
,.

Form AppOvE

AD-A254 260 rATION PAGE
0704-1

4 , *n 0'oWqdg,*'1 q' veei.v~ O.reovate W IA' OMIOEI Opq'bt#,, h d R.Ocvb. tltS jef'll .vw"tI r~IIo -ftI. t" 1^0 for F"4 II~f tfat% 411ts. Wif wwcfl s @

of@ va ft fqI f m f4 a d 5 Wd q t. V W W e o er tlo~i d c o ia (0 7 0 4 4 i U). W hih.A II oE . 0 1 o r -

I j11 Ult UN4LY KLE4v* Wank) I.RE PORT OAT[3. REPORT TYPE ANb DATES COVERED

I July 91 Scientific Paper
.TITLE ANO SUBTITL9 S. FUNOIN G NUMBERS -. ,

A STANDARD FILE FORMAT FOR DATA INTERCHANGE

G*"AUTHOR(S)

Michael McDonnel

7. PERFORMING ORGANIZATION NAME(S) ANO ADORESS(ES) S. PERFORMING ORGANIZATION7 REPORT NUMBER

U.S. Army Topographic Engineering
Center

ATTN: CETEC-LO

Fort Belvoir, VA 22060-5546 R-165

ONSORING MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING IMONITORING

SPONORIG/MOITOINGAGENCY REPORT NUMBER

DTIC

h~UG 18 1992.

a2. DISTI UTION/AVAILABIL YS'TATEMENT 12.DSRBUINC0

Approved for public release;
distribution is unlimited. •

13. ABSTRACT (Maximum 200 wordS)

This paper defines a new format and an associated method for encoding data in a

set of files. This new format has advantages of simplicity, efficiency, and

readability over current formats and their associated methods. A new format is

necessary because all current widely available file formats retain restrictions

(such as fixed field lenghts) that are no longer necessary with modern programming

languages. The proposed format has a simple syntax and flexible semantics. Thi

main advantage of PDEF is its lack of fix semantics. This allows unforeseen data

types and dependencies to be encoded without modifying the basic format. The PDEF

format is efficient both for computers and people. It is efficient for computers

because it uses the powerful parsing tools available for the C programming language.

It is efficient for people because it encodes data discriptions in a human-readable

form, and the content of a data set can be understood without a user's manual.

PDEF stands for Protean Data Exchange Format owing to the ability of this format

to encode many types of data.

14. SUBJECT TERMS 10. NUMBER OF PAGES

Computer programs, transform data, GIS, data formats. 1O0D

Ii. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I1. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT

Of REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED | UNCLASSIFIED

NSN 75404--280-SS00

PDEF: A STANDARD FILE FORMAT FOR DATA INTERCHANGE

Michael McDonnell
U. S. Army Topographic Engineering Center

Bldg. 2592, Fort Belvoir, Virginia 22060-5546
email: mike@tec-gwl.army.mil

ABSTRACT

This paper defines a new format and an associated method for encoding data in a
set of files. This new format has advantages of simplicity, efficiency, and readability
over current formats and their associated methods. A new format is necessary because
all current widely available tile formats retain restrictions (such as fixed field lengths)
that are no longer necessary with modern programming languages. The proposed for-
mat has a simple syntax and flexible semantics. The main advantage of PDEF is its
lack of fixed semantics. This allows unforeseen data types and dependencies to be
encoded without modifying the basic format. The PDEF format is efficient both for
computers and people. It is efficient for computers because it uses the powerful pars-
ing tools available for the C programming language. It is efficient for people because
it encodes data descriptions in a human-readable form, and the content of a data set
can be understood without a user's manual. PDEF stands for Protean Data Exchange
Format owing to the ability of this format to encode many types of data.

INTRODUCTION

The Protean Data Exchange Format (PDEF) is embodied in a set of computer
programs which can be used to transform data between different systems which do not
understand each other's formats. The problem of data transformation is not restricted
to any particular discipline, but those of us concerned with digital terrain data have felt
this problem acutely as we have found that different Geographic Information Systems
(GIS) cannot use each other's data. Although PDEF was written to alleviate this par-
ticular problem, its uses are more general than the specific problem for which it was
originally written. PDEF was designed primarily to be easy to use since reformatting

qc decisions must be made by people. This paper will examine both the format and the
uses of PDEF.

This paper is intended for both programmers and non-programmers who need to
understand data formats and data format transforn techniques. Programmers can find

| sufficient detail in a full report, ETL-SR-7 [McDonnell 19911. Report ETL-SR-7 i>
available from the author. Programming examples are given there for various data
types, such as raster, quadtree, and vector data. Non-programmers will find guidance
in this paper on how to express their data-refornatting decisions in PDEF so that
PDEF will reformat the data properly.

To understand PDEF, we need a brief review of data file formats. A file is a sepa-
rate data entity on a disk or tape. It has its own name on a disk and is separated from
other files on a tape by an end-of-file mark. Some files are further subdivided into
records and fields. PDEF does not use any subdivisions finer than files. There are no
records or prescribed fields defined in PDEF.

Data are commonly stored and transferred from one computer to another by using
conventions in the formatting of the file, or files, containing data. It is common to
have a header as the first part of a file. The header contains data about the file as a
whole, such as the name of the data set, and also contains format information to help
in reading the rest of the file. Headers typically contain a mixture of printable and
binary data and are difficult to parse (i.e. understand) without a manual. There are no
headers in PDEF. Following is the rationale for the design of PDEF.

Designing a new data format (and implementing tools such as parsers to allow
people to work with it) is a large undertaking and should only be done if there is a
strong need. Is there, then, a good reason for defining PDEF? One reason is the influ-
ence of old formats and old languages such as FORTRAN. FORTRAN has dominated
the design of file formats to date and causes many of the problems users have when
attempting to understand and work with a current format.

FORTRAN cannot allocate data dynamically. This lack of dynamic allocation
forces data file formats to have fixed field lengths, which causes some problems. For
example, if a user wants to name a file using a title that is 20 letters long but the data
file has only set aside 15 spaces for the name, then the desired filename must be short-
ened to a length of 15 letters or less. Carried to extremes, this leads to names for func-
tions and variables that are restricted to a few upper-case ASCII characters and there-
fore have almost no semantic content. What does a function named SAXPY or
QRTPE do? There is no way to tell without a manual. Similarly, and more to the I-
point of this discussion of data formats, what data does field FTLLP contain? Again,
there is no way to tell.

Another problem encountered when dealing with most current data formats is a
waste of space on data transfer media. If fixed-length fields have to be made large
enough to contain the largest expected data element, then for an average data element
there will be unused space that must be transferred on the tape anyway. Attempts to
overcome this limitation, such as the ISO 8211 data transfer standard [Information
19851, have a daunting complexity. The author has recently written a parser for ISO
8211 and it was a difficult task.

Another problem with most current formats is that they were designed by com-
mittees and therefore have a lack of conceptual integrity and an unnecessary complex- For
ity which is characteristic of such works. As an example, the proposed spatial data RA&I
transfer specification which has been published by the Digital Cartographic Data Stan- 13
dards Task Force (DCDSTF) has a specification that is over 120 pages long [Digital fi
1989]. Such specifications as DCDSTF are unworkably complex and will have to be
changed later, leading to problems with versions of the "standard." In contrast, PDEF
is simple. This simplicity is mostly a result of separating syntax from semantics, as
will be illustrated later. Simplicity and human-readability N, cre the guiding rcctts inI
its design. However, simplicity must not be sacrificed to usability or usefulness. , K
PDEF proves that a format can be both simple and useful.

A GENERAL DESCRIIYrON OF PDEF

In PDEF a single data set is typically stored in several separate files, with
(mostly) meta-data in those files that are readable by people. Meta-data is data about

data. It includes such information as where the data set is found, how many bits there
are per data element, and whether the data element is to be read as a string of charac-
ters, as an integer, as an array of 32-bit floating-point numbers, etc. Although most

current file formats contain such information in a file "header," PDEF has no tile
headers. In PDEF, a separate, human-readable file contains the meta-data typically
found in headers. The bulk of the data is then placed in another file or set of tiles that
contain nothing but binary data. Binary data files have the following characteristics:

• no headers
• no trailers
• no field padding
• no field separators (at least none required)

in short, no wasted space. With the exception of a defined field separator, these char-
acteristics are also true of meta-data files, which I will call information files from here
on.

The issue of human readability needs to be discussed. Why is it desirable to have
data files be readable by people? Are there penalties to be paid in computer efficiency
or in storage usage if human-readable information files are used?

A benefit of human-readable information files is that a manual is not needed to
understand something about a data set. It frequently happens that a data set is pre-
sented to a potential user without any accompanying documentation. Therefore,
understanding something about the data without referring to auxiliary documentation
is often useful, and can even be crucial, since you can't read the data unless you know
its formats.

Another benefit of human-readable information files is that it is easier to write a

parser for these files than if non-printable data has to be dealt with. The author has
written a parser for SPOT [Format 1986] data files using the fixed-field data that

comes on the SPOT tape and then using the same data encoded in PDEF. The PDEF
file was much easier to handle. In particular, it is possible to use the parsing tools lex
[Lesk 1979] and yacc [Johnson 1979], which are of great help in writing parsers.
While lex and yacc were created on Unix systems, they are now available under all
major operating systems such as MSDOS, OS/2, and VMS. Detailed code is available
in report ETL-SR-7 [McDonnell 1991] which may be obtained from the author.

Human-readable files do take more storage on disk or tape than binary files of the

same data. For this reason, PDEF defines two types of files. The human-readable file
is only used for data that must be read to understand the data set as a whole. Its ineffi-
cient storage is not a problem since binary data files are much larger than human-
readable files for the large data sets that PDEF was created to manipulate.

Having mentioned the possible usefulness of PDEF, the PDEF file formats will

now be described, as will some of the software tools that manipulate them. This paper
describes the abstract characteristics of PDEF, which are simple, but file formats rely

on a consideration of detail. This detail is given in report ETL-SR-7 [McDonnell
19911 but cannot be included here for lack of space.

A large data set in PDEF consists of at least two separate files. One of these files
is an information file, which contains general information about the data such as file

offsets and how the data are to be parsed. There is usually only one information file
for a given data set. Besides the information file, there is usually at least one binary
data file. The information file format will be discussed first, followed by a discussion
of the binary data file format.

TIlE INFORMATION FILE

Information files consist only of printable ASCII characters. In the ASCII
numeric sequence, printable ASCII characters include characters ' '(space) through -
(tilde) inclusive and also include the hexadecimal characters OA (newline) for line
breaks and 09 (tab) for spacing. This is all in accordance with the C programming lan-
guage practice of considering "white space" characters to be among the printable
ASCII set, where white space characters are defined as space, tab, and newline. No
other characters are allowed in information files.

An information file without nonprintable characters can be easily viewed without
bombarding a terminal or workstation with what may be in-band control information,
thus putting it into undesirable states. No special programs are needed to view the
information. Any program that writes text data onto the screen or sends it to a printer
is usable for viewing information files, and ordinary text manipulation programs can
be used to create or modify information files.

Information files have two reserved characters, the pound sign '#' and the colon
':'. The pound sign character '#' indicates a non-parsable comment. Any characters
on a line from the first occurrence of a '#' until the end of the line (i.e. until a newline)
are not read by the information file parser. The other reserved character is the colon ':'

which is used to separate a key from the data associated with the key.

The "key" is purposely not called a "keyword" because a "key" is a phrase that
may contain many words. Keys should be designed to be very descriptive. A poor
key would be cryptic such as "redoff," while an equivalent good key would be "file
offset to beginning of red image." Keys must begin a line. This means that either they
must appear at the very beginning of the information file or they must always follow a
newline. Keys are separated from the data to which they refer by a colon ':'. Leading
and trailing spaces or tabs in a key are ignored by the parser.

A single key may refer to a data structure rather than a single data item. There
the structure is a colormap which consists of a repeated sequence of [pixel red green
blue] values. Data structures can be defined in a PDEF information file too. For
example, there may be entries like this:

establish how we encode a colormap

colormap sequence: red green blue pixel
color maximum value: 65536 # for the X Window System
pixel maximum value: 255
colormap:

3456 12345 8976 0
12345 8974 3458 1
and so on

Other types of composite data, such as matrices or coordinate tuples, may be handled
similarly. Here is a possible representation of Quam's block storage of raster data
[Quam 1980], such as is used for ARC Digitized Raster Graphics, a product of the
U.S. Defense Mapping Agency.

Data type: raster # als, vector, quadtree, etc.
Storage format: blocked # could be RGB, band interleaved, etc.
Block size: 128

and so on ...

An example of how quadtrees may be encoded will be shown later.

BINARY DATA FILES

It may be that a data set encoded in PDEF does not contain any binary data files
at all; all of the data being placed in the information file. This is only reasonable,
though, for small data sets. For large data sets, one or more binary data files should be
used in addition to the information file.

Binary data files contain data in which the largest guaranteed unit of reference is
the 8-bit byte. The information file tells the user how to interpret these data bytes.
Because of the vagaries of byte ordering on different computers, the infornation file
may specify how to assemble larger data units from bytes. For example, data bytes
may be read in the order 1 2 3 4, but a 32-bit integer formed from these bytes may
have to be written in the order 2 1 4 3.

Data ordering is a significant problem. The author uses the conventions
described in Sun Microsystem's eXternal Data Representation (XDR) standard for
representing more complex data types. XDR is explained in the document RFC1014
which may be obtained through the Internet by ftp from nic.sri.com or by request from
Sun Microsystems, Inc. Data type encoding is, however, not enforced by PDEF and
will therefore not be discussed further.

A separate information file may be used to work with some data format without
reformatting it into an intermediate binary format. Programs written by the author
parse a SPOT file in its distributed format, headers in the SPOT data are just ignored.
This technique allows a common set of parsing and data manipulation programs to
work on various types of data without reformatting the data file itself. This is a signif-
icant advantage for large data sets where reformatting the data would require much
computation and use a large amount of storage.

USE OF PDEF FOR DATA REFORMATTING

As mentioned in the introduction, nothing except valid data should be stored in
binary data files. If applicable, you may, of course, specify fixed-length fields,
padding, headers, and all the other apparatus found in various file structures. This
flexibility has a use in that it is by this means that data can be exchanged from one for-
mat to another. It is this problem, data reformatting and exchange, that inspired work
on PDEF (and is the source of the name protean).

The combinatorics of data reformatting mandate a common intermediate format.
The following table shows how the number of parsing programs needed is affected by
the presence of an intermediate file format.

Table 1. Number of Parsing Programs Needed
parsing programs needed parsing programs needed

number of formats without PDEF with PDEF

8 56 16
9 72 18

10 90 20

100 9900 200

The relevant mathematics are that without a common file format one needs n(n -
1) reformatting programs and with a common file format only 2n reformatting pro-
grams. Thus, the first problem is of order n squared while the second problem is of
order n.

The table doesn't tell the whole story, though. The programs that have to be
written fall into two equal-sized groups, which is where the factor of 2 in 2n comes
from. Figure 1 shows the situation. The programs that convert some other format into
PDEF have a common back end in that they all feed into PDEF. Similarly, the pro-
grams that convert from PDEF to another format have a common front end that reads
the PDEF file. When these commonalities are considered, the problem simplifies fur-
ther to essentially n programs instead of 2n programs. There is no doubt that an inter-
mediate file format is needed if data reformatting among many formats needs to be
done.

F ormatl Format 1I

[Format 3 PDEF Format 3]

[Format 4 Format 47]

[Format 5 Format5

Figure 1: Diagram of interchange among five data formats using PDEF

as an intermediate format. All data formats may be reformatted to PDEF
and then PDEF may be reformatted into any other format. The arrows
represent programs that perform data reformatting and the rectangles
represent the formats.

PDEF AS A PRIMARY DATA FORMAT

Besides serving as a means of reformatting data, PDEF can itself be a primary
data format. This means that devices such as image scanners and telemetry systems
can encode their data in PDEF for transmission. The readability of PDEF information
files allows the operator to quickly check data content. Software systems such as a
GIS can also be based on PDEF, thereby allowing easier conversion of data to and

from foreign formats. The U. S. Army Topographic Engineering Center (TEC) will
use PDEF as the format for data generated by the Terrain Information Extraction Sys-
tem (TiES), which is a developmental system aliowing Army units to extract terrain
data from digital photography in the field.

TYPES OF DATA THAT MAY BE HANDLED

Current experience with PDEF has been only with regard to raster data files. In
order to be useful as a general data exchange file (i.e. in order to be truly protean),
PDEF has to be able to handle other data types and structures as well. An example
relevant to TEC is GIS data, which includes vectors (with associated attributes) and
quadtrees as well as gridded (raster) data. Below is an example of a quadtree structure
defined in PDEF.

One way to store a quadtree on a disk or tape is to define a traversal order of the
tree and then to linearize the tree to a file by traversing it. To rebuild the tree from the
file, just build it in the same order when the file is read. Here is a section of an infor-
mation file dealing with quadtrees:

Traversal order: preorder
Quadtree node data order: attribute NW NE SE SW
Attribute: generic pointer
NW: boolean
NE: boolean
SE: boolean
SW: boolean

binary data file is just quadtrees, so offset is zero

Offset of root quadtree in data file: 0

Given this information, a parser program can go through the binary data file and
add in the nodes for which the boolean attributes of its father node are TRUE, mean-
irg that there is a node under this quadrant. This simple scheme defines leaf nodes as
having all four quadrants FALSE and with an attribute assigned to its area. Note that
storage can be saved by encoding the four leaf nodes in a single byte since they only
need one bit each to perform their function. Data descriptions, such as "boolean" or
"generic pointer," can be further described by other entries in the information file.
Other needed data would certainly include geographic coordinates of the corners of
the region encoded in the quadtree. Indi'idual quadtree nodes need not carry their
coordinates along with them since these are implicit in the tree.

Another data type of great interest to the GIS community is vector data. A realis-
tic design of a vector data format for PDEF is too big to be given in this paper; how-
ever, report ETL-SR-7 [McDonnell 19911 contains an example design based on a
United States Geological Survey format for vector and polygon data, such as is used in
a GIS. All essential information such as vector ordering is preserved.

GENERAL DISCUSSION; SYNTAX AND SEMANTICS

PDEF defines the syntax of a data exchange file format and not the semantics of
such a format. PDEF does not address some of the most difficult problems associated
with reformatting data, such as forcing a match between data fields that are not strictly
conformable. If a name field in one format has 30 characters allocated to it and
another only allows 10 characters, how is a conversion to be made? Similarly, if
needed data in some format is simply not available in a precursor format, what
defaults should be used to fill in the blanks in the output format? Should they be filled
at all? Problems such as these are matters of policy and are therefore beyond the
scope of PDEF because it is only a file formatting vehicle. However, PDEF makes it
easier to address these issues of reformatting policy.

For one thing, having a protean and human-readable format for information stor-
age and exchange means that those people charged with deciding the form of data stor-
age or interchange can encode their decisions directly in the information file that is to
be parsed by a computer. This makes the data formatting readily and directly review-
able. There is no danger of a mistranslation between what the computer must read and
what people can read since information files can be read by both people and comput-
ers. It is best to avoid the production of auxiliary documents detailing formatting
decisions since the PDEF information file and the auxiliary document may disagree.

There are some concerns that need to be addressed which come from having a
separate file that includes the parsing information for binary data files. These concerns
are as follows:

" The information file may be separated from the data files to which it refers.

• The information file is both too easy and too difficult to change. It is too easy
to change because it is a text file and can therefore be modified by a text editor so
that it no longer has accurate data. It is too difficult to change because a program
may modify the binary data without modifying the information file.

In general, a concern exists that there is too much decoupling between the information
file and the data it describes.

Although the information file may indeed be separated from the file it describes,
many current data formats make use of separate files and this does not seem to be a
significant problem. SPOT and ADRG data are both distributed as sets of files for a
single coverage area. These files have a complex interrelationship that is much more
difficult to work with than the simple scheme described here. Since no documentation
eis which relates operational problems caused by these sets of files becoming disso-
ciated, this is probably more of a theoretical than a practical problem.

Ilaving the information file track the data file is a matter of con.cntion that is not
enforced by the format itself. A reasonable convention is to have information files be
protected so that they are read-only for users and can only be operated on by privi-
leged programs. Data files can be treated in the same way. It is then the responsibility
of programs that modify the data to concurrently modify the information file. To be
even more certain that information files and data files are consistent, a given set of
information and data files should not be modifiable at all except under regulated cir-
cumstances. What is meant here is that if the data set is to be modified, it must be
copied to a new data set and a new information file generated to describe it. This
keeps a history of data processing information, which it is probably desirable to have
anyway. Advances in data storage media have alleviated the problem of storage of

large data sets, and data can in any case be overwritten, if this is needed.

Pascoe and Penny have recently critiqued the problem of producing a standard
interchange format for GIS data [Pascoe 19901. Since they do not start from the
assumption that there can be a separation of syntax from semantics for a data
exchange format, they are led to the conclusion, repeatedly stated, that any such stan-
dard must be very complex. Indeed, if all the decisions about data semantics are con-
sidered, then the result is very complex. This paper proposes that the format of inter-
change may itself be quite simple and can help with the more difficult policy problems
concerning data reformatti.ag.

Another concern of Pascoe and Penny is that data for an output record in one for-
mat may have to be derived from a number of files in some other format. This means
that searching of several files must be done for these cases to generate a single output
datum. Pascoe and Penny advocate reading all input data into a relational database
management system (RDBMS) to distribute the data into a set of relations that can
then be searched, as needed, for outputting a new format. While this insulates the pro-
grammer from explicit searching for data, the redistribution of data may not be a fre-
quent occurrence, and the apparatus of an RDBMS seems unnecessary. This is cer-
tainly true of raster data, which will be closely associated in any format and therefore
does not have to be redistributed. Pascoe and Penny mention the large amount of
computer resources needed when using an RDBMS [Pascoe 1990]; file searching as
needed should not impose as much of a burden. Experience with PDEF will show
whether it is an efficient means of transferring information or whether an RDBMS is a
needed adjunct. As mentioned above, much of the initial data may be retained in the
original format and only parsed out as needed. The goal should be to do as little
reformatting as possible.

SUMMARY AND CONCLUSION

PDEF provides a powerful, simple, and human-readable method of encoding data
in a form that is easily parsable by automatic computer methods. Since parsers are
written in yacc, they are expressed in a formal syntax grammar (Backus-Naur form)
and are easy to write and modify. PDEF is superior in simplicity and power to other
formats and allows efficient data storage. Owing to its simplicity, it is unlikely that
future versions of PDEF need to be designed. This ensures that there will not be out-
dated versions of PDEF that must be accommodated in the future. PDEF does not
have the disadvantages pointed out by Pascoe and Penny for other data exchange for-
mats and can serve as a much more tractable and protean standard than current for-
mats.

REFERENCES

Digital Cartographic Data Standards Task Force 1989, Draft Proposed Standard
for Digital Cartographic Data The American Cartographer, vol. 15, p. 21.

Information Processing - Specification for a data descriptive file for information
interchange 1985, International Organization for Standardization publication ISO
8211-1985(E).

Johnson, S. C. 1979, Yacc: yet another compiler-compiler in Unix Time-Sharing
System: Unix Proganuner's Manual, Vol. 2B 7th edition, AT&T Bell Laboratories.

Lesk M.E. and Schmidt E. 1979, Lex - A Lexical Analyzer generator in Unix
Time-Sharing System: Unix Progammer's Manual, Vol. 2B 7th edition, AT&T Bell
Laboratories.

McDonnell M.M. 1991, PDEF: A Standard File Format for Data Interchange,
U.S. Army Engineer Topographic Laboratories Special Report ETL-SR-7.

Pascoe R.T. and Penney J. P. 1990, Construction of Interfaces for the Exchange
of Geographic Data Int. J. Geographical Information Systems, vol. 4, No. 2, 147-156.

Quam L.H. 1980, A Storage Representation for Efficient Access to Large Multi-
dimensional Arrays, Proceedings DARPA Image Understanding Workshop, 104-111.

Format for the SPOT Image Corporation Computer Compatible Tapes Aug 1986,
SPOT Image Corporation.

