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ABSTRACT

This report presents the work performed under ONR contract number
N00014—85—K—0733 during the period 1985—1990. The main objective of the project was
to develop a computational facility for inelastic analysis of fibrous composite materials
based on micromechanics. The theoretical work focused on development of
micromechanical models for thermoplastic and thermoviscoplastic fibrous composites based
on experimental observations of certain phenomena found in unreinforced and fiber
reinforced metals. Implementation of the material models in computational procedures for
analysis of composite materials and structures was an important part of the research.
Accomplishments in these areas and in development of a layer—wise composite shell

element, also performed under this contract, are described.
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1. INTRODUCTION

The main goal of this research is the development of a computational facility for
thermoplastic and thermoviscoplastic analysis of fibrous composite materials, and for
design of composite structures for spacecraft applications. To achieve this goal, the
research included formulation of a continuum plasticity theory based on micromechanics
for unidirectionally reinforced fibrous composites subjected to coupled thermal and
mechanical loads which simulate service conditions. A unified thermoviscoplasticity theory
based on overstress was also developed, in part under this project, for homogeneous
materials to represent the matrix and fiber phases. This theory can be applied to the
phases of any micromechanical model to obtain the local stresses and overall response of
unidirectionally reinforced composites. Subsequently, our research focused on
implementation of the material models in nonlinear finite element procedures which
permits analysis of more complex geometries of composite structures such as laminated
plates and shells. Throughout the development of our numerical analysis procedures, the
ABAQUS finite element code has represented the basic analysis engine into which our
numerical formulations has been added. Standard elements available in ABAQUS have
been used in conjunction of our material models to examine certain phenomena in fibrous
composites such as dimensional stability under thermal and mechanical loads. In parallel,
our efforts concentrated on development of new elements suitable for particular fibrous
composite structures such as laminated shells.

The following accomplishments were achieved:

- Development of constitutive equations and numerical procedures for the Periodic

Hexagonal Array (PHA) model.

- Development of constitutive equations and numerical procedures for the bimodal

plasticity theory.




Development of a thermoviscoplasticity theory with time recovery effects for
homogeneous materials.

Implementation of the PHA model, the bimodal theory, and the viscoplasticity
constitutive equations into the ABAQUS finite element code.

Development of a layer—wise composite shell element.

Details of these developments are described in the sequel.




2. THERMOPLASTICITY OF FIBROUS COMPOSITE MATERIALS

Evaluation of the overall properties and local fields in fibrous composites with
elastic—plastic phases under thermomechanical loads was achieved with appropriate
micromechanical models which can incorporate the inelastic constitutive relations that
describe phase behavior, and which reflect the dominant deformation mechanisms in the
microstructure. The selection of models which satisfy these requirements was motivated by
our past experience with modeling of experimentally observed elastic—plastic behavior of
fibrous B/Al composite systems (Dvorak et al., 1988, 1990). In particular, the periodic
hexagonal array (PHA) model (Dvorak and Teply, 1985; Teply and Dvorak, 1988), and the
bimodal plasticity theory (Dvorak and Bahei—El-Din, 1987) were chosen and adapted for
this purpose.

In the PHA model, the centers of the aligned fibers are assumed to be arranged in a
periodic hexagonal array in the transverse plane. The circular cross sections of the fibers
are approximated by (6 x n) polygonal cross sections, which tend to converge rapidly when
the integer n > 1 increases. The hexagonal array is divided into identical unit cells.
Appropriate periodic boundary conditions are prescribed for these cells such that the
solution for a single cell can be used to generate the deformation field in a fibrous
composite subjected to uniform overail strains or stresses, and to a uniform thermal
change. Typically, the solution is found with the finite element method for a selected
subdivision of the unit cell.

The bimodal plasticity theory was originally deduced, in part, from experimental
observations of elastic—plastic behavior of unidirectional B/Al systems. More recently, it
was applied to several high—temperature systems, and extended to accommodate
viscoplastic behavior of the matrix phase (Hall 1990). The theory recognizes two distinct
deformation modes, the fiber~dominated (FDM) and the matrix—dominated (MDM) mode.

In the fiber mode, the local fields in the composite are assumed to be approximately




uniform, and the overall response is evaluated from an averaging model. In the matrix
mode, the dominant mode of deformation is approximated by smooth shearing on planes
parallel to the fiber axis. Each of the two modes has a separate branch of the overall yield
surface, and is activated according to the current position of the loading vector. The size
and shape of the MDM yield surface does not depend on fiber properties and volume
fraction, but these parameters do affect the FDM surface. In systems reinforced with fibers
of high longitudinal shear modulus, such as boron, silicon carbide, or tungsten, the FDM
surface contains a large part of the MDM surface which ir turn controls the onset of
yielding, and subsequent plastic flow. In contrast, systems reinforced with carbon fibers of
low shear modulus may have a FDM surface which lies entirely within the MDM branch.
The matrix mode is not present in such systems, but the FDM model assumptions may no
longer hold and the PHA model is again indicated.

The material models described above were further developed and implemented in
the ABAQUS finite element program. The work performed in this part of the contract
developed into a Ph.D. dissertation (Wu, 1991). Implementation of material models into
nonlinear finite element procedures and description of both the PHA model and the
bimodal plasticity theory together with the procedures for their implementation in the
ABAQUS program are contained in Chapters 2, 3 and 4 in Wu (1991) which appear here in
Appendices A, B and C, respectively.




3. THERMOVISCOPLASTICITY OF FIBROUS COMPOSITE MATERIALS

This part of the program is concerned with modeling of the rate—dependent
behavior of fibrous composites under thermomechanical loads. There are two major tasks,
modeling of constituent viscoplastic behavior of the phases, and prediction of the resulting
overall response.

Sel~tion of the constitutive theory for modeling of matrix and fiber response was
motivated by several requirements which were found useful in predictions of inviscid
response of metal matrix composites. These include, in part, a definition of equilibrium
yield surface, and cbility to accommodate various hardening rules which may be indicated
by experiments. Such ingredients are found, for example, in the viscoplasticity theory
developed by Eisenberg and Yen (1981) which was selected for our work, albeit in a
substantially modified form that includes rate effects, coupled thermal and mechanical
loads, and time recovery. Since the local stress or strain path in the phases is generally
nonproportional, the modifications were developed in the context of the two—surface
plasticity theory motivated, in part, by the work of Dafalias and Popov (1976). The
resulting phase constitutive equations include material parameters which are found by
matching the results of certain experiments at room temperature, and at high temperatures
(Bahei—El-Din et al. 1991, Shah 1991).

Modeling of the composite response was based again on existing models which were
developed in our earlier work. In particular, we implemented the new viscoplastic
constitutive equations into the ABAQUS finite element program and made comparisons
with experiments using the Periodic Hexagonal Array model. The theoretical
developments as well as the numerical results have been published by Bahei~El-Din, Shah
and Dvorak (1991), which appear here in Appendix D, and by Shah (1991).




4. ANALYSIS OF LAYERED COMPOSITE SHELLS

Since most composite structures have one dimension which is substantially smaller
than the other two, it is desirable to employ a spatial discretization assumption which
reduces the amount of computation needed in the small dimension. This dimensional
reduction process is particularly complex in the case of laminated structures constructed
form thin orthotropic layers. This process is further complicated when lamina level
nonlinear material behavior must be considered. One way to derive formulations for the
behavior of shells is to apply specific kinematic constraints to the full three—dimensional
elasticity equations. This ‘degeneration’ of the three—~dimensional elasticity equations is
the basis for many shell formulations. A common kinematic assumption on the behavior of
shells is that the in—plane displacement components vary linearly in the thickness
direction. In particular, if we assume a linear variation through the thickness of the
in—plane displacement quantities in each layer (equivalently, constant transverse shear
strains in each layer) we arrive at a first—order discrete layer theory. In this formulation,
if we neglect the generally small direct strain in the thickness direction, there are 2N+3
displacement parameters through the thickness, where N is the number of layers, which can
be a significant reduction compared to 3—D modeling.

A discrete layer theory element, called LCSLFC, was developed by K. Dorninger
(1991) as part of this project. It employs C° linear segments for the through the thickness
deformation of each layer. The LCSLFC element is based on the degeneration principle.
The element is a 16—noded shell using cubic shape functions for the in—plane displacement
quantities. Full account for large deformations were included in the formulation. The
implementation of the LCSLFC element allows considerable flexibility in modeling
composite laminates. The shell thickness may be varied through each element. Each layer
may have a different orientation, thickness and material. A user defined material is

incorporated into the element to allow the use of various nonlinear material modes.




Specific studies (Shephard and Beall, 1992) have been performed using this element
formulation with the bimodal plasticity model in the analysis of simple composite
structures. Details of relevant studies performed in this part of the project appear in
Appendices G, H, and I.
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5. APPLICATIONS

To demonstrate the capabilities of the methods developed for inelastic analysis of
fibrous composites, we present here two applications. In the first application, the
dimensional stability of metal matrix composite laminates under thermal fluctuations and
thermomechanical load cycles is examined. The system considered as a model material is a
Gr/Al (+yp)s laminate. The analysis is performed by the finite—element method while the
underlying constitutive equations of unidirectional composites are provided by the Periodic
Hexagonal Array (PHA) micromechanical model. A computationally more efficient and
equally accurate method based on fiber—dominated analysis of unidirectional composites by
the self—consistent method is also presented. The results show that laminates of the model
system with ¢ = 12° are dimensionally stable in the elastic range when subjected to pure
temperature changes. Plastic deformation of the matrix causes permanent dimensional
changes, which can be reduced by heat treatment of the composite. Under
thermomechanical loads, (*¢)s laminates are not in general dimensionally stable.
Dimensional stability of the laminate was enhanced by plastic deformation of the matrix
for in—phase thermal and mechanical load cycles and reduced for out—of—phase cycles. The
results of this study are found in Bahei~El-Din et al. (1992) and appear here in Appendix
E.

The second application considers the effect of thermomechanical loads on local fields
in fibrous composites. Here, the local stresses caused by mechanical and thermal loads in
high temperature intermetallic matrix composites are evaluated using a finite element
solution for a periodic hexagonal array microstructure. Both uncoated and coated elastic
fibers are considered. The matrix is assumed to be elastic—plastic and insensitive to
loading rates. Mechanical properties of the phases are function of temperature. It was
found that a CVD deposited carbon coating can be quite effective in reducing thermal

stresses at the matrix/coating interface. Certain mechanical stress concentration factors,
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however, may be aggravated by the compliant coating. In composite systems wiih a
ductile matrix, plastic deformations reduce stress concentration and lead to stress
redistribution. In such systems, thermomechanical loading regimes can be designed to
reduce adverse local stresses introduced during fabrications, for example, by hot isostatic
pressing. Details of this study have been published by Bahei—El-Din and Dvorak (1991)
and appear here in Appendix F.
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Invited lecture, "Physical and Computational Experiments in Plasticity of Composite
Materials," Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, May 1989.

Short Course on Metal Matrix, Ceramic Matrix, and Carbon Carbon Composites, Los
Angeles, California, May 1989.

Alcoa Laboratories, Alcoa Center, PA, "Thermal Stresses in Fibrous Ceramic Matrix
Laminates," May 1989.

Army Symposium on Solid Mechanics, Newport, Rhode Island, "Fracture of Fibrous Metal
Matrix Composites," May 16—-18, 1989.

IST-SDIO/ONR Woods Hole Review, "Overall Response and Local Fields of High
Temperature Composite Laminates," June 56, 1989.

Second International Symposium of Plasticity and its Current Applications, "New Results
in Bimodal Plasticity of Fibrous Composites," Mie University, Tsu Japan, July 30 —
August 4, 1989.

AFOSR 14th Annual Mechanics of Composites Review, "Fracture in Fibrous Metal Matrix
Composites," Dayton, Ohio, November 1, 1989.

ASME/WAM, "On a Correspondence Between Mechanical and Thermal Effects in
Two—Phase Composites,”" San Francisco, CA, December 10-15, 1989.

DARPA-HIiTASC Program site visit, RPI, March, 1990.

Invited lecture, Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, March 5, 1990.
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Short Course on "Metal Matrix Composites," (program co—director and lecturer), UCLA,
March 6-8, 1990.

Montedisnial visit at RPI, April 9, 1990.
Invited Lecture, University of llinois—Chicago, April 25, 1990.
Invited Lecture Northwestern University, April 26, 1990.

"Some Experimental Results in Plasticity of Fibrous Composites," IUTAM Symposium on
Inelastic Deformation of Composites Materials, RPI, May 29 — June 1, 1990; Chairman of

Symposium.

"Local Stresses in High Temperature Composites and Laminates," IST--SDIO/ONR Woods
Hole IV Research Review, Woods Hole, Massachusetts, June 4, 1990.

Invited Lectures, Politecnico di Milan, Milan, Italy, June 11-12, 1990.
Invited Lecture, EniChem, Milan, Italy, June 13, 1990.

Invited Lecture, Institute of Theoretical and Applied Mechanics, Czechoslovak Academy of
Sciences, Prague, Czechoslovakia, June 25, 1990.

Short Course, "Advanced Composite Materials and Structures," RPI, July 24, 1990
KAPL corporate visit, RPI, August 3, 1990.

Grumman Aircraft visit, RPI, August 8, 1990.

"On Uniform Fields in Heterogeneous Media," ASME/WAM, Dallas, Texas, 11/27/90.

"Fatigue Damage of Metal Matrix Composites: Optimization and Shakedown Analysis,"
ASME/WAM, Dallas, Texas, 11/27/90.

"Deformation and Damage Mechanisms in High Temperature Composites with Ductile
Matrices," AFOSR, Bolling AFB, D.C., March 15, 1991.

"Static and Fatigue Damage in High Temperature Composites," AFOSR, Bolling AFB,
D.C., March 15, 1991.

"Thermomechanical Compatibility in High Temperature Composites," DARPA HiTASC
Program Review, March 27, 1991.

"A New Approach in Nonlinear Micromechanical Analysis of Heterogeneous Media," (with
Y.A. Bahei—El-Din and A.M. Wafa), at First U.S. National Congress on Computational
Mechanics, Chicago, Illinois, July 1991.

"On Thermal Hardening and Uniform Fields in Two—phase Composite Materials,"
Plasticity '91: Invited Lecture at The Third International Symposium of Plasticity and its
Current Applications, Grenoble, France, August 12—-16, 1991.

"Engineering Education in the United States," Invited lecture in the Klokner Institute of
the Czech Technical University in Prague, Czechoslovakia, August 29, 1991.
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"Fatigue Damage and Shakedown in Metal Matrix Composite Laminates," Invited lecture
at conference on "New Trends in Structural Mechanics," Institute of Theoretical and
Applied Mechanics, Czechoslovak Academy of Science, Prague, September 2, 1991.

"Experimental Evaluation of Yield Surfaces and Plastic Strains in a Metal Matrix
Composite," American Society of Composites Meeting, Albany, NY, October 6—9, 1991.

"Fatigue and Shakedown in Metal Matrix Composites,” 28th Annual Technical Meeting of
the Society of Engineering Science, Gainesville, Florida, November 68, 1991.

"On Some Exact Results in Thermoplasticity of Composite Materials," Invited lecture
ASME/WAM, Atlanta, GA, December 4, 1991.

"Thermal Stresses in Elastic—Plastic Composites with Coated Fibers," Invited lecture
ASME/WAM, Atlanta, GA, December 6, 1991.
ntation r. Sheph

"Nonlinear Finite Element Modeling of Composites," ONR review of SDI related
Composites Research, University of Maryland, College Park, Maryland, March 31, 1987.

"Nonlinear Finite Element Modeling of Composites," ONR Contractor’s Review, Santa
Barbara, CA, Sept. 30, 1987.

"Composite Material Models in ABAQUS," ABAQUS User’s Conference, Newport, RI,
June 2, 1988.

"Mechanical Behavior of Polymer Composites," S.S. Sternstein and M.S. Shephard, IBM
Watson Research Center, Hopewell, NY, June 17, 1988.

"idealized Models in Engineering Analysis," ASCE Structures Congress, San Francisco,
CA, May 2, 1989.

"A Bimodal Plasticity Model for Fibrous Composites Implemented in ABAQUS —I. Fiber
Dominated Mode," ABAQUS User’s Conf., Newport, RI, May 30, 1990.

"Advanced Finite Element Formulations for Composite Shells," 6th Tech. Conf. on
Composite Materials, Oct. 1991.

"Lamina Level Nonlinear Mixing Models in Finite Element Computations, ASME, Atlanta,
GA, December 6, 1991.
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APPENDIX A

Implementation of Material Models into Nonlinear Finite Element Procedures




CHAPTER 2
IMPLEMENTATION OF MATERIAL MODELS INTO
NONLINEAR FINITE ELEMENT PROCEDURE

Application of the finite element method is widely accepted. Its application to
nonlinear problems caused either by material nonlinearity or geometric nonlinearity is
more complex and encounters heavy computational effort. More powerful computers and
more accurate and efficient solution algorithms are required in nonlinear finite element
applications. Nowadays, high-speed digital computers are available and more complex
numerical operations with affordable costs can be performed. Also, the development of
improved element characteristics and more efficient nonlinear solution algorithms has
been demonstrated, (see for example Owen & Hinton [1980], Hughes [1987]). These
achievements make it possible to incorporate the complicated material models available
for composite materials into finite element procedures for the design of advanced

composite structures.
2.1 Introduction

From the viewpoint of finite element modeling, the goal of this study is to develop
analysis procedures based on specialized composite material models which are not
available in general purpose programs.

In general, two types of nonlinearities should be considered in finite element
procedures for structural mechanics:

1. Nonlinear strain-displacement relations, which is known as geometric
nonlinearity.
2. Nonlinear stress-strain relations, which is known as material nonlinearity.
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The objective of this study is to develop the procedure for implementation of metal

matrix composite material models into the ABAQUS finite element program. Although
the strains developed in fibrous composites are small due to the constraints imposed
by the suff fibers, geometrical nonlinearities may be accounted for, if necessary, by
thz finite strain capability available in ABAQUS. Therefore, our work focus is on the

material nonlinearity caused by inelastic deformation of fibrous composites.

2.2 Nonlinear finite element procedure

Regarding the solution scheme to general nonlinear finite element system of
equations, two generalized solution algorithms, namely the Newton-Raphson and initial
stiffness (modified Newton-Raphson) r.ctnods are the best known methods in the
literature. In the Newton-x<aphson method, the instantaneous stiffness of the finite
element system of equations is u~ed for global iterations whereas in the modified Newton-
Raphson method, the constant stiffness (elastic stiffness) of the system of equatons is
used throughout the global iterations. The instantaneous (or constant) stiffness of the
finite element system is calculated from the instantaneous stiffness (or elastic stiffness)
matrix of each material point and is assembled through the clement routines. Any
material model capable of updating the material instantaneous stiffness matrix and
stress vectors under & given strain path may be implemented into the nonlinear finite
element procedure. Considering metal matrix composite material models, the material
nonlinearity is usually caused by inelastic deformation of the matrix material. Figure
2.1 shows a block diagram illustrating the sequence of events when composite material
model is used in a finite element procedure. The standard nonlinear finite element
procedure can be found in most of nonlinear finite element textbooks (see for example
Zienkiewicz, [1977)).




2.3 Formulations of material models

In the nonlinear finite element procedures the strain vector and its increment are
the independent variables. Most elastic-plastic composite material models, however,
are formulated in stress—space which defines the material stiffness in terms of stresses
and weats the stress and stress increment as independent variaples. This causes some
difficulty in the implementation of such material models into nonlinear finite element
procedures.

The constitutive equations can be also formulated in the strain-space in which the
strain and strain increment are the independent variables and the material stiffness is
defined in terms of the strains. This formulation avoids the difficulties encountered in
implementations of models based on the stress-space formulation. Although Drucker
commented on the usage of strain-space formulation as early as 1950 [Drucker, 1950], the
first detailed study was done by Naghdi & Trapp in 1975 [Naghdi & Trapp, 1975]. They
proposed a strain-space formulation which was found to be free of the shortcomings
of the stress-space plasticity. For example, unlike the stress-space formulation, the
loading criteria for the perfectly plastic material in strain-space is exactly the same
as that for work-hardening materials. In 1981, Yoder and Iwan [Yoder & Iwan, 1981]
proposed and formulated a strain-space plasticiry theory and demonstrated its advantages
in applications involving extensive numerical techniques.

The strain-space formulation was applied to fibrous composite materials by Wung
and Dvorak [1985]. They derived strain-space constitutive equation based on the
vanishing fiber diameter (VFD) model. The VFD model was originally developed
by Dvorak & Bahei-El-Din [Dvorak & Bahei-El-Din, 1978, 1982, and Bahei-El-Din,
1979] in a stress-space. Wu [1987] showed that the results found with the stress-space
formulation and the strain-space formulation of the VFD model are in agreement.
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Although composite material models based on the stress-space formulation may
encounter certain difficulties in their implementaton in nonlinear finite element

procedure, we will consider them in our subsequent work for the following reasons:

1. The two material models, the PHA model and the BIMODAL theory are
available in the stress space formulation. Substantial theoretical effort is required
to reformulate these models in the strain-space.

2. Two special numerical algorithms which make the stress-space formulation
of material models useful in finite element applications were developed to
overcome the difficulties encountered in the stress-space formulation material
models (see Chapter 3 and 4). The numerical study of these two methods
has shown that both algorithms give accurate results, with minimal loss of

computation efficiency.

All numerical integration schemes (i.e. solution schemes to the gnoveming
differential equations) which are based on Taylor’s series expansion, such as Euler’s
method, Modified Euler’s method, Runge-Kutta method, etc. are suitable for this
spplication. When a Taylor’s series expansion based integration scheme is employed
in the constitutive calculations, the current stress increment is divided into several
subincrements, which may or may not be equal in size depending on the method
used. In each subincrement the stress-strain relation is then assumed to be linearly
related by the instantaneous stiffness. In this way, the stress subincrement is found
by multiplying the instantaneous stiffness matrix by the strain subincrement. After the
stress subincrement has been found, the corresponding instantaneous stiffness matrix
can then be updated. The procedure is repeated for all subincrements of each increment
until the end of loading path. Numerical efficiencies of the strain-controlled and the
stress-controlled algorithms are compared in Chapter 4.
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In another approach, which makes the stress-controlled, stress-space formulation
useful in nonlinear finite element procedures, the constitutive calculation algorithm is
unaltered while manipulation is performed between constitutive calculation and finite
element global iterations. Details of this procedure is given in Chapter 3 when the

implementation of PHA is considered.

2.4 Connection between nonlinear material models and nonlinear
finite element procedure

In a typical finite element procedure, there are as many as N1xN2xN3xm sampling
points in the finite element domain, where N1, N2, and N3 are the number of
sampling points in the three’ directions of element local coordinate system and m
is the total number of elements in the finite element mesh. This means that there are
N1xN2xN3xm nonlinear loading paths, which are generally different from each other,
in each nonlinear finite element analysis. Therefore, the material model evaluation is
required N1xN2xN3xm times in each finite element giobal iteration.

In strain-controlled, stress-space constitutive routines, the nonlinear finite element
procedures result in accurste solutions with good computation efficiency. In
stress-controlled, stress-space constitutive routines, however, accurate solutions are
accompanied by “local iterations” between the constitutive routine and the finite element
global procedure. These “local iterations” are necessitated due to the need of converting
strain increments (from finite element global iteration) into stress increments for stress-
controlled material routine.

As shown in Chapter 3, the “local iteration” provides a useful algorithm for the
implunemaﬁonofamnﬁmcms-conaoﬂedconsdmﬁvemuﬁmimoanonlinearﬁniw
element procedure. This makes it possible to implement any (either stress-controlled or
strain-controlled) nonlinear material models into finite element procedure.
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Inthenonlinearﬁmteelanemprocedure,itisimpommtopoimmnthnforboch

stress-controlled and strain-controlled material routines one should always retumn elastic

stiffness matrix to finite element procedure at the beginning of the global iteration for

each increment. This treatment will guarantee faster convergence of the global iteration

especially when the structure is unloaded from a highly nonlinear stage since t00 much
compliant stiffness may produce very large strain increment during the unloading.

25 General purpose nonlinear finite element code-ABAQUS

Although the solution procedures developed can be incorporated in many general
purpose finite element programs, the ABAQUS nonlinear general purpose finite element
package was selected to carry out the specific finite element calculations for the study.
The ABAQUS program features relevant to this study are discussed in this section.

2.5.1 ABAQUS overview

ABAQUS is a general purpose finite element analysis code developed by Hibbit,
Karison, and Sorrenson, Inc. (HKS) specifically for applications in nonlinear mechanics
[User’s Manual, 1988a, Theory Manual, 1987, Example Manual, 1988b, and System
Manual, 1985]. It possesses a large number of standard featres of a general purpose
finite element code including large element and material libraries, a number of analysis
classes and solution procedures, a group of post-processing options and a number
of features that are of importance to the type of analyses needed for metal matrix
composites.

Several atractive feamres exist in ABAQUS. First, it uses recently developed
nonlinear solution procedures that are both efficient and stable. Second, it imposes
a stwong separation of element formulations, material property definitions, boundary
condition prescriptions and loading history specifications. Third, it supports a large
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number of user defined subroutines including element formulation, material constitutive
formulation, boundary condition specification, and loading definition. In addition, the
ABAQUS'’s element library contains a layered shell type element that should be very
useful in the analysis of composite structures where differences in material behavior
must be enforced at the laminate level. These feamwres make ABAQUS arractve
in employing the more advanced nonisotwopic and/or nonlinear material models with
various element types. Also, the ability to develop specialized material subroutines
within ABAQUS is of principal importance to our research in development of finite
element procedures for analysis of composite materials.

Tailoring ABAQUS to deal with functions not directly available within the program
is achieved through the available user definable routines. There are twenty user definable
routines in the program. Each user defined routine allows the analyst to carry out 2
particular type of operation that alters data within ABAQUS's data structures.

The method used to provide this functionality is to set aside a particular set of
subroutines for the various purposes. Each of these subroutines has a fixed name
and a fixed sequence for passing data in and out of ABAQUS. The particular user
defined routines that are invoked in an analysis are specified through the input file for a
particular analysis problem. For example, the user defined material routine is invoked
by indicating that the material type for a particular element set is the user defined
material. This keys the program to call the user defined material routine (UMAT),
which will use the information passed to it as well as any information UMAT maintains
to calculste the material stiffness terms and stress increments which are then sent back
to the calling element routine. The user defined subroutine can access data available in
the ABAQUS'’s data stractures for other purposes.

The other functions that are also of importance to our study are the material
models supported by ABAQUS's material library, such as the kinematic hardening
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option, the isotropic hardening option and the Hill’s anisowopic yield criteria with
kinemaric/isotropic hardening rule. These options accompanied with temperarure
dependent features make it possible to model the inelastic behavior of metal marmix
composites for certain idealized domains.

2.5.2 ABAQUS input data file

In a typical ABAQUS input data file there are two major groups of input data
entries including model data deck and history data deck. These input data decks are
capable of completely modeling the problems of interest.

The model data deck contains the definition of the analysis model including the
output heading, the data echo selections, the wavefront minimization option, the restart
type of the analysis (optional), the node coordinates, the node set, element types, element
connectivities, element set, the material models, the boundary conditions, orientadon of
the element coordinate system (if nonisotropic material is used), and the assignment of
specific material model and/or its orientation to the corresponding clement set.

The history data deck contains the definition of the analysis type including the
submitting of subtitle for the analysis, the analysis classes, the loading history, the
tolerance and other control numbers for nonlinear analysis case, and other output
control options.

253 User definable routine — UMAT

This section limits its atention to the ABAQUS user definable material routine
-UMAT, more specifically, the UMAT of ABAQUS version 4-7-25 which is the
program we have used for the analyses presented in this study.
2.5.3.1 Basic interaction of ABAQUS with UMAT routine

When UMAT is called by an ABAQUS element routine, twenty seven variables
(matrices, vectors, and values) are passed and/or returned through the UMAT subroutine
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argument list including: material properties, current stress, swain, temperature, time,
state variables (which are needed in material constirutive calculation), increments in
strain, temperature, time, and updated stress vector and instantaneous stiffness matrix.
Note that if the material stiffness matrix is symmetric in the analysis, ABAQUS will
store the diagonal entries as well as the lower triangle part of the marrix, therefore users
may update their instantaneous stiffness to those values only. This has the advantage
of avoiding the unnecessary operatons which reurn the entries on the upper part of

the stffness matrix to ABAQUS element routne.

2.5.3.2 Integration of material models into UMAT

In its applicaton to composite materials, the UMAT subroutine works as
the mechanism which links the micromechanical level material model to the
macromechanical level behavior of a composite material. The essential part of the
UMAT procedure is the material routine which calculates the constitutive law at each
sampling point. Any material model which satisfies the requirements stated previously
can be used in UMAT. The UMAT subroutine then performs six functions:

1. Initialize all solution dependent variables at the start of loading path.

2. Set up the counters for indicating the material point number.

3. Check the beginning of an increment, update solution dependent variables (from

temporary array) and return elastic stiffness to ABAQUS element routine.

4. Calculate the stress vector and the instantaneous stiffness due to strain increment.

5. Store solution dependent variables in the temporary array.

6. Return updated instantaneous stiffness matrix and stress vector to ABAQUS.

Some operations for integration of 2 material model into UMAT are dependent on the
type of material constitutive formulation. Details of these operations must therefore be
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described for specific material models. In Chaprers 3 and 4, we describe implementation
of the PHA model and the BIMODAL theory, respectively, into UMAT subroutine.

2.5.4 ABAQUS post-processing capabilities
ABAQUS also supports a group of post-processing options including:

1. Output requests of line printer outputs, model plots (mesh plots - part or
complete domain), result plots (contour plots - part or complete domain or even
combination of several plots, deformed shape plots, and history plots - for the
evolutions of specific quantity),...etc. for various of output devices.

2. Restart runs from previous results.

3. File transfer from local computer system to remote computer system for
subsequent ABAQUS runs on remote computer system. The binary format
for both computer systems may be different during the file transfer procedure.

4. User definable post-processing program for specific data process from the
ABAQUS result files.

Detailed key feamres of ABAQUS post-processing capabilities can be found in
Chapters 10 and 11 of ABAQUS Users Manual [1988a]. A procedure for running
ABAQUS on VAX system at RPI is shown in Appendix A.
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Figure 2.1 Placement of Composite Material Models into Finite Element Procedure
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CHAPTER 3
PERIODIC HEXAGONAL ARRAY MODEL: DESCRIPTION
AND FINITE ELEMENT IMPLEMENTATION

The development of composite material models for the application in the elastic range
has been well established by two major approaches, namely, the Composite Cylinder
Assembly (CCA) model [(Hashin & Rosen, 1964] which provides rigorous bounds on the
moduli, and the Self-Consistent Method (SCM) [Hill, 1965, and Budiansky, 1965] and
the Mori-Tanaka Method [Mori & Tanaka, 1973, Benveniste, 1987, and Dvorak, 1990a]
which both provide single estimate of each of the moduli. However, the application of
these models for prediction of elastic-plastic responses has certain limitations (see for
example, Dvorak & Rao [1976a,b], Dvorak & Wung [1984] and Dvorak & Bahei-El-Din
[1979]). The Periodic Hexagonal Array (PHA) model, (Teply,1984, Dvorak & Teply,
1985, and Teply & Dvorak, 1988] overcomes the shortcomings of the above models.

3.1 Overview of the periodic hexagonal array (PHA) model

The analysis of the PHA model begins with selection of an appropriate representative
volume element (RVE) and the identification of an appropriate set of periodic boundary
conditions which allows an analysis of the RVE that will yield useful information on the
overall behavior of the composite. One of the assumptions that yield a set of boundary
conditions is uniform far-field strains on the micromechanical volume containing the
RVE. Although there are gradients in the solution at the macromechanical level, the
uniform strain field assumption is adequate for the purpose of determining the material
pmpetﬁes.mnemdmpﬁmwhichisimpomwmemonoﬁmvmim
set of boundary conditions is a regular packing of the fibers. In the PHA the packing
is assumed to be hexagonal within an individual lamina. Since the metal matrix
composites considered here are typically reinforced by large cross-section continuous
filaments arranged in a fairly regular array, this is an acceptable assumption.

17
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Using the PHA formulation, Teply [1984] has developed finite element based

upper and lower bound solutions for the RVE. Since our study is concemed with

implementation of the PHA model into a displacement based finite element analysis
code, only the displacement based upper bound formulation is considered here.

3.1.1 Geometry and assumptions of PHA model

In the PHA model, the fibers are assumed to be periodically distibuted throughout
the layers of the matrix marerial in a topologically periodic hexagonal configuration
(Fig.3.1).

Under overall uniform stress or strain applied to the periodic microstructure, a
representative volume element (RVE) may be selected for the evaluation of overall
properties and local fields. The RVE must satisfy the following properties:

1. When repeated it covers the entire macroscopic volume of the composite.
2. When the composite is loaded by uniform stresses or strains, the local stresses
and strains must be invariant under coordinate transformations which repeat the
RVE in the composite domain.
It is clear that the composite hexagons shown in Fig.3.1 may be selected as RVE.
If the area of the composite hexagon (Fig.3.1) is equal to unity, the dimensions
shown in the figure can be found as function of the fiber volume fraction c¢ as [Teply,

1984)

1-/cr
= 1oV 31
== @b
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As indicated by Dvorak & Teply (1985 and 1988] the composite hexagon is not
a pardcularly convenient choice due to the difficulty encountered in the application of
periodic boundary conditions. A more suitable selection of RVE is a triangle defined by
connecting the centers of adjacent fibers (Fig.3.2). In this way, the composite domain
is divided into wiangular subdomains, these are identfied by either the shaded or the
unshaded triangles shown in Fig.3.2. It can be shown [Teply, 1984] that the shaded
triangles can be converted into the unshaded triangles by a —§ transformation, where § is
the Kronecker’s symbol. Either the shaded or the unshaded RVE is representative of the
composite domain. Figure 3.3 shows two adjacent triangles with shaded triangle in X|

coordinate system and unshaded triangle in X; coordinate system. The ransformation
X' =-6X+Co 3.5

where for the configuration of Fig.3.3, Co = c(ﬁ, 1, o), converts the shaded
triangles into the unshaded ones throughout the composite domain. Also, it is shown
(Teply, 1984, Dvorak & Teply, 1985, and Teply & Dvorak, 1988] that under overall
uniform fields, both the overall and local stresses and strains are invariant under this
transformation, and that the surface tractions and displacements in the two coordinate
systems are identical. Figure 3.4 shows a 3D view of the RVE used in the PHA model,
where c¢ denotes the fiber volume fraction of the composite.

3.1.2 Periodic boundary conditions, overall strain- displacement relation,
and overall stress-force relation of the RVE

The boundary conditions for the PHA model are imposed in the RVE to reflect
the periocicity of the microstructure. These boundary conditions are derived from
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the requirement that the local fields in the shaded and unshaded triangles remain

invariant under the transformarion (equation (3.5)). These conditions together with the
requirement of displacement continuity across the RVE bounéiaﬁ?s lead to expressions
for the boundary displacement in terms of intemnal point and vertex displacements.
Fig.3.5 shows detail of the RVE configuraton. The displacement Uy, of the mid-point
M on the V,V3 boundary of the RVE can be derived from the expression of identical
strain in two adjacent RVE's and equation (3.5) (Teply & Dvorak, 1988]:

1
Um = E(UV‘ + Uv,) (3.6)

where Uy,, Uy, are the displacement at vertices V, V3, respectively.

An expression for the displacement Uy, of arbitrary point on the V;V; boundary
is derived due to the linear displacement fields in element 7 of Fig.3.5. From equation
(3.6) and the linear displacement along the boundary sm of element 7 and the boundary

rm of adjacent element (i.e. the element 7 of adjacent RVE), it is found that [Teply
& Dvorak, 1988, and Fig.3.5]:

1
m = -;;(Uv, + Uv, = Uy + Uy) 3.7

Similar equations can be written for the boundaries V; V2 and V5 V3.
The requirement of generalized plane strain of the fibrous medium in the fiber
directon is imposed by the following boundary condition (Fig.3.4):

1
Uy - Uj=Uy, - ;(Uv, + Uv,) (3.8)

where the coordinate of the point k is (1, X3, X3) and the coordinate of the point j
is (0, X3, Xj3).

A set of support conditions for the RVE required to eliminate rigid body motions
are shown in Fig.3.4. In this figure, the vertex V, is fixed in X, and X; directions,
vertex V3 is fixed in all three directions and venex V is fixed in X; directon.
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An equivalent homogeneous volume (EHV) which has identical support conditions

as the RVE is assumed for the derivation of the overall strain-vertex displacement
relation and overall stress-vertex force relarion. Let 7 and € denote the overall stress

and swain, respectvely, where

g — e

T = [G11. Tz, T33. T12. 513, Ta3)” (3.9

€ = (€11, €22, T33, 2€12, 2813, 2'6'23]T (3.10)

T denotes the displacements of the vertices V1, Va3, V3 and V4, shown in Fig.3.5,

and F denotes the nodal forces at the vertices, where

T = [uv,. uy,. Vv,. Wv,. Wy,, Wv.]'r (3.11)

and
w x X Yy Z z z T
F= [Fvl, v Fv, Fy, Fy,» V.] (3.12)
Here, u, v, w are the vertex displacements in x, y, z direction and the subscripts
indicate the vertices.
For an equivalent homogeneous element with tri-linear displacement functions, the
strain-displacement and is given by [Teply, 1984]:

e=Bu (3.13)

where B is derived from the multiplication of the differential operator matrix (which
is the matrix which relates the strain vector with the displacement vector) and the
shape function matrix (which is the martrix relates vertices displacement vector with the
displacement vector in the domain). For the vertices V;, V2, V3 and V, indicated in
Fig.3.4, the B is found as:
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[0 1 0 0o 0 07
0 0 -r 0 0 O
|0 0 0o 0o -30
B=' 00 0 0 o0 (3.14)
0 0 0 0 -3 1
L0 0 0 -r § O]

where r=715 and s = V3 =1

The stress-forces relation of the equivalent homogeneous element can be derived
from the virrual work equation which equilibrates the external work done by nodal
forces and the internal work done by stresses in the element. This leads to the explicit

expression for the stress-nodal force relaton [Teply, 1984]:

=B " F (3.15)

3.1.3 The overall instantaneous stiffness matrix (L) of the RVE

To determine the overall instantaneous stiffness matrix of the RVE, the equivalent
homogeneous volume of unknown material properties is again considered. It is
the instantaneous stiffness parameters of the EHV that are needed to perform the
macromechanical analysis. The overall properties of the EHV are found by equating
the total strain energy computed for the EHV and the RVE when they are subjected
to identical overall fields.

It is shown in [Teply, 1984) that the energy change in the EHV and the RVE,
namely, AIlggv and AllgvEe, are given by:

Allggv = %AﬁrﬁrﬁAﬁ' ~ AF AT (3.16)

Allpve = %Aii’TKAE ~aFtan (3.17




where

Au is 2 common set of nodal displacemen:s at Vi, V3, V3 and V4 for both
the EHV and RVE.
B is the strain-displacement matrix shown in equaton (3.15).

AF is the nodal forces equivalent to surface tractions acting on the EHV and
RVE.

L is the instantaneous stiffness of the EHV.
K is the stiffness matrix of the RVE finite element mesh, which is the assembly
of fiber and matrix subelement stiffness matrices, L¥, and as a result, it is also

a function of fiber and matrix subelement material matrices.

The composite overall instantaneous stiffness matrix L can then be found by
equating the equarions (3.16) and (3.17). This yields the explicit form of the overall

instantaneous stffness matrix in terms of local quantities:

L=(8") “R® (3.18)

3.2 Thermomechanical loading

Under overall thermomechanical loads, the PHA boundary conditions, and stiffness
matrix (equation 3.18) remain unchanged. Only the solution of the RVE must be
modified. The thermomechanical correspondence derived by Dvorak [1986] can be used
to convert the thermomechanical loading path to a mechanical path. This important
result was derived from the following decomposition procedure.

1. In the first step of the procedure, the phases are separated and tractions applied
to the surface of each phase to maintain the current local phase stresses and
strains. A uniform thermal change dé is then applied to both phases. Since
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the phases have different coefficients of thermal expansion, they will deform
differently under d6. Therefore, auxiliary uniform stresses must be applied
to both phases to ensure compatibility of the phases when the composite is
reassembled.

2. In the second step, the auxiliary stresses are computed from the requirement
that the phases must be compatible. The traction equilibsium at the fiber/matrix
interface and on the surface of the composite representative volume clement is
automatically satisfied since the auxiliary field is spatially uniform.

3. In the third step of the procedure, the phases are reassembled and the surface

tractions are removed.

It was shown by Dvorak [1986] that if the phases are transversely isotropic, then
the overall stress equilibrating the phase auxiliary stresses is axisymmetric (assuming
that the fibers are aligned in the X, direction):

{ dcll h' { SA \
doz2 St
_)deoss | _ ) ST
do = { 3758 L =43 49 (3.19)
doas 0
\ dor13 ) . 0 )
where
SA = (agby — a1bs)/(a1bs — azb,) (3.20)
St = (agbs — asbz)/(a1b2 — azb;) (3.21)
a1 = (n¢ + cmle)/ (keEL) = 2/(3Kn) (3.22)
as = —l¢/ (c;kgE{) (3:23)




and

azg = 2(&-&- - am)

b =1/ )+ 1/8Ke) /5

K is the matrix bulk modulus.

a™ is the matrix coefficient of thermal expansion.

Ef is the fiber longitudinal Young’s modulus.

af is the fiber longitudinal coefficient of thermal expansion.
af; is the fiber ransverse coefficient of thermal expansion.

ke, l¢, ne are the Hill’s moduli [1963] of the fibers:
¢ f £\2 ot
i ke = ~1/|1/G% — 4/E% + 4(of) /EL]

le = 2kevf

ne = E +13/ke

(3.24)

(3.28)

(3.26)

3.27)

(3.28)

(3.29)

(3.30)
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GY is the fiber ransverse shear modulus.
Ef is the fiber wansverse Young’s modulus.
v{ is the fiber longitudinal Poison’s ratio.
When the composite is in the plastc range with a loading increment of do and d8

(or de and d@) , the corresponding equivalent strain (or stress) increment are found

as [Dvorak, 1986):
de = hdd + M(deo — S,d8)

(3.31)
do = S,dé + L(de ~ hd#)
where
Sa = [SA. ST.ST.0, 0, 0]7 (3.32)
h=[H, H, H, 0, 0, 0]T (3.33)
St m
H= K 4+ a (3-34)

and M and L are the instantaneous compliance and stiffness matrices of the composite,
respectively.

With the help of equation (3.31), the composite thermal stress can be found by
setting the strain increment equals to zero (i.e. no mechanical load is applied):

dotbermal — (g _ Lh)dé (3.35)

In this way, the thermal load is converted to mechanical load. The usefulness
of equations (3.31) and (3.35) is the implementation of this procedure into mateial
constitutive models. The spplication of the decomposition procedure into laminate
constitutive formulation is discussed Chaprer 5 (see Bahei-El-Din, [1990b]).
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33 Programming algorithm of the PHA constitutive model

The original PHA upper bound constitutive program developed by Teply [1984] has
been substantially modified. The program was first, modified by Shah [1986] to include
thermomechanical loading using the decomposition procedure, and later modified by
the author to improve its computation efficiency. For a set of given material properties
and loading path, the programming steps of the modified PHA constitutive program
are summarized below:

l. Read phase material constants.

2. Calculate basic material quantides such as Hill’s moduli [Hill, 1964] and S,
and h vectors (defined in equations (3.32) and (3.33)).

3. Calculate the RVE strain-displacement matix B in equation (3.15).

4. Calculate the stiffness contributions of the fiber subelements to the stiffness of
the RVE (i.e. K in equations (3.17) and (3.18)).

5. Calculate the stiffness contributions of the mamix subelement to the stiffness
of the RVE.

6. From steps 3 to S, calculate the overall composite moduli L and the stress
congm:ﬁonfmofd:eplnm

7. Read the loading path. The program stops if this is the end of the loading path.
Otherwise check the plasticity condition for each matrix subelements through
stress concentration factors.

8. In the PHA constitutive program, the linear kinematic hardening is assumed for
all matrix subelements. Once the plasticity condition of the matrix subelement is
detected, the program performs numerical integration for the plasticity quantities
such as the translation of the yield center of the matrix subelements which have




already yielded, and the instantaneous stiffness of the elastic-plastic marmix
subelement.

9. Repeat steps 8, 5, and 6 until the current loading increment has been completely
integrated. Once the specific loading increment is absorbed, the program goes
to step 7 for another new loading increment.

Note that the PHA’s programming steps described here are intended to serve as a
reviewing purpose mainly for the use of next section. Demils of the data strucrure
and plasticity integration used in the PHA program can be found in Chapters 3, 4,
and 5 of Teply [1984].

3.4 Implementation into general purpose finite element code

As shown in Fig.2.l, in the finite element analysis of composites the material
constitutve model always requires consideration of material nonlinearities of the matrix
phase. The composite mixing model considered here is the PHA model, and, in the case
of metal matrix composites, the matrix is an elastic-plastic material. Therefore the PHA
evaluations are at the innermost loop of iteration in the nonlinear finite element analysis
process. This means that the integration of the PHA model in a macromechanical
finite element procedure must achieve the maximum computational efficiency of the
individual PHA calculstions. .

Referring again to Fig.2.1, it is the individual element subroutines that call the
UMAT routine at each numerical integration point at which the instantaneous material
stiffness matrix is to be updated. The UMAT routine is respounsible for ordering the
information in the form needed for the PHA and calling the PHA. The PHA routine
then determines the overall propertes at the material point based on the constituent
properties. This requires that the PHA routine invokes some other subroutines to
calculate the material stiffness contributions of the matrix and the fiber phases through
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the matrix constirutive relarion (may be elastic-plastic) and the fiber constitutive relation

(elastic response is assumed), respectively.
3.4.1 Integration of periodic hexagonal array model into ABAQUS

The user-defined material routine within ABAQUS must perform operations
indicated in Section 2.5.3.

When the PHA model is implemented into the ABAQUS finite element procedure
through the UMAT subroutine, 2 complexity that arises in this process is that it
uses a swess increment to calculate the instantaneous stiffness and strain increment.
However, ABAQUS, which is a displacement-based finite element procedure, provides
the UMAT routine with 2 strain increment and requires back the instantaneous stiffness
and corresponding stress. Therefore it was necessary to introduce the local iteration
explained below into the UMAT routine. This procedure has been found, typically, to

converge within two or three iterations.
3.4.2 Local iterations and initial thermal stress in UMAT

When UMAT is called during a load increment including mechanical and/or thermal
loads, ABAQUS provides the current state (the results at the end of previous increment)
of stress (o(4)), strain (¢(4)) and temperature (T') for each giobal iteration. At the start
of a load increment, that is in the initial iteration of the current load step, the strain
increment is zero (A€, )=0) and the temperamre increment (AT) is the value for that
load increment. The function of this initial iteration is to provide the macromechanical
analysis procedure (ABAQUS) with an appropriate instantanecus stiffness matrix and
the appropriate introduction of the effects of any thermal load for that increment. Unlike
the finite element procedure, where thermal effects are accounted for by the construction
of an initial strain vector, the approach used here is to convert the thermal increment
into an equivalent mechanical load through the use of an initial stress vector. The
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determination of this initial stress vector must be carried out at the micromechanical
level and account for the different thermal characteristics of the marrix and fibers. The
analysis is done using Dvorak’s decomposition procedure [1986] (see Section 3.2). The
stiffness mamix and inital swess vector are reumed to ABAQUS, where the effects
of the pure mechanical load are combined with the initial stress vector to predict the
strain increments for this load step. From this point through the remainder of the
macromechanical ABAQUS level iterations for this load increment the UMAT routine
treats all load types as pure mechanical load at a temperature equal to T+ AT.

In each of the subsequent macromechanical iterations for a load increment, UMAT
receives a non-zero strain increment predicted from the given instantaneous stiffness
and load increments. This strain increment must be converted into a stress increment

(A (a)) and added to the stress at the current state (0°(4)) to form a new stress vector
(@(y)) for the PHA procedure:
crftl_,)) = oa) + LA¢a) (3.36)
where
L is the stiffness at the beginning of increment.
LAeg(,) is the trial stress increment.

The PHA procedure calculates a new srain vector (€(r;)) which must be compared
with the strain vector given to UMAT by the macromechanical level (ABAQUS) model
(e(a) + A€(a))- If they are not nearly equal, a local iteration in the UMAT routine is
initisted where the stress vector used in the PHA is updated by

(+1) _ (D) (i) (i) =

c(“t}';”isdnnewmvectorformePHAconaimﬁvemﬁneinpm.
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a'((g) is the stress vector at the end of i local iteration.

L(i)

(u) i§ the instantaneous stiffness ar the end of i local iteration.

€(A) is the strain vector at the beginning of the increment.
A€, is the strain increment at this global iteration
e:“}) is the strain increment at the end of i local iterarion.

o(y) is the swess at the end of previous global iteration (maintained by the

UMAT routine).

The convergence criterion used in the UMAT iteration is:

(i+1)
cvy — (ea)+ AE(A))’

l€a) + A€(a)]

< tolerance (3.38)

The selection of the tolerance depends on the tolerance used in the nonlinear finite
element procedure and the tolerance used in the nonlinear constitutive calculation.
These three tolerances should be chosen so that same level of accuracy is performed in
each process. Typical number for the tolerance is between 107 to 1075, In this work,
103 was chosen as tolerance for all calculation.

The local iterations will be repeated untl equation (3.38) is satisfied, i.e. the
convergence of the local iterations is reached. Figures 3.6 and 3.7 illustrate the iteration
process given by equations (3.36) to (3.38).

3.4.3 Programming steps in UMAT with PHA model

The summary of the steps carried out in the user-defined material routine UMAT
based on the PHA material model for metal matrix composites are:

1. At the beginning of an increment, update the solution-dependent variables and

calculate initial stresses due to temperature change (if thenmal load exists).

2. For other than the initiation of a load increment, caiculate a new stress vector

for PHA (equation(3.36)).
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3. Invoke the PHA procedure to calculate the srain vector and instantaneous
stiffness due to the new stress vector.

4. Compare the strain vector from PHA to the strain vector from ABAQUS
(equation (3.38)). If the strain vector has converged, rerum the instantaneous
stiffness and stress vecter to ABAQUS, otherwise adjust the stress vector by
using equation (3.37) and return to step 3.

5. The flow chart for these steps is shown in Fig.3.6.

The pseudo codes of UMAT with PHA and PHA routines and the User’s guide of
PHA version UMAT are summarized in Appendix B.

3.4.4 Applications

The UMAT subroutine developed for the PHA model was used to compute the
response of a P100 graphite-aluminum (Gr-Al) composites and laminates subjected
to cycles of uniform thermal change [Wu, et al, 1989]). The fibers are assumed to
be elastic, the matrix is an elastic-plastic solid of the von Mises type. Constitutive
equations of the matrix are given in the context of infinitesimal strains. The matrix
hardens kinematically, according to the Ziegler rule (1959]. Table 3.1 shows constituent
propexties in the elastic range, the inelastic properties (i.e. the plastic tangent moduli)
areindicate&inthembcequutﬁmforindividualcm.

The examples examine the response of a laminated plate that conmsists of many
alternating layers in a (+¢), lay-up. The finite element model of the piate, Fig.3.8,
consists of two eight-noded solid elements, one for each +¢ and —¢ layer. Uniform
displacements on each surface were prescribed as boundary conditions. The selected
idealization for the (£¢), of the solid finite elements allows the application of the
PHA model to account for the micromechanical level plasticity of matrix material.
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Figure 3.9 shows the response of the Gr-Al composite under 2 uniform thermal
change which starts at 20°C and then follows the cycle to +120°, -.12¢°C and +120°C.
Marrix (m) properties in the plastic range, are specified in terms of the rato of a
constant tangent modulus, to the elastic Young’s modulus, (E.-,,'E)_,. The axial strain
is plonted as function of the temperature change. The solid line indicates the response
of a unidirectionally reinforced plate, 0=0°, whereas the dashed line represents laminate
response. In the elastic range the (£12), laminate is dimensionally stable in axial
directon, hence no axial overall strain is caused when the temperature changes from
20°C to 60°C which marks the onset of initial yielding in the plate. After that the plate
is seen to undergo axial contraction while the temperature increases to +120°C. The
reversal of the direction of thermal change causes elastic unloading and therefore brings
back dimensionally stable response. Plastic loading sets in again at +50°C and cortinues
until -120°C. No dimensional stability is seen in the response of the unidirectional plate.
However, the rate of plastic strain change is much lower in the unidirectional plate and
therefore, the total axial strain amplitude caused by the thermal change cycle is actually
smaller in the unidirectional plate.

Figure 3.10 shows a similar result for the same Gr-Al composite in which the
aluminum matrix has a larger tangent modulus. The unidirectional composite and the
laminated plate are again subjected to the thermal change prescribed in figure S.4.
Owing to the greater stiffness of the matrix in the plastic range, both plates experience a
smaller strain amplitude. Once again, the axial strain ampliiude of the laminate exceeds
that of the unidirectional plate.

Figure 3.11 indicates the computed variation of the axial thermal expansion
coefficients in the elastic and plastic regions, as a function of the lamination angle
¢. When linear hardening is assumed for the matrix, the composite’s asymptotic tangent
modulus is constant, and the CTE in the plastic region is proporional to the slope
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of the asymptotic portion of the strain/temperature curve in the plastic region (see for
example, Figs.3.9 and 3.10). Figure 3.11 shows that elastic composite laminates have
a vanishing axial CTE at about 0=12°, while the laminates with the stiffer matrix in
the plastic range show this property at 0=2°. The laminate with the lower hardening
matrix has no dimensionally stable lay-up.

Figure 3.12 shows the total axial strain or amplitude of the three composites
subjected to the thermal cycle of Figs.3.9 and 3.10, again as a function of the lamination
angle o. For 0=12°, the magnitudes of the strain amplitudes during the cycle are shown.
As already mentioned, the results indicate that in the presence of plastic straining, the
unidirectional reinforced plate may have a better dimensional stability than a laminated
plaie depending on the magnitude of matrix plastic tangent modulus (see Figs.3.9 and
3.10 for the comparison of different plastic tangent moduli). Of course, the actual
response will also depend on the magnitude of the matrix yield stress. The value used in
the present examples (Table 3.1) corresponds to an as fabricated material. Higher yield
stress magnitudes and lower strain amplitudes can be achieved by heat treatment of the
marrix. More specific investigation of dimensional stability of laminates is summarized
in Chapter §.
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Properties Fiber Matrix
Volume fraction 0.5 0.5
Axial Young's modulus 6.8955 x 10+5 72395 x 10+4
(MPa)
Axial Poison’s ratio 041 0.33
Axial shear modulus (MPa) 15517 x 10+4 27216 x 10+4
Axial CTE (m/m°C) -1.6200 x 10-6 2.4000 x 10-5
Transverse Young's 6.0690 x 10+3 72395 x 10+4
modulus (MPa)
Transverse shear modulus 2.0690 x 10+3 2.7216 x 10+4
(MPa)
T“‘;“’m/:?;m 1.0800 x 10-5 2.4000 x 10-5
“‘::;‘;‘dm in 7.0000 x 10+1

Table 3.1 Material Properties for P100 Graphite-Aluminum Composite




Figure 3.1 Dimension of Periodic Hexagonal Array with Cylindrical Fibers [Teply, 1984]
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Figure 3.2 Transverse Cross Sections of Periodic Hexagonal Array Models
of Fibrous Composites with Hexagonal Cylindrical Fibers (Teply, 1984]
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Figure 33 Two Adjacent Unit Cells and Their
Local Coordinate Systems (Teply & Dvorak, 1988)



Figure 3.4 Dimension and Support Conditions of the
Unit Cell in PHA Model [Teply & Dvorak, 1988]
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Figure 3.5 Unit Cell and the Finite Element Mesh
Used in PHA Model [Teply & Dvorak, 1988]
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APPENDIX C

Bimodal Plasticity Theory: Description and Finite Element Implementation




CHAPTER 4
BIMODAL PLASTICITY THEORY: DESCRIPTION
AND FINITE ELEMENT IMPLEMENTATION

The bimodal plastcity theory proposed by Dvorak & Bahei-El-Din [1987],
Bahei-El-Din & Dvorak [1989b, 1991] is a semi-phenomenological model which
assumes the plastic deformation of fibrous composites consisting of elastic fibers
and elasuc-plastic, rate-independent matrix can be described in terms of one of two
deformation modes, the fiber-dominated mode (FDM) and the matrix-dominated mode
(MDM). In the fiber-dominated mode, both phases deform together in the elastic and
plastic range and the composite aggregate is treated in the context of heterogeneous
media elasticity and plasticity. In the matrix-dominated mode, plastic deformation is
caused by slip on matix planes which are parallel to the fiber axis. The yield condition
corresponding to each mode provides a yield surface in the overall stress space. The
overall yield surface of the composite is then given by the inner envelop of the FDM
and MDM yield surfaces. The dominant deformation mode is determined by the elastic
moduli of the phases, in particular the longitudinal shear modulus, and the overall
loads. For example, in the plane stress space, the matrix-dominated mode is active
in fibrous composites where the ratio of the longitudinal elastic shear modulus of
the fiber and the matrix is large, for example, B/Al and SiC/Al composites. In this
case, the large shear stiffness of the fiber prevents slip on matrix planes other than
those allowed in the matrix-dominated mode. The fiber~dominated mode is found in
composite systems where the fiber longitudinal shear modulus is comparable or smaller
than the matrix elastic shear modulus. This mode is also found where the overall axial
stress is dominant. Figures 4.1 and 4.2 [Dvorak & Bahei-El-Din, 1987] show examples
of composite yield surface for a B/Al and a Gr/Al composite. In the plastic range, the
overall instantaneous moduli of the composite are found from the deformarion mode
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corresponding to the yield branch containing the stress point. Recent experiments by
Dvorak, et al, [1988] on a B/Al composite system have verified the existence of the
deformation modes postulated by the bimodal plastcity theory. Figures 4.3. and 4.4
[Dvorak & Bahei-El-Din, 1987], show comparison of the experimental yield points and
the bimodal yield surface for a B/Al composite.

In this chapter, the fiber-dominated mode and the matrix-dominated mode are
described and the constitutive program for each mode is presented. Also, the connecton
between the two modes is investigated for a general loading path in which loading with
a specific mode may have been preceded by deformation with the other mode.

4.1 Fiber-dominated plasticity

Plastic deformation in the fiber-dominated mode is described with the averaging
models originally introduced by Hill [1963] for elastic phases. In this section, we
describe the governing equations and programming algorithms for implementation of
the constitutive relation.

4.1.1 Governing equations

The constitutive relations of the phases are assumed to be known for the volume

average of the local fields. Under isothermal loads, the phase strain average der and
stress average do, are related by

dor = L.de;
4.1)

de; = M. do,
where
r = f or m, f=fiber phase and m=matrix phase.
L. = instantaneous stiffness matrix of the phases.
M; = L]! = instantaneous compliance mamix of the phases.



50
Similar relations can be written for the composite overall uniform field:
do = Lde
4.2)
de = Mde

where

L = instantaneous stiffness matrix of the composite.

M = L~! = instantaneous compliance matrix of the composite.

The volume average of the local stress and strain increments are related to their

overall counterparts by [Hill, 1963]:

de = cgdog+cpdonm

4.3)
de = crder+cpmdéem
where
cf,Cm = fiber and matrix volume fractions; cp+cy = 1.
In addition, the local fields are assumed to be related to the overall fields by:
dd’r = Brdd’
(4.9)
der = Arde

where

B, = instantaneous stress concentration factor of the phases.
A, = instantaneous strain concentration factor of the phases.

From equations (4.3) and (4.4), the phase concentration factors can be related as:

CfAf+CmAm = I

(4.5)
ceBe+cymBm =1

where I is a unit matrix of order 6.
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From equations (4.1), (4.2), and (4.3), the composite overall stiffness and compliance

matrices are found as:

(4.6)
M = ceM¢Bs+cy uMin By

Simplified expressions of composite overall stiffness and compliance matrices are
obtained by substituting equations (4.5) into equation (4.6):

L = L¢+cm(Lm — Lf)Am
4.7
M = M¢+cm(Mpm — M¢)Bm

The overall response of the composite is given in terms of the known local properties
of the phases, phase volume fractions, and the concentration factor of the matrix or
fiber phases.

4.1.2 Concentration factors

In the clastic range, the concentration factors of the phases can be found from
an averaging model. In the present work, the method developed by Moni & Tanaka
(1973] was adopted for evaluation of the elastic concentration factors. The fiber stress
concentration factor derived from the Mori-Tanaka method is given by [Benvenist,
1987, and Dvorak, 1990a]:

B = W(cml + ¢¢W) ™} (4.8)
where W is the fiber stress concentration factor of a dilute solution defined as:

W = L¢{TMpn (4.9)
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T is the fiber strain concentration factor of the dilute solution (i.e. found from the case
when single fiber is embedded in an infinite marrix) defined as:

T=[I+P(L¢ - Ly)]™? (4.10)

where P is a constant marrix which depends on the shape of the fibers and elastic
properdes of the matrix. The explicit forms of P mamix for various fiber shapes can
be found in the literature (see for example, Dvorak [1990a]).

In the plastic range, a method, which was originally developed by Dvorak [1990a]
for the evaluation of the overall plastic strain in the binary composite systems, is utlized
to derive the instantanecus concentration factors. For the composites with elastic fibers,
the plastic strain increment in the marrix phase (deP,) is related to the overall plastic

strain increment (deP) by
deP? = cyBI deB (4.11)

where BI_ is the transpose of the matrix elastic stress concentration factor defined
in equation (4.4).
The overall plastic strain and matrix plastic strain can also be expressed as:
del, = dem — deme

(4.12)
deP = de — de,

where dem, is the elastic part of the matrix strain increment, de, is the elastic part of
the composite overall strain increment, dep, is the matrix total strain increment and de
is the composite overall total strain increment.

Assume that the plastic strain increment of the matrix phase is related to the matrix
stress increment (dom ) through the plastic compliance matrix G:

de? = Gdon (4.13)
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where G is derived from the constitutive model of the matrix material (see Section 4.1.3).
The matmix instantancous stress concentrarion factor (Bil®t) can be derived by
substituting equartions (4.1), (4.11), (4.12), and (4.13) into equarion (4.3). The explicit

form of the BiBst is shown as:
inst T -t
B2 = [(Mpe = Mp) + (1= BL)G| ™ (M. = My)/cm (4.14)

where

Me is the composite overall elastic compliance matrix [= M¢ + ¢y (Mme—
Mt‘ ) Bme]-
Mpe is the matrix elastic compliance matrix.

Mr is the fiber compliance matrix ( assume always elastic).

The fiber instantaneous concentration factor (Bi"**) and marrix instantaneous
concentration factor (Bi2*) can be related by substituting equation (4.10) into equation
(4.5):

. N -1
B = (I - cmB::") /et 4.15)

It can be shown from equations (4.1) to (4.4) that the phase stress concentration

factor and stnm concentration factor are related as:
A, = M;B;L (4.16)

where L is the composite overall stiffness matrix given by equation (4.7).

Note that equation (4.16) is valid in both the elastic and plastic ranges since it is
derived from its incremental form.

From equation (4.7), we know that once the instantaneous stress concentration
factors of the phases are found, the overall stiffness matrix is determined. There is
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alternative way of determining composite instantaneous stiffness matrix. This method
is based on the numerical integration of Eshelby’s S tensor (Eshelby, 1957}, [Gavazz
& Lagoudas, 1990]. However, this numerical integration procedure losses computation
efficiency when the material is in nonlinear range. This is because that the martrix phase
is no longer isowopic in this stage.

4.1.3 Constitutive equations of the matrix

From equations (4.1.b), (4.12.a) and (4.13), it can be seen that the key quandty
that the matrix constitutive equations should provide is the plastic compliance marrix
G. For the associated flow rule which satisfies the normality requirement, the G marrix
is found as:

nnT

G=—F
cn® n

4.17)

where

n = §L, fis the mamix yield function.

n = n; for i=l, 2, 3, and n" = n;/2 for i=4, §, 6.

¢ = 2H/3, H is the matrix plastic tangent modulus.
Equation (4.17) contains another matrix plasticity parameter H which is known as
the mamix plastic tangent modulus. Severaltheoduft;revduationofHunder
nonproportional loads are found in the literature. Two of the well known theories
are the multisurface theory and the two surface theory. The multisurface theory model
was introduced by Mroz [1967). In this model, the yield surface is initially surrounded
by a series of concentric hypersurfaces which define a series of different constant values
of H. This leads to a piecewise linear stress-strain response in the loading history.

The two surface models are developed (see for example, Hashiguchi (1988], Krieg

[1975] and Dafalias & Popov (1976]) mainly for the purpose of simplifying the
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complexity which exists in the multisurface model. However, it rams our thar the
two surface model of Dafalias & Popov [1976] is the only one which allows for the
specification of an arbitrary hardening rule for the yield surface. Therefore in our work,
the marrix instantaneous plastic tangent modulus (H) is defined through the two surface
plasucity theory which was proposed by Dafalias & Popov (1975, 1976]. The theory
postulates the existence of a yield surface and a bounding surface, which are capable
of defining H, ranging from infinity at the beginning of the yielding to an asymptotc
value Ho when the two surfaces are in contact. This two surface plastcity theory, as
indicated in the original paper [Dafalias & Popov, 1976], has the advantage of modeling
matenial behavior under cyclic load. A schematic representation of the two surface
theory is shown in Fig.4.5 where the bounding surface is an isotropic expansion of the
yield surface and these two surfaces are concentric at the initial state.

For a Mises matrix material with kinematic hardening, the yield surface
f(em — am) and the bounding surface f(o* — 3*) can be written as:
f(om — am) = (0m — Am) T C(0m — am) = Y2 =0

(4.18)
f(o* -8 = (" -B")7C(e" -8 -F =0

Qnm is the center of mamix yield surtace.

B* is the center of matrix bounding surface.

C is a constant matrix which relates the stress state to the yield function. The
explicit form is found as

"1 ~05 =05 0 0 0]
-05 1 =05 000
c=|=05 -05 1 000
0 0 0 300

0 0 0 030

0 0 0 0 0 3]
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Y is the matrix yield stress in simple tension.
Y is the size of marrix bounding surface in simple tension.
Equation (4.18) can be rewritten in terms of overall stress state:

flo —a)=(c—a)IK(c —a)-Y2 =0
4.19)
f7z-08)=F-08TKF-8)-Y =0

where

a is the center of the composite yield surface.
B is the center of the composite bounding surface.

K =Bl CBpe = constant matrix.

The centers of composite yield surface a and composite bounding surface 3 can be
found from matix cey, 3° th:oughthemmixelasticsuusconcﬁnu'aﬁon factor Bpe:

o —a=B;l(on - an) (4.20)

The magnitude of H is defined as [Dafalias & Popov, 1976]:

5 m
= 4.2
H = H, +h(5in—6) 4.21)

where

§ is the current distance between o and 7.

i is the initial distance between o and & at the onset of initial or subsequent
yielding.

Hjy is the asymprotic slope of stress-plastic strain curve.

h, m are material parameters to be determined from experimental data.
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Note that the § and §;, in equation (4.21) are originaly calculated based on marrix
stress space. However, it is possible to be evaluated on overall stress state since the
composite overall yield surface and bounding surface can be found from matrix state
through equations (4.19) and (4.20). The schemaric presentation of equation (4.21) is
shown in Fig.4.6. It can be seen from Fig.4.6 and equaton (4.21) that when §=6;,, the
plastic tangent modulus H is infinite whereas when §=0 the plastic tangent modulus H
has the value which equais to the asymptotic slope Hg. Also, the plasticity parameters
h and m define the degree of nonlinearity of the stress-strain curve.

At the current overall state, o, «, and 3, the corresponding stress point on the
bounding surface, &, can be determined from equation (4.19) by setting the same
normal. This leads to the following relation

Ko -a) _ K(7@-23)
Ke-a) K@=
where n is the unit normal of current stress state. Since K(o — a) and K(@ — 3) are
parallel, the vectors KK (¢ ~ a) [= (¢ — a)] and K-1K(7 - 8) [= (7 - B))]
must also be parallel. Therefore, equation (4.22) becomes
(c—a) _(7-=23)

(4.22)

= 4.23
o —al ~ -8l “=
Let R = |7 — 3|/|e — aj, then equation (4.23) becomes
(—-8) =R(c—-a) 4.24)
where the ratio R is found by substituting equation (4.24) into equation (4.19b):
£(F - 8) = R¥(e — a)TK(e —a) - T°
(4.25)
=R?Y? -V =0
Therefore, the ratio R becomes:
Y
= - 4
R 7 (4.26)
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and the stress point F on the bounding surface is found as

T=0+ ;{7(6 - a) (4.27)

Evaluation of the center of the bounding surface is found from equations (4.24) and
(4.26) as [Dafalias & Popov, 1976]:

d@ =da - Zu (4.28)
with
N ) (4.29)
|T - o
and
Ho ds
= — cm— —————— 4
z (1 i )uTn (4.30)
where
ds = ndo (4.31)
and
K(o - a)
. = (4.32)
"% K@ - a)l

4.1.4 Programming algorithm for stress-controlled fiber-dominated
constitutive mode

In the stress-conmtrolled fiber-dominated constitutive program, all constitutive
calculations are done based on local phase quantities. For a given overall stress
increment do which activates the fiber-dominated mode, the programming steps are
described in the following:

1. Divide the overall stress increment do into small subincrement pide, with p

being a small number which is typically in the order of 105 to 10~% at the
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beginning of an increment. However, the magnitude of p! are determined by
Runge-Kurta-Fehlberg algonthm in the subsequent subincrements.

. . The corresponding stress increment of the local phases do, are then defined as:

doy = Bi®**plde (4.33)

Check if this is a plastc loading or elastic unloading by use of the matrix
loading-unloading criteria:

—doy = 2z (4.34)

where

a. Plastc loading occurs when zz > 0.
b. Neutral loading occurs when 2z = 0.
c. Elastic unloading occurs when 2z < 0.

For plastc loading, zz > 0, a numerical integrationfiteration scheme must
be introduced to integrate the plastic equations. In the bimodal plasticity
programming work, the Runge-Kutta-Fehlberg algorithm (see for example,
Burden & Faires, [1988]) was chosen to0 petfonn_ the numerical integration.
During the numerical integration, the size of the current subincrement is checked.
If the current subincrement size is acceptable then the convergent solution of
local plasticity quantities are saved and the size of next subincrement p'*!
will be computed based on the Runge-Kutta-Fehiberg algorithm. The plasticity
quantities consist of:

a Manix plastic strain increment (deR).

b. Shift of the center of the marrix yield surface (dam).

¢. The center of the matrix bounding surface (dBm).
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d. The instantaneous stress concentration factor of the phases (Bi®*t),

based on equations (4.14) and (4.15).

S. . After the plastcity quantities are found for the subincrement. the local stresses

(do:), strains (de,), center of the yield surface (ap,), and the center of the

bounding surface (3 ), are updated to their new values:

dem = deme + deB,

des = dege
obevY — a,gld +deo

r

de2®™= ¢4 1 de
al™ =ad 4 day,
B = Bt + dfm
de =_‘cmdem + ceder

DY — eold +de

obtY — a,old + pi do

(4.35)

(4.36)

437

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)
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6. Steps 1 t0 5 are repeated until the whole increment has been applied.
7. The last step for each overall loading increment is to update the overall stiffness
" mamix L using equations (4.7), (4.14) and (4.15).

From steps 1 to 7 and equations (4.7), (4.13), (4.14), (4.42), and (4.43), the algorithm
for the stress-controlled FDM calculation is completely defined.

4.1.5 Programming steps for strain-controlled fiber-dominated constitutive mode

In the material modelling procedure, the stress-controlled constitutive formulation
program has some advantages. For example, the specifications of the loading path for
uniaxial or biaxial load cases are easier than the specifications of equivalent loading
paths for the strain-controlled constitutive formulation program. However, the draw back
of the stress-controlled formulation is the significant computation inefficiency during its
finite element applications. Therefore, an alternative and more efficient algorithm for
the implementation of the material model into finite element procedure is desired. In the
current work, an efficient numerical procedure which is based on the strain-controlled,
stress-space formulation was developed. The basic idea of this algorithm is due to the
existence of equation (4.2) in each plastic subincrement. With the help of equatons
(4.21) to (4.32), the const_imtive calculations can be carried out on the composite level.
For a given overall strain increment de¢, the programming steps of the strain-controlled
algorithm afe summarized as the following:

1. Divide overall strain increment de into small subincrement pide with
p' being a small number (the magnitude of p! is determined by the
same procedure described in step 1 of Section 4.1.4).

2. The comresponding overall stress subincrement do is found by:

do = Lpide (4.44)

where L is the composite instantaneous stiffness marrix.
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The matrix stress subincrememt doy, is then calculated based on
equation (4.33).

The matrix current stress state (o, — @) is computed by:

(fm = a@m) = Bme(o — @) (4.45)

With the known matrix stress state (o'm — <p) and its stress
subincrement donm,, the loading-unloading criteria (i.e. equanon (4.34))
is checked.

For the plastic loading case, the Rm_lgc-Kmta-Fchlbcrg numencal
algorithm is again used for the integration of plasticity quantities.
These quantities include the center of composite overall yield surface,
da and the center of the composite overall bounding surface, d3.

At the end of each subincrement, the plasticity quantities are then
updated to their new values:

a”®V =a°d 1 da (4.46)
grew — gold 4 43 (4.47)
€8eY = °d 4 pide (4.48)
oY = o%d L 4o (4.49)

and the composite instantaneous stiffness matrix L is update based on
equations (4.7), (4.14), (4.17), and (4.21) to (4.32).

8. Steps 1 to 7 are repeated until a complete increment has integrated.
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Steps 1 to 8 completely describe the aigorithm used in the strain-conmolled,
stress-space FDM constiutve calculation. The advantaze of using Runge-Kutta-
Fehlberg integration algorithm for constitutive calculation is that this algorithm has the
capability of predicting the maximum allowable subincrement size for next subincrement.
Therefore, the overall computation effort is mimmized during the integration procedure.
The user’s guide to the bimodal program and selected pseudo codes are given in
Appendix D.

4.2 Matrix-dominated plasticity

In the matrix-dominated mode, the deformation of the elastc part is assumed to
be the same as the fiber-dominated mode whereas the deformation of the plastc part
is derived from plastic slip along the plane(s) parallel to the fiber direction [Dvorak &
Bahei-El-Din, 1987, and Bahei—El-Din & Dvorak, 1991].

4.2.1 The slip systems

A typical slip system is shown in Fig4.7 where the fibers are aligned in
X —direction. The vector n is a unit normal to the slip plane, s is the slip direction,
3 is the angle between slip plane and X;-X3 plane, and 8 is the angle between the
slip direction and X;-axis so that

n=([0 cos@ -sin ﬁ]'r (4.50)

md
s=[cosf sin@sind cosAsin )t 4.51)

. T .
For a specific overall stress state ¢ = [01) 022 033 031 023 O12]  with

the center of the yield surface a = [a1; a2 a3z a3z a:z3 a1z]T.themolved
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shear stress T, on the slip plane of nommal n and in the slip direction of s is found as:

Tas= Ni(Ty — aij)s;

——
——

o) -

sin 23 sin §[(o22 — az22) — (033 — a33)] +cosBcosf(o12— (4.52)

a12) —sin 3 cos §(a31 ~ aszy) + cos 23 sin 8(o23 — az3)

The resolved shear stress T3 on the slip plane is the magnitude of the shear stress
center, with components 7 and 7, Fig.4.7, that can be found by substituting =0 and

6=7/2 respectively, into equation (4.52):

7 = cos (012 — ay2) —sinB(o3 — a31)

1 (4.53)
=g sin 28[(o22 — a22) — (033 — a33)] + cos 28(o32 — a3z2)
Here,
2 =7+ 1} (4.54)
and
Ty = Tpecosf
(4.55)

™9 = TpeSiné

Among all the possible slip systems, the active slip planes are those that have the
maximum resolved shear stress 7,,. This means that among all 3 angles, the possible
active slip planes are found by setting:

9(Tas)
o8

=0 (4.56)
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From equations (4.53) and (4.54), the condition stated in equation (4.56) becomes

the following trigonometric equation:

g(3) = {[(0'22 - asa) — (033 — ass))?

1 — (032 — @32)°}sin483 + (o32—

032)[(0’32 -— azg) hd (633 — a33)] coSs 4}3 - [(012 — a12)2/2—
(31 — a31)2/2] sin23 — (012 — a12)(#31 — as) cos 23

=0
(4.57)

To solve equation (4.57) for possible 3’s, we should consider the following
characteristics of the wigonometric equation:

1. The equation has its own period which is not necessarily equal to 2.

2. In a specific angle range (say 3=0 to =), it is possible to find several 3’s which
all satisfy the equation (4.57). However, only some of these 3’s are making
the magnitude of ™, an absolute maximum (since the perodic equation may
have several roots that maximize the equation locally).

Since evaluation of the roots of equation (4.57) is not so straight forward, it is
worth making some effort on the development of an efficient numerical solution scheme.
Several useful algorithms have been investigated and summarized in the next section.

42.2 Numerical evaluation of the slip systems
When the solution of a specific periodic equation is concerned, two important
factors must be conmsidered, inciude:

1. The solution range of interest.




2. The availability of efficient numerical solution schemes.

Referring to equation (4.57), the solution range for 3 is 0S3<~ . This means that all
the roots (3’s) that are found from equation (4.57) are neglected unless they are in the
range from 0 10 ~ in radians (or from 0° 10 180° in degree).

Various numerical schemes for obtaining the roots of nonlinear equations exist in the
literature, (see for example, [Burden & Faires, 19881). These methods may be divided
into two major families, namely iterative methods and direct methods. The iteratve
methods find the roots of the equation using a series of trial-and-error root searching
schemes and the direct methods find the roots of the equation by numerically evaluating

of the roots from explicit expression of the solutions.

The iterative methods have the following advantages

1. The roots of any nonlinear equation can be found if the method is appropriately
used.
2. The programming algorithm is extremely simple.

However, there are some drawbacks which may render these methods inefficient, for
example:
1. Some roots may be missed during the root searching procedure, especially when
the magnimde of two (or more) roots are very close.
2. The size of each searching increment must be very small. This requires more
computation effort and reduces the computation efficiency.
On the other hand, the direct methods do have some advantages such as:

1. All the roots of the nonlinear equation can always be found if the roots exist
in the specified solution range.
2. No iterations are needed during the root searching procedure.
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However, the disadvantage of the direct methods is that:

1. The explicit form of the solutions of the nonlinear equation is not always
available.
2. The programming algorithm is more complex and require specific mathematcal
manipulations.
For the wtigonometric equation shown in equation (4.57), it is found [Hall, 1990] that
an equivalent nonlinear quartic equation could be obtained. Further development and
discussion on the solution scheme to the quartic equation for various stress states was
completed here. The study on the investigation of solutions to the equation (4.57) was

done jointly by author and by Hall {1990]. The reasons for making this investigation
are that:

1. The efficiency of the solution scheme is very critical to the MDM constitutive
calculation and its finite element applications.

2. Based on the author’s knowledge, almost all of the mathemarics handbooks
are providing incomplete solutions to the quartic equations (i.e. the soluton
formulae are good for some cases only). Therefore, « complete solution
procedure is derived and implemented in the sequel

In what follows, we consider the direct method and develop *two methods for

evaluating the roots of equation (4.57).

We begin by rewriting the equation (4.57) as:

Asind4 +Bcos43 -Csin283 —Dcos28 =0 (4.58)

A= [(723 -— azz) - (033 - 033)]2/4 - (732 - 032)2

B = (033 — a3z)((022 — a22) — (o33 — aas)]




C= [(a’u - 012)2 - (o3 = 031)2 /2
D= (0'12 - aya)(o31 — Q31)
From properties of the trigonometric function, the equation (4.58) can be rearranged

imto the following form:

2B cos?23 — Dcos28 - B = (C — 2A cos 23) sin 23 (4.59)

By squaring both sides of above equation and rearranging all terms, we obtain the

following quartic equation:
ary? + asy® + asy? + oy +as =0 (4.60)

where

y = cos 283

ay = 4(A? + B?)

az = -4(AC + BD)

a3 = —4(A% + B2 - C? - D?)
aq = 2(2AC + BD)

as = (B? - C?)

The quartic equation shown in the equation (4.60) may be reduced to a quardratic
equation or a trivial equation under the following considerations: If ay = 0, then
A = B = 0 and a3 = 0. The quartic equation becomes a quadratic equation:

asy’ +aqy+as=0 (4.61)
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Consequently, for all stress states, there are only two possible types of equations,
namely quaric equation and quadratic equarion, for the active slip planes (i.e. 3°s).
More specifically, when the composite is under ransverse shear load and/or transverse
tension/compression load, the quartic equation solver is needed for finding the 3’s. On
the other hand, if the composite is under longitudinal shear and transverse hydrostatc
loads, only the quadratic equation solver is needed for finding the 3’s. Furthermore, if
the composite is under transverse hydrostatic stresses, no slip planes are activated since
A=B=C=D=0 in this case and equation (4.60) is identcally sarisfied, then there is no
effects on MDM plasticity since the trivial condidon is reached.

Note that the roots found from equation (4.60) are not all good for equation (4.59)
because of squaring operation from equation (4.59) to (4.60). These roots must be
substituted back to equation (4.59) to determine suitable roots. Once the roots (y’s)
of equation (4.60) (which also satisfy equation (4.59)) have been found, the possible
slip planes are known as:

B=%cos! ( y__-: : (4.62)

From equations (4.60) and (4.62), we can find that the maximum number of slip
planes under specific stress state is eight. However, the maximum resolved shear stress
(in its absolute value) msay not occur on each of these eight slip planes. From the
numerical study on the determination of the number of slip planes, it is believed that
a maximum of two active slip planes can be expected for all possible stress states
(also see Hall, [1990]).

Solution of the quartic equation (i.e. a; term exists in equation (4.57)) begins with
solution of a specific cubic equation of which the coefficients are calculated from the
coefficients of the quartic equation (see for example, Spigal, [1968]).
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Assume the quartic equation has the form:
yi+ay!+ayl+agy+ag=0 (4.63)
where a;, az, a3, and ay are real

The key step for solving the quartic equation is to reduce the order of the equation.
In our case, we may rearrange the equation (4.63) into the following form:

2

x -
(yz + 3_21y + ?> - (ry + s)2 =0 (4.64)

where X, r, and s are numbers to be determined. After expanding equation (4.61) and

comparing the coefficients with equation (4.63) term by term, we have the following

equatons:
a2
21 4.65)
r 1 az + X (4.
. X2
§° = -4— - a4 (4.66)
X
rs = 3—1_ - 323 4.67)

Since a1, az, a3 and a4 are known real numbers, it is possible to find X, r, and
s from eqnancns (4.65) to (4.67) by seuning the following equality:

2 2 z
r’s? = (:—1 - az +X) (%— - a-t) = (%}S - 'azi) = (rs)? (4.68)

This leads to a cubic equation:

X3 + (—a2)X? + (ajas — 484)X + (42284 — alay ~a2) =0 (4.69)
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Equation (4.69) can be solved by the method described in Appendix C. Once the real
root of equation (4.69) has been evaluated, it is possible to determine r or s (either one
but not both) by substituting X into equation (4.65) or equation (4.66). However, the
third unknown among X, r, and s must be calculated with caution. This is because of
equation (4.67) that makes the signs of r and s coupled. Therefore, it is very important
to keep in mind that only the combinations of equations (4.65) and (4.67) or equations
(4.66) and (4.67) can be utlized during the solution procedure. This is the key point
that almost all the mathematics references are unable to address in their formula for
the soluton of quartic equations.

With the known X, r, and s, the equation (4.64) can be rewritten in the following
quadradc form:

o (e Gl (3 (3] o om

Therefore the roots of the quartic equation can then be computed based on two

quadratic equations:
[yz+<§21-+r)}'+(§+s)] =0

e (3o 53] -

In the direct methods, there are two major algorithms which all the computations
are based on either complex numbers or real numbers.

(4.71)

In the complex number version of the algorithm all numbers are treated as complex
numbers and the equations (C.9) to (C.12) (see Appendix C) are used for cubic equation

solver. This algorithm has the advantage of being easy to program.
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In the real number version program, on the other hand, all numerical operations are
carefully managed so that any possible complex number encountered in the operations
is avoided. The equations (C.15), (C.16) and (C.18) (see Appendix C) are used for
finding roots of cubic equarnon. Also in equation (4.71), the “quadratic discriminant”
of each quadratic equation is checked.

The comparison of efficiency among the iterarive method, direct method based on
complex numbers, and direct method based on real numbers is shown next.

In the numerical study of the solution of quartic equations, the methods described
in Secton 4.2.2 were all coded. The CPU time was measured for each method under
various cases. A large number of numerical tests had been completed. The ratios of
overall (i.e. the average of all tested cases) CPU time requirements in the cases of
iterative method, complex number method and real number method are approximately
equal to 20:2:1. Similar conclusion was made by Hall [1990] who used the author
developed solution scheme and real number version program for this numerical study.

4.2.3 The yield conditions
The yield function (f) of the matrix-dominated mode is defined, for the case of

kinematic hardening, as the following:

flo —a)=[r(c—-a) .~ Te=0 4.72)

(Tas)max i the maximum resolved shear stress of (oj; — ayj) on the slip
system(s).
Ty is the matrix yield stress in simple shear.
This means that the possible slip system (i.c. the slip system which contains maximum
resolved shear stress) have reached the yield condition.
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It is obvious from equations (4.53), (4.54), (4.56) and (4.57) that under a general

stress state the MDM yield surface cannot be expresses in closed form. Constructon of

the overall yield surface, however, is not necessary in finite element implementations.
Only the yield stress under a specific loading path is of interest.

Consider first initial yielding under proportional load defined by the stress increment

do, Fig.4.7, the corresponding slip plane angle(s) 3 and resolved shear stress (Tus)may

can ve calculated from equations (4.58) to (4.60). The stress magnitude (o) on the inital
yield surface is found by scaling (7ns)ax UP 10 its initial yield stress (see Fig.4.8):

= vdeo (4.73)

where v = l(—,—m’-'fml

Figures 4.9 and 4.10 show various cross sections of the MDM initial yield surface.
The curves in Figs.4.9 and 4.10 were found numerically by evaluating the MDM inidal
yield stress under stress probes applied in several directions.

Next, consider a subsequent yielding where the current stress state o is inside an
overall yield surface with center located at . As discussed in Section 4.2.4, the center
a is computed from hardening on the active slip system and is assumed to be known
from the previous history. Now a stress increment do is applied to the composite and
we would like to compute a factor p so that the stress state (o+pdo — a) satisfies
the MDM yield condition (see equation (4.72)).

Referring Fig.4.11, it is clear that different slip systems are activated as p varies
(since the possible active slip systems will not remain the same along the segment from
o t0 (o+pdc)). Therefore, the factor p for which the stress (+pdo — a) satisfies
equation (4.72) will be found iteratively using the bisection method [Burden & Faires,
1988]. It was found that, the typical number of iterations required to compute p for
MDM yielding is about 25 for a relative tolerance equals to 10~3, where the “relative
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tolerance”™ is defined as:

| (Tas ) max — To

To

tolerance = (4.74)

This means that during each MDM plastic loading, the solver of the quartic equation,
equatons (4.58) and (4.60), must be called 25 tmes in order to determine the actve
slip plane(s). Development of an efficient solver for the quartic equations is therefore

umportant.

As seen in Figs.4.9 and 4.10, there are some corners in the yield surface. Since the
yield surfaces in Figs.4.9 and 4.10 were obtained numerically, we would like to examine
if there is indeed a discontinuity in the slope at the corners as indicated in Figs.4.9 and
4.10. A symbolic solution program (MAPLE, [Char, et al, 1988]) was used for this
purpose. If the slopes at the comer points are continuous, only a single valued normal
will be found at each point. Therefore, the problem of discontinuity check of e slopes
is reduced to the evaluation of the normal (8(ms)/8¢) at each of those points.

Let

=
—
il

i (4.75)

Then the coefficients A, B, C, and D in equations (4.58) and (4.60) become:
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2
-

2 2
_ (o222 o33 o2\ _ (ki 2
A-< 27 ) <fo) —(2> ke

032 [(Tr2 — 0
B=23 ( 2 33) = &k
T0 To (476)
o5 - o3 1 . 2
C= 21— 3= (k2 -k
275 2( 3)
T T
D= -1231 = koks
To

The procedure for the evaluation of 8(7y,s)/80 is summarized in the following:

L.

From equation (4.60), MAPLE is used for determining four symbolic solutions
y ( say, yi, i=1,2,3,4) which are the roots of the quartic equation.

Substitute stress state (i.e. the stress state at the point of interest) into y; to
find real roots, say ym (m=1.2,...).

Keep yn, in its symbolic form and solve equation (4.62) for 83, (E=12....2))
symbolically.

From equation (4.53) with aj; = 0, we have:

-:1; = cos Bka — sin Bk3
~ 1 (47D
— = -sin 20k; + cos 28k,
T 2
and from equations (4.54) and (4.55)

N ONC)

Substitute each 3; (&=1,2,...,2j) into equations (4.75) and (4.77) to have (%)1,
(where k=1,2,...,2j) in symbolic forms.




76
6. Substitute stress state into each (Z4); and find the maximum (2+).
7. Keep (-’;:)n which has the maximum value of (1';:) in its symbolic form.
8. Differentiate (3#), with respect to specific component (ie. ki, kz, ks and
ky4) to find the component of the normal in each stress axis. This means that
we are trying to find the symbolic expression for 8(:“) /08k;, i=1, 2, 3, 4.
9. Evaluate 8( ) /8k; numerically and check if the value is unique.
In the numerical study, selected corner points were investigated from steps
1 to 9. The typical result is found, for example in Fig.4.9, thar the point of
ky (= 25738) 2143589, ka (= %)=00, ks(= %)=0.90, and ke(= 22)=0.00
was checked and the 8( )/ Ok2=10.39286. This confirms that the normal (or slope)
at the comer points of MDM yield surface is discontinuous.

4.2.4 Plastic strain and overall stiffness

The plastic slip [d7? d+2]T on each active slip plane caused by the shear stress
(dn drz]T is found from the associated flow rule and the nommality requirement
(Bahei-El-Din & Dvorak, 1991]. From equation (4.72), the yield condition on a slip

system is written as:

f(r)=(n-&6)12+(m-&)P-7=0 (4.79)

where (d§, d£:]7 is the center of the MDM yield surface on the k® active slip plane.
The plastic slip is then given by:

{d‘ff } 1 [ (n=-&)? (m = &)(m " 52)]{df1 }

dv3 Hgl(n-&)(n—-§&) (2 = &2) dre [,
(4.80)

where H" is the plastic tangent modulus in shear.
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The overall plastic strain increment is found as the sum of the contributions of
each active slip plane. The contribution of plastic strain increment of each slip piane to
the composite plastic strain increment is found by coordinate transformarion from local
(slip plane) coordinate system to overall composite coordinate system. The final form

is found as [Bahei-El-Din & Dvorak, 1991]:

(de}; ) [0 0
deb, 0 1sin 20y
deb, = 0 ~1sin28 | [dy?
= 2 1 .
j def;1 ? kZL — sin Gy 0 d-y._‘,'> K (4.81)
de}, - 0 cos 208y
| de3; | cos By 0 )

where n is the number of the actve slip planes under current stress state.

From equarions (4.78), (4.79), and (4.53) we can find the MDM plastic compliance

matrix G* which is analogous to equation (4.13). The final form of G* matrix is found

as [Bahei-El-Din & Dvorak, 1991]:

1

n
G* = ——Ry(o — a)(e — a) TRy (4.82)
,‘; Hirg
where
H; is the k™ slip plane’s plastic tangent modulus found from a two-surface
theory (analogous to equations (4.21) and (4.28) to (4.32)), and
[0 0 0 0 0 0
0 %siu2 28y —1sin?20; 0 -} sin 40y 1]
Ro= 0 --} sin? 28y % sin? 28y 0 —% sin 48y 0
1o 0 0 sin® By 0 L sin 26k
0 1sindfy ~1sin48x 0 cos? 28y 0
L0 0 0 —~1sin 28 0 cos? By |

(4.83)
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Although the plastic tangent modulus Hy in equarions(4.80) and (4.82) is found
from the bounding surface theory which analogous to equations(4.21), (4.28) and (4.32),
there exist the following differences:

L.

The plastic tangent modulus H used in FDM is expressed in simple tension and
the plastic tangent modulus Hy is expressed in simple shear. However these
two quantities may be related through the effective stress increment-effective
plastic strain increment relation:

H= 3H; (4.84)

The movement of the yield surface (da) and the movement of the bounding
surface (d/3) in the FDM are evaluated on the composite overall level. In the
MDM these quantities are evaluated on the local active slip plane level. In
order t0 avoid the confusion on the notations for the center of bounding surface
in FDM and for the position of slip plane in MDM, we shall use a® as the
center of composite bounding surface throughout this chapter. Assume that the
center of the yield surface on k™ slip plane is £X =[¢k 5‘2‘]T, the center
of the bounding surface on that slip plane is 7% =[n* 7%|”. In analogy
with equation (4.53), €% and n¥ are related to the overall center @ and ”,
respectively, by:

5'1‘ = cos ﬂkan - sinﬂ"au

1 (4.85)
6; = 5 sin 2[3“(032 — a33) + cos Zﬂkasz
and
n* = cos B¥a}, — sinf%a;,
(4.86)

1 . - L -
nl,‘ = 3 sin 23“(&.‘_,2 — a34) + cos Zﬂkasz
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The center of the bounding surface can be written as (see equations (4.28) to
(4.32)):

dn*= dgk—zu* (4.87)
H2\ drk
z= (1 - ﬁ%) u—:,:‘;— (4.88)

where

uk is the unmit vector that connects the loading point with normal
n'=[cosd sin8]T (4 is defined in equation (4.51)) and the point
on the bounding surface with the same normal.

ajj are the components of the center of overall yield surface a.

aj; are the components of the center of overall bounding surface o*.

Equations (4.85) and (4.86) are also valid for their incremental form since all the
operations are dependent on slip angle only. The reverse relations of equations
(4.85) and (4.86) in their incremental forms are found as [Bahei-El-Din &
Dvorak, 1991]: .

das = —dajs = sin 2ﬂkd€§
dags; = —sin gkdek

(4.89)
dasz = cos 2ﬁkd£‘2‘

das; = cos ,defll‘
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daj, = —daj; = sin 28%dnk
daj; = —-sin ﬁkdnll‘
(4.90)
daj, = cos 28%dn%
daj, = cos 3%dn¥
It is shown in Section 4.3 that the equations (4.89) and (4.90) have provided an

important contribution in combining FDM and MDM into complete constitutive

model.

After the MDM plastc compliance matrix has been found (equations (4.82) to
(4.88)), the MDM overall instantaneous stiffness matrix L is calculated as:

L=(Me+G"™} (4.91)
where M, is the composite elastic compliance found from equation (4.7).
4.2.5 Hardening rules used in MDM

The MDM hardening rules are determined based on experimental observation from
the test performed by Dvorak, et al, [1988] on a B/Al composite. More specific
description of the MDM hardening rule is found in Bahei-El-Din & Dvorak [1991].

It is shown that there are three different hardening rules in six-dimensional stress

space:
1. Hardening rule I
This is the case when
(031 — a31) = (032 — a3zz) =0 (4.92)
and
(021 = an) (493)

(022 — a22) — (033 —ass)| ~
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The center of the yield surface daj; is found as das; = deorz; with all other
_components equal to zero.
2. Hardening rule II:
This is the case when

(021 — a21) = (032 — a32) =0 (4.94)
and

(31 — a31)
(22 — a22) — (033 — a33z)| —

(4.95)

The center of the yield surface day; is found as da3; = do3; with all other
components equal to zero.

3. Hardening rule OI:
For all cases other than cases I. and II. In this case, dajj = doj; (i.e. Phillip’s
hardening rule is assumed).

Note that from Fig.4.10 we can find that the hardening rules I and II are the cases
when the stress state is at the flat part of the yield surface.

4.2.6 Programming algorithm for strain-controlled matrix-
dominated constitutive mode

The programming algorithm for strain-controlled matrix-dominated constitutive
mode is analogous to the programming algorithm described in Section 4.1.5. For
a given overall strain increment de, the programming steps of the strain-controlled,
stress-space matrix-dominated constitutive mode are summarized as the following:

1. Divide overall strain increment de into small subincrement pide with pi being

a small number.
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2. The corresponding overall stress subincrement do is found by:

de = Lp'de (4.96)

where L is the composite instantaneous stiffness marrix.
3. With the known overall stress &, center of overall yield surface a and overall

stress increment dor, we can calculate the trial stress state as:

oW =g - a+do (4.97)

4. Substtute o2¢"¥ into equations (4.57) and (4.72). The plastic loading will occur
when the value of equation (4.72) is greater than or equal to zero.

S. For the plastic loading case, the Runge-Kutta-Fehlberg numerical algorithm (see
(Burden & Faires, 1988]) is used for the integration of the plasticity quantities.
These quantities including the center of the overall yield surface da and the
cemter of the overall bounding surface da® are found from equations (4.80)
to (4.95).

6. At the end of each subincrement the plasticity quantities are updated based on
equations (4.46) to (4.49).

7. The composite instantaneous stiffness L is updated based on equations (4.82),
(4.83) and (491). '

8. Steps 1 to 7 are repeated until a complete increment has been integrated.

These steps completely describe the plasticity algorithm used in MDM case. Some
selected MDM subroutines will be discussed in the next section.
43 Implementation of the bimodal theory for general loading

In the preceding two sections, the formulation of fiber-dominated mode and the
formulation of matrix-dominated mode were described individually assuming that either
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mode is the only active mode during the loading path. Under general loading path,
actvation of one mode in part of the loading regime may have been preceded by plastic
deformation with the other mode. Consequently, each deformation mode should not only
describe its constitutive behavior but also fully support all the data information which
may be shared by the other deformation mode. The basic requirement on this issue is
discussed in the next subsection. The program steps and the user’s guide of the bimodal
model program are described at the end of this section and Appendix D, respectively.

43.1 Data base exchange between FDM and MDM

It is shown in Sectons 4.1 and 4.2 that in the strain-controlled, stress-space
constitudve formulation, the most important plasticity quantities are the position of the
center of the composite overall yield surface, a, the position of the center of composite
overall bounding surface, a®, and the composite instantaneous plastic compliance
matrix G (in FDM case) or G* (in MDM case). The composite instantaneous plastic
compliance matrix is important due to the fact that the composite overall instantaneous
matrix L is always found by the inverse of the sum of the elastic compliance matrix
and the instantaneous plastic compliance matrix.

In the MDM, there are an infinite number of slip systems in the composite. Plastic
straining on the active slip system will also affect the inactive slip planes. This is
known as the latent hardening of inactive slip systems. It is shown in Bahei-El-Din &
Dvorak [1991] that the overall centers of the yield surface a and bounding surface a*
can be replaced by their local counterparts from the active slip systems or inactive slip
systems. Therefore it is possible to relate hardening of active slip systems with the latent
hardening of inactive slip systems. This means that during the plastic deformation on
the active slip system, the inactive slip systems hardens simultaneously. This simplifies
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the operation of finding current centers of yield surface and bounding surface during
the MDM constitutive calculasion

Once the plasticity quantities @ and «* are known, it can be shown that

L.

From equations (4.21) to (4.32), the G is found based on the equation (4.17)
and da and da® are updated.

From equations(4.80) to (4.85), the G* is found by equations (4.82) and (4.83)
and da , da* are updated.

These mean that the response of both FDM and MDM can be calculated at any

loading point. Also, both modes are capable of sharing and updating the overall

instantaneous quantities (i.e. da, da™ and L) which may be used at next loading

point for either mode.

4.3.2 Programming steps for the bimodal model

The programming steps for the bimodal model can be seen as the combination of
the programming steps used in FDM (Section 4.1.5) and MDM (Section 4.2.6).

The procedure is summarized as the following:

1.

Divide overall strain increment de into small subincrement p'de with pi being
a small number.

The, comresponding overall stress subincrement de is found by:
do = Lpide (4.98)

where L is the composite instantaneous stiffness matrix.

Check yield criteria for both modes (i.e. equations (4.33), (4.34) and (4.45) for
FDM and equations(4.54) o (4.58), (4.72) and (4.96) for MDM) and determine
which mode yield first.

Set up the plasticity indicator to the mode which has been activated first.
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5. If FDM or MDM (with hardening rule II) is active then the composite will stay
in FDM or MDM during the loading increment. However, if MDM is active
and it is in the cases of hardening rule I or II, Step 4. must be checked at each
| subincrement since it is possible to change from the current hardening rule to
the other hardening rule or even change to FDM.

6. Once the plasticity mode and type of the hardening rule (for MDM) have been
determined the rest procedure described in Section 4.1.5 or Secton 4.2.6 will

be continued for the corresponding deformation mode.

7. Steps 1. to 6. are repeated untl the current increment is completed.

A user’s guide to the bimodal constitutdve program is given in the Appendix L.

4.4 Implementation into general purpose finite element code

The general concepts of the integration of material model into ABAQUS have
been stated in both Chapters 2 and 3. Hcwever, there still exists some differences
in the implementation details due to the nature of the constitutive relations used in
the individual material model. In the development of the bimodal plasticity theory
based UMAT subroutine, there are several choices for the numerical implementation
algorithms. We have conducted a study on the material constitutive formulations and
their rmmeu'f:al implementation to arrive at the most efficient implementation algorithm.

From the numerical experience obtained in this study, we concluded that the strain-
controlled constitutive program has the best computation performance for the composite
material models, therefore the constitutive program of the bimodal theory was then
developed based on stress-space, strain-controlled formulation.

During the development of the bimodal constitutive program, we discovered an
efficient algorithm for the strain-controlled constitutive calculations. The most important
feature of this algorithm is that almost all the constitutive calculations are done on the
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composite overall level. The detail algorithm is described in Sections 4.1.5 and 4.2.6
for FDM and MDM, respectively.

Since the bimodal plasticity program is based on the stress-space, strain-controlled
formulation, the programming steps are different from the programming steps used in
PHA model (see Section 3.4.3). The summary of the steps which are carried out in the
UMAT with bimodal plasticity theory is the following:

1. At the beginning of a load increment, ABAQUS provides the solution dependent
variables to UMAT together with the load increment.

2. For an elastc response, the composite overall stiffness matrix (i.e. the suffness
mamrix at material point of finite element mesh ) is computed from the FDM
constitutive relation.

3. For an elastic-plastic response, the overall yield branch (FDM or MDM) which
contains the current stress point is determined and the corresponding constitutive
equations are used to compute instantaneous stiffness matrix.

4. Finally, the overall stresses, instantaneous stiffness matrix, and the solution

dependent variables are updated at the end of the load increment.

The flow chart for these steps is similar to the flow chart shown in Fig.3.6 except
the local iteration loop (the loop that loops from equations (3.36) to (3.38)) since in
the strain-controlled constitutive formulation case, there is no need to perform local
iterations in its UMAT subroutine. The pseudo code of the bimodal theory based UMAT
subroutine is given in Appendix D.

4.5 Selected results

The CPU time and overall strains found by the algorithms given in Section 4.4
for a (£10), P-100 Gr/Al composite laminate under uniaxial cycle of £400 MPa are
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shown in Tables 4.1 and 4.2. The material properties of the constituents used in these
demonstration cases are listed in the Table 3.1 and the finite element model is shown
in Fig.3.8.

In Table 4.1, the relative computation efficiency of each algorithm can be found
by subtracting the elastc part of CPU tme from total required CPU tme. In this
table, only the CPU time that used for finite element procedure are counted. The CPU
tume that used for input data syntax check is not included here. It is clear that the
strain-controlled bimodal formulation algorithm which described in sections 4.1.5 and

4.2.6 has the best computation performance.

In Table 4.2 the laminate overall longitudinal and transverse strains at the end of
loading cycle demonstrate the consistency of all the algorithms used in this example. In
both longitudinal and transverse response, the relatve differences between algorithms
b, ¢, and d are all less than 1 percent. The difference between b and ¢ is due to

stress-controlled and strain-controlled algorithms used in these two cases.

Figures 4.12 and 4.13 show the predictions of the bimodal theory and the PHA model
for the axial response and transverse response of a (+10), composite laminate consisting
of P-100 Gr/Al plies under uniaxial cycle of £400 MPa. The material properties are
again shown in Table 3.1 of Chapter 3. Linear kinematic hardening behavior, which
was assumed in the PHA model based UMAT subroutine, was simulated in bimodal
theory based UMAT subroutine by setting the size of the yield surface equal to the
size of the bounding surface so that the matrix instantaneous plastic tangent modulus
reaches its asymptotic value rigit after yiziding. These two figures are used to show the
comparison between FDM and PHA model since it is in FDM under this load condition.

Figures 4.14 and 4.15 demonstrate the constitutive behavior of fibrous composite
when a bounding surface is used in the theory. The composite material system used in
the analysis is the B/Al where the material properties of the constituents are listed in
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Table 4.3. In Fig.4.14, the loading cycle is specified so that the magnimde of unloading is
small. Therefore, the reloading curve is flatter than unloading curve since the plasticiry is
not well developed in the unloading stage. This results in the reloading curve departures
from initial loading cusve. Fig.4.15 shows another loading cycle. In this case, the
plasticity has been well developed in both loading and unioading segment. Therefore,
when the composite is reloaded, the stress-strain curve merges to the asymptotc line.
Note that the stress-strain response of the loading segment is the same as the stress-strain
response shown in Fig.11 (bimodal MDM curve) of Dvorak, et al [1990].

Another illustration of the bimodal theory is shown in Fig.4.16 when the axial stress-
strain response of (£o), B/Al composite is given. A set of laminates with different
orientations (0=0° w0 90° with 5° increment between cases) are investigated. The FDM
response is found in the cases when o is less than 25° and the MDM response is
found when o greater than 30°. As expected, the response of the laminate is stiffer
under the FDM deformation because of the constraints imposed by the fibers on the
matrix response.

Figures 4.17 and 4.18 show the response of B/Al unidirectional laminate under a
loading path which first activates the MDM, and then the FDM. The loading path is
specified as follows:

1. At point A, oy;=0 MPa and c22=0 MPa (X,=X,).
2. At point B, ¢1;=10 MPa and 02=100 MPa.

3. At point C, ¢1;=10 MPa and 022=75 MPa.

4. At point D, ¢,;=600 MPa and 022275 MPa.

From point A to point B, the response is basically in MDM. In this loading segment,
the trangverse respouse (gr—¢t) goes from elastic to plastic whereas the axial response
(cL—€L) remains elastic since there is no plastic strain in fiber direction during matrix-
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dominated deformation. From point B t0 point C, the composite is in unloading from
MDM. This is indicated by linear segments of BC in both cp—€s curve and or—et
curve. From point C to point D, the composite is reloaded to FDM. As expected, the
axial response is much stiffer (compare to segment AB of op—er curve). The segment
CD in ot curve is the response which induced by the axial load (c';=10 MPa to 600
MPa). Although it is in plastic range, the nonlinear curve can not be seen in this segment

since it is plotted in or—¢t relation where ot is constant during the loading segment.

Figure 4.18 is an enlarged portion of loading points A-B-C of c,~¢5 curve shown
in Fig.4.17. These two figures can be used to demonstrate the data communication

between MDM and FDM in the bimodal plasticity program.

Cases | Formulation and algorithm types Clzgecm)ne

a PHA , stress-controlled, return instantaneous stiffness 2,538
(Section 3.4)

b Bimodal, stress-controlled, return instantaneous stffness 2115
(Section 4.1.4) ’

c Bimodal, strain-controlled, return instantaneous stffness 1655
(Section 4.1.5) ’

d Improved bimodal, return instantaneous stiffness 616
(Sectons 4.2.6 and 4.3)

e Elastic response (Section 4.1) 340

Table 4.1 CPU tme required in different constitutive formulation algorithms.
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Cases Axial strain (x10-3) Transverse strain (x10-3)
a (PHA) 1.156675 -0.802513
b(Bimodal) 1.156075 -0.792350
1
o
¢ (Bimodal) 1.156075 -0.792488 f
d (Bimodal) 1.156075 -0.792488

Table 4.2 Overall Longitudinal and Transverse Strains After Loading Cycle.
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Properties Fiber Matrix
Volume fraction 05 05 J;
Young's modulus (MPa) 4.0000 x 10+5 7.2500 x 10+4 I
|
Poison’s rato 0.20 0.33 !
Initial yield stress in |
tension (MPa) 2.3640 x 10+1
Size of bounding surface 8.8335 x 10+1
in tension (MPa)
Hy for plastic tangent
modulus (MPa) 2.1000 x 10+4
m value for plastic tangent 20
modulus |
h value for plastic tangent 3.6000 x 10+5

modulus (MPa)

Table 4.3 Material Properties for Boron-Aluminum Composite
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Figure 4.1 Initial Yield Surface in the 73;022~plane. Comparison
of FDM and MDM in Boron and Graphite- Aluminum
Composite Systems. (Dvorak & Bahei-El-Din & Dvorak, 1987]
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Figure 4.2 Initial Yield Surface in the o3;0;~plane. Comparison
of FDM and MDM in Boron and Graphite-Aluminum
Composite Systems. [Dvorak & Bahei-El-Din & Dvorsk, 1987]
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Figure 4.3 Initial Yield Surface of a B/Al Composite in the 79;01;~plane. Comparison

of Experimental Results with Yield Surface Derived from Bimodal Plasticity Theory and

the Periodic Hexagonal Array (PHA) Model. [Dvorak & Babei-El-Din & Dvorak, 1987]
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Figure 4.4 Initial Yield Surface of a B/Al Composite in the o3;022-plane.
Comparison of Experimental Results with MDM Yield Surface and the Periodic
Hexagonal Amray (PHA) Model. [Dvorak & Bahei-El-Din & Dvorak, 1987]
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BOUNDING SURFACE

Figure 4.5 Schematic Representation of the Yield and the
Bounding Surfaces and Their Modon During Plastc Flow.
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BOUND

Figure 4.6 Schematic Presemation of 8in, §, H, Ho, Y and Y




Figure 4.7 Geometry of the Slip Systems.
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Figure 4.8 Schemaric Representation of the
Method for Finding MDM Initial Yield Surface
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Figure 4.9 Several Sections of the MDM Yield Surface in the ¢5;03;1~plane.




101

0zt-
00't-
08°0-
09°0-
oro-

0C0-

020 .

oro
090

080

001

0c't

Figure 4.10 Several Sections of the MDM Yield Surface in the o91(052-033)-plane.




Figure 4.11 Schematic Representation of the Method
for Finding MDM Subsequent Yield Surface
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Figure 4.12 Axial Response of (+10), Gr/Al Composite
Laminate Under Uniaxial Cycle of £400 MPa. (FDM Response)
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Figure 4.14 Stress-Strain Response of B/Al Unidirectional Composite
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ABSTRACT

The rate—dependent behavior of high temperature composites reinforced with aligned
continuous fibers is evaluated numerically for an ideslized periodic hexagonal array
geometry of the microstructure. The analysis employs the finite element method for a
representative volume element of the periodic geometry. Constitutive equations of the
phases are derived from a new thermo—viscoplasticity theory which is based on overstess
measured from an equilibrium yield surface, and a two—surface plasticity theory.
Numerical predictions of multistep creep strains compared fairly well with experimental
measurements for a SiC/Ti unidirectional composite.

INTRODUCTION

Future applications of fibrous metal matrix composites in aerospace and automobile
industries include high temperatures that may well exceed 1000°C. In such environment,
the behavior of most conventional alloys is sensitive to loading rates. Creep, relaxation,
thermal recovery and other time—dependent phenomena are characteristic of their behavior
under high temperatures. In heterogeneous media, in general, and fibrous composites, in
particular, these phenomena take place under local stress and strain fields which are
neither uniform nor proportional. The local straining rates may, therefore, vary
considerably at individual material points within each phase. Under these circumstances,
material models which are both geometrically and intrinsically representative of high
temperature multiphase materials must be used in evaluation of their behavior.

Numerous analytical models have been proposed for prediction of the inelastic
response of fibrous composites. An extemsive bibliography appears in the reviews by
Bahei—El-Din and Dvorak (1989) and Dvorak (1991). Implementation of these models,
however, has been mostly limited to room temperature applications in which constitutive
behavior of the phases can be described by rate-independent plasticity theories. In this
context, a recent study by Dvorak et al. (1990) of the reliability of the predictions made by
three specific models of fibrous composites in comparison to experiments showed that
somewhat detailed description of the microgeometry of the composite is essential for
reliable predictions of plastic strains.

This paper describes a viscoplastic analysis of fibrous composites under nonisothermal
loads in a high temperature environment. The analysis employs the periodic hexagonal
array (PHA) model (Dvorak and Teply, 1985; Teply and Dvorak, 1988) and the finite
element method to compute the overall response of unidirectional composites. A similar
analysis utilizing a rate—independent plasticity theory for the matrix was described by the
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authors (Bahei—El-Din et al, 1989). In the present paper, constitutive equations of the
phases were derived from a viscoplasticity theory which includes many of the phenomena
observed in high temperature experiments of metallic alloys. First, we briefly describe the
composite representative domain based on the PHA model. The new viscoplasticity
constitutive equations are presented next and followed by comparisoa of predicted and
measured inelastic strains of a unidirectional silicon carbide/titanium composite at
elevated temperature.

COMPOSITE REPRESENTATIVE DOMAIN

The composite domain used in predictions of fibrous composites was selected
according to the periodic hexagonal array (PHA) model developed by Dvorak and Teply
(1985) and Teply and Dvorak (1988). In this model, the microstructural geometry in the
transverse plane of a unidirectionally reinforced fibrous composite is represented by a
periodic distribution of the fibers in a hexagonal array. Cross section of the fibers is
approximated by a nx6-sided polygon. An example of the PHA microgeometry with
dodecagonal fiber cross section is shown in Fi&; L

The hexagonal array shown in Fig. 1 is divided into two unit cells, as indicated by the
shaded and unshaded triangles. Under overall uniform stresses or strains, the two sets of
unit cells have related internal fields. Accordingly, under properly prescribed periodic
boundary conditions, only one unit cell from either set needs to be analyzed. Figure 2
shows a three dimensional view of one of the unit cells with hexagonal fiber cross section.

The actual analysis is performed by the finite element method. The unit cell is
subdivided into a selected number of subelements, element material properties are
prescribed as suggested in the sequel. The degree of mesh refinement may vary from few
elements in the matrix and fiber regions to several hundred elements. Figure 3 indicates
two possible subdivisions of the unit cell in the transverse plane. The effect of the mesh

eometry on the computed results was examined bLBa.hei—El—Din et al. (1987, 1989), and
hah and Teply (1989). In general, evaluation of the local fields requires a larfe number of
elements, while few elements are sufficient to satisfactorily compute the overall response.

THERMO-VISCOPLASTICITY OF THE PHASES

A number of viscoplasticity theories based on internal state variables have been
proposed in the literature. The work by Benallal and Ben Cheikh (1987), Chaboche (1989),
Krempl et al. (1986), Lindholm et al. (1985), and Walker (1981) is representative of the
modeling efforts for the time-dependent behavior of unreinforced materials under
thermomechanical loads. To reflect the particular inelastic behavior of ductile materials
under nonisothermal, nonproportional loading conditions that exist in the phases of a high
temperature composite, the present paper introduces a new rate—dependent constitutive
theory which is based on overstress measured from an equilibrium yield surface, and
incorporates a two—surface plasticity theory. At low homologous temperatures, and
isothermal conditions, the new constitutive equations reduce to the formulation by
Eisenberg and Yen (1981), albeit in a form more suitable for nonproportional loading.

We assume the matrix and fiber phases to be homogeneous and elastically isotropic.
Either phase may exhibit nonlinear response under thermomechanical loads which exceed

the elastic limit of the material. The total strain rate, Ei_, is divided into elastic, thermal
and inelastic components: !
. -8 ot o’
= . 1
€= € + € + € (1)

Assuming the thermoelastic properties to be temperature—dependent, the elastic and
thermal strain rates are given by

.8 [ .
‘u = Mijkl(a) au ! (2)
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where @ is the current temperature, Mi,?u 6) is the elastic compliance, &; is the
Kronecker’s tensor, and g () is the coefficient of thermal expansion.

The inelastic part of the strain is found with the help of viscoplasticity theorems
based on overstress Eisenbe:f and Yen, 1981, Krempl et al., 1986). We assume the
existence of an equilibrium yield surface which is the locus of all stress states that can be
reached from the current state by purely elastic deformation. Inelastic deformation
develops only when the stress point lies outside the equilibrium yield surface. In the
presence of kinematic and isotropic hardening, a Mises form of the current equilibrium
yield surface can be written as

f=3ls-a) (s -a)-(Y+ Q' =0, (s)

where s;- is the deviatoric equilibrium stress tensor, aj; denotes the center of the yield
surface, ) (#) is the yield stress in tension, which is independent of the loading rate,
and Q is an isotropic hardening function.

Corresponding to a given stress temsor, sij, which lies outside the yield surface (5),

there exists an equilibrium stress, s;,-, which satisfies (5), Fig. 4. Hence,

. 2(Y (0)+ Q8] i

ERE (s,,=9,)(s )

The effective overstress, R, is a measure of the distance between the actual stress point, s
j

s —aj)+a . 6
- a (ij ii) ij (6)
kl ki

and the equilibrium stress point, a:.. It vanishes if the stress point lies on, or falls inside
the yield surface. In particular, !

t
R=[5(s—s )=o) fls~a)>0, (7)
R=0 if f(sij- aﬁ)go. (8)

The inelastic strain rate is found from an associated flow rule in which the strain rate
is normal to the equilibrium yield surface and its magnitude is assumed in the form of a
power law of the overstress (Eisenberg and Yen, 1981):

(@

€= Jay k@’ n (), (9)

where the functions & (9) and p () are material parameters and n;; is the unit normal to
the yield surface (5) at the current equilibrium stress point. From (g)

(s;,-2) (s~ a,)
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Un!er thermomechanical loads applied at high temperature, evolution of the
hardening variables Q@ and aij, €q. (5), depends not only op the loading history but also on
time. In particular, thermal recovery of hardening caused by annealing may be significant.
The evolution equation for Q@ can be written in the following form which is suggested by
Nouailhas et al.e?wss)

(0

. .y n 1
Q=q(8)Q(A-Q ¢ - b,(o)m-o,(m( ' )[Q-Qr(ﬂ)]- (11)

The functions Qa(4), ¢ (9), 5(9), Q-(6), and n{(6) are material parameters, and € is the
effective inelastic strain rate;

1
o cr 2 5 p(”) ‘e
, =[§eue“] k(R ; ey=0. (12)

The first term in (11) represents isotropic hardening causel by inelastic flow, and the
second term represents thermal recovery of isotropic hardening. In the absence of thermal
recovery, the size of the yield surface f in the deviatoric stress space reaches the
asymptotic value (Y + @Q,). On the other hand, if the inelastic strain rate is zero, the size
(()fQ the )Sield surface Y in the virgia state is recovered either totally (Q; = 0), or partially
r #0).

In analogy with (11), and permitting complete thermal recovery of kinematic

hardening, the evolution equation for the center of the yield surface, aij, can be written as

. . -1
@ =pv,. = cr(J) a (mr(ﬂ) ) a, (13)

ij ’

In the absence of inelastic deformation, complete thermal recovery of kinematic hardenin
is achieved by the second term in (13). The functions ¢{(f) and m.(f) are materi

parameters, and a is the magnitude of ai; defined by the invariant

1
a= (ak1 a“)2 . (14)

The first term in (13) represents kinematic hardening caused by inelastic deformation in
the absence of thermal recovery. The unit tensor v;; defines the direction of translation of
the -ield surface in the deviatoric stress space, and can be specified according to the
hardening rules applied in rate—independent plasticity theories. Here, we select the
Phillips hardening rule which has been observed in room temperature, and high
temperature experiments on certain materials (Phillips et al., 1972; Dvorak et al,, 1988g).
In particular, we specify

s ) if ;ij,eo (15)

YT "ij/(’u xl

ij

v.=n_ ifs =0. (16)
ij ij ij

The factor u in (13) is found from Prager’s consistency condition, f: 0, when
translation of the yield surface is specified by the first term in (13):

f= (s.ij— aij):s;j— " (a:j- aij)uij-g(Y+Q) (Y+Q)=0. (17)
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Using (10),, eq. (17) can be rewritten as

n, 's:j- B B Yy J21) (Y+ Q) =0. (18)

The first term in (18) is found by equating the inelastic strain rate given by (9) and the
inelastic strain rate given by the associated flow rule of rate-independent plasticity
(Eisenberg and Yen, 1981). The result is

n, 5, = (23 (H (@O k() "% v, (19)

where, H (0) is the instantaneous tangent modulus of the inelastic stress—strain equilibrium
curve. Substituting (11), retaining only the first term, and (19) into (18) and using (12),

the factor 4 can be found as

» r(9)
p=em k@R [HO)-(BQ O -al]/n (20)
Tw icity T

A bounding surface is used to establish the instantaneous tangent modulus H and to
describe the cyclic behavior of the material, Fig. 4. This surface is derived as an isotropic
expansion of the initial equilibrium yield surface. During inelastic deformation, the
bounding surface translates in the stress space and exhibits isotropic changes as well.
Translation of the bounding surface is dictated by the requirement that the yield surface
and the bounding surface have a common normal when they become in contact. Details of
this kinematic hardening rule are given by Dafalias and Popov (1976). In analogy with the
equilibrium yield surface, thermal recovery of isotropic as well as kinematic hardening of
the bounding surface can be included in our model. This is omitted here for brevity. We
only mention that the recovery terms for isotropic and kinematic hardening of the
bounding surface assume a form similar to those suggested above for the yield surface, but
with new material parameters.

The instantaneous tangent modulus, H, is found as a functica of the distance, §,

between the equilibrium stress, s;,-, and a corresponding point on the bounding surface, Sij,
with unit normal ﬁij(iij) = nij(a;j):

H(6) = H(0) +h(6) [6/(6 - 8], (21)

6= [3G,-) G, -] (22)

where §, is the distance between the yield surface and the bounding surface at the onset of

inelastic deformation. When the equilibrium stress point lies on the bounding surface, the

lastic tangent modulus assumes the asymptotic value Hy(6). Both H,(6) and h (6) need to
determined experimentally.

COMPARISON WITH EXPERIMENTS

The v ~coplasticity constitutive equations described in the preceding section were
implementec in the ABAQUS finite element program. The program was used to evaluate
the rate—dependent behavior of unidirectional composites using the geometry specified by
the PHA model. In the present paper, we used a coarser version of the mesh shown in
Fig. 3a (40 matrix elements, and 18 fiber elements) to evaluate and compare the overall
multistep creep strains of a unidirectional SCS6/Ti—15—3 composite to the experimental
results provided by Tuttle et al. (1990) at 566° C.

Elastic, isotropic behavior is assumed for the silicon carbide fiber. The fiber
properties are shown in Table 1 at 566°C. The titanium matrix is elastic—viscoplastic.




The material parameters required by the viscoplasticity theory described above were found
by fitting the stress—etrain response measured etperimentalliﬂf:t several unreinforced
titanium specimens fabricated by diffusion bonding of Ti—15—3 foils. The properties of the
neat matrix are therefore expected to be representative of the in situ properties of the
matrix phase in the composite.

Six unreinforced Ti—15-3 specimens were tested in uniaxial tension by Tauttle,
Rogacki and Johnson (1990) at room temperature, 482°C, and 649°C. At each
temperature, two tension tests were performed, one under stress—controlled loading at a
rate of 2.6 MPa/s, the other under strain—controlled loading at a rate of 10-4/s. The
strain—controlled tests consisted of a number of loading and relaxation periods. The hold
strain and time are given in Table 2 for the three test temperatures. Figures 5 and 6
compare the computed and measured stress—strain curves. The matrix parameters used in
fitting the experimental curves are shown in Table 3. The script Latin letters shown in the
first column of Table 3 indicate material parameters related to the bounding surface and
have the same meaning of their yield surface counterparts. For example, ¥ is the ’radius’
of the bounding surface, and ¢, , s are material parameters which define the recovery
term for kinematic hardening of the bounding surface. Material parameters not shown in
Table 3 are assumed zero. For intermediate temperatures, the material constants are
found by linear interpolation between the values given in Table 3.

The phase properties determined above were used in the PHA model to compute the
overall gtrains in the fiber direction of a 09, SCS6/Ti—15-3 composite corresponding to the
multistep creep loading history shown in Fig. 7. The axial strain computed at 566°C is
compared to the experimental record provided by Tuttle et al. (1990) .n Fig. 8. At the
onset of creep strain, marked in the figure for each stress level, the compute. and measured
axial strains are matched. In this way, we compare the results for the creep behavior
alone, and eliminate any descripancies between the experiments and the numerical
simulation that might have been caused during application of the overall stress.

CONCLUSION

The nonisothermal elastic—viscoplastic response of fibrous composites at high
temperatures was modeled using the periodic hexagonal array (PHA) model. Constitutive
equations of the phases were derived from a new viscoplasticity theory which is based on
overstress measured from an equilibrium yield surface, and includes isotropic and kinematic
hardening rules with thermal recovery terms. A two—surface plasticity theory was also
incorporated in the model to account for nonproportional loading. The model involves
several material parameters, the number of which increases as the material behavior
becomes more complex. For example, modeling complete thezmal recovery requires four
parameters, two for isotropic hardening and two for kinematic hardening. Modeling partial
thermal recovery in isotropic hardening requires one additional constant.

Actual calculations of the overall strains were performed with the ABAQUS finite
element pro for a unit cell of the composite as defined by the PHA model. Axial
strains found in a high temperature multistep creep test performed on a SCS6/Ti-15-3
composite were successfully reproduced by the model.
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Table 1 Thermoelastic constants of SCS6 fiber

Temperature E’ v ! . B !
(‘c) (GPa) (107/ °c)
566 397.1 0.25 4.6
'Young’u Modulus.
"Poisson’s Ratio.
‘Coeﬁdent of Thermal Expansion.

Table 2 Hold strain and time applied in relaxation tests of Ti—15—3 experiments

Hold Time (s)

Strain (%) 21°C 482°C 649°C
0.75 - 690 450
1.50 300 300 300
2.25 300 540 300
3.00 300 480 300
3.75 300 600 300
4.50 300 480 300
5.25 300 540 300
6.00 - 480 300
6.75 - 660 -

Table 3 Elastic—thermoviscoplastic constants of Ti—15—3 matrix

Material Units 21°C 482°C 649°C
Constant

E GPa 92.4 72.2 55.0

v 0.351 0.351 0.351

Y MPa 790 45 15.5

H, MPa 1400 40 50

h GPa 21 350 162

P MPa 915 1100 316

p 3.75 1.85 143

k (MPa)~?/s 1.6x10°7 4.2x10°7 3.2x10°*

Q MPa -120 -10 -5.0

% MPa 350 100 95

q 800 5.5 2.61

P 800 5.5 2.61

M 1.2 1.29 1.35

»M|r 12 129 1.35

& (MPa)™™+l/s  g.0x10° 5.0x104 2.0x10°

e (MPa)~™ rtl)5  gox10° 5.0x10~ 2.0x10°3
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Fig. 4 Schematic of equilibrium yield surface and bounding surface in the deviatoric

stress space of an elastically isotropic material.
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Fig. 6
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Fig. 7 Stress history applied in multistep creep test of a SCS6/Ti—15—3 composite.
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Dimensional stability of metal-matrix
laminates
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The dimensional stability of metal matrix composite laminates under thermal
fluctuations and thermomechanical load cycles is examined. The system
considered as a model material is a Gr/Al (+@), laminate. The analysis is
performed by the finite-clement method while the underlying constitutive
equations of unidirectional composites are provided by the periodic-
hexagonal-array (PHA) micromechanical model. A computationally more
efficient and equally accurate method based on fiber-dominated analysis of
unidirectional composites by the self-consistent method is also presented. The
results show that laminates of the model system with @ = 12° are dimensionally
stable in the elastic range when subjected to pure temperature changes. Plastic
deformation of the matrix causes permanent dimensional changes, which can
be reduced by heat treatment of the composite. Under thermomechanical
loads, (+¢), laminates are not in general dimensionally stable. Dimensional
stability of the laminate was enhanced by plastic deformation of the matrix for
in-phase thermal and mechanical load cycles and reduced for out-of-phase
cycles.

Keywords: metal matrix laminates, dimensional stability, thermoplasticity,

thermomechanical loads, finite elements, micromechanics.

1 INTRODUCTION

In certain aerospace structures, high specific
stiffness and strict dimensional tolerances are
major design criteria. The typical loads consist of
thermal fluctuations in the range of +200°C,
which may be accompanied by mechanical load
cycles. Among the leading material candidates in
these applications are metal matrix composites.
In  particular, continuous  graphite-fiber-
reinforced metals are considered for their high
axial stiffness and low coefficient of thermal
expansion.

The thermal mismatch in the axial direction
between the fiber and matrix phases in
graphite-reinforced composites, however, is
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large. This causes large local stresses to develop
in the phases and it leads to plastic deformation
in the matrix under small temperature changes.
For example, a simple calculation of the matrix
axial stress in a unidirectional 6061-F Al/Gr com-
posite reveals that the composite yields after a
temperature change of about 40°C.' Similar
observations were found in tests performed on
Gr/Al and Gr/Mg composites.>* Under these
circumstances, dimensional stability of metal
matrix composite materials and laminates should
be examined with accurate micromechanical
models, which permit plastic deformation of the
matrix.

In this paper, dimensional stability of Gr/Al
composite laminates is evaluated for purely
thermal as well as thermomechanical load cycles.
The effects of matrix yield stress, hardening, and
coupling between thermal and mechanical loads
on the dimensional stability of (£ ¢), laminates
are of primary interest. The elastic-plastic
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analysis used in this study is a finite-element-
based procedure that incorporates micromechani-
cal models for unidirectionally reinforced
materials.’® The results presented here were
obtained from the ABAQUS finite-element
program with the constitutive equations derived
from the periodic hexagonal array (PHA)
model.*®* The paper also presents a laminate
analysis, which can be used in lieu of the
finite-element method for composite systems that
exhibit fiber-dominated deformation,”> such as
graphite-fiber-reinforced composites.

The plan of the paper is as follows. In Section
2, we address the thermomechanical loading
problem for laminates and discuss available
methods of analysis. A laminate analysis based
on correspondence between mechanical and
thermal loads is presented in this section. In
Section 3, we present finite element results for
the dimensional stability of (@), Gr/Al
laminates. Finally, the method of Section 2 is
used to generate master curves for evaluation of
axial strains in (@), laminates corresponding to
a wide range of axial load/temperature ratios.

2 THERMOMECHANICAL ANALYSIS OF
LAMINATES

Consider a symmetric laminate consisting of
several identical unidirectionally reinforced thin
laminae in which the matrix is isotropic, and the
fiber is transversely isotropic and their properties
are not a function of temperature. The plane of
the laminate coincides with the x,x, plane of a
Cartesian co-ordinate system that is parallel to
the &, %, planes associated with the laminae. The
%, and x, axes are perpendicular to the plane of
the laminate. The fiber orientation of lamina i is
specified by the angle @; between the local &,
axis and the overall x, axis. If the laminate is
subjected to the in-plane stress increments do,,,
doyp, do,;, together with the temperature
increment d6, we wish to evaluate the local
stresses in the matrix and fiber as well as the
overall strain.

The solution to this problem can be obtained
in several different ways. One approach, which is
employed in Section 3, uses the finite-element
method for a stack of elements, each of which
represents a unidirectional lamina with specified
fiber orientation. In the present study, we used
the ABAQUS program, in which constitutive

equations of the unidirectional composite are
provided by the PHA model.*® Figure 1 shows
an example of the finite-element mesh for a
(@), laminate. It consists of two eight-noded
brick elements, one for each +¢@ and —g ply.
Uniform displacements were prescribed on each
surface of the finite-element domain. To simulate
the symmetric layup, the displacements in the x,
direction were prescribed as zero for the nodal
points in the x,x, plane.

Another approach to the solution of the stated
laminate problem is the laminate theory, which
assumes that the plies have equal in-plane
strains. As before, the response of each ply is
derived from a micromechanical model of the
composite. Bahei-El-Din and Dvorak' found the
solution for mechanical loads by using the
laminate theory and the vanishing-fiber-diameter
(VFD) model.!! Their approach was used for
thermomechanical loading of unidirectional com-
posites and laminates by Bahei-El-Din' and Min
and Crossman.? Alternatively, Bahei-El-Din'’
converted the thermomechanical problem  for
laminates to a mechanical loading problem that
can be solved by the laminate theory. The
method used is based on a decomposition
procedure which was introduced by Dvorak'® for
unidirectional composites (see Appendix A). In
this method, the plies are separated and in-plane
tractions are applied to each ply in order to
maintain the current stresses. A temperature
increment d@ is then applied to the plies
according to the procedure given by Dvorak."
This leaves each ply with axisymmetric auxiliary
stresses, s, 40 in the axial direction and s dé in
the transverse plane. The corresponding over-all

X,

¢ % ¢
R
Xy POOOOO
’.0.0".’.’
Xy 000,

. / XX

*Oply —e |-
-6 ply — [

Fig. 1. Finite element mesh for (1 @), laminates.
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strains are isotropic and uniform in the entire
composite (see Appendix A). Hence. the strains
are compatible in the x,x, plane regardless of the
fiber orientation, and the laminate can be
reassembled. Upon reassembly, the laminate
supports an overall stress dg, which equilibrates
the lamina stresses.

For the (t¢), laminates considered in the
present paper, the stress components of de are
given by:"?

déu =3,d9, dazz=32 de, d633=51-d6, (1)
d&zg = d63| = délz = 09 (2)

§y =54 C08% @ + sysin’ @, 3

$; =5, 8in% @ + s cos® @. )
The stresses s, and s, are given in Appendix A.
The actual fields caused by the temperature
change df are found by superposition of the
fields developed in the plies of the decomposed
laminate and those caused by removal of the
over-all stress dé. Simultaneous application of
the in-plane stress increments do,,, do,, do),
and the temperature increment d6 to the
laminate is therefore equivalent to application of
the mechanical load:

do‘ = [(dOH -5 do)(dozz bl 3} d@)
-s+d@da; 0 0]. (4)

The equivalent mechanical load (4) consists of
in-plane stresses and out-of-plane normal stress.

Let a superimposed prime on the stress or
strain vectors indicate (3 x 1) arrays listing
quantities associated with the x,x, plane of the
laminate, ¢.g.

de’ =[do,, doy, da,,|",
de’ = {de,, de,, 2de,]".

The over-all in-plane strains caused by simul-
taneous application of de’ and d@ are then found
as:"?

de’ =h1d0 + M[de’' - (sd8 +4s7)dO] (5)

where s=[s, 5, 0]", 1=[1 1 0]%, and A is given
in Appendix A. Matrix 4 is the instantaneous
compliance of the laminate associated with
in-plane loads, and £ defines in-plane stresses
caused by unit out-of-plane normal stress when
the in-plane strain de’ equals zero. Expressions
for M and £ are given in Appendix B. The first
term in eqn (5) is the uniform strain generated in
each ply of the decomposed laminate by the

axisymmetric stresses s, d@ and s;df. The
second term is the strain caused by application of
the equivalent stress de*, eqn (4), to the
laminate.

The non-zero matrix stresses in the plies are
the in-plane stresses de,, =[doT, doT do™" and
the out-of-plane component doT. The matrix
stresses are non-uniform in reality." Here.
however, we adopt Hill's approach”® and
compute the average stress in the phases. Let 4
and g define the in-plane average stress
concentrations for the matrix of a specific ply
under over-all in-plane stresses and out-of-plane
normal stress, respectively. The first column of ¢
is the stress de,, caused by over-all stress do,, = |
applied to the laminate, the second column
corresponds to doy, =1, etc. Similarly, ¢ is the
stress de,, caused by do,; =1. Now, the matrix
in-plane stress in the ply under consideration
caused by de and d@ can be written as:

do,, =5;1d6 + ¥(de’ —sdb) —gs7d6.  (6)
The stress do7; is written as:
dof=s5srd0O +/'T(do’ —-s§dB) —es;dO, (7)

where /‘T, e are stress concentration factors for
matrix out-of-plane normal stress corresponding
to over-all in-plane stresses and out-of-plane
normal stress, respectively. Formulae for the
concentration factors 4, g, ,7, ¢ are given in
Appendix B. They are functions of the fiber
orientation, local instantaneous properties of the
phases, and phase volume fractions. The first
term in eqns (6), (7) is the isotropic stress caused
in the matrix by the axisymmetric stresses s, d6
and srd6 in the decomposed laminate (see
Appendix A). In a plastically incompressible
matrix, this isotropic stress state does not cause
plastic deformation. The second term in eqns (6).
(7) is the stress caused by the in-plane
mechanical load (de’ — s d@), and the third term
is the stress caused by removing the out-of-plane
normal stress s+ dé.

3 DIMENSIONAL STABILITY OF (t¢),
LAMINATES

3.1 Elastic coeflicient of thermal expansion

The system under consideration is a graphite-

fibre-reinforced composite. This is a particularly
attractive system in dimensionally accurate
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Table 1. Material properties for graphite Gber and alumi-
ninm matrix

E, Ey Gy v, aa ar
(GPa) (GPa) (GPa) (107%/°C) (107%/°C)
P100 Graphite 690 607 155 041 -1-62 10-8
Aluminum 724 724 272 033 240 24.0

applications, since the graphite fiber has a
negative coefficient of thermal expansion (CTE)
in the axial direction, which tends to reduce the
axial thermal strain developed in metal matrix
composites. A dimensionally stable laminated
system can therefore be designed by variation of
the fiber volume content and/or the fiber
orientation. Here, we assume that the fiber-
volume fraction is constant in all laminae at 0-5
and select aluminum for the matrix material.
Elastic properties of the matrix and fiber are
shown in Table 1.

The effect of the fiber orientation in (t¢),
laminates on the over-all axial CTE is examined
in Fig. 2. Computation of the over-all response of
the laminate was made with the ABAQUS
program and the implemented PHA model by
using the finite-element mesh of Fig. 1. It is seen
that the unidirectional composite does not exhibit
dimensional stability in the elastic range.
Dimensionally stable systems are found at
@ =12°, 38°. Strength and stiffness considera-
tions exclude the system with @ =38°. Our
subsequent analysis will therefore, focus on
(£12), laminates.

3.2 Initial yielding

The over-all initial yield surface of a composite
laminate is the envelope of all stress states that

\;‘L;/
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Fig. 2. Variation of axial elastic coefficient of thermal
expansion of (+ @), laminates.

can be reached from the current state by purely
elastic deformation in the matrix phase for ail
plies. The yield surface may translate in the
over-all stress space as a result of hardening of
the matrix and/or the constraint imposed on the
matrix deformation by the fibers.'!" Matrix
hardening takes place only when plastic strain
develops in the matrix, whereas constraint
hardening is present for both elastic and
elastic—-plastic systems when mechanical loads are
coupled with thermal changes. It was shown by
Dvorak, Rao, and Tarn'® and Bahei-El-Din'’ that
the over-all yield surfaces of unidirectional
composites and laminates translate in the stress
space if the composite is subjected to a thermal
change.

For elastic laminates, the translation is given
by the stress vector dé (eqns (1)-(3)).”
Evaluation of the yield surface translation for
elastic-plastic laminates is more complex. In the
examples given in the sequel, the over-all yield
surface and its translation were found from the
laminate analysis given in Refs 10 and 17.

Figure 3 shows three sections of the initial
yield surface (A6 =0) of (£12),, Gr/Al lamin-
ates in the plane stress space. The yield surfaces
were computed for a von Mises matrix and a

Gr/Al.cy= 0.5 "z’—j

A8 0°C

o,,(MPa)

-200
—400 ~200 Q

200 400 600 800
g,, (MPa)
w AB = 0°C 28.42°C
a
2
°’_
800
— e 12° ply
------- -12° ply
-200
400 -200 [} 200 400
0, (MPa)

Fig. 3. Initial yield surfaces for a (112), laminate.
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matrix tensile-yield stress of 70 MPa. The latter is
approximately the magnitude of the yield stress
for 6061 aluminum in the as-fabricated condition.
For each ply. there is a yield surface in the
over-all stress space. The over-all yield surface is
the inner envelope of the two surfaces shown in
Fig. 3. Note that. in the 0,,0,, plane, the yield
surfaces of the + @ and — g plies coincide.

Under a temperature change d8, the centers of
the yield surfaces for the +¢ and —@ plies are
located at dé (eqns (1)-(3)). At the onset of
yielding, at least one of the yield branches
contains the stress origin. This is shown in Fig. 3,
where yield surfaces of the (+12), laminate are
drawn at the yield temperature A6 = 42°C. Note
that both plies yield together and that the
response under subsequent mechanical loading
will be very much affected by the temperature
change. For example, after the temperature
change indicated, the laminate response is elastic
under axial tensile stress o, and elastic—plastic
under axial compression. In the 0,,0,, plane, the
over-all elastic domain is reduced substantially
after the temperature change, while it completely
disappears in the 0,,0,; plane.

The implication is that relatively small
temperature changes may cause yielding of
laminates and that the over-all deformation
under thermal loading can be affected sig-
nificantly by the presence of mechanical loads
and vice versa. Moreover, the mechanical-
loading direction is expected to influence
dimensional stability under thermal loads. These
effects are examined in the subsequent sections.

3.3 Dimensional stability under pure thermal
loading

It was shown that initial yielding of the composite
laminate occurs for a temperature change of only
42°C. In this section, we consider applications in
which the laminate is subjected to thermal cycles
in the range $120°C. Consequently, plastic
deformation develops in the aluminum matrix,
which may affect the dimensional stability of the
composite. Linear work-hardening was assumed
for the matrix response in the plastic range. Two
values were considered for the elastic-plastic
tangent modulus, E,,,, of the matrix, (E»/E)m =
0-167, 0-667, which correspond to plastic tangent
moduli, H, of 145GPa and 145GPa,
respectively.
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Fig. 4. Temperature/axial-strain response of a umdirec-
tional composite and (%12), laminate with (£,,,/E)n =
0-167.

Figures 4 and 5 show the axial thermal strains
generated in unidirectional and (+12), Gr/Al
laminates under the temperature cycle 20—
120— —120— 120°C. Although the composite is
dimensionally stable for @ =12° in the elastic
range, it is not stable in the plastic range.
Furthermore, the 0° lamina, which did not
exhibit stability in the elastic range, developed
a total strain during the thermal cycle much
smaller than that found for @ = 12°. Hence, the
dimensional stability of the laminate was
enhanced by plastic deformation of the matrix for
the 0° laminate and reduced for the (x12),
laminate. As expected, the over-all strains found
for the composite with (E,,./E)n = 0-667 (Fig. 5)
are much smaller than the strains found for
(Ewn/E)n =0-167 (Fig. 4).

The axial CTE in the elastic and elastic—plastic
ranges are compared in Fig. 6 for 0= @ =45°.
The magnitudes of the over-all CTE were found
as the slopes of the linear parts of the
strain-temperature curves computed for each

oot i
300 GrAl c,=05 ! b
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ol (s,/E)--owE -y
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Fig. 5. Temperature/axial-strain response of a umdirec-
tional composite and (%12), laminate with (Ewual E)ee =
0-667.
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layup by using ABAQUS (see, for example, Figs
4, 5). It is clear that plastic deformation o1 .:e
matrix affects the dimensional stability of
composites to a great extent. For example, elastic
laminates have a vanishing CTE for ¢ = 12°, 38°,
whereas laminates with the stiffer matrix in the
plastic range show this property at ¢ =2°, 41°,
On the other hand, laminates with the softer
matrix in the elastic—plastic range have a
vanishing CTE at @ =45°. The large lamination
angles are obviously not useful in real applica-
tions since they lead to large plastic strains and
reduce the composite stiffness substantially.
Figure 7 shows the total axial-strain range
found during the thermal loading cycle indicated
in Figs 4, 5 as a function of the lamination angle,
@. The strain magnitudes found for ¢ =12°
during the cycle are indicated. It is seen that the

200 - . *'o
L GrALc,=05

"OF 19wt 120°C

(Eian/E) m = 1.000

(Eign/E) » = 0.687

Axial Strain Range. At ,,{10 °)

(Egn/E) m » 0167

J
L)}

Fig. 7. Variation of axial strain range for (t¢), laminates
under +£120°C cycles.

unidirectional composite experiences dimensional
changes during thermal cycling that are much
smaller than those found for other layups. 1.
actual applications, however, small off-axis
angles may be required to enhance the transverse
stiffness and strength of the composite.

The results are, of course, affected by the
matrix properties, as is evident from the response
of the two matrices considered here. Different
matrix responses can be achieved by heat
treatment, which affects both the magnitude of
the matrix yield stress and the plastic tangent
modulus. The effect of the matrix yield stress on
dimensional stability of laminates is examined in
the sequel.

3.4 Dimensional stability under
thermomechanical loads

In certain structural applications of fibrous
composites, temperature changes generate mech-
anical loads. Statically indeterminate truss beams
considered for space structures'® are examples of
this situation. To examine the effect of combining
mechanical and thermal loads on the dimensional
stability of composites, we consider again the
(£12), Gr/Al laminate with (E../E),=0-167.
The response under three separate loading cycles
is examined: (a) the thermal-loading cycle
applied in the previous section (20— 120—
-120—120°C), (b) the same thermal-loading
cycle combined with the axial
tension/compression load cycle (0—300—
—300— 300 MPa), (c) the thermal cycle combined
with the axial compression/tension load cycle
(0— -300—300— ~300MPa). Let r and p
indicate the ratio of axial load to temperature
(MPa/°C) and the axial load amplitude (MPa),
respectively. Hence, the three loading cases
indicated above specify thermal cycling in the
range +120°C with (r, p) =(0, 0), (2-5, £300),
(—2-5, ¥300), respectively.

The over-all strain computed in all three
loading cases is plotted as a function of
temperature in Fig. 8. The mechanical-loading
parameters r, p and the total strain range, A€,
found in each case are tabulated. As expected,
dimensional stability is lost in the elastic range
when the laminate is subjected to niechanical
loads. Since the axial elastic CTE vanishes, the
strain developed in the elastic range is only
mechanical. The elastic—plastic response under
thermomechanical loads is also very different
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Fig. 8. Temperature/axial strain response of a (12),
laminate with matrix yield stress Y =70MPa under
thermomechanical load cycles in the range £120°C.

from the pure thermal loading case as indicated
by the slopes of the strain/temperature seg-
ments. The loading direction affects the results
significantly. The results show that larger strains
occur when r is negative (case (c)). In this case,
both the temperature change and the mechanical
load produce axial compressive stresses in the
matrix. This causes the composite to yield at a
lower temnerature as compared with the cases
with r =0 (case (a)) and r>0 (case (b)) and
results in larger plastic strains during the same
thermal cycle. As may be seen in Fig. 8, the
dimensional stability of the laminate is enhanced
by plastic deformation of the matrix for r >0,
and reduced for r <0.

The effect of thermomechanical loading on
plastic deformation of laminates is illustrated
with the help of the yield surface in Fig. 9. The
initial yield surface of the (%12), laminate
together with the yield surfaces corresponding to
120°C and -120°C are shown for the three
loading cases indicated above. In case (a), r =0,
p =0, the yield surface translates in the direction
of the positive o,, axis and contains the stress
origin at 62°C (A8 =42°C) as indicated pre-
viously. As the temperature increases from 62 to

GrAl.c.=05
1€, B} 20167 VN0
Y = 70 MPa .3 ,
A0 = £120-C

-120°C ~ . Taee o
300 -—.;w —~—— 300 MPa S, MPa)
(b) r=25MPa"C. p = 300 MPa
o, (MPa)
307 —9 220120120 C
-1500 ~1000 -500 - 500 200 ks

T —
-300 300 MPa ,
e o., :MPa)

{c) r=-2.5MPar°C. p =3 300 MPa

Fig, 9. Over-all yield surfaces of a (£12), laminate in the
0,,0,; plane corresponding to the thermomechanical load
cycles of Fig. 8.

120°C, the yield surface remains in contact with
the origin and the matrix deforms plastically. On
the reversed part of the cycle from 120 to
-120°C, the yield surface translates in the
direction of the negative o,, axis, where it
comes into contact with the origin at about 42°C.
At this temperature, plastic deformation again
develops in the matrix, and the yield surface
remains in contact with the origin to the end of
this thermal-loading segment. In loading case (b).
r=2-5, p=+300MPa, both the loading point
and the yield surface move along the positive o,
axis but with different rates relative to the
temperature. This delays yielding of the lamin-
ate, which occurs at about 80°C (see Fig. 8) and
axial load of 180 MPa (note that r = 3 for the first
loading segment). The yield surface translates at
a higher rate than to the stress point, and as such
the yield surface comes into contact with the
loading point at the trailing end of the surface.
The process is repeated when the load and
temperature are reversed.

Yielding of the composite is accelerated. on
the other hand, when r <0 (loading case (c).
r=-2-5, p=%300MPa), where the loading
point and the yield surface move in opposite
directions. The composite in this case yields at
about S0°C (see Fig. 8) and an axial load of
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-90 MPa. Continued loading results in transla-
tion of the yield surface in the direction of the
negative o,, axis where it remains in contact with
the loading point. At 120°C and —300 MPa, the
yield surface is pulled back by the loading point
to a position that is almost identical with the
initial position.

3.5 Effect of elevated yield stress

In the preceding sections, we showed that plastic
deformation of the matrix may enhance or
reduce the dimensional stability of composites.
Through heat treatment, it is possible to change
the matrix properties in such a way that the
dimensional stability of the composite is en-
hanced. We have already shown that increasing
the plastic tangent modulus of the matrix reduces
the thermal strains significantly (Figs 4-7). In this
section, we examine the effect of the magnitude
of the matrix yield stress, particularly when it is
elevated by heat treatment (for example, by the
T6 temper).

Consider again the (+12), Gr/Al laminate and
assume that the matrix yield stress in simple
tension has been increased from 70MPa to
280 MPa. The computed axial strain is shown in
Fig. 10 for the three loading cases described
previously. For the temperature range indicated
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Fig. 10, Temperature/axial strain response of a (+12),
laminate with matrix yield stress Y =280 MPa under
thermomechanical load cycles in the range +120°C.
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Fig. 11. Temperature/axial strain response of a (£12),
laminate with matrix yield stress Y =280MPa cnder
thermomechanical load cycles in the range +250°C.

(£120°C), the laminate remains elastic. Compar-
ing the strains found in this case with those given
in Fig. 8, we find that increasing the yield stress
by 400% reduced the strains developing under
temperature coupled with compression/tension
loading (r = —2-5, p = ¥300) by about 25%. The
strains found under temperature and tension/
compression loading (r =2-5, p = £300), how-
ever, increased by about 10% when the matrix
yield stress increased.

Figure 11 shows the response when the
composite is cycled between 250°C and —250°C.
The axial strains developed in this case are
comparable with those developed under +£120°C
cycles and 70 MPa matrix yield stress (Fig. 8).
Consequently, if a certain tolerance is imposed
on dimensional changes of the laminate, they can
be met for various temperature and mechanical
load ranges by changing the matrix yield stress
through heat treatment. In Section S, we present
master curves that may aid in design for specific
dimensional tolerances in Gr/Al laminates.

3.6 Summary

The results presented in the preceding sections
are summarized in Table 2. The case of a matrix
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Table 2. Summary of dimensional-stability results for
P100 Gr/Al, (£ 12), laminate (c,=0-§, (E . /E).=0-167]

Loading path Total axial-strain range,

Ae(107°m/m)

A6 r p 6061-0 Al 6061-T6 Al

°’C  (MPa/°C) (MPa) (Y =70MPa) (Y =280MPa)
+120 0 0 360 0
+120 25 +300 1585 1754
120 =25 F300 2324 1754
+250 0 0 905 392
1250 1-2 +300 1002 1550
+250 -12 300 2879 2334

yield stress of 70 MPa and temperature range of
1250°C is added to the cases discussed previously
for comparison.

For the model (£12), laminate considered here
and the temperature and axial loading ranges
indicated, we find:

(i) dimensional stability is achieved for the
T6 temper of the matrix alloy and pure
thermal loading of +120°C;

(i) overaging enhances dimensional stability
under pure thermal loads (r=0), and
under out-of-phase thermal and mechani-
cal loads (r <0);

(iii) the dimensional stability of the composite
is enhanced by plastic deformation of the
matrix when the temperature change and
the mechanical load are in-phase (r > 0);
otherwise it is reduced;

(iv) the dimensional stability was unaffected
when the operating temperature range
increased from +120°C to £250°C and the
matrix yield stress increased from 70 MPa
to 280 MPa.

4 DESIGN CURVES FOR GR/AL
LAMINATES

In this section, we use the thermomechanical
analysis described in Section 2 to produce master
curves for calculation of the axial strain in Gr/Al
(@), laminates. The load consists of propor-
tional axial stress o,, and temperature change 6
from a reference temperature 6,. We assume a
von Mises matrix with a bi-linear stress/strain
curve.

Figure 12 shows a schematic representation of
the over-all axial-strain/temperature curve. The

Fig. 12. Schematic representation of temperature-axial-
strain curve for a laminate under thermomechanical loads.

curve is bi-linear and consists of an elastic part.
0,= 60 =< 6y where 0y is the yield temperature.
and an elastic~plastic part, 8 > 6y. The slope of
the elastic segment of the curve is given by
(r/E. + a)), where r=o0,/(0~-6,), E, is the
laminate axial elastic Young's modulus, and a, is
the laminate axial elastic coefficient of thermal
expansion. The slope of the elastic-plastic
segment is a function of the loading path, r, and
the matrix plastic tangent modulus, H. Let
&(r, H) denote the slope of the elastic—plastic
portion of the overall strain-temperature curve.
The over-all axial strain is written as:

€En=(/Ei+a)(8—-8,), 6,=6=86y (8)
en=(/E, + a;))(8y— 8y)
+&(r)(6—-6y), 0>6. 9)

The overall axial-strain/temperature curve can
easily be constructed for a cyclic proportional
axial-load/temperature regime as shown in Fig.
12.

The elastic over-all coefficient of thermal
expansion, @, and Young’s modulus, E,, are
given in Figs 6 and 13 for a Gr/Al composite and

GrAl.c,=0.5 oro

o
-~

o
w

o

Axial Elastic Modulus, E, (GPa)
o
L)

A i el i L i
5 10 15 20 25 30 3 a0 35

0 (degrees)

o
o

Fig. 13. Variation of axial elastic modulus for (t¢),
laminates.
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0= @ =45°. The magnitude of the yield tem-
perature is a function of the matrix yield stress
and the ratio r between the mechanical load and
the temperature change. Figure 14 shows yield
curves generated by the analysis of Section 2 for
selected values of the lamination angle ¢. Given
r, the curves provide the value of (8y — 6,) and
the corresponding stress at the onset of yielding
in the laminate. For @ =0, the relationship
between the axial stress and the temperature
change is linear with slope r = 0-115. Under this
load/temperature ratio, the response of the 0°
lamina remains elastic. The slope, & of the
elastic—plastic segment of the over-all strain-
temperature curve, computed for selected values
of the angle @ and H = 14-5 GPa, is given in Fig.
15 as a function of the ratio r between the axial
load and temperature change. Similar curves can
easily be generated for other composite systems
and layups with the analysis presented in Section
2. Comparison of the computed over-all response
for various (@), Gr/Al laminates under
thermomechanical loads with the finite-element

100

GriAl,c,= 0.5

3 3
TTYT VY771 ¥

Axial Siress/Y
o

= .
-0 ose
40

- x
s ?

-
sl

4
100 L PR U S | e

TN 8 6 4 -2 0

2 4 8 10
Temperature/Y (°C/MPa)

GrAl c,=05

20

Axial Stress/Y
Q

5 22 -1 Y 1 2 3
Temperature/Y (*C MPa)

Fig. 14. Initial yield curves for selected (+@), laminates
under combined axial stress and temperature change,
normalized with the matrix yield stress Y.

8
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(Epan €)= 0.167 |

8 &§ 8 8

Axial Elasic-Plastic Sirain/Temperalure, & (10 ©/°C)
o

10 -8 6 4 -2 0 2 4 6 8 10
Arial Stress/Temperature (MPa/°C)

Fig. 15, Cqmputed axial elastic—plastic strain for selected
(@), laminates subjected to proportional axial-stress—
temperature loading.

results showed excellent agreement. The analysis
in Section 2, however, may not provide accurate
results for composite systems that deform in the
matrix-dominated mode® such as B/Al and
SiC/Al composites.

§ CONCLUSION

Dimensional changes caused in metal-matrix
composites and laminates may be restricted
within specified tolerances by variation of the
laminate layup and the matrix yield stress and
stress/strain response through heat treatment.
Depending on the operating temperature range
and the ratio of mechanical load to temperature
change, the proper heat treatment can be
determined such that the dimensional stability of
the composite is enhanced. For example, a 6061
Al/Gr (£12), laminate is dimensionally stable in
the temperature range $42°C for the as-
fabricated composite (matrix yield stress Y =
70 MPa) and stable in the range +168°C for the
T6 condition (Y =280 MPa). The matrix plas-
ticity may enhance or reduce the dimensional
stability of laminates subjected to combined
thermal and mechanical loads. The onset of
plastic deformation of the matrix is reduced for
out-of-phase thermal and axial mechanical loads
and enhanced for in-phase loads. Accordingly,
the dimensional stability is affected by the way in
which the mechanical load and thermal change
are synchronized. In any case, accurate plasticity
analysis must be performed for specific design
loads and parameters.
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Recent developments in the theory of plasticity
of unidirectional composites were utilized in the
present paper 1o examine the response of
composite laminates under thermomechanical
loads. One approach used here is based on the
finite-element method, where the underlying
constitutive equations of unidirectional plies are
derived from a representative volume of the
microstructure. Although highly accurate. this
method is not cost-effective and requires
availability of a finite-element routine. A more
economical and equally accurate analysis, which
may be performed on a personal computer, is
based on the laminate theory and fiber-
dominated micromechanical models of unidirec-
tional composites. The analysis was outlined and
used in the present paper to generate master
design curves for the evaluation of axial strains in
laminates subjected to axial stress/temperature
cycles.
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APPENDIX A

In this Appendix. we consider the problem of a
unidirectional composite subjected to a tempera-
ture change d6. Both the fiber and matrix phases
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are elastic; the fiber is transversely isotropic, and
the matrix is isotropic. The solution of this
problem was found by Dvorak,” using a
decomposition scheme in which the fiber and
matrix phases are separated from each other and
subjected to the thermal change d@ while
applying surface tractions to the surfaces of the
phases to maintain the current stresses. Since the
phases deform differently under temperature
variations, auxiliary phase stresses are needed to
ensure compatibility of the phases. The auxiliary
stresses are found by satisfying compatibility of
the phase deformations and equilibrium of the
tractions at phase interfaces. In this way, the
composite can be reassembled. Upon reas-
sembly, the unidirectional composite supports
overall stresses d&, that equilibrate the phase
auxiliary stresses. The over-all stress is axisym-
metric and given by:

dd,, =s5.d0,
dbn = db,; =Sr d9,

dd,, = dd,, = dd,, =0. (A1)

Equivalent expressions for s, and sr can be
found in Refs 12 and 13. The latter are recorded

here for phase thermoelastic properties that are
not functions of temperature:

sa = (a;b, - a,by)/(a\b, - a,b1) (A2)
st = (axb; — asb;)/(a\ b, = a;b,) (A3)
ay = (ng+ cal)/(kEL) - 2/(3Ka)  (A4)

a,=—l/(ckEY), a:= 2o - am) (AS)
b, =1/ (kEL) + 1/(3Ka) + cu/(c/EL) (A6)

b,=-1/(cE}), by=—(al-aa). (A7)
where K, is the matrix bulk modulus, a4 is the
matrix coefficient of thermal expansion, E} is the
fiber longitudinal Young's modulus, n,, k,, I, are
Hill's moduli®® of the fiber, and af and af are
coefficients of thermal expansion of the fiber in
the longitudinal direction and transverse plane,
respectively.
The auxiliary local stresses are given by:"’

de,=s¢{111000]"dé (A8)
dé,=s{y 1 100 0]"ds,
y=(sa/st = cm)/Cq. (A9)

The strain field corresponding to eqn (Al) is

uniform in the entire composite:
dé¢=de,=dé,=[h h h 0 0 0]"de,

h= ST/3K,,, + an. (AlO)

APPENDIX B

Here we give expressions for the instantaneous
compliance matrix 4 and in-plane stress vector £
for (@), laminates, together with expressions
fgr the matrix stress-concentration factors 4, g,

, ®.

Consider a laminate loaded by in-plane stress
do’ and out-of-plane normal stress do,;, where
x,x, is the plane of the laminate. The over-all
in-plane strains can be written as:

di' =-‘d0, +-d033. (Bl)

The over-all stress de’ can be written in terms of
de' and dos; as

do’' = £de’ +4£do,,, (B2)
where
E=M" k=-Lm. (B3)

Equations similar to eqns (B1) and (B2) can be
written for each +¢ and —@ ply. The over-all 4
and m are given by:*

M=2Loe + L), m=tMk., +£_),
(B4)
where
L=M"' k=-%Lm, i=+p, —-¢. (BS)

The subscripts +¢ and —¢ indicate over-all
quantities for the +@ and — @ plies, respectively,
in the laminate co-ordinate system x,.

The ply compliances 4; and =, are given by:

M=RTAR, =w =R[&, i=+p —¢, (B6)
where
[ costgp  sin*@ sin2g 1
R,, =] sin‘ep cos’p -—sin2¢@
. -4 szin 29 i.si:l 2¢ co.s 2¢ 1 e
cos* @ sin® @ —sin 2¢
R_,=]| sin’@ cos’ @ sin2¢ |,
_ isin2¢ —isin2¢ cos2¢p ]

and M, & are the over-all compliances of a
unidirectional composite in the local co-ordinate
system £, where %, is the fiber direction. Matrix
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M is associated with in-plane loading and & with
out-of-plane normal-stress loading. Expressions
for 4 and = are given in Appendix C.

The ply in-plane stresses de; and out-of-plane
normal stress doy) can be written in terms of
their over-all counterparts de’ and dos; as:

do: = x. de’ +‘, d033, daS‘} = d033. (BS)
The distribution factors X, 4, i = +¢@, —¢@, are
given by:"?
H=LM A =ZL(m—m) (B9)
In the co-ordinate system x,, the ply stresses are
given by:
dé/ = R do;, daoy)=do,, (B10)
where the transformation matrix R, i = +@,
-, is given by eqn (B7).
The matrix average stresses in a specific ply
can be written in terms of the ply stresses as:

do,, = Bdo +4daY], (B11)
dofy =¢"do" + ndayl, (B12)

where B, 4, ¢, n are instantaneous stress-
concentration factors for the ply under con-
sideration (see Appendix C).

Finally, the matrix stresses can be written in
terms of the laminate stresses do; and do,; as:

do, = 9de’ +4 do;, (B13)
dU‘J“J =/‘T do, +e dO;;. (B14)

From eqns (B8)-(B14), we find:
G=BRX, ,=QQ,[,+& (B15)
/'T = cTQ,x,, e= oTa,‘,- +n (Blﬁ)

APPENDIX C

The over-all compliances 4 and s of a lamina in
the % co-ordinate system (¥, =axial direction)
can be found in terms of the local properties and
the concentration factors that relate the average
local fields to the over-all uniform fields.'* In the
notation used here, the over-all compliances 4.
» of a unidirectional lamina are given by:

M= M+ [(M— M)B+ (m,, — mic"] (CD)
= moy+ Co[(Men — M6+ (m,, — mm], (C2)

where M, m., r=f, m, are phase compliances
associated with loading in the %, t, plane. and
with out-of-plane normal-stress loading, respec-
tively.

The concentration factors B, 4, <', n relate
matrix-stress averages to over-all stresses as
expressed in eqns (B11) and (B12). For elastic
phases, the concentration factors can be found by
using an averaging model such as the self-
consistent® or Mori-Tanaka** method. In this
case, the concentration factors are functions of
the elastic moduli of the fiber and matrix phases
and their volume fractions. If the matrix deforms
plastically, the method described by Dvorak* can
be used to compute the instantaneous stress-
concentration factors in terms of their elastic
counterparts, the over-all instantaneous com-
pliances M, =, the fiber elastic compliances 4.
w, and the matrix instantaneous compliances A,
m,,. The latter can be found from a constitutive
model of the matrix as described in Ref. 1.
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ABSTRACT

Local stresses caused by mechanical and thermal loads in high temperature
intermetallic matrix composites are evaluated using a finite element solution for a periodic
hexagonal array microstructure. Both uncoated and coated elastic fibers are considered.
The matrix is assumed to be elastic—plastic and insensitive to loading rates. Mechanical
properties of the phases are function of temperature. It was found that a CVD deposited
carbon coating can be quite effective in reducing thermal stresses at the matrix/coating
interface. Certain mechanical stress concentration factors, however, may be aggravated by
the compliant coating. In composite systems with a ductile matrix, plastic deformations
reduce stress concentration and lead to stress redistribution. In such systems,
thermomechanical loading regimes can be designed to reduce adverse local stresses
introduced during fabrication, for example, by hot isostatic pressing.

INTRODUCTION

It is well known that the overall behavior of fibrous composites is directly affected
by the local phenomena. For example, the overall performance of a composite may be
impaired if damage or instability is initiated in the phases or at their interfaces. On the
other hand, the overall strength may be enhanced by plastic flow of the matrix. Therefore,
evaluation of local stresses in fibrous composites is important in material selection,
evaluation and design under both thermal and mechanical loads.

The present paper is concerned with evaluation of the local stresses in high
temperature fibrous composites under thermomechanical loads. Specifically, the stresses in
uncoated and coated fiber reinforced intermetallic matrix composites are examined. For
unidirectional composites, the analysis was performed for an idealized %eonetry of
the microstructure using the Periodic Hexag:ma.l Array (PHA) model (Dvorak and
Teply, 1985, Teply and Dvorak, 1988). This geometry permits selection of a
representative unit cell, the response of vhich is identical vith the response of
the composite aggregate under overall uniform stress or strain fields. The overall
response and local fields are then found in the unit cell using the finite element method.
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The results reported in this paper focus on the effect of fiber coating on the local
thermal and mechanical stress concentration factors in elastic as well as elastic—plastic
matrices. Thermal residual stresses generated by cooldown of unidirectional composites
from fabrication temperatures are also evaluated. The present study examines various
thermomechanical loading regimes that may be applied during the fabrication process to
reduce the tensile stresses in the matrix.

The paper begins with a brief description of the PHA model for unidirectionally
reinforced composites. Next, material properties for the composite system examined in this
study are given. Two principal results obtained with the PHA model for intermetallic
matrix composites reinforced by uncoated and coated fibers are then presented and
discussed. One is concerned with the effect of fiber coating on thermal and mechanical
stresses, the other examines the effect of the thermomechanical loading regime applied
during fabrication of composites by hot isostatic pressing on the local stresses.

THE COMPOSITE MODEL

Several material models have been developed for elastic—plastic fibrous composites
under various approximations of the microgeometry. While averaging models, such as the
self—consistent model (Hill, 1965) and the Mori—Tanaka (1973) method, approximate the
microgeometry by a single inclusion embedded in an infinite mass of a different matenal,
periodic models (Aboudi, 1986; Dvorak and Teply, 1985, Nemat—Nasser et al., 1982)
consider actual details of the microstructure. The latter class of models assumes certain
periodic arrangements of the fiber in the transverse plane of the composite and performs
the analysis on a unit representative cell of the periodic microstructure. Other models
which are phenomenological in nature have been also developed (see for example the
Vanishing Fiber Diameter (VFD) model by Dvorak and Bahei~El-Din, 1982; and the
Bimodal Plasticity Theory (BP a{l by Dvorak and Bahei—El-Din, 19872l but are more
suitable for prediction of the overall response of composites. A survey of the above models
can be found in the reviews by Bahei—El-Din and Dvorak (1989) and Dvorak (1991).

An essential requirement in the theoretical model used in the present study is the
ability to represent details of the local stress and strain fields in the phases of a
unidirectionally reinforced composite subjected to uniform overall stress and thermal
change. This narrows down our choices to the periodic models. In particular, we employed
the PHA model developed by Dvorak and Teply 3S1985) and Teply and Dvorak (1988)
which we have verified experimentally (Dvorak et al., 1988; Dvorak et al., 1990). In this
model, the microstructural geometry in the transverse plane of a unidirectionally reinforced
fibrous composite is represented by a periodic distribution of the fibers in a hexagonal
array. Cross section of the fibers is approximated by a nx6—sided polygon. An example of
the PHA microgeometry with dodecagonal fiber cross section is shown in Fig. 1a. The
hexagonal array shown in Fig. la is divided into two unit cells, as indicated by the shaded
and unshaded triangles. Uncfer overall uniform stresses or strains, the two sets of unit cells
have related internal fields. Accordingly, under properly prescribed periodic boundary
conditions, only one unit cell from either set needs to be analyzed. Figure 1b shows a three
dimensional view of one of the unit cells.

The actual analysis is performed by the finite element method. The unit cell is
subdivided into a selected number of subelements in the matrix, fiber, and coating
subdomains. A fairly refined subdivision is required for evaluation of the local fields.
Figure 2 shows two examples of such a finite element mesh. The results reported here were
found with the ABAQUS finite element program. Resident conmstitutive relations were
used for the homogeneous phases. The fiber and the coating were assumed elastic, whereas
the matrix was assumed elastic—plastic, inviscid, and follows the Mises yield criterion.
Stress—plastic strain response of the matrix was assumed to follow a linear strain hardening
behavior, and the matrix yield surface to follow the Prager—Ziegler kinematic hardening
rule. Thermoelastic properties of the phases as well as the matrix yield stress and plastic
tangent modulus are piecewise linear functions of temperature.
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THE COMPOSITE SYSTEM

An intermetallic matrix composite system reinforced by aligned continuous fibers is
considered. The matrix is a nickel-aluminide compound (Ni3A/), and the reinforcement is
a carbon—coated or uncoated silicon—carbide fiber (SCS6) at 25% volume fraction. The
carbon coating thickness is 10 um. Tables 1 and 2 show material properties of the phases.
Thermoelastic constants of the silicon—carbide fiber and the carbon coating are not
function of temperature, while those of the nickel-aluminide matrix vary with
temperature.  Also, the yield stress and the plastic tangent modulus of the Ni;A{
compound vary with temperature. Figure 3 shows variation of the tensile yield stress with
temperature for the NigjA{ matrix. Unlike other aluminide compounds, for example TisA¢,
for which the yield stress increases monotonically with decreasing temperature (see Fig. 3),
the yield stress of the nickel—aluminide compound decreases with decreasing temperature if
the latter is below 6000C. This causes plastic deformation of the matrix during cooldown
of NigAl-based system which may help in reducing the adverse thermal residual stresses.

RESULTS

ing on L tresses

To examine the effect of fiber coating on the local thermal and mechanical stresses,
we plotted stress contours in the unit cell for the transverse local stress 0;2. Figures 4 and
5 show the results for the SCS6/NijA¢ composite in the elastic range under thermal
loading and overall transverse tension, respectively. It was assumed that the composite is
stress free at the fabrication temperature of 1200°C, and small increments of a temperature
decrease and transverse tensile stress were applied separately. The local stress o2, found
from finite element solution of the unit cell was then normalized by the applied load and
plotted in the transverse plane. The unit cell is indicated in Figs. 4 and 5 by the dashed
triangular boundary. The contours outside the unit cell were generated using the periodic
properties of the local stress field.

It is seen from Fig. 4a that tensile hoop stresses, and compressive radial stresses
develop in the matrix if the temperature is decreased, whereas compressive hoop stresses
develop in the fiber. These stresses are caused by the mismatch between the thermal
strains generated in the fiber and the matrix. At the fiber/matrix interface in the system
under consideration, the matrix tends to move in the volume occupied by the fiber when
the temperature is decreased, but is prevented by the stiff fiber which deforms at a much
smaller temperature rate. Consequently, radial cracks may develop in the matrix under
cooling from the fabrication temperature. If, on the other hand, the coefficient of thermal
expansion of the fiber was larger than that of the matrix, local damage under temperature
r ‘llxmgger would take the form of disbonds at the fiber/matrix interface, and radial cracks
in the 8.

Applying a carbon coat to the fiber causes significant reductions in the local thermal
stresses, particularly at the fiber/matrix interface, Fig. 4b. Compared to the matrix and
the fiber, the carbon coating has a much smaller elastic stiffness in the transverse plane,
and as such it can accommodate the thermal strains developed in the phases. Conversely,
the coating enhances sharply the mechanical transverse stresses as seen in Fig. 5. This
tradeoff must be carefully considered in design of composites.

If the matrix deforms plastically, the local stresses are reduced substantially,
particularly under thermal loads. This is seen in the contours plotted in Figs. 6 and 7 after
loading the composite well intc the plastic region so that the matrix subdomain is fully
plastic. In this case, the matrix is very much compliant compared to the fiber and
therefore can deform without developing large stresses. In fact, the stiffness of the matrix
in the plastic range is comparable to the stiffness of the carbon coating so that the

differences in the stresses developing in the coated and the uncoated systems are not
significant.

_ . . These results indicate that material selection may favor uncoated fibrous systems
with dugtxle matrices over coated elastic systems. Under repeated loads, however, low
cycle fatigue may develop in the matrix under cyclic plastic straining leading to nucleation

of small cracks. Certain tradeoffs therefore exist and must be applied in material selection
and evaluation.
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Table 1 Matenial properties of SCS6 fiber and carbon coating

1 3 3 4 S [] 7

E, E Gy Gy “L o ar

GPa GPa  GPa GPa (10" /°C)

SCS6 fiber 413.6 413.6 159.1 159.1 0.3 4.6 4.6

Carbon coating 172.4 €.9 14.5 3.8 0.3 1.8 28
lI.ongitudixml Young's modulus

2Tra.mwerse Young’s modulus

3Longitudinal shear modulus

*Transverse shear modulus

sLongitudinal Poisson’s ratio

‘Longitudina.l coefficient of thermal expansion
7Tra.nsverse coefficient of thermal expansion

Table 2 Material properties of Ni,A¢ matrix (Stoloff, 1989)

T' E J o' Y I'4
°C GPa 10"/°C MPa GPa
1200 134 0.32 20.6 137 6.70
994 142 0.32 19.0 279 7.10
776 150 0.32 17.2 459 7.50
673 154 0.32 16.4 557 7.70
642 155 0.32 16.1 564 775
578 158 0.32 15.6 535 7.90
376 165 0.32 143 356 8.25
327 167 0.32 14.0 279 8.35
206 172 0.32 13.4 156 8.60
127 175 0.32 13.0 110 8.75
21 179 0.32 12.5 79 8.95
‘Temperature

2Young’s modulus

aPoisson’s ratio

‘Coefficient of thermal expansion
*Tensile yield stress

“Tensile plastic tangent modulus
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Fig. 3 Yield stress—temperature curve for NijA¢ and Ti3A{ compounds.

Effect of Fabrication Parameters on Residual Stresses

This part of our study of local stresses in fibrous system is concerned with
evaluation of the thermal residual stresses generated during fabrication and examination of
possible thermomechanical loading regimes that can be applied during cooldown to room
temperature so that high tensile thermal stresses in the matrix can be reduced. The results
presented in the preceding section indicate that plastic flow of the matrix causes
redistribution of the local stresses and reduction of the interfacial stresses in the matrix.
Consequently, in fabrication of intermetallic matrix composites by hot isostatic pressing
(HIP), one can select the optimum temperature/pressure path to follow so as to minimize
the adverse local stresses in the phases, particularly the matrix. This, of course, can be
accomplished only for composites with a ductile matrix.

Considering the SCS6/NisAl composite, we first examined the local stresses
retained in the system at room temperature after exposure to HIP temperature of 12000C
and hydrostatic pressure, ¢, of 200 MPa when the room temperature/zero pressure
condition i¢ reached through the various unloading options shown in Fig. 8. In particular,
we compared the magnitude of the local interfacial stresses in the phases of uncoated and
coated systems for the various cases listed in Fig. 8. In each case, the composite was
assumed to be free of internal stresses at the fabrication temperature (1200°C), and the
hydrostatic pressure g, was applied in small increments up to 200 MPa. Although the
overall load applied in this segment of the loading path is isotropic, the matrix stress is not
necessarily isotropic. Nonetlgxel&ss, the matrix isotropic stress was dominant so that the
matrix phase, which was assumed to be plastically incompressible, remained elastic under
200 MPa hydrostatic pressure and 1200°C. In a typical HIP process, the composite is
treated at the HIP condition for a specific duration. In our simulation, however, we
assumed that the matrix is inviscid, and continued to unload the composite from the HIP
conditions to the room temperature and atmospheric pressure. Plastic flow of the
nickel-aluminide matrix occurred in all the cases shown in Fig. 8 but the onset of yielding
varied among these cases. The local stresses retained in the composite at room temperature
are, therefore, expected to vary as well among the loading cases shown in Fig. 8.
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Fig. 4 Transverse thermal stress concentration factors computed in a SCS6/Ni;A{
composite in the elastic range, (a) uncoated fiber,
(b) carbon—coated fiber.
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Fig. 5 Transverse mechanical stress concentration factors computed in a SCS6/Ni3Al
composite in the elastic range under overall transverse tension,
(a) uncoated fiber, (b) carbon—coated fiber.
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Fig. 6 Transverse thermal stress concentration factors computed in a SCS6/NijA¢
composite in the elastic—plastic range, (a) uncoated fiber,

(b) carbon—coated fiber.
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Fig. 7 Transverse mechanical stress concentration factors computed in a SCS6/Nis;A!
composite in the elastic—plastic tange under overall transverse tension,

(a) uncoated fiber, (b) carbon—coated fiber.
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Fig. 8 Possible variations of the temperature/hydrostatic pressure loading path
applied to unidirectional composites during hot isostatic pressing.

Comparing the magnitude of the local interfacial stresses in the phases of the
uncoated and the coated SCS6/NisAl composite, we found that the stresses computed in
cases (a), (b), (d)—(e), Fig. 8, are very similar. On the other hand, the adverse stresses
were substantially reduced when the hydrostatic pressure, o,, was sustained during
cooldown of the composite, Fig. 8c. Moreover, the stresses benefit from increasing the
magnitude of the hydrostatic pressure applied during the HIP process. Specifically, the
tensile stresses found in the phases were reduced substantially when o, was incr from
200 MPa to 400 MPa.

Table 3 compares the interfacial stresses computed in uncoated and coated
SCS6/NisAl composites when the thermomechanical loading paths shown in Figs. 8a,c
were applied. The stresses found in case (c) under hydrostatic pressure of 200 MPa and
400 MPa are shown. The table lists the radial stress, oy, tangential stress, oy;, and axial
stress, 011, found at the interface at either point 'a’ or point ’b’ indicated on the unit cell
shown in the inset in Table 3. The isotropic stress in the matrix, (oo )a, found in each case
is also indicated. It is seen that the tensile stresses at the fiber/matrix interface have been
reduced in the uncoated composite by maintaining the hydrostatic pressure while cooling
the composite down to room temperature. More reductions in the tensile stresses are
achieved by elevating the hydrostatic stress to 400 MPa. For example, the matrix hoop
stress is reduced by 18% when the pressure is 200 MPa, and by 37% when the pressure is
400 MPa. It appears that the tensile stresses can be reduced further by increasing the
hydrostatic pressure during the HIP process. However, the magnitude of the pressure that
can be applied during fabrication is usually limited by the equipment used in the HIP
process.

The matrix interfacial tensile stresses in the coated system have been also reduced,
but to a lesser extent, by following the loading path indicated in Fig. 8¢, Table 3. The
hoop stress in the coating, however, is not affected by the thermomechanical path applied
dunng fabrication. Except for the axial stress, elevating the pressure applied during the




Table 3 Maximum interfacial stresses found in a SCS6/NizA¢ composite
at room temperature following hot isostatic pressing

x T T T
.  1200°C 1200°C 1200°C
] :m 21°¢ 21°C
-200 MPs % g -200 MPa 0 g 400 MPa 0 g
Interfacial Uncoated Coated  Uncoated Coated  Uncoated Coated
Stress (MPs) Fiber Fiber Fiber Fiber Fiber Fiber
(oer)m —98Qb -84Qb -79@Gb -9400 —60Qb —910b
(or)a 190@b 158@b 155@b 152Qb 120Qb 152@b
(o11)a 198Qb 186Qb 179Qb 1430b 161Qb 1410b
(U’n)c - 1850a - 1880a - 188QGa.
(on)e - —668Qb - —6330b - —-624@b
(o)t —98Gb  -1100b -79Gb  -122@b -60@b  -121@b
(oee)e —940a  -1080a -76Q@a -1170a -590a -1160a
(ou)r —-605Qb  —-3640b  -5520b  —280@b  -5000b  —261Q@b
(d0)n 97@b 87Qb 85Qb 67Qb 740b 67Qb
Table 4 Matrix internal stresses found in a SCS6/NiyA{ composite
at room temperature following hot isostatic pressing
X Y T T
i-nwc 1200°C 1200°C
(3
2 L 21 21°C 21C
-200 MPs 0 g 200 MPa 0 o 400 MPs 0 g,
Stress at Uncoated Coated Uncoated Coated  Uncoated Coated
'¢’ (MPa) Fiber Fiber Fiber Fiber Fiber Fiber
(011)m 213 213 195 179 177 177
(022)m 115 128 96 162 76 164
(00)n 101 105 90 106 79 106
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HIP process does not affect the stresses in the coated system. In any case, the matrix
isotropic stress, and consequently damage initiation, is affected by the thermomechanical
loading path followed during the HIP run.

Table 4 lists the local stresses found in the matrix internal point ’c’ (see inset of
unit cell). The axial stress, (oy;)a, the transverse stress, (032)s, and the isotropic stress,
(90)u, are shown for three thermomechanical loading regimes applied during the HIP
process. It is seen that the stresses in the uncoated system are affected by the HIP regime.
Substantial reductions in the matrix stresses are achieved by cooling down the composite
under constant pressure, and by elevating the hydrostatic pressure applied during the HIP
run. While these factors reduce the matrix axial stress in the coated system, the transverse
stress is increased and the isotropic stress is unchanged.

The stresses found in the phases after the composite was reheated to 1200°C were
not affected by the loading path, or the magnitude of the hydrostatic pressure, o,, applied
during the HIP process.

DISCUSSION

A particular CVD deposited carbon coating can be quite effective in reducing the
adverse thermal residual stresses generated during fabrication of fibrous composites. The
fiber coating, however, enhances certain local mechanical stresses. In any case, the
significance of these effects depends on the relative stiffness of the matrix, the fiber, and
the coating. In particular, plastic flow of the matrix causes substantial reductions in the
tensile interfacial stresses in the phases. The implication is that mechanical compatibility
in fibrous composites is not only a function of the thermal properties of the phases, but also
depends on the constitutive behavior of the phases. Accurate evaluation of thermal
rai&ielial stresses, therefore, can be only performed with appropriate micromechanical
models.

Plastic flow of the matrix can be utilized to reduce the tensile local stresses
generated during hot isostatic pressing (HIP) of fibrous composites. Selection of the
temperature/pressure path as well as the magnitude of the hydrostatic pressure applied
during the HIP treatment should focus on inducing plastic deformation in the matrix early
during the cooldown cycle. In our study of the local stresses in a unidirectional
SCS6/NisAf composite we found that the matrix interfacial tensile stresses are lowest
when the isotropic pressure applied during the HIP process was maintained during coolin,
to room temperature. Also the local stresses can be reduce:l by increasing the HI
isotropic pressure. Our yet unpublished results indicate that more reductions in the
thermal residual stresses can be achieved through plastic deformation of the matrix if the
hydrostatic pressure applied during the HIP process is confined to the composite’s
transverse plane. The results which qualify this proposition are published elsewhere
(Bahei—-EL—Din et al., 1991).
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A NONLINEAR LAYERED SHELL
FINITE ELEMENT WITH IMPROVED
TRANSVERSE SHEAR BEHAVIOR
by

Konrad Dorninger-

Introduction

During & stay at RPI, Rensselaer Polytechnic Institute, Troy, NY, from August 1989
to September 1990 as a visiting researcher, and while being supported by a grant form the
Fonds zur Forderung der Wissenschaftlichen Forschung, Vienna, Austria, a Finite Element
for layered fiber reinforced composite shells has been developed by the author, implemented
into a commercial Finite Element code (ABAQUS), and tested extensively.

The displacement based degeneration principle is used in combination with specific
kinematic assumptions for deriving the governing equations. By treating each layer as an
individual shell and introducing kinematic constraints between the layer DOFs and the
conveniently chosen global DOF's a very good representation of the mechanical behavior
of the shell, including transverse shear, has been obtained.

Currently there are two material models available:

- A linear elastic model, in which the thermo-elastic material is either described by the
‘behavior of the local components, i.e. fiber and matrix material laws and geometrical
configuration in each layer, or by the overall orthotropic layer material laws.

- An elasto-plastic composite model, that is based on the assumption of linear elastic
behavior of the fibers and metal-type elasto-plastic behavior of the matrix.

Other material models can easily be implemented by using the specially designed in-
terface, LCSMAT.

* Current address: 144 Highland Ave., Apt. 302, East Lansing, MI 48823, Tel. (517) 351-1207
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1. FORMULATION OF THE LCSLFC-ELEMENT

1.1 INTRODUCTION

The LCSLFC-element (Layerwise Constant Shear Laminated Fiber Composite) is
based on the degeneration principle [1,2]. Each layer is treated as a seperate shell element
with orthotropic material behavior. The layer DOFs (degrees of freedom) of all layers are
transformed to a set of element DOF's along with the corresponding stiffnesses and nodal
forces. This procedure improves the transverse shear behavior of the shell element since
normal vectors of the shell are now able to undergo piecewise (layerwise) linear deforma-
tions (due to the assumptions included in the degeneration principle, normal vectors ia
each layer remain straight).

As a reminder, the well known linearized incremental equilibrium equation, including
thermal loading, derived from the virtual work principle, is given here [2]:

K + K1 (Au) =R-(f —A0fa) (1)
N, s’ |

=K =fa

For the updated Lagrange formulation the stiffness matrices and the nodal force vectors
for one general element (e) are given by the following integrals over the volume of the
element at the beginning of the increment:

K= [egmav @)
v

57(.) = / QZ}ZQMV (3)
v

Bl rdv (4)

BF CoAddV 5)




In Eq. (1) the sum in square brackets represents the global tangent stiffness matrix K
at the beginning of the increment, consisting of the following contributions:

a) the ma.te;ial stiffness matrix, Ié, , which depends on the material behavior (expressed
by the current material matrix C) and the reference geometry (expressed by the linear
strain-displacement matrix B, );

b) the initial stress or geometrical stiffness matrix, K, which depends explicitly on the

current stresses (matrix T) and the reference geometry (expressed by the nonlinear
strain-displacement matrix En,);

The external load vector at the end of the increment, R, is given by the surface and
body forces, concentrated or distributed; f is the vector of internal forces corresponding
to the stresses at the beginning of the increment (vector 7); Af, is the vector of internal

nodal forces equivalent to stress increments resulting from a temperature increment AY
and computed by using the coefficients of linear thermal expansion (vector a).

1.2 STIFFNESS EXPRESSIONS FOR ONE LAYER

Each layer n is treated as a homogeneous shell with constant material properties over
the layer thickness. The degeneration principle is employed to derive the shell elemant
stiffness expressions from the 3/D continuum. This includes two assumptions (1,2]:

I. The normal vectors of the layer’s reference surface remain straight and inextensible
during deformation.

II. The contribution of the strain energy caused by stress components perpendicular to
the reference surface is set to zero by using a modified material law.

1.2.1 Description of Geometry

With assumption I the geometry of the layer can be described by one reference surface
and its corresponding normal vectors. With appropriate shape functions the matrices B,
and B, (in Eqs. (2-5)) can be constructed. Due to the isoparametric element formula-

tion these matrices are functions of natural coordinates r, s,t, where r, s lie in the layer’s
reference surface and ¢ indicates the thickness direction, see Fig. 1.1.




P
.
Fig. 1.1 Geometry of the degenerated shell (=layer) element
Interpolation of geometry (subscript n indicates the layer numBer):
M
zp(r,at) = z ¢B(r,8)[® + ¢ 1P cos ¥W]
kml
M
yn(r8t) = Z dW(r, )1 + tE¥ sin T® cos W) (6)
k=1
M
zn(rs,t) = 6®(r,8)[2® + ¢t} sin TP sin 27
hwm] :

with ¢*)(r,s) being standard 2/D shape functions (i.e. Lagrangian polynomials); M is the
number of nodes forming the element, h® is the thickness of the layer at node k, and gy
and O are used to determine the position of the layer’s normal at node k, see Fig.1.1.

Given the geometry at the beginning of the increment (denoted by za, ya, z2») and the
initial geometry (denoted by %z, %n, %a) the total displacements follow as:




u,(r,8,t) = za =2,
Ua(ry9,t) = ¥n — %n (M
w,(r,8t) = 2, = V2,

The incremental displacements Aupn, Avn, Aw, are defined similarly. They are related
to the nodal DOF's through the same interpolation functions as used for describing the
geometry (=isoparametric formulation). A linearization with respect to the increments of
the angles o® ¥® s necessary for the subsequent derivation of the stiffness expressions.

Aun(r,s,t) 10 0 ¢+H® g(k) +H® g(le) And
Ava(r,sit) | =¢®rs){o 1 0 th(") (k) ¢+ H® g(k) Aw® ()
0 01

Awqa(rys,t) h(k) (k) th® gUt)

= oy

where Ag( represents the vector of DOF's at node k for layer n. The functions g(k) ")
can be found in the appendix, Eq. (A410).

1.2.2 Description of Material

Assumption II for the degeneration principle is satisfied by forcing the normal stresses

in thickness direction to be zero. This results in a material law similar to that used under
plane stress conditions.

Usually the material matrix and the vector of coefficients of linear thermal expansion

of the unidirectionally reinforced layer (UD-layer) are defined in the local layer coordinate
system denoted by subscript L:

E11 E],z 0 0 0 0 a,
E;3 0 O 0 0 a,
0 O 0 0 0
G = sym. E« O O ' =10 (©)
Ess O 0
Esq 0

Each layer is assumed to exhibit orthotropic material behavior with respect to its
individual fiber-fixed local coordinate system I, g,t (with ! denoting the fiber direction; ¢




and t transverse and thickness directions, resp.). This system is related to the element

fixed r, s, ¢ system via the fiber angle ©. The definitions of the different coordinate systems
and the fiber angle are shown in Fig. 1.2.

Fig. 1.2 Element fixed r,s,t coordinate system, local layer system [, g

Since element geometry and fiber-direction are independent of each other the fiber angle
© is not necessarily constant within the element (see Fig. 1.2). Two ways of taking this
fact into account are implemented in the LCSLF C-element:

a) By assuming the fibers to be parallel within the layer's reference surface one can find
a geometric relationship that considers the variation of © (see [3]).

b) By specifying the ©-angles at each nodal point of the element and using the 2/D shape
functions ¢(¥(r,s) (from the interpolation of ihe geometry, Eq. (6)) one can interpolate
the ©-angle at any point.

The Ei; in Cp, can either be calculated from material data given for the layer, or from
the material data of fiber and matrix along with the fiber volume fraction.




If engineering material properties E;, E,, Yoty Gigs Gy G, for the layer are given, the
E;; values in C; can be computed as

En= E

1l- U:'%{' E“ = G'q
Ei3 =yyEp Ess = Gy, (10)
Exn= E, Ees = G
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If material properties of the constituents of the composite are given, a homogenization
technique has to be used to determine the C; matrix. For that purpose a software package,
developed at RPI, Troy, NY, by C.M. Huang [4] which is based on the Mori-Tanaka
averaging scheme, has been adapted and implemented. Using this technique the effective
properties (E;; and a;;) of a wide variety of composite materials can be computed from
fiber and matrix data, the volume fraction, and the geometrical setup. The fibers are
assumed to behave orthotropically (transversely isotropic) and the matrix isotropically.
Four options for the fiber arrangement are implemented in the LCSLFC-element:

~ Aligned continuous fibers

- Randomly oriented continuous fibers
- Aligned whiskers

- Randomly oriented whiskers

When dealing with metal matrix composites one has to take into account the elasto-
plastic behavior of the matrix material. In the LCSLF'C-element a special version of the
“VFD” model [5] is implemented in combination with classical plasticity theory including
kinematic hardening. This part of the element code was developed by A.J. Svobodnik, TU
Vienna, Austria; a detailed description of the theories used can be found in (6)].

1.2.3 Integration of the Stiffness Expressions

An effcient way to reduce the numerical effort for computing the stiffness matrix and
the internal nodal force vector is the use of an analytical thickness integration as described
e. g. in (7,8,9]. However, a necessary requirement for this procedure is the neglection
of the t—dependence of the Jacobian matrix. In [3] detailed analyses show that this




approximation is acceptable as long as the shells are thin, their curvature is moderate, and

their thickness does not vary too much. The definition of the Jacobian matrix is given in
the appendix, Eq. (Al).

In order to be able to perform the thickness integration analytically, the t—~dependence
of all relevant terms of the integrands in Eqs. (2-5) must be clarified. From Egs. (6,7) and
with the assumption mentioned above, the t—dependence of the displacement derivatives
can be expressed explicitly:

un,j(rr"rt) = un,j(r"’) + tﬁ.,j(”v’)
vn,j(r"”t) = 17n,j(r"’) + tgn,j(rv’) J =, %2 (11)
wn,j(r"’vt) = TD-,.’J'(T‘,J) + tﬁn.j(rv’)

The specific formulas for @, ;, T, ;) Ty j» Un,j» Tn, j» Da,; can be found in the appendix,

Eqs. (A4,AS). In a similar way the derivatives of the displacement increments Au, ;,
Av, ;, Aw, ; can be computed, see appendix, Eqs. (47-A9).

With the definition of the Almansi strains and by invoking Eq. (11), one can extract
the t—dependence of the strains:
€:j(r,s,t) =;;(r,s) +t&;(r,s) + 12 &;(rys) Li=2,¥2 (12)

with the different components, e.g. for strain e.,:

Ty = }(El,y +0h: BBy = Thelhy — Th: u’;\,,)

?zy = %‘(ﬁl,’ + i’.u,z - EI,S an,' - U,.,, Gn.y - w;b,z 'T’n,]
- an.z El,, - an,: vu.) - ﬁn,z wn,')
?zy == }(&,z au,y + an,: ﬁn,y + ﬁn,z Gn,y) .

(13)

After transforming the material matrix and the vector of thermal expansion (Eq. (9))

to the global z,y, z system, and combining it with Eq. (12), the vector of Cauchy stress
components becomes:

(rat) = g(r,a)([g(r,a) - a(r,9) g(r,a)] + t[f(r,.s) - a(r,8) a(r,a)] +¢? g(r,.s)) (14)
where

g(rv") = IT("N’) gL I(r,’) (18)
2(",3) = I_l(rv’) QL(":") (16)




The matrix I represents the transformation from the global z,y, z system to the local
l,q,t system. T is composed of the elements of the Jacobian matrix (and depends on the
fiber angle ©). Therefore, since Jis independent of ¢, so is T. The temperature field is
assumed to be linearly distributed over the thickness of the shell (and therefore over the

thickness of the layer), with J being the temperature load at the ¢ = 0 surface and 3 being
the temperature difference between the surfaces of the layer.

The B, and B,; matrices are constructed from derivatives of the displacement incre-
ments, therefore they can be decomposed similarly:

Bi(nst) = Bi(ns) +t By (n9) (17)
gnl(rv”t) = E\'(ria) +t Eul(r"’) (18)

The detailed formulas for the matrices g, ) E, » Bats E,‘, can be found in the appendix,
Eqs. (A13,A14, A17, A18).

Substituting Eqs. (14-18) into the expressions for the stiffness matrices (Egqs. (2-5))
and invoking some abbreviations lead to:

+14

K=/ (@7 +180+ 87U +1B0)det ] dr s (19)

1=l
414+
5=/ (@B e b+ @B Bl sa @

a3
414
1= [(B7 51+ BT s3)detlg | r s (21)

-1-1
+141

afQ=( [(@TGaad+}0D)+ FTga(3aT+}oRNdeF | drds ()

=1=1

with superscript (n) denoting layer n. S1,S3, Ss represent “stress integrals” and are com-
puted by:

1
Si(r8) = TT(rvo) / r(ra,t) Ldt i=1,2,3 (23)
0
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§1,§2, Ss are equivalent to S1,S3, S3 but the elements are rearranged in special matrix
form, see appendix, Eq. (419).

For elastic material these stress integrals can be computed analytically:

C( z-29 +HE-29)+12)
S2=C(}(z-a9)+HE-2P) +1F) (24)
CHz-e?)+UE-2D) +12)

For other material models (where the stresses cannot be computed directly from the

total strains) a 2-point integration is used. By assuming the layer to be thin, a linear
variation of the stresses across the thickness is valid:

Z(r"”t) = I(".J) +t f(rv’) (25)
with
z = z0m0)
T = r(tm1) — 1(tm0)

With Eq. (25) the stress integrals can be computed as follows:

S1=T(z+i2
S3=T(}z+12) (27)

With Eqs. (26,27) the stress integrals can be evaluated from the stresses at ¢ = 0 and
t = 1, which, in turn, are computed either from the Svobodnik’s elasto-plastic material
law [6], or by a user defined material law (using the LCSMAT interface).

The integrals in Eqs. (19-22) are computed numerically using a standard Gaussian
quadrature procedure.
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1.3 ASSEMBLAGE OF ELEMENT STIFFNESSES
The procedure for establishing a connection between the individual layers is based on

kinematic assumptions. Using this assumptions a relationship between conveniently chosen
element DOF's and the layer DOF's can be derived.

1.3.1 Definition of Degrees of Freedom

deformed

o) 4+ H®)
A \
(2, y®, £3)

w08 | avl(av®

o), aol(a9)
Fig. 1.3 Definition of element geometry and DOF's for the multilayer shell

To secure an easy and universal usage of the element, the definition of the element
DOFs is based on the concept of “inplane” and “out-of-plane” quantities:
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- Displacemerts of the shell's midsurface represent the “inplane” part (they are re-
lated to the membrane behavior).

- Rotations of shell-“normals” represent the “out-of-plane” part (they are related to
the bending and transverse shearing behavior).

Basically, the same notation as used in the degeneration principle is employed here.
The geometry of the entire shell is described in terms of:

- The coordinates of nodes (k) lying in the shell’s midsurface, z®, (8, 2(®

- 2 angles at these nodes, ®® ¥* which determine the position of the shell’s “nor-
mal” (this vector is not necessarily exactly normal to the shell’s midsurface),

- 2(N -1) additional angles at these nodes, ¢, p® (n=1,...,N-1; N = number
of layers), which determine the positions of the normal vectors of the layers, and

- the thickness of the shell at these nodes h®, see Fig. 1.3.

Correspondingly, the following DOF's per node are defined:
- 3 displacement increments, Au®, Av®, Aw® and
- 2N angle increments, 2p®, Ap®, AP AyP (n=1,...,N=-1).
Initially, the normal vectors of all layers lie on one straight line, namely the shell’s
normal, which is determined by the initial angles °3®,%U® and can be computed from

the nodal coordinates. By using the 2/D shape functions ¢(¥)(r,s) (see interpolation of the
geometry, Eq. (6)), the shell’s normal vector 1 is given by

bo P oz,r oz,l
n } n' ) (oy'r ) " (oy" ) (28)
D, oz,r oz,l

The formulas for the displacement derivatives z», y.r, 2,r, 2,4, ¥,4y 2,, can be found in
the appendix, Eq. (A20).

From n, computed at node k, the angles °®®, 0¢® follow as

K n(:k)
Dy
‘} ® (®) (29)
3 E ]
°\Il(") = arctan o (:)- o
| b
t




Alternatively, the initial position of the shell’s normal can be defined by prescribing
direction cosines at nodes (in addition to the coordinates). This is sometimes useful if

two adjacent elements are inclined (i.e. have no common normal), which can lead to
inaccuracies-in the analysis.

During loading, the normals of the layers deviate from the initial shell’s normal. Due to

the degeneration principle, these layer-normals remain straight, so that a piecewise linear
deformation of the shell’s normal occurs.

By defining a “secant” (which coincides with the shell’s normal in the initial config-
uration) and angles ¢$l",¢$,"’ as corresponding deviations of the layer-normals from this

secant (see Fig. 1.3) one can compute the coordinates :z:(,f), y(,f), 2" and the total angles
QS."), ¥® for the layers.

1.3.2 Description of Geometry

The nodal coordinates for layer n at beginning of the increment can be computed from
the coordinates of the midsurface of the shell, the shell thickness, the angles of the “secant”,
and the angles of the layer-normals as follows:

n-1

B om0 o ¥® 136D con(¥® + )
jm1
v =™ — 1h® sin ¥® cos g™ + "2-:1 B sin(¥® + () cos(3® + o)
j=l
o = 0 - J5® sin §P 5in o + 'il B sin(¢® + $®) sin(8® + o) )
j=1
M 4 oW 1SnEN-1
o = { o® _ ucain(Nf,: sing®P) n=N
j= N

o oo 4 W 1<n<N-1
g®) = . N-=1 ) »
gk - u'csm( ng gmd,y‘) ;{;’_) n=N

The corresponding equation for the initial coordinates 0;® 0,8 0, can be found in
the appendix, Eq. (A421).

The nodal displacements for layer n can be computed similar to Eq. (30) in terms of
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the shell's nodal displacements and nodal angles:

u® = y® - 108 (cos ¥® — cos 2y ™)
n-=1

+ Z h(f) (cos(T® + i) = cos 'p®)

=1

) = v® — 1E®(sin ¥ cos $®) — 6in "™ cog ™M)
n-1

. 31
+ Z h(;) (sin(¥® + qby‘)) cos(d® + gag-k)) — sin "U® cog 0 M) (1)
j=1

wl® = w® — 1h®(sin ¥® sin ® — sin *Y® sin °p®)
n-1

+ Z B (sin(¥® + 1!’5-")) sin(3® + o) - sin W™ sin "™
j=1

The layer-coordinates from Eq. (30) and the layer-displacements from Eq. (31) are
then used for computing the stiffness expressions of the layer (section 1.2).

1.3.3 Transformation Layer — Shell

Equation (31) can be used for deriving the displacement increments. By assuming the
angle increments Ap®, Au®, AP, Ap® to be small (« 1), the trigonometric functions
can be linearized with respect to these mgles, which results in a linear relationship between
the layer DOFs (Aul, Av®, Auw®, Ap® | AT®) and the shell DOFs (Au®, Av®, Au®,
Dp®, Ap®, Ap®, "", n=1,..,N- 1).

b = GO 2y &

The detailed formulas for the transformation matrix g&*’ and the definitions of the
vectors Aul and Au® can be found in the appendix, Eqs. (425-427).

The definition of the angles cp(") and t,bs.") as deviations from the “secant” renders some
distinct advantages:

- Enforcing a straight shell normal (e.g. as a boundary condition) can easily be done by
setting the DOF's Ago(") ® ,n=1,...,N -1 to zero. This forces the total angles
o® ¥W of all layers to be equal to the corresponding angles ®), U(® of the shell.
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~ The piecewise linear deformations of the shell’s “normal” result directly from the anal-
ysis in terms of the deviation angles.

By applying the transformation from Eq. (32) to all nodes the following global trans-
formation matrix can be derived:

)]
(6 g g e Q)
2
=" g 2
Ga = RO A 33
s7 sym. g:f.k) e 0 (33)
\ ¢ )

with this equation, the stiffness matrix and the vector of internal nodal forces can be
transformed from the layer level to the element level:

N

¥=3 6T+ KMGn (34)
nml
N

fa=) GI(f™-Afd) (35)
nm}

Consequently, I§ and f, are used in the incremental equilibrium equation, Eq. (1).

1.3.4 Distributed Loads

In the LCSLF C-element distributed loads are taken into account in a simplified man-
ner. The equivalent nodal forces are computed for the entire shell (rather than seperately
for each layer) and added to the RHS-vector of Eq. (1).

Currently, the following distributed load types Ul - U5 (this notation corresponds to

the ABAQUS notation [10]) are implemented in the LCSLF C-element (for details on the
derivation of the equations see [3]):

-16 -




U1l corresponds to a uniform pressure load p. By assuming the pressure to act on the

U2

U3

U4,U3

midsurface of the shell, the equivalent nodal forces Rpress can be computed by:

+14+1 z, z,
Ryrew =/ /—p‘gfcr,n((y}) x (y,’. ) )det| 3| dr ds (36)

—1-1 Zr Z,

with IS' being the translational part of the interpolation matrix for the shell N, see
appendix, Eqs. (429, A30).

correspond to a gravity load in —z direction. The equivalent nodal forces Rgray can
be computed by:

+1+1 0 0
Ryrav = / /[Sf(r,s) ( 0 ) +N7(r,s) ( 0 )]detlgl drds (37)
424 -78 —pg

with §I being the rotational part of the interpolation matrix IN, see appendix,

Eqs. (A29, A31), and g being the gravity constant. 7, are the following thickness
integrals of the mass densities of the layers (pn):

N
ﬁ=an§hl

n=)}

Y BB hp—h i (38)
5=zlpn‘}—:'f with En= u +Zh"

2 =

correspond to a uniform body force b in z direction. The equivalent nodal forces
Riso can be cor  *ed by:

+1+1 b
Ripo = / /IST(r,J) (o) det| J | dr ds (39)
0
-1-1

correspond to a uniform body force b in y, z direction, respectively. The equivalent
nodal forces can computed similar to Eq. (39) but the load direction has to be
adjusted accordingly.
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1.4 MODIFIED BUCKLING ANALYSIS

In the LCSLF C-element the buckling procedure implemented in ABAQUS [10] is used

in a modified way in order to improve the convergence behavior in cases where thermal
buckling is considered.

Instead of computing the current stiffness plus eigenvalue times an incremental stiffness
(this is the ABAQUS *BUCKLE procedure), the stiffness matrix is decomposed into a load

independent part and a load dependent part, which is used to formulate a linear eigenvalue
problem.

Starting from Eq. (1) and by linearizing the nonlinear relationship between the stiffness
matrix and the current load, an eigenvalue problem of the following form can be obtained
(for details see [11]), leading to an estimate for the critical load:.

(K +nK,)ég=0 (40)

critical load = n; x current load (41)

with 77 being the smallest eigenvalue of Eq. (40). The eigenvectors 8§ correspond to the
eigenvalues n and represent approximations of the buckling modes.

The error caused by the linearization mentioned above, vanishes and, hence, the esti-
mate (Eq. (41)) becomes accurate when the lowest eigenvalue 7, approaches 1, i.e. the
current configuration approaches the critical one.
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2. USER MANUAL FOR THE LCSLFC-ELEMENT

2.1 SUMMARY OF ELEMENT CAPABILITIES

The following is a list of features implemented in the LCSLF C-element. Sections 2.2
and 2.3 include detailed descriptions of these capabilities.

* Element formulations:
- linear or

- updated Lagrangian
* Variable node numbers: 4-, 8-, 9- and 16-noded elements
* Variable integration order: from 1x1 up to 4x4
* Variable shell thickness within each element

* Free definition of directions of shell quasi-normals:
- prescribed or

- computed from initial geometry

|

|

|

|

|

|

!

!

|

' * Convenient definition of DOF's:

| S o ——
I ~ seperate rotational DOF's per node for each layer
|

|

|

|

|

|

|

* Layerwise constant transverse shear

* Free laminate lay-up: each layer can have a
- different layer angle
~ different thickness
- different material

* Free distribution of layer angles within elements:
~ prescribed or

- computed from initial geometry

* Material models:
— linear elastic model or

- metal-matrix-composite-type elasto-plastic model or
- user defined material model
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* Different types of material data input:
- layer data (= homogenized data) or
- data for fiber material and matrix material with
¢ aligned continuous fibers or
¢ randomly oriented fibers or
¢ aligned whiskers or
o randomly oriented whiskers

* Thermal loading in terms of temperatures at the surfaces of the shell
* Distributed loads (surface pressure and bodyforces)

* Printout of layer stresses and strains at various locations

* Full usage of ABAQUS preprocessor capabilities

2.2 INPUT STRUCTURE

The LCSLF C-element works in conjuction with the FE-code ABAQUS [10] as a user
defined element by employing the UEL-interface. Therefore, the input for the LCSLFC-
element is based on the conventions and concepts of ABAQUS. In addition, line (“card”)

oriented data input within the *UEL PROPERTY section is used to define all the element
parameters necessary.

2.2.1 Introducing the LCSLFC-Element

The LCSLF C-element is introduced via the keyword *USER ELEMENT in the input-deck.

In addition to the keyword, the parameters NODES, TYPE, COORDINATES, VARIABLES,
PROPERTIES have to be entered with the following values:

NODES=4 or =8 or =9 or =16 (= number of nodes forming the element, see note (1))
TYPE=U1 (= element identifier)

COORDINATES=6 (= number of coordinates at each point, see note (2))
VARIABLES=nn (= number of solution dependent variables, see note (3))

PROPERTIES=mm (= number of property values given in the *UEL PROPERTY option,
see note (4))
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Notes:

(1) The 4-noded element should be used with care due to the possibility of shear-locking.

The 8-noded and 9-noded shells can exhibit membrane-locking effects for curvilinear
geometries. Thus they should be used primarily for planar problems.

The use of the 16-noded element is highly recommended since none of the adverse
effects occur.

The local element node numbering scheme for the different elements can be found in
Fig. 2.1.

Global Coordinates Natural Coordinates

Fig. 2.1 Element node numbering scheme for 4-, 9-, 16-noded LCSLF C-element
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(2) 6 coordinates (z,y, z coordinates plus z,y, z direction cosines) are used to define both

(3)

the position of the nodes in space and the direction of the shell normeal. These coordi-
nates are entered in the *NODE section of the input-deck; input of the direction cosines
is optional; if they are not specified, the direction of the initial shell normal is com-
puted from the initial geometry of the shell (see Eqs. (28,29)). If the direction cosines
are specified, these directions will be used, unless the difference between the angles
computed from the geometry and those computed from the direction cosines is greater
than a given value (default: DANG= 10°, or specified for each element, see Element Data
Block). DANG should be kept small to prevent excessive initial distortion of the element.
In cases where two adjacent elements are inclined (i.e. have no common normal) it is

sometimes useful to specify a particular direction of normal to reduce inaccuracies in
the analysis.

The number of solution dependent variables nn defines the length of the array SVARS,
which contains certain element data. nn depends on the number of layers (parameter
MAXNUM), the number of integration points (parameters NIR, NIS), the number of element
nodes (parameter NNODE) and the number of items stored at each integration point at
each layer (parameter NLWA). nn is given by the following expression:

nn > NSVARS = (NLWA + 8) * 2 % HIR * NIS » MAXNUM + (MAXNUM + 3) » NNODE + 2

The program checks whether nn is sufficiently large and prints out SVARS (NSVARS).

(4) The number of property values equals 8 times the number of data lines within the *UEL

PROPERTY section of the input-deck.

2.2.2 Definition of Degrees of Freedom

After the line with the keyword *USER ELEMENT, a line with a list of active DOF's per

node has to be entered, which depends on the number of layers:

For a shell with only one layer, DOF's 1,2,3,4,5 have to be activated; for each additional

layer two additional DOF's are necessary. For these DOF's the numbers 11,12,...should be
used (ABAQUS has certain conventions for labeling the DOF's [10]), so that results can be
printed out. However, if thermal load is applied, these DOF's cannot be used (these DOF's
are unavailable if the keyword *TEMPERATURE is used), instead DOF's 6,...,10 can be
usecd. In that case, however, only DOF 6 is available for print-out.
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The output variable identifiers for printing the DOF's are defined as follows (see also

ABAQUS Users' Manual, section 7.7.1). These identifiers can be used in the *NODE PRINT
option:

DOFs identifier
1,2,3,4,3,6 v
11,12,. .. NT11,NT12,...

DOFs 1,2,3 represent the displacement increments in z,y, z directions, DOF's 4,5 corre-
spond to the rotational increments of the shell secant, see Fig. 1.3. The remaining DOF's
are rotational increments of the normals of the layers as defined in section 1.3.1, see Fig.
1.3. Due to ABAQUS input conventions (only 16 integer items can be given in a data
line), the maximum number of layers is restricted to 6 (= 15 DOF's).

2.2.3 Element Properties

To define all element properties, the *UEL PRCPERTY section has to be used. The data
within this section are arranged in “card” form (i.e. the ordering of both the input lines
and the input items within each line are essential). The arrangement of the data items is
as follows (the names of the variables correspond to the LCSLFC-code):

KTEMP, ¥IR,NIS, ISTRES,MODEL, NUMMAT, NUMSPE

NP, NSCEDA(NP) ,NSCHLA, WHISKL

REO(NP) ,REOM, ALFT(1,NP),ALFT(2,NP) ,ALFT(3,NP),ALFT(4,¥P) ,ALFT(5,NP)
PROP(1,¥P),... ,PROP(8,¥P)

(PROP(9,NP),...]

[¥P,...

; (NUMMAT materials have to be defined)

(PROP(9,¥P),...]]
NLFC,NSCEI(NLFC) , NSY

ISCHI,ANSCHI(ISCEI,NLFC),TESCHI(ISCHI,NLFC), IMSCHEI(ISCHEI,NLFC),KISCEI
next ISCEI,... (until all layers are defined)
[wLFC, ...

: (NUMSPE laminates have to be defined)

ISCEI,...]

M,MTYP,IPS,KG,KA,ANGM1, IANGL,DANG
[(BE(1,MAXNUM+1) ,BE(2,MAXNUM+1),...]
(ANGM(1) ,ANGM(2),...]

next M,... (until all elements are defined)
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These input data are structured into 4 blocks, see Fig. 2.2.

( Control Data 3105@

——(Ma:en'aJ Data Bzock)

weight densities, coefficients of thermal expa.nsion)

mechanical properties )

<——Gaminate Setup Bloc]i)

l—-( for each layer: fiber angle, thickness, material)

'—QEIement Data BIoﬁ)

\l——( laminate setup, print flag, reference fiber a.ng@

|
|

variable shell thickness
- )

|
L {va.riable reference fiber a.nglq

Fig. 2.2 Input data structure within the *UEL PROPERTY section

( Control Data BIock) : Defines all control parameters

Variable Entry Note

KTEMP Thermal load flag (1)
=0... no thermal load
=1... thermal loading is taken into account

NIR Integration order in r-direction (2)
NIS Integration order in s-direction (2)
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ISTRES

MQODEL

NUMMAT

NUMSPE

Notes:

Stress/strain output flag (3)
= 0... no stress/strain output

= 1... print layer stresses at layer midsurface

= 2... print layer stresses at bottom and top surface

= 10... print layer status (for MODEL=2)

=100... print layer strains at layer midsurface

=200... print layer strains at bottom and top surface

Material model number (4)
=1... linear elastic

=2... elastic-plastic (MMC)

=4... user defined material

Number of material specifications in the Material Data Block
defaults1

Number of laminate specifications in the Laminate Setup Block
default=1

(1) “In-plane” thermal loading (i.e. temperatures at the midsurface of the shell) is ap-
plied via the standard ABAQUS option *TEMPERATURE in the history definition. Initial
temperatures can be defined by using the sINITIAL CONDITIONS,TYPE=TEMPERATURE

(2)

option.

“Thermal bending” loads (i.e. temperature differences between outer and inner sur-
faces of the shell) can be introduced via the sFIELD,VARIABLE=1 option, in which the
temperature differences can be entered. Initial conditions are defined via the *INITIAL
CONDITIONS, TYPEsFIELD option.

NIR and KIS define the order the reference surfaces of the layers are numerically inte-
grated (Gauss integration). The locations of these integration points with respect to
the natural coordinates r, s are as follows:

integration order r and s coordinates
1x1 0.0
2x2 +,/1/3
3x3 0.0, =./3/5
4x4 +=0.8611363116, =£0.3399810436
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(3) ISTRES defines the type of stress/strain output. Input to ISTRES consists of a number
containing three digits. The first digit controls the layer strain output, the second digit
controls the output of layer status, and the third digit controls the layer stress output.
E.g. ISTRES=111 produces output of layer stresses, layer strains and layer status, all
at the midsurface of the layers.

Output locations are the numerical integration points defined in the previous table.
Stresses and strains are referred to the local layer coordinate system [, ¢,t (fber direc-
tion, transverse direction, thickness direction).

(4) Three different options are available:
- A linear elastic model, in which either layer data or fiber and matrix data along with
the geometrical setup can be input (see Material Data Block);
- A special elasto-plastic material model for fiber reinforced metal matrix composites,
developed by Alfred Svobodnik, Institute of Lightweight Structures and Aerospace
Engineering, Vienna Technical University [6];
- A user defined material model (see section 2.3).

( Material Data Blocli) : Defines the materials of the layers of the composite. Each different
material combination (fiber and matrix) needs it’s own material
data sequence. Thus it is possible to define hybrid composites.
NUMMAT material specifications have to be entered.

Variable Entry Note
Card 1:

NP Material set aumber

NSCHDA(NP) Flag for type of material data input (1)

=0... fiber and matrix data
=1... layer data

NSCHLA Flag for fiber orientation (2)
=0... aligned fibers
=1... randomly oriented fibers

WHISKL Length of whiskers (2)
Card 2 (if NSCEDA (NP)=0):

REO(NP) Weight density of the fiber (3)
REOM Weight density of the matrix (3)
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ALFT(1,¥P)
ALFT(2,¥P)

ALFT(3,¥P)

Card 2 (if NSCHDA(NP)=1):

REQO(NP)
REOM
ALFT(1,¥P)

ALFT(2,NP)

ALFT(3,¥P)

ALFT(4,¥P)

ALFT(5,¥P)

Card 3 (if NSCHDA (NP)=0):

PROP(4,¥P)
PROP(2,NP)
PROP(3,¥P)
PROP(4,¥P)
PROP(5,¥P)
PROP(6,HP)
PROP(7,5P)
PROP(8,HP)

Card 3a (only if MODEL=2):

PROP(9,¥P)

PROP(10,XP)
PROP(11,¥P)
PROP(12,¥P)

CoefBicient of linear thermal expansion of the fiber
in fiber direction

Coefficient of linear thermal expansion of the fiber
in transverse direction

Coefficient of linear thermal expansion of the matrix

Weight density of the composite
not used

Coefficient of linear thermal expansion of the composite (4)

in l-direction (fiber direction)

Coeflicient of linear thermal expansion of the composite (4)

in g-direction (transverse direction)

Coefficient of linear thermal expansion of the composite (4)

in lg-shear (inplane shear)

Coefficient of linear thermal expansion of the composite (4)

in [t-shear (transverse shear)

Coefficient of linear thermal expansion of the composite (4)

in gt-shear (transverse shear)

Axial Young’s modulus of the fiber
Transverse Young’s modulus of the fiber
Poisson’s ratio of the fiber

Axial shear modulus of the fiber
Transverse shear modulus of the fiber
Fiber volume fraction

Young’s modulus of the matrix

Shear modulus of the matrix

Yield stress of the matrix in tension
Parameter defining hardening behavior of the matrix
Parameter defining hardening behavior of the matrix

Stress correction parameter

=0... no stress correction

=1,.. correction after each increment
=2... correction after each subincrement
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Card 3a (only if needed for MODEL=4):

PROP(9,NP)

PROP(10,NP)

Card 3 (if NSCEDA(NP)=1):

PROP(1,NP)
PROP(2,¥P)
PROP(3,XP)
PROP(4,¥P)
PROP(5,NP)
PROP(6,NP)

Notes:

Additional material property (7
Additional material property (7

Young's modulus of the composite in [-direction
Young'’s modulus of the composite in ¢-direction
Poisson’s ratio of the composite

Inplane shear modulus of the composite (/g-shear)
Transverse shear modulus of the composite (It-shec-)
Transverse shear modulus of the composite (gt-shear)

(1) For NSCEDA=O the effective properties of the composite are computed from fiber and
matrix data as well as the volume fraction and the geometrical setup, which is entered on
cards 2 and 3. The Mori-Tanaka averaging regime in conjunction with the parameters
NSCHLA and WHISKL will be used in this case, see note (2). For NSCEDA=1 the effective
properties of the composite have to be entered directly on cards 2 and 3.

(2) If WHISKL>0 then a whisker type composite is assumed, with whisker length=WHISKL.

NSCELA indicates whether the fibers (or whiskers) are aligned or randomly distributed.
NSCELA and WHISKL are used only if NSCHDA=0.

(3) The fiber volume fraction is used to compute the weight density of the composite by
averaging the weight densities of the fiber and the matrix.

(4) For an orthotropic material only the coefficients of linear thermal expansion in the
principal directions (! and q) are different from zero. However, for a fully anisotropic
material additional coefficients for thermal shear can be entered.

(5) Two different hardening models are implemented. A detailed description of these can

be found in [6].

- Bilinear hardening matrix: PROP(10,NP) is set to zero and PROP(1i{,XP) has to
contain the value of the tangent modulus.

- Modified Ramberg-Osgood law: The classical Ramberg-Osgood approximation is:

- 928 -




£ =

+(g)"

™ Q

Here ¢ and ¢ denote stress and strain in simple tension, E is the Young’s modulus, B
PROP(10,NP) and n PROP(11,NP) are parameters describing the plastic behavior which
are determined from measured stress-strain curves.

(6) This parameter controls the stress correction. A description of the stress correction
can be found in [6)].

Usually this parameter should be set to 1. For very large load increments a value of 2
is recommended.

(7) For the user defined material model, additional material properties may need to be

entered. The internal parameter NCON specifies the number of properties. It has to be
set accordingly (see section 2.3).

(Laminate Setup BIock): Defines the setup of the laminated composite. The fiber angle,
the thickness, and the material definiticn of each layer have to be
entered. NUMSPE laminate definitions must be specified.

Variable Entry Note
Card 1:

NLFC Number of laminate setup

NSCEI(NLFC) Number of layers in this laminate setup

NSY Flag for symmetrical laminate setup (1)

=0... unsymmetric setup
=1... symmetrical setup with respect to the
mid surface of the shell

Card 2 (enter as many cards of this type as needed to define the laminate):

ISCHI Layer number (2)
ANSCHI(ISCHI,NLFC) Fiber angle for this layer (3)
THSCHI(ISCHI,NLFC) Layer thickness for this layer

IMSCHI (ISCEI,NLFC) Material label (4)
KISCEI Generation parameter (2)
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Notes:

(1) With ¥SY=1 the laminate setup is assumed to be symmetrical to the midsurface of the

shell. Layer n has the same fiber angle and thickness as layer NSCHI+1-n. Thus, only
the half laminate setup (ISCEI=1,2,... ,NSCHI/2) has to be entered.

With NSY=0 all layers (ISCEI=1,2,...,NSCHI) have to be defined.

(2) The sequence of the input cards for defining the layers can be chosen freely. However,
the highest number (=NSCHEI/2 for NSY=1 or =NSCHI for ¥SY=0) has to be in the last

line. With the parameter KISCHEI layers can be generated, e.g. the card sequence
1,45.,0.1,1

7,60.,0.1,2,2

generates layers 3,5 with the same fiber angle, thickness, and material as layer 7.

(3) This angle is defined with respect to a reference axis, which, in turn, is prescribed by
the element geometry and a reference angle in the Element Data Block.

(4) For IMSCHI the number of the material defined in the Material Data Block (— NP) has

I to be entered. Thus, it is possible to define hybrid setups containing different materials.

@lement Data BIock): Contains additional element information. Elements with similar
data can be generated.

Variable Entry Note

Card 1:
M Element number
MTYP Laminate setup for this element (1)
IPS Stress/strain output control flag (2)
KG Generation parameter (3)
KA Element thickness flag (4)
=0... constant element thickness
(from laminate definition)
=2... element thicknesses at corner nodes prescribed
(requires additional card 1a)
#4... element thicknesses at all nodes prescribed
(requires additional cards 1a, 1b)

ANGM1 Angle between reference axis and r-axis (5)
in local element node 1
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IANGL Flag for calculation of the reference angle (5)

=0... ref. angle is constant within the element (=ANGM1)
=1,.. ref. angles are computed from element geometry
=2... ref. angles at corner nodes prescribed

(requires additional card 1c)
=4... ref. angles at all nodes prescribed

(requires additional cards 1c, 1d)

DANG Tolerance measure for angles of normal (default=10°)  (6)

Card 1la (only if KA=2):
EH(1,MAXNUM+1) Shell thickness at local element node 1
EH(2,MAXNUM+1) Shell thickness at local element node 2
BH(3,MAXNUM+1) Shell thickness at local element node 3
BEH(4,MAXNUM+1) Shell thickness at local element node 4

Card 1a (only if KA=4):

HE(1,MAXNUM+1) Shell thickness at local element node 1
HE(2,MAXNUM+1) Shell thickness at local element node 2

EH(8,MAXNUM+1) Shell thickness at local element nodé 8
Card 1b (only for 9- and 16-noded elements, if KA=4):

HE(9,MAXNUM+1) Shell thickness at local element node 9

Card 1c (only if IANGL=2):

ANGM(1) Reference angle at local element node 1
ANGM(2) Reference angle at local element node 2
ANGM(3) Reference angle at local element node 3
ANGM(4) Reference angle at local element node 4

Card 1c¢ (only if IANGL=4):

ANGM(1) Reference angle at local element node 1
ANGM(2) Reference angle at local element node 2
ANGM(8) Reference angle at local element node 8
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Card 1d (only for 9- and 16-noded elements, if IANGL=4):

ANGM(9) Reference angle at local element node 9

Notes:

(1) For MTYP the number of the corresponding laminate, defined in the Laminate Setup

Block (NLFC), has to be entered.

(2) IPS controls the stress/strain output locations within the element. The input to IPS

(3)

consists of a number containing 3 digits. The last digit controls the increment of layer
output, the second digit controls the increment in s-direction, and the first digit controls
the increment in r-direction for output.

For IPS=ixx stresses/strains of all integration points in r-direction are printed.

For IPS=2xx, =3xx, etc. stresses/strains of every 279, 374, etc. integration point in
r-direction are printed.

For IPS=x1x, =x2x, etc. the same syntax as described above for the r-direction is used
for the s-direction.

For IPS=xx1 stresses/strains of all layers are printed.

For IPS=xx2, =xx3, etc. stresses/strains of every 274, 374, etc. layer are printed.

KG is used for element information generation. For KG>0, information between the
element data card where KG is initially entered, and the following element data card is
automatically generated. Element data sets e, e + KG, e + 2 xKG, ... are generated with
all data defined in the initial set of the generation sequence (element e).

(4) For KA=0, shell thickness is constant throughout the element. Thickness is defined as

the sum of the layer thicknesses given in the Laminate Setup Block.

For KA=2, bilinear variation of element thickness is assumed. For this purpose, an
additional card 1a is required which contains the shell thicknesses at the corner nodes
of the element. Thus, layer thicknesses defined in the Laminate Setup Block vary
bilinearly, too.

For KA=4, the shape functions (bilinear, biquadratic, bicubic depending on the number
of nodes) define the variability of the shell thickness throughout the element. An
additional card 1a is required which contains the thicknesses for the first 8 nodes. For

elements with more than 8 nodes, & 2"¢ additional card 1b is required to define the
thicknesses for the remaining nodes.
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(5) IANGL defines the variation of the angle between the reference axis (for defining the

(6)

laminate setup) and the local element r-axis.

For IANGL=0, the angle is constant throughout the element, with the value =ANGM1.
This is typically used for rectangular elements.

For IANGL=1, the angles are computed from the element geometry and the given angle
et the local element node 1 (=ANGM1). This is useful for non-rectangular element cor-
ners and curved element edges (the fibers are assumed to be parallel within the shell
surface).

For IANGL=2, shape functions are used to interpolated the angles from the values given
at the corner nodes. Thus, an additional card 1c is required which contains the nodal
information.

For IANGL=4, shape functions are used to interpolated the angles from the values given
at all nodes. Thus, an additional card 1c is required which contains the information
for the first 8 nodes. For elements with more than 8 nodes, a 2"¢ additional card 1d is
required to define the angles for the remaining nodes.

If the direction cosines are specified in the *NODE section of the input-deck, these di-
rections will be used as initial shell normals, unless the difference between the angles
computed from the geometry and the angles computed from the direction cosines is

greater than DANG. If used, DANG should be kept small to prevent excessive initial dis-
torsion of the element.

2.2.4 Usable ABAQUS Options

The following is a list of ABAQUS [10] options that can be used in conjunction with

the LCSLFC-element, some of these have not been tested but they should work without
problems:

Nodal Point Data: *NCOPY, *NFILL, *NGEN,*NMAP,*NODE, *NSET,*SYSTEM (not tested),

*TRANSFORM (not tested)

Element Data: «ELCOPY,*ELEMENT, *ELGEN,*ELSET,*SLIDE LINE (not tested)

Kinematic Conditions: *BOUNDARY,*EQUATION,*MPC (with restrictions, see note (1))

Miscellaneous: *AMPLITUDE,*RESTART,**,*INITIAL CONDITIONS

Step: *STEP,*ENDSTEP
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Procedures: *BUCKLE (modified, see note (2)),#STATIC,*MODEL CHANGE (not tested)

Loading: *CLOAD,*DLOAD (see note (3)),*FIELD, *TEMPERATURE (see note (1) in
Control Data Block, section 2.2.3)

Prescribed Boundary Conditions: *BOUNDARY

Print and File Output Definitions: *NODE PRINT,*PRINT,*FILE FORMAT,«NODE FILE
Notes:

(1) MPCs have to be used with care due to the fact that the definitions of rotational DOF's
for the LCSLFC-element are different from the corresponding ABAQUS definitions.

MPCs 1,2,6,9,12 restrict the translational DOFs only and, therefore, can be used without
problems.

(2) In the LCSLFC-element a modified version for computing the buckling loads is imple-
mented, see section 1.4. Therefore, the sequence of *STEPs in the ABAQUS input-deck
needed to perform a buckling analysis is a little different than described in the ABAQUS
manual [10]: After loading the structure to the load level desired, two *STEPs consisting
of the *BUCKLE,DEAD procedure and subsequently the sBUCKLE,LIVE procedure have
to be performed. The resulting eigenvalues multiplied by the current load level give
estimates for the buckling loads. The eigenmodes are estimates of the buckling modes.

buckling load = eigenvalue x current load

(3) Currently, 5 different distributed load types are available (see section 1.3.4):

Ul stands for uniform pressure load acting in —t direction (the ¢ direction is defined
by the shell surface and the node numbering order, see Fig. 1.1). In the data card
of the *DLOAD option the magnitude of the pressure (p) has to be entered.

U2 represents gravity load in —z direction. In the data card of the *DLOAD option the
gravity constant (g) has to be entered.

U3-US5 stand for uniform body force in z,y, z direction, respectively. In the data card of
the *DLOAD option the magnitude of the body force (b) has to be entered.
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2.3 LCSMAT, MATERIAL MODEL INTERFACE

The LCSLFC-element provides an interface whereby the user can write his own con-
stitutive model in the subroutine LCSMAT. The material constants that are needed in the
subroutine have to be entered in the Material Data Block as described in section 2.2.3.
If the number of material constants exceeds 8, then the parameter NCON has be adjusted
accordingly in the subroutine LCSPAR.

Most constitutive models require the storage of solution dependent variables (plastic
straing, failure parameter, etc.). The array WA(NLWA) can be used for this purpose; the
length NLWA of this array has to be set in the subroutine LCSPAR.

The interface to the subroutine LCSMAT is simple. When it is called, it is provided with
the material data, the state at the beginning of the increment (local strains, temperature,
solution dependent variables), the current local strains and the temperature at the end of
the increment. The subroutine must perform two functions: it must compute the current

local stresses, and it must provide the current material matrix (it must also update the
solution dependent variables, if used).

LCSMAT will be called at each material calculation point of the shell, i.e. the 2/d
numerical integration points (Gauss-points), at the top and bottom of each layer. The
sample subroutine LCSMAT for linear elastic fiber and matrix materials is included in the

LCSLFC-program. The subroutine D3MMC represents an application of the material model
interface (with some small modifications).

Interface cards:

SUBROUTINE LCSMAT (EEPSL,EEPSLO,WA,NLWA,PROP,NCON,ALFT,EMAT,

1 STRESO,STRESS, TEMPO, TEMP, IINP)
C
IMPLICIT REAL#8 (A-H,0-2)
c
DIMENSION EEPSL(5),EEPSLO(S),WA(NLWA),PROP(NCOX),ALFT(5),
1 EMAT(5,5) ,STRES0(5) ,STRESS(5)
user coding. ..
RETURN
END
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Variables to be defined:

EMAT(S,5) represents the current material stiffness matrix E; of the constitutive

model for modified plane stress conditions (no thickness normal stress,
but transverse shear stresses and strains), defined in the local I,q,t
coordinate system. All entities have to be specified. However, an un-
symmetric constitutive model will not be treated correctly because the
global stiffness matrix is computed assuming symmetry.

Eun Eugg Ewg Eur Enge
Eqqt Eqeqs Eqgtq Eqqut  Eqqqt
Er = | Eiqu Eigey Eigig Etgt  Eigqe
Ewn Eigq Ewig Etere Eitge
eqll eqqq eqlq eqlt eqqt
with [...fiber direction,
g...inplane transverse direction,
t...thickness direction.

STRESS(5) stand the current stresses that correspond to the current strains (EEPSL)
and the current state of the solution dependent variables (WA). If ther-
mal load is applied (KTEMP=1), thermal stresses for temperature at the
:nd of the increment (— TEMP) have to be included.

g
"
=\

Tit

STRESOQ(5) (need only be defined if thermal load is applied, i.e. KTEMP=1) symbolize
the current stresses that correspond to the current strains (EEPSL) and
the current state of the solution dependent variables (WA) including

thermal stresses for temperature at the beginning of the increment (—
TEMPO).

WA(NLWA) represents the array of solution dependent state variables. The values
at the beginning of the increment are transferred to the subroutine and

they have to be updated to the current values. The size of the array
NLWA is defined in the subroutine LCSPAR.
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Variables passed in for information:

EEPSL(5)

EEPSLO(S5)

NLWA

PROP (NCOX)

NCOX

ALFT(5)

TEMP
TEMPQ

IINP

represent the current strains in local (fiber fixed) coordinate system.

n

e
i

7[ q

g
7;:

stand for the strains in local (fiber fixed) coordinate system at the
beginning of the increment.

indicates the number of solution dependent state variebles.

symbolizes the array of material constants entered in the Material Data
Block.
represents the number of material constants.

stands for the array of coefficients of linear thermal expansion entered
in the Material Data Block.

indicates the current temperature.
symbolizes the temperature at the beginning of the increment.

stands for the flag that defines the state of the analysis:
IINP=0...first call of LCSMAT at this point
IINPs-1...subsequent calls

2.4 RUNNING ABAQUS WITH THE LCSLFC-ELEMENT

The LCSLFC-element can work in conjunction with some ABAQUS elements. How-
ever, special care is needed with the rotational DOFs due to their different definitions in
ABAQUS and the LCSLFC program, respectively.

To run ABAQUS and the LCSLFC-element together the standart command ABAQUS
(this calls the ABAQUS command file ABAQUS.COM) can be used. However, to get proper
file handling, some modifications prove necessary. The sample command file ABQ8.COM
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includes all these changes. In order to run ABQ8.CQOM, the compiled LCSLFC program has
to exist in the working directory. By typing GABQ8 the program can be started.

The material and element information for the LCSLFC-element is printed on the
ABAQUS .DAT file. The stresses and strains are printed on a seperate file called file.STR.

Plotting is not supported by ABAQUS version 4-8. However, all the necessary state-
ments for version 5 (which is expected to support UEL-element plottiag) are already in-

cluded in the LCSLFC code. Meanwhile, an auxiliary program (PLOTA) has to be used to
extract plotting data:

Once PLOTA has been started, it will request the ABAQUS .DAT filename. After the
filename has been entered, PLOTA searches through this file for element connectivities and
nodal displacements. Then it creates a .GEO file, which contains the nodal coordinates and
the element connectivities and a .DIS file for each set of displacements. These data are
formatted for use with the post processing program MOVIE.BYU (version 3).

PLOTA will not create a .GEQO file, unless all the element information is included in
the ABAQUS .DAT file. E.g. .DAT files from restart analyses do not contain all slement
information. The same can happen if the *PREPRINT option has been used.

In addition, PLOTA can be used to create imperfect geometries that can be applied for
post buckling analyses:

ter the filename has been entered, PLOTA will request a scaling factor. If this number

is not zero, the displacements, multiplied by this factor are added to the initial (perfect)

geometry. This modified geometry is then printed onto the .GEQ file (formatted for use in
an ABAQUS .1IxP file).
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3. VERIFICATION EXAMPLES

3.1 PRESSURE LOADED THICK SQUARE PLATE

A simply supported thick three-layer cross-ply square plate which is subject to a sinu-
soidal pressure load is used to demonstrate the accuracy of the LCSLFC-element. Both
the exact solutions and FE results [12,13] have been used for comparison.

Lay-up: [0/90/0]...three layer cross-ply, shell thickness A =1 in.

Material: as specified in {12]
E; =25000 kpsi E,; =1000 kpsi vy =0.25
G, = 500 kpsi G, = 500 kpsi G,: = 200 kpsi

Model: A quarter of the plate has been modelled by four 16-node LCSLF C-elements.
Width of the square a = 4 in. Symmetry conditions: along the z—symmetry line Av™®,
Ae®, Agag‘) (n=1,...,N ~1) have been set to zero, and along the y—symmetry line
Au® Ap®, Azbs.k) (n=1,...,N —1) have been set to zero. The 0° layers have been
divided into two sub-layers to trace the variation of transverse shear within the layers.

Distributed load: . X
¢(z,y) = go sin(mrz/a) sin(ry/a)

go = (7 /a)’
For comparison purposes, the following normalized qua.ntit‘ies have been used:

100E,A3 100E,A3
u = w
goa? goa*

g

z=1z/h

h? h
(73’?1) = W(”zaoy) (732,?1(:) = ‘q?&'(rzn'ryx)

Since nonlinear effects are not taken into account in [12], only a linear load step has
been performed. Figs. 3.1 to 3.3 show the through-the-thickness distribution of both
the normalized inplane displacements ¥ and the normalized stresses 7., 7., at specific
locations. Analytical solutions and the results from classical laminate theory (CLT) are
also given in these figures. Very good agreement can be observed between the LCSLFC-
element and the analytical solution despite the fact, that this “plate” resembles a solid
brick rather than a plate (the element length to thickness ratio is 1:1!).

~39-




x\ 0.5
\\\x\ T
\ -
~
X
W\
+ 4# |L~ 1 Bt
-0.8  —0.4 00NN 04 0.8
AN
TXXN

Fig. 3.1 Thickness distribution of normalized inplane displacements ¥ of a thick
cross-ply square plate at z =0,y = gforh=1.0and h=04

Fig. 3.2 Thickness distribution of normalized in-plane normal stresses 7. at the
center of a thick cross-ply square plate (z = §,y = §) for h = 1.0
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Fig. 3.3 Thickness distribution of normalized transverse shear stresses *., of a
thick cross-ply square plate at z =0,y = § for h=1.0
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The same computation has been performed with a different shell thickness (A = 0.4)
in order to investigale the importance of transverse shear. As one would expect, the
differences between the classical lamination theory and more advanced methods (like the
LCSLFC-element) become less pronounced as the thickness of the shell decreases, see Fig.

3.1. Table 3.1 lists some stresses and displacements for this case together with analytical
results and other FE results.

Table 3.1: Normalized stresses and displacements for h = 0.4

3’:(%, %’ i‘-%) a-y(%y %’ i%‘) ?zx(oa %’0) ?’y;(%,0,0) w(g 5 0)

217

Pagano +0.590 T0285 40357 +01228  +0.7530
[12] +0.3884 102834 +0.3627  +0.128¢  +0.7331
LCSLFC-element  10:59 T028% 40364 +0.1079  +0.7359

These results clearly indicate that the LCSLF C-element is capable of handling thick
laminated shell problems with high accuracy.

3.2 CYLINDRICAL BENDING OF A PLATE STRIP

A two-layer cross-ply plate strip subject to a distributed normal load [14] has been used

to investigate the influence of stacking sequence, geometrical nonlinearities and boundary
conditions on the mechanical behavior of laminated plates.

Lay-up: [0/90]...two layer cross-ply, layer thickness = 0.2 in.

Material: as specified in {14]
E; =20000 kpsi E; =1400 kpsi vy =0.3
G, = 700 kpsi G, = 700 kpsi Gge =700 kpsi

Model: The plate strip has been modelled by four 16-node LCSLF C-elements; length of
the strip [ = 18 in., width b = 3 in. Both ends of the strip have been pinned. Each
layer has been divided into two sub-layers to ensure an accurate representation of the
variation of transverse shear within the layers.
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Different types of mashes have been tested to evaluate the robustness of the LCSLFC-

element. Even with an aspect ratio (length to width) of 11:1 very accurate results have
been obtained.

For comparison purposes the shell normals have been forced to remain straight. This
was accomplished by setting the rotational DOFs A{,agk) A¢§k) to zero. Excellent agreement
with the investigations in [14] have been obtained, see Fig. 3.4.

For simply supported ends, the magnitude of the displacements is independent of the
sign of the applied load, because the plate strip is essentially in pure bending, see {14]. Due
to the pinned ends of the strip in this study, in-plane stiffnesses are activated as soon as
out of plane deflections occur (geometrically nonlinear effect) and, therefore, quite different
results are obtained for positive and negative load directions (which can be translated into
a reversed stacking sequence), respectively, see Fig. 3.4. For a detailed explanation of this
phenomenon see {14].

w/h |

1.0 4

LCSLFC
—-— LCSLFC, straight normals
— [14)

-t T L i ’

0.0 0.01 0.02 003  p (ib/in?

Fig. 3.4 Load-displacement path of a pinned two-layer cross-ply plate strip subject
to a distributed normal load
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Relaxing the boundary condition on the shell normals, which allows them to deform
layerwise linearly (therefore having a more realistic model), results in somewhat larger
deformationsi, 8s can be seen in Fig. 3.4. This indicates that transverse shear does not
play a significant role in this rather thin shell application.

3.3 THERMALLY LOADED SQUARE PLATE

In order to show the thermoelastic capability of the LCSLF C-element & uniform tem-
perature rise has been applied to a simply supported composite square plate. To verify the

results, comparative investigations with ABAQUS shell elements have been undertaken.
The following properties have been chosen:

Lay-up: (0/90]...two layer cross-ply, layer thickness = 0.2 mm

Material: Graphite/Epoxy

E; = 127.5kN/mm? E, =11.0kN/mm? vy =0.35
G, = 535kN/mm’ G, = 5.5kN/mm’ Gy = 4.6kN/mm’
a; =—0.08x10"% °C~1 a, =2.90x10"% °C-?

Model: The whole plate has been modelled by sixteen 16-node LCSLFC-elements, the
width of the square is 300 mm; all edges were restricted to remain straight.

Fig. 3.5 shows the nonlinear load-displacement path as well as an estimate curve for
the buckling load.

Because of the constant temperature rise all over the plate and the simply supported
edges, no stability problem would be expected for a homogeneous isotropic plate. But, due
to anisotropies occuring in the laminate, a linear buckling analysis (i.e. a buckling analysis
after a very small load step, § = 1°C) yields a bifurcation point at *J = 4°C. However,
& detailed analysis of the buckling behavior indicates that the nonlinear pre-buckling de-
formations make the results of the linear buckling analysis rather meaningless. As can
be seen from the estimate-curve in Fig. 3.5, the estimates of the relevant buckling mode
change during the incremental increase of the temperature and the critical temperature is
approximately 30 times higher than the corresponding value of the linear buckling analysis!

The comparison with the ABAQUS element has shown excellent agreement in the
displacements. However, it has not been possible to compute the detailed buckling behav-
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ior by using the ABAQUS elements. No convergence or only negative results have been
obtained during the eigenvalue extraction. Using the LCSLFC-element buckling loads

and buckling modes have been successfully computed by employing the modified buckling
procedure described in section 1.4.

<l

=
250+

actual buckling temperature

200+

1564

1004

deformed shape

0 /. ‘linear’ buckling temperature u [mmA]
i 1 1 T T Y G
0.0 0.02 0.04 0.06 0.08 0.10 0.12

Fig. 3.5 Load-displacement path and estimate-curve for buckling load of a two
layer cross-ply square plate

ACKNOWLEDGEMENT

The financial support of this project by the Fonds zur Férderung der wissenschaftlichen
Forschung (Erwin Schrodinger Stipendium) is gratefully acknowledged.




REFERENCES

(1]

7l

(8]

[9]

[10]

E. Ramm, ‘A Plate/Shell Element for Large Deflections and Rotations’, Formulations
and Computational Algorithms in Finite Element Analysis, Ed. K.J. Bathe, J.T. Owen,
W. Wunderlich, Proc. U.S.-German Symp., MIT, Cambridge, 1977.

| K.J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Engle-

wood Clirfs, NJ, 1982.

K. Dorninger, Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von

Schalenkonstruktionen aus Faserverbundstoffen, Fortschritt-Berichte, VDI Reihe 18,
Nr. 63, VDI Verlag, Duesseldorf, FRG, 1989.

C.-M. Huang, D.C. Lagoudas, A Fortran Program for Effective Properties of Composite
Materials Based on the Mori-Tanaka Scheme, Department of Mechanical Engineering

and Mechanics and Department of Civil Engineering, Rensselaer Polytechnic Institute,
Troy, NY, 1990.

G.J. Dvorak, Y.A. Bahei-El-Din, ‘Plasticity Analysis of Fibrous Composites’, Journal
of Applied Mechanics 49, 327-335 (1982).

A.J. Svobodnik, Numerical Treatment of the Elastic-Plastic Macromechanical Behav-

ior of Longfiber-Reinforced Metal Matriz Composites, Dissertation, Vienna Technical
University, Vienna, Austria, 1990,

G.M. Stanley, Continuum-Based Shell Elements, Dissertation, Stanford University,
Stanford, CA, 19835.

E. Ramm, A. Matzenmiller, ‘Large Deformation Shell Analysis Based on the Degen-
eration Concept’, State-of-the-Art Tezts on FEM for Plate and Shell Structures, Eds.
T.J.R. Hughes, E. Hinton, Pineridge Press, Swansea, UK, 1986.

G. Laschet, J.P. Jeusette and P. Beckers, ‘Homogenization and Pre-Integration Tech-
niques for Multilayer Composites and Sandwich Finite Element Models’, Int. J. Num.
Meths. Eng. 27, 257-269 (1989).

ABAQUS Version 4-8 User’s Manual, Hibbit, Karlsson & Sorensen Inc., Providence,
RI, 1989,




(11] F.G. Rammerstorfer, ‘Jump Phenomena Associated with the Stability of Geometrically
Nonlinear Structures’, Recent Advances in Non-Linear Computational Mechanics, Eds.
E. Hinton, D.R.J. Owen, C. Taylor, Pineridge Press, Swansea, UK, 1982.

[12] H.-S. Jing, M.-L. Liao, ‘Partial Hybrid Stress Element for the Analysis of Thick Lam-
inated Composite Plates’, Int. J. Num. Meths, Eng. 28, 2813-2827 (1989).

(13] Z.H. Li, D.R.J. Owen, ‘Elastic-Plastic Analysis of Laminated Anisotropic Shells by a

Refined Finite Element Laminated Model’, Computers & Structures 32, No. 3, 1003-
1024 (1989).

[14] J.N. Reddy,'On Refined Computational Models of Composite Laminates’, Int. J. Num.
Meths. Eng. 27, 361-382 (1989).

[13] T.R. Tauchert, ‘Thermal Stresses in Plates - Statical Problems’, Thermal Stresses ],
Ed. R.B. Hetnarski, North-Holland, Amsterdam, 1986.

- 46 -




Appendix

Jacobian matrix:

with

Zn,r 2n,a 2Znt

Zn,r Tn,a Tht
g= Yn,r VYn,e Yn,t

M
Tn,j = Z é,(f)[x(,f) +t b cos ¥
k=1

M
Yn,j = Z ¢,(f) (1 + ¢ b8 sin W ¢og ¥
k=1

M
znj = P[P + t 1 sin ¥ B sin e )

k=1
M
Tnt = Z B BB cos ¥H)]
k=1
M
Yn,it = Z $W[h® sin ¥® cos M)
k=1
M
zne =) dPEP sin ¢ sin D)
k=1

Displacement derivatives:

Total displacements:

with

Unj =Ty j +E1h, ;

Un,j =Tp,; +t6n,j i=zyz

Wnj =W+, ;

M
T, = z [¢,(:) u® + 9® ¢ 1P (cos v® cos®¥M)]

k=1

k=1

k=1
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M
Un,j = E [45,(;) v,s") + ¢® t; h(,':)(sin ¥® cos QS{‘) - sin°\I'Sf) cos°§$f‘))]

M
T ; = Z [é,(;) w® + ¢® ¢ . k®(sin ¥® gin ® — 4in®g® sin"®()]

(41)

(42)

(43)

(44)




and

M
U, ;= Z ¢,(f)h(,',‘)(cos \Ilf.,")— cos°\Il$,"))

ksl

;= Z <p(k) hB(sin TP cos ¥ ~ sin®P® cos?@P)
k=1

M
By ;= Y 6P HO(sin UP sin P — sin®TP 5in’dP)
k=1

where

6B = B rs 4o s,

(43)

(48)

rj138,jst,j correspond to the elements of the inverse of the Jacobian matrix J and %¢ ® oy

are the angles of normal of the initial geometry.

Incremental displacements:

Aty j = AT, ; + AR, ;
Avn.j = Avn,j +tA?n,j J=z,y,2
Aw,w- = Aw;w- -+ tAGn,j

with
M

k
At ;= 3 (6D Aud + 60 ¢ WO (P AP + g0 0T
k=l
M

k
AT, ;=3 [4P AP + ¢® ¢ KB (P AZH 4 g A ))]

k=l
M

k
AT, ; = Z [¢(k) Au® + Wt 1B (B AZ® 4 E(k)Aa( ))]
k=1

and

X
AT, ;= Z sPEM (P Az® + g® 7

k=1
M
5. X
A%;= 3 6OHY (6 Ap + g7
k=1
- 7
AT, ;=) s®HB (g® az® + g®
k=)
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where

B= 0 T = —5in¥®
g® = ~sind® sin ¥® 2P = cos®®cos TP (A10)
gW = cos®W sin ¢® g = sin®W cos T

The functions g¥) and g® represent linearizations of the trigonometric functions in
Eqs. (A4, A3) at QQ‘),‘I’U‘) with respect to the incremental rotations ) A'u'—;(:).

Strain-displacement matrices:

Linear strain-displacement matrix:

B =5 +t§z (A11)
with
1 2
a 51 R_E (M) (AlZ)
B = (8" B 8™)
where
(4% 0 o0 EPg® ¢, g® m¥e®¢ g
0 49 o B 6®¢,, gf? HY6® ¢, g}
®) %) . (k )] ® ,(k k)
0o o0 E®e® ¢ B® g8 ¢
B = ® 0 " ® 1) ’ ® - ® ® (k)n ’ k;,z‘: ) (413)
8% #% 0 BReW[t. gl +t,8P BPe®lt g +1t,2Y)
¢,(f) 0 ¢(") h(k)cﬁ(")[t s(k) +t, g(lf)] h(,’.')¢(")[t,, E-g‘) +t, g-(k)]
Lo ¢® ¢® B0, g™ + 1,0 Ee0, 2 +1.,20)/
and
(0 0 o0 HYg)2 g EePgd )
0 0 0 %5 g S
_ o o0 o0 BB 6B ¥ NCROMC)
= B (8 i) B B B ®. d:)' g‘,(k) ® (A14)
= 0 0 0 b¥eWg®4e®e® pBp®g® + oD g®
0 0 0 HMe®®4e® s"”] NPT CMONC)
O 0 o0

KP168 e + 6P el b6 T +4P 2]/
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Nonlinear strain-displacement matrix:

B, =
with
2nl = (~nll)
8= (8%
where
(62 o 0
6y 0 0
% o o
0 42 o0
By =10 % o
0o % o
0o o 4%
o o &%
\o o ¢¥
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[0 o
0 0
0 0
0 0
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0 0
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Stress-integrals:

Szz Sizy Se \
S (sr-v Syy  Sys 9 0
s:z S:: sy: S:s
sw stz s:y sz:

S= S" §= g Szy Syy Sy: 0 (A19)
Sty Szt Syz SIS
S" S::z S:y S:z
v \ 9 0 Szy Sy Sy:
s:x Sy: Szx

Displacement derivatives at shell's midsurface:

M
FEDIEL

k=]
4 k
vi= Z¢f1 )y(k) j=rs
k=1
M (A20)
ni= Y 00
k=1
Tt = 0
ve=0
z2t=0

Initial nodal coordinates for layer n:

n=1

23 = %" + (3" 1P ~ 16®) cosPu®
j=1

n-1

=YD+ (3 HP ~ 1) sin W co %9 ®
j=1 (A21)
n-1

%20 = %W 1+ (5" bY ~ 11) 4in O ® gin 0p®
Jm1
oM = op®)

o = og(k)
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Relation between layer DOFs and shell DOFs:

Explicit:

Aul® x Au® }h"‘)(gf._") Ap® = g® Ayp®)

n-~1
+ SO (P00 ® + 26P) + P (2w ® + 2y )
=1

Ay x Av® — LEO (gD AL® 4 g® Ap®)
n-1

+ 3 EP (8™ + 80 + (a0 + )

i=1

Au® x Aw® - JHO(EP AP 4+ g Ap)

n=1
+ S HP (P (2 + 80P + 7B (a0® + ap®))
j=1
Ko™ + 2o 1SnSN-1
Ag(u") = N-1 N
2o® - T AL =N
Ap® + Ap® 1<ngN-1
(k)
Ay, = N-1 (W)
» Ay® - T Ay,g")':‘{“ n=N
j=l N
with
g = - sin@® gin Y® W= cosd® cos ¥®
g® = cosd® giny® g® = sind® cos ¥®

In matrix notation:

A = GO Au®
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with

AE(:) = Ay_(") =

and the transformationmatrix g&"’ (size 3 x (2N +3)):
- for layersn < N -1

(A25)

(1 00 EPgl E¥gd ph® 10 e KB g o0 ... Ow
. 0 10 ¥l BUgl yhh h® 0 @ ® g 00 ... 0
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(A26)
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Interpolation matrix for the shell:

N=N+tN -05<tw <05 (A28)
with
N = (N(n N® N’W’)
o e = - (429)
N= (1§<1) N . §<M))
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1 0 0 00
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Post-Failure Analysis of Layered Composite
Shells by Finite Element Method

Konrad Dorninger*
Institute of Lightweight Structures and Aerospace Engineering
Vienna Technical University, Vienna, Austria

ABSTRACT

Using the UEL-interface (user-defined element) a special shell finite element developed for
layered composite material (LFC-élement) has been implemented in ABAQUS. The element
formulation is based on the degeneration principle including large displacements with an
efficient analytical thickness integration. Examining suitable failure criteria and taking into
account post-cracking stiffnesses allows for the investigation of progressive damage.

For load cases without failure analysis comparison of results obtained by the LFC-element
with those of the ABAQUS shell element shows the efficiency and accuracy of the new element.
Some examples illustrate that an extended range of composite specific problems can be covered
by this LFC-element.

1. INTRODUCTION

In designing shell structures the prediction of the limit load is crucial for fully utilizing
the material capabilities. Either buckling of the structure or the strength of the material (or
both) limit the sustainable load of the shell. In this paper special emphasis will be put on
investigating these two limiting factors, especially for layered composite shells.

By using a special shell finite element developed for laminated fiber-reinforced composites
(LFC-element, Dorninger, 1989) in conjunction with ABAQUS (ABAQUS, 1989) these limit
load analyses including the post failure regime can be conducted for arbitrary shell structures.

* Current address: Department of Civil Engineering, Rensselaer Polytechnic Institute,
Troy, NY 12180-3590, U.S.A.
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The onset of failure and the =ffective safety margin to overall collapse can be computed,
which is of considerable practical relevance.

The complexity of the internal stress state typically found in layered composite materials
and, in addition, the number of failure modes possible necessitate the introduction of some

simplifications and assumptions in order to make post-failure analyses feasible. The basic
assumptions are:

- Only inplane normal and shear stresses and out-of-plane shear stresses are considered (no
interlaminar stresses).

- No variation of stresses along the layer thickness is assumed.

- Only two inplane failure modes together with the corresponding post-failure stifinesses
are considered: matrix cracking and fiber failure (either by cracking or by buckling).

The LFC-element is capable of handling thermal loading and material nonlinearities in
terms of the stiffness degradation mentioned above as well as geometrical nonlinearities due
to large deformations. By using the ABAQUS buckling procedure the buckling behavior of

layered composite plate and shell structures, including nonlinear pre-buckling deformations,
can be computed.

2. LFC-ELEMENT FORMULATION

A detailed description of the theoretical background of the LFC-element along with a
number of illustrative examples can be found in Dorninger, 1989. In this chapter only the

outline of the element formulation is presented with special emphasis on the failure analysis
modelling.

2.1 Basics

The element formulation is based on the well known degeneration principle, see e.g.
Ramm, 1976, Bathe, 1982. By using objective strain and stress measures, geometrically
nonlinear behavior in terms of large deformations is included.

The incremental finite element equation has the well known form:
MK, + ™K, |(Qu)! = ™ - (™f — Afy,) (1)

The usual iterative application of Eq. (1) in each increment improves the result up to a
given accuracy.

For the updated Lagrange formulation the stiffness matrices and the nodal force vectors
for one element (e) are given by the following integrals over the element volume (™V):

mKe(e) = /mBZ' o) mBL d™V (2)
my\’
"K( = ["BE"T "By d™y 3)
m\”
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™) = / mBf ™7 d™V (4)
m\'

AfO = / mBT ™C aAY 4™V (5)
m\'

In Eq. (1) the sum in square brackets is often referred to as the current global tangent
stiffness matrix ™K at state m, comprised of ™K, (material stiffness matrix, depending on
the current material matrix ™C which, in turn, depends on the local state of damage) and
™K, (initial stress or geometrical stiffness matrix, depending explicitely on the Cauchy stress
tensor, ™T ). The external load vector at the current state m + 1, ™*'r, is given by the surface
and body forces, concentrated or distributed. ™f is the vector of internal forces corresponding
to the stresses at state m (vector ™r) and Afy is the vector of internal nodal forces equivalent
to stress increments resulting from a temperature increment Ad and computed by using the
direction dependent coefficients of linear thermal expansion (vector a).

The general theory used to describe the degenerated shell element’s geometry and its
deformations as well as the assumptions with respect to modified plane stress conditions are
in close analogy to Bathe, 1982, and are described in detail in Dorninger, 1989. For example,
the interpolation of the geometry is performed by

A (k)
mzi(r,s,t) = }: ¢(")(r,.s)[’"z(ik) + tl—1 cos"“I’,-(k)] (6)
k=1 2
where ¢¥)(r, s) represent the standard 2/D shape functions (i.e. Lagrangian polynomials); M
is the number of nodes forming the element, h® is the thickness of the shell at node k and
the angles \Il‘-(k) are used to determine the position of the shell’s normal at node k.

2.2 Material Description of the Multilayer Composite

Due to the anisotropic and layered setup of composite shells the overall material matrix C
in Eqs. (2,5) and the vector of coefficients of thermal expansion a in Eq. (5) become position
and orientation dependent. Each layer is assumed tc have orthotropic material behavior with
respect to its individual fiber-fixed local coordinate system [,q. The definition of the local
system and the nomenclature for the material setup of the LFC-element are shown in Fig. 1.

Assuming a linear elastic material (in terms of Cauchy stresses and Almansi strains) the
elasticity matrix and the vectors of stresses and strains can be defined corresponding to the
modified plane stress conditions (73, = 0) resulting from the degeneration principle:

my! = mC/(™e' ~ o ™) )

with ™ being the temperature difference with respect to a stress-free reference temperature,

and

] !
™ €11
! !
T22 €22
0 0
H !
T = ' ) £ = ' . (8)
Ti2 T2
! !
T3 T3
! r
Ta3 Y23
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Eqs. (7,8) are referred to a local cartesian coordinate system x’ (z] being tangential to
the natural coordinate 7 and z being normal to the shell’s midsurface), see Fig. 2.

The material matrix and the vector of coefficients of linear thermal expansion of the
unidirectionally reinforced layer (UD-layer) are defined in the local layer coordinate system
denoted by subscript L. A rotation transformation serves for computing C' and a' from C;
and a;. Since element geometry and fiber-direction are independent of each other the angle
O, which denotes the fiber angle with respect to the x' coordinate system, is not necessarily
constant within the element (see Fig. 2). Two ways of accounting for this are implemented
in the L C-element:

a) By assuming the fibers to be parallel within the layer one can find a geometric relationship
for the change of © (see Dorninger, 1989).

b) By specifying the ©-angles at each nodal point of the element and using the 2/D shape
functions ¢(*)(r,s) (from the interpolation of the geometry, Eq. (6)) one can interpolate
the ©-angle at any point.

After transforming the locally defined material laws of all UD-layers of the laminate into
the z}, z,, zj coordinate system and using the isoparametric concept one can express the
material matrix and the vector of coefficients of linear thermal expansion of layer n as a
function of the natural coordinates r,s and obtain

1C/(r,s) la'(r,s) -1< t <k
20 2a'(r,s < t <%
Clmsty= T gray=] 20 (9)
A‘C’(T,S) I\’a’(r,s) A'—lt < t S +1
with "
2 ) . . .
M =-1+ i Z ‘h (definition of /h see Fig. 1) (10)
Jj=1
for the multi-layer compound with layer numbern=1,...,N.

The degeneration principle includes the assumption that normal vectors (or quasi-normals)
remain straight during the deformation. In order to reduce the error resulting from this
kinematic restriction, which in many cases is negligibly small, shear-correction factors can
be introduced. Noor, Peters, 1989, proposed a predictor-corrector approach which not only
improves the overall shear response but also the computation of interlaminar stress quantities.
As long as rather thin shells are considered the use of such corrections can be omitted.

2.8 Stiffness Expressions

Computation of the element stiffness matrix requires a three-dimensional integration (see
Egs. (2-5)) which usually is performed by some sort of numerical integration technique.
Since we are dealing with multi-layer shells (with a very large number of layers allowed),
where each layer requires at least one (even better two or more) integration points over its
thickness, the numerical effort increases rapidly with the number of layers. An effective way
to overcome this difficulty is the use of a quasi-analytical thickness integration as described for
homogeneous shells e.g. in Stanley, 1985, Ramm, Matzenmiller, 1986. This, however, requires
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an assumption on the t—dependence of the Jacobian matrix (see e.g. Laschet, Jeusette,
Beckers, 1989). In the present work the t~dependence is neglected. This approximation is
acceptable as long as the shells are thin, their curvature is moderate and their thickness does
not vary too much. The neglection of the t—dependence of J has been successfully used by
Stegmiller, 1985, for homogeneous shells and by Chao, Reddy, 1984, for layered composite
shells.

The displacements follow from the description of the geometry (Eq. (6)) and, therefore,
the t—dependence of the displacement derivatives can be formulated explicitely:

MUy j(rysit) = a2 = T, j(r8) + ™G j(r,s) 4,7=123 (11)

Using this relation the Almansi strains €;; can be decomposed into a t-independent
part (— %), a part linear in t (— £) and a t?—dependent part (— £). Together with the
material matrix for the multi-layer compound and the vectors of linear thermal expansion
(Eq. (9)), both transformed properly to the global z;,z,,z3 system, the vector of Cauchy
stress components (Eq. (7)) becomes:

r(r,s,t)="C(r,s,t) (["’E(r,.s) ="a(r,s,t) '";9‘(1-,3)] +t["E(r,s) ~"a(r,s,t) ﬁ,;g-'—i)] +12 ”"é'(r,s))
(12)
where
mC(r,3,t) = "GT(r,s) C'(r,s,t) "G(r,s) (13)
Ta(r,8,t) = "G7H(r,s) a'(r,s,1) (14)

The matrix ™G represents the transformation from the global x system to the local
x' system. G is composed of the elements of the Jacobian matrix and, therefore, if J is
independent of ¢ so is G. The temperature field is assumed to be linearly distributed over
the thickness of the shell, with ¥ being the temperature load of the midsurface and ¥ the
temperature difference between opposite points on the two surfaces of the shell.

The B, and By; matrices are constructed from derivatives of the shape functions and,
therefore, they can be decomposed into a t—independent part (— B;,By;) and a part linear
int(— ﬁlnﬁNT.)' Now the stiffness matrices and nodal force vectors of Eqs. (2-5) can be
rewritten and the quasi-analytical thickness integration can be performed. By introducing
some abbreviations Ke(e),K,(‘),f(’),Aff,f) follow as:

+1+1
mK(© = / / ("Bf ("C1™B, +™C2 "B, ) + "B ("C2 "B, +"C3 B, ))det| ™I | drds  (15)
-1-1
+1+
mK = / / (mﬁg'm('"m "Bnz +™S2™Bpz ) + BT, ("S2 "By + ™53 "By ))det| ™3 | drds (16)
~1-1
+H+H
mele) - / f ("B; ™s1 + BT ™s2)det| ™3 | dr ds (17)
-=1-1
+H+1 -~ ~
mALY = / / ("B; (Me1a A5+"'cz,.-‘;—")+"‘ﬁ{ ("c24 A5+'"cs,.-A-2’3))deq ™3| drds (18)
~1-1
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where the following abbreviations are used:
m m m ma . m m~ m mg ., m m~
s1 = ™C1™F - Me1g "I + "C2™E - c2,.—2-+ C3™e
m m, m— m m3 m ma~ m m; ™ me 19
s2 = "C2™E — Mc2g ™Y + mC3™E - Me3g - + ™C4 ™™g (19)
m m m m3 . m ma~ m m;g' m m>
s3= "TC3™MF — M3y "9 + MC4™E — M4y, - + ™Cs™¢

are “stress integrals” and

il i n—1yi
™Ci(r,s) = "G¥(r,s) Y "C’(r,s)j—i—t— mG(r,s) i=1,...,5 (20)
n=1
N ngi _ n=lgi
Teip(r,s) = mGT(r,s) Z nC'(r,s)"a’(r,s)-—-—i—— i=1,...,4 (21)
n=1

are thickness integrals of the material matrix and the vector of linear thermal expansion.
mg), mS2, ™S3 are equivalent to ™s1, ™s2, ™s3, but the elements are rearranged in special
matrix form, see Dorninger, 1989.

The summations in Eqs. (20,21) are independent of the state m (as long as local failure is
not taken into account), thus they only have to be computed once (prior to the incremental
analysis). This results in a decrease in the numerical effort in each increment due to the
reduction of the 3/D numerical integration to a 2/D one. The more layers there are within
the laminate the more efficient the analytical thickness integration becomes compared to the
fully 3/D numerical integration.

2.4 Effects of Local Failure

Due to the nature of composite material the failure behavior is very complex with nu-
merous different failure modes possible. Therefore an accurate prediction of failure with
reasonable effort is almost impossible so that some restrictions have to be made. In this
paper a simple way of dealing with this kind of behavior was chosen:

As outlined in the introduction failure is considered to occur within the layers only and
delamination is not taken into account. With respect to this and by assuming a linear elastic
stress-strain relationship up to failure (which is valid for many fiber reinforced plastics, see
e.g. Tsai, Hahn, 1980) one can use proper strength criteria to determine onset of failure.
Although the following procedures are based on “homogenized” material, the local damage
of the composite, i.e. matrix or fiber cracking, can be estimated, compare Tsai, Hehn, 1980.

In this paper failure is indicated by a combination of two failure criteria, and two distinct
failure modes are assumed:

A quadratic strength criterion, the Tsai-Wu-criterion ( Tsai, Hakn, 1980, Chawla, 1987)
serves for predicting failure for stress states with relatively large transverse stress components
which affect the matrix material rather than the fibers. Therefore, violation of this criterion
can be related to matrix failure. Endurable stress states lie within a failure surface in the
stress space

Fyopy + F“afl + F12¢7u¢7" + R)?UN + Fzquzq + EdTI: <1 (22)
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with

1 1 -1 1
Fo=—+ Fi=———  Fy=—
9T %iCu T11u%Cu quu (23)
1 1 -1
Fyp = + By = ——— Fy; = -y B
Uun anu ¢7lq:ruanu

011> Ogqs Tiq are the inplane engineering stresses. With respect to material damage we use
the same laws for Cauchy stresses, too. The following notations are used

0,~, maximum endurable, i.e. ultimate uniaxial compression stress in fiber direction,
0,7, ultimate tensile stress in fiber direction,

,c, ultimate compression stress normal to fiber direction,

o,r, ultimate tensile stress normal to fiber direction,

Tiq. ultimate shear stress.

Since in many cases the Tsai-Wu-criterion overestimates the strength of the UD-layer in
the case of stresses acting predominantly in fiber direction, a ma~imum stress limit in fiber
direction is imposed (the failure surface corresponding to the combination of Egs. (22) and
(24) is shown in Fig. 3):

Oicu <Oy < 017y (24)

Post-cracking stiffnesses are introduced according to the two assumed failure modes. In
the case of matrix cracking they take the form:

Ey; Ei2 0 0 O 0 BeEnn 0 0 0 0 0
Ex 0 0 O 0 0 0 0 o 0
0 0 0 0 matrix—cracking 0 0 0 0
C.= sym. Eu 0 0 - sym. 0 0 o | (29
Ess 0 Ess 0
Eegs Ees

Ei2, Ez2 and E,, are set to zero, which is a simple representation of the matrix stiffness
being removed. The reason for introducing a correction factor B is twofold: First, a damaged
matrix also reduces the stiffness in fiber direction and, second, for nonstraight (e.g. wavy)
fibers the reduced support by the damaged matrix can lead to a further loss of stiffness.
Bg depends on the composition of the layer and must be given as an additional material
parameter.

In the case of fiber failure the reduced stiffnesses are modeled by:

Eii1 E;2 0 0 O 0 Ew E;2 0 0 O 0
Ea 0 0 O 0 E.z2 0 0 O 0
0 0 O 0 | fber—failure 0 0 0 O
CL - sym. E44 0 0 - sym. E44 0 0 (26)
Ess 0 Ess 0
Ess Ese

As can be seen from Eq. (26), E,;; is set equal to Ey;. This is a simple representation of
the assumption that after fiber failure only the matrix stiffness remains.

155




By assuming thin layers it is sufficient to investigate the stress state in the layers’ mid-
surface only. In addition, if cracking occur the corresponding failure mode is taken to be
valid through the entire thickness of the layer. Thick layers with significant stress gradients
in thickness direction can be treated by subdividing them into several “thin” sublayers.

Equations (25,26) represent “secant”-stiffnesses of the material and, therefore, stresses
can be computed directly from the total strains. The following procedure, applied at each
load step m at each stiffness sampling point r;,s; (= 2/D integration points) for all N layers
of the laminate, accounts for stiffiness changes due to material cracking:

- The local inplane strains ", at the midsurface of layer n with respect to the laycr’s local
axis are derived from the global strain vector ™e.

- With "¢; and the corresponding local elasticity matrix "C; of the previous step an estimate
of the stresses is computed.

- In the next step the combined failure criterion is examined. If failure is indicated by a
violation of Eq. (22) or Eq. (24) the local stiffness matrix is changed according to Eq.
(25) or Eq. (26), respectively. The elements of "C; to be reduced are properly subtracted
from the Ci matrices (Eq. (20)) and the ciy vectors (Eq. (21)).

A flow chart of the complete algorithm along with some investigations on the influence
of the iteration scheme and the mesh size on the accuracy of the algorithm can be found in
Dorninger, 1989.

3. NUMERICAL EXAMPLES

3.1 Buckling and Postbuckling of a Multilayer Square Plate

This problem has been chosen to show the accuracy of the LFC-element, to quantify the
efficiency compared to the ABAQUS shell element and to conduct post-buckling analyses.
The practical purpose of this example can be seen in optimizing an inplane loaded plate with
given geometry and given material with regard to buckling.

Lay-up: [(+©/ — O)g,]. .. 24-layer angle-ply, layer thickness = 0.0529 mm

Material: Graphite/Epoxy
E; =127.5kN/mm? E, =11.0kN/mm’ vy =0.35
G, = 55kN/mm’ G, = 5.5kN/mm? Gy = 4.6kN/mm’

Model: The whole plate has been modelled by sixteen 16-node LFC-elements, the width of the
square being 900 mm, see Fig. 4; boundary conditions: a) simply supported, b) clamped.

For several fiber angles © the buckling load has been computed by using the standard
buckling procedure implemented in ABAQUS. Fig. 5 indicates a strong dependence of the
buckling load and the corresponding buckling mode on the fiber angle. To verify this result
a similar FE-analysis by Nemeth, 1986, has been used for comparison. Fig. 5 shows the very
close agreement between these two analyses. For a few angles O the buckling load has also
been computed by employing 36 ABAQUS S9RS5 shell elements (so that the number of nodes
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remains unchanged). Again, the results are almost exactly the same as obtained with the
16-node LFC-element (less than 1% difference in the buckling loads; no observable differences
in the displacements).

The advantage of the quasi-analytical thickness integration becomes evident in the follow-
ing example: For the 16-node LFC-element the CPU-time for one load step has been about
40% less than for the ABAQUS S9RS5 element. For the 9-node LFC-element, which has the
same number of nodes as the ABAQUS element, the time savings have been increased to
66%! The 9-node LFC-element, however, yields somewhat higher buckling loads and, there-
fore, has not been used in subsequent analyses. To find out how the number of layers affects
the CPU-time the same plate has been investigated with only 4 layers: For the LFC-elements
no influence of the number of layers on the CPU-time has been observed. For the ABAQUS
element, in contrast, this reduction of layers by a factor 6 resulted in a decrease of CPU-time
by a factor 3.

To get some idea on the post-buckling behavior of the plate a nonlinear load-displacement
analysis for fiber angle ©® = 60° has been carried out. In order to achieve this an imperfection
was introduced into the geometry of the plate: the calculated mode shape with its amplitude
scaled to 1% of the shell thickness has been superimposed on the original (perfect) geometry.
Due to these imperfections the original bifurcation point vanishes and the plate exhibits
a nonlinear (nearly bilinear) behavior, see Fig. 6. The corresponding deformation figures
indicate that, after reaching the buckling load, out-of-plane deformations (corresponding to
the shape of the buckling mode) develop, which, in turn, drastically lower the overall stiffness
of the plate.

3.2 Thermally Loaded Cross-Ply Square Plate

A simply supported composite square plate has been loaded by a uniform temperature
rise. The following properties have been chosen:

Lay-up: [0/90]...two layer cross-ply, layer thickness = 0.2 mm

Material: Graphite/Epoxy

E; = 127.5kN/mm’ E, =11.0kN/mm’ vy =0.35
G, = 5.5kN/mm’ G, = 5.5kN/mm’ Gy = 4.6kN/mm’
a, =-0.08x10"% °C"! a, =2.90x107% °C~}

Model: The whole plate has been modelled by sixteen 16-node LFC-elements, the width of
the square being 300 mm; all edges were restricted to remain straight.

Fig. 7 shows the nonlinear load-displacement path as well as an estimate curve for the
buckling load. The deformed shape of the plate is in good agreement with an analytically
derived solution, see Tauchert, 1986.

Because of the constant temperature rise all over the plate and the simply supported
edges, no stability problem would be expected for a homogeneous isotropic plate. But, due to
anisotropies occuring in the laminate, a linear buckling analysis (i.e. a buckling analysis after
a very small load step, ¥ = 1°C) yields a bifurcation point at “J = 4°C. However, a detailed
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analysis of the buckling behavior indicates that the nonlinear pre-buckling deformations make
the results of the linear buckling analysis rather meaningless. As can be seen from the estimate
curve in Fig. 7, the estimates of the relevant buckling mode change during the incremental
increase of the temperature and the critical temperature is approximately 50 times higher
than the corresponding value of the linear buckling analysis!

Again the comparison with the ABAQUS element has shown excellent agreement in the
displacements. It has not been possible to compute the detailed buckling behavior by using
the ABAQUS elements, no convergence or only negative results having been obtained during
the eigenvalue extraction. With the LFC-element buckling loads and buckling modes have
been successfully computed after introducing a slight modification to the buckling analysis:

Starting from Eq. (1) an eigenvalue problem of the following form can be obtained, for
details see Rammerstorfer, 1988:

(MK, + ™K, )" =0 (28)
leading to an estimate for the critical load multiplier
Ax ™5, " ' (29)

with ™\ being the actual load multiplier and ™7, the smallest eigenvalue of Eq. (28). ™&
represents the eigenvector corresponding to the eigenvalue ™7.

An imperfect plate (produced in the same way as described in example 3.1 by super-
imposing the actual buckling mode, scaled to 1% of the plate thickness, onto the original
geometry) displays almost exactly the same behavior as the perfect plate, except that the
actual bifurcation point does not occur any more, instead the estimate curve deviates from
the load-displacement path.

3.3 Bending of a Flexural Specimen

In this example the procedure for taking into account the local stiffness degradation has
been applied. For testing the ultimate flexural strength and modulus of a laminate of the type
typically used in aircraft structures a simple flexural specimen (i.e. a three point bending
bar) is used. This bar is loaded up to complete failure and the load-displacement path is
recorded. A comparison of the measured results with the finite element investigations shows
the applicability of the strength calculations included in the LFC formulation.

Lay-up: 30 layers of Kevlar29 fabric, effective layer thickness = 0.09 mm
For the FE model each fabric layer is subdivided into two sublayers in order to
approximate the woven reinforcement by UD-layers.

— assumed lay-up: {(0/90);5,]...cross-ply, layer thickness = 0.045 mm

Model: one quarter of the bar has been modeled by eight 16-node elements

Material: Kevlar29 (UD)

Ei = 57.2 kN/mm? E,= 39kN/mm? v, =035

G, = 2.3kN/mm? Gy = 23kN/mm? G = 2.3 kN/mm?
6,7, =1300. N/mm? 0,c, =227. N/mm? Tigw = 34. N/mm?
%1« = 12. N/mm? o.ce = 53. N/mm? Bg =02
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Fig. 8 shows the calculated and the measured load-displacement path of the flexural
specimen. Reasonably good agreement is obtained. First-ply-failure occurs at a relatively
low load level and might be interpreted as the beginning of the nonlinear deformations of the
experimentally obtained curve. However, in the FE calculations a noticable deviation from
the linear path is observed only at a much higher load level. The calculated deformations and
the calculated ultimate load are slightly lower than the measured values but for estimating
the nonlinear behavior of the material the procedure appears to be satisfactory.

4. CONCLUSIONS

The successful implementation of a special shell finite element into ABAQUS has been
shown. The theoretical background of this element (LFC-element) which is based on the
degeneration principle has been outlined and a simple way of taking into account fiber failure
and matrix cracking in terms of materially nonlinear behavior has been introduced.

By comparing the CPU time requirements it has been shown that the LFC-element be-
comes more efficient than the ABAQUS shell element with increasing number of layers. The
accuracy of the LFC-element in terms of displacements has been proven excellent compared
to analytical results as well as compared to ABAQUS shell element results.

Post-failure analyses in terms of post-buckling behavior have been conducted for a mechan-
ically loaded composite plate as well as for a thermally loaded composite plate. Somewhat
unexpected phenomena occurred with thermal loading and tracing the buckling behavior has
been a difficult task.

The investigation of a flexural specimen in terms of failure has shown the applicability of
the proposed simple failure analysis procedure.
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COMPOSITE MATERIAL MODELS IN ABAQUS

N.D. Lambropoulos, J.F. Wu, M.S. Shephard,
S.8. Sternstein and G.J. Dvorak

Rensselaer Polytechnic Institute
Troy, NY 12180-3590

ABSTRACT

A finite element based procedure that accounts for
micromechanical level nonlinear behavior of the matrix material in
continuous fiber composites is presented. The micromechanical level
model is a periodic hexagonal array with elastic fibers and
nonlinear matrix material. A bilinear elastoplastic relation for
metal matrix and a nonlinear time-dependent relation for
thermoplastic matrix are used with this micromechanical model to
provide the overall instantaneous material properties of a
macromechanical finite element model of the composite structure
being ana.yzed. Example problems of simple composite systems
analyzed wich this procedure are presented.

INTRODUCTION

The proper analysis of many composite material systems
requires a proper consideration of nonlinear material behavior.
Common examples where nonlinear behavior should be considered
include: 1) the design of metal matrix composites where the strain
to yield of the matrix is only a fraction of the strain to failure
of the fiber; 2) thermoplastic composites with substantial
transverse loads; and 3) metal matrix composites subject to high
temperature creep. A key feature of composites with nonlinear
material behavior is that the nonlinearities are due to nonlinear
behavior of the individual constituents. Typically the type and
degree on nonlinearity in the constituents is not the same. In the

cases above, the matrix undergoes nonlinear deformations while the

211




fibers are essentially linear until failure. Therefore, any
analysis of a composite which attempts to account for nonlinear
material behavior must consider the micromechanical behavior of the
constituents. Unlike the linear range, simple models to combine the
behavior af the constituents in the nonlinear rangg to arrive at a
macromechanical constitutive relationship do not yi;ld satisfactory
results. This paper presents a composite material model which can
accoﬁnt for micromechanical level nonlinearities in a
macromechanical level finite element analysis. This procedure has
been integrated into ABAQUS through a wuser defined material
procedure.

The key to accounting for local matrix material nonlinearities
is the micromechanical mixing model. 1In this work the periodic
hexagonal array (PHA) model [TEPLY 84), [DVORAK and TEPLY 85] is
used. The PHA is capable of predicting the macromechanical
stiffness properties, as well as the stress and strain
concentration factors at a material point given the constituent
material properties, volume fraction of the constituents, and the
overall stress and strain field. One of the major advantages of the
PHA is its modular structure which can accommodate almost any kind
of constitutive relation for the matrix Raterial. Currently, a
bilinear elastoplastic material model with a Mises type of yield
function and a kinematic hardening rule is used for metal matrix,

and a nonlinear time-dependent relation is alsg being used for
thermoplastic matrix.

* .
ABAQUS and its useBefined material subroutine UMAT provided
the platform for implementing all these composzte material models.

The example cases which illustrate the beha'ﬁor of thése models
have also been analyzed by ABAQUS.

PERIODIC HEXAGONAL ARRAY FOR CONTINUOUS FIBER COMPOSITES IN ABAQUS
The development of models that can accurately predict the
macromechanical behavigx of composites based on a knowledge of the
constituent materials is critical to the ability to carrying out
enginwering analysis of composite structures. These models become
complex when micromechanical level nonlinear behavior of the

constituents must be considered to predict the macromechanical
behavior.

The Periodic Hexagonal Array (PHA) model (TEPLY 84), [TEPLY
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and DVORAK 88] addresses the difficulties of accounting for
micromechanical nonlinearities by explicitly modeling the
microstructural geometry. The analysis of the PHA begins with the
selection of an appropriate representative volume element (RVE) and
the identification of an appropriate set of boundary conditions
which allows an analysis of the RVE that will yield useful
information on the overall behavior. The assumption that yields a
convenient set of boundary conditions is a uniform strain far-field
on the micromechanical volume containing the RVE. Although there
are gradients in the solution at the macromechanical level, the
uniform strain field assumption is adequate for the purposes of

determining the material properties of the composite at that point.

In the PHA the fibers are assumed to be periodically
distributed throughout the matrix material in a topologically
hexagonal configuration. In this case the simplest RVE is a
triangle created by connecting the centers of adjacent fibers
(Fig. 1). This RVE can be isolated |[TEPLY 84], by the proper
specification of periodic displacement boundary conditions.
Although limited to a single triangle, the complexities introduced
by the presence of two distinct phases and the nonlinear behavior
of the matrix phase, make it too difficult to obtain a closed form
solution. Therefore an analysis based on a finite element
discretization of the RVE is necessary. The coarseness of the
finite element mesh is dictated by the minimum number of elements
which allow a meaningful handling of the periodic boundary

conditions and at the same time yield useful results, by avoiding
overconstraint.

The primary purpose of the RVE analysis is to provide the
overall material properties needed to support a macromechanical
analysis. To achieve this goal an equivalent homogeneous volume
(EHV) of unknown material properties is introduced. It is the
instantaneous stiffness parameters of the EHV that are needed for
the macromechanical analysis. They can be determined by applying
the periodic boundary conditions to both the EHV and RVE and
equating the total energy change of the two.

Both upper and lower bound finite element formulations are
being employed (TEPLY 84], to qualify the amount of appioximaticn
error introduced by the finite element discretization of the RVE
used in the energy change calculation. The calculation of the
displacement-based upper bound technique follows the basic steps
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below. The energy change Al in the EHV and RVE, is given by:

EHV = an = L AaT BT L B 43 - AFY

N

Aa (1]

RVE = ATl = & AT K A3 - AFT aa (2]

Nf—

where

Aa a cormon set of nodal displacements for the EHV and RVE

B the strain-displacement matrix for EHV

AF the nodal forces equivalent to surface tractions

L the overall instantaneous stiffness of the EHV

K the overall stiffness matrix of the RVE finite element
mesh, which is the assembly of fiber and matrix subelement
gtiffness matrices and as a result, it is also a function

of fiber and matrix subelement material matrices.

The final step in the process is to equate the energy change
of the RVE ([Equ.l] and EHV ([Equ.2}, where the second terms
{potential due to applied loads) in both energy expressions drop
out, due to identical boundary conditions. This yields the explicit

form of the overall instantaneous stiffness matrix L, as:

L= [‘BT)‘l x (ﬁ)’l (3]

which takes into account the material matrix Lk of each phase

subelement.

In the general nonlinear finite element formulation the
solution of the equilibrium equations requires the updating of the
global stiffness matrix of the structure being analyzed at every
step of the analysis. This implies the re-evaluation of the
individual element stiffness matrix for each element that has
demonstrated nonlinear behavior in that load step. This requires
the evaluation of the instantaneous material stiffness matrix, L,
at each sampling point in the element. It is this evaluation that
invokes the micromechanical 1level finite element analysis of the
PHA. Thus, the PHA calculations are the inner most loop of the
nonlinear finite element process (Fig. 2). Therefore, computational
efficiency of the PHA calculation is critical.

The integration of the PHA into a large scale nonlinear finite
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element code is greatly facilitated in the case of ABAQUS [V4.5 85)
by the modular separation of models (in particular material
models). The ability to tailor ABAQUS to deal with functions not
directly available within the program, is through a set of user
defined routines. Each one allows the analyst to carry out a
particular type of operation that alters data within ABAQUS’s data
structures. For example, the user defined material routine (UMAT)
is invoked by indicating that the material type for a particular
set of elements is the user defined material. With this capability
users can define their own constitutive relation for cases where

the existing models are not adequate for predicting the material
behavior.

Two basic functions have to be performed by UMAT at each
sampling point in the finite element mesh:

1. Update the stresses and the solution dependent variables to
their values at the end of the increment.

2. Provide the material instantariecus stiffness matrix
according to the constitutive model.

To carry out these operations the UMAT routine must be
supplied with the appropriate information. The generalized
interface allows the main program to pass the state information
used by the other portions of the program, as well as any specific
state information that is needed for the operation of the material
model, into the UMAT routine. The primary information provided to
UMAT for driving the solution process are strain and temperature
increments which have been determined by the global iterative
scheme in ABAQUS for the current load increment, as well as the
values of the state variables from the previous step. The UMAT
routine then updates the instantaneous stiffness and stresses for
the given increment and returns this information. This operation
has to be repeated until overall convergence for the current
loading step, is achieved.

METAL MATRIX COMPOSITE PHA

A complexity that arises in PHA for metal matrix composites is
.aat it was developed using a stress-space plasticity formulation.
This means that it wuses a stress increment to calculate the
instantaneous stiffness and strain increment. However, ABAQUS

provides the UMAT routine with a strain increment and wants back
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the instantaneous stiffness and corresponding stress. Therefore it
was necessary to introduce a local iteration into the UMAT routine

(WU et al 88]. This procedure typically converges in two or three
iterations.

When UMAT is called during a load increment including
mechanical and/or thermal loads, ABAQUS provides the current state
(the results at the end of the previous increment) of stress
(c(A)), strain ('(A)) and temperature (T). At the start of the
current load increment, that is on the initial iteration, the
strain increment is zero (An(A)-O) and the temperature increment
(AT) is the value for that load increment. The function of this
initial iteration is to provide the macromechanical analysis
procedure (ABAQUS) with an appropriate instantaneous stiffness
matrix including the effects of any thermal load for that
increment. Unlike the typical finite element procedure where
thermal effects are treated by the construction of an initial
strain vector, the approach used here is to convert the thermal
increment into an equivalent mechanical load through the use of an
initial stress vector. The determination of this initial stress
vector must be carried out at the micromechanical level on the PHA
accounting for the different thermal characteristics of the matrix
and fibers. The analysis is done using Dvorak’s decomposition
procedure ([DVORAK 86]. The instantaneous stiffness matrix and
initial stress matrix are returned to ABAQUS where the effects of
the pure mechanical 1load are combined with the initial stress
vector to predict the strain increments for this load increment.
From this point through the remainder of this load increment, the
UMAT routine treats all 1load types as pure mechanical load at
temperature equal to (T+AT).

In each one of the global iterations after the initial one,
UMAT receives a non-zero strain increment predicted using the given
instantaneous stiffness and the overall load increment. This strain

increment must be converted into a stress increment (Ac(A)) and
added to the stress at the current state (“(A)) to form a new
(1), .
stress vector (°(U) )
(1) +
°w) = %@ L Ac(A) {4]

where: L is the stiffness at the beginning of this increment.

The PHA procedure calculates a new strain vector ('(i)(U))
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which must be compared with the strain vector given to UMAT by the

global iterative scheme (e a)*ae (a)) - If they are not nearly equal,

a local iteration in the UMAT routine is initiated where the stress
vector used in the PHA is updated by:

(i+1) _ _ (1) (1) = o (1) ‘o
S 9.v) + L(U) (c (A) + At (A) t(U) , im1,2,... [51]
where:
L(U)(l) is the instantaneous stiffness at the end of il
local. iteration (given by PHA based on stress state
Gy O . th
e Uy is the strain at the end of i local iteration

(given by PHA based on stress state a(U)(i)).

The convergence criteria on the UMAT local level iterations

is:
(i+1)
(e + Ae ) - = l
(A)z ihi' (9) £ tolerance [6]
| € @A) |

EXAMPLE OF METAL MATRIX COMPOSITE

A P-100 Gr/Al metal matrix composite system of (¢), laminates
with different ¢ and different tangent modulus in the matrix was
analyzed for thermal cyclic loads in the range of +120°C with an
ambient temperature at 20°C. The material model outlined above was
applied, and two layers of 8-noded three-dimensional elements with
a 2x2x2 integration scheme were used. Uniform displacements on each
surface of the model were specified as boundary conditions. For
the laminates with a fixed volume fraction for both phases, the
variations of axial coefficient of thermal expansion (C.T.E.) are
shown in (Fig. 3). One can see that there are several points at
zero C.T.E. condition. These are caused by the cancellation of the
contributions of both phases to overall response. From these three
curves one can predict the axial strain range of any (i4), lay-ups
under thermal cyclic loads, provided that the initial yield
temperature for each lamina is known (WU et al 88].

TIME-DEPENDENT CONSTITUTIVE RELATION FOR TEERMOPLASTIC MATRIX

A nonlinear viscoelastic material model with the essential
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mechanical characteristics of thermoplastics such as rate
dependence, stress component interactions and transient behavior
has been developed. A phenomenological approach was taken which
led to a minimum of material parameters, all of which can be
determined from straight forward mechanical tests.

The model is based on a one-dimensional rheoclogical equation
which was used [CESSNA and STERNSTEIN 67] to describe time and path
dependent processes at the tip of a crack in glassy polymers. This
approach successfully related constant strain rate failure data to
constant load (creep) times to failure. Recently, the model has
been made three-dimensional [BANKERT, et al 86] for use as a matrix
constitutive equation for composite materials. 1In summary, the
hydrostatic component of strain is assumed to be linear elastic

= 3B &

Ok kk (7]

while the deviatoric strain is nonlinear viscoelastic and coupled
to the hydrostatic stress component as follows:

- . 2Gy %ckk
S.. = 261 e.. - — 8., - 2G1 K e sinh

S. . t S, .
1 1
["[Sij B TR R N "t)]] el

where: Sis and sij the deviatoric stress and stress rate components

eij and °ij the deviatoric strain and strain rate components

and € rk the hydrostatic stress and strain components

%k
The physical interpretation of the parameters is the following:
activation energy needed to overcome potential barrier.

activation volume of the polymer segment which has to
move as a whole for flow to take place.

-]

describes the pressure effect on shear ’'yield’ stress.
elastic bulk modulus.

1 shear modulus before ’'yield’.

shear modulus after ‘yield’.

4 060w
N

solid state viscosity.
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The implementation of this constitutive relation for the
matrix material inside the User Defined Subroutine UMAT, is
primarily concerned with the deviatoric part. This requires an

integration in time which is carried out in the following steps:
Let us consider a time step At = t(n) - t(n-1)

1. ABAQUS supplies the stresses {o} and (S}, and the strains (e}

and (e} at t = t£(n-1), and an estimate of the increment in
strains {Ae} corresponding to At.

2. Transform the constitutive relation [Equ. 8] into an
incremental relation between deviatoric stresses (aS} and
total strains {Ae} using an explicit central-difference
approximation as a time integration operator.

3. Solve -the resulting six nonlinear equations for ({AaS} by
Newton-Raphson iteration. The resulting algebraic equations

are uncoupled because of the assumption of linear hydrostatic
component.

4. Update the total stress vector {c¢} at time t(n), according to
the formula:

{o} = (S°} + (AS} + B [D2] (e} [9]

5. Determine the material Jacobian matrix, [dAc/3Ae], which
yields the incremental relation between total stresses {¢} and
total strains (e} as:

dAo
[52—;] = B[(D2] +
26, [D1] + Cjcosh(A) G,[D1] - Cysinh(A) %ps[ozl

1l 1
1+ 3 C1 + C3 cosh (A) Eacz

(10]

where

a=alc. [(s°) + Lias)) -2¢,(D1 o} + X + 353{9}
a 2 2(A } 2[ ] (! ) 2(A¢} n

and {S°}, (e°} are the deviatoric stress and total strain at
the end of the previous increment, (4S8}, (4e} the
deviatoric stress and total strain increments during the

current loading step, (P} a recursive vector used for

219




keeping track of the solution of the integral term in

time Cyr Co C,y constants, and (D1], (D2] coefficient
matrices.

EXAMPLE OF THERMOPLASTIC MATRIX COMPOSITES

The desirable features that can also be recovered by the
predictions of the model are: 1) proper rate-dependency of the
onset of nonlinear response; 2) onset of nonlinear response at a
higher absolute value of hydrostatic compression than tension; and
3) ’‘Ratcheting’ effect in cycling loading [LAMBROPOULOS 88].

To show the significance of wusing a realistic material
constitutive relation, the material model presented above was
incorporated into a detailed Mode II specimen analysis [BANKERT
et al 87]. A beam specimen with a midplane blunt-tip crack is
subjected to bending loading, which produces an overall Mode II
stress-state at tne crack tip. A thin resin-rich layer with
isotropic but nonlinear viscoelastic behavior is introduced in
front of the crack tip, while orthotropic linear elastic material
properties are used for the rest of the beam. A qualitative
presentation of results is presented in (Fig. 4). In-plane shear
stress contours at three different steps of the loading history
illustrate the progressive redistribution of stresses around the
crack tip. Load factor 1 corresponds to the elastic range of the
material’s behavior, therefore the response is fully symmetric. As
the stresses at both the highest concentration areas increase and
reach the onset of nonlinear response (load factor 6), significant
variations are observed. The upper half of the crack tip which is
under tension can no longer support stresses as high as the lower
half which is wunder compression. This can be explained by the
different behavior of the model in tension versus compression. For
load factor 6 the compressive part is still in the linear elastic
range, while the tensile one has already entered the ’'post-yield’
range. When the compressive part also enters its ’'post-yield’ range
(load factor 10), the variations in stress distribution are found
to be even more dramatic.

PHA FOR THERMOPLASTIC MATRIX COMPOSITES

The structure of the PHA can accommodate any kind of
constitutive model for the matrix material including the one for
thermoplastics just presented. The basic steps of the PHA
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formulation remain the game, with slight differences described
below.

The expression for the overall instantaneous stiffness L in
terms of local moduli Lk requires the evaluation of the stiffness
matrix K of the RVE finite element mesh, as prescribed by [Equ.3].
The fiber contribution to stiffness is based on a linear elastic
material relation, while the matrix contribution is based on the
time~dependent nonlinear constitutive relation {Equ.l10]. Since this
matrix constitutive relation is defined 1in strain-space (given
strain - return stress), it is compatible with the
displacement-based finite element method. This avoids the local

iterative scheme needed by the stress-space plasticity model used
for the metal matrix.

Because of the history-dependence of the model, information
must be stored at the end of each step, in order to be used in
subsequent ones. The storage is done in an optimal way (minimum
memory required), and special care is taken to recall this
information when and where it is appropriate.

Preliminary results from the testing of the PHA mixing model
with the viscoelastic constitutive relation for the matrix, are
presented next. A simple structure consisting of two 8-noded 3-D
elements, with a 2x2x2 integration scheme, is subjected to uniaxial

tension, in directions parallel and perpendicular to the fiber
orientation.

The tensile stress-strain curve for the composite is plotted
in (Fig. 5), along with the corresponding behavior of fiber and
matrix independently subjected to the same type of loading. A soft
fiber is chosen to illustrate the effect of matrix. However, it is
obvious that while the fiber response is linear elastic and the
matrix nonlinear, the composite lies in between, slightly nonlinear
starting at the point where the matrix ’‘yields’. The initial slope
of the curve, which determines the elastic longitudinal modulus,
follows approximately the well known "rule of mixtures”. The
longitudinal (L) case is closer to the fiber, since it is mainly

fiber-dependent, while the transverse (T) response is closer to the
matrix behavior.
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CLOSING REMARKS

The basic argument for the use of mixing models in composites
is the level of scale that the analyst wants to look at. For small
scale systems where the fiber-matrix interactions, local plastic
deformations, debonding, delamination or even random fiber
distribution cannot be ignored, the use of a mixing model which
smoothes properties out, is inaccurate. On the other hand, when the
macroscopic behavior of a composite system is under consideration,
say for structural design purposes, the Periodic Hexagonal Array
model provides an accurate estimate of the overall properties,

still being able to capture those matrix dominated phenomena.

An important issue in the further development of these
techniques is to improve their computational efficiency. The most
critical area is the current need to use three-dimensional through
the thickness discretization on the structural level. This problem
can be eliminated by constructing a PHA for application at the
lamina level wusing the correct reduced dimension strain space.
This could then be combined with laminated shell finite elements to
more efficiently predict the response of composite structures.
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Figure 1. Representative volume element
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Figure 2. Placement of Composite Material Models into ABAQUS
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Figure 4. Orthotropic cracked beam with nonlinear
viscoelastic thin layer
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