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This thesis develops an interactive solution method for

bicriterion integer mathematical programming problems,

called the Artificial Cutting Plane (ACP) method. This

method consists of four major steps:

(1) Determine initial boundaries and the initial incumbent

solution.

(2) Locate an associated frontier nondominated solution

(AFNS) to the incumbent solution. If there is no AFNS

in the remaining feasible area, the current incumbent

solution is the best compromise solution and the

algorithm terminates.

(3) Present the decision maker (DM) the incumbent solution

and its AFNS, and update the boundaries based on which

solution is preferred.

(4) Let the preferred solution be the new incumbent, and

return to step 2.



The ACP method was tested and compared to Aksoy's

Interactive Branch and Bound method on the basis of four

evaluation criteria. Both methods were applied to randomly

generated solutions based on five different shapes of

efficient frontiers. Four different utility functions, with

three variations each, were used to simulate the responses

of a DM. The ACP method generated very competitive results

against Aksoy's method.
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CHAPTER I

INTRODUCTION

A common problem in applications of decision theory and

mathematical programming deals with conflicting objectives.

Especially common are problems concerning two criteria or

objectives, such as finding a balance between cost and

quality or compromising between conflicting interests of two

decision makers.

Although much research has been done in the general

area of multi-criteria decision making, relatively little

work has exploited the simpler, specific case of two

criteria. Most solution methods developed for multi-

criteria decision making are applicable to solving

bicriterion problems. It is possible, however, that one can

develop an efficient solution method for bicriterion

problems by making use of the relative simplicity of their

problem structures. Also, when the idea behind a proposed

method is unique, a preliminary study based on the

bicriterion case helps test its applicability for general

cases. The idea of this proposed method is unique.

This tlrP;s develops an interactive algorithm for

bicriterion integer mathematical programming problems,

1
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called the Artificial Cutting Plane (ACP) method. This

algorithm iteratively introduces a constraint to reduce the

decision space, depending on the decision maker's preference

between two solutions. The efficiency of the algorithm is

tested by solving randomly generated problems based on

varying shapes of efficient frontiers. Finally, thJq thesis

compares the new method with an existing solution method,

Aksoy's Interactive Branch-and-Bound Algorithm (1990).

This thesis consists of five chapters and three

appendices. In Chapter II, the problem statement and

assumptions are explicitly stated, and a literature review

of bicriterion mathematical programming is presented. The

third chapter explains the proposed method. Specifically,

this chapter explains the underlying theory associated with

each step of the algorithm, including finding initial

boundaries, locating an associated frontier nondominated

solution (AFNS), interacting with the decision maker, and

reducing the feasible region. The algorithmic procedure is

formulated and a numerical example of the algorithm is

given. The fourth chapter describes a comparative study of

the ACP method and Aksoy's branch and bound method.

Conclusions are presented in the fifth chapter. The

appendices contain listings of the three computer programs

used in the comparative study.



CHAPTER II

PROBLEM STATEMENT AND LITERATURE REVIEW

2.1 Problem Statement and Assumptions

The bicriterion integer mathematical programming

problem (BIMP) under consideration is of the following form:

(BIMP) Maximize f1(x)

Maximize f2(x)

subject to: x e X; x c I (Integer)

f1(x) and f2(x) are two concave, conflicting objective

functions. x is an n-dimensional vector of decision

variables. X is the decision space and it is assumed to be

convex and compact. A bicriterion problem can also exist in

pure decision theory problems where known values of two

conflicting attributes replace the optimization functions.

In practical applications, it is rare for a single

solution to maximize both functions. Therefore, the problem

becomes finding the best compromise solution which optimizes

the decision maker's implicitly known preference or utility

function. The utility function represents the decision

maker's preferences between values of the two objective

functions: U[f 1(x), f 2 (x)] such that U[f 1 (x1 ) , f 2 (x ) ] >

Urf 1 (x 2), f 2 (x 2)] if and only if the decision maker prefers

[f 1 (x ) , f 2 (x ) ] to [f 1 (x2 ) , f 2 (x 2 )]. This utility function

3
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is assumed to be increasing and quasiconcave. The

requirements for quasiconcavity of the utility function and

convexity of the decision space ensure that the best

compromise solution is a global optimum.

2.2 Literature Review

As mentioned earlier, extensive research has been done

in the general area of multi-criteria decision making. For

a survey of literature on interactive methods applied to

continuous variables, see Shin and Ravindran (1991). Other

reviews of general multi-criteria problems and solution

methods are available in Cochrane and Zeleny (1973), Eswaran

(1983), Evans (1984), Steuer (1986), and references therein.

Early work in the area of bicriterion problems was done

by Geoffrion in 1967 and Pasternak and Passy in 1973.

Geoffrion's algorithm uses parametric programming and is

applied to continuous cases, while Pasternak and Passy's

method is applied to Boolean variables. However, in these

works the authors assume that the utility function, which

specifies the decision maker's preference between the two

objectives, is explicitly known. In actual situations, this

is usually not the case and it can be very difficult to

develop even a reasonable estimate of the utility function.

These two methods also concentrate on generating all

efficient solutions rather than finding the best compromise

solution. Benson (1979) presented a necessary and

sufficient condition for a point to be an efficient point
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when both objective functions are concave over a convex set.

He used this result in a parametric procedure for generating

all efficient solutions without unnecessarily generating

nonefficient solutions. Cohon, Church and Steer (1979)

developed an algorithm to approximate the set of efficient

solutions in a bicriterion problem, which lets the user

control maximum possible error. Chalmet, LeMonidis and

Elzinga (1986) developed an algorithm which locates all

nondominated (efficient) points for a bicriterion integer

programming problem, with special emphasis on the linear 0-1

case.

In 1978, Walker developed an interactive method of

solving bicriterion problems which obtains a best compromise

solution. This method presents the decision maker (DM) with

the two objective function values for a point in the

decision space, and asks the DM yes or no questions

regarding his or her satisfaction and whether or not one

objective can be increased at the expense of the other.

This requires the DM to know specific trade-off values,

which can be a cognitive burden. Sadagopan and Ravindran

(1982) developed two interactive algcrithms to locate the

best compromise solution to a continuous bicriterion

mathematical programming problem. Their methodology is

based on a constrained criteria approach, meaning that one

objective function is systematically used as a constraint

while the other is maximized. The Paired Comparison Method
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(PCM) presents the DM with two efficient solutions to which

the DM must respond which is preferred, if either, and the

objective space is reduced depending on the response. Their

Comparative Tradeoff Method (CTM) also uses a region

elimination scheme, but presents the DM with a tradeoff

value and asks if he or she would be willing to trade more,

less, or an equal amount of one criterion for a unit

increase in the other. Both of these methods significantly

reduce the burden to the DM as opposed to requiring precise

local tradeoffs or presenting all efficient solutions to the

DM for selection. Eswaran, Ravindran and Moskowitz (1989)

developed a non-interactive method as well as an

interactive, region elimination procedure for integer

problems which utilizes paired comparisons and Tchebycheff

norms. Unfortunately, this method requires a number of

difficult assumptions such as a uniformly dominant efficient

set, supported efficient points, and unimodality. In 1990,

Aksoy developed a branch-and-bound algorithm for mixed

integer, bicriterion problems which also utilizes paired

comparisons. This method has very broad applications since

it can be applied to continuous, integer and mixed cases,

and it does not require convexity of the decision space or

concavity of the utility function. It does, however, ask

the DM to compare infeasible ideal solutions.

In general, interactive approaches to bicriterion

mathmatical programming problems have a number of
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advantages. The DM is not required to consider all of the

efficient solutions. By successively providing her

preference about the current solution either implicitly or

explicitly, the DM progressively gains knowledge about her

preference structure. Also, a best compromise solution

obtained using this approach has a better chance of being

accepted and implemented, since the DM is involved in the

solution process.

Other research has been done on bicriterion problems in

the areas of linear programming (Adulbhan and Tabucanon

1977; Kiziltan and Yucaoglu 1981), scheduling (John and

Sadowski 1986), transportation (Aneja and Nair 1979;

Malhotra 1982), and shortest path problems (Climaco and

Martins 1981; Henig 1985). Although the number of studies

on bicriterion problems has increased in recent years, there

are still relatively few algorithms in this area which use

an interactive approach or which are applicable to integer

problems.



CHAPTER III

AN INTERACTIVE ARTIFICIAL CUTTING PLANE METHOD

The purpose of solution methods of BIMPs is to find the

best compromise solution. Steuer (1986, p. 148) and others

have shown that the best compromise solution, which

maximizes the decision maker's utility function, must be a

nondominated solution.

DEFINITION 1: Nondominated Solution

A solution [fi(x*), f 2 (x*)] is nondominated if there

exists no other point such that f 1 (x) f1(x*) and

f 2 (x) fl(x*), with at least one inequality strictly

greater than. In such a case, the point x* is called

an efficient point.

The interactive artificial cutting plane method is

composed of four basic steps. In Step 1, initidi boundaries

are determined by separately maximizing each objective

function. One of these solutions becomes the initial

incumbent solution. Step 2 consists of locating an

associated frontier nondominated solution (AFNS) of the

incumbent solution. In Step 3, the decision maker (DM) is

presented with the incumbent solution and its AFNS and asked

8
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which is preferred. Depending on the DM's response, a

constraint is added to reduce the decision space in Step 4.

These steps are repeated until only one solution remains

which is the best compromise solution.

3.1 Finding Initial Boundaries

Step 1 of the algorithm locates the initial boundaries

of the best compromise solution by separately maximizing

each objective function; that is, solving the nonlinear

programming problems (Aksoy 1990, 406):

(1) Maximize fi(x) , subject to x E X and x c I; and

(2) Maximize f,(x) , subject to x E X*

where i = 1, 2 and X* is the set of solutions for problem

(1). When i = 1 and j = 2, let the solution to problem (2)

be r = (rl, r2) = [f1(xr), f2 (xr)]. When i = 2 and j = 1,

let the solution to problem (2) be 1 = (11, 12). If these

problems both result in the same solution, this is the best

compromise solution. Otherwise, set the initial boundaries

to f,(x) 1, and f2(x) ! r2. By definition, we also know

that f1(x) < r, and f2(x) < 12, although these constraints

do not need to be explicitly stated since they do not

eliminate any solutions in the region.

LEMMA 1. The initial boundaries include the best compromise

solution.
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PROOF. First, assume there exists a solution f* = [f1(x*),

f 2 (x*)] such that f 1 (x) > r I or f 2 (x*) > 12. Then, by

definition of r and 1, f1(x) > Max {f 1 (x)) or f 2 (x*) >

Max (f 2 (x)} , which cannot be true. Therefore, f 1 (x)

r i and f 2 (x) 12. Next, suppose there exists a

solution fb such that f 1 (xb) < 11. From above, we know

that f 2 (xb) < 12. By definition, fb is dominated by 1

and thus cannot be the best compromise solution. A

similar argument shows that the constraint f2(x) ? r2

does not eliminate the best compromise solution. QED.

3.2 Locating an Associated Frontier Nondominated

Solution (AFNS)

After setting the initial boundaries, solution 1 will

serve as the initial incumbent solution for comparison. The

DM will compare this solution to one of its associated

frontier nondominated solutions.

DEFINITION 2: Extreme Nondominated Solution

An extreme nondominated solution is a nondominated

solution which cannot be represented as (or dominated

by) a convex combination of any two other feasible

solutions.

DEFINITION 3: Adjacent Extreme Nondominated Solution (AENS)

Let fl = [ f1(xl), f2 (x')] and f2  = [f1(x
2), f2 (x

2)] be

two extreme nondominated solutions to a bicriterion

problem, and xI and x2 be the respective extreme
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efficient points. Assume without loss of generality

that f1(x) increases and f2(x) decreases as the

solution moves from x1 to x2. Then fl and f2 are

adjacent extreme nondominated solutions and xI and x2

are adjacent extreme efficient points if there exists

no extreme point x e X such that f1(x) < f1(x) <

f1(x2) and f2(x1) > f2(x) > f2 (x2).

DEFINITION 4: Associated Frontier Nondominated Solution

(AFNS)

Let fl and f2 be nondominated solutions. Let set F =

[fi(x) -fi(x)]

+ [f2(x')-f 2(x)] > 0).

fl and f2 are associated frontier nondominated

solutions if F = o (empty set). In other words, if a

half-space extending from a line connecting two or more

nondominated solutions contains no other solutions, the

points on that line are AFNS's. Note that AENS's are a

subset of AFNS's and the corresponding tEPs are a

subset of associated frontier efficent points (AFEPs).

In this algorithm, AFNS's are determined in the

following manner. Graphically, starting from the "leftmost

point" (the nondominated solution, 1, with max f2(x) ), a

horizontal line extending from this point is swung downward

to the right until it intersects a point, which is an AFNS

(see figure 3.1). This equates to locating the point which
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forms a line with the least negative slope when connected to

point 1. If there is more than one point on this line, the

point farthest from the originating point is its AENS, since

a solution between them could be represented as a convex

combination of the outer two points and thus is not extreme.

However, any point on this line is an AFNS and could be

selected for comparison without altering the convergence of

the algorithm.

AFNS
ff (x)

f (X)

Figure 3.1 Finding AFNS to the
right of point 1.

Mathematically, AFNSs to the right of 1 can be found by

solving the following single objective optimization problem:

(Pb- 1 ) Maximize b

subject to:

[f1(x) - f1(x')] + b f2(x) - f2(x)] 0;

f1(x) > f1(x') and b > 0;
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f2 (x) > c, where c is the current boundary

constraint on f2(x).

Note that the second constraint ensures that only points to

the right of the originating point are checked. Since the

algorithm only uses originating points which are efficient,

the constraint b > 0 is actually redundant.

When all values of f1(x) and f2(x) are known, as will

be the case when comparing two attributes as opposed to

solving a nonlinear programming problem, the above problem

reduces to:

Maximize b = f f1_x) f 1(x) > f1(xI) and f2 (x) > c

f2 (x') - f2(x)

This modified format will also be used for the example and

comparative study of the algorithm.

To find an AFNS when "swinging left" from a point r,

the following Pb problem must be solved:

(Pb- 2 ) Minimize b

subject to:

[f 1 (x) - f1(Xr)] + b[f 2 (x) - f 2 (xr)] 0

f 2 (x) f 2 (xr)

fI(x) c.

Note that these two Pb problems are equivalent, except that

they use the opposite point as the originating point (see

figure 3.2).
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f,(x) 4

AFNS

f,(x)

Figure 3.2 Finding AFNS to the left
of point r using Pb-2.

THEOREM 1. Given an initial extreme nondominated solution

(ENS), if there exists an optimal solution to problem

Pb-l, it is an AFNS.

PROOF. Let 1 be the initial ENS and let b* be the optimal

solution to Pb-l, located at f* = [fI(x*), f 2 (x*)].

From Pb-i: (f 1 (x) - f 1 (x')) + b(f 2(x) - f 2 (xt)) > 0

b _< _{fl_(x fl 1X).
(f 2 (x) - f 2 (x))

[(f 2 - f2l) < 0 by other constraints]

Since b* = maximum b,

Ij -I) _< b" = f ._ )
(f 2 W) -f 2(X) (f 2 (X*) f 2 (x )

for all other solutions [f 1 (x i ), f 2 (x i ) ]. Suppose f*

is not an AFNS to point 1. Then by definition of AFNS,

there exists at least one solution [f 1 (x), f 2 (x) ] in F

such that



15

rf 2-L-*if 2Ix L [fx -(X )f 1 (X) + [f2(W)-f2(X) > 0.

[f1(x ) f 1 (x

By rearranging and applying the other constraints of

the Pb problem, this can be rewritten

[f 2 (x') - f 2 (x)) [f 2 (x) - f 2 (x))

which contradicts the assumption that f* is the optimal

solution to Pb-l. Therefore, set F must be empty and

solutions 1 and f* are AFNS's. QED.

COROLLARY 1: Given an initial ENS, if there exists an

optimal solution to Pb- 2 problem, it is an AFNS.

PROOF: Similar to proof of Theorem 1. QED.

3.3 Interacting with the Decision Maker (DM)

The algorithm proceeds by asking the DM to compare two

AFNS's, 1 and r, which were located using the above Pb

problems. The DM will indicate whether solution 1 is

preferred to r, r is preferred to 1, or she is ind-ferent

between solutions 1 and r. Based on his or her response, a

constraint is constructed in order to reduce the solution

space. Suppose that 1 and r are two AFNS's such that f 1 (x r )

> f,(x') and f 2 (x ) > f 2 (xr). If the DM prefers 1 to r, a

constraint is added such that f 2 (x) > f 2 (xr). If the DM

prefers r to 1, the constraint t1(x) > f1 (x) is added.

This elimination procedure should not eliminate the best

compromise solution. It will be shown that any solution in

the eliminated region must either be a dominated solution or
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contained in a dominated convex cone, which is constructed

using the results of the pairwise comparison. The convex

cone, defined below, is constructed using solutions 1 and r,

and the ideal solution which dominates both 1 and r. Since,

by definition, the ideal solution will be preferred to both

1 and r, whichever solution was not preferred by the DM in

the pairwise comparison will be the least preferred solution

of the three.

THEOREM 2. Assume a quasiconcave function defined in a 2-

dimensional Euclidean space, U(f1 (x),f 2 (x)). Consider

three distinct solutions, f(x i ) = (f 1 (x1 ), f 2 (x ) ) , and

assume that U(fk) U(f 1 ), k * i. If z c Z and z fk,

where Z = { zj Z = fk + Zi k Ai(fk - f'), gi 2 0 J, it

follows that U(z) 5 U(fk). See figure 3.3.

PROOF. See Korhonen, Wallenius and Zionts, 1984.

f2(x)

fi f.

z

fF(x)
Figure 3.3 Illustration of Lemma 2.
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3.4 Reducing the Feasible Region

For the theory of eliminating non-optimal areas for

this algorithm, we shall assume that fk as defined above is

the DM's least preferred solution from a pairwise

comparison. The two other solutions used to construct the

dominated convex cone are fl, the DM's preferred solution

from the same pairwise comparison, and f*, the ideal

(infeasible) solution which dominates both other solutions.

THEOREM 3. Consider two AFNS's, f1 1 [f1(xI), f 2 (x ) ] and f 2

= [f 1 (x 2 ), f 2 (x 2)], where f 1 (x2 ) > f 1 (x) and f 2 (x 1 ) >

f2(x2) . Assume that fl is preferred to f 2 ; that is,

U(f') > U(f2 ). The best compromise solution, Max U,

does not lie in the region such that f 2 (x) < f 2 (x 2 ).

PROOF. Partition the region f 2 (x) < f 2 (x 2 ) into the

following subsets (see figure 3.4):

A = ((f 1 , f 2) f 2 
< f 2

2 and fl < fl 2)

B = {(fl, f 2 ) I - 2  f f - (fl-fl1 ) + (f 2 I f 2) < 0
(f 1  - f1 " and fl > f12 }

C = {(fl, f 2) I 2 - f L. (f 1-f 1
1) + (f 2

1  - f 2 ) > 0
(fl1  fl and f2 < f 2

2

(Where f1l is shorthand notation for f 1 (x I ).)
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f=(x)1

f1(x2) f,(x)

Figure 3.4 Illustration of eliminated
areas when 1 is preferred to 2. Area A
is dominated by 2; B is contained in
non-optimal convex cone; C is empty.

By definition, any solution in subset A is dominated by

f2 and thus is not the best compromise solution. Next,

consider a solution in subset B. Since U(fI) > U(f2),

we know that f2 is the least preferred solution of fl,

f2 and f*, where f* = [f1(x2), f2(x1)], the ideal

solution which dominates both other solutions. The

area B is equivalent to a convex cone created using

these three solutions, and thus does not contain the

best compromise solution according to Theorem 2.

Finally, set C is a subset of set F from the definition

of AFNS. Since F is an empty set, subset C is also an

empty set and thus cannot contain the best compromise

solution. QED.
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COROLLARY 2: Consider solutions fl = [f 1 (x1), f 2 (X ) ] and

f2 = [f 1 (x2 ), f 2 (x 2)], where f 1 (x 2) > f 1 (x I ) and

f2(x1) > f 2 (x2 ). Assume that f2 is preferred to fl;

that is, U(f2 ) > U(fI). The best compromise solution

does not lie in the region such that f 1 (x) < f 1 (x).

PROOF: Similar to proof of Theorem 3. See figure 3.5.

QED.

f ,(x)>

f2(x9B)

2

f, (x1) f, Ix)

Figure 3.5 Eliminated areas when 2
is preferred to 1. Area A is
dominated by 1; B is non-optimal
convex cone; C is empty.

LEMMA 2. The addition of constraints such as f1(x) > c and

f2(x) > c, c a constant, does not alter the convexity

of the decision space, X.

PROOF. It is already assumed that the initial decision

space is convex and that f1(x) and f2(x) are concave

functions. This implies that the sets
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(XI fi(x) - c > 0; i = 1,2) are convex sets. Since the

intersection of two convex sets is also a convex set,

adding such constraints maintains the convexity of X.

QED.

We are now ready to explicitly state the steps of this

algorithm.

3.5 The Algorithmic Procedure

STEP 1: Determine the initial boundaries by solving the

following nonlinear programming problems:

(1) Maximize f1 (x), subject to x e X and x e I; and

(2) Maximize fj(x) , subject to x e X*

where i, j e (1, 2), i * j, and X* is the set of

solutions for problem (1). When i = 1 and j = 2, let

the solution to problem (2) be r = (r, r 2 ) = [f 1 (xr),

f 2 (xr) ]. When i = 2 and j = 1 let the solution to

problem (2) be 1 = ( 1 1, 12). If both problems result

in the same solution, this is the best compromise

solution. STOP. Otherwise, set the initial boundaries

to f1(x) 11 and f2(x) r2. Let 1 be the initial

solution for comparison. Using this notation, the

solution 1 will always represent the graphical

"lefthand" comparison solution, and r will represent

the "righthand" comparison solution.

STEP 2: Find an AFNS to the right of 1 by solving the first

Pb problem:
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(Pb- 1 ) Maximize b

subject to:

[f1(x) - f1 (x')] + b[f 2 (x) - f2(x)] 0 0

f1(x) > f 1 (xt)

f2(x) > c, where c is the current boundary

constraint on f2(x).

If there is a solution to this problem, let this

solution be solution r, the second solution for

comparison.

If there is no solution to the first Pb problem,

then there are no solutions to the right of 1. Set

solution r equal to solution 1; it will now be

considered the righthand solution. Swing left from r

by solving the second Pb problem:

(Pb- 2 ) Minimize b

subject to:

[f 1 (x) - f 1 (xr)] + b[f 2 (x) - f2(xr)] 0

f2(x) f 2 (x r )

f1 (x) c.

If there is no solution to this Pb problem, STOP.

Solution r is the best compromise solution.

STEP 3: Ask the Decision Maker to compare solutions 1 and

r. If solution 1 is preferred to r, add the constraint

f2(x) > r2. If solution r is preferred to 1, add the

constraint f1(x) > 11. If the DM is indifferent
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between the two solutions, add the constraints f2(x) >

r2 and f1(x) > 11.

STEP 4: Let the preferred solution be solution 1, the first

solution for the next comparison. Go to Step 2.

Since an integer programming problem has a finite

number of solutions, and this algorithm eliminates at least

one solution at each iteration without generating additional

solutions, it will find the best compromise solution in a

finite number of iterations.

3.6 Numerical Example

The following is a simple example which shows the

stepwise procedure of the above algorithm. Assume that the

DM's implicitly known, concave utility function is:

Maximize U(f 1 (x), f 2 (x)) = -[f1(x) - 5]2 - [f 2 (x) - 6] 2

This will be used only to determine the DM's pairwise

preferences.

The following solutions will be used for this example

problem. These solutions could represent attributes, as

found in decision theory, or solutions to nonlinear

programming problems. In actual applications of this

algorithm, nonlinear programming problems would be solved to

locate these solutions.
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Solutions f 11-I f2-W U (f x1 (X)If 21-X

A 1 6 -16
B 0.5 4 -24.25
C 1.5 4.5 -14.5
D 1 2.5 -28.25
E 2 3.5 -15.25
F 2 1 -34
G 3 2 -20
H 4 0.5 -31.25
I 5 1 -25
J 3.1 1.1 -27.62

Note that solutions B, D, F, and H are dominated solutions.

STEP 1: Determine initial boundaries. Max f1(x) = 5,

corresponding to solution I = (5,1). Max f2(x) = 6,

corresponding to solution A = (1,6). Initial

constraints become f 1 (x) > 1 and f 2 (x) > 1. This

eliminates solutions B and H. Set A = 1, the initial

comparison solution (see figure 3.6).

A

C
"' E

f,(x)

Figure 3.6 Initial boundaries for
example problem.
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Iteration 1

STEP 2: "Swing right" from solution A by solving the Pb

problem:

Maximize b =
6 - f 2 (x)

subject to fj(x) > 1 and f2(x) > 1.

The solution to this problem is b = 0.8, found at

solution I = (5,1). Let I be solution r, the next

solution for comparison.

STEP 3: Ask the DM to compare solutions A and I. Based on

the implicit utility function, the DM will prefer A to

I. Replace the initial constraint f2(x) > 1 with the

more restrictive constraint f2(x) > 1. This eliminates

I and F, which is dominated by I.

STEP 4: A, the preferred solution, remains the incumbent

solution 1 for the next comparison. Go to Step 2.

Iteration 2

STEP 2: "Swing right" from solution A again, using the same

Pb problem as above but with the new constraints. The

solution is b = 0.5, which corresponds to solution G,

the new AFNS to A. Let G = r, the second solution for

comparison.

STEP 3: Ask the DM to compare A and G; A is preferred to G.

Add the constraint f2(x) > 2, which makes the

constraint f2 > 1 redundant. The new constraint

eliminates solutions G and J.
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STEP 4: Again, A remains designated as 1 for the next

comparison. Go to Step 2.

Iteration 3

STEP 2: "Swing right" from solution A again, using the same

Pb problem as above but with the new constraint. The

solution is b = 0.4, which corresponds to solution E,

the new AFNS to A. Let E = r, the second solution for

comparison.

STEP 3: Ask the DM to compare A and E; E is preferred to A.

The original constraint f1(x) > 1 is replaced by the

more restrictive constraint f1(x) > 1. This will

eliminate solution A and solution D, which is dominated

by A.

STEP 4: The new preferred solution, E, becomes 1, the new

incumbent solution for comparison. Go to Step 2.

Iteration 4

STEP 2: "Swing right" from E by solving the P. problem:

Maximize b = IW - 2
3.5 - f 2 (x)

subject to: f1(x) > 2; (only checks solutions

to the right of E)

f2 (x) > 2.

This problem has no solution, meaning that no solutions

remain to the right of E. Let E = r and "swing left"

from E by solving the second Pb problem:
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Maximize b = 3.5 - f 21K;
f1 (x) - 2

subject to: f1(x) < 2; (only checks solutions to

the left of E)

f1 (x) > 1;

f2(X) > 2;

b > 0.

The solution to this problem is b = 2, corresponding to

solution C, the only feasible solution. Let C = 1, the

second solution for comparison.

STEP 3: Present the DM with the pairwise comparison of E

and C; according to the implicit utility function C is

preferred to E. Add the constraint f2(x) > 3.5, which

eliminates both E and F, which is dominated by E.

STEP 4: The most preferred solution, C, becomes 1 for the

next comparison. Go to Step 2.

Iteration 5

STEP 2: Swing both right and left from C by srquentially

solving the two Pb problems. Neither of these problems

will have a solution, meaning that C is the best

compromise solution. STOP.



CHAPTER IV

THE ARTIFICIAL CUTTING PLANE METHOD AND AKSOY'S METHOD:

A COMPARATIVE STUDY

In this chapter, the Artificial Cutting Plane (ACP)

method is compared with Aksoy's (1990) Branch and Bound

method applied to pure integer, bicriterion programming

problems. Both methods were programmed in Turbo Pascal and

run on a personal computer. The comparative study applies

each method to randomly generated solutions based on a

specified efficient frontier shape rather than solving

actual mathematical programming problems at each iteration.

This is done for testing purposes only, as illustrated in

the numerical example of Chapter III. However, this method

could also be used when solving a decision theory problem

with two known attributes.

To simulate possible preferences of a real DM, four

different types of utility functions are used - linear,

quadratic, fourth power and exponential. Three variations

of each utility function are used. These utility functions

are applied to solution spaces representing five different

shapes of efficient frontiers. Each general shape was

generated using five different variances.

27
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4.1 Utility Functions Tested

Because there is no actual DM, this comparison uses

four different utility functions to simulate possible

preferences. These utility functions are used to select

between two solutions presented to the function,

representing the DM. The programs will select the solution

with the highest utility function value as the most

preferred solution for that iteration. The functions used

are linear, quadratic, fourth power and exponential, with

three variations for each utility function. The actual test

utility functions are as follows:

Linear:

(1) 5 * f 1 (x) + 5 * f 2 (x)

(2) 8 * f1 (x) + 2 * f 2 (x)

(3) 2 * f1 (x) + 8 * f2 (X)

Quadratic:

(1) -5[f 1 (x*) - f 1 (x)] 2 - 5[f 2 (x*) - f 2 (x 2

(2) -8(f,(x*) - f 1 (x)] 2  - 2[f 2 (x*) - f 2 (x)] 2

(3) -2(fI(x*) - f 1 (x)] 2 - 8[f 2 (x*) - f 2 (x)J 2

Fourth Power:

(1) -5[fi(x*) - f 1 (x)]' - 5(f 2 (x*) - f 2 (x)] 4

(2) -8[f1(x*) - f 1 (x)] 4 - 2[f 2 (x*) - f 2 (x)] 4

(3) -2Cf 1 (x*) - f 1 (x)] 4 - 8[f 2 (x*) - f 2 (x)] 4
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Exponential:

(1) 5[1 - e 0 8 f 1(x)/f (x*)] + 511 - e "° '0f2(x)/f2(x*)]

+10[ (1 - e " O' Ofl(x)/f l (x*)) (1 - eO 0. 8f2(x)/f2(x*)) ]

(2) 8[1 - e 0 . 12 f 1( x ) / f 1( x* )  + 21l - e 0. 04f2(x) / f2(x*)]

+10[ (1 - e " 0 . 12f1 (x)/f 1(x*)) (1 - e " . 0 f 2( x ) / fz(x*)) ]

(3) 211 - e-O 4 fl(x) / fl( x*)] + 811 - e-0.12f2(x)/f 2(x*)]

+10[ (1 - e -O 04 fl(x)/f l (x*)) (1 - e "0"12f2(x)/f2(x*))

The linear, quadratic and fourth power functions are

all quasiconcave, in accordance with the assumptions of the

ACP method. The exponential functions were not checked for

quasiconcavity. They are adapted from Ramachandran (1989).

4.2 Shapes of Efficient Frontiers Tested

The ACP method and Aksoy's method, using the above

utility functions, were tested on 25 different sets of

randomly generated solutions. These 25 sets were based on

five different shapes of efficient frontiers, each with

variances of 1, 3, 5, 7 and 9. The efficient ' ontier

shapes used were linear, concave, convex, S-shaped and

reverse S-shaped. They are illustrated in figures 4.1

through 4.5.
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Figure 4.1 Linear Efficient Figure 4.2 Concave
Frontier Efficient Frontier

0

Figure 4.3 Convex Efficient
Frontier

0

0 1;0 0 100

Figure 4.4 S-Shaped Figure 4.5 Reverse S-Shaped
Efficient Frontier Efficient Frontier
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The data sets were all generated using a program

written in Turbo Pascal. First, 500 numbers were randomly

generated between 0 and 100, representing the values of

f1 (x). A specified function was used to generate the

appropriate shape of the efficient frontier, and each value

of f1 (x) was passed to that function to determine the mean

of f2 (x). Each value representing f2 (x) was then randomly

generated using the polar Box-Muller method (Dagpunar 1988,

93) based on a Normal distribution with a mean equal to the

corresponding function value. Each frontier shape was

generated five times, with variance ranging from 1 to 9.

Therefore, each data set contains 500 bicriterion solutions.

The number of efficient solutions in each set would tend to

decrease as variability increased, since some solutions

generated would have a greater probability of dominating

other solutions, with each data set containing a maximum of

500 (100%) efficient solutions. The program used to

generate the solution sets is included in Appendix A. The

functions which were used to generate each shape are as

follows:

(1) Linear: f 2 (x) = 100 - f 1 (x)

(2) Concave: f2 (x) = 100 - 0.01[f 1 (x)] 2

(3) Convex: f 2 (x) = 0.Ol(f 1 (x) - 100] 2

(4) S-Shaped: f 2 (x) = -0.0004[f1(x) - 50] 3 + 50

(5) Revers S-Shaped: f 2 (x) = -(50) 21 3[f 1 (x) - 5011/3 + 50
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4.3 Evaluation Criteria

In this comparative study, four different evaluation

criteria are used to investigate the effectiveness of each

method and to measure the cognitive burden to the DM. The

evaluation criteria used are described below:

(1) The number of interactions with the DM. This

represents the number of pairwise comparisons required

of the DM to solve a bicriterion problem by each

method. It is a very critical criterion used to

measure the cognitive burden on the DM.

(2) The number of mathematical programming problems

solved. In actual applications of both methods, at

least one nonlinear, single objective, mathematical

programming (MP) problem is solved at each iteration.

This criterion is indicative of the computation time

which would be required to solve an actual bicriterion

problem.

(3) The average utility function difference between the

pair of solutions presented to the DM in each

iteration. This criterion also indicates, to a lesser

extent, the cognitive burden placed on the DM. If the

utility function difference between two solutions is

larger, it will be easier for the DM to specify her

preference.

(4) The average utility function difference between the

preferred solution at each iteration and the ideal
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solution. This criterion compares the utility function

value of the DM's preferred solution from any pairwise

comparison with the utility function value of the data

set's ideal solution. It is useful if the DM decides

to terminate the solution process before reaching a

best compromise solution, since a utility function

value closer to the utility function value of the ideal

solution would be preferred.

4.4 Comparison Based on Evaluation Criteria

The ACP method and Aksoy's method were both programmed

in Turbo Pascal and compared based upon the four evaluation

criteria described in section 4.3. The programs used to

evaluate the two methods are included in Appendices B and C.

Each program was run using the twelve variations of utility

functions desribed in section 4.1. Each utility function

was applied to each of the 25 solution sets described in

section 4.2. Therefore, each program was run a total of 300

times. As expected, both methods obtained the same best

compromise solution in every case.

4.4.1 Number of Interactions with the DM

The two methods were compared on the basis of the

number of pairwise comparisons required of the DM to find

the best compromise solution. In each case, the DM (or for

testing, the utility function) is presented with two

solutions and asked which if preferred, if either. The ACP
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method always asks the DM to compare two feasible solutions.

Aksoy's branch and bound method sometimes requires the DM to

compare a feasible solution with an infeasible, ideal

solution of a node. Regardless of whether or not the

solutions are feasible, this is a very important criteria

for interactive methods, because it represents the cognitive

burden required of the DM. Also, as the number of

interactions increases, so does the possibility that the DM

responds inconsistently.

When averaged over all 300 runs of each method, the ACP

method required a average of 15.83 paired comparisons before

reaching the best compromise solution, with a standard

deviation of 13.39. Aksoy's branch and bound method

required an average of 26.18 paired comparisons with a

standard deviation of 18.29. The breakdown of this

criterion for the four different utility functions and five

general shapes of the efficient frontier is presented in

table 4.1. In every case, the ACP method req'lires the same

or fewer interactions with the DM than Aksoy's method. The

ACP method performs better with a linear or exponential

utility function than with a quadratic or fourth power

utility function. It also requires fewer comparisons, on

the average, when the efficient frontier is generally linear

or concave, and requires the most comparisons when the

efficient frontier is convex shaped. Aksoy's method, on the

other hand, required slightly more interactions when using a
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quadratic utility function and when applied to a linear

shaped efficient frontier.

Table 4.1 AVERAGE NUMBER OF PAIRED COMPARISONS

(STANDARD DEVIATION)

Type of Utility ACP Method Aksoy's Method

Function

Linear 10.61 (8.27) 25.57 (22.03)

Quadratic 19.21 (13.86) 30.15 (15.28)

Fourth Power 22.39 (14.77) 24.80 (12.06)

Exponential 11.09 (11.58) 24.19 (21.26)

Shape of Efficient
Frontier

Linear 12.60 (7.83) 31.05 (28.98)

Concave 10.65 (4.43) 27.48 (16.90)

Convex 25.32 (20.63) 25.52 (13.96)

S-Shaped 14.23 (11.09) 25.00 (13.91)

Reverse S 16.33 (11.69) 21.83 (10.60)

Grand Average 15.83 (13.39) 26.18 (18.29)

Although not evident from table 4.1, both 3ethods

tended to require fewer interactions with the DM when the

variability of the efficient frontier was greater. This is

most likely because the data sets with higher variability

about the frontier shape tend to have fewer efficient

solutions. The maximum number of interactions required with

the ACP method was 86, which occurred when using the first,

fourth power utility function (coefficients of 5 and 5) and

a convex efficient frontier with a variance of one. The ACP
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method found the best compromise solution with only one

paired comparison on seven separate occasions. Aksoy's

method required a maximum of 170 paired comparisons, when

using the first linear utility function and a linear

efficient frontier with variance of one. The least number

of interactions required was 9, which occurred 5 separate

times.

4.4.2 Number of MP Problems Solved

Another important criterion is the number of single

objective MP pLoblems which must be solved before obtaining

a best compromise solution to the bicriterion problem. Both

methods require the solution of at least one nonlinear MP

problem at each iteration, unless the two objective

functions are linear, in which case an LP problem must be

solved. This criterion is directly proportional to the

amount of computation time which would be required in actual

applications.

The ACP method requires MP problems in the form of the

Pb problems described in chapter 3. To located an incumbent

solution's AFNS, the first Pb problem must be solved. If

there is no solution, the second Pb problem is attempted.

The program counts each Pb problem as one MP problem, even

if no solution is found.

Aksoy's branch and bound method requires at least one

MP problem to determine the boundaries of each node. For

example, to locate a boundary of a node N2k- , the algorithm
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must maximize f1(x) subject to a constraint on f2(x). If

there is more than one solution to this problem, then a

second MP problem must be solved which maximizes f2(x) over

the solution space of the first problem. However, for this

comparative study, the solution spaces were randomly

generated using real numbers, and there are no duplications

of either f1(x) or f2(x) in the data sets used. Therefore,

only one MP problem was counted during testing when

determining the boundaries of the nodes. In actual

applications, there could very well be more tnan one

solution for each MP problem, resulting in the need for a

second MP problem. In other words, the results obtained

from this study of Aksoy's method represent the minimum

number of MP problems which would be solved for an actual

bicriterion problem of similar size. The maximum number of

MP problems required would be twice the number shown here,

and would occur if there were always multiple solutions to

these MP problems.

The results of this comparative study indicate that

Aksoy's method required the solution of fewer single

objective MP problems. Overall, the ACP method averaged

26.91 MP problems solved before locating the best compromise

solution, with a standard deviation of 24.22. Aksoy's

method required an average of 20.11 MP problems, with a

standard deviation of 10.78.
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A comparison of the number of MP problems required

according to the shape of the efficient frontier and the

utility function used is presented in table 4.2. Aksoy's

method requires fewer MP problems for all utility functions

except linear, in which the ACP method performed slightly

better than Aksoy's. The ACP method solved fewer MP

problems when the efficient frontier was linear or concave

shaped. It performed poorly with a convex shaped efficient

frontier. There was more variation in the number of MP

problems required for the ACP method (overall standard

deviation of 24.22) than for Aksoy's method (standard

deviation of 10.78). The maximum number of MP problems

required for the ACP method was 165, which occurred using

the second quadratic and first exponential utility

functions, both over the convex efficient frontier with a

variance of one. The least number of MP solutions required

was 5, which occurred on seven different runs. Aksoy's

method required a maximum of 106 MP problems, '.hen using the

first linear utility function over the linear efficient

frontier with variance one. A minimum of 8 MP problems were

required using Aksoy's method, which occurred five times.

For either method, the maximum number of MP problems

required would probably be prohibitively high in solving an

actual bicriterion problem of this magnitude.
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Table 4.2 AVERAGE NUMBER OF MP PROBLEMS SOLVED

(STANDARD DEVIATION)

Type of Utility ACP Method Aksoy's Method

Function

Linear 18.37 (14.40) 19.76 (13.15)

Quadratic 31.04 (24.26) 22.88 (9.44)

Fourth Power 34.72 (23.49) 19.20 (7.07)

Exponential 20.09 (22.35) 18.61 (11.93)

Shape of Efficient
Frontier

Linear 20.61 (11.43) 22.97 (16.52)

Concave 16.75 (7.08) 20.77 (10.82)

Convex 47.63 (37.45) 19.07 (7.89)

S-Shaped 21.69 (18.60) 19.70 (8.69)

Reverse S 27.89 (20.06) 18.07 (6.29)

Grand Average 26.91 (24.22) 20.11 (10.78)

As previously described, the ACP method always solves

the Pb-I problem first, then if there are no feasible

solutions it solves the Pb- 2 problem. However, the

algorithm would also converge to the best compromise

solution if the Pb- 2 problem were always attempted first.

Therefore, it may be possible to reduce the number of MP

problems slcd bny rcvcrsing the order of those problems.

Because the highest number of MP problems was required using

a quadratic utility function and a convex efficient frontier

with small variance, those particular problems were rerun

using the ACP method with the Pb problems reversed.
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Although the number of MP problems was reduced for the

second quadratic utility function (coefficients of 8 and 2),

the number of MP problems increased when using the third

quadratic function (coefficients of 2 and 8). These results

are presented in table 4.2.1, which lists both the number of

pairwise comparisons and the number of MP problems solved.

Of course, more extensive testing would be required before

generalizing any conclusions. Also, in actual applications,

the DM's utility function and the shape of the efficient

frontier would normally not be known.

Table 4.2.1 NUMBER OF PAIRED COMPARISONS/NUMBER OF MP

PROBLEMS SOLVED USING Pb-2 FIRST

Quadratic Utility Fct Using Pb- 1 First Using Pb-2
Convex Frontier First

(1) Coefficients 5, 5 77 / 110 79 / 114
Frontier Variance 1

(1) Coefficients 5, 5 34 / 57 41 / 55
Frontier Variance 3

(2) Coefficients 8, 2 82 / 165 83 / 87
Frontier Variance 1

(2) Coefficients 8, 2 30 / 61 30 / 35
Frontier Variance 3

(3) Coefficients 2, 8 51 / 58 50 / 93
Frontier Variance 1

(3) Coefficients 2, 8 24 / 31 25 / 49
Frontier Variance 3
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4.4.3 Average Utility Function Difference (AUFD) Between
Two Solutions Compared by the DM at Each Iteration

The Average Utility Function Difference (AUFD) between

each pair of solutions presented to the DM is another

indicator of the cognitive burden imposed upon the DM. It

is easier for the DM to specify her preference between two

solutions when there is a greater difference between the

utility function values of those two solutions. This

criterion was calculated by averaging the absolute value of

the difference between the utility function values of the

two solutions at each iteration. The average value for an

entire bicriterion problem was output by the program. The

data presented in table 4.3 represents the grand mean of

this criterion, or the average of the averages for each run.

Because the different utility function values were not

scaled, the results are separated according to the utility

function utilized by the program.
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Table 4.3 AVERAGE UTILITY FUNCTION DIFFERENCE BETWEEN TWO

SOLUTIONS COMPARED AT EACH ITERATION

Utility Function ACP Method Aksoy's Method

Frontier Shape

Linear (Cum) 96.19 115.28

Linear 55.51 113.95

Concave 39.10 83.94

Convex 216.87 * 151.10

S-Shaped 87.79 109.47

Reverse S 81.69 117.92 *

Quadratic (Cum) 9,651.30 * 6,986.27

Linear 6,799.03 * 6,548.44

Concave 4,144.07 5,409.76

Convex 16,080.47 * 6,931.55

S-Shaped 9,405.17 * 8,716.13

Reverse S 11,827.75 * 7,325.47

Fourth Power (Cum) 1.183 x 108 * 8.130 x 107

Linear 7.378 x I07 * 7.268 x 107

Concave 4.585 x 107 5.026 x i07 *

Convex 9.962 x 107 * 7.776 x 107

S-Shaped 1.900 x 108 * 1.101 x 108

Reverse S 1.823 x 108 * 9.575 x 10 7

Exponential (Cum) 0.1150 0.1390

Linear 0.0678 0.1357 *

Concave 0.0477 0.1080

Convex 0.2639 * 0.1787

S-Shaped 0.1050 0.1230

Reverse S 0.0906 0.1499 *

The preferred method for the comparison.
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The results based on this criterion were pretty evenly

split between the two methods. The ACP method has a higher

AUFD between two compared solutions when utilizing a

quadratic or a fourth power utility function. Aksoy's

branch and bound method produces better results for this

criterion when using a linear or exponential utility

function. However, the ACP method always had a higher value

when the efficient frontier was convex, and Aksoy's method

always had a higher value when the efficient frontier was

concave.

4.4.4 Average Utility Function Difference (AUFD)
Between the Ideal Solution and the Preferred Solution
at Each Iteration

This criterion compared the difference between the

utility function value for a data set's ideal solution,

where the ideal solution = [Max f1(x), Max f2(x)], to the

DM's preferred solution from each pairwise comparison. When

using a linear utility function, the following formula was

used:

UFD = j U(ideal solution) - U(preferred solution) I
I U(ideal solution) I

However, for the other utility functions, the UFD between

the ideal and preferred solutions was not scaled, because

the utility function of the ideal solution equaled zero for

the quadratic and fourth power utility functions. The AUFD

between the ideal and preferred solutions was calculated for

each problem. The average value of these averages are
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presented in table 4.4. Again, the figures are separated

according to the utility function used because most of the

data is not scaled. A smaller value for this criterion is

preferred, since the DM is trying to achieve the ideal

solutions, if possible. However, for some iterations

Aksoy's method presents the DM with an infeasible solution

which is the ideal solution of a current node. Therefore,

this criterion is biased slightly in favor of Aksoy's

method. Also, if an infeasible solution is presented and

the DM were to terminate Aksoy's method before reaching a

best compromise solution, the current incumbent would have

to serve as the current best solution, even if the node's

ideal solution were preferred to it.

The results indicate that in general, the values of

solutions presented to the DM using Aksoy's branch and bound

method are closer to the ideal solution value than those

presented to the DM using the ACP method. When the DM's

utility function is linear, the AUFD values u- :'g the ACP

method are 8.49% higher than the values using Aksoy's

method, meaning that the values of the solutions presented

to the DM are farther away from the ideal solution value.

For quadratic utility functions, the ACP values are 5.58%

higher, and ACP values are 19.72% and 19.76% higher using

fourth power and exponential utility functions,
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Table 4.4 AVERAGE UTILITY FUNCTION DIFFERENCE BETWEEN IDEAL

AND PREFERRED SOLUTIONS AT EACH ITERATION

Utility Function ACP Method Aksoy's Method

Frontier Shape

Linear (Cum) 0.2837 0.2615

Linear 0.3120 0.2737

Concave 0.2745 0.2395

Convex 0.2962 0.2885

S-Shaped 0.2630 0.2496

Reverse S 0.2727 0.2562

Quadratic (Cum) 18,316.92 17,349.15

Linear 19,510.36 18,125.80

Concave 14,433.01 11,851.75

Convex 25,542.61 24,404.85

S-Shaped 14,939.94 14,993.36

Reverse S 17,158.69 17,370.01

Fourth Power (Cum) 7.708 x 107 6.441 x 10 z

Linear 7.783 x 107 6.253 x 107 
*

Concave 4.413 x 10 7  3.278 x 10 *

Convex 1.711 x 10' 1.166 x 108 *

S-Shaped 3.623 x 107 * 4.733 x 107

Reverse S 5.616 x 10 7 * 6.287 x 107

Exponential (Cum) 0.2327 0.1943

Linear 0.2578 0.2030

Concave 0.2362 0.1759

Convex 0.2319 0.2198

S-Shaped 0.2037 0.1820

Reverse S 0.2338 0.1909

The preferred method for the comparison.
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respectively. In only two cases, when the utility function

was quadratic and the shape of the efficient frontier was S-

shaped or reverse S-shaped, was the AUFD between the ideal

and preferred solutions significantly less for the ACP

method than Aksoy's method. Also, when the DM's utility

function was linear or exponential, the standard deviation

for this criterion was nearly equal between the two methods.

However, the ACP method had more variability than Aksoy's

method when utilizing a quadratic or fourth power utility

function.

4.5 Summary of Comparative Study

This study compared the ACP method with Aksoy's branch

and bound method, based on the four criteria described in

the previous sections. The methods were compared using four

different types of utility functions to represent the DM's

preference structure, with each type of function having

three variations. The methods were applied to 25 different

sets of solutions, based on five different shapes of the

efficient frontier with five variances each.

The ACP method required fewer pairwise comparisons than

Aksoy's method for all utility functions and for all shapes

of the efficient frontier. This is an important result

since this criterion is a major indicator of cognitive

burden to the DM.

However, Aksoy's method generally performed better than

the ACP method when considering the average number of single
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objective MP problems solved. Overall, Aksoy's method

required an average of 20.11 MP problems while the ACP

method required an average of 26.91. The ACP method also

had greater variability. The ACP method did outperform

Aksoy's method on this criterion when the utility function

was linear or when the efficient frontier was linear or

concave shaped. Also, Aksoy's method would require solving

additional MP problems in actual applications if there were

any multiple solutions to the MP problems solved.

On the criterion of Average Utility Function Difference

(AUFD) between the two solutions compared by the DM at any

iteration, there was no significant difference between the

two methods. A larger value of this criterion would

indicate that the values of two solutions were farther apart

and thus it would be less difficult for the DM to specify

her preference. The ACP method resulted in a larger average

AUFD between two solutions when the utility function was

quadratic or fourth power, and Aksoy's method risulted in

larger values when the utility function was linear or

exponential. One exception was that the ACP method always

performed better than Aksoy's method when the efficient

frontier was convex, and Aksoy's always performed better

when the efficient frontier was concave.

The fourth criterion measured was the AUFD between the

ideal solution and the preferred solution at any iteration.

The values of the preferred solutions were generally closer
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to the value of the ideal solution when applying Aksoy's

method. However, this is somewhat biased because Aksoy's

method allows the DM to select the ideal solution of a

current node, which is infeasible, as a preferred solution.



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this research, an interactive method for Bicriterion

Integer Mathematical Programming (BIMP) problems was

presented. This method, called the Artificial Cutting Plane

(ACP) method, consists of four major steps:

(1) Determine initial boundaries by separately maximizing

the two objective functions. If these two problems

result in the same solution, it is optimal and the

algorithm terminates. Otherwise, set initial

boundaries and let one solution be the current

incumbent solution for comparison.

(2) Locate an Associated Frontier Nondominated Solution

(AFNS) to the incumbent solution. If there is no AFNS

in the remaining feasible area, the current incumbent

is the best compromise solution and the algorithm

terminates.

(3) Present the DM with the incumbent and its AFNS, and

update the constraints on the objective space based on

which solution is preferred by the DM.

(4) Let the preferred solution be the new incumbent, and

return to step 2.

49
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This method has a number of advantages. It is easy to

understand and implement because it exploits the relative

simplicity of bicriterion, integer programming problems. It

only requires the DM to make pairwise comparisons; that is,

the DM need not know specific tradeoff values. Also, the

algorithm only presents feasible solutions to the DM. Since

the DM need not consider any infeasible solutions, she will

not be misled as to the shape of the efficient frontier, and

she could terminate the method at any time if she is

satisfied with a current, feasible solution. Finally, the

assumptions of the algorithm are not overly restrictive,

such as requiring concave objective functions and a

quasiconcave, increasing utility function.

The ACP method was programmed in Turbo Pascal and

compared to Aksoy's branch and bound method. Both methods

were used to locate a best compromise solution from 25 data

sets of randomly generated solutions. These data sets

represented five different shapes of efficient frontiers,

each with variance of 1, 3, 5, 7 and 9. To simulate an

actual DM's preference, four different types of utility

functions were used (linear, quadratic, fourth power and

exponential), with three variations of each function.

Four evaluation criteria were used to compare the two

methods. The ACP method always required fewer interactions

with the DM, which is an important measure of the cognitive

burden to the DM. However, on the average, Aksoy's method
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required the solution of fewer single objective MP problems.

The figures for Aksoy's method represent the minimum number

of MP problems required, since additional problems would be

required if there were multiple solutions to any problem.

The ACP method did require the solution of fewer MP problems

when the utility function was linear or when the efficient

frontier was linear or concave shaped. The two methods were

quite competitive with respect to the Average Utility

Function Difference (AUFD) between the two solutions

presented to the DM at any iteration. Finally, Aksoy's

method showed better results for the AUFD between the ideal

solution and the preferred solution from each iteration.

However, this considers the iterations of Aksoy's method

when an infeasible solution is preferred by the DM.

Because the ACP method required significantly fewer

interactions with the DM than Aksoy's method, and resulted

in roughly equal values of the AUFD between two solutions

compared by the DM, I would conclude that the ":,P method

imposes less of a cognitive burden on the DM. However,

Aksoy's method usually required the solution of fewer single

objective MP problems, which means that it would require

less computation time than the ACP method. Based upon the

results of this study, the ACP method generated very

competitive results against Aksoy's branch and bound method.

The major contribution of this research is the

development of an algorithm to solve Bicriterion, Integer
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Mathematical Programming (BIMP) problems. Another

contribution is a comparative study of the ACP method with

Aksoy's branch and bound method applied to pure integer

bicriterion problems. This study illustrates a procedure

for comparative studies without an actual DM and without

actually solving one or more single objective mathematical

programming problems at each iteration.

5.2 Recommendations

There are some interesting aspects of this research

that have not yet been fully explored. Some of these

aspects are as follows:

(1) Exploring ways to reduce the number of MP problems

required by the ACP method, such as by changing the

order of the Pb problems iander certain circumstances.

(2) Conducting a comparative study using an actual

bicriterion problem with an actual DM.

(3) Extending this algorithm to mixed integer bicriterion

problems.

(2) Extending this algorithm to multiple objective

optimization.
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PROGRAM GENSOLNS;

CONST

NUM = 500; { number of solutions to generate I
MAX = 100; { range of fl will be from 0 to MAX I
STD_DEV = 9; ( standard deviation of f2(x) I
FILE_NAME: STRING[12] = 'S9.SOL'; I output file I

VAR

POINT ARRAY[I..NUM, 1..21 OF REAL;

PROCEDURE GENF1; I generates NUM random values of I
{ fl(x), between 0 and MAX

VAR

I : INTEGER;

BEGIN
RANDOMIZE;
FOR I := I TO NUM DO

POINT[I,11 := MAX * RANDOM;

END; (GEN_FI}
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PROCEDURE GENF2;
f Generates a value of f2(x) for each value
f of fl(x). f2(x) is normally distributed
( about a specified shape of the efficient )
{ frontier. Mean of f2 = -.0004(fi-50)A3 + 50 1

VAR

I, J : INTEGER;
K, RV, MEAN, B, S, Ut, U2, SIGN : REAL;
STORED: BOOLEAN;

( whether or not an RV is already stored I

BEGIN

STORED : FALSE;
FOR I 1 TO NUM DO

BEGIN
{ generate a standard Normal deviate using I
( polar Box-Muller method:
IF STORED = TRUE THEN RV := B * U2 ELSE

BEGIN
REPEAT

U := 2 * RANDOM - 1;
U2 : 2 * RANDOM - 1;
S : Ul * U1 + U2 * U2;

UNTIL S < 1;
B := SQRT((-2 * LN(S))/S);
RV B * UI;
END;

IF STORED = FALSE THEN STORED : TRUE
ELSE STORED := FALSE;

( convert standard Normal to Normal w.1 }
( specified mean and variation:
SIGN := ABS(POINT[I,1] - 50)/(POINT[I,1] - 50);
MEAN : -0.0004 * SIGN * EXP(3 *

LN(ABS(POINT[I,1] - 50))) + 50;
POINT[I,2] : RV * STDDEV + MEAN;
END;

FND; {GEN_F2)
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PROCEDURE SENDTOFILE; I1 send results to output file I

VAR

I :INTEGER;
FILEVAR :FILE OF REAL;

BEGIN

ASSIGN(FILEVAR, FILENAME);
REWRITE(FILE_VAR); f opens file named FILE_NAME I
FOR I 1= TO NUM DO

BEGIN
WRITE(FILE_VAR, POINT[I,1J);
WRITE(FILE_VAR, POINT[I,21);
END;

CLOSE(FILEVAR);

END; ISEND_TO_FILE)

BEGIN {MAIN PROGRAM)

GEN_Fl;
GEN_F2;
SEND_TO_FILE;

END.
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C******************* ******* *)

(* ARTIFICIAL CUTTING PLANE METHOD

(* WRITTEN BY: Diane Breivik Allen

(* Used to determine best compromise solution
(* after reading in a file of bicriterion solutions. *)

PROGRAM ALLEN;

USES CRT, PRINTER;

CONST
MAXDATA = 500; [ number of solutions entered 1
VSN = 0.000001;
FILENAME : STRING[12] = 'LIN5.SOL';
UTILNAME : STRING[12] = 'LINEAR(2,8)';

VAR
POINT: ARRAY[I1..MAXDATA, 1..21 OF REAL;

( holds solutions I
SOLN: BOOLEAN;

{ records whether there is a sol'n to Pb problems I
OPTIMAL: BOOLEAN;

{ true if there is a single, optimal solution I
MAXI, MAX2: REAL;

{ holds actual maximum values of fl(x) and f2(x) }
MAXPOSNI, MAXPOSN2: INTEGER;

{ holds place number of array POINT I
I where maximum values are found I

LEFT, RIGHT: INTEGER;
i holds place of current LEFT and RIGHT I
{ solutions; used in Pb problems and COMPARE I

MINI, MIN2: REAL;
( values of current constraints on fl(x) and f2(x) I

COUNT,
[ keeps track of the number of paired comparisons

COUNTSOL: INTEGER;
{ counts number of solutions generated/ solved for I

IDEALDIF,
I records value difference between preferred solu- I
{ tion and ideal solution; records value function I

FUNCDIF: ARRAY[I..MAXDATA] OF REAL;
{ difference between compared pts 1
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PROCEDURE GETSOLNS; t reads solutions from file I

VAR
FILEVAR: FILE OF REAL;
I: INTEGER;

BEGIN
ASSIGN(FILE_VAR, FILE_NAME);
RESET(FILEVAR);
FOR I := I TO MAXDATA DO

BEGIN
READ(FILE_VAR, POINT[I,I]);
READ(FILE_VAR, POINT[I,21);
END;

CLOSE(FILEVAR);
END; (GET_SOLNS)

PROCEDURE FINDMAX(J: INTEGER; VAR MAX: REAL;
VAR MAXPOSN: INTEGER);

( Will pass J = I when maximizing fl(x); J = 2 when
{ maximizing f2(x). MAXPOSN holds the position in I
f array POINT of the current maximum function value. I
f MAX holds the actual current maximum value.

VAR
I, { counter }
K: INTEGER; t index of fc't not being maximized I

BEGIN
FOR I := 2 TO MAXDATA DO

BEGIN
IF POINT[I,J] > MAX THEN

BEGIN
MAX := POINT[I,JI;
MAXPOSN := I;
END;

IF POINT[I,JI = MAX THEN { Break tie by comparing }
t value of other function. If both function I
{ values are equal, it doesn't matter
I which point is chosen for this program.

BEGIN
IF (J = 1) THEN K := 2 ELSE K := 1;
IF POINT[I,K] > POINT[MAX_POSNK] THEN
MAXPOSN := I;

END;
END; {FOR I statement I

END; {FTNDMAX}
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PROCEDURE PbRIGHT;
( Finds AFNS by swinging right of point I (LEFT) I

VAR
I: INTEGER;
B, BMAX: REAL;

BEGIN
SOLN FALSE; { initialize I
BMAX 0;
FOR I I TO MAXDATA DO

IF POINT[I,1I > POINT[LEFT,1] THEN
{ only checks points to the right I

IF POINT[I,21 > MIN2 THEN
{ only checks points that meet constraint }
BEGIN
B := (POINT[I,1] - POINT[LEFT,11) /

(POINT[LEFT,2] - POINT[I,2]);
IF B > BMAX THEN
f update BMAX and new RIGHT comparison point I
BEGIN
BMAX B;
RIGHT I;
END;

IF B = BMAX THEN f more than I point on line }
IF POINT[I,1] > POINT[RIGHT,1I THEN
( only update BMAX if the new point is
{ farthest away and thus the AEEP (arbitrary)I
BEGIN
BMAX B;
RIGHT I;
END;

SOLN := TRUE;
( a solution has been found to this Pb problem I
END; (IF LOOP I

COUNTSOL := COUNTSOL + 1;
( one MP problem is solved in this step 1

END; {PbRIGHTI
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PROCEDURE PbLEFT;
{ Finds AFNS by swinging left of point r (RIGHT) I

VAR
B, BMAX: REAL;
I: INTEGER;

BEGIN
RIGHT := LEFT;

{ The current "lefthand" point is now considered I
I the "righthand" point. This procedure is only I
I called when there are no points to the right.

SOLN FALSE; { initialize I
BMAX 0;
FOR I 1 TO MAXDATA DO

I only checks points to the left of RIGHT and I
{ points that meet current constraints ]
IF (POINTI,11 ( POINT[RIGHT,1I) AND (POINT[I,2] >
POINT[RIGHT,2]) AND (POINT[I,11 > MINI) THEN

BEGIN
B (POINT[RIGHT,2] - POINTII,21) /

(POINT[I,1 - POINT[RIGHT,1f);
IF B > BMAX THEN
f update BMAX and new LEFT comparison point 1
BEGIN
BMAX B;
LEFT I;
END;

IF B = BMAX THEN f more than I point on line I
IF POINT[I,1] < POINT[LEFT,l] THEN
BEGIN
BMAX B;
LEFT I;
END;

SOLN := TRUE;
I a solution has been found to this Pb problem I
END; [IF LOOP I

COUNTSOL := COUNTSOL + 1;
t one MP problem is solved in this step I

END; (PbLEFTI
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PROCEDURE COMPARE;
[ Compares two solutions -- Equivalent to asking DM )
i which solution is preferred. This procedure also I
{ updates the constraints and 1 and r, if necessary I

VAR
VAL_LEFT, VALRIGHT, VAL_IDEAL: REAL;

FUNCTION U(F: INTEGER):REAL; { utility function I

BEGIN

U := 2*POINT(F,11 + 8*POINT{F,21;

END;

BEGIN (COMPARE)

VALIDEAL := 2*MAXl + 8*MAX2;
COUNT := COUNT + 1;
{ counts number of paired comparisons I
VALLEFT : U(LEFT);
VALRIGHT : U(RIGHT);
IF VALLEFT >= VALRIGHT THEN
BEGIN
MIN2 := POINT[RIGHT,2];
{ value difference between preferred & ideal:
IDEALDIF[COUNT] := ABS(VALIDEAL - VALLEFT)

/ABS(VALIDEAL);
END;

IF VALRIGHT >= VALLEFT THEN
BEGIN
MINI : POINT{LEFT,l);
LEFT := RIGHT; { new "incumbent" to i,, .n Pb right I
IDEALDIFICOUNT] : ABS(VALIDEAL - VALRIGHT)

/ABS(VALIDEAL);
END;

I value difference between two solutions compared:

FUNCDIF[COUNT] := ABS(VALLEFT - VALRIGHT);

END; (COMPARE)
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PROCEDURE RESULTS; (generates output)

VAR
I,J,LIMIT: INTEGER;
TOTVDI, TOT_VDF, TOT2VDI, TOT2VDF, AVGVDI, AVG_VDF,
SDVDI, SDVDF: REAL; { used in calculation of mean & I

I std dev of value differences I
BEGIN
WRITELN(LST);
WRITELN(LST);
WRITELN(LST);
WRITELN(LST);
WRITELN(LST,' This run used data set ',FILENAME);
WRITELN(LST,' and utility function ',UTIL_NAME);
WRITELN(LST);
IF OPTIMAL THEN

BEGIN
WRITELN(LST,' This problem has a single, optimal

solution which maximizes ');
WRITELN(LST,' both objective functions. No

comparisons were necessary.
WRITELN(LST);
WRITELN(LST,' The solution to this problem is

fl(x) = ',MAXl:5:4,' and ');
WRITELN(LST,' f2(x) = ',MAX2:5:4);
END

ELSE
BEGIN
WRITELN(LST,' The solution to this problem is

fl(x) = ',POINT[RIGHT,1]:5:4);
WRITELN(LST,' and f2(x) = ',POINT(RIGHT,21:5:4);
WRITELN(LST);
WRITELN(LST,' It was found after ',COUNT,' paired

comparisons. g);

WRITELN(LST);
WRITELN(LST,' ',COUNT_SOL,' MP problems were

solved.');
END;

WRITELN(LST);
WRITELN(LST,' The ideal point was ',MAX1:5:4,' ',

MAX2:5:4);
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( calculate average value function differences and )

(standard deviations
TOTVDI 0;
TOTVDF 0;
FOR I := I TO COUNT DO

BEGIN
TOTVDI TOTVDI + IDEALDIF[I];
TOTVDF TOTVDF + FUNCDIF[IJ;
END;

AVGVDI TOTVDI/COUNT;
AVGVDF TOTVDF/COUNT;
TOT2VDI 0;
TOT2VDF 0;
FOR I := I TO COUNT DO

BEGIN
TOT2VDI TOT2VDI + SQR(IDEALDIF[I] - AVGVDI);
TOT2VDF TOT2VDF + SQR(FUNCDIF[I] - AVQVDF);
END;

IF COUNT = I THEN
BEGIN
SD_VDI 0;
SD_VDF: 0;
END

ELSE
BEGIN
SDVDI := SQRT(TOT2VDI/(COUNT-1));
SDVDF SQRT(TOT2VDF/(COUNT-1));
END;

WRITELN(LST,' The average value difference between
the most preferred point ');

WRITELN(LST,' at any iteration and the ideal point

is ', AVGVDI:5:5);
WRITELN(LST,' The standard deviation is

SD_VDI:5:5);
WRITELN(LST);
WRITELN(LST,' The average value difference between

two solutions compared by');
WRITELN(LST,' the DM at any iteration is ',

AVG_VDF:5:4);
WRITELN(LST,' The standard deviation is ',

SDVDF:5:4);
WRITELN(LST);
WRITELN('Press any key to continue');
REPEAT UNTIL KEYPRESSED;
WRITELN(LST,CHR(12)); { form feed command I

END; (RESULTS)
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BEGIN [MAIN PROGRAM)

CLRSCR;
COUNT :=0; (initialize)
COUNTSOL := 2; (to include the two initial boundary J

Isolutions generated
OPTIMAL :=FALSE;

GET_SOLNS;

MAXI : POINTI1,1]; (initialize)
MAX_POSNL : 1;
FIND...MAX(1, MAXI, MAXPOSNI); I maximize fl(x) I

MAX2 :=POINTI1l,2];
MAXPOSN2 :=1;
FIND-MAX(2, MAX2, MAX_POSN2); Imaximize f2(x) I

LEFT MAX_POSN2;
MINI POINT[MAX-POSN2,1] - VSN;
MIN2 POINT[MAX..YOSN1,21 - VSN;

IF MAXPOSNI= MAXPOSN2 THEN OPTIMAL :=TRUE;
I There is a single optimal solution.I
IF NOT OPTIMAL THEN
REPEAT

Pb_RIGHT;
IF NOT SOLN THEN PbLEFT;
IF SOLN THEN COMPARE;

UNTIL NOT SOLN;

RESULTS;

END. {MAIN PROGRAM)



APPENDIX C

AKSOY'S METHOD PROGRAM LISTING

69



70

(* AKSOY'S BRANCH AND BOUND METHOD

(* ALGORITHM BY: Yasemin Aksoy [19901

(* PROGRAM BY: Diane Breivik Allen

(* Used to determine best compromise solution based *)
(* on utility function to represent DM, after read- *)
(* ing in a file of bicriterion solutions.

C*************************1***************************** ')

PROGRAM AKSOY;

USES CRT, PRINTER;

LABEL LOOP;

CONST
MAX_DATA = 500; 1 number of solutions entered I
MAXNODE = 1000; t maximum number of nodes I
FILENAME : STRING[12] = 'BACKS9.SOL';
UTILNAME : STRING(12] = 'LINEAR(2,8)';

VAR
POINT: ARRAY[I..MAX_DATA, 1..21 OF REAL;

{ holds random solutions I
OPTIMAL, { true if there is a single, optimal sol'
EMPTY, ( true when candidate list is empty I
BETTER: BOOLEAN;

{ true if a given point is preferred t- ncumbent I
MAXI, MAX2,

{ holds actual maximum values of fl(x) and f2(x) I
Y2, { current y2 (2k - 1) }
INCUMI,
INCUM2,

( actual function values of current incumbent I
HALF: REAL;

( used to branch nodes - half distance of f2 I
MAX_POSNI, MAXPOSN2: INTEGER;

I holds place number of array POINT }
I where maximum values are found I
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COUNT,
i keeps track of the number of paired comparisons

COUNTSOL,
{ counts number of solutions generated (solved for))

K,
( current interation number; used to number nodes

INCUM,
( place number of POINT where current incumbent is I

NODE_NUM, { current node number
L: INTEGER; { used to increment in main program
CAND_LIST: ARRAY[O..MAX-NODEI OF INTEGER;

{ refer to place in NODES I
NODE: ARRAY[O..MAX_NODE, 1..41 OF REAL;
Li, U1, L2, U2: REAL;

{ values used to define current node
IDEALDIF,
FUNCDIF: ARRAYf[..MAXNODE] OF REAL;

i keep track of value difference I

PROCEDURE GETSOLNS; I reads solutions from file I

VAR
FILE_VAR: FILE OF REAL;
I: INTEGER;

BEGIN

ASSIGN(FILEVAR, FILENAME);
RESET(FILE_VAR);
FOR I := 1 TO MAXDATA DO

BEGIN
READ(FILE_VAR, POINT[I,11);
READ(FILEVAR, POINT[I,2]);
END;

CLOSE(FILEVAR);

END; (GET_SOLNS)
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PROCEDURE FINDMAX(J: INTEGER; VAR MAX: REAL;
VAR MAX POSN: INTEGER);

{ Determines initial "interval of nondominance". I
I Will pass J = I when maximizing fl(x); J = 2 when I
I maximizing f2(x). MAX_POSN holds the position -n I
{ array POINT of the current maximum function value. I
{ MAX holds the actual current maximum value.

VAR

I, I counter }
OTHER: INTEGER; { function not being maximized }

BEGIN

MAX := POINT[1,JI;
MAX_POSN := 1;
IF (J 1) THEN OTHER := 2 ELSE OTHER 1;
FOR I : 2 TO MAXDATA DO

BEGIN
IF POINT(I,Jj > MAX THEN
BEGIN
MAX := POINT[I,J];
MAX_POSN := I;
END;

IF POINT[I,J] = MAX THEN t Break tie by comparing I
{ value of other function. If both function
{ values are equal, it doesn't matter
I which point is chosen for this program.

IF POINT[I,OTHER] > POINT[MAX_POSN,OTHER] THEN
MAXPOSN := I;

END; IFOR I statement I

END; fFINDMAXI

PROCEDURE STORE_NODE(NUM: INTEGER; L1,U1,L2,U2: REAL);

BEGIN
CANDLIST[NUM] := "'JM;
NODE[NUM, 11 := Li,
NODE[NUM, 21 := Ul;
NODE[NUM, 31 := L2;
NODE[NUM, 41 := U2;
END;
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PROCEDURE GETNODE;
I remove node with smallest number from cand list }

BEGIN
NODE_NUM := -1;
REPEAT
NODENUM := NODENUM + 1;

UNTIL CANDLIST[NODE_NUMJ = NODENUM;
CANDLIST[NODENUM] := MAXDATA + 1;

( this node no longer in candidate list I
END;

PROCEDURE CHECKLIST;
{ checks candidate list to see if it's empty I

VAR
I: INTEGER;

BEGIN
EMPTY TRUE; I initialize I
FOR I 0 TO MAXDATA DO

IF CANDLIST[I] = I THEN EMPTY := FALSE;
END;

PROCEDURE COMPARE(TEST1, TEST2: REAL);
I Pass in acual function values of solution I
i to compare with incumbent. I
t Compares two solutions -- Equivalent to I
I asking DM which solution is preferred

VAR

VALTEST, VAL_INCUM, VALIDEAL: REAL;

FUNCTION U(F1, F2: REAL): REAL; t utility function I

BEGIN
U := 2*F1 + 8*F2;
END;

BEGIN {COMPARE}

BETTER := FALSE; I initialize 1
COUNT = COUNT + 1;
[ counts number of paired comparisons I
VALIDEAL U(MAX1, MAX2);
VALTEST := U(TEST1, TEST2);
VALINCUM U(INCUMI, INCUM2);
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IF VALTEST > VALINCUM THEN

BEGIN
BETTER := TRUE;
IDEALDIFtCOUNT] := ABS(VALIDEAL - VALTEST)

/ABS(VALIDEAL);

END
ELSE IDEALDIF[COUNT] := ABS(VAL IDEAL - VALINCUM)

/ABS(VALIDEAL);

FUNCDIF[COUNT] := ABS(VALTEST - VALINCUM);

END;

PROCEDURE MAKEISTNODE; I create node 2k - I I

VAR
NEWNODE, { number of node being created

PLACE, [ holds place value of current max

{ fl(x), given f2(x) > half

I : INTEGER; ( counter used to cycle through array }

MAX: REAL; I actual value of current max fl(x)

BEGIN
NEWNODE : 2*K - 1;

COUNTSOL : COUNT_SOL + 1; 1 1 solution generated I

MAX := -100; [ initialize I

FOR I := I TO MAXDATA DO I max fl for f2 > half }

BEGIN
IF POINT[I,2] >= HALF THEN

BEGIN
IF POINT[I,1] > MAX THEN

BEGIN
MAX := POINT[I,1];
PLACE := I;
END;

IF POINT[I,I1 = MAX THEN

f if fl is tied, compare f2 and choose max I

IF POINT[I,2] > POINT[PLACE,2] THEN

BEGTN
MAX := POINT[I,1];
PLACE := I;
END;

END;
END;
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Li NODE(NODENUM,iI;
{ LI(2K-1) = LI of current node }

Ul MAX;
( Ul = fl of point just found = yl (2k-i) I

L2 POINT[PLACE, 2];
( L2 = f2 of point just found = y2 (2k-i) I

U2 := NODE(NODENUM,4];
{ U2(2k-1) = U2 of current node I

IF U2 (> L2 THEN
{ points are not equal or on same horizontal line I
BEGIN
COMPARE(MAX, POINT[PLACE,2]);
{ compare new point with incumbent I
IF BETTER THEN ( update incumbent I

BEGIN
INCUMI MAX;
INCUM2 POINT[PLACE,21;
INCUM PLACE;
END;

STORENODE(NEWNODE, Li, Ut, L2, U2);
{ node only stored if it contains more than I pt }
END;

END; {MAKEISTNODEI

PROCEDURE MAKE_2NDNODE; { create node 2k 1

VAR
NEWNODE, { number of node being created
PLACE, { holds place value of current max

{ fl(x), given f2(x) > half I
I : INTEGER; { counter used to cycle through array I
MAX : REAL; { actual value of current ..>x fl(x)

BEGIN
NEWNODE 2*K;
COUNT 'OL COUNTSOL + 1; 1 one sol'n generated }
IF L2 = HALF THEN

BEGIN
LI Ul;
U: NODE[NODENUM,21;

{ U1(2k) = Ut of current node r
L2 NODEINODENUM,3];

{ L2(2k) = L2 of current node, nodenum = r I
U2 L2;
END
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ELSE
BEGIN
MAX :=-100; 1 initialize I
FOR I :=I TO MAXDATA DO
Imaximize f2 for ft >t u yl (2k-1) I
BEGIN
IF F'OINT[I1,1] > U1 THEN
BEGIN
IF POINT[I,2] > MAX THEN

BEGIN
MAX := POINT[I,21;
PLACE := I;
END;

IF' POINT1I,21 = MAX THEN
Iif f2 is tied, compare fl and choose max I
IF POINTIII,1J POINTIIPLACE,1] THEN
BEGIN
MAX :=POINT[I.,2];
PLACE :=I;
END;

END; (if loop)
END; [for loopi

Li POINT[PLACE, 11;
I LIM2) =yl(2K) or ft of point just found

Ut NODE[NODENUM,21;
I U.1(2k) = U1 of current node r

L2 NODE[NODE-NUM,31;
I L2(2k) = L2 of current node, node-num = ri

U2 MAX;
I U2C2k) = y2(2k) or f2 of point just found I

END; (ELSE)
IF Lt <> Ut THEN I points are not equal I
BEGIN
IF U2 <> HALF THEN

BEGIN ( don't compare again if y2(2k) =y2(2k-1)I
COMPARECPOINT[PLACE, 1],MAX);
IF BETTER THEN I update incumbent I
BEGIN
INCUMI POINT[PLACE,1];
INCUM2 MAX;
INCUM PLACE;
END;

END;
STORE_NODE(NEWJ4ODE, Li, U1, L2, U2);
(node only stored if it contains more than 1 pt
END;

END; (MAKE_2NDNODEI



77

PROCEDURE RESULTS; tgenerates output)

VAR
I,J.LIMIT: INTEGER;
TOTVDI, TOT_-VDF, TOT2VDI, TOT2VDF, AVGVDI, AVGVDF,
SDVDI, SDVDF: REAL;

BEGIN
WRITELNCLST);
WRITELN(LST);
WRITELN(LST);
WRITELN(LST);
WRITELN(LST,' This run of Aksoy''s method used data

set ',FILENAME);
WRITELN(LST,' and utility function ',UTIL,_NAME);
WRITELNCLST);
IF OPTIMAL THEN

BEGIN
WRITELN(LST,' This problem has a single, optimal

soution which maximizes ');
WRITELN(LST,' both objective functions. No

comparisons were necessary.'
WRITELN(LST);
WRITELN(LST,' The solution to this problem is

fl(x) =',MAXI:5:4,' and')
WRITELN(LST,' f2(x) = ,MAX2:5:4);
END

ELSE J NOT OPTIMAL I
BEGIN
WRITELN(LST,' The solution to this problem is

fl(x) =',POINTEIINCUM,11.5:4);
WRITELN(LST,' and f2(x) = ',POINT[INCUM,21:5:4);
WRITELN(LST);
WRITELN(LST,' It was found after ',COUNT,' paired

compar isons.
WRITELN(LST);
WRITELNCLST,' ',COUNT_SOL,' solutions were

considered. ');

END;
WRITELN(LST);
WRITELN(LST,' The ideal point was ',MAXI:5:4,' '

MAX2: 5:4);
WRITELN(LST);
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{ calculate average value function differences I
I and standard deviations
TOT_VDI 0;
TOTVDF 0;
FOR I := 1 TO COUNT DO

BEGIN
TOTVDI TOTVDI + IDEALDIF[I];
TOTVDF TOTVDF + FUNCDIF[I1;
END;

AVGVDI TOTVDI/COUNT;
AVGVDF TOTVDF/COUNT;
TOT2VDI 0;
TOT2VDF 0;
FOR I := 1 TO COUNT DO

BEGIN
TOT2VDI TOT2VDI + SQR(IDEALDIF[I] - AVG_VDI);
TOT2VDF TOT2VDF + SQR(FUNCDIF[I - AVGVDF);
END;

SDVDI = SQRT(TOT2VDI/(COUNT-I));
SD_VDF SQRT(TOT2VDF/(COUNT-i));
WRITELN(LST,' The average value difference between

the most preferred point ');
WRITELN(LST,' at any iteration and the ideal point

is ', AVGVDI:5:5);
WRITELN(LST,' The standard deviation is ',

SD_VDI:5:5);
WRITELN(LST);
WRITELN(LST,' The average value difference between

two solutions compared by');
WRITELN(LST,' the DM at any iteration is ',

AVGVDF:5:4);
WRITELN(LST,' The standard deviation is ',

SDVDF:5:4);
WRITELN(LST);
WRITELN('Press RETURN to continue');
READLN;
WRITELN(LST, CHR(12)); { send paper to next page I

END; [RESULTS)
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BEGIN (MAIN PROGRAM)

CLRSCR;
K : 0; { initialize I
COUNT := 0; 1 initialize I
COUNT_SOL := 2; { include the 2 initial boundary solns I
OPTIMAL := FALSE;
FOR L := I TO MAXNODE DO

CAND_LIST[L] := -1; J meaningless # to signify empty I

GET_SOLNS;

FINDMAX(l, MAXI, MAX_POSNI);
FIND_MAX(2, MAX2, MAX_POSN2);
STORE_NODE(O, POINT[MAX_POSN2,1i,

MAXI, POINT[MAX_POSNI,21, MAX2);
{NODENUM, LI, Ul, L2, U2 I

INCUMI POINT[MAXPOSN1,11; { initialize I
INCUM2 POINT[MAXPOSN1,21;
INCUM := MAXPOSNI;
COMPARE(POINT[MAX_POSN2,11,POINT[MAX_POSN2,2]);
{ find true incumbent I
IF BETTER THEN

BEGIN
INCUMI POINT[MAXPOSN2,11;
INCUM2 POINT[MAXPOSN2,2];
INCUM MAXPOSN2;
END;

IF MAXPOSNI = MAXPOSN2 THEN OPTIMAL := TRUE;
IF NOT OPTIMAL THEN

BEGIN

LOOP: f Returns to here from goto .atements I
CHECK_LIST; I Check candidate list; if not empty, I

{ select node with smallest number. If I
{ empty, return EMPTY = TRUE

IF EMPTY THEN RESULTS ELSE { if empty, current
(incumbent is output and program ends
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BEGIN t continue if not empty I
GET_NODE;
IF NOT ((INCUMI <= NODE(NODENUM,2]) AND
(INCUM2 <= NODE[NODE_NUM,41))
THEN ( ideal point of node does not dominate

{ incumbent solution
BEGIN { compare ideal pt of node with incumbent I
COMPARE(NODE(NODE_NUM,21,NODE[NODENUM,4]);
IF NOT BETTER THEN GOTO LOOP;
END;

K - K + 1;
HALF := (NODE[NODE_NUM,31 + NODE[NODE_NUM,41)/2;
MAKE_ISTNODE;
MAKE_2NDNODE;
GOTO LOOP;
END; ( NOT EMPTY I

END; I NOT OPTIMAL I

END.


