passed since
C the derivative matrix may be calculated numerically, in
C which case the current values are needed. i
C

CALL RDERIV (BENTOR, VEL, AOA, FREQ, QLIT, RES, 'Gt.M, DRDQ)
C
C Write derivative matrix.
C

IF (LNEWT) THEN
WRITE(2,'(/A)') ' NUMERIC dR/dq MATRIX :'
WRITE(2,' (12X,99(6X, I1,3X)) ') I

& ((I,I-1,NMODES),J-1,3)

DO 2160 I1 - 1,3
DO 2160 12 - 1,NMODES

IF (Il.EQ.1) CDLUM - 'dR/dq'//MLABEL(12)//'o' I
IF (I1.EQ.2) CDUM - 'dR/dq'//MLABEL(12)//'s'
IF (I1.EQ.3) CDUM - 'dR/dq'//MLABEL(12)//'c'
IF ((Il.EQ.2).AND.(I2.EQ.MBT)) THEN

IF (VLINES) CDUM - ' dR/dAOA' I
IF (.NOT.VLINES) CDUM - ' dR/dV*2'

ELSEIF ((II.EQ.3).AND.(I2.EQ.MBT)) THEN
CDUM - ' dR/dk'

ENDIF
J - (I-l)*NMODES+I2
WRITE(2,' (4X,AS, 3(IPE10.2)) )

& CDUM, (DRDQ(I,J),I..1,3*NMODES)
2160 CONTINUE

ENDIF
C
C Apply the Newton-Raphson scheme to figure the appropriate
C lineir correction in the state vector so as to drive the
C appropriate residuals to zero. For the steady case, only
C the steady amplitudes need to be corrected.
C

CALL SOLVE(DRDQ,RES, DQALL, 3'MAXMODE, 1,3*NMODES)

C Write the uncorrected state vector corrections.
C

IF (LNEWT) THEN
DO 2165 I - 1,3

IF (I.NE.1) RDUM - DQALL((I-1)'NMODES+MBT)
IF (I.NE.1) DQALL((I-1)*NMODES+MBT) - 0.
IF (I.EQ.l) WRITE(2,'(/A,$)') ' DELTA avg I
IF (I.EQ.2) WRITE(2,'(A,$)') ' DELTA sin
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IF (I.EQ.3) WRITE(2,'(A,$)') 'DELTA Co3
WRITE(2, '(A, 13(1PElO.2)) ') 'amps (in] :

£ (-DQALL(J),J-(I-1)'NMODES+l,I'NMODES)
IF (I.NE.l) DQALL((I-l)*NMODES+MBT) - RDUM

2165 CONTINUE
IF (VLINES) WRITE(2,*) ' DELTA AOA i'

& -DQALL(NMODES+MBT),' deg'
IF (.NOT.VLINES) WRITE(2,*) ' DELTA V*2 ,

£ -DQALL(NMODES*MBT),' (M/3)**21
WRITE(2,*) ' DELTA k i',-DQALL(2*NMODES+MBT)

ENDIF
C
C Calculate the appropriate factor for relaxation when the
C correction step size is too large for either the root
C angle/velocity or reduced frequency.
C

FACTOR - 1.
DO 2170 I - 1,2

J - I*NMODES + MBT
IF (QALL(J).NE.O.) THEN

IF (ABS(DQALL(J)/FACTOR/QALL(J)) .GT.TOL)
& FACTOR - ABS (DQALL(J)/CTOL*QALL(J)))

END IF
2170 CONTINUE

IF (LNEWT) WRITE(2,'(/A,lPE10.2)')
6 ' FACTOR - ',FACTOR

C Update the augmented state vector, at the same time
C checking for convergence of the maximum residual and
C of the relative change in the state vector QALL.
C

CONVERGED - .TRUE.

RESMAX - 0.
DO 2180 I - 1,I4MODES
DO 2180 J - 1,3

II - (J-1)*NMODES+I
QALL(II) - QALL(II)-DQALL(II)/FACTOR

C
C Check relative change in state vector.
C

IF (QALL(II)'.NE.0.) THEN
IT (ABS(DQALL(II)/QALL(II)) .GT.SMAX)

& CONVERGED-. FALSE.
ENDIF -

C
C Check relative size of residuals.
C

IF (ABS(RES(II)/QBIG(I,J)) .GT.RHAX) CONVERGED-.FALSE.
IF (ABS (PBS(II)) .GT .ABS (RESMAX)) RESMAX-RES (II)

2180 CoSmm=U
C
C Print current status to screen.
C

IF (LIFLUTS) THEN
IF (VLINES) WRITE(*,'(A,F6.2,S)')

£ ' VEL -,DUMKYl
IF (.NOT.VLINES) WRITE(,'(A,F6.2,$)')

& I AOA -1,DUOEYl
ELSE

WPJTZ(*,'(A,Fr6.2,S)') IAMP -',DUIHY2
ENDir

2190 FORMAT (A,14,A, 1PE8.l,A, 0PF6.2,A,F5.2,A,F4.2,A)
IF (VLINES) THEN

WRIT(*,2190) ';Loop ',LOOPS,' ; Rmax
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& RESMAX,' ;AOA -',QALL(NMODES+t.WT)*180./PI,
& I deg ; w -',QALL(2*NMODES+MBT)*VEL/(CHORD)/

2.)/(2.*PI),' Hz (k-1 1QALL(2*NMODES+MBT),.)'
ELSE

WRITE(*,2190) ;Loop ',LOOPS,' ; Rmax-
RESMAX,' ; VEL .',SQRT(QALL(NMODES+MBT)),I
IM/3; w .s,QALLC2*NMODES+MBT)*VEL/(CHORD/

& 2.)/(2.*PI),' HZ (km',QALL(2*NMODES+MBT),')I
END IF

OMEGA - FREQ*VEL/(CHORDi2.)/(2.*PI)
IF (LSTAR.T) WRITE(3,*) AOA*180./PIVELfOMEGA,

& ((QLIT(IJ),Ju1,3),11l,NMODES),RESMAX

IF (LOOPS.GE.ABS(LMAX)) THEN
IF CLMAX.LT.O) THEN

2195 WRITEC','(A,$)') ' Continue iterations ?
P.EAD('* (A) ',ERR-2195) ANSWER
CONVERGED-. TRUE.
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN

CONVERGED - .FALSE.
LOOPS -0

2196 WRI TE(I (A, F5. 4,A,$) TOL -,TOL,I

; New step size tolerance ?
R;A(*,*,ERu.2l96) TOL
IF (TOL.LE.O.) GOTO 2196

ENDIFI
ELSE

CONVERGED- .TRUE.
END IF

ENDIFI
END DO

C
C Extract the modal amplitudes and the velocity and reduced
C frequency from the final, converged augmented state vector.I
C

DO 2200 I - 1,NMODES
Do 2200 J3 - 1,3

QLIT(I,j) - QALL(NMODES*(J-l)+I)I
2200 CONTINUE
C
C Extract the appropriate root angle/velocity,
Cfrequency, and twist Oscillating amplitudes from theI

C final, converged augmented state vector.
C

QLIT (MBT, 3) - 0.
IF (BEN TOR.EQ.1) Q)LIT(MBT,2) - DEFLC/I

a FMDE(5,'X',MBTf1.)/FMODE(0,'Y',MBT,0.)
IF (BEN ,TOR.EQ.2) QLIT(MBT,2) - TAN(TWIST)*CHORD/

& MWOE (6, 1 X1,MBT, 1.) /FMODEC(1, 1 Y1, MST, 0.)
IF (VLINES) AOA - QALL(NMODES+MBT)I
IF (.NOT.VLINES) VEL - SQRT(QALL(NMODES+MGT))
FMZ - QALL(2*O4ODES+MBT)

C Calculate the aidchord tip deflection components and the tip
C twist components.
C

DO 2220 J3 1,3
HTIP(J) -0.

ATIP(J) 0.
DO 2210 I - 1,NB+NT+NC

HTIP(J) - HTIP(J)+QLIT(IJ)*FODE(,IXI,1.)*
& FMODE(0,'Y1,I,0.)

ATIP(J - ATIP(J)+QLIT(I,J)*FMODE(0,,',I,l.)*
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FMODE(l,'Y',I,O.)/CHORD
2210 CONTINUE
C

VTIP(J) - 0.
IF (NF.GT.0) THEN
DO 2215 1 NB+NT+NC+1,NB+NT+NC+NF

VTIP(J) -VTIP(J)+QLIT(I,J)*FMODE(0,IX',I,1.)*
FMODE(0,'Y',I,0.)

2215 CONTINUE
END IF

C
C Convert tip deflection to centimeters and tip tWi3t to
C degrees.
C

IF (LATAN) ATIP(J) - ATAN(ATIP(J))
HTIP(J) - HTIP(J)*100.
ATIP(J) - ATIP(J)*180./PI
VTIP(J) - VTIP(J)*100.

2220 CONTINUE
C
C write final/converged results.
C

ANG - AOA*180./PI
OMEGA -FREQ*VEL/(CHORD/2.)/(2.*PI)
IF ((.NOT.LNENT).AND.(BEN ITOR.EQ.1)) THEN

WRITE(2,'(3r7.2,5F9.3,$)') VEL,ANG,OMEGA,
(HTIP(J),J-1,2),ATIP(l),SQRT(ATIP(2)**2+ATIP(3)**2),

IATAN2(ATIP(2),ATIP(3))
if (NF.GT.0) WRITE(2,'(3F9.3,S)') VTIP(1),

A SQRT(VTIP(2)**2+VTIP(3)**2),ATAN2(VTIP(2),VTIP(3))
IF (LOOPS.LT.ABS(LMAX)) WRITE(2,'(A)') I I
IF (LOOPS.GE.ABS(J4AX)) WRITE(2,'(A)')

I* Not converged'.
ELSEIF ((.NOT.LNEWT) .AND. (BEN TOR.EQ.2)) THEN

WRITE(2,'(3F7.2,5F9.3,$)1) VEL,ANG,OMEGA,
£HTIP(1),SQRT(HTIP(2)**2+HTIP(3)**2),
IATAN2CHTIP(2),HTIP(3)),ATIP(l),ATIP(2)

IF (NF.GT.0) WRITE(2,'(3F9.3,$)') VTIP(l),
ISQRT(VTIP(2)**2+vTIP(3)**2),ATAN2(VTIP(2),VTIP(3))

IF (LOOPS.LT.ABS(LMAX)) NRITE(2,'(A)I)II
IF (LOOPS.GE.ABS(LMAX)) NRITE(2,'(A)')

I I * Not converged'
ELSE

WRITE(2,'(/A,15,A)') I After',LOOPS,' N-R iterations :

WRITZ(2,0(16X,13(4XA2,4X)) 6) (MLABZL(I),I-1,NMODES)
WRITE(2,1(A,13(lPZlO.2))') I Avg amps [m) ] 1

G (QLIT(I,1lhI-1,NMODES)
MkITE(2,'(A,13(1PE1O.2))1) I Sin amps (m) 1

A (QLIT(I,2),I-1,NMODES)

a (QLIT(1,3),I-1,NMODES)
URXTZ(2,'(/A,F7.3,A)') I AOA -',ANG,' dogs'
W!RITZ(2,1(A,F7.3,A)') 'VEL -0,VEL,' z/31
WRITE (2, 1(AF7. 3) 0) ' k -,FREQ
MITE(2, (A,F6. 3, A) I) I w - 'O0MEGA,' Hz'

ENDir
2999 CONTINUE

C -- ILE V G.FOR----------------------------------------------------
C

PROGRAM VO-ANALYS IS
C

INCLUDE PAPJM. INC
INCLUDE GLBBLK. INC
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REA' T:RATIO, FREQ, KZE
REAL KINV(MAXMODE,MAXMODE) ,Fv3 (MAXG4ODE)
REAL AR(MAXMODE,MAXMODE) ,AI (MAXG(ODE,MAXOKODE)I
REAL ZR (MAXG4ODE) , Z I (MAXG4ODE) , OB (NBMAX)
REAL QR(KMUODE,MAXMODE),Q01(KMODOE,MAXG4ODE)
REAL OMEGA (MAXMODE) ,DAHP (MAXMODE) ,VEL (MAXG4ODE)

REAL SL, KVL, LAM, SIGL, ALFA, SM, KVM, SIGH

COMPLEX A (MA)GIODE, MAXG4ODE)
COMPLEX KINVA (MAXMODE, MAIO4ODE)
INTEGER IERR, IP (MAXO4ODE)I
LOGICAL LSTRUC, CONVERGED

CHARACTER LAYUP*25,ANSWER*1,FILENAME*25

FOIL - 'NAC12'3

IC - (0.4l.)
ATYPE - 1
LINEAR - .TRUE.

STEAY - .FALSE.I
REDUC - .TRUE.
CORP.EC - .TRUE.
VLINES -. TRUE.

LATAN - .FALSE.I

LCONST - TRUE.
LGEOM - .TRUE.

C
C Read in the layup.
C
10 WRITE(*,'(/A,$)') 'Lay-up,

READ(*,' (A) ',ERR-1O) LAYUP

C Read in number of mode shapes to be used for the analysis.
C
20 WRITE(*,'(A,S)') 'Number of out-of-plane,'/

& 'torsion, & fore-&a-aft modes ?I
READ(*,*,ERR-20) NB,NTNF
NC - 0
IF ((NB.LT.1).OR.(NB.GT.NBMAX)) GOTO 20
IF ((NT.LT.1).OR.(NT.GT.NTMAX)) GOTO 20I
IF ((NF.LT.0).OR.(NF.GT.NFMAX)) GOTO 20
NMODES - NB+NT+NC+bNF

C

LSTRUC - .FALSE.
30 WRITE(*,'(A,S)') 'Output structures troubleshooting I

& 'diagnostics ?I
READ(*, I(A) , ZRR-3O) ANSWER

C IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) LSTRUC - .TRUE.I

C Create mass and stiffness matrices by calling STATIC subroutine.
C

CALL STATIC (LAYUP, LSTRUC, TRATIOP IERR)1

WUXTZ(*,1(A,12,A)') I IOSTAT-',IERR'1 error reading I
& 1'RIM(LAYTP/I'.DAT data file.'

QOTO 10 END11I
C
C Open output file.

FILENAME - TRIM(LAYUP)//'WNAV.VG'
OPEN (UNIT-2, FILE-TRIM(FILENAME) ,STATUS'INEW',
& FORM'FORMATTED', IOSTAT-IERR)

IF (IERR.EQ.0) THENI
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WRITE(*,*) 'Analysis results being sent to '//TRIJ4CFILENAME)
ELSE

WRITE(','(A,I2,A)') IOSTAT-',IERR,' error opening $//
& TRIM(FILENAbE)//' as Output file.'

GOTO 10
END IF
WRITE (2,' (32,A) ) NB,NT,NF, ' cut-of-plane, torsion, /
& 'fore-&-aft modes'
WRITE(2,'(F5.2,A)) TRATIO,' - ACA airfoil thickness ratio'

C
C Add geometric nonlinearities to stiffness matrix.
C

DO 50 1 - 1,148
40 WRT(,(,1AS' ~,B(in]

READ(*,*,ERR-40) QB(I
50 CONTINUE
C

DO 80 Il - 1,MAXG4ODE
DO 80 12 - Il,i4AXOODE

IF ((11.GT.NB).AND.(I1.LE.NB+NT).AND.
& (12.GT.NB).AND.(I2.LE.NB+NT)) THEN

DO 60 13 - lINE
DO 60 14 - 1,149

K(11,12) - K(11,12) + R(I3,I4,1-NB,I2-NB)*
& QB (13) *QB (14)

60 CONTINUE
ELSEIF ((11.GT.NB).AND.(Il.LE.N+NT).AND.

G (12.GT.ND+NT).AND.(I2.LE.NB+NT+NF)) THEN
DO 70 13 - 1,148

K(Il,I2) - K(Il,I2) + H(13,Il-NB,
& 12-NB-NT)*QB(I3)

70 CONTINUE
END IF
K(12,11) - K(11, 12)

80 CONTINUE
C
C Loop through reduced frequencies from 0 to 2.
C

CALL COETS LIN('H',0.,SM,KVM,LAM,SIGM,ALFA)
CALL COEFS LIN( 'L', .,SL,ICVL, LAM, SIGLALFA)
Do 999 1I- 0,210

C
FREQ -REAL(I-9)/l00.
IF (I.GI.159) FREQ - .5*2.*(-159)
IF (I.1.1.10) FREQ -REAL(I/l000.

IF (1.90.0) FRZQ -l.D-4

fflUTZ(*,'(A,I3,A,lPG9.3)') 11-',, k - ,FREQ
C

IIUC - (LAM4IC' (ALFA*FREQ) )/I(LAM+IC*'FREQ)
1112 - 1. - IC/FrREQ*SLOPE('L')/SL*THEO
1314 - .5 - KVL/SL + THEO/FREQ"*2*SLOPE('L')/SL +

G ZC/F3Q'(1.+(SIGL/SL-SLOPE('L')/2./SL)*THEO)
C

Mild - .5 + 2.'SM/SL - IC/FP.Q*SLOPE('L')/2./SL*THEO
143M4 - .25 - K'1L12./SL + SM/SL - 2.*KVM/SL +

& THEO/rUQ"2SLOP (ILI) /2. /SL + IC/FREQ*(.5 +
& 2.*SM/SL + 2.*SIG4/SL + .5*(SIGL/SL-SLOPE('L')/
A 2. /SL) *THEO)

C
IF (RIDUC) THIN

LlL2 - LIL2/(l.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
1.314 - L3L4/(l.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
MlN2 - M1M2/(l.+SWPE('L)/P/(2.*LNGTH/CHORD))
K3M4 - 143K4/(l.+SLOPE('L')/PI/(2.'LENGTH/CHORD))
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END IF

C Out-of-plane/out-of-plale matrix components.
C

DO 90 11 - 1N
DO 90 JJ - II,NBI

A(IIgJJ) -M(II,JJ) + SL*RNOA*LENGT.I
& (CHOPD/2.)**2*L1L2*SC_INT(II.JJ)

A(J,1I) - A(IIJJ)
90 CONTINUE
C
C Out-of-plane/torsion matrix components.

DO 100 11 - 1,NB

DO 100 JJ - NB+1,NB+NT
A(II,JJ) - !4(II,JJ) + SL*RHOA*LENGTH*
(CHORD/2.) **3/CHORD*L3L4*SC-INT(II,JJ)

100 CONTINUE CI
C Torsion/out-of-plane matrix components.

DO 110 11 - U+,NB+NT
DO 110 JJ - 1,N BI

A(II,JJ) -M(II,JJ) + SL*RLHOA*LENGTH*
(CHORD/2.) **3/CMORD-MIM2*SCZINT(II~JJ)

110 CONTINUE
CI
C Torsion/torsion matrix components.
C

DO 120 11 - NB+1,NB+NT

A(1J)- 14(II,JJ) + SL*RHOA*LENGTH*I

G (CHORD/2. **4/CHORD**2*43M4*
&SCINT (I IJJi)

10A(JJ,IZ) - A(IIIJJJ
120 CONTINUE

C
C Fore-&-aft matrix components

IF (Nt.GT.0) THEN

DO 130 11 - 1,NB+NT+NF
DO 130 JJ - MAXO(II,NB+NT+1),NE+NT+NF

A(II,JJ) - M(II,JJ)
A(JJ, II) - A(II,JJ)I

130 CONTINUE
END IF

CALL INVERT (K, KINV,MAXO4ODE, NMODES)
C

DO 150 11 - 1,MODES
DO 150 KR - 1,NMODES

KINVA(II,KK) - (0.,0.)
DO 140 JJ - 1, 00DZS

KINV(IZKK) - KINVA(II,KK) + KINV(II,JJ)*A(JJ,KK)
140 CONTINUE

AR(II,KK) - REAL(KINV(II,KK))
AI(II,KK) - AIMAG(KINVA(II,KK))

150 CONTINUE

C

C Extract natural frequency (OMEGA, in Hz), dairping ratio (DAMP),
C and velocity (VEL, in m/3) for each mode from the complex
C *igrenvalues.
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I
C

DO 160 II - 1,NMODES
OMEGA(II) - 0.
DAMP(II) - 0.
IF (ZR(II).NE.0.) THEN

OMEGA(II) - l./SQRT(ABS(ZR(II))).*ZR(II)/ABS(ZR(II))
DAMP(II) - ZI(II)/ZR(II)

ENDIF
VEL(II) - (CHORD/2.)*OMEGA(II)/FREQ
OMEGA(II) - OMEGA(II)/(2.*PI)
IP(II) - II

160 CONTINUE
C
C Sort multiple solutions by increasing frequency.

DO 170 II - 1, (NMODES-1)
DO 170 JJ - (II+1),NMODES

IF (OMEGA(IP(JJ)) .LT. OMEGA(IP(II))) THEN
IDUM - IP(JJ)
IP(JJ) - IP(II)
IP(II) - IDUM

ENDIF
170 CONTINUE
C

DO 180 11 - 1,NMODES
JJ - IP (II)
WRITE (2, ' 3 (PE11.3), $ ') VEL(JJ) ,DAMP (JJ) ,OMEGA(JJ)

m180 CONTINUE
WRITE (2,*)''

999 CONTINUE
CLOSE (2)

NSTOP

C--FILE: AEROF.FOR -----------------------------------------------
C

SUBROUTINE AEROF (LTHETA, HARVELFREQLPRINTD,CZ)
C
C Subroutine to calculate unsteady, non-linear, oscillatory aero-
C dynamic coefficients by Fourier decomposition of the oscil-
C latory, non-linear, stalled static aerodynamic force coefficient.
C
C INPUT VARIABLES: LX - indicator for lift coefficient (LM-'L')
C or for moment coefficient (LM-'M')
C THETA - oscillating components of angle of
C attack (rad)
C HBAR - oscillating components of 1/4-chord
C deflection (non-dimensional)
C VEL - velocity (M/a)
C FREQ - reduced frequency (non-dimensional)
C LPRINT - logical print variable
C OUTPUT VARIABLES: D - coeffs of deviation from linear lift
C curve in PHI domain (non-dimensional)
C CZ - oscillating components of the desired
C force coefficient (non-dimensional)
C

INCLUDE PARAM. INC
INCLUDE GLBBLK. INC
CHARACTER LM* 1
REAL THETA(3),HBAR(3),VEL,FREQ,CZ(5)
LOGICAL LPRINT

C
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C "~Constants Used in non-linear equations.
C
C ALFA: Oscillating components of effective angle of attack (rad)
C ALIN: Mean of effective angle of attack (rad)
C ALFV: Amplitude of oscillation of effective angle of attack (raW I
C TC: Real angle of attack corrected for finite span (rad)
C S,KV,LAM,SIG,ALF,W,D,E: Coefficients of ODE's (non-dim)
C

REAL ALFA(3),ALFO,ALFVTC(3)S,CV,LAM,SIG,ALF
CHARACTER ANSWER*1.

C *** Variables Used in linear calculations.
REAL LS,LC,CZ1(3)
COMMON / CZlBLK / CZl(3)

C *** Variables Used in non-linear calculations.I
INTEGER LOREG, HIREG
REAL PHI (-MAXREG :MAXREG) ,BB (-MAXREG :MAXREG, 0:MAXPOW)
REAL JCK,SINT(-MAXREG:MAXREG,0:MAXPOW),D(0:2)

REAL AA,RR,EE,B1,B2,B3,AMAT(5,5) ,BVEC(5)

C
RE -RHOA*VEL*CHORD/RMUA

IF (LPRINT) THENI
OPEN (UNITi3,FILE'IAEROF.OUT' ,STATUS-'NEWIFORM-FORMATTED')
WRITE(3,*) I'
IF (LM.EQ.'L') WRITE(3,*) 'LIFT TRIAL USING AEROF SUBROUTINE'I
IF (LM.EQ.'M') WRITE(3,*) 'MOMENT TRIAL USING AEROF 1//

6 'SUBROUTINE'
WRITE(3,*)II
WRITE(3,*) 'INPUT VARIABLES:'I
WRITE (3,*) I iinn Ini

WRITE(3,*) 'Reynold''s Number -',RE
WRITE(3,*) 'THETAO n', (THETA(1)*180./PI),' degs'
WRITE(3,*) 'THETAs 1, (THETA(2)180./PI), ' degs'I
WRITE(3,*) 'THETAc -1, THETA(3)*180./PI),' dogs'
WRITE(3,*) I HBARO '1,HBAR(l)
WRITE(3,*) I HBARs -',HBAR(2)
WRITE(3,*) I HBARc -',HBAR(3)I
WRITE(3,*) I FREQ -',FREQ

END IF
C
C Calculate the perceived angl, of attack coefficients (ALFA(i)],I

C the man and vibratory amplitudes (ALFO and ALFV], and the
C phase (ZETA].
C

ALFAMi - THETA(1) ALFA -RZTA2) FRE*HBR(I
ALFA(3 - THITA(3 - FREQ*HBAR(2)

C
ALTO - AMUA~)
ALI'J - SQRT(ALFA(2)**2+ALFA(3)**2)I
IT (ALVV.EQ.O.) ZETA-O.
Ir (ALmu'.Zo.) ZETA-ATAN2(ALFA(3),ALFA(2))

C
IF (LPRINT) THENI

WRITE(3,*) IAPA I n,(LOlO/I, es
NRITE(3,*) 'ALPHAs -',(ALFA(2)'80./PI),' dgs
IRITE(3,) 'ALPHAc -,(ALFA()*180/PI),' degs'I
WRITE(3,*) 'ALPHAv -',(ALFV18O./PI),' dogs'
WRITE(3,*) I ZETA -', (ZETA8./PI),' deq91

ENDIF

C Correct effective angle of attack and real angle of attack
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C for finite span.
C

IF (.EDUC) THEN
ALFO - ALFO/(l.+SLOPE('L')/PI/(2.LENGTH/CHORl))
ALFV - ALLFV/(l.*SLOPE('L')/PI/(2.*LENGTH/CHORD))
ALFA(l) -ALFA(1)/(l.+SLOPE('L')/PI/C2.*LENGTH/CHORD))
ALFA(2) - ALFA(2)/(l.+SLOPE('L')/PI/(2.'LENGTH/CHORD))
ALFA(3) - ALFA(3)/(l.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
TC(l) - THETA(1)/(l.+SLOPE('L')/PI/(2.*LENGTH/CHORD))
TC(2) - TMETA(2)/(l.4.SLOPE('L')/PI/(2.*LENGTH/CHORD))
TC(3) - THETA(3)/(l.+SLOPE('L')/PI/(2.*LENGTH/CHORD))

ELSE
TC(l) - THETAMi
TC(2) - THETA(2)
TC(3) - THETA(3)

END IF
C

CZ1(1) - SLOPE(LM)*ALFO
C
C Calculate lowest and highest region in which the alpha
C oscillation passes through.
C

LOREG - 0
HIREG - 0
AM4IN - ALFO - ALFV
AMAX - ALFO + ALFV
DO 10 I - 1,IREGS (FOIL)

IF ((TD(I) .LE.AMIN) .AND. (AMIN.LT.TD(I+1))) LOREG-I
IF ((TD(I) .LT.AMAX) .AND. (AMAX.LE.TD(1+1))) HIREG-I
IF ((-TD(1+1) .LT.AI4IN) .AND.(AMIN.LE.-TD(I))) LOREG--I
IF ((-TD(I+1) .LE.AMA6X) .AND. (AMAX.LT.-TD(I))) HIREG--I

10 CONTINUE
C

IF (.NOT.STEADY) THEN
C
C Calculate coefficients of the linear differential equations.
C

CALL COEFS-LIN(LM,ALFOS,KVLAM,SIGALF)
IF (LPRINT) THEN

WRITE(3,*) I
WRITE(3,*) I S -',S,'1/rad'
WRIT(3,*) ' KV -',KV,'llrad'
WRT(3,*) 'LAM in',LAM
NRITE(3,*) 'SLP -1,SLOPE(LM),'1/rad'
VRITE(3,*) 'SIG -',SIG,'l/rad'
WRITZ(3,*) 'AL -',ALF

END IF
C
C Calculate variables of linear aerodynamic equation.
C

U. - SLOPE (LM) *ALFA (2) -SIG*FREQ*TC (3)
IW - SLOPE (Lii) ALPA (3) +SIG*FREQ*TC (2)
zr (LpRZNT) THEN

WRXTZ(3, *) I I
U3ITZ(3,*) 'La -',LS
WRITE(3,*) 'ILe -',LC

END IF
C
C Calculate oscillatory contributions of linear aerodynamics.
C

CZ1 (2) - ((LAM*LAM+ALF*FREQmQ) 'LS+LAM'FREQ*
A (1.-ALTr) LC) /(LAM*LAM+FREQ*'FREQ)

CZ1 (3) - ((LAM*LAK+ALF*FREQ*FREQ) *LC-LAIEFREQ*
I (I.-ALF)LS)/(LMLM+FREQ*FREQ)
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ENDIF

IF (LPRINT) THEN
WRITEC3,*) 'C'//LM//'lo -',CZ1(1J
UIRITE(3,*) 'C'//LM//'1s -',CZ1(2)

WRITE(3,*) 'CI/ILM//Ilc -',CZ1(3)I

C
C Calculate the coefficients of CZ2 in time: 1-constant,
C 2-first harmonic sine, 3-first harmonic cosine, 4-second
C harmonic sine, 5-second harmonic Cosine.
C

IF (C(LOREG.EQ.0).AND.(HIREG.EQ.0)).OR.(LINEAR)) THEN
C
C Set coefficients equal to zero if oscillationI
C never enters the stalled regime or if only considering
C the linear problem.

DO 20 I - 1,5I
CZ2(I) - 0.

20 CONTINUE
ELSEIF ((STEADY) .OR. (ALFV.EQ.O.)) THEN

C If steady, calculate steady non-linear coefficient and set
C unsteady non-linear coefficients to zero.

CZ2(1) - -DCZS(LM,0,ALFO)I
DO 30 I - 2,5

CZ2(I) - 0.
30 CONTINUE

ELSEI

C Calculate limits of integration for each region for
C use in the Fourier analysis.

PHI(LOREG) -- PI/2.
PHICHIREG+1) - P1/2.
IF (LOREG.NE.HIREG) THEN

DO 40 I - LOREG+1,HIREGI

PHI(I - ASIN((-TD(l-I)-ALF0)/ALFV)
ELSE

PHIMI - ASIN((TD(I)-ALFO)/ALFV)I

40 CONTINUE
END IF

IF (LPRINT) THEN
WRITZ(3,*) II
DO 50 1 - LOREGHIREG-1

wRITE(3,*) 'REGION -,, PHI -1,(PHI(I)*180./1PI),3

50 CONTINUE

C Cluaethe coefficients of the polynomial expansion
C sine series in each region that the oscillation passes thru.
C

DO 130 I - LOREG,HIREG
IF (I.EQ.0) GOTO 130I

C
C Calculate constant coefficient.

BBCI,0) - REAL(SIGN(1,I))'DCZS(LM,0,TD(ABS(I)))
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00 6 0 J - 1,JMAX (AB S(1) )
BBCI,O) - BB(I,0) + REAL(SIGN(,I)**(J+lfl*
A(LM, ABS (I),J)-*(ALFO-REAL(SIGN(1, I))'TD (ASS(I)))**J

60 CONTINUJE
C
C Calculate higher order coefficients.
C

DO 90 KK - 1, JMAX(ABS (1)
BB(I,KK) - REAL(- IGN(l, I)) ** (KK+1) *A(IJ4,ABS I) ,KK) *

& (ALFV**KK)
IF (KK.NE.JMAX(ABS(I))) THEN
DO 80 J - KK+l,JMAX(ABS(I))

C
C Calcula.e J-choose-KK.
C

JCK - 1.
DO 70 L - l,KK

JCK - JCK*REAL(J-L+l)/REAL(L)
70 CONTINUE
C
C Add contribution of j-th power to bb(i,kk).
C

BB(1,KK) - BB(I,1(K) + JCK*(SIGN(l,I))**(J+l)*
A(LM,ABS(I),J)*(ALFV**KK)*((ALFO-REAL(SIGN(1,I))*

80 CONTINUE
END IF

90 CONTINUE
C

IF (LPRINT) THEN
WRITE(3,*) I
WRITE(3,*) 'REGION -',I
DO 100 KIC - 0,JMAX(ABS(I))

WRkITE(3,*) IBC',KK,') -',BB(I,KK)
100 CONTINUE

END IF
C
C Calculate the integrals of the sine powers in each region
C using Eqn 299 from "CRC Standard Math Tables," 28th edition.
C

SINT(I,0) - PHI(I+l) - PHI(I)
SINTr(I,1) - COS(PHI(I)) - COS(PHI(I+l))
DO 110 KK - 2,JMAX(ABS~fl)2

SINT(I,KC) - (COS(PHU(Ifl*SIN(PHI(l))**(KK-1)-
£ COS(PHI(1+1))*SIN(PHI(. +1))*(KK-1))/REAL(KK)+
& REAL(KK-l)/REAL(KK) 'SINT(I,KK-2)

110 CONTINUE
C

If (LPRINT) THEN
NRITE(3,*) I I
DO 120 KK - 0,JMAX(A.BS(mH)+2

WRITE(3,*) 'SINTEOP.LAL,KK,') -',SINT(I,KK)
120 CONTINUE

130 CONTINUE
C
C Calculate the polynomial coefficients of the
C Fourier expansion in the PHI domain.
C

DCZO - 0.
DCZ1 - 0.
DCZ2 - 0.
DO 150 I - LOREGHIREG

IF (I.NE.0) THEN
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DO 140 KK - 0, JMAX (ABS (I))
DCZO -DCZO + BB(I,KK)*SINT(I,KK)/PI
DCZ1 -DCZ1 + BB(I,KK)*SINT(I,KK+l)*2./PI
DCZ2 - DCZ2 + BB(I,KK)*(SINT(I,KX)-2.*

& SINT(I,KK+2))*2./PI

140 CONTINUE

150 CONTINUE

IF (LPRINT) THEN

WRITE(3,*) '
WRITE(3,') 'DC'//LM//'0 -1,DCZO
WRITE(3,*) 'DC'//LM//'Vl -',DCZI

WRITEC3,*) 'DC'//LM//'V2 -',DCZ2I

C
IF (LM.EQ.'L') THEN

D(O) - DCZOI
D(l) - DCZ2

END IF
CI
C Calculate coefficients of the non-linear aerodynamic
C differential equations. NOTE: this depends on DCL
C components - DIO), D(l), & D(2) - having already
C been calculated, i.e. that the calculations for
C LM-'L' are done before 124-'M'.I
C

CALL COEFS NON(ALFO,D(0),LM,AARR,EE,1,B2,B3)
IF (LPRINT) THEN

WRITE(3,*) I I
IF ((Bl.NE.0.).OR.(B2.NE.0.).OR.(B3.NE.0.)) THEN

WRITE(3,*) 'aO -1,AA'(l.-Bl*D(O)**2)
WRITE(3,*) 'al -',AA'8l
WRITE(3,*) 'rO -1,SQRT(RlR)*(l.-B2*D(O)**2)I
WRITE(3,*) 'rl -',SQRT(RR)*82
WRITE(3,*) 'eQ -',EE*(l.-B3*D(O)**2)
WRITE(3,*) 'el -',EE'83

ELSEI
WRITE(3,*) 'A -',AA
WRITE(3,*) IR W1,jR
WRITE(3,*) 'E -',EE

END IFI

C
AI4AT(1,l) - RR * (1. + B2 * (D(1)'*2+D(2)**2) +

A B2**2 * (2.*D(O)**2*D(l)**2 + .375*D(1)**4-

& 1.*()**()* + .37S*D(2)**4))
AaEAT(1,2) - Rfl * (B2 * (2.*D(0)'D(l)-D(l)*D(2)) +

& D(2) - D(1)**3*D(2) + 3.*D(O)*D(1)*D(2)**2 3" l5DO*()*
& .75*D(1)*D(2)**3))

AMRTx(1,3) - -MRQ*AA*Bl *(D(O)*D(l) -

AMAT(1,4) - 2.*FrREQ*AA*Bl * (-.25D).25*D(1)*D(2) +
a D(O)*D(2))
AMAT(1,5) - RR * (B2 * (-.5*O(1,**2+2.*D(O)*

& D(2)) + B2**2 * (-D(O)**2*D(l)**2 - .25*D(1)**4 +.

a .*D(0)*D(1)**2*D(2) - l.125*D(1)**2*D(2)*2 +
1 .5*D(O)*D(2)**3))

C
AI4AT(2,1) - RR * (B2 * (4.*D(0)'D(l) - 2*()

a D(2)) + B2**2 * (3.*D(0)*D(l)**3 - .DO*2
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& D(1)*D(2) - 2.*rD(1)**3*D)(2) + *DO*1*
4 D(2)**2 -1.5*D(1)*D(2)**3))

AMAT(2,2) -RR * (1. + B2 * (1.5*D(1)**2 -

& 2.*D(O)*D(2) + D(2)**2) + B2**2 * (3.*D(O)**2*
& D(1)**2 + .625*D(1)**4 - 6.*D(O)*D(1)**2*D(2)+
& 2.*D(O)0*2*D(2)**2 + 2.625*D(1)**2*D(2)**2 -
& 1.5*D(O)*D(2)**3 + 375*D(2)**4))

AMAT(2,3) - -FLQAA* (1. + 31 * (.75*D(1)**2-
& D(O)*D(2) + .5*D(2)**2))

AMAT(2,4) - 2.*FREQ*AA*Bl * (-D(O)*D(l) +
& D(1)*D(2))

AMAT(2,5) - RA * (B2 * (-2.*D(O)*D(l) + 2.*D(1)*
& D(2)) + 2**2 * (-2.*D(O)*D(1)**3 + 4.*D(O)**2*
& D(1)*D(2) + 1.75*D(1)**3*D(2) -4.5*D(O)*D(1)*

& D(2)**2 + 1.5*D(1)*D(2)**3))
C

AMAT(3,1) - 0.
AMAT(3,2) - FP.EQ*AA * (1. + Bi (.25*D(1)**2 +

& D(O)*D(2) + .5*D(2)**2))
AMAT(3,3) - RR * (1. + B2 * (.5*D(1)**2 +

& 2.*D(0)*D(2) + D(2)**2) + B2**2 * (D(0)**2*
& D(1)**2 + .125*D(1)**4 - 2.*D(0)**3*D(2) +
& 2.*D(0)**2*D(2)**2 + 2.*D(0)**3*D(2) +
& .375*D(1)**2*D(2)**2 + 1.5*D(0)*D(2)**3 +
& .375*D (2) *4) )

AMAT(3,4) - R (B2 * 2.*D(O)*D(l) + B2**2
& (D(0)*D(l)*i*3 -. 25*D(1)**3*D(2) +1.5*D(0)*
& D(1)*D(2)**2))

AMAT(3,5) - -2.*FREQ*AA*Bl * D(0)*D(l)
C

AMAT(4,1) - 0.
AMAT(4,2) - FREQ*AA*Bl * D(0)*D(l)
AMAT(4,3) - R (B2 * 2.*D(0)*D(l) + B2"*2

& (D(0)*D(1)**3 -. 25*rD(1)**3*D(2) + 1.5*D(0)*
& D(1)*D(2)**2))

AMAT(4,4) - R (1. + B2 * (D(1)**2 +
& .5*D(2)**2) + B2**2 * (2.*D(0)**2*D(1)**2 +
& .3125*D(1)**4 - 1.5*D(0)*D(1)**2*D(2) +
& D(0)**2*D(2)**2 + .75*D(1)**2*D(2)**2 +
& .125*D(2)**4))

AMAT(4,5) -- 2.*FREQ*AA * (1. + 31
& (.5*D(1)**2 + .25*D(2)**2))

c
AMAT(5,1) - RP. * (B2 * (D(1)**2 + 4.*D(O)*

& D(2)) + B2**2 * (-.*D(O)**2*D(1)**2 -
G .5*D(1)**4 + 6.*D(O)*D(1)**2*D(2) -
& 2.25*D(1)**2*D(2)**2 + 3.*D(O)*D(2)**3))

AIEAT(5,2) - RR * (32 *(-2.*D(O)*D(l) + 2.*
& D(1)*D(2)) + B2**2 *(-2.*D()D(1)3 +
& 4.*D(O)**2*D(1)*D(2) + 1.75*D(1)**3*D(2) -

& 4.5*D(O)*D(1)*D(2)**2 + 1.5*D(1)*D(2)**3))
hI4T(5,3) - -FREQ*AA*Bl (D(0)*D(l) + D(1)'D(2))
AMET(5,4) - 2.*FREQ*AA *(1. + 31 * (.5*D(1)**2 +

& .75*D (2) **2) )
AMAT(5,5) - PR * (1. + 32 * (D(1)**2 + 1.5'

& D(2)"*2) + 32**2 * (2.*D(O)**2*D(1)**2 +.
& .4375*D(1)**4 - 4.5*D(O)*D(1)**2*D(2) +
& 3.*D(0)**2*D(2)**2 + 2.25*D(1)**2*D(2)"*2 +
& .625*D(2)**4))

C
BVEC~l) - -(AMAT(1,1)*DCZO + AMAT(1,2)*DCZ1 +

& AMAT(1,5)*DCZ2)
BVEC(2) - -(AMAT(2,1)*DCZO + AMAT(2,2)*DCZ1 +

& AMAT (2, 5) *DCZ2)
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BVEC(3) -(FREQ-DCZ1 * EE * (1. + B3
& (.25*D(1)**2 + D(0)*D(2) + .5*D(2)**2))-I
& 2.*FREQ*DCZ2 * EE*B3 * D(O)*D(l))

SVEC(4 - -(FREQ*DCZ1 * EE*B3 * D(0)*D(1)-
& 2.*FREQ*DCZ2 * EE * (1. + B3 *(.5*D(1)**2 +

& .25*D(2)**2)))I
BVEC(5) - -(AMAT(5,1)*DCZ0 + AMAT(5,2)*DCZI +

& AMAT(5,S)*DCZ2)

CAMAT(2,2) AMAT(2,2) -FREQ**2

AMAT(3,3) -AMAT(3,3) -FREQ**2

AMAT(4,4) -AKAT(4,4) -4.*FREQ**2

CAt4AT(5,5) -AMAT(5,5) -4.*FREQ**2

160 FORJ4AT(' 1',5(1PE1O.2),'J',A7,'I',lPElO.2,'It)

IF (LPRINT) THEN
WRITE(3,*) 1 '

DO 170 JJ - 1,5I
IF (JJ.NE.3) THEN

WRITE(3,160) (AMAT(JJ,KK),KK-1,5),
I ',BVEC(JJ)

ELSEI
WRITE(3,160) (AMAT(JJ,KK),KK-1,5),

& 'I.C'//Lk4//'2 - ',BVEC(JJ)
END IF

170 CONTINUEU
CNI

CALL SOLVE(AMAT,BVEC,CP2,5,1,5)
IF (LPRINT) THENI

WRITE(3,*) 'II
WRITE(3,*) 'Nonlinear coefficients in Phi i

& 'or (Omega*Tau+Zeta) domain:'
WRITE(3,'(/5(A,lPE10.3))') ' C'//LM//12P0-',CP2(1),

I;C'//LM//'2P31-1,CP2(2),' ; C'//LM//'2Pcl-',CP2(3),
6 ~ '; C'//LM//'2Ps2-',CP2(4),' ; C'//LM//'2Pc2-',CP2(5)

END IF
C

C Convert nonlinear coefficients to normal OMEGA*TAU domain.
C

CUM(1 - CP2(1)
CZ2(2) - CP2(2)*COS(ZETA) - CP2(3)*SIN(ZETA)
CZ2(3) - CP2C3)*COS(ZETA) + CP2 (2) *SIN(ZETA)I
CZ2(4) - CP2(4)*COS(2.*ZETA) - CP2 (5) *SIN(2.*ZETA)
CZ2(5) - CP2(5)*COS(2.*ZETA) + CP2(4)*SIN(2.*ZETA)

C If diagnostics in effect, compare against old analysis,I
C from Dunn Master's thesis, Using constant coefficients.
C

Cr? (LPRINT) THEN

DCZ(1 - DO0)
DCZ(2) - D(1)*COS (ZETA)
DCZ(3 - D(1)*SIN(ZETA)
DCZ(4) - -D (2) *SIN (2. *ZETA)I
DCZ(5) - D(2)*COS(2.*ZETA)

C
CP2(1) - -DCZ(1)

CI
C Calculate first harmonic coefficients of unsteady
C aerodynamics.
C

1(1 - RR-FPEQ**2I
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K(3 - PRWDcz(2)+EE*FREQ*DCZ(3)
M( - -RR*Dcz(3)-EE*FREQ*DCZ(2)
CP2(2) - (1(1*13+12*14)/(1(11l+K2*K2)
C?2 (3) - (Kl*K4-K2*K3)/ (1(1*11+12*1(2)

C
WRITE(3,'(/A)') ' First Harmonic in Omega*Tau domain'
WRITE(3,*) IDCI/ILM//'O -',DCZ(1)
WRITE(3,*) 'DC'/ILM//'sl -',DCZ(2)
WP.ITE(3,*) 'DC'//LMI/'cl -',DCZ(3)
WRITE(3,*) '1((2) -',1(1
WRITE(3,*) '1(2(1) -',K2
WRITE(3,*) '1(3(1) -1,K(3
WRITE(3,*) '1(4(1) -1,K(4
WRITE(3,*) 'CZ2o -',CP2(l)
WRITE(3,*) 'CZ2sl -1,CPZ(2)
WRITE(3,*) 'CZ2c1 -',CP2(3)

C
C Calculate second harmonic coefficients of unsteady
C aerodynamics.
C

K(1 - RR-(2.*FPREQ)**2
K(2 -AA* (2. *FREQ)
K(3 - -RR*DCZ(4)+EE*2.*FREQ*DCZ(5)
K(4 - -RR*DCZ(5)-EE*2.*FREQ*DCZ(4)
CP2 (4) - ((1*1(3+1(2*1(4) /(1(1*11+12*1(2)
CP2(5) - (11*14-K2*13)/(1(l*1(+K2*K2)

C
wRITE(3,.'(/A)') I Second Harmonic in Omeg&*Tau domain'
WRITE(3,*) IDC'//LM//'s2 -',DCZ(4)
WRITE(3,*) 'DC'//LmII'c2 -',DCZ(5)
WRITE(3,*) '1(1(2) -',1(
WRITE(3g*) 'K(2(2) -',K(2
WRITE(3,*) 'K(3(2) -1,K(3
WRITE(3,*) 'X(4(2) -1,1(4
WRITE(3,*) 'CZ232 -',CP2(4)
WRITE(3,*) 'CZ2c2 -',CP2(5)

ENDIF
END IF

C
IF (LPRINT) THEN

WRITE(3,)' I
WRITE(3,*) 'C'//LM//'20 -',CZ2(1)
WRITE(3,*) 'C'//LZ4//'2sl -',CZ2(2)
WRITE(3,*) 'C'//LM//'2cl -',CZ2(3)
WRITE(3,*) 'C'//Lt41232 -',CZ2(4)
WRITE(3,*) 'C'//LZ4//'2c2 -1,CZ2(5)

END IF
C
C Add apparent Mass terms.
C

CZ1(2) - Cz1(2) - S*FREQ*ALFA(3) - 1V*FREQ*FREQ*TC(2)
CUM(3 - CZ1(3) + S*FREQ*ALFA(2) - 1V*FREQ*FP.EQ*TC(3)

C
C Combine linear and non-linear terms for
C total coefficients of full non-linear aerodynamics.
C

CZ(l) = CZ1(1) + CZ2(1)
CZ(2) - CZ1(2) + CZ2(2)
CZ(3) - CZ1(3) + CZ2(3)
CZ(4) = CZ2(4)
CZ(5) - CZ2(5)

C
IF (LPRINT) THEN

WRITE(3,*)
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i
WRITE(3,*) 'C'//LM//'O -',CZ(1)
WRITE(3,*) 'C'//LM//'sl -',CZ(2)
WRITE(3,*) 'C'//LM//'cl -',CZ(3)
WRITE(3,*) 'C'//LM//'s2 -',CZ(4)WRITE(3,*) 'C'//LM//'c2 -',CZ(5)
CLOSE (3)
WRITE(*,*) 'CZO -,CZ(1),' ; CZs1 -,CZ(2),' ; CZcl -',CZ(3),

I ; CZs2 -',CZ(4),' ; CZc2 ',CZ(5)
PAUSE

END IF

RETURN
END

C ---- FILE: CHARAC.FOR- ------------------------------------------------
C
C Subroutines and functions which describe the static lift curve
C of the desired airfoil ('OA212' for the OA212 or 'NAC12' for the I
C NACA-0012).
C

C
C Function to describe the slope of the linear part of the lift
C curve.C REAL FUNCTION SLOPE(LM)

INCLUDE PARAM. INC
INCLUDE GLBBLK.INC
CHARACTER LM*1

C OA212 lift slope taken from Rogers, "Applications of an
C Analytic Stall Model to Time-History and Eigenvalue Analysis
C of Rotor Blades", Journal of the American Helicopter Society,
C January 1984.
C

IF ((FOIL.EQ.'OA212').AND.(LM.EQ.'L')) SLOPE-7.1
C
C ** NACA-0012 LIFT SLOPE APPROXIMATED FROM NACA REPORT 586,
C ** JACOBS & SHERMAN, FIGURE 3
C

IF ((FOIL.EQ.'NAC12').AND.(LM.EQ.'L')) SLOPE-0.103*(180./PI)
C IF ((FOIL.EQ.INAC12').AND.(LM.EQ.IL')) SLOPE-2.tPI
C
C NACA-0012 MOMENT SLOPE APPROXIMATED FROM NACA TM-84245-VOL-2,
C McALISTER, PUCCI, McCROSKEY, AND CARR, FIGURE 9C I

IF ((FOIL.EQ.'NAC12').AND.(LM.EQ.'M')) SLOPE-0.002*(180./PI)

IF ((FOIL.IQ.'1NAC12').AND. (LM.EQ.'M')) SLOPE-O.
RETURN

C END I
C
C Function to describe the DERIV-th derivative of Delta-CZ Static
C (DCZS, the static deviation from the static, linear lift curve),

C evaluated at angle THETA.
C

REAL FUNCTION DCZS(LM,IDERIV,THETA)

INCLUDE PARAM. INC
INCLUDE GLBBLK.INC
CHARACTER LM*
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C Find region in which THETA lies.
C

IREG - 0
DO 10 1 - 1,IP.EGS(FOIL)

IF ((TD(I).LT.THETA).AND.(THETA.LE.TD('+U))) IREG-I
IF ((-TD(I+1).LE.THETA).AND.(THETA.LT.-TD(I))) IREG--I

10 CONTINUE
C

IF (LINEAR) THEN
DCZS -0.

ELSEIF (IDERIV.EQ.0) THEN
C
C Calculate zero-th derivative.
C

IF (IREG.EQ.0) THEN
DCZS -0.

ELSE
DO 30 I - 0,ABS(IREG)-l

C
C Calculate DCZS at TD(IREG) by calculating region
C by region DCZS(TD(I)) in each region previous to IREG.
C

IF (I.EQ.0) THEN
DCZS - 0.

ELSE
DO 20 1 - 1,JMAX(I)

DCZS - DCZS + A(LM,I,J)*(TD(I+1)-TD(I))**J
20 CONTINUE

END IF
30 CONTINUE
C
C Calculate DCZS(THETA) using the previously calculated
C DCZS(TD(IREG)) as a starting point and the power
C expansion of DCZS in region IREG.
C

DO 40 J - 1,JMAX(ABS(IREG))
DCZS - DCZS + A(LM,A8S(IREG),J)*(ABS(THETA)-

TD(ABS(IREG)))**J
40 CONTINUE

DCZS - DCZS*REAL(SIGN(1,IR.EG))
END IF

C
ELSEIF (IDERIV.GT.0) THEN

C
C Calculate higher derivatives.
C

DCZS - 0.
IF ((IREG.NE.0).AND.(IDERIV.LE.JMAX(ABS(IREG)))) THEN

DO 60 J - IDERIV,JMAX(ABS(IREG))
C
C Calculate J!/(J-IDERIV)!.
C

IFAC - 1
DO 50 J1 - J-IDERIV+1,J

IFAC - IFAC'JJ
so CONTINUE
C
C Add contribution of J-th power, differentiated IDERIV
C times, to the overall derivative.
C

DCZS - DCZS + A(LM,ABS(IREG),J)*REAL(rFAC)*
& ~(AS(THETA) -TD (ASS (IREG) ) )** (J-IDERIV)

60 CONTINUE
END IF
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DCZS - DCZS*REAL(SIGN(l,IREG))
ENDIF

C
RETURN
END

C

CC Function to describe number of regions into which the lift
C curve is divided.
C

INTEGER FUNCTION IEGS(FOIL)
CI

CHARACTER FOIL*5
C IF (FOIL.EQ.'OA212') IREGS-2

IF (FOIL.EQ.'OA212') IREGS-l
C IF (FOIL.EQ.INAC12') IREGS-3

IF (FOIL.EQ.'NAC12') IREGS-2
RETURN
END

C

C
C Function to describe the angles at which each of the regions of
C the lift curve begins [units of radians].C

REAL FUNCTION TD(IREG)C
INCLUDE PARAM.INC
INCLUDE GLBBLK.INC

C
IF (FOIL.EQ.'OA212') THEN

IF (IREG.EQ.1) TD-10.*PI/180.
C IF (IREG.EQ.2) TD-24.8*PI/180.
C IF (IREG.GE.3) TD-PI/2.

IF (IREG.EQ.2) TD-PI/2.
ELSEIF (FOIL.EQ.'NAC12') THEN

C
C PARABOLIC, STALL, AND STRAIGHT LINE ANGLES FOR NACA-0012
C * APPROXIMATED USING FIT TO LOG(RE) DATA FROM NACA REPORT 586,
C * JACOBS 6 SHERMAN, FIGURE 3.

RVAL - LOG(RE/3.4E5)/LOG(2.)
C
C Parabolic from half of stall to stall angle (11 deg),
C exponential decay to large angles (25 deg), flat line above.
C
C IF (IRZG.ZQ.1) TD-(ll.+2.143*RVAL)/2.*PI/l80.
C IF ((IRZG.ZQ.1).AND.(RE.LT.3.4D5)) TD-11./2.ePI/180.
C ir (IREG.EQ.2) TD-(ll.+2.143*RVAL)'PI/l80.
C IF ((IRZG.EQ.2).AND.(E.LT.3.4D5)) TD-1l.'PI/180.
C IF (IREG.EQ.3) TD-25.*PI/180.
C Ir (IRZG.GK.4) TD-PI/2.
C
C Straight line to stall angle (11 deg), exponential decay to
C large angles (25 deg), flat line above.
C
C IF (IREG.EQ.l) TD-(ll.+2.143*RVAL)'PI/180.
C IF ((IREG.EQ.1).AND.(RE.LT.3.4D5)) TD-ll.*PI/180.
C IF (IREG.EQ.2) TD-25.*PI/180.
C IF (IREG.GE.3) TD-PI/2.
CI
C Slight drop after stall angle (8 deg), then flat line at
C high angles (>20 deg)
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C
IF (IREG.EQ.l) TD-8.*PI/180.
IF (IREG.EQ.2) TDm20.*PI/180.
IF (IREG.EQ.3) TD-PI/2.

C
C Flat line lift curve after stall angle.
C
C CLASY - .75 + .0536*RVAL
C IF (RVAL.LE.0) CLASY-.75
C IF (IREG.EQ.1) TD-CLASY/SLOPE('L')
C IF (IREG.EQ.2) TD-PI/2.
C

ENDIF
RETURN
END

C

C
C Function to describe the maximim power of the polynomial
C approximation used in region IREG.
C

INTEGER FUNCTION JMAX (IREG)
C

INCLUDE PARAM.INC
INCLUDE GLBBLK.INC

C
IF (FOIL.EQ.'OA212') THEN

C
C Straight lines connecting each region.
C

JMAX-1
C
C IF (IREG.EQ.1) JMAX-7
C IF (IREG.EQ.2) JMAX-l
C

ELSEIF (FOIL.EQ.'NAC12') THEN
C
C Straight lines connecting each region.
C

JMAX- 1
C
C Parabolic below stall, exponential to asymptotic, level off
C to flat line for high angles.
C
C IF (IREG.EQ.I) JMAX-2
C IF (IREG.EQ.2) JMAX-10
C IF (IREG.EQ.3) JMAX-I
C

ENDIF
RETURN
END

C
Cm • --- MMMmmMm mm
C
C Function to prescribe the coefficients of the polynomial
C approximation to Delta-CZ in region IREG. Powers of (180/PI)
C are present because of conversions from units of degrees to
C radians.
C

REAL FUNCTION A(LM, IREG, J)
C

INCLUDE PARAM..INC
INCLUDE GLBBLK. INC
CHARACTER LM*1
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c I
C

IF ((FOIL.EQ.'OA212').AND.(LM.EQ.'L')) THEN
C IF (IREG.EQ.l) THEN
C IF (J.EQ.l) A-0.
C IF (J.EQ.2) A-+6.305970OD-2*(180./PI)**2
C IF (J.EQ.3) A--l.395201OD-2*(180./PI)**3
C IF (J.EQ.4) A-+l.7390851D-3*(180./PI)"*4
C IF (J.EQ.5) A'-l.2451913D-4*(180./PI)**5
C IF (J.EQ.6) A-+4.6849257D-6*(180./PI)**6
C IF (J.EQ.7) A--7.087973OD-8*(180./PI)**7
C ELSEIF (IREG.EQ. 2) THEN
C IF (J.EQ.2) A TSLOPE(LM)
C ENDIF

A - 0.
IF ((IREG.EQ.l).AND.(J.EQ.l)) A-SLOPE(LM)

ELSEIF (FOIL.EQ.'NAC12') THEN
C
C ** PARABOLIC, STALL, AND STRAIGHT LINE COEFFICIENTS FOR
C ** NACA-0012 LIFT SLOPE ARE APPROXIMATED USING FIT TO LOG(RE)
C " DATA FROM NACA REPORT 586, JACOBS & SHERMAN, FIGURE 3.
C "' COEFFICIENTS FOR MOMENT SLOPE TAKEN FROM McALISTER, NASA
C TM-84245, FIGURE ?.
C
C RVAL - LOG(RE/3.4E5)/LOG(2.)C
C Calculate the maximum lift/moment coefficient, dependent on
C the log of the Reynold's Number. I
C
C CZMAX - .86 + .24*RVAL
C IF (RVAL.LE.0) CZMAX-.86+.03*RVAL
C IF (LM.EQ.'M') CZMAX-.04 I
c
C Calculate the asymptotic lift/moment coefficient (i.e. the
C lift/moment coefficient when the angle of attack tends to large
C angles), dependent on the log of the Reynold's Number. Ic

RVAL - 0.
CZASY - .75 + .0536*RVAL
IF (RVAL.LE.0) CZASY-.75 I
IF (LM.EQ.'M') CZASY--.12

C
C Calculate the coefficient o" the exponential decay from maximum
C to asymptotic, dependent or the log of the Reynold's Number.
C
C RNU - -.2-.07*RVAL
C IF (RVAL.LE.0) RNU--.2
C
C Calculate the necessary polynomial coefficients for each
C region, using the previously calculated maximum, asymptotic,
C and exponential decay coefficients.
C
C AO0.
C IT (LM.Q.'L') THEN
C IF (IREG.EQ.1) THEN

C Parabolic fit from end of linear region (region 0) to
C point of maximum lift/moment (end of region I). The
C polynomial coefficients are chosen such that the slope is
C continuous at the juncture of regions 0 and 1.
C
C IF (J.EQ.l) A-0.
C IF (J.EQ.2) A-(SLOPE(LM)*TD(2)-CZMAX)/(TD(2)-TD(l)*2
C
C ELSEIF (IREG.EQ.2) THEN
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C
C Exponential fit with decay coefficient RNU from end of
C parabolic region (region 1) to beginning of asymptotic
C region (region 31. The polynomial coefficients are chosen
C such that they fit a power series expansion of the
C exponential decay.
C
C IFAC 1
C DO 10 I - l,J
C IFAC - IFAC*I
CIO CONTINUE
C A - (CZASY-CZMAX)*RNU*J/REAL(IFAC)*(180./PI)**J
C IF (J.EQ.1) A-A+SLOPE(LM)
C
C ELSEIF (IREG.EQ.3) THEN
C
C Flat line fit for the asymptotic region (region 3).
C
C IF (J.EQ.I) A-SLOPE(LM)
C ENDIF
C ELSEIF (LM.EQ.'L') THEN
C
C Moment coefficient remains constant up to stall (i.e.
C through regions 0 & 1), straight line drop to the asymptotic
C value in region 2, and flat line afterward.
C
C IF ((IREG.EQ.2).AND.(J.EQ.1)) A--CZASY/(TD(3)-TD(2))
C IF ((IREG.EQ.3).AND.(J.EQ.1)) A-SLOPE(LM)
C ENDIF
C

IF (LM.EQ.'L') THEN
IF (IREG.EQ.1) A - (SLOPE(LM)*TD(2)-CZASY)/(TD(2)-TD(l))
IF (IREG.EQ.2) A - SLOPE(LM)

ELSEIF (LM.EQ.'M') THEN
IF (IREG.EQ.1) A - (SL(PE(LM)*TD(2)-CZASY)/(TD(2)-TD(l))
IF (IREG.EQ.2) A - SLOPE(LM)+(CZASY+.15)/

& (30.*PI/180.-TD(2))
ENDIF

C
ENDIF
RETURN
END

C --- FILE: COEFS.FOR--------------------------------------------------
C
C Subroutine to calculate unsteady lift/moment coefficients
C for linear (CZ1) equations.
C

SUBROUTINE COEFS LIN(LM,THETA, 5, KV, LAM, SIG,ALPHA)
C

INCLUDI PARAM. INC
INCLUDE GLBBLK. INC
CMARACTER LM*'
REAL THETA,S,KV,LAM, S ;, ALPHA

C
IF ((FOIL.EQ.'OA212').AND.(LM.EQ.'L')) THEN

C
C Coefficients from Rogers, "Applications of an Analytic Stall
C Model to Time-History and Eigenvalue Analysis of Rotor Blades",
C Journal of the American Helicopter Society, January 1984,
C page 26, equations (4) to (8).
C

S -5.
KV- 0.
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LAM - 0. 2
SIG - (SLOPE(LM) - 4.*(l.+1.43*DCZS(LM,0,THETA)))/LAM
ALPHA - 0.

ELSEIT (FOIL.EQ.'NAC12') THEN
IF (LM.EQ.'L') THEN

C Coefficients from Petot, "Dynamic Stall modeling of the

C NACA 0012 Profile", Short Note, page 58, equations (2)
C anI3,cnetdt aenoain& oes(bv)
C ad() ovre osm oaina oes(bv)
C S - O.09'(180./PI)

S - PI
Kv pi/2.

C LAM 0.2I
LAM -0.15

C SIG -(0.08-0.13*DCL0)*(180./PI)/LAM
SIG -SLOPE CLM)I

C ALPHA - .5
ALPHA - .55

ELSEIF ((FOIL.EQ.'NAC12').AND.(LM.EQ.'M')) THEN
C S - 0.0304*l80./PI

S --PI/4.I
KV -- 3.*PI/16.
LAM - 0.

C SIG - 0.0089*180./PIC IF((TETA.T.(3.*P/18.)).ND..NOTLINARI
C &SIG-SIG-.00067*180./PI*(THETA*180./Pl-13.)/LAM

SIG - -P1/4.
ALPHA - 1.

C GAM - 0.16I
C IF (THETA.GT.(l3.*PI/180.)) GAM-GAM+.035*
C &(THETA*180./PI-13.)
C ALF - l./11.5/GA4
C C -3.5I
C IF (THETA.GT.(15.6*PI/180.)) C-C43./PI*ATAN(
C &SQRT(3.)/1.2*(THETA*180./PI-15.6))

END IF
END IFI

C
RETURN
END

C

C Subroutine to calculate unsteady lift/moment coefficients
C for non-linear (CZ2) equati.ons.

SUBROUTINE COIVSNMON(THETA,DCLO,LM,AA,RR,EE,B1,B2,B3)

INCLUDE PAEAN. INC
INCLUD& GLBBLK. INC
REAL THETA,DCL0,AA,RR,EE,B1,B2,B3
REAL GAK,ALF,C,L1,L2,L3,L4,L5,L6
CHARACEA*1 IN
REAL AOL,A1L,R0L,RlL,EOL,E1L
REAL AO, AiM, RON, RiM,EON, ElM
COMMION / COEFBLK / AOL,AlL,R0LR1L,E0L,E1L,

AOM, AlN,RON, RiM,EON, ElM

IF (ATYPE.EQ.O) THEN
MoeCoTm-itr n ievleAayi fRtrBae"

C Coefficients from Rogers, "Applications of an Analytic Stall

C Journal of the American Helicopter Society, January 1984,
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C page 26, equations (4) to (8) for airfoil type OA212.
C

GAM - 0.1
IF (THETA.GT. (13.*PI/180.)) GAM-GAM+0.023*(THETA*
(180./PI)-13.)

ALF - 0.105/GAM
C - 2.
IF (THETA.GT.(13.*PI/180.)) C-C-5.1*ATAN(I.21*
(THETA*(180./PI)-13.))

C
AA - 2.*ALF*GAM
RR - GAM**2*(I.+ALF**2)
EE - RR*C
8l - 0.
82 = 0.
B3 -0.

ELSE
IF (ATYPE.EQ.1) THEN

C
C Coefficients from Petot, "Dynamic Stall Modeling of the
C NACA 0012 Profile," Short Note, Recherches Aerospatiales,
C 1984-6, pp. 55-58, with corrections for low Reynold's number
C from Petot & Loiseau, "Succesive Smoothing Algorithm for
C Constructing the Semi-Empirical Model Developed at ONERA to
C Predict Unsteady Aerodynamic Forces," NASA TM-76681, March
C 1982, for airfoil type NACA 0012.
C

Li - .25
L2 - .10
IF (RE.LE.3.4E5) L2 - .40
L3 - .20
L4 - .10
IF (RE.LT.3.4E5) L4 - .23
L5 - 0.
L6 - -. 60
IF (RE.LT.3.4E5) L6 - -2.7

ELSEIF (LM.EQ.'L') THEN
Li - AOL
L2 - AlL
L3 - ROL
L4 - RiL
L5 - EOL
L6 - ElL

ELSEIF (LM.EQ.'M') THEN
Li - AOM
L2 - AIM
L3 - ROM
L4 - RIM
L5 - 30M
L6 - ElM

ZNDIF
C

AA - Li + L2*DCLO**2
RR * (L3 + L4*DCLO**2)**2
13 - LS+L6*DCLO**2
IF (ATYPE.LE.l) EE - RR*EE

C
IF (LCONST) THEN

B1 - 0.
82 -0.
B3 - 0.

ELSE
81 - L2/AA
52 - L4/SQRT(RR)
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I
B3 - L6/EE
IF (ATYPE.LE.1) B3 - L3*(L3*
L6+2.*L4*L5)/EE

END IF ENDII
C

RETURN
END

C ---- FILE: CORREC.FOR- ------------------------------------------------
C
C Functions to describe the spanwise and chordwise distributions
C applicable to the 2-dimensional lift, moment, and drag
C coefficients.
C

REAL FUNCTION SC(XBAR)
SC - 1.SC - 1. 11" (1.-XBAR**9)
RETURN
END

REAL FUNCTION CC(YBAR)
CC - 3.*(0.5-YBAR)**2
RETURN |I
END

C ---- FILE: DRDQ.FOR- --------------------------------------------------
CSUBROUTINE R_DERIV (BEN_TOR, VEL, AOA, FREQ, QLIT, RES, RGEOM, DRDQ)

C

C Subroutine to calculate the Jacobian matrix d(RES)/d(QLIT) by
C numerical estimation of the derivatives.
C
C INPUT VARIABLES: BEN TOR - bending/torsion flag
C VEL - velocity (m/s)
C AOA - root angle of attack (rad)
C FREQ - reduced frequency (non-dim)
C QLIT - modal amplitudes (W)
C RES - current residuals (non-dim)
C OUTPUT VARIABLE: DRDQ - numeric derivative matrix (1/m)

INCLUDE PARAM. INC
INCLUDE GLBBLK. INC
INTEGER BENTOR, MBT
REAL VEL,AOAFREQ, QLIT(MAXMODE,3),RES(3MAXGODE), RGEOM
REAL VEL2,AOA2,FREQ2,QLIT2(MAXMODE,3), RES2 (3*MAXMODE)
REAL QBIG(MAXMODE,3) ,DRDQ(3*MAXO4DE,3*MAXMODE)

C
MST - (DENTOR-1)*NB + 1

C Loop through each direction of the components of the modal
C aplitudes, ignoring oscillating components if steady analysis.
C

MAX - 3
IF (STEADY) MAX-1

DO 30 Ii - 1,NMODES
DO 30 Jl - 1,MAX

C
C Skip if looking at components of state vector
C reserved for angle of attack/velocity and reduced frequency.
C

IF ((I1.EQ.MBT).AND.(J1.NE.1)) GOTO 30
C
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C Initialize modal amplitude trial vector.
C

DO 10 12 - 1,MAXMODE
DO 10 J2 - 1,3

QLIT2(I2,J2) - QLIT(12,J2)
10 CONTINUE
C
C Increment desired direction of modal amplitude
C trial vector by 0.1%
C

QLIT2(I1,J1) - 1.001*QLIT(I1,Jl)
IF (ABS(QLIT2(Il,J1)).LT.l.E-4) QLIT2(Il,J1)-0.A01

C
C Calculate new residuals from modal amplitude trial vector.
C

CALL RES IDUAL (VEL, AOA, FREQ, QLIT2, RGEOM, RES2, QBIG)
C
C Calculate numeric derivatives from modal amplitude trial
C vector QLIT2 and associated residuals RES2.
C

K1 - NMODES*(Jl-l)+Il
DO 20 12 - 1,NMODES
DO 20 J2 - 1,MAX

K2 - NMODES*(J2-l)+I2
DRDQ(K2,Kl) - (RES2(K2)-RES(K2))/(QLIT2(11,Jl)-
QLIT(Il,J1))

20 CONTINUE
30 CONTINUE
C
C If steady, skip angle of attack/velocity and frequency
C derivatives.
C

IF (STEADY) GOTO 60
C
C Increment trial angle of attack/velocity by 0.1% and
C calculate new residuals.
C

IF (VLINES) THEN
AOA2 - 1.001*AOA
IF (AOA2.EQ.0.) AOA2-0.001
CALL RESIDUAL(VEL,AOA2,FREQ,QLIT,RGEOM,RES2,QBIG)

ELSE
VEL2 - 1.001*VEL
IF (VEL2.EQ.0.) VEL2-0.001
CALL RESIDUAL (VEL2, AOA, FREQ, QLIT, RGEOM, RES2, QBIG)

ENDIF
C
C Calculate numeric derivatives from trial angle of attack/velocity
C AOA2/VEL2 and associated residuals RES2.
C

K1 - NOODES+MBT
DO 40 12 - 1,NMODES
DO 40 J2 - 1,MAX

K2 - NMODES*(J2-1)+12
IF (VLINES) DRDQ(K2,KI)-(ES2(K2)-RES(K2))/(AOA2-AOA)
IF (.NOT.VLINES) DRDQ(K2,K1)-(RES2(K2)-RES(K2))/

& (VEL2**2-VEL**2)
40 CONTINUE
C
C Increment trial frequency by 0.1% and calculate new residuals.
C

FREQ2 - 1.001*FREQ
IF (FREQ2.EQ.O.) FREQ2-0.001
CALL RESIDUAL(VEL,AOA, FREQ2,QLIT,RGEOM,RES2,QBIG)

235



C I
C Calculate numeric derivatives from trial frequency FREQ2 and
C associated residuals RES2.
C

K1 - 2*NMODES+MBT
DO 50 12 - 1,NMODES

DO 50 J2 - 1,MAX
K2 - NMODES*(J2-1)+I2
DRDQ(K2,Kl)- (RES2 (K2) -RES (K2)) /(FREQ2-FREQ) U

50 CONTINUE
C
60 RETURN

C --- FILE: MASS.FOR--------------------------------------------------
C

SUBROUTINE MASS (LO, HI,MPA)

C Subroutine to calculate components of the flat plate mass matrix
C

INCLUDE PARAM.INC
INCLUDE GLBBLK.INC I
REAL LO, HI,MPA, INTGRL

C
DO 10 I - 1INMODES
DO 10 J - I,NMODESI

IF ((I.LE.NB+NT+NC).AND.(J.LE.NB+NT+NC)) THEN
C
C Calculate out-of-plane mass matrix components.

M(I,J) - MPA*CHORD*LENGTH*INTGRL('X',I,0,J,0,LO,HI)*

INTGRL('Y',I,0,J,0,-.5,+.5)
M(JI) - M(IJ)

ELSEIF ((I.GT.NB+NT+NC) .AND. (J.GT.NB+NT+NC)) THEN
CC Calculate fore-&-aft mass matrix components.

M(I,J) - MPA*CHORD*LENGTH*INTGRL(IXII,0,J,0,LO,HI)*
& INTGRL('Y',I,0,J,0,-.5,+.5)

M(JI) - M(IJ)
ELSE

CU
C Calculate out-of-plane/fore-&-aft coupling
C mass matrix components.
C

M(IJ) - 0.
MJI)-0.I

END IF
10 CONTINUE

RETURN
END

C --- FILE: MODE.FOR --------------------------------------------------
C

REAL FUNCTION FMODE (DERIV, XY, NUM, INPUT)
C
C X and Y variation of the five assumed modes. Note that
C all the x and y coordinates have already been normalized.
C DERIV indicates what derivative of the mode is given.
C

INCLUDE PARAM.INC
INCLUDE GLBBLK. INC
INTEGER DERIV, NUM, NUMBF
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CHARACTER XCY'1
REAL INPUT,RN(5),EPS,ALF
DATA RN / 0.596864162695,1.494175614274,

& 2.500246946168,3.499989319849,
6 4.500000461516/

C
IF (NUM.EQ.0) THEN

IF (X'f.EQ.'X') THEN
IF (DERIV.EQ.0) THEN

FMODE - 1.13.' (INPUT-i.)*"4+4. /I.*(INPUT-i.) +1.
ELSEIF (DERIV.EQ.1) THEN

FMODE -4./3.(INPUT-1.)*3+4./3.
ELSEIF (DERIV.EQ.2) THEN

FMODE - 4.*(INPUT-1.)**2
ELSEIF (DERIV.EQ.3) THEN

FMODE - 8.*(INPUT-1.)
ELSEIF (DERIV.EQ.4) THEN

FMODE - 8.
ELSEIF (DERIV.GE.5) THEN

FMODE - 0.
ENDIF

ELSEIF (XY.EQ.'Y') THEN
IF (DERIV.EQ.0) FMODE - 1.
IF (DERIV.GT.0) FMODE - 0.

END IF
ELSEIF ((XY.EQ.'X').AND.((NtJM.LE.NB).OR.(NUM.GT.NB+NT+NC))) THEN

C
C Describe DERIV-th derivative of the spanwise, i-variation
C of the bending modes or fore-&-aft modes.
C

NUME3F - NUN
IF (NUM.GT.NB) NUMEF -NUM - (NB+NT+NC)
IF (NUMBF.LE.5) EPS -RN(NII-MF)'PI

IF (NUMBF.GT.5) EPS -(REALtNUMBF)-.5)*PI
ALF - (SINH(EPS)-SIN(EPS))/(COSH(EPS)+COS(EPS))

C
IF (DERIV.EQ.0) THEN

FMODE - COSH (EPS*INPUT) -ALF*SINH (EPS*INPUT) -
6 COS(EPS*INPUT)+ALF*SIN(EPS*INPUT)

ELSEIF ((DERIV.GT.0) .AND. (MOD(DERIV,2) .EQ.i)) THEN
FMODE - (EPS**DERIV) *(SINH (EPS*INPUT)'-ALF'

& COSH (EPS* INPUT) +(SIN (EPS*INPUT) +ALF*
4 COS(EPS*INPUT))*((-i)**((DERIV+3)/2)))

ELSEIF ((DERIV.GT.0) .AND. (MOD(DERIV,2) .EQ.0)) THEN
FMO0DE -(EPS"*DERIV) *(COSH (EPS*INPUT) -ALF*

6 SINH (EPS*INPUT) +(COS (EPS'INPUT) -ALF*
A SIN(EPS*INPUT))*((-1)*-((DERIV+2)/2)))

EmDir
ELSEIF ((XY.ZQ.'X') .AND. (NUM.GT.N8) .AND. (NU1.LE.NB+NT)) THEN

C
C Describe the DERIV-th derivative of the spanwise, x-variation
C of the torsional modes.
C

I? - NUM - NS
IF (DERIV.ZQ.O) THEN

FMODS - 3(IT,1)*COS(G(IT)*INPUT)+B(IT,2)*
& SIN(G(IT)*INPUT)+B(IT,3)*COSH(F(IT)*INPUT)+
& B(IT,4)*SINH(F(IT)*INPUT)

ELSEIF ((DERIV.GT.0) .AND. (MOD(DERIV,2) .EQ.i)) THEN
FMDZ - (G(IT)**DERIV)*(-B(IT,i)*SIN(G(IT)*

& INPUT)+D(IT,2)*COS(G(IT)*INPUT))*((-l)**((DERIV+3)/
6 2))4(F(IT)**DERIV)*(B(IT,3)*SINH(F(IT)*INPUT)+
& B(IT,4)*COSH(F(IT)*INPUT))

ELSEIF ((DERIV.GT.0) .AND. (MOD(DERIV,2) .EQ.0)) THEN
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FMODE - (G(IT)**DER.V)*(-B(.T,j'*COS(G(IT)*INPUT-.)
&B(IT,2) 'SIN (G(IT)*INPUT)) ((-1) ** C(DERIv+2) /2) )*

& (F(IT)**DERIV)*iB(IT,3)*COSH(F(IT)*INPYT)+B(IT,4)*
&SINH(F(IT) *INPJT))
END IF

c IF (DERIV.EQ.O) THEN
c FMODE - SIN(REAL(2*IT-1)*PI/2.*INPUT)

c ELSEIF ((DERIV.GT.O).AND.(MOD(DERIV,2).EQ.1)) THEN
cFMODE - COS(REAL(2*IT-1)*PI/2.*INPUT)*(REAL(2*I

c IT-1)*PI/2.)**DERIV*(-1)**((DERIV+3)/2)

c ELSEIF ((DERIV.GT.0).AND.(MOD(DERIV,2).EQ.O)) THEN
c FMODE - SIN(REAL(2*IT-1)*PI/2.*INPUT)*(REAL(2*

c IT-1)*PI/2.)**DERIV*(-l)**(DERIV/2)I
c ENDIF

ELSEIF ((XY.EQ.'X').AND.(NUM.EQ.NB+NT+1).AND.(NC.GE.1)) THEN
C
CDescribe the DERIV-th derivative of the 3PanWise, x-variationI

C of the lst chordwise bending mode.
C

IF (DERIV.EQ.O) FMODE -INPUT*(1..INPUT)
IF (DERIV.EQ.1) FMODE - 1.-2.*INPUTI
IF (DERIV.EQ.2) FMODE - -2.
IF (DERIV.GE.3) FMODE - 0.

ELSEIF ((XY.EQ.'X').AND.(NUM.EQ.NB*NT+2).AND.(NC.GE.2)) THEN
C

C Describe the DERIV-th derivative of the spanwise, x-variation
C of the 2nd chordwise bending mode.
C

IF (DERIV.EQ.O) FMODE - INPUT**2 - 1.
IF (DERIV.EQ.l) FMODE - 2.*INPtJTI
IF (DERIVEQ.2) FMODE - 2.
IF (DERIV.GE.3) FMODE - 0.

ELSEIF ((XY.EQ.'Y').AND.((NUM.LE.NB).OR.(NUM.GT.NB+NT+NC))) THEN

C Describe the DERIV-th derivative of the chordwise, y-variation
C of the bending modes or fore-&-aft modes.

IF (DERIV.EQ.0) FMODE - 1.

IF (DERIV.GE.1) FMODE - 0.
ELSEIF ((XY.EQ.'YI).AND.CNUM.GT.NB).AND.(NUM.LE.NB+NT)) THEN

C Describe the DERIV-th derivative of the chordwise, y-variati.on

C of the torsional modes.
C

IF (DERIV.EQ.O) FMODE - INPUT
IF (DERIV.EQ.1) FMODE - 1.I
IF (DERIV.GE.2) FMODE - 0.

ELSEIF ((XY.EQ.VY).1 ND.(NYN.EQ.NB+NT+1).AND.CNC.GE.1)) THEN

C Doscribe the DERIV-th derivative of the chordwise, y-variatiol

C of the 1st chordwise bending mode.
C

If (DERIV.EQ.O) FMODE - (4.*INPUT*INPUT -11.

IF (DERIV.EQ.1) FMODE - 8.'INPUTI
IF (DERIV.EQ.2) FMODE - 8.
IF (DERIV.GE.3) FMODE - 0.

ELSEIF ((XY.EQ.'Y').AND.(NUM.EQ.NB+NT+2).A4D.(NC.GE.2)) THEN
CI
C Describe the DERIV-th derivative of the chordwise, y-variati.on
C of the 2nd chordvise bending mode.

IF(EICQ0 MD 2*NU)*

IF (DERIV.EQ.1) FMODE - 82.'INPUT)*-1

238



IF (DERIV.EQ.2) FMODE - 8.
IF (DERIV.GE.3) FMODE - 0.

ELSE
FMODE - 0.

ENDIF
C

RETURN
END

C ---- FILE: QBIG.FOR
C

SUBROUTINE MODALFORCE (VEL, AOA, FREQ, QLIT, QBIG)
C
C Subroutine to calculate the oscillating components of the modal
C forces.
C
C INPUT VARIABLES: VEL - velocity (m/s)
C AOA - root angle of attack (rad)
C FREQ - reduced frequency (non-dim)
C QLIT - modal amplitudes (i)
C OUTPUT VARIABLE: QBIG - modal forces (N)
C

INCLUDE PARAM. INC
INCLUDE GLBBLK.INC
REAL VEL,AOAFREQ,QLIT(MAXMODE,3) ,QBIG(MAXMODE,3)
REAL THETA(3),HBAR(3),VBAR(3)
REAL DCL(0:2),CL(5),CM(5),CD(5)
INCLUDE GAUSS.INC

C
C THETA: Oscillating components of real angle of attack (rad)
C HBAR: Oscillating components of 1/4-chord out-of-plane
C deflection, non-dimensionalized with respect to
C the half-chord
C VBAR: Oscillating components of 1/4-chord fore-&-aft
C deflection, non-dimensionalized with respect to
C the half-chord
C DCL: Oscillating components of the static deviation from
C the linear lift curve (non-dim)
C CL: Oscillating components of the lift coeff (non-dim)
C CM: Oscillating components of the moment coeff (non-dim)
C CD: Oscillating components of the drag coeff (non-dim)
C
C Initialize the modal forces to zero value.
C

DO 10 I - 1,MAXMODE
DO 10 J - 1,3

QBIG(I,J) - 0.
10 CONTINUE
C
C Loop through Gauss integration points along the span.
C

DO 60 IGNUM - 1,GPOINTS
C
C Calculate the non-dimensional 1/4-chord deflection,
C angle-of-attack, and fore-&-aft sinusoidal coefficients
C at the Gauss point spanwise location.
C

XBAR - (GP(IGNUM)+1.)/2.
DO 30 I - 1,3

C
C Add contributions to out-of-plane deflection
C and to torsional twist.
C

HBAR(I) - 0.
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THETA(I)- 0.
DO 20 J -1,NB+NT+NCI

HBAR(I) - HBAR(I) + QLIT(J,I)/(CHORD/2.)*
FMODE(0,'X',J,XBAR)*FMODE(0,'Y',J,+.25)

THETA(I) - THETA(I) + QLIT(J,I)/CHORD*
FMODE(0,'X',J,XBAR)-FMODE(l,'Y',J,+.25)I

20 CONTINUE
IF (LATAN) THETA(I) - ATAN(THETA(I))
IF (I.EQ.l) THETA(I)-THETA(I)+AOA

C Add contributions to fore-&-aft deflection.
C

VBAR(I) - 0.
IF (NF.GT.0) THENI
DO 25 J - NB+NT4NC+1,NB+NT4NC+NF

VBAR(I) - VBAR(I) + QLIT(J,I)/(CHORD/2.)*
& FMODE(,'X',J,XBAR)*FMODE(,IY,J,+.25)

25 CONTINUE
END IFI

30 CONTINUE

C Calculate the lift/moment coefficient sinusoidal coefficients.

C
CALL AEROF('L',THETA,HBAR,VEL,FREQ,LAEROF,DCL,CL)
CALL AEROF C M' ,THETA, HEAR, VEL, FREQ, LAEROF,-DCL, CM)

C
C Calculate the profile-drag coefficient contribution using
C a 3rd-order polynomial fit.
C

CD(l) - 4.923*ABS(THETA(1))**3 + .1472*THETA(l)**2 + .042*
& ABS(THETA(1)) + .014

CD(2) - 0.
CD(3) - 0.

C
C Calculate the induced-drag coefficient contribution.I
C

CD~l) - CD(l) + CL(l)**2/PI/(2.*LENGTH/CHORD)
C
C Incorporate spanvise correction for the force dropoff.I
C

DUMMY - 1.
IF (CORREC) DUMMY - SC(XBAR)

CI
C Add contributions from the lift, moment, and drag at the
C current Gauss point spanwise location to the modal force.
C

DO 50 1 - 1,3 IDE
Do 50 I - 1,3MDE

IF (I.LE.NE+NT+NC) THEN
QBIG(I,J) - QBIG(IJ) 4GW(IGNU)/2.*(.5*RjiOA*

&VEL**2*CHORD*LENGTH)*((CL (J) 'COS (AOA) +CD (J)*
4 ~SIN(AOA))*FMODE(0,'Y',I,+.25)+CM(J)*
& FMODE(l,'Y',I,+.25))*FMODE(0,'X,I,XEAR)*DU04Y

ELSE
QBIG(I,J) - QBIG(I,J)+GW(IGNUM)/2.*(.5*RHOA*

4 VEL*2CHORD*LENGTH) *(-CL(J) 'SIN(AOA)+CD(J)*

& COS(AOA))*FMODECO,'Y',I,+.25)*FMODE(0,'XI,XBAR)*
G DUMMY

ENDIFI
50 CONTINUE
60 CONTINUE
C

RETURNI
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C ---- FILE : RESIDUAL.FOR----------------------------------------------
C

SUBROUTINE RESIDUAL(VEL,AOA,FREQ,QLIT,RGEOM,RESQBIG)
C
C Subroutine to calculate the residuals used in the Newton-Raphson
C solver.
C
C INPUT VARIABLES: VEL - velocity (m/s)
C AOA - root angle of attack (rad)
C FREQ - reduced frequency (non-dim)
C QLIT - modal amplitudes (m)
C OUTPUT VARIABLES: RES - residuals, non-dimensionalized by
C i/2*rho* (V**2) *area
C QBIG - modal forces, non-dimensionalized by
C 1/2*rho* (V**2) *area
C

INCLUDE PARAM.INC
INCLUDE GLBBLK.INC
REAL VELAOA,FREQ,QLIT(MAXMODE,3),RGEOM
REAL RES(3*MAXMODE),QBIG(MAXMODE,3)

C
C Calculate the modal forces QBIG using subroutine MODAL FORCE,
C which are functions of the velocity VEL, the root angle of attack
C AOA, the reduced frequency FREQ, and the modal amplitudes QLIT.
C

CALL MODALFORCE (VEL, AOA, FREQ, QLIT, QBIG)
C

DO 30 Il - 1,MAXMODE
DO 30 12 - I1,MAXMODE

KDUM(Il,12) - K(Il, I2)
C
C Add corrections to stiffness matrix for geometric
C nonlinearities.
C

IF (LGEOM) THEN
IF ((II.GT.NB).AND.(Ii.LE.NBNT).AND.
(I2.GT.NB).AND.(I2.LE.NBNT)) THEN

DO 10 13 - 1,NB
DO 10 14 - 1,NB

KDUM(II,I2) - KDUM(Il,12) + RGEOM**2 *

R(13,14,I1-NB,I2-NB)*QLIT(I3,1)*QLIT(I4,1)
10 CONTINUE

ELSEIF ((II.GT.NB).AND.(I1.LE.NB+NT).AND.
(12.GT.NB+NT+NC) .AND. (12.LE.NB+NT+NC+NF)) THEN

DO 20 13 - 1,NB
KDUM(II,I2) - KDUM(I1,12) + RGEOM*

H(13, I1-NB, I2-NB-NT-NC) *QLIT(I3,1)
20 CONTINUE

ENDIF
ENDIF

C
XDUM(I2,I1) - KDUM(Il,12)

30 CONTINUE
C

KTTO - KDUM(NB+1,NB+l)
C
C Calculate the residuals by including the contributions
C of the mass and stiffness matri-es with the modal forces.
C

DO 60 J - 1,3
C
C Add correction to nonlinear stiffness matrix for cubic
C stiffening.
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CI
IF (J.EQ.1) KDtJM(NB+1,NB+1) - 1(770 + KT'rCTJBE*

& (QLIT(NB+1,1)**2+1.5-QLIT(NB+1,2)**2+1.5*
G LIT(NB+l,3)--2)
IT (J.NE.1) KDUM(NE+1,NB+1) - KTTO + KTTCUBE*

4 (3..QLIT(NB,1,1)**2+.75*QLIT(NB+1,2)**2+
.75*QLIT(NB+1,3)**2)I

C
D0 50 1 - 1,NMODES

II -NMODES*(J-1)+I
IF ((STEADY).AND.(J.NE.1)) THENI

RES(II) - 0.
ELSE

RES(1I) - -QBIG(I,J)
DO 40 L - 1,NMODESI

RES(II) - RES(II)+KDUM(I,L)*QLIT(L,J)
OMEGA - FREQ*VEL/(CHORD/2.)
IF (J.NE. 1) RES (II) -RES (II) -OMEGA**2*

M (1,L) *QLIT (L, J)I

END IF
RES(II) - RES(11)/(.5*RHOA*VEL**2*CMORD*LENGTHi)

QBIGCI,J) - QBIG(I,J)/(.5*HOA*VEL**2*CHO.D*LENGTH)I

60 CONTINUE
C

RETUR NI

C--FILE: SETMODE.FOR-------------------------------------------------

SUBROUTINE SETMODE(Dl1,D66,CHORD,LENGTH,NT,NTMAX,KT,G,F,B,ERR)
C
C Subroutine to compute the coefficients G(I), F(I), and B(1,4) of
C the torsional mods shapes for a laminate, given its aspect ratio
C and its bending and torsion stiffness properties, Dll and D66,
C based on Crawley & Dugundji, "Frequency Determination and Non-
C Dimensionalization for Composite Cantilever Plates," Journal
C of Sound and Vibration, Vol. 72, No. 1, 1980, pp. 1-10.
CI

INTEGER NT,NTMAX
REAL Dll,D66,CHORD,LENGTH
REAL KT(NTMAX) ,G(NTMAX) ,F(NTMAX) ,B(NTMAX,4) ,ERR(NTMAX)
REAL PI,8ETA,A(4,4),BDUM(4),)UMUM(4),RO,Rl,DELTAI
LOGICAL CONVERGED

C
C Initialize warping stiffness influence coefficient.

PI - ABS (ACOS -1.)
BETA - Dll*CHORD**2/(48.*D66*LENGTH**2)

C
C Loop thru torsion modes, calculating appropriate coeffs.U
C

Do 30 1 - 1,NT
C
CInitialize guesses at non-dimensional natural frequencyI

C (start a little above the value for zero warping stiffness)
C and sin/cos coefficient - derived by inverting eqn (17]
C from Crawley & Dugundji.

IF (I.EQ.l) KT(I) - P1/2.

IF (I.NE.1) KT(I) - KT(I-1) *REAL(2*1-1) /
(9 REAL(2*I-3) * 1.20

G(I) - SQRT((SRT(.+4.*BETA*KT(I)**2)-1.)/(2.*BETA))I
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F() SORT (G( *2+1. /BEPA)
C

COtNERGED - .FALSE.
00 WHILE (.tOT.CONVERGED)

C
C calculate residual, RO -i.e. determninant of Ux4 matrix in
C eqn (181 of Crawley & Dugundji - that is to be dri~ven
C to zero (i.e. to make matrix singular, i.e. a natural
C mode). Also calculate derivative of residual w.r.t. G(I),
C Ri. Both calculations done by MathematicaTh.
C

RO - cosh(F(I))**2*F(I)**2*G(1)1*2 - F(Z)**2*G(XT)**2*
& 3inh(F(Il)*R2 + cosh(F(1))*F(I)**4*Co5(G(I)) +
6 cosh(F(I))*G(I)*4CO5(G(I)) + F(I)**2*G(X)**2*
& Co3(G(l))**2 + F(I)**3*G(I)*sinh(F(I))*Sin(G(rIf -

6 F(I)*G(I)**3*siflh(F(I))*Sin(G(I)) + F(I)**2*
6 G(I)*2*Sil(G(I))**2

RI - 2*ohF1)*2FI*2Gl + 2*coah(F(r1fl2
& G(I)**3 - 2*()**()*ihFl)* - 2*G(I)**3*
& ainh(F(I))*2 + 4*cosh(F(I))*F(I)**2*G(I)*CoS(G(I)) +
& 4*cosh(F(1))*G(I)**3*Cos(G(1)) + 2*FCI)**3*G(I)*
& sinh(F(I))*Cos(G(I)) - F(I)*G(I)**3sinh(F(I))*
& Cos(G(I)) + (G(I)**5*sinh(F(I))*Co3(G(l)))/F(I) +.
& 2*F(I)**2*G(I)*Co3(G(l))**2 + 2*G(I)**3*
6 Coa(G(I))**2 - cosh(F(I))*F(I)**4*Sin(G(I)) +e
6 cosh(F(Ifl*F(I)**2*G(I)**2*Sin(G(I)) - 2*cosh(F(I))*

6G(I)**4*Sin(G(I)) + F(I)**3*3irlh(F(I))*Sil(G(I)) -

6 (G(Z)**4*~sinh(f(I))*Sifl(G(X)))IF(I) + 2*F(I)**2*Gil)*
6Sin(G(Ifl**2 + 2*GV)**3*Sin(G(I))**2

C
C Apply Newton's Method and test relative convergence.
C

DELTA -RO/Rl
G(I) -G(I) - DELTA
F(I) -SQRT(G()*"2+i./BZTA)

IF ((ABS(DELTA/G(I)).LT.(l.E-7)).AND.(ABS(RO/
6 (F(I)**4*COSH(F(I)))).LT.(l.E-6))) CONVERGED-.TRYE.

EUM DO

C Calculate converged value of non-dimensional natural frequency.
C

KT(I) - G(I)*SQRT(1.+BETAG(I)**2)
C
C Set up matrix equation to solve for the mode shape, i.e.
C eqn (181 from Crawley 6 Duqundji with the 4th row of the
C matrix equation converted to reflect a non-dimensional tip
C deflection of 1.
C

A(1,1) 1.
A(1,2) *0.

A(1,4) *0.

A(2,1) 0.
A(2,2) -G(I)
A(2,3) - 0.
A(2,4) -F(I)
A(3,1) -- G(I)**2*COS(GII))
A(3,2) - -G(I)**2SIN(G(1))
A(3,3) - V(I)**2t C0SH(r(I))
A(3,4) - ?(I)**?SNH(F(I))
A(4,1) - COS(G(I)
A(4,2) - SIN(G(I))
A(4,3) - COSH(F(I)
A(4,4) - SINH(F(I))
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BDIM (l) - 0.
BDUM (2) - 0.
BDUM (3) - 0.
BDUM (4) - 1.

c 13t row converted to ND tip deflection of 1.

c A(,l) - COS(G(I))
C A(1,2) - SIN(G(I))
c A(1,3) - CSNI(F(I))I
c A(1,4) - CSH(F(I))
c A(4,1) - F(I)**2*G(I)*SIN(G(I))
c A(4,2) - -F(I)**2*G(I)*COS(G(I))
c A(4,3) - F(I)*G(I)**2*CSH(F(I))
c A(4,4) -F(I)*G(I)**2SINSH(F(I))
c BDUM(1 - 1.
c BDLJM(4 - 0.

CALL SOLVE (A, BDUMI XDUM, 4,1,4)
DO 20 J - 1,4

aB(1,J) - )MUM (J)
20 CONTINUE

ofen[8 rmCawe uudi
C Set the error function equal to the unresolved 4th equation

CER B(I,1)*F(I)**2*G(I)*SIN(G(I))-

& B(I,2)*F(I)**2*G(I)*COS(G(I)) + B(I,3)*F(I)*
& G(I)**2*SINH(F(I)) + B(I,4)*F(I)*G(I)**2*COSH(F(I))

cI
c Unresolved 1st equation.
C
c ERRMI - B(1,1) + B(I,3)
c
30 CONTINUE
C

RETURN
END

C--FILE: SETUP.FOR---------------------------------------------------
C

REAL FUNCTION INTGRL(XY,MODE1,DERIVI,MODE2,DERIV2,LO,H)

C Subroutine to integrate numerically the DERIV1-th derivative
C of the XY-variation of MODEI with the DERIV2-th derivative of
C the XY-variation of MODE2 over the normalized interval [LO,HI],
C using a GPOINTS Gaussian quadrature sche (*Handbook ofI
C Mathematical Functions,"Abramowitz and Stequn (eds.), Table
C 25.4, p.916).
C

IN2'3GZf MODEl, MODE2, DERIVi, DERIV2

CHAPACTKR XY*1
INCLUDE GAUSS. INC

C NR 0.
DO 10 1 1,GPOINTS

POINT - (GP(I)*(HI-LO)+HI+LO)/2.
INTGRL - INTGRL + GW(X) 'FMODE (DE'IV1,XY,MODE1,POINT)*

G FNODE (DERIV2, XY, MODE2, POINT) *(HI-LO) /2.
10 CONTINUE
C

RETURN
ENDU
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C
C ------ -- ------ s aa--m -

C
REAL FUNCTION SCINT(MODE1,MODE2)

C
C Subroutine to integrate numerically the X-variation of MODEl with
C the X-variation of MODE2 over the normalized interval 0,1,
C with spanwise correction SC(X) included in the integral,
C using a GPOINTS Gaussian quadrature scheme ("Handbook of
C Mathematical Functions,"Abramowitz and Stegun (eds.), Table
C 25.4, p.916).
C

INTEGER MODE 1,MODE2
REAL POINT
INCLUDE GAUSS.INC

C
SC INT - 0.
DO 10 I - 1,GPOINTS

POINT - (GP(I)+l.)/2.
SC INT - SC INT + GW(I)*FMODE(0,'X',MODElPOINT)*

& FMODE(0, 'X',MODE2,POINT)/2.*SC(POINT)
10 CONTINUE
C

RETURN
END

C ---- FILE: STATIC.FOR------------------------------------------------
C

SUBROUTINE STATIC (LAYUP, LSTRUC, TRATIO, IERR)
C
C Subroutine to calculate mass and stiffness matrices and to run
C static deflection and free vibration analyses.
C

INCLUDE PARAM.INC
INCLUDE GLBBLK.INC
REAL TRATIO, STYLO, ELFOAM, ETFOAM, NULTFOAM, GLTFOAM
REAL RHOFOAM, THETA (MAXPLIES)
REAL ZU(MAXPLIES) , ZL(MAXPLIES)
REAL EL(MAXPLIES) ,ET (MAXPLIES) ,NULT(MAXPLIES)
REAL GLT(MAXPLIES) ,RHO(MAXPLIES) ,QU1 (MAXPLIES)
REAL QU12 (MAXPLIES) ,QU22 (MAXPLIES) ,QU66(MAXPLIES)
REAL QT(3,3,MAXPLIES),ERR(NTMAX)
REAL A(3,3),D(3,3),INTGRL
REAL MPA, DFOAM (3,3) ,MFOAM (MAXO4ODE, MAX1QODE)
REAL KFOAM(MAXMODE,MAXMODE) ,QLIT(MAXMODE)
REAL DRDQ (MAXMODE, MAXMODE) ,DQ (MAXMODE) ,RES (MAXO4ODE)
INTEGER IZERR, NPLIES
LOGICAL LSTRUC, EQUAL, CONVERGED
CHARACTER LAYUP*25, ANSWER*1, FILENAME*25
INCLUDE GAUSS. INC

C
C Loop through flat plate (Iil) and NACA wing (11-2) analyses.
C

DO 440 Il - 1,2
C

IF (Il.EQ.l) THEN
C
C If first loop, then calculate flat plate mass and stiffness
C properties. Begin by reading in foam and ply data from input file
C and creating unidirectional Q-values [QU] and rotated Q-values,
C ie. Q-theta (QT] for each ply.
C

FILENAME - TRIM(LAYUP)//'.DAT
OPEN (2, FILE-TRIM(FILENAME) , STATUS-'OLD' ,FORM 'FORMATTED',
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& IOSTAT-IERR)
IF (IERR.NE.0) GOTO 999
WRITEC','(/2A)') 'Layup data taken from file ',TRIM(FILENAME)
READ (2,') CHORD,LENGTH,NPLIES,LAMBDA,KTTCUBE
R-EAD (2,') TRATIO, STYLO, ELFOAM, ETFOAk4,NULTFOAM, GLTFOAM, RHoFOAJ4
DO 10 I - 1,NPLIES

RLEAD(2,*) THETACI) ,ZU(I),ZL(I),EL(I),ET(I) ,NULT(I),
& GLT (1) ,RHO(I)

THETACI- THETA(I)*PI/180.
CALL QUCON(EL(I),ET(I),NULT(I),GLT(I),QU1l(I),QU12(I),

& QU22(IhQU66(I))I
CALL QTCON(I,THETA(I),QU11(I),QU12(I),Q022(I),QU66(I),QT)

10 CONTINUJE

CLOSE (2)

IOUT - 0
IF (LSTRUC) THEN

COutput wing properties.I

C
20 WRITE(*,'(A,S)') ' Output engineering properties [2] 1//

& 'to file or [91 to screen
READ(*,*,ERR-20) IOUTI
IF ((IOUT.NE.2).AND.(IOUT.NE.9)) GOTO 20
IF (IOUT.EQ.2) THEN

FILENAME - TRIM(LAYTJP)//'PNAS.OUTI
IF (TRATIO.GT.0.) FILENAME - TRIM(LAYUP)//'WNAS.OJT I
OPEN (UNIT-IOUT, FILE-TRIM (FILENAME) ,STATUS-'NEW',

& FORM-'FORMATTED')
WRITE(*,*) ' Calculated wing properties being sent to,

&TRIM(FILENAME)I
WRITE(IOUT,'(A,4I3)') -NB, NT, NC, NP i',NB,NT,NC,NF

ENDIF
END IF

IF CIOLTT.NE.0) THEN
C
C output basic overall properties.

WRITE(IOUT,'(/lX,A,F5.4,A,F4.1,A)') I Chord length
& CHORD,' m - 1,(CHORD'12./.3048),' in'

WRITE(IOUT,'(lX,.A,F5.4,A,F4.1,A)') I Half span -,
& LENGTH,' m - ',(LENGTH*12./.3048),1 in'I
WRITE(IOUT,'(lX,A,I2)') I Number of plies - ',NPLIES
WRITE(IOUT,'(A,FS.l,A)1) I Sveepback angle -',

& LAMBDA,' dog'
WRITE(IO3T, '(A,F6.3,A)') I Air density - 1

G RHOA,' kg/m**3'I
C
C Output ply layup in degrees.

WR1TZ(IOUT,'(A,S)') I Layup - U1
DO 30 I1 1,NPLIES

ANG *THETA(I)*180.IPI
IF (I.NE.1) WRITE(IOUT,(A,$)') '/'
IF (ANG.EQ.0.) WRITE(IOUT,'(A,$)') '0'
IF (ANG.NE.0.) WRITE(IOLT,(SP,I3,S)1) NINT(ANG)

30 CONTINUE
WRITE(IOUT,'(A,)') I''

C Determine if all the plies are of the same material.
C

EQUAL - .TRUE.

DO 40 1 - 1,NPLIES
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IF (EL(I.NE.EL(1)) EQUAL-.FALSE.
IF (ET(I)kNE.ET(1)) EQUAL-.FALSE.
IT (GLT(I).NE.GLT(1)) EQUAL-.FALSE.
IF (NULT(I).NE.NJLT(1)) EQUAL-.FALSE.
IF (RHO1(I) .NE.RHO(1) EQUAL-.FALSE.

40 CONTINUE
IF (EQUAL) THEN

WRITE(IOUT,'(/lX,A,F4.1,A)') GRIEF EL-
6EL(1)I1.E9,1 GPa'

WRITE(IOUT,'(lX,A,F4.l,A)') *GRIEF ET
&ET(1)/l.E9,' GPa'

NRITE(IOUT,'(lX,A,F4.1,A)-) *GR/EP GLT-
& GLT(1)/l.E9,' GPa'

WRITE(IOUT,'(lX,AF5.2)') 'GRIEF Poi33on ratio
& NULT(l)

WRITE(IOUT,'(1XA,F6.1,A)') ' GRIEF density-
& RH10(l,' kg/m**3'

END IF
END IF

C
C Calculate flat plate A and D matrices (ie. ignoring foam
C properties).
C

CALL BEND (NPLIES, ZU, ZL, QT, A, D)
IF (IOUT1.NE.0) THEN

WRITE(IOUT, '(IA)') ' Flat Plate A-matrix (N/rn]
DO 50 1 - 1,3

WRITE(IOUT,'(lOX,3(lPEl0.2))-) (A(I,J),J-1,3)
50 CONTINUE

WRITE(IOUT, '(IA)') ' Flat Plate D-matrix [Nm)
DO 60 I - 1,3

WRITE(IOUT,'(10X,3F7.4)') (D(I,J),J-1,3)
60 CONTINUE

ENDIT
C
C Use the D-utatrix properties to set up the natural torsional mode
C shaps.
C

CALL SETMODE(D(1,l),D(3,3),CHOPD,LENGTH,NT,NTMAX,KT,G,F,B,ERR)
IF (IOUT.NE.0) THEN

IRITE(IOUT,'(/lX,A,F8.7)') 'Beta - ',D(1,1)*CHORD**2/
& (48.*D(3,3)*LENGTH**2)

DO 75 I - 1,NT
NRXTE(IOUT, '(/1X,3(A,I1,A,F7.4)) ')

& 'IT- ',KT(I), S;qI'-

72 FORMAT V' B(I,Il,') - [(,SP,4(lX,F7.5),'] B',
& SI,43,1' -',1PE9.2)

URXT3(IOJT,72)IBIJJ1)I,,BI4B(1)
WRITE(IOUT,'(A,Il,A,1PE9.2)') 'Err(',I,') - ,ERR(I)

75 canINUX
mZNwI

C
C Calculate flat plate mass per unit area thru the thickness
C (i.e. in the out-of-plan. Z-direction).
C

MPA - 0.
DO 70 1 - 1,NPLIES

KA- MPA+(ZU(I)-ZL(I))*R110(I)
70 CONTINUE
C
C Calculate flat plate mass matrix.
C

CALL MASS(0.,1.,MPA)
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CI
C Calculate flat plate stiffness matrix.
C

CALL STIFF(A,D,0.,l.)
KTTO - K(NB+1,NB+1)

KTTCUBE - K(NB+1,NB+1)*KTTCUBE

IF (IOUT.NE.0) THEN
WRITECIOUT,'(/A,F5.3,A/)') 'Flat Plate Mass 1//

& 'per unit Area - ',MPA,' kg/m**2'
WRITE(IOUT,*) 'Flat Plate Mass matrix (kg]
DO 80 I - 1,NMODES

WRITE(IOUT,'(l0X,32(1PE10.2))') (M(I,J),J-l,NMODES)
80 CONTINUE

IfRITE(IOIT, '(/A,IPE8.2,A/) ') 'Cubic stiffening-
& KTTCUBE,' 1/m**21

WRITE(IOUT,*) 'Flat Plate Stiffness matrix (N/rn]
DO 90 I - 1,NMODES

WRITE(IOUT,'(10X,32(1PE1O.2))') (K(I,J),J-1,NMODES)
90 CONTINUE

END IF

C Initialize sums for numerical integrals used forI
C nonlinear, geometric stiffness corrections.
C

DO 100 31 m 0,NBMAX
DO 100 J2 - O,NBMAXI
DO 100 J3 - 1,NTMAX
DO 100 34 - 1,NTMAX

R(Jl,J2,33,j4) - 0.
100 CONTINUEI
C

DO 110 31 - 0,NBMAX
DO 110 J2 - 1,NTMAX
DO 110 J3 - 1,NFMAXU

110 CONTINUE
C

C by Gauss numerical integration.

C
IF (IOUT.NE.0) WRITE(IOUT,*)
DO 140 31 - 0,NBI
DO 140 J3 - J1,NB
DO 140 3 - J,NT

DO 120 11 - 1,GPOINTSI
XBAR - (GP(II)+1.4/2.
R(Jl,J2,J3,J4) -R(Jl,J2,J3.J4) + G1I(II)/2.

a F1ODZ(2,'X',J1,XBAR)*FMODE(2,'X',J2,XBAR)*
& FMODE(O,'X',NB+J3,XBAR)*FMODE(0,'X',NB+j4,XCBAR) I
& (A(1,1)*CHORD**2/12.-D(l,l1n/(CHORD*LENGTH**3)

120 CONTINUK
R(J2,J1,J3,J4) - R(j1,j2,J3,J4)
R(J1,J2,J4,J3) - R(J1,J2,J3,J4)
R(j2,J1,J4,J3) - R(j1,j2,J3,J4)

130 FORMAT ('(,(1 B )I,~,'1,')-',1PE1O.3)
IF (IOUT.NE.0) WRITE(IOUT,130) Jl,j2,J3,j4,R(J..j2,j3,J4)

140 CONTINUE
byGusnmrclitgain

C Calculate nonlinear fore/aft-torsion cross-coupling integrals

C byGusnmrclitgain

IF (NF.GT.0) THENI
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IF (IOUT.NE.0) WRITE(IOUT*)
DO 170 J1 - 0,NB
DO 170 32 - 1,NT
DO 170 J3 - 1,NF

DO 150 11 - 1,GPOINTS
XBAR - (GP(II)+1. /2.
H(Jl,J2,J3) - H(J1,J2,J3) + G(7I(I)/2. If

&FMODE(2,UXS,J1,XBAR)-FMODE(0. K',NB+J2,XBAR)*
6FMODE(2,'X',NB+NT+NC+J3fXBAR) If

6 (A(1,1)*CHORD**2/12.-D(l,l))/LENGTH**3
150 CONTINUE
160 FORMAT('H(',Il,'B,',Il,'T,'fIlf'F) m',1PE10.3)

IF (IOUT.NE.0) WRITE(IOUT,160) Jl,J2fJ3,H(Jl,J2,J3)
170 CONTINUE

END IF
C

ELSEIF ((Il.EQ.2).AND.(TRATIO.GT.0.)) THEN
C
C If second loop, calculate and add 3tyrofoam, properties to
C the mass and stiffness matrices. Begin by outputing foam
C properties if the foam thickness is non-zero.
C

IF (IOUT.NE.0) THEN
WRITE(IOUT,'(/11X,A,F4.1,A)') 'Styrofoam EL

& ELFOAM/1.E6,' HPa'
WRITE ClOUT,' (11X,AF4.1,A)') 'Styrofoam ET

& ETFOAM/l.E6,1 MPa'
WRITE(IOUT, '(1lX,A,F4.l,A)') 'Styrofoam GLT

& GLTFOAI/.E6,' MPa'
WRITE(IOUT,'(1X,AF4.2)') 'Styrofoam Poisson ratio-

& NULTFOA4
WRITE(IOUT, '(7X,A,F4.1,A) ') 'Styrofoam density-

G RHOFOAN,' kg/m**3'
WR.ITE(IOUT, '(4X,A,F4.3)') 'Styrofoam NACA ratio-

& TRATIO
END IF

C
C Calculate the contribution to the mass matrix for the
C styrofoam bending modes. Note that the styrofoam does
C not cover the first 2'' (STYLO-1/6) of the span of the airfoil.
C

DO 180 1 - 1,145
DO 180 J - IN3

KFrOAMCI,J) - (0.685*TRATIO*CHOitD**2-(ZU(1)-ZL(NPLIES))*
& CHORD)*LENGTH*INTGRL(IX',I,0,J,0,STYWO,1.)*RHOFOAH

MFOA(J,I) - MFOAM(IJ)
180 CONTINUE
C
C Calculate the contribution to the mass matrix for the
C styrofoam torsion modes.
C

DO 190 I - ND+1,NE+NT
DO 190 J - I,ND+NT

WOAN(I,J) - (0.506*TRATIO*CHORD**2-(Zt7C1)-ZL(NPLIES))*
6 CHORD) /12. 'LZNTH*INTGRL( 'X'f, ,J,,,STYLO, 1.) *RHOFOAM

100A14(J,I) - D0A14(I,J)
190 CONTINE
C
C Calculate the contribution to the mass matrix for the
C styrofoam, beanding-torsion coupling.
C

DO 200 I - l,N9
Do 200 1 - NB+1,NB+NT

MQOAI4(I,J) - -0.0545*RHOFOAM*TRATIO*CHORD**2*LENGTH*
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& INTGRL( 'X', I,O,J, O,STYLO, 1.)
MFOAM (J,I1) - MFOAM (1,J)

200 CONTINUE
C
C Calculate the contribution to the Mass matrix for the
C styrofoam chordwise bending modes.

IF (NC.GT.0) THEN
DO 210 1 - 1,NB+NT+NC
DO 210 J - MAX0(I,NB+NT+1),NB+NT+NC

MFOAM(I, J) - (0.685*TRATIO*CHORD-(ZU(1) -U
& ZL (NPLIES) ) )*CHORD*LENGTH*PJ(OFOM*
6 INTGRL ('X',I, 0,J,0, STYLO, 1.1 *

& INTGRL('Y',I,0,J,0,-.5,+ 5)

MFOAM(J,I) - MFOAM(I,J)

ENDIF

C Calculate the contribution to the mass matrix for the
C styrofoam fore-&-aft modes.
C

IF (NF.GT.0) THEN
DO 220 I - 1,NB+NT+NC+NFI
Do 220 J - MAXO(I,NB+NT+NC+1),NB+NT+NC+NF

IF (I.LE.NB+NT+NC) THEN
MFOAM(I,J) - 0.

ELSEI
MFOAM(I,J) - (0.685*TR.ATIO*CHOPD*2-

& (ZU(1)-ZL(NPLIES) ) CHOP.D) LENGTH*
& INTGRL('X',I,0,J,0,STYLO, 1.)*RHOFOAM

END IF
MFA(,)- MFOAM(I,J)I

220 CONTINUE
ENDIF

CI
C Calculate unidirectional Q-values for the foam. Because the
C foam is isotropic, these are the same as the rotated Q-values.
C

CALL QUCON (ELFOAM, ETFOAM, NULTFOAM, GLTFOAM, QTllFOAM,
& QT12FOAM, QT22FOAM, QT66FOAM)

C
C Calculate the contribution to the stiffness matrix from
C the styrofoam bending modes. Note that the styrofoam does

C not cover the first 2" (STYLO-1/6) of the span of the airfoil.
C

Do) 230 I - 1,NB
DO 230 J - I,NB

KFOAI4(I,J) - 2.*QTllFOAM*(C0.779*TRATIO*CHORD/2.)**3-I
G ((ZU(1)-ZL(NPLIES))/2.)**3)/3.CHO.D*LENGTH*
A INTGP.(X',I,2,J,2,STYLO,L.)/LENGTH"*4

KFOAM(J,I) - KFOAM(I,J)

230 CONTINUE

C Calculate the contribution to the stiffness matrix from
C the styrofoam torsion modes.

DO 240 I - NB+1,NB+NT
DO 240 J - IVNB+NT

KFOAM(I,J) - 2.*QT11FOAM/24.*'U0.824*TRATIO*CHORD/
4 2.)**3-((ZU(1)-ZL(NPLIES)H/2.)"3)/3.CHORD*LENGTH*

4 INTGRL('X',I,2,J,2,STYLO,1.)/LENGT!H"*4 + 8.'
& QT66FOAM'((0.779*TRA tO'CHORD/2.)**3-((ZU(1)-
& ZL (NPLIES) )/2.)*"3) /3. 'CHOP.D*LENGTH*
& INTGPL('X',I,1,J,1,STYLO,1.)/(LENGTH*CHORD)"*2I
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KFOAM (J,I1) - KFOAM (1,J)
240 CONTINUE
C
C Calculate the contribution to the stiffness matrix from
C the styrofoam bending-torsion coupling.
C

Do 250 1 - 1N
DO 250 J - MAXO(I,NB+l),NB+NT

KFOAM(I,J) =- .01585*CHORD-LENGTH*QT11FOAM-(TRATIO*
& CHORD)**3*INTGRL(IXI,I,2,J,2,STYLO,l.)/LENGTH**4

KFOAM(JI) = KFOAM(I,J)
250 CONTINUE
C
U Calculate the contribution to the stiffness matrix from
C the styrofoam chordwise bending modes.
C

IF (NC.GT.0) THEN
DO 260 I = 1,NB+NT+NC
DO 260 J - MAXO(I,NB+NT+1),NB+NT+NC

KFOAM(I,J) = 2.*CHORD*LENGTH*C((.779*TRATIO*CHORD/
& 2.)**3-((ZU(l)-ZL(NPLIES))/2.)**3)/3.*(QTlFOA4/
& (LENGTH**4)*INTGRL('X',I,2,J,2,STYLO,1.)*
& INTGRLC'Y',I,0,J,0,-.5,+.5) + QT22FOAM/
4 (CHORD**4) *INTGRL('X',I,0,J,0,STYLO,1.)*
& INTGRL('Y',I,2,J,2,-.5,+.S) + 4.*QT66FOAM/
& (LENGTH*CHORD)**2*INTGRL('XI,I,1,J,l,STYLO,1.)*
& INTGRL('Y',I,1,J,l,-.5,+.5) + QTl2FOAM/
& (LENGTH*CHORD)**2*(INTGRL(IX',I,2,J,0,STYLO,1.)*
& INTGRLC'Y', I,0,J,2,-.5,+.5)+INTGRL'X',I,,J,2,
A STYLO,1.) *INTGRL(IYs,I,2,J,0,-.5,+.5)))

KFOAM(J,I) - KFOAM(I,J)
260 CONTINUE

ENDIF
C
C Calculate the contribution to the stiffness matrix from
C the Styrofoam, fore-&-aft modes.
C

IF (NF.GT.0) THEN
DO 270 I = 1,NB+NT+NC+NF
DO 270 J - MAXO(I,NB+NT+NC+1),NB+NT+NC+NF

IF (I.LE.NB+NT+NC) THEN
KFOAM(I,J) = 0.

ELSE
KFOAM(I,J) = QTllFOAM'(0.685*TRATIO*

& CHORD-(ZU(1)-ZL(NPLIESf).)(CHORD**2/12.)*
& CHORD*LENGTH*INTGRL('X'. I,2,J,2,STYLO,1.)/

& LENGTH**4

KFOAN (J, 1) - KFOAM (1, J)
270 CONTINUE

C
C Combine flat plate and styrofoam stiffness and mass matrices
C to create combines mass and stiffness matrices.
C

DO 290 I = 1,NMODES
DO 280 J - lINMODES

M(I,J) - M(I,J)+IG!OAM(I,J)
K(I,J) - K(I,J)+KFOAM(I,j)

280 CONTINUE
KTTO - K(NB+l,NB+l)

C
IF (IOUT.NE.0) THEN

WRITE(IOUT,'(/A)I) ' Styrofoam Mass matrix [kg]
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D0 290 1 - 1,NMODES
WRITE(IOUT, '(l0X, 13 (1PElO.2)))

& (MFOAM(I,J),J-1,NMODES)
290 CONTINUE
CI

WRITE(IOUT, '(IA)') I Styrofoam Stiffness matrix (N/in)
DO 300 I - 1,NMODES

WRITE(IOUT,'(10X,13(lPEl0.2))1)
6 (KFOAM(I,J),J-lfNMODES)

300 CONTINUEI
C

WRITE(IOUT, '(IA)') ' Combined Total Mass matrix (kg)
DO 310 I - I,NMODES

WRITE(IOUTf'(l0X,13(lPE1O.2fl') (M(I,J),J-1,NMODES)
310 CONTINUE
C

WRITE(IOUT, '(IA)') ICombined Total Stiffness I
& 'matrix (N/rn] :I
DO 320 I - 1,NMODES

WRITE(IOUT,'(1OX,13(1PE10.2))') (K(I,J),.J-1,NMODES)
320 CONTINUE

END IFI
C

ELSEIF ((Il.EQ.2).AND.(TRATIO.LE.0.)) THEN
C
C Quit on second loop if only flat plate.I
C

GOTO 440
END IF

C Skip static and vibration analyses if no diagnostics requested.
C

IF (IOUT.EQ.0) GOTO 440
CI
C Calculate plate and/or wing free vibration modes.

C
IF (Il.EQ.l) WRITE(*,'(A,$)') 'Do plate
IF (Il.EQ.2) WRITE (* ' (A,$)') 'Do wingI
WRITE(*,'(A,S)') 'free vibration anal'ysis?
READ(*, '(Al)') ANSWER

C
IF ((ANSWER.EQ.'Y').OR.(ANSWER.EQ.'y')) THEN

100 U0
IF (LGEO4) THEN

322 WRITE(*, '(A,Il,A,$) ') I Bending mode (0-',,NB, ') '

RE.AD(*,,,ERR-322) NBGEO
IF ((NBGZO.LT.0).OR.(NB3GEO.GT.NB)) GOTO 322

325 WRITE(*,'(A,$)') ' Max tip deflection (cm) ?
READ(*, *ERR-325) WTIPMAX
ERmirU,(A,))' lt

C

IF (I1EQ.1) WRITE(IOUT,'(/A,S)') Pling

WRITE(IOUT,' (A,S)') 'free vibration freqs'
IF (LGEOM) WRITE(IOUT,') I (LM column - tip deflec in cm):'
IF (.NOT.LGEOM) WRITE(IOUT,*) ' and mode shapes:

DO 345 11 - 0,IP
IF (IP.NE.0) QGEO - REAL(II)/REAL(IP)*WTIPMAX/100./

&FMODE(0,'X',,NBGEO,1.)/FMODE(O,'Y',NBGEO,0O.)

C Set up dummy mass & stiffness matrices.
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C
DO 330 I - 1,MAXMODE
DO 330 J - I,MAXG4ODE

C
C Add linear contributions.
C

IVUM(IJ) -M(IJ)
KDUM(I,J) - K(I,J)

C
C Add nonlinear contributions due to tip deflection.

IF (LGEOM) THEN
IF ((I.GT.NB).AND.(I.LE.ND+NT).AND.

& (J.GT.NB).AND.(J.LE.NB+NT)) THEN
1Kt3M(I,J) - KDLIM(I,J) +
R(NBGEO,NBGEO, I-NB, J-NB) *QGEO**2

ELSEIF ((I.GT.NB).AND.(I.LE.NB+NT).AND.
& (J.GT.NB+NT+NC) .AND. (J.LE.NB+NT+NC+NF)) THEN

KDUM(I,J) - KDUM(I,J) +
& H (NBGEO, I-NB, J-NB-NT-NC) 'QGEO

END IF
END IF
MDUM (J,I1) - MDtUh4(I, J)
KDUM (J, I) - KDJM (I, J)

330 CONTINUE
C
C Call EISPACK eigenvalue solver.
C

CALL RSG (MAXO4ODE,NMODES, KDUM, MDUh, Fy19, 1, QVIB,
A Fvl,FV2,IERR)

C
C Convert to Hertz (negative sign if imaginary).
C

Do 334 I - 1,NMODES
FVIB(I) - SQRT(ABS(FVIB(I) ))/(2.*PI)*

& (FVID(I)/ABS(FVIB(If)
334 CONTINUE
C
C Print out frequency results.
C

WRITE(IOUT,' (5X,33F10.2) ') QGEO*
£FMODE(0,'X',NBGEO,1.)*FMODE(0,IY,NBGEO,0.)*100.,

& (FVIB(I),I-1,NMODES)
IF ((.NOT.LGEOI).OR.(II.EQ.IP)) THEN

Do 340 I1 1,NI4ODES
014AX -QVIB(l,I)
DO 335 J - 1,NMODES

IT (ABS(QVIB(J,I)) .GT.ABS(QNAX))
QMAX-QVIB(J,I)

335 CONTINUE
WRITE(IOUT,(X,12,A,F9.2,A,SP,32F7.3)')

& ~I,, rq -',FVIB(I,' Hz ; mod. shape
A (QVIB(J, I) /QkAX,J-1,NMODES)

340 CONTINUE
C

IT U'LGEO).AND.(II.EQ.IP)) THEN
DO 342 1 - 1,MAXQ4ODE
D0 342 J - I,MAXQMODE

MDU(I,J) - M(I,J)
KDUM(IJ) - K(IJ)
IF ((I.GT.NB) .AND. (I.LE.NB+N'T) .AND.

& (J.GT.NB) .AND. (J.LE.NB+NT)) THEN
KDU(I,J) - 1UDUM(I,J) +

& R(NBGEO,NBGEO, I-NB, J-NE) *QGEO**2
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ELSEIF (('.GT.NB).AND.(I.LE.NB'+NT).ANID.
6 (J.GT.NB-NT+-NC) .AND. (J.LE.NB+NT+NC+NF)) THEN

KDYM (1, J) - KDUM (I, J) +
H (NBGEO, I-NB, J-NB-NT-NC) 'QGEO

END IF
KDUM(J,I) - KDUM(I,J)I
KDUM(J,I) - ?.DUM(I,J)

342 CONTINUE
W4RITE(IOUT,*) 'mass matrix:
DO 344 I - 1S.NMODESI

WRITE(IOUT,'(99(PE.0.2))') (MDUM(I,J),J-1,NmoDEs)

344 CONTINUE
WRITE(IOUT,*) 'Stiffness matrix:
DO 346 I - 1,NMODESI

WRITE(IOUT,'(99(lPElO.2))') (KDUM(I,J),J=1,NMODES)
346 CONTINUE

ENDIF

C II
345 CONTINUE

ENDIF

C Loop through tip force (12-1) and tip moment (12-2) analyses.I
C

DO 440 12 - 1,2

CF(1E.)WIE*'A$) D lt i
IF (Il.EQ.l) WRITE(*,I(A,$)') 'Do plate tipI
IF (12.EQ.l) WRITE(*,'(A,$)') 'forc winlsi ?i
IF (12.EQ.2) WRITE(*,'(A,$)') 'foren analysis ?

READ(*, I'(Al) ') ANSWERI
IF ((ANSWER.EQ.'N').OR.(ANSWER.EQ.'n')) GOTO 440

C
C Do direct inversion of K matrix if no structural

C nonlinearities.I
C

IF ((.NOT.LGEOM).AND.(KTTCUBE.EQ.04)) THEN
K(NB+l,NB+l) - KTTO
FORCE - 1.I
DO 347 I - 1,NB+NT+NC

QLIT(I) - 0.
IF (12.EQ.l) RES(I - FMODE(,IX,I,l4)*
FMODE(0,IYI,I,0.)*FORCEI

IF (12.EQ.2) RESCI - FMODE(0,'X',I,1.)*

£ FMODE(l1 1 Y,I,0.)*FORCE/CHORD
347 CONTINUE

CALL SOLVE(K,RES,QLIT,MAAa4ODE,1, (NB+NT+NC))

C
DEFLEC -0.
TWIST - 0.
DO348 1- l,NB+NT+NCI

DEFLEC - DEFLEC + QLIT(I)*FMODE(0,'X1 ,I,l.)*
£ FHDE (0, 1Y 1,I1,0.)

TWIST - TWIST + QLIT(I)/CHORD*FMODE(0,'XI,,.)*

£ FMODE(1,'Y',I,0.)
348 CONTINUE

DEFLEC -DEFLEC*100.
TWIST -ATAN(TWIST)*180./PI
IF (12.EQ.l) THEN

WRITE(IOUT,*) 'F/h -',FORCE/DEFLEC,' N/rn'
WRITE(IOUT,*) ' F/ -',FORCE/TWIST,' N/deg'

ELSEIF (12.EQ.2) THEN

WRITE(IOUT,*) ' N/h -',FORCE/DEFLEC,' NM/m'
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WRITE(IOUT,*) ' M/a -',FORCE/TWIST,' Nm/deg'
END IF

ELSE
C
C Read in concentrated flat plate force data.
C

IF ((I1.EQ.1)'.AND.(12.EQ.l)) FILENAME -
& TRIM(LAYUP)//'PNXS.FORI

IF ((Il.EQ.1).AND.(I2.EQ.2)) FILENAME -
& TRIM(LAYUP)//'PNXS.MOMI

IF ((I1.EQ.2).AND.(I2.EQ.1)) FILENAME -
& TRIM(LAYUP)//'WNXS.FORI

IF ((Il.EQ.2).AND.(I2.EQ.2)) FILENAME -
& TRIM(LAYUP)//'WNXS.MOMI

QPEN(3,FILE-TRIM(FILENAME) ,STATUS'OWD,
A FORM-IFORMATTED' ,ERR-360)

IF (12.EQ.l) WRITE(*,'(2A/)') I Force data taken from '

& TRIM(FILENAME)
IF (12.EQ.2) WRITE(','(2A/)') I Moment data taken from '

& TRIM (FILENAME)
IP -0
XLO -0.

XHI -0.

C
C Read in tip force (N) or moment (Nm), tip deflec (cm), and
C tip tWi3t (deg), and determine LO, and HI.
C
350 READ(3,*,END-360) X,Y1,Y2

IF (X.GT.XHI) XHImX
IF (X.LT.XLO) XLO-X
IP M IP+l
GOTO 350

360 CLOSE(3
C

IF ((I1.EQ.1).AND.(I2.EQ.1)) FILENAME -
G TRIM(LAYt3P)//'PNAS.FORI

IF ((I1.EQ.l).AND.(I2.EQ.2)) FILENAME -
& TRIM(LAYUP)/IPNAS.MOM

IF ((1l.EQ.2).AND.(I2.EQ.1)) FILENAME -
a TRIM(LAYUP)//'WNAS.FORI

IF ((Il.EQ.2).AND.(I2.EQ.2)) FILENAME -
6 TRIM(LAYUP)//'WNAS.MOMI

OPEN(3,FILE-TRIM(FILENAME) ,STATUS-'NEU',
A FORM-'FORMATTED',ERR-440)

C
XLO - 2.'XLO
XHI -2.*XHI
IM - II'SB
DO 430 11 - l,11NAX

C
C Calculate current force/moment value.
C

FORCE - XU.O + (XHI-XLO) 'REAL (11-1) /P.AL (IMAX-l)
IF (12.EQ.l) VRITE(*,I(A,F9.3,A)') I Calculating I//

A 'for force *1,FORCE, * NO
IT (12.ZQ.2) URZ(*,I(A,F9.3,A)I) I Calculating V/I

I 'for moment -1, FORCE, I NMI
C
C Initialize modal amplitudes arnd residuals.
C

K(NU+1,ND+l) - KTTO
DO .f70 I - 1,NS+NT+NC

QLIT(I) - 0.
IF (12.99.1) RESCI) - FMD(,'X',I,.)'
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FMODE (0, 'Y',I, 0.) *F0RCE
IF U12.EQ.2) RE.Si', - FMODE10,'X',I,l.)-

3'70 CONTINUE

C Loop through Newton-Raphson solver until converged.
C

CONVERGED - .FALSE.
DO WHILE (.NOT.CONVERGED)3

C Calculate derivative matrix.
C

0O 380 1 - l,NB+Nr+NC
DO 380 J - 1,N'B+NT+NCI

DRDQ (I, J) - -K (1,J)
380 CONTINUE

DRDQ(N'S+l,NB+l) - DRDQ(NB+1,NB+1)=2.*KTTCUBE*

QLIT(NB+1)**2

C Apply Newton-Raphson step.

CALL SOLVE .(ORDO, RES,DQ,MAO4ODE, 1,NB+NT+NC)1
Do 390 I - 1,NB+NT+NC

QLI (I I - QLlIT(1) -DQ (1)
390 CONTINUE
C
C Calculate new residuals and test for convergence.
C

K(NB+1,NB+l) - KTTO+KTTCtIBE*QLIT(NB+1) **2
CONVERGED - TRUE.
DO 410 I1 1,NB+NT+NC

IF (12.EQ.l) RLES(I) - FMODE(0,$X',I,.j*
£ FMODE(0, YI,I,0.)*FORCE

IF (12. EQ. 2) RES (1) - FMODE (0, 1X'I,1, 1
& FMODE(1, IYU,I,0.)*FOP.CE/CIHORDI

DO 400 J -1,NB+NT+NC
RES(IM RES(I) - K(I,J)*QLIT(J)

400 CONTINUE
IF (ABS(RES(I)) .GT.l.E-6) CONVERGED-.FALSE.

410 CONTINUE
C

END DO
CI
C Calculate tip deflection (in cm) and tip twist (in deg).
C

DEFLEC -0.

TWIST -0.

DO 420 1 - 1,NB+NT+NC
DEFLEC - DEFLEC + Q1(~FOE0''X1)

TWIST - TWIST + QLIT(I)/CHORD'F?400(0,'X',I,1.)*

420 CONTINUE
DEFLEC -DEFLEC*100.
TWIST -ATAN(TWIST)*180./PIU
WRITE(3,'(3(1P512.4)) ') FORCE,DEFLEC,TWIST

C
430 CONTINUE

CLOSE (3)
END IF

C
440 CONTINUE

C CLOSE ()
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999 RETURN
END

C- -- IZ : STIFF.FOR -- - - - - - - - - - - - - - - - - - - - - - - -
C

SUBROUTINE QUCON(EL,ET,NULT,GLT,QU11,QU12,QU22,QU66)
C
C Subroutine to compute the unidirectional elastic constants, the
C uni-directional Q'3, from the ply engineering elastic constants
C (all in Pa).
C

REAL EL,E?,NULT,NUTL,GLT
REAL QU11,QUl2,QU22,QU66

C
NUL - ET/EL*NULT
DENOM - NULT*NUTL
QUll - EL/DENO4
QU12 - NULT*ET/DENOH
QU22 - ET/DENOMt
QU66 - GLT
RETURN
END

C

C

SUBROUTINE QTCON(K,THETA,QUl1,QU12,QU22,QU66,QT)
C
C Subroutine to compute the rotated elastic constants, the Q~thetaJ
C (Pa), for the K-th ply, laid up at an angle theta (rad).
C

INTEGER K
REAL THETA,QU1l,QU12,QU22,QU66
REAL 1l,12,Rl,R2,QT(3,3,*)

C
C Calculate the invariants
C

Il - (QU1l + QU22 + 2.*QU12)/4.
12 - (QUll + QU22 - 2.*QUl2 + 4.*QU66)IS.
R1 - (QVll - QU22)/2.
R2 - (QU1l + QU22 - 2.*QU12 - 4.*QU66)IS.

C
QT(1,1,K) - 11 + 12 + Rl*COS(2.*TNETA) + R2*CoS(4.*THEA)
QT(2,2,K) - 11 + 12 - Rl*COS(2.*THETA) + R2*COS(4.*THETA)
QT(1,2,K) - 11-12 - R2*COS(4.*THZTA)
Q'1(3,3,K) - 12 - R2*COS(4.*THETA)
QT(1,3,K) - RX'SIN(2.*THETA)/2. + R2*SIN(4.*THETA)
QT(2,3,K) - R1'SIN(2.*TRETA)/2. - R2*SIN(4.*TNETA)
QT(2,1,K) m Q'1(1, 2, K)
Q'T(3#1,K) - QT(1,3,K)

QT1 .K Wl 1 QT (2, 3, R)

C

C

C Subroutine to compute the laminate bending stiffn*$3ea,
C A.±j (N/rn) & Dij (N-n) .
C

INTEGER NPLIES
REAL ZU(),ZL(*),QT(3,3,*)
REAL A(3,3),D(3,3)

C
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C Initialize the A and D matrices.
CI

DO 10 I - 1,3
DO 10 J - 1,3

A(I,J) -0.

D(I,J) -0.

10 CONTINUE

C Add the contribution of each ply to the A £D matrices.
C

DO 30 I - 1,3
DO 30 J - 1,3
DO 30 K - 1,NPLIES

A(I,J) - A(I,J) + QT(I,J,K)*(ZU(K)-ZL(K))I
D(I,J) - D(I,J) + QT(I,J,K)-(ZU(K)**3-ZL(K)**3)/3.

30 CONTINUE

RETURN

END
C

C nss n sn nn =n f n n a sn n

SUBROUTINE STIFF(A,D,LO,HI)
C
C Subroutine to compute the stiffness matrix, Kij (N/rn).

INCLUDE PARAM.INC
INCLUDE GLBBLK. INC
REAL A(3,3),D(3,3),LO,HI,INTGRL

C NOTE: INTGRL(XY,I,ID,J,JD,lo,hi) is the function to numerically
C integrate the XY-variation of the ID-th derivative of the I-th
C mode with the JD-th derivative of the J-th mode between the

C interval (lo,hi].I

DO 10 I = 1,NB+NT+NC
DO 10 J = I,NB+NT+NC

CI
C Calculate out-of-plane stiffness matrix components.
C

K(I,J) - (CHORD*LENGTH) * (D(1,1)*INTGRL('X',I,2,J,2,LO,HI)*
& INTGRL('YI,I,0,J,0,-.5,+.5)/LENGTH**4 + D(2,2)*INTGRL('X',I

A I,0,J,0,LO,HI)*INTGRL('Y',I,2,J,2,-.5,+.5)/CHORD**4 + 4.*
G D(3,3)*INTGRL('XI,1,J, 1,LO,HI)-INTGRL('Y',I,1,J,l,-.5,
4 +.5)/(LENGTH*CHORD)**2 + 0(1,2) '(INTGRL('X'I,2,J,0.LO,HI) *
4 INTGRLVIY',I,0,J,2,-.5,+.S).INTGRL(IX',I,0,J,2,LO,HI) *
& INTGRL('Y',I,2,J,0,-.5,4+.))/(LENGTH*CHORD)**2 + 2.'
FA D(1, 3)' (INTGRL( 'X', ,2,3,l, LO, HI) 'INTGRL( 'Y', I, 0,J, 1, -.5,
G +.5)+INTGRL('X'I,l,,J,2, LO, HI) *INTGRLL('Y 1,1, 1'J,0'-.5'+.5))/
4 (LENGTH**3*CHORD.) + 2.*0D2,3)(INTGRL(X',I,0,J,1,LO,HI)*

4 InTRL('Y'I,2,1,-.5,+.5).INTGRLC'X',I,1,J,0,LO,HI) *

MillI) - K(IJ)
10 CONTINUE
CI

IF (NT.GT.0) THEN
Do 20 I - 1,N3+NT+NC+NF
DO 20 J - MAX0(I,NB+NT+NC+1),NB+NT+NC+NF

C Calculate fore-&-aft stiffness matrix components.
C

IF (I.LE.B+NT+NC) THEN
ESK(I,J) - 0.I
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K(I,J) - (CHORD*LENGTH) * (A(1,1)*INTGRL('X',I,2,J,2,LO,HI)*
A INTGRL(eY',I,O,J,O,-.5,+.5)/LENGTH**4 + A(2,2)*INTGPL('XI,
& I,O,J,O,LoO,14)*INGRL('Y',I,2,J,2,-.5,+.5)ICHORD**4 + 4.*
& A(3, 3) 'INTGRL( 'X' ,, , , LO,HI) 'INTGRL( 'Y', I, 1,J, 1, -.5,
& 4.S)/ (LENGTH*CHORD)**2 + A(1,2)*(INTGRL('X',I,2,J,O,LO,HI)*
& I4TGRL(Y,I,O,J,2,-.5,+.5)+INTGRL('X6 ,I,O,J,2,LO,HI)*
& fITGRL(Y',,2,J,O,-.5,+.5))/(LENGTM'CHORD)**2 + 2.'
A A(1,3) '(ZNTGRL('X$,I,2,J,1,LOHI) 'INTGRLL('Y',I,O,J,1,-.5,
& 4.5)+INTGRL(X,1,,J,2,LO,H)*INTGRL('Y',I,1,J,O,-.5,4.5)) /
6(LENGTH**3*CHORD) + 2.*A(2,3)*(INTGRL('X',I,O,J,1,LO,HI)*
£INTGP.L( 'Y',I.2,J, 1,-.5,+.5)+INTGRL('X',I,1,J,O,LO,HI)'

6 INTGRL(IYI,1,J,2,-.5,+.5))/(LENGTH*CHORD**3))
& (CHORD**2/12.)
K(I,J) - (CHORD*LENGTH) * A(1,1)*INTGRL(IX'I,2,J,2,LO,HI)*

& IWYGRL('Y',I,O,J,O,-.5,+.5)/LENGTH**4 *(CHORD**2/12.)

END IF
K(J,I) - K(I,J)

C
20 CONTINUE

END I F
C

RETURN
END
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I
C ----- FILE: PARAM.INC -
C
C "Include" file, PARAM.INC, which describes the general
C parameters of the stall flutter analysis programs.
C

PARAMETER (PI-3.141592653589793238)
PARAMETER (RHOA-1.226)

PARAMETER (RMUA-l.78E-5)
PARAMETER (MAXPLIES-20)
PARAMETER (NBMAX-10)
PARAMETER (NTMAX-10)
PARAMETER (NCMAX-2)
PARAMETER (NFMAX-10)
PARAMETER (MAXODE-32)
PARAMETER (MAXREG-5)
PARAMETER (MAXPOW-20)

C
C RHOA: Air density in kg/m'*3
C RMUA: Air coefficient of viscocity in kg/m-sec
C MAXPLIES: Maximum allowable number of plies in analysis
C NBMAX: Maximum allowable number of bending modes in analysis
C NTMAX: Maximum allowable number of torsion modes in analysis
C NCMAX: Maximum allowable number of chordwise bending modes
C NFMAX: Maximum allowable number of fore/aft modes in analysis
C MAXMODE: Maximum allowable number of mode shapes in analysis
C MAXREG: Maximum allowable number of describing regions
C for aerodynamic force curves
C MAXPOW: Maximum allowable polynomial power for each

C describing region for aerodynamic force curves

C --- FILE: GLBBLK.INC------------------------------------------------
C
C "Include" file to describe variables used globally
C by most programs in the stall flutter analysis.
C

REAL RE, CHORD, LENGTH, LAMBDA, KTTO, KTTCUBE
REAL M (MAXMODE, MAXMODE) , K (MAXMODE, MAXMODE)
REAL MDUM (MAXMODE, MAXMODE) ,KDUM (MAXMODE, MAXMODE) I
REAL QVIB(MAXMODE,MAXMODE) ,FVIB(MAXMODE)

REAL FVl (MAXMODE) , FV2 (MAXMODE)
REAL H (0 :NBMAX,NTMAX, NFMAX)
REAL R(0 :NBMAX, 0 :NBMAX, NTMAX, NTMAX) U
REAL BETA,KT(NTMAX),G(NTMAX),F(NTMAX),B(NTMAX,4)

INTEGER NB,NT,NC,NF,NMODES,ATYPE
LOGICAL LINEAR, STEADY, REDUC, CORREC
LOGICAL VLINES, LATAN, LAEROF, LCONST, LGEOM I
CHARACTER FOIL*5

CHARACTER*2 MLABEL (MAXODE)
CON1ON RE, CHORD, LENGTH, LAMBDA, KTTO, KTTCUBE, M, K
COIION MDUM,KDM,QVIB,FVIB,FVI,FV2,H,R I
COMMON BETA,KT,G,F,B,NB,NT,NC,NF,NMODES
COINHO ATYPE, LINEAR, STEADY, REDUC, CORREC,VLINES
COTION LATAN, LAEROF, LCONST, LGEOM, FOIL, MLABEL

C
C RE: Reynold's number (non-dim)
C CHORD: Chord length m)
C LENGTH: Half-span m)
C LAMBDA: Sweep angle (deg)
C KTTO: Torsional linear term (N/m)
C KTTCUBE: Torsional cubic factor (1/m*'2)
C M(i,j): Mass matrix (kg)
C K(i,J): Stiffness matrix (N/m)
C BETA,KT,G,F,B: Coefficients of torsional mode shapes
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C NB: Number of bending modes in analysis
C NT: Number of torsion modes in analysis
C NT: Number of fore-aft modes in analysis
C NC: Number of chordwise bending modes in analysis
C NI4ODES: Total number of modes in analysis
C ATYPE: Type of aerodynamic analysis to use [see AEROF.FOR]
C LINEAR: Logical variable, if linear analysis is to be done
C STEADY: Logical variable, if steady analysis is to be done
C REDUC: Logical variable to tell if finite-span reduction is
C to be applied to aerodynamic forces
C CORREC: Logical variable to tell if spanwise correction is to
C be applied to spanwise integrations
C VLINES: Logical variable to tell if constant velocity lines or
C constant angle lines are to be calculated by analysis
C LATAN: Logical variable to tell if exact angle or small-
C angle-approximations are to be applied to angle
C calculations
C LAEROF: Logical variable to tell whether to print diagnotics
C each time the AEROF unsteady aerodynamics subroutine
C is called
C LCONST: Logical variable to tell whether to use constant
C coefficients in unsteady aerodynamic analysis
C FOIL: Character variable that denotes airfoil type
C

C ----- FILE: GAUSS.INC-------------------------------------------------
C

INTEGER GPOINTS
PARAMETER (GPOINTS-12)
REAL GP(GPOINTS),GW(GPOINTS)
DATA GP/-.981560634,-.904117256,-.769902674,
& -.587317954,-.367831499,-.125233409,
& .125233409,.367831499,.587317954,
& .769902674,.904117256,.981560634/
DATA GW/.047175336,.106939326,.160078329,
& .203167427,.233492537,.249147046,
& .249147046,.233492537,.203161427,
& .160078329,.106939326,.047175336/
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