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MIXING REGIMBS IN A SPATIALLY CONFINED, TWO-DIMENSIONAL,
SUPERSONIC SHEAR LAYER

Introduction

The sitccessful design of propulsive engines for hypersonic vehicles requires accurate pre-

diction of the mixing and combustion efficiency in high-speed flows. In order to achieve

this predictive capability, we need an improved understanding of the dominant processes.

One way to obtain this understanding when there are many complex interacting physical

processes and the interactions are highly nonlinear is to use numerical methods to simu-

late the flow, a use to which simulations are well suited in the sense that they can extend

the theoretical analyses of idealized systems and the processes evaluated can usually be

included or not in a controlled manner. However, now we are now faced with the situation

where the simulations are not only being used to study the fundamental processes, but are

also being used to evaluate and design supersonic and hypersonic propulsion systems, even

thought there remain a number of questions concerning the simulations and the effects of

various physical processes that are not completely understood. In this paper, we address

certain fundamental physical questions about the effects of viscosity, molecular diffusion,

and compressibility through the evolution of a high-speed mixing layer.

Since the Brown and Roshkol observations, many experimental studies have confirmed

tiWe existence of large-scale coherent structures in mixing layers for both high and low

Reynolds numbers. These structures arise initially from the Kelvin-Helmholtz instabilities

and they move downstream within the layer with a convective velocity UC. Bogdanoff2

and Roshko and Papamoshou3 have given approximations of this velocity based on the

assumption that there is a stagnation point in the center of each coherent structure and

that the flow comes to rest isentropically at the stagnation point. When the ratio of specific

heats -f is identical for each gas, Roshko and Papamoshou conclude that the relative Mach

numbers, MCI and Mr2, between the structures and each stream must be equal. That is,

MCI = M 2 =_-M, with MCI =- a and MC = U 2  (1)

where a, and a2 are the speeds of sound for the streams 1 and 2, respectively. This analysis

allows us to evaluate UC,

UC = (aU 2 + a2UI) (2)(a + a2)

The quantities MC and U, are useful for characterizing the flow properties and will be used

throughout this paper.

There has been a large body of experimental work describing these structures since

the early work of Brown and Roshko. Papamoschou and Roshko3 showed the effects of
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Cu1;•resilbility oil the growth of tile shear layer, and recently, Dimotakis4 summarized

experiments on the entrainment process and structure in subsonic shear layers. Other

important recent experiments aimed at isolating the effects of compressibility on the flow

structures have been performed by Clemens et al.', who showed that there did not appear

to be any organized structures forming for Al, more than 0.6, and Samimy and Elliot 6

who showed that the mixing level decreases when M, increases. Whereas the experiments

by Dahm et al.' have focused on the structure of mixing in incompressible liquid jets, the

small-scale structures that they see might be a general property of fully developed mixing

layers.

There are two different theoretical approaches to studying the development of a mixing

layer between two parallel isobaric streams with differing velocities. One is to consider the

spatially evolving mixing layer, which considers the problem in the laboratory frame of

reference and observes the growth of the shear layer from the initial point of interaction

up to the outflow boundary. The second approach is the temporally evolving mixing layer,

which is an attempt to consider the system in a frame of reference moving with the large-

scale structures considers the boundary conditions as periodic. The spatially evolving

problem is in fact the more physically realistic problem although it has the difficultly of

requiring the specification of inflow and outflow boundary conditions.

There have been a number of theoretical stability analyses and concommitant numer-

ical simulations of both spatially and temporally evolving shear layers. Metcalfe et al.'

focussed on the incompressible mixing layer. Ragab and Wu9 and Jackson and Grosch'l

have shown that for high Me. there are several unstable modes and three-dimensional modes

become important. Numerical simulations have used spectral and vortex methods, mostly

for incompressible flows, and finite-difference and finite-volume methods for incompressible

and incompressible flows. Using spectral methods, Riley and Metcalfe"1 have performed

low Reynolds number direct numerical simulations of incompressible flows, and McMurtry

et al."2 have considered the effects of heat-release on the large-scale structures. Sandham

and Reynolds13 have considered two-dimensional and three-dimensional stability analysis

and compared these to simulations, as have Lele"4 and Ragab and Sheen.'" Lele has con-

sidered both temporally and spatially evolving flows where the same species is on both

sides of the mixing layer. Using vortex-dynamics methods, Soteriou et al."6 considered the

effects of density gradients. Ragab and Sheen"5 used a high-order finite-volume method

to compute the growth rates of unstable modes of a supersonic shear layer, and they have
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.compared the-se to the predictions of linear stability theory. In addition, they have com -

pared the results of large-eddy simulations to direct numerical simulations and examined

the effects of the numerical diffusion on the spectrum. Guirguis et al."7 and Farouk et

al."' have studied spatially evolving mixing layers for equal pressure, underexpanded, and

overexpanded systems.

In this paper, we focus on the mixing of streams of hydrogen and oxygen, so that we

are studying the features of a high-speed, compressible shear between two gases of very

different densities and thermophysical properties. These simulations use correct, unscaled

values of the physical diffusion parameters such as viscosity, thermal conduction, and molec-

ular diffusion, and thus allow us to evaluate the effects of these on a variety of diagnostic

parameters of the flow. For example, we have parametrically varied the size or presence

of various diffusion effects, the compressibility through the convective Mach number, and

the absolute size of the system. To eliminate some of the physical complexity inherent in

simulating inflow and outflow boundary conditions, we confine this study to a bounded,

temporally evolving mixing layer. With this approach, we can examine the growth and de-

cay of the mixing process and we can also point out the effects of various physical processes

and approximations.

Physical and Numerical Model

General Formulation

We solve the time-dependent, two-dimensional, compressible, Navier-Stokes equations for a

multispecies gas, including the effects of molecular diffusion and thermal conduction. The

balance equations for the densities, momentum, and energy are

Op
- -V.(pv), (3)

On,
-= -V(niv) - V (nivdi) i = 1,..., N , (4)

0pv
& = -V-(pvv)-V-P, (5)

OE(6•- = -V-(Ev) - V"(v. P)- V-q, (6)

where n, is the number density for the species i. The mass fraction of species i is Y,, defined

by
n. pY (7)

Wi'
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where 14; is the molecular weight, and the total number density is

N = = (8)
I i

We assume an ideal-gas equation of state,

R = p--T, (9)
P

where the molecular weight of the mixture is given by

Yi (10)
W~W,"

The auxiliary equation for pressure P and heat conductive flux q are

P P(N, T) I + "tp.(V v) I - pml(Vv) + (Vv)TI (II)

and

q = -A,\VT + pE hiYviv • (12)

The specific enthalpy h, can be written as

hi = 1 C'p. dT + h,, , (13)

where Cp. and hi, are the specific heat at constant pressure and heat of formation of species

i, respectively. We neglect the radiative fluxes and thp Soret and Dufour effects (thermal

diffusion), which can be justified because radiative fluxes for hydrogen gases are negligible

and the temperature gradients remain small.

Diffusion Model

The diffusion velocities vL, are solutions of the following system of equations (see, for

example, Oran and Boris 19 ),

where, for each species i, X, is the mole fraction, vd, the diffusion velocity, and D,, the

diffusivity of the species i into the species j.

These diffusion velocities must obey to the condition of mass conservation such that

Sv& = 0. (15)
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-lere, we apl)roximate the solution of the system of eqtiations (14) and (15) by a gradient

law, as proposed by Coffee and Heimerl,2 °

_ , 1-Y,
-d, -= D"VX, Dm= (16)

Then we correct these velocities in order to insure the mass conservation, equation (15),

VCY;d (17)

and

Vdi= i'd +v, . (18)

This approximation becomes rigorously correct in the binary case.

The mixture thermal conductivity A. and viscosity ji, are computed from the con-

ductivity A, and molecular viscosity pi of the individual gases. The {jA} , {ip}, and binary

diffusion coefficients {Dj, are expressed as polynomial functions of the temperature.19

Numerical Integration

The convection is solved using a standard Flux-Corrected Transport (FCT) algorithm,

LCPFCT.2" This is a nonlinear, monotone algorithm that is fourth-order accurate in phase.

The integration is carried out by a two-step predictor-corrector procedure with, successively,

a diffusive and anti-diffusive step. The first step modifies the linear properties of a high-

order algorithm by adding diffusion during convective transport to prevent dispersive ripples

from arising. The added diffusion is removed in an antidiffusion step. The result is that

the calculations maintain the high order of accuracy without requiring artificial viscosity to

stabilize them. The algorithm has been tested and used extensively in the last fifteen years

(see, for example, bibliography Reference 19) to predict a wide variety of flows. Recently it

has been used to investigate unstable spatially evolving supersonic flows. 1 7 18 and compared

computations to the results of comparisons of growth rates of linear instabilities"' to those

predicted by linear stability analyses.' 3

The physical diffusion terms are solved in conservative finite-volume form by second-

order centered algorithms.22  More specifically, we use the values of the diffusive fluxes

at the interfaces between the grid nodes. Their expressions are obtained from first-order

centered approximations of the primary variables."9 An overall global timestep At is chosen

by evaluating a stability criterion for each type of term and then selecting the minimum of
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these for At. I)uring a computational tinlestep At, each process is integrated for the tin)e

interval At miing the most recent values of the variables. 9

The Model Problems

Here. we define two problems. The first is a one-dimensional problem used to obtain self-

consistent initial conditions across the shear layer. The solution of this problem provides

self-consistent initial conditions for the second problem, the two-dimensional shear layer.

The One-Dimensional Problem

Starting from a step profile for each variable in the y direction, we compute the evolution of

a mixing layer between two gases by solving the full set of equations (3) - (6), and assuming

that there are no variations along the x direction,

- 0. (19)0x

Here W represents p, pv, {In}, and E. The boundaries at the bottom and the top of the

domain are open, which means that 8 p/Oi =0 when y = ±H. These boundary conditions

are used to avoid the reflection of the transient waves generated as the singular initial

condition equilibrates. The solution shows how the pressure equilibrates in the vertical

direction and thus provides self-consistent initial conditions for the fluid and individual

species profiles.

The Two-Dimensional Problem

The two-dimensional computational domain, shown schematically in Figure 1, consists of

a rectangle of length L and height H = L/2. The left and right boundaries are periodic,

which means that Vp(O,y) = ýo(L,y), and the bottom and top boundaries are slip wall

conditions, pvl, = 0 and 090/Oi = 0 where o = {p, pv., {n,}, E} at y = 0 and y = H. The

computational cell size is always kept uniform in the x and y directions and are in the range

Ax = Ay = (2.5 - 10) x 10-5 m, so that the timesteps are in the range (2 - 8) X 10-3 /is.

A typical computation described below requires about 10,000 timesteps. For each case, we

evaluated the effects of viscosity and diffusion by comparing the solutions of the complete

set of equations (3) - (6) (referred to as NS+) that contain heat conduction, molecular

diffusion, convection, and viscosity, to the Euler solutions obtained from solving only the

convective transport equations.
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Mixing and Plow Diagnostics

A well known feature of homogenous incompressible turbulence is the energy cascade from

the large scales to the small scales (Taylor or Kolmogorov) where the convective energy is

converted to internal energy. In three dimensions, this transfer is accomplished by stretching

of the vorticity field, w = V x v, a property that appears from the term in the vorticity

equations of the form (w . V)v. For two-dimensions, the vorticity is no longer subject to

this effect and becomes a conservative variable. The early works of Batchelor2" and more

recently Lesieur24 showed that for the two-dimensional case, we may use the enstrophy, w2 ,

to describe the flow. This variable has properties similar to vorticity for three-dimensional

turbulence, that is, there is a cascade process, independent of the viscosity, to higher

wavenumbers where the enstrophy is dissipated.

In order to examine the global intensity of the flow, we define a parameter M, such
that

t a " = ( I f(2 0 )<• = W2 >)

where < > indicates the average taken on the computational domain. In the particular case

of an incompressible, homogeneous flow, Batchelor showed that M, is a linear function of

time.

The mixing of the different gases can be described in terms of the area S' of the

computational domain where the fraction of both gases is neither exactly zero nor exactly

one. We can estimate the value of S from the mass fraction, Y,, or mole fraction, X,. For

example, for a binary mixture,

S4JfJ Y YY2 dxdy= 4If Y, (1-Y,)dxdy (21)

~ =- 4 J X ,X 2dzdy = 4 JJ X1-XI )dxdy, (22)

where Y(1 - Y) and X(1 - X) reach a maximum value when the mixture is completely

mixed, that is, when the mass fractions YV = Y2 = 0.5 or the mole fractions X, = X2 = 0.5.

We consider both spatial averages of these quantites over the computational domain and

the instantaneous contours. It is useful to define two global paramaters, Mx and My, such

that
SMY = T(23)

where Stot is the total surface of the entire computational domain, L x H. These parameters

evolve between the values 0 and 1.
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We can dcterlinei the final composition of the nlixture obtained from two strteans (if

species I and 2 when the time elapsed is long enough to obtain a homogeneous scalar field.

The two-dimensional domain does not have any external inflow or outflow and therefore the

integrated value of a conservative variable f f ýodx dy is constant. Applying this condition

for nj and n2 gives the final values n' and n•',

no = no and n' = n (24)

which gives

X' = X2' = 0.5 and Yj' = (W-+W ) Y W2
IW+ 2  - (W+ 2  (25)

This allows us to assess the theoretical limits of Mý' and My',

m = 1 and M; = 4 WI W2 (26)X(WI + W2)2 '(6

where for the hydrogen and oxygen mixture considered, Mc* = 0.22. Finally, the quantity

Mvy is defined as

Mvy = < VYH2 VYH2 >, (27)

which is related to the dissipation of scalar energy in the computational domain.

The One-Dimensional Problem

When there is only one species present, there is a closed-form similarity solution that de-

scribes the steady-state one-dimensional, incompressible solution across the shear layer.

Thus a two-dimensional computation may be intialized with this solution for a finite-

thickness shear layer. Because such a closed-form initialization does not exist for a com-

pressible, multispecies problem, it was necessary to develop a procedure for finding finite-

thickness, one-dimensional profiles for multispecies problems.

One-Dimensional Validation

First consider a one-dimensional shear layer in the incompressible flow regime (that is,

the low Mach number regime), in which the are two streams with the same molecular

weight, denoted 1 and 2 . This configuration may be described by a self-similar solution

that can be obtained by solving equations (3) - (5) for the mass, the number densities,

and the momentum. Moreover, under the previous assumption of constant density and

8



with equation (19), tile condition of zero gradient in the longitudinal direction, the mass

conservation equation is reduced to v, = 0. Then equations (4) and (5) can be written

& _. 1 )2 V , d .2y .( 2 8 )
at "-- a-t-- ,

where v = lzm/p. We solve this equation by introducing a similarity variable,

Y- (29)

which leads to

(v-ui) = "A _ e-"d?1, Y2 = -_f e- 2 d7 (30)
(U2 -U,) x/rJ-oo. 'r 0

where Sc = I/D12. This expression allows us to compute the evolution of the parameter

M, as a function of time. The final result is

M, _ (vt) 4 (31)

Figures 2a and 2b shows the numerically computed, instantaneous, one-dimensional

profiles of niH2 and v., for a problem in which Mc = 0.01. The initial profiles of the

variables are step functions across the shear line and the computati ,ns show that in time,

the solutions approach a steady value. Figures 2c and d, which compare the analytical

solution to these profiles collapsed as a function of 77, shows that the numerical solution is

self-similar and that there is reasonable agreement between the incompressible theory and

the computed results for a low-velocity, compressible flow problem.

One-Dimensional Mixing Layer

Now consider a one-dimensional problem where one stream is molecular hydrogen and the

other is molecular oxygen. The problem is initialized with a discontinuity in all the physical

variables between the two streams of opposite Mach number, except for the temperature,

which is constant across the streams. We are interested in obtaining the self-consistent

steady-state solution to use to initialize the two-dimensional problem.

Figure 3, which shows several instantaneous profiles of nH2 and v" as functions of y and

r1 (equation (29)) for a case where M, = 0.6, shows that the solution is still self-similar, as

is the case for the incompressible one-dimensional shear layer. This self-similarity is charac-

teristic of flows such as mixing layers that do not have any particular length scale. 3 Fig-

ure 4 shows how this mixing layer develops in time fr the parameters, YH2 (1 - YH,),

9



Xjj(1 - X1,,), AMx, and Aly. When the interface decays, AI.V remains at its maximum

value in the well mixed regions while AIr falls as quickly as YH.. The temporal evolution

of < Aix > is monotonic, but < My > increases to a maximum and then decreases when

the interface decays. Note that MA, (not shown here) evolves as t1/4 as predicted by the

analyt ical solution, equation (31) and, as the interface decays, the evolution of M, becomes

linear.

The Two-Dimensional Problem

In the two-dimensional studies of a mixing layer that develops between a stream of hydrogen

and oxygen at the same initial pressure and temperature, the initial unperturbed conditions

are taken from the one-dimensional calculations. The instability is initiated by perturbing

the finite-thickness layer by superimposing a set of harmonic and subbarmonic disturbances

on the initial pressure field PO,

P = Pox [1+acos(flx)+O.5acosMIx)] (32)

with a = 0.05 exp(-y 2 /62o), where 60 is the initial thickness of the layer and Q = 27r/A

specifies the harmonic perturbation. A perturbation similar to this for intializing an in-

compressible mixing layer was used by Metcalfe et al.8 In the calculations presented below,

we have chosen 60 and the instability wavelength such that 6o1L = 1/50 and A/L = 1/4.

Dimensionless Numbers and Characteristic Scales

A significant feature of this flow is the wide range of its energy spectrum. The largest scales

may be characterized by a length I and a velocity U, and the smallest dissipative scales may

be characterized by a length q and velocity u. If we assume that there is an equilibrium

between the convection and the dissipation of energy, we can compare the large and small

scales. This assumption means that the characteristic time t, of the transport of energy by

the large eddies is equal to the times t, and td of its dissipation by viscosity or diffusion,

G = G = td, where
I

tc =(33)

and
U 2 1

t, = - and td = . (34)ft (Y

Here ft is the dissipation of kinetic energy, k =. < U2 >, and Ey is the dissipation of

scalar energy, ½ < Y 12 >, which may be written as

t =-< S >= 1 (35)p p'r2

10



and
D

D= < VY'VY' > = (36)

where i1y is the mixing scale, S is the tensor of deformation,

2
S = _(V. v) I - I(Vv) + (Vv)Tj3

and r = q/u. Note that the prime indicates fluctuation of the variable.

Defining the Kolmogorov scale t7, as that scale where the molecular viscosity transforms

the kinetic energy into heat (that is, the scale at which the Reynolds number is of order

unity, Rek = pilk u/p ,- 1), gives

Tk = Re- (37)

where Re = plU/p is the Reynolds number of the large scale.

In the same way, the equilibrium condition allows us to evaluate n/y,

fly = p.½, (38)

where P. is the Peclet number such that P, = I U/D = S, Re and Sc = 1s/pD is the

Schmidt number. When Sc = 1, W is the Taylor scale.

Tables 1 and 2 show relevant coefficients, dimensionless numbers, and characteristic

scales for the hydrogen-oxygen problem we are considering for a temperature of 500 K

and static pressure of 3.5 x 10i Pa. The Prandtl, Schmidt, and Lewis numbers are cal-

culated from Pr = A.Cp/A, Sc = IL/pD, Le = Sc/Pr, respectively. The values of I and

U characterizing the largest scales are taken as I -, H where H is the system size and

U - (U2 - U1) = M.(al + a2), respectively. The Reynolds number of the large scale is then

Re = pUl/l -; [piall/p + p2a2/1421MH. The Kolmogorov scale 17k and mixing scale W.

are evaluated using equations (37) and (38).

Discussion and Analysis of Mixing Regimes

Figure 5 shows the evolution of four global parameters, the quantities Mx, My, M.,, and

MVy evaluated during the course of a two-dimensional calculation for the base case of

convective Mach number M, = 0.6 for the full NS+ calculation. They are shown as a

function of a dimensionless time defined by dividing the real time t by an estimate to of

the convective time scale t•, where

H

= Mc(al + a2) = H/AU. (39)
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Note that we begin the computation with a thickness 6, such that 6,/H = 1/25, and we

keep this ratio constant for all of the computations. Therefore. the convective time scales

based on either 6, or H are equivalent.

The shapes of the curves of Mx and Aty are similar to those obtained in the one-

dimensional calculation, but the mixing is enhanced by at least two orders of magnitude

due to convection. The My and Mvy show that there are three stages in the mixing

procedure. In the initial growth stage, a laminar growth stage extending to about t/to - 2,

the large structures grow as a consequence of the initial perturbation on the flowfield. The

large vortices roll up and grow almost independently of each other. In the first mixing

stage extending to about t/to - 5, which we call the convective-mixing stage, the vortices

begin to interact with each other and convective mixing dominates. Mixing occurs as these

structures merge and grow and the interfaces between the oxygen and hydrogen stretch

and deform. The generation of stretched interfaces corresponds to a sharp growth in the

intensity of the scalar dissipation Mvy. Finally, there is the stage that occurs when the

widths of the interfaces reach the order of magnitude of ry and they are destroyed by

molecular diffusion. The Mvy drops very quickly, My relaxes to its asymptotic value

(0.22) shown in equation (26), and M•, linearly increases, as predicted for homogeneous

turbulence.

Figure 6 shows a series of instantaneous profiles of the mole fraction of hydrogen, YH2,

during the evolution of the mixing layer. In particular, we note the apparent change from a

very regular structure to the extremely mixed structure at the end of the computation. At

time t4 in Figure 6, we see the shear layer expanding towards the lighter fluid on the bottom,

an effect noted in the subsonic computations."6 In most previous subsonic, two-dimensional

shear-layer computations and most short-duration three-dimensional simulations, we have

not seen the breakdown to the diffusive-mixing regime, but only continued merging and

growth of the initial structure. In this highly compressible, supersonic shear flow with wall

boundaries, we are able to see this regime due to the perturbations on the large structure

causing intense fluctuations and subsequent breakdown. This was also noted in spatially

evolving simulations of highly compressible flows.' 7, 8

The Effects of Viscosity and Molecular Diffusion

One way to understand the effects of viscosity and diffusion is by considering diagnostics

such as those shown in Figure 7 which compares the evolution of My when the Reynolds

12



* and PImlet ntbers are finite (NS+ computation) or quasi-infinite (Euler computatio i).

The results shown are for a case with for MQ = 0.6. FM'om this computation and similar tests

using other parameters, we found that the transition between the two mixing stages does

not depend on whether or not we include the viscosity or the diffusion and this transition

occurs at the same dimensionless time, indicating that it is only a function of the large-scale

convection. There is a significant difference in the diffusive-mixing regime and the full NS+

calculation reaches the final homogeneous state much faster than the inviscid calculation.

The local scalar energy dissipation during the diffusive-mixing stage, shown in Figure 8,

confirms the existence the layer-like structure of these mixing interfaces and shows that the

viscosity and diffusion control mixing in this regime. This kind of observation has been

made previously for scalar measurements in incompressible jets.7

In order to isolate and examine the effects of molecular diffusion, we compare three

NS+ calculations at the same Reynolds number but with different values of Peclet number.

The molecular diffusion is turned off completely, the actual, physical values of diffusion

coefficients were used (as in the previous computations), or the physical values were multi-

plied by two. The result of the comparison is presented in Figure 9. The first observation is

that the enstrophy parameter is not much affected by varying the diffusion when viscosity

is kept constant. There are some phase differences, but the trends are the same. In the

laminar stage, the molecular mixing is affected strongly by the diffusion and increases as

the diffusion is increased. The initial conditions of the convective-mixing stage are thus

determined by the result at the end of the laminar stage, but the convective-mixing process

itself is so strong that it erases the memory of the initial condition. However, the final

stage is the one in which diffusion is most important and determines the dissipation rate.

It helps now to consider two parameters, the mean length of an interface in the domain,

1,, and mean width of a structure in the domain, 6,, which we can estimate from

Mx =so-t (40)

and

biMvy 6 , (41)

which assumes that VYH, - 1/6g. Figure 10 shows how the quantities 1, and 6, behave as

the diffusion coefficients are varied and so provide more understanding of the differences in

the diffusion-coefficient comparisons. Note that 6, does not change much until the diffusive-

mixing stage where there is a large increase in width of the structure for the highest diffusion
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ctfricieit. I )u'ing tile diffusive mixing stage, the destniction of tile large scales is controlled

by the amount of molecular diffusion, determined by the diffusion coefficient.

The Effect of Compressibility

We have performed computations for a range of convective Mach numbers and compared

the evolution of the global parameters as a function of dimensionless time, t/to. Here the

difficulty is to compare the mixing efficiency in a common reference frame for the different

cases because the spatial growth of the mixing layer is a function of both the temporal

growth of the structures and their mean convective speed, U,. If we assume that the slow

stream always has the same velocity Ul and that Ul can be set to zero, we note from

equations (1) and (2) that

M,=- and to0 ,, (42)
a,

Thus for each of the diagnostics, which we designate here as F, where F = M,, MY,, Mx,

and My,

( (I (43)

Figure 11 shows these diagnostics for several convective Mach number as a function

of t/to. For the two lowest values of M,, 0.3 and 0.6, the mixing efficiencies are very

close. As M, increases, there is a delay in the onset of the convective-mixing regime, as

shown in My and Mvy. This can be understood by noting that an increase in Mc changes

the amplification rates of the first excited modes'0 . A further increase in M, results in a

decrease in the efficiency of mixing, as shown for 0.9 and especially notable for 1.2. The

growth of Mx is reduced by over a factor of two by increasing Mc from 0.6 to 1.2, which

shows a well known trend of compressibility. The experimental reduction factor is even

larger for a supersonic single-species mixing layer, almost a factor of four.2'3 Previous

numerical results 13,14 that used the thickness of the vorticity to characterize the mixing

efficiency (a parameter which is similar to Mx), show the same trends. Figure 12, the

instantaneous pressure and YH2 (1 - YH2) for the computation with M, = 1.2, shows the

presence of shocks in the thin vortex layer. At these higher values of Me, the structure not

only shows the main mode, but also the growth of high-frequency secondary modes.9 This

behavior is characteristic of supersonic convective Mach numbers and explains many of the

small structures seen in the spatial simulations.1'7 " 8
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The Effect of (Con litifig Bounlaries

We first consider the effects of the finite size and periodicity of the computational domain

by comparing computations for the same value of Mc and Ax, but with varying values of

L (and therefore H). The right and left boundaries of the computations are still periodic,

but the absolute. size of the perturbing wavelength is the same, so that there are more

wavelengths in the larger domain and fewer in the smaller. We now examine to what

extent we can say that the smaller computation is a "piece" of the larger one.

The boundary condition seems to affect the convective mixing more than the diffusive

mixing. Figure 13 shows the instantaneous scalar dissipation in the diffusive-mixing regime

two cases, one with L = 1 cm and the second with L = 0.5 cm. The width and density of

the structures are very similar. We also find that the absolute time to transition between

the diffusive-mixing and convective-mixing stages increases with the size of the system, but

normalized time in terms of to does not vary.

However, there are effects of the confinement and periodicity on the flow that can be

observed in the very late evolution of the flow when the mixture is almost homogeneous.

Figure 14 shows that the periodicity and boundaries force the flow at acoustic frequencies

typical of a confined chamber, shown in the graph of M,. The instantaneous contours

marked 1, 2, and 3 are taken from those time marked similarly on the graph and show

the flow at different time in its periodicity. Increased M. indicates increased dissipation of

large vortices by viscosity. The fluctuations in M, superimposed on this general trend of

increasing value, indicate oscillations between two quasi-stable states. One state is one large

vortex, as shown in the Figure 16-1. This structure is broken up and the system reaches

another stable state of several smaller vortices through the effects of the boundaries, as

shown in Figure 16-3. The acoustic effects of boundaries for fast, subsonic, confined flows

has been discussed extensively.26

The Dissipation Scale in the Diffusive-Mixing Regime

Because there are several dissipative processes present (viscosity, molecular diffusion, ther-

mal conduction), it is important to determine what scales have to be resolved to simulate

molecular mixing. To address this, we performed a series of computations where we suc-

cessivly decreased the minimum dissipation scales computed by increasing the numerical

resolution. The smallest scale present can be estimated as three times Ax for algorithms

such as FCT. Therefore, in a series of computations we kept the value of M, and L constant
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and changeI the, wim, ber of computational cells in each direction while keeping the initial

thickness 6, the same.

The global mixing quantities showed that the durations of the laminar and mixing

regimes do not change as the resolution is changed. In particular, we observed that the

transition between the laminar growth and convective-mixing regime always occurred at

the same normalized time. Some differences were observed for the two measurements of

the mixing intensity, M, and Mvy, in that the level of mixing is underestimated when the

resolution is too low. However, for resolution on the order of ?fr and up to factors of at least

thirty greater than qk, the mixing diagnostics Mx and My converge quickly and show no

significant changes as resolution increases: the mixing efficiency is computed to within 10%

of what would be obtained by resolving every scale down to qk. These tests are discussed

in more depth in detailed discussions of the numerical issues in the computations. 29 This

numerical result for two-dimensional mixig tends to confirm experimental observations3 0 '31

indicating that the thickness of mixing layers in turbulent flows are on the order of the

Taylor scale, that is, n,.

Summary and Conclusion

In this paper, we examined the evolution of a two-dimensional, supersonic, confined shear

layer with molecular hydrogen gas on one side and molecular oxygen gas on the other. The

purpose of these simulations was to examine the importance of various diffusion processes

(viscosity, thermal conduction, and molecular diffusion) on the mixing process, and to

determine the extent to which compressibility affects the development of the layer. To look

at these questions, we solved the full set of time-dependent Navier-Stokes equations with

thermal conduction and molecular diffusion in addition to convection and viscosity.

The first problem encountered was how to initialize such a two-dimensional shear

layer. Whereas there is an analytic similarity solution that gives the initial conditions for

an incompressible shear layer with the same material on either side, there was no such

solution for the highly compressible shear layer between different gases. Our approach

was to solve an equivalent one-dimensional problem that was allowed to go to steady state

and use this to initialize the two-dimensional problem. In a series of such one-dimensional

tests, we first considered a low-velocity shear layer between the same materials and for

which there was an initial discontinuity in the density and velocity, but the pressure and

temperature were constant across the shear layer. As this problem evolved, it reached
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a steatly level corrsponding to a similarity solution describing the system variables, a

property previously noted by Sandham and Reynolds13 for the case of a shear layer with

the same material in both streams. Then the initial conditions for the two-dimensional

problem were obtained by extending this approach to high-velocity flows between different

streams of materials, including the effects of molecular diffusion and thermal conduction. A

new result of this work is that these conditions also produce converged, self-similar solutions

for finite-thickness compressible shear layers between different density gases.

A notable result of the simulations of two-dimensional, supersonic flow (M, = 0.6 and

higher) was the distinct appearance of three very different regimes in the flow:

1. The initially unstable laminar stage in which the structures grow as a consequence of

the initial perturbation, but appear very ordered.

2. The convective-mixing regime, in which the vortices begin to interact with each other

and mixing occurs as these structures merge and grow, is the entrainment stage.

3. The diffusive-mixing regime in which the large structures break down and molecular

diffusion dominates.

The existence as well as selected global and local properties of these regimes was

clarified by comparing various instantaneous and global averages of a number of system

variables. For example, while the instantaneous contours of YH2 (for example, Figure 6) or

XH2 provide a qualitative description of the difference in the regimes, the global averages

of YH2 (1 - YH2) or XH2 (I - XH2 ) as a function of time (for example, Figures 5 or 9) provide

a more quantitative measure. Specifically, My and MVy peak near the transition from the

convective-mixing to diffusive-mixing stages, but Mx increases monotonically. In addition,

the duration of the diffusive-mixing and convective-mixing regimes were comparable or

the flows studies. The transition between the two mixing stages does not depend on the

Reynolds or the Peclet numbers and this transition occurs at the same dimensionless time

for all three cases, indicating that it is only a function of the large-scale convection time

scale, to = H/AU.

For a better understanding of the effects of diffusion in these various regimes, we varied

the strength of binary diffusion parametrically by comparing cases in which it was turned

off completely, kept at its physical value, and doubled. These tests showed that through

the initial laminar stage, the properties are strongly affected by diffusion, and it is the end

of this stage that sets the initial conditions for the convective-mixing stage. However, the

convective-mixing process itself is very strong, and quickly erases any memory of its initial
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Colditions. Ih tile final, diffusive-mixing stage, diffiLsion dominates tie mixing process by

dissipating the scalar energy through thin, turbulent layers whose width is on the order of

the Taylor microscale. Thus we find that the diffusion effects are of primary importance in

the first and last stages, and relatively important in the convective mixing stage.

One result of these computations is that they agree with the recently proposed idea

that it may not be necessary to resolve all scales down to the Kolmogorov scale to describe

the final mixing process.', 30 .31 The analysis of experiments by Miller and Dimotakis30

suggested that the resolution requirement for looking at local mixing properties is about 25

time the Kolmogorov scale. In our numerical computations, a similar trend can be seen and

explained by observing that the molecular mixing is achieved through mixing layers whose

thickness 6i is on the order of the Taylor scale and an order of magnitude larger than the

Kolmogorov or Batchelor scales. In addition, we have effects of other physically diffusive

processes (in addition to viscosity and convection) that could have an effect. However,

the exact determination of mixing intensity requires us to compute the total density 1i of

small-scale mixing structures and therefore to resolve the entire spectrum.

Earlier studies of of spatially evolving two-dimensional compressible shear layers"'

indicated that for such supersonic flows, the system passed through the convective-mixing

stage and quickly evolved into small scales that would be a diffusive-mixing stage. The

presence or location of bounding side walls changed only the time of transition, not the

fact that transition occurred. To examine the specific effect of compressibility on the mixing

process, we parametrically varied the convective Mach number in the range 0.3 to 1.2. The

result is that the three regimes are always present in the transition process, irrespective of

the value of the convective Mach number. However, in terms of the reduced time, which

is inherently a function of MP, the onset of the convective-mixing regime is delayed as Mc

is Increased. This effect may be attributed to the changes in the amplification rates of the

first excited modes.' 0 Here we also see the well known effect of compressibility that the

mixing efficiency is greatly decreased as M, becomes large.

Finally, we examined the effects of system size on the time of transition from the

convective-mixing to the diffusive-mixing stages. Here we considered a larger system with

the same boundary conditions and initial perturbation at the same wavelength. Our con-

clusions were that the absolute time of transition increased, but the normalized time to

remained essentially the same. This result is consistent with the previous results that

showed that the transition always occurs in compressible flows, but the wall does, to some
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extent, elrt't the tinning.' 7 in addition, the presence of boundaries (the confinenment and

periodicity) can have a decided effect on the very late-time evolution of the system, when

the mixture is almost homogeneous, by forcing the flow at acoustic frequencies typical of

the chamber. It is sensitivity to the acoustic perturbations which is likely to be the key

to tuderstanding the instability that leads to the transition from convective to diffusive

mixing.

There are several important as yet unstudied aspects of the types of flows that are

described above. The first is how the general and specific results shown here change for a

three-dimensional problem. To answer this, we are currently conducting equivalent simu-

lations in three dimensions. These are by nature much more expensive and so we are using

the results from the simulations presented here as a guide. Another major problem we

have begun to address is the effect of chemical-energy release. Hydrogen and oxygen are

highly reactive and perhaps too explosive to be practical for such a problem. However, we

are now examining the effects of hydrogen-air reaction and mixing in such these idealized

layers and in viatiated axisymmetric jets.28
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Tables

Table 1. Coefficients for H2/0 2 mixture (T = 500 K, P = 3.5 x 104 Pa)

XH2  X 0 2  ILm Am D12 Pr Sc Le

1.0 0.0 1.24 x 10-' 0.260 5.13 x 10-4 0.696 1.436 2.065

0.0 1.0 2.98 x 10-5 0.042 5.13 x 10-4 0.638 0.215 0.338

Table 2. Estimations of Kolmogorov and mixing scales

1(m) MI Re 77k(m) r7Y,(m)

5 x 10-3 0.6 1.85 x 104 3.1 x 10-6 3.7 x 10-5

5 x 10-3 1.2 3.70 x 104 1.9 X 10-6 2.6 x 10-s
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Figure 2. Computed and analytic similarity solutions for the one-dimensional mixing layer, MN =

0.01, with hydrogen on both sides. Computed solutions for a) Number density of

hydrogen, nIH2 and b) longitudinal velocity v. as a function of the vertical coordinate

y at successive times. Comparison of computed solutions (collapsed on the similarity

variable q) and analytic solutions for c) nlH2 and d) v. as a function of the vertical

coordinate y.

25



x10 7

so 200

45
40

S35 -200

120 -60015

IsI

-Soo-
0 0 . . . . . .0.- , . .

0 ; 
-

0 .0 .0, ,.06 .,6 .10 .12 0 .02 .04 .06 .08 .10 .12

y (cm) y (cm)
X10 17

SO 200

,45 Initial profile

0

S14 profiles
3- 14 profiles .2M0

425 -400 initial profile

15 200

10 c d

5 -1000
0 = L . l . l . • . l, , .. a . 4 I 4 .,.'.'.

-60 -40 .20 0 20 40 60 -60 .40 .20 0 20 40 60

11 11
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times for M, = 0.6. a) Number density of hydrogen, nH2 and b) longitudinal velocity

vz, both as a function of the vertical coordinate y. c) and d) Collapsed profiles of the

variables shown in a) and b) as a function of the similarity variable q.
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Figure 4. Computed mixing diagnostics for the one-dimensional hydrogen-oxygen shear layer at

selected times as a function of vertical coordinate y/ at four selected times ranging

from tj (close to t = 0) to late time, t4. a) Longitudinal velocity v., and b) number

density of hydrogen, nHl2. Resolution tests showing the computed evolution of the

global mixing parameters for the one-dimensional hydrogen-oxygen shear layer for

four different resolutions and fixed system size. On each figure, curves marked "I"

correspond to N,, = 20, Ax = 10.0 x 10-5 m, "2" to N.,, = 40, Ax = 5.0 x 10-1 m,

"3" to N,, = 80, Ax = 2.5 x 10-5 m, and "4" to N,, = 160, Ax = 1.25 x 10-5 m. c)

Mx (equations (21)-(23)), and d) My (equations (2l)-(23)). Time is normalized by

to = 0.5L/AU.
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Figuire 8. InstawtalueolLs contours of the scalar energy dissipation, (VYH, )2 for the Euler and

NS calculations with Ax = 2.5 x 0-' m. Note that the palette is logarithmic.
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physical value; o = twice the physical value.
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Figure 11. Evolution of the global mixing parameters for a L = 1.0 cm system, 200 x 100 grid,

to show the effect of varying M,: M, = 0.3 marked by Aý, M, = 0.6 marked by V,

M, = 0.9 marked by E, M, = 1.2 marked by E. a) Mx, b) My, c) M,, and d) Mvy.
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Figure 12. Instantaneous contours of a) pressure and b) YH2 (1 - YH2 ) for M, = 1.2, L 1.0 cm,

200 x 100 grid.
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