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ABSTRACT

This report presents the work performed under ONR contract number

N00014--85-K-0733 during the period 1985-1990. The main objective of the project was

to develop a computational facility for inelastic analysis of fibrous composite materials

based on micromechanics. The theoretical work focused on development of

micromechanical models for thermoplastic and thermoviscoplastic fibrous composites based

on experimental observations of certain phenomena found in unreinforced and fiber

reinforced metals. Implementation of the material models in computational procedures for

analysis of composite materials and structures was an important part of the research.

Accomplishments in these areas and in development of a layer-wise composite shell

element, also performed under this contract, are described.
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I1. INTRODUCTION

I The main goal of this research is the development of a computational facility for

I thermoplastic and thermoviscoplastic analysis of fibrous composite materials, and for

design of composite structures for spacecraft applications. To achieve this goal, the

research included formulation of a continuum plasticity theory based on micromechanics

for unidirectionally reinforced fibrous composites subjected to coupled thermal and

Imechanical loads which simulate service conditions. A unified thermoviscoplasticity theory

I based on overstress was also developed, in part under this project, for homogeneous

materials to represent the matrix and fiber phases. This theory can be applied to the

phases of any micromechanical model to obtain the local stresses and overall response of

unidirectionally reinforced composites. Subsequently, our research focused on

implementation of the material models in nonlinear finite element procedures which

permits analysis of more complex geometries of composite structures such as laminated

plates and shells. Throughout the development of our numerical analysis procedures, the

ABAQUS finite element code has represented the basic analysis engine into which our

numerical formulations has been added. Standard elements available in ABAQUS have

I been used in conjunction of our material models to examine certain phenomena in fibrous

composites such as dimensional stability under thermal and mechanical loads. In parallel,

our efforts concentrated on development of new elements suitable for particular fibrous

i composite structures such as laminated shells.

The following accomplishments were achieved:

i - Development of constitutive equations and numerical procedures for the Periodic

Hexagonal Array (PHA) model.

- Development of constitutive equations and numerical procedures for the bimodal

I plasticity theory.
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i - Development of a thermoviscoplasticity theory with time recovery effects for

Ihomogeneous materials.

Implementation of the PHA model, the bimodal theory, and the viscoplasticity

constitutive equations into the ABAQUS finite element code.

Development of a layer-wise composite shell element.

Details of these developments are described in the sequel.
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2. THERMOPLASTICITY OF FIBROUS COMPOSITE MATERIALS

Evaluation of the overall properties and local fields in fibrous composites with

elastic-plastic phases under thermomechanical loads was achieved with appropriate

micromechanical models which can incorporate the inelastic constitutive relations that

describe phase behavior, and which reflect the dominant deformation mechanisms in the

microstructure. The selection of models which satisfy these requirements was motivated by

our past experience with modeling of experimentally observed elastic-plastic behavior of

fibrous B/Al composite systems (Dvorak et al., 1988, 1990). In particular, the periodic

hexagonal array (PHA) model (Dvorak and Teply, 1985; Teply and Dvorak, 1988), and the

bimodal plasticity theory (Dvorak and Bahei-El-Din, 1987) were chosen and adapted for

this purpose.

In the PHA model, the centers of the aligned fibers are assumed to be arranged in a

periodic hexagonal array in the transverse plane. The circular cross sections of the fibers

are approximated by (6 x n) polygonal cross sections, which tend to converge rapidly when

the integer n _ 1 increases. The hexagonal array is divided into identical unit cells.

Appropriate periodic boundary conditions are prescribed for these cells such that the

solution for a single cell can be used to generate the deformation field in a fibrous

I composite subjected to uniform overall strains or stresses, and to a uniform thermal

change. Typically, the solution is found with the finite element method for a selected

I subdivision of the unit cell.

The bimodal plasticity theory was originally deduced, in part, from experimental

i observations of elastic-plastic behavior of unidirectional B/Al systems. More recently, it

i was applied to several high-temperature systems, and extended to accommodate

viscoplastic behavior of the matrix phase (Hall 1990). The theory recognizes two distinct

I deformation modes, the fiber-dominated (FDM) and the matrix-dominated (MDM) mode.

In the fiber mode, the local fields in the composite are assumed to be approximately

I
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uniform, and the overall response is evaluated from an averaging model. In the matrix

mode, the dominant mode of deformation is approximated by smooth shearing on planes

parallel to the fiber axis. Each of the two modes has a separate branch of the overall yield

surface, and is activated according to the current position of the loading vector. The size

and shape of the MDM yield surface does not depend on fiber properties and volume

fraction, but these parameters do affect the FDM surface. In systems reinforced with fibers

of high longitudinal shear modulus, such as boron, silicon carbide, or tungsten, the FDM

surface contains a large part of the MDM surface which in turn controls the onset of

yielding, and subsequent plastic flow. In contrast, systems reinforced with carbon fibers of

low shear modulus may have a FDM surface which lies entirely within the MDM branch.

The matrix mode is not present in such systems, but the FDM model assumptions may no

longer hold and the PHA model is again indicated.

The material models described above were further developed and implemented in

the ABAQUS finite element program. The work performed in this part of the contract

developed into a Ph.D. dissertation (Wu, 1991). Implementation of material models into

nonlinear finite element procedures and description of both the PHA model and the

bimodal plasticity theory together with the procedures for their implementation in the

ABAQUS program are contained in Chapters 2, 3 and 4 in Wu (1991) which appear here in

Appendices A, B and C, respectively.
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3. THERMOVISCOPLASTICITY OF FIBROUS COMPOSITE MATERIALS

This part of the program is concerned with modeling of the rate-dependent

behavior of fibrous composites under thermomechanical loads. There are two major tasks,

modeling of constituent viscoplastic behavior of the phases, and prediction of the resulting

overall response.

Sel -tion of the constitutive theory for modeling of matrix and fiber response was

motivated by several requirements which were found useful in predictions of inviscid

response of metal matrix composites. These include, in part, a definition of equilibrium

yield surface, and Tbility to accommodate various hardening rules which may be indicated

by experiments. Such ingredients are found, for example, in the viscoplasticity theory

developed by Eisenberg and Yen (1981) which was selected for our work, albeit in a

substantially modified form that includes rate effects, coupled thermal and mechanical

loads, and time recovery. Since the local stress or strain path in the phases is generally

nonproportional, the modifications were developed in the context of the two-surface

plasticity theory motivated, in part, by the work of Dafalias and Popov (1976). The

resulting phase constitutive equations include material parameters which are found by

matching the results of certain experiments at room temperature, and at high temperatures

(Bahei-El-Din et al. 1991, Shah 1991).

Modeling of the composite response was based again on existing models which were

developed in our earlier work. In particular, we implemented the new viscoplastic

constitutive equations into the ABAQUS finite element program and made comparisons

with experiments using the Periodic Hexagonal Array model. The theoretical

developments as well as the numerical results have been published by Bahei-El-Din, Shah

and Dvorak (1991), which appear here in Appendix D, and by Shah (1991).
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4. ANALYSIS OF LAYERED COMPOSITE SHELLS

Since most composite structures have one dimension which is substantially smaller

than the other two, it is desirable to employ a spatial discretization assumption which

reduces the amount of computation needed in the small dimension. This dimensional

reduction process is particularly complex in the case of laminated structures constructed

form thin orthotropic layers. This process is further complicated when lamina level

nonlinear material behavior must be considered. One way to derive formulations for the

behavior of shells is to apply specific kinematic constraints to the full three-dimensional

elasticity equations. This 'degeneration' of the three-dimensional elasticity equations is

the basis for many shell formulations. A common kinematic assumption on the behavior of

shells is that the in-plane displacement components vary linearly in the thickness

direction. In particular, if we assume a linear variation through the thickness of the

in-plane displacement quantities in each layer (equivalently, constant transverse shear

strains in each layer) we arrive at a first-order discrete layer theory. In this formulation,

if we neglect the generally small direct strain in the thickness direction, there are 2N+3

displacement parameters through the thickness, where N is the number of layers, which can

be a significant reduction compared to 3-D modeling.

A discrete layer theory element, called LCSLFC, was developed by K. Dorninger

(1991) as part of this project. It employs CO linear segments for the through the thickness

deformation of each layer. The LCSLFC element is based on the degeneration principle.

The element is a 16-noded shell using cubic shape functions for the in-plane displacement

quantities. Full account for large deformations were included in the formulation. The

implementation of the LCSLFC element allows considerable flexibility in modeling

composite laminates. The shell thickness may be varied through each element. Each layer

may have a different orientation, thickness and material. A user defined material is

incorporated into the element to allow the use of various nonlinear material modes.
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Specific studies (Shephard and Beall, 1992) have been performed using this element

formulation with the bimodal plasticity model in the analysis of simple composite

structures. Details of relevant studies performed in this part of the project appear in

Appendices G, H, and I.
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5. APPLICATIONS

To demonstrate the capabilities of the methods developed for inelastic analysis of

fibrous composites, we present here two applications. In the first application, the

dimensional stability of metal matrix composite laminates under thermal fluctuations and

thermomechanical load cycles is examined. The system considered as a model material is a

Gr/Al (*v). laminate. The analysis is performed by the finite-element method while the

underlying constitutive equations of unidirectional composites are provided by the Periodic

Hexagonal Array (PHA) micromechanical model. A computationally more efficient and

equally accurate method based on fiber-dominated analysis of unidirectional composites by

the self-consistent method is also presented. The results show that laminates of the model

system with V = 12" are dimensionally stable in the elastic range when subjected to pure

temperature changes. Plastic deformation of the matrix causes permanent dimensional

changes, which can be reduced by heat treatment of the composite. Under

thermomechanical loads, (:&), laminates are not in general dimensionally stable.

Dimensional stability of the laminate was enhanced by plastic deformation of the matrix

for in-phase thermal and mechanical load cycles and reduced for out-of-phase cycles. The

results of this study are found in Bahei-El-Din et al. (1992) and appear here in Appendix

E.

The second application considers the effect of thermomechanical loads on local fields

in fibrous composites. Here, the local stresses caused by mechanical and thermal loads in

high temperature intermetallic matrix composites are evaluated using a finite element

solution for a periodic hexagonal array microstructre. Both uncoated and coated elastic

fibers are considered. The matrix is assumed to be elastic-plastic and insensitive to

loading rates. Mechanical properties of the phases are function of temperature. It was

found that a CVD deposited carbon coating can be quite effective in reducing thermal

stresses at the matrix/coating interface. Certain mechanical stress concentration factors,

11



however, may be aggravated by the compliant coating. In composite systems with a

ductile matrix, plastic deformations reduce stress concentration and lead to stress

redistribution. In such systems, thermomechanical loading regimes can be designed to

reduce adverse local stresses introduced during fabrications, for example, by hot isostatic

pressing. Details of this study have been published by Bahei-El-Din and Dvorak (1991)

and appear here in Appendix F.

12



I
I ACKNOWLEDGEMENT

This work was monitored by Dr. Yapa Rajapakse, who provided encouragement and

useful technical suggestions.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

13

I



REFERENCES

Bahei-El-Din, Y.A. and Dvorak, G.J., (1991), "Local Fields in Uncoated and Coated High
Temperature Fibrous Composite Systems," Damage and Oxidation Protection in High
Temperature Composites, G.K. Haritos and 0.0. Ochoa, Editors, AD-Vol. 25-2,
pp. 21-34.

Bahei-El-Din, Y.A., Dvorak. G.J. and Wu, J.F., (1992), "Dimensional Stability of Metal
Matrix Laminates," Composites Science and Technology, Vol. 43, pp. 207-219.

Bahei-El-Din, Y.A., Shah, R.S. and Dvorak, G.J., (1991), "Numerical Analysis of the
Rate-Dependent Behavior of High Temperature Fibrous Composites," Mechanics of
Composites at Elevated and Cryogenic Temperatures, S.N. Singhal, W.F. Jones, C.T.
Herakovich and T. Cruse, Editors AMD-Vol. 118, pp. 67-78.

Dafalias, Y.F. and Popov, E.P., (1976), "Plastic Internal Variable Formalism of Cyclic
Plasticity," ASME J. ARpl. Mech., Vol. 43, p. 645.

Dorninger, K., (1991), "A Nonlinear Layered Shell Finite Element with Improved
Transverse Shear Behavior," SCOREC Report #3.

Dvorak, G.J. and Bahei-El-Din, Y.A. (1987), "A Bimodal Plasticity Theory of Fibrous
Composite Materials," Acta Mechanica, Vol. 69, p. 219.

Dvorak, G.J., Bahei-El-Din, Y.A., Macheret, Y., and Liu, C.H., (1988), "An
Experimental Study of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum
Composite," J. Mech. Phys. Solids, Vol. 36, p. 655.

Dvorak, G.J., Bahei-El-Din, Y.A., Shah, R.S., and Nigam, H., (1990), "Experiments and
Modeling in Plasticity of Fibrous Composites," in Inelastic Deformation of Composite
Materials, G.J.. Dvorak, Editor, Springer-Verlag, New York, Inc., pp. 270-293.

Dvorak, G.J. and Teply, J.L., (1985), "Periodic Hexagonal Array Models for Plasticity of
Composite Materials," Plasticity Today: Modeling. Methods and Application. W. Olszak
Memorial Vol., A. Sawczuk and V. Blanchi, Editors, Elsevier, p. 623.

Eisenberg, M.A. and Yen, C.F., (1981), "A Theory of Multiaxial Anisotropic
Viscoplasticity," ASME J. ApDI. Mech., Vol. 48, p. 276.

Hall, R., (1990), "Bimodal Viscoplasticity in Fibrous Metal-Matrix Composite
Materials,", Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, New York.

Shah, R.S., (1991), "Modeling and Analysis of High-Temperature Inelastic Deformation in
Metal-Matnx Composites," Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy,
New York.

Shephard, M.S. and Beall, M.S., (1992), "Analysis Idealization Control for Composite
Materials with Nonlinear Behavior," in Comvuter Aided Design in Composite Material
Technology I-H, pp. 313-330.

Teply, J.L. and Dvorak, G.J., (1988), "Bounds on Overall Instantaneous Properties of
Elastic-Plastic Composites," J. Mech. Phys. Solids, Vol. 36, p. 29.

14



I
I Wu, J.F., (1991), "Numerical Techniques for Elastic-Plastic Analysis of Fibrous Metal

Matrix Composites," Ph.D. Dissertation, REnsselaer Polytechnic Institute, Troy, New
York.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

15

I



LIST OF PUBLICATIONS

Bahei-El-Din, Y.A. and Dvorak, G.J., (1988), "Plastic Deformation Behavior of Fibrous
Composite Materials," Proceedings of the 4th Janan-U.S. Conference on ComDosite
Materials, Washington, D.S., June 27-29, Technomic Publishing Co., Inc., pp. 118-127.

Bahei-El-Din, Y.A. and Dvorak, G.J., (1989), "New Results in Bimodal Plasticity of
Fibrous Composite Materials," Advances in Plasticity 1989, edited by A.S. Khan and M.
Tokuda, Pergamon Press, pp. 121-127.

Bahei-El-Din, Y.A. and Dvorak, G.J., (1989), "A Review of Plasticity Theory of Fibrous
Composite Materials," Metal Matrix Comnosites: Testing. Analysis and Failure Modes,
ASTM STP 1032, edited by W.S. Johnson, American Society for Testing and Materials,
Philadelphia, pp. 103-129.

Bahei-El-Din, Y.A., Dvorak, G.J. and Shah, R.S., (1989), "Numerical Analysis of the
Elastic-Plastic Behavior of Fibrous Metal Matrix Composites," Comnutational
Experiments, edited by W.K. Liu, P. Smolinski, R. Ohayon, J. Navickas, and J. Gvildys,
ASME PVP, Vol 176, pp. 125-131.

Bahei-El-Din, Y.A., Dvorak. G.J. and Wu, J.F., (1992), "Dimensional Stability of Metal
Matrix Laminates," Comnosites Science and Technologv, Vol. 43, pp. 207-219.

Bahei-El-Din, Y.A., Shah, R.S. and Dvorak, G.J., (1991), "Numerical Analysis of the
Rate-Dependent Behavior of High Temperature Fibrous Composites," Mechanics of
Composites at Elevated and Cryogenic Temneratures, S.N. Singhal, W.F. Jones,
C.T. Herakovich and T. Cruse, eds., ASME AMD-Vol. 118, pp. 67-78.

BeaU, M.W. and Shephard, M.S., (1991), "Advanced Finite Element Formulations for
Composite Shells," in Proceedings of the American Society of Composites 6th Technical
Conference on Comnosites, pp. 360-369.

Beall, M.W., Wu, J.F., and Shephard, M.S., (1991k, "Lamina Level Nonlinear Composite
Mixing Models in Finite Element Computations, Enhancing Analysis Technioues for
Comnosite Materials, J.N. Reddy, Ed., ASME, New York, pp. 197-200.

Dorninger, K., (1990), "Post-Failure Analysis of Layered Composite Shells by Finite
Element Analysis," Proceedings of the ABAQUS Users' Conference, Hibbitt, Karlsson &
Sorensen, Inc., Providence, RI, pp. 149-164.

Dvorak, G.J., (1991), "Plasticity Theories for Fibrous Composite Materials," Metal Matrix
Comvosites, Vol. 2, Mechanisms and Properties, R.K. Everett and R.J. Arsenault, eds.,
Academic Press, Boston, pp. 1-77.

Dvorak, G.J., and Bahei-El-Din, Y.A., (1987), "A Bimodal Plasticity Theory of Fibrous
Composite Materials," Acta Mechanica, Vol. 69, pp. 219-241.

Dvorak, G.J., Bahei-El-Din, Y.A., Shah, R.S. and Nigam, H., (1990), "Experiments and
Modeling in Plasticity of Fibrous Composites," Inelastic Deformation of Comosite
Material, edited by G.J. Dvorak, Springer-Verlag, New York, Inc., pp. 270-293.

16



I Hall, R., (1989), "Bimodal Viscoplasticity in Fibrous Metal-Matrix Comoste Materials,"
Proceedings of the American Societ- of Composites SmosmonHh Tem~eatur
CQoJQijef, June 13-15, 1989, Dayton, Ohio.

ILambropoulos, N.D., Wu, J.F., Shephard, M.S., Sternstein, 5.5. and Dvorak, G.J., (1988),
"Composite Material Models in ABAQUS,"1 ABAQUS User's Conree Proceedings,IRKS, Providence, Rhode Island, pp. 211-226.

Shephard, M.S., Baehmann, P.L., Georges, M.K., and Korngold, E.V., (1990), "Framework
for Reliable Generation and Control of Analysis Idealizations," Com~uter Methods inI AD~lied Mechanics and Engng., Vol. 82, pp. 257-280.

Shephard, M.S. and Beall, M.W., (1992), "Analysis Idealization Control for CompositeI Materials with Nonlinear Materials," Co vuter Aided Design in Comi~oite Material
Technolgy..III, S.G. Advani, W.R. Blain, W.P. de Wilde, J.W. Gillespie, Jr. and
O.H. Griffin, Jr., Eds., Computational Mechanics Pub. and Elsevier Applied Science,I pp. 313-330.

Wu, J.F., (1991), "Numerical Techniques for Elastic-Plastic Analysis of Fibrous Metal
Matrix Composites," Ph.D. Dissertation, Civil Engineering, Rensselaer Polytechnic

I Institute, Troy, NY.
Wu, J.F., Bahei-El-Din, Y.A, Dvorak, G.J. and Shephard, M.S., (990), "A Bimodal
Plasticity Model for Fibrous Composites Implemented in ABAQUS -YI Fiber-Dominated
Mode," Proceedings of the ABAQUS Users' Conference, Hibbitt, Karlsson & Sorensen,
Inc., pp. 519-528.I Wu, J.F., Shephard, M.S., Dvorak, G.J., and Bahei-El-Din, Y.A., (1989), "A Material
Model for the Finite Element Analysis of Metal Matrix Composite," Comnosites Science
and TehnIg, Vol. 35, pp. 347-366.

I1



LIST OF PRESENTATIONS

Presentations by Dr. Dvorak

University of California, Los Angeles Short Course on "Metal and Ceramic Composites -
Basic Science and Industrial Applications," (coordinator and lecturer), Los Angeles,
California, February 3-7, 1986.

NASA-Langley Research Center Seminar, February 18, 1986.

Upstate New York Regional Student Conference, ASCE, lecture, March 1, 1986.

SDIO-IST Program Review, Washington, DC, March 7, 1986.

Midwestern Mechanics Seminar:
University of Michigan, April 9, 1986
University of Wisconsin, April 10, 1986
University of Minnesota, April 11, 1986
Michigan State University, April 29, 1986

Colloquium, Northwestern University, May 2, 1986.

ONR Workshop on Failure Mechanics, University of Maryland, May 12-13, 1986.

"Analysis of Fatigue Cracking of Fibrous Metal Matrix Laminates," General Electric
Company, Seminar, May 14, 1986.

DARPA Site Visit Presentation, May 27, 1986.

SDIO/ONR Composite Consortium Program Review, Woods Hole, Massachusetts,
June 2-3, 1986.

Tenth United States National Congress of Applied Mechanics, ASME, Austin, Texas,
June 16-20, 1986.

Short Course on "Metal Matrix Composites," (program director and lecturer), Columbia,
I Maryland, June 23-27, 1986.

IUTAM Symposium on "Thermomechanical Couplings in Solids," invited lecturer, Paris,
I France, September 1-5, 1986.

Colloquium, Texas A&M University, November 11, 1986.

I Colloquium, Rice University, November 12, 1986.

ASME Winter Annual Meeting, invited lecturer, Anaheim, California, December 7-12,
I 1986.

NASA Site Visit Presentation, December 18-19, 1986.

SDARPA Workshop, Santa Barbara, California, January 5-, 1987.

Applied Mechanics Seminar, Yale University, January 21, 1987.

18



INASA-MRC Program Review, January 26, 1987.

Symposium in Memory of Aris Phillips, Gainesville, Florida, January 28-30, 1987.

i Seminar, University of California at Berkeley, February 23, 1987.

University of California, Los Angeles Short Course on "Metal and Ceramic Composites -
Basic Science and Industrial Applications," (coordinator and lecturer), Los Angeles,
California, February 23-26, 1987.

ONR Workshop on Composite Materials - Interface Science, Leesburg, Virginia, March 11,
1987.

ONR/SDI Review on Mechanics of Composites, University of Maryland, March 30, 1987.

Solid Mechanics Seminar, Brown University, April 5, 1987.

Lawrence Livermore Laboratories, Livermore, California, Mechanics Seminar, April 23,
1987.

IRPI/DARPA-HiTASC Retreat, Lake Luzerne, New York, May 12, 1987.

Alcoa Laboratories Centennial Technical Seminar on Mechanics: Micromechanics to
Product Design, Hilton Head, South Carolina, June 7, 1987.

Army Mechanics Conference, West Point, New York, June 15, 1987. Opening Lecture.

SDIO/IST Advanced Composites Program Review, Woods Hole, Massachusetts,
June 23, 24, 1987.

DARPA Materials Research Council Meeting on High Temperature Composites, La Jolla,
California, July 13-15, 1987.

Presentation for DARPA-HiTASC Program, monitor Steve Fishman, August 13, 1987.

Society of Engineering Science 24th Annual Meeting, Salt Lake City, Utah, 3 papers,
September 20-23, 1987.

INASA-MRC Program Review, October 7, 1987.

Air Force Mechanics of Composites Review, Ft. Lauderdale, Florida, October 16, 1987.

Short Course on "Metal Matrix Composites," (program director and lecturer), Marina del
Rey, California, October 26-30, 1987.

Industrial Research Institute Visit, November 19, 1987.

Aeritalia Visit, "The Mechanics of Metal Matrix Composites," December 10, 1987.
Rensselaer Polytechnic Institute, Troy, New York.

ASME Winter Annual MEeting, Boston, Massachusetts, 2 lectures, December 14-15, 1987.

Gordon Research Conference, "Plasticity Effects in Metal Matrix Composites," (DARPA)
Ventura, California, January 11-15, 1988.

19



IEvandale Aircraft Plant Site Visit, (DARPA) Evandale, Ohio, February 19, 1988.

Short Course on Metal Matrix Composites, Los Angeles, California, February 22-26, 1988.

IRensselaer Composites Center Overview '88, "Plasticity and Fracture of Composite
Materials," March 2, 1988.

NASA Site Visit, Center for Advanced Engineering Materials and Structures for Space
Applications, March 30, 1988.

I ASTM Symposium on Metal Matrix Composites: Testing, Analysis and Failure Modes,
"Plasticity Theory of Fibrous Composite Materials," (presentation made by
Y.A. Bahei-El-Din), Reno, Nevada, April 1988.

j ABAQUS User's Conference, "Composite Material Models in ABAQUS," (presentation
made by M. Shephard), Newport, Rhode Island, June 1988.

IST/SDIO/ONR Woods Hole Review, "Dimensional Stability of Metal Matrix Laminates,"
Woods Hole, Massachusetts, June 13-14, 1988.

Symposium on Mechanics of Composite Materials 1988 First Joint Summer Meeting of theApplied Mechanics Division of ASME and Society of Engineering Science, "Fracture ofFibrous Metal Matrix Composites," University of California, Berkeley, June 20-22, 1988.

Fourth Japan-United States Conference on Composite Materials, "Plastic Deformation
Behavior of Fibrous Composite Materials," (presented by Y.A. Bahei-El-Din),Washington, DC, June 1988.

I XVII International Congress of Theoretical and Applied Mechanics, "Plasticity of
Composite Materials: Theory and Experiment," Invited Sectional Lecturer, Grenoble,
France, August 1988.

France-U.S. Research Workshop, Strain-Localization and Size Effect Due to Cracking and
Damage, "Fatigue Damage Mechanics of Metal Matrix Composite Laminates," (with
E.C.J. Wung), Cachan, France, September 1988.

Third Technical Conference, American Society for Composites, "Plasticity of CompositeIMaterials," Seattle, WA, September 1988.

Boeing Military Corporation, "Overview of Mechanics of Composites Research at RPI,"I Seattle, WA, September 1988.

NASA/AFOSR Composites Grant presentation, "Progress and Plans for Composite
Research," NASA Headquarters, October 1988.

Center of Composite Materials and Structures, RPI presentation to Lord Corporation,
"Micromechanics of Metal Matrix Composites," October 1988.

Colloquium, Rutgers University, "Thermal Expansion and Plasticity of Composite
Materials," October 1988.

Invited lecture, ASME Winter Annual Meeting, "Thermal Stresses in Coated Fiber
Composites," Chicago, IL, November 1988.
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ONR/DARPA HiTASC program site visit, RPI, "Thermo-mechanical Compatibility,"
March 1989.

Invited lecture in meeting on new materials, synthesis, characterization and properties,
International Center for Applied Sciences, "Damage Mechanics of Metal Matrix Composite
Laminates," Gradisca d'Isonzo, Italy, March 1989.

Overview of Mechanics of Composite Research, RPI, lecture Centro Sviluppo Materiali
S.p.A., (CSM), Rome, Italy, March 14, 1989.

4 invited lectures at Politechnico di Milano, Italy, "Mechanics of Composite Materials,
A. Introduction, B. Elasticity, C. Plasticity, D. Damage and Fracture," March 16-17,
1989.

Invited lecture, Department of Solids and Structures, Tel-Aviv University, Israel, "Fatigue
Damage Mechanics of Composite Laminates, March, 1989.

ONR Mechanics of Composites Review, "Thermo-plastic Constitutive Behavior of Metal
Matrix Composites, Leesburg, VA, April 1989.

ONR Core Research Program in Composites Review, "Fracture of Metal Matrix
Composites," Leesburg, VA, April 1989.

Invited lecture, "Physical and Computational Experiments in Plasticity of Composite
Materials," Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, May 1989.

Short Course on Metal Matrix, Ceramic Matrix, and Carbon Carbon Composites, Los
Angeles, California, May 1989.

Alcoa Laboratories, Alcoa Center, PA, "Thermal Stresses in Fibrous Ceramic Matrix
Laminates," May 1989.

Army Symposium on Solid Mechanics, Newport, Rhode Island, "Fracture of Fibrous Metal
Matrix Composites," May 16-18, 1989.

IST-SDIO/ONR Woods Hole Review, "Overall Response and Local Fields of High
Temperature Composite Laminates," June 5-6, 1989.

Second International Symposium of Plasticity and its Current Applications, "New Results
in Bimodal Plasticity of Fibrous Composites," Mie University, Tsu Japan, July 30 -
August 4, 1989.

AFOSR 14th Annual Mechanics of Composites Review, "Fracture in Fibrous Metal Matrix
Composites," Dayton, Ohio, November 1, 1989.

ASME/WAM, "On a Correspondence Between Mechanical and Thermal Effects in
Two-Phase Composites," San Francisco, CA, December 10-15, 1989.

DARPA-HiTASC Program site visit, RPI, March, 1990.

Invited lecture, Department of Applied Mechanics and Engineering Sciences, University of
California, San Diego, March 5, 1990.
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Short Course on "Metal Matrix Composites," (program co-director and lecturer), UCLA,
March 6-8, 1990.

Montedisnial visit at RPI, April 9, 1990.

Invited Lecture, University of Illinois-Chicago, April 25, 1990.

Invited Lecture Northwestern University, April 26, 1990.

"Some Experimental Results in Plasticity of Fibrous Composites," IUTAM Symposium on
Inelastic Deformation of Composites Materials, RPI, May 29 - June 1, 1990; Chairman of
Symposium.

"Local Stresses in High Temperature Composites and Laminates," IST--SDIO/ONR Woods
Hole IV Research Review, Woods Hole, Massachusetts, June 4, 1990.

Invited Lectures, Politecnico di Milan, Milan, Italy, June 11-12, 1990.

Invited Lecture, EniChem, Milan, Italy, June 13, 1990.

Invited Lecture, Institute of Theoretical and Applied Mechanics, Czechoslovak Academy of
Sciences, Prague, Czechoslovakia, June 25, 1990.

Short Course, "Advanced Composite Materials and Structures," RPI, July 24, 1990

KAPL corporate visit, RPI, August 3, 1990.

Grumman Aircraft visit, RPI, August 8, 1990.

"On Uniform Fields in Heterogeneous Media," ASME/WAM, Dallas, Texas, 11/27/90.

"Fatigue Damage of Metal Matrix Composites: Optimization and Shakedown Analysis,"
ASME/WAM, Dallas, Texas, 11/27/90.

"Deformation and Damage Mechanisms in High Temperature Composites with Ductile
Matrices," AFOSR, Boling AFB, D.C., March 15, 1991.

"Static and Fatigue Damage in High Temperature Composites," AFOSR, Bolling AFB,
D.C., March 15, 1991.

"Thermomechanical Compatibility in High Temperature Composites," DARPA HiTASC
Program Review, March 27, 1991.

"A New Approach in Nonlinear Micromechanical Analysis of Heterogeneous Media," (with
Y.A. Bahei-E1-Din and A.M. Wafa), at First U.S. National Congress on Computational
Mechanics, Chicago, Illinois, July 1991.

"On Thermal Hardening and Uniform Fields in Two-phase Composite Materials,"
Plasticity '91: Invited Lecture at The Third International Symposium of Plasticity and its
Current Applications, Grenoble, France, August 12-16, 1991.

"Eninering Education in the United States," Invited lecture in the Klokner Institute of
the Czech Technical University in Prague, Czechoslovakia, August 29, 1991.
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"Fatigue Damage and Shakedown in Metal Matrix Composite Laminates," Invited lecture
at conference on "New Trends in Structural Mechanics," Institute of Theoretical and
Applied Mechanics, Czechoslovak Academy of Science, Prague, September 2, 1991.

"Experimental Evaluation of Yield Surfaces and Plastic Strains in a Metal Matrix
Composite," American Society of Composites Meeting, Albany, NY, October 6-9, 1991.

"Fatigue and Shakedown in Metal Matrix Composites," 28th Annual Technical Meeting of
the Society of Engineering Science, Gainesville, Florida, November 6-8, 1991.

"On Some Exact Results in Thermoplasticity of Composite Materials," Invited lecture
ASME/WAM, Atlanta, GA, December 4, 1991.

"Thermal Stresses in Elastic-Plastic Composites with Coated Fibers," Invited lecture
ASME/WAM, Atlanta, GA, December 6, 1991.

Presentations by Dr. Sheuhard

"Nonlinear Finite Element Modeling of Composites," ONR review of SDI related
Composites Research, University of Maryland, College Park, Maryland, March 31, 1987.

"Nonlinear Finite Element Modeling of Composites," ONR Contractor's Review, Santa
Barbara, CA, Sept. 30, 1987.

"Composite Material Models in ABAQUS," ABAQUS User's Conference, Newport, RI,
June 2, 1988.

"Mechanical Behavior of Polymer Composites," S.S. Sternstein and M.S. Shephard, IBM
Watson Research Center, Hopewell, NY, June 17, 1988.

"idealized Models in Engineering Analysis," ASCE Structures Congress, San Francisco,
CA, May 2, 1989.

"A Bimodal Plasticity Model for Fibrous Composites Implemented in ABAQUS - I. Fiber
Dominated Mode," ABAQUS User's Conf., Newport, RI, May 30, 1990.

"Advanced Finite Element Formulations for Composite Shells," 6th Tech. Conf. on
Composite Materials, Oct. 1991.

"Lamina Level Nonlinear Mixing Models in Finite Element Computations, ASME, Atlanta,
GA, December 6, 1991.

23



LIST OF PROFESSIONAL PERSONNEL

Dr. G.J. Dvorak - Co-Principal Investigator
Dr. M.S. Shephard - Co--Principal Investigator
Dr. Y.A. Bahei-El-Din - Research Associate Professor
Dr. Y. Benveniste - Visiting Professor
Dr. H. Scarton - Associate Professor
Dr. L. Bank - Assistant Professor
Dr. N.Fares - Research Assistant Professor
S. Han - Post Doctor
T. Chen - Graduate Student
C. Creevy - Graduate Student
R. Hall - Graduate Student
B. Jenson - Graduate Student
A. Kaveh-Ahanger - Graduate Student
Kuruppu - Graduate Student
D. Mackay - Graduate Student
E. Martine - Graduate Student
N .Tutunco - Graduate Student
J.F. Wu - Graduate Student
J. Zarzour - Graduate Student
W. Mielke - Instrumentation Engineer
J. Grega - Secretary
D. Rogers - Secretary
E. Rudano4 - Secretary

24



APPENDIX A

Implementation of Material Models into Nonlinear Finite Element Procedures



CHAPTER 2
IMPLEMENTATION OF MATERIAL MODELS INTO

NONLINEAR FINITE ELEMENT PROCEDURE

Application of the finite element method is widely accepted. Its application to

nonlinear problems caused either by material nonlinearity or geometric nonlinearity is

more complex and encounters heavy computational effort. More powerful computers and

more accurate and efficient solution algorithms are required in nonlinear finite element

applications. Nowadays, high-speed digital computers are available and more complex

numerical operations with affordable costs can be performed. Also, the development of

improved element characteristics and more efficient nonlinear solution algorithms has

been demonstrated, (see for example Owen & Hinton [1980], Hughes [1987]). These

achievements make it possible to incorporate the complicated matexial models available

for composite materials into finite element procedures for the design of advanced

composite strucurem

2.1 Introduction

From the viewpoint of finite element modeling, the goal of this study is to develop

analysis procedures based on specialized composite material models which are not

available in general purpose programs.

In generaL two types of nonlineariies should be considered in finite element

procedures for suucmral mechanics:

1. Nonlinear strain-displacement relations, which is known as geometric

nonlinearity.

2. Nonlinear stzes-wain relaions, which is known as matera nonlinerity.

6
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The objective of this study is to develop the procedure for implementation of metal

mamx composite material models into the ABAQUS finite element program. Although

the strains developed in fibrous composites are small due to the constraims imposed

I by the stiff fibers, geometrical nonlinearities may be accounted for, if necessary, by

3 tb: finite strain capability available in ABAQUS. Therefore, our work focus is on the

iatenial nonlinearity caused by inelastic deformation of fibrous composites.I
2.2 Nonlinear finite element procedure

Regarding the solution scheme to general nonlinear finite element system of

equations, two generalized solution algorithms, namely the Newton-Raphson and initial

stiffness (modified Newton-Raphson) rcmods are the best known methods in the

literature. In the Newton-wphson method, the instantaneous stiffness of the finite

element system of equbnons is u-ed for global iterations whereas in the modified Newton-

Raphson method, the constant stiffness (elastic stiffness) of the system of equations is

used throughout the global iterations. The instantaneous (or constant) stiffiess of the

finite element system is calculated from the instantaneous stiffness (or elastic stiffiess)

matrix of each material point and is assembled through the element routines. Any

material model capable of updating the material instantaeous stiffness matix and

stress vectors under a given strain path may be implemente into the nonlinear finite

element procedure. Considering metal matrix composite material models, the material

nonlinearity is usually caused by inelastic deformadion of the matrix materiaL Figure

2.1 shows a block diagram illustrating the sequence of events when composite material

_ model is used in a finite element procedure. The standard nonlinear finite element

procedure can be found in most of nolinear finite element textbooks (see for example

Zierniewicz, [1977]).

U



2.3 Formuladom of material models

In the nonlinear finite element procedures the swain vector and its increment are

the independent variables. Most elastic-plastic composite material models, however,

are formulated in stress-space which defines the material stiffness in terms of stresses

and rtrats the swess and stress increment as independent variables. This causes some

difficulty in the implementation of such material models into nonlinear finite element

procedures.

The constitutive equations can be also formulated in the strain-space in which the

strain and strain increment are the independent variables and the material stifess is

defined in terms of the swains. This formulation avoids the difficulties encountered in

implementations of models based on the stress-space formulation. Although Drucker

commented on the usage of strain-space formulation as early as 1950 (Drucker, 1950], the

first detailed study was done by Naghdi & Trapp in 1975 [Naghdi & Trapp, 1975]. They

proposed a strain-space formulation which was found to be free of the shortcomings

of the stress-space plasticity. For example, unlike the stress-space formulation, the

loading critena for the perfectly plastic material in swrain-space is exactly the same

as that for work-hrdening materials. In 1981, Yoder and Iwan (Yoder & Iwan, 1981]

proposed and formulated a strain-space plasticity theory and demonsat its advantages

in applications involving extrnsive numerical techniques.

The smui-space formulation was applied to fibrous composite materials by Wung

and Dvorak (19851. They derived strain-space constitutive equation based on the

vanishing fiber diameter (VFD) model. The VFD model was originally developed

by Dvorak & Babei-EI-Din (Dvorak & Bahei-Em-Din, 1978, 1982, and Bahei-EI-Din,

1979] in a stress-space. Wu (19871 showed that the remlts found with the stress-space

formulation and the strain-space formulation of the VFD model ae in agreement.



I
Although composite material models based on the sess-space formulation may

encounter certain difficulties in their implementation in nonlinear finite element

procedure, we will consider them in our subsequent work for the following reasons:

1. The two material models, the PHA model and the BIMODAL theory are
available in the stessaeformulation. Substantial theoretical effort is rqie

to reformulate these models in the smain-space.

2. Two special numerical algorithms which make the stress-space formulation

I of material models useful in finite element applications were developed to

overcome the difficulties encountered in the stress-space formulation material

I models (see Chapter 3 and 4). The numerical study of these two methods

has shown that both algorithms give accurate results, with minimal loss of

computation efficiency.

All numerical integration schemes (i.e. solution schemes to the governing

differential equations) which are based on Taylor's series expansion, such as Euler's

method, Modified Euler's method, Runge-Kuua method, etc. are suitable for this

Iapplication. When a Taylor's series expansion based integration scheme is employed

in the constitutive calculations, the current stress increment is divided into several

subincremerps, which may or may not be equal in size depending on the method

used. In each subincanent the stress-strain relation is then assumed to be linearly

related by the instantaneous stiffness. In this way, the stress subincrememn is found

by multiplying the instantam ous stiffess matrix by the m subinne After the

stress subincrement has been found, the corspondn insta s stiffness m rix

Scan then be updated. The procedure is repeated for all subincrements of each increment

until the end of loading path. Numerical efficieies of the strain-controld and the

I

I
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In anothe approah, which make the stresscontrolled, stress-space formulation

useful in nonlinear finite element procedures, the constituive calculation algorithm is

unaltered while manipulation is performed between consitutive calculation and finite

element global iterations. Details of this procedure is given in Chapter 3 when the

implementation of PHA is considered.

2.4 Connection between nonlinear material models and nonlinear
finite element procedure

In a typical finite element procedure, there are as many as NlxN2xN3xm sampling

points in the finite element domain, where N1, N2, and N3 are the number of

sampling points in the three directions of element local coordinate system and m

is the total number of elements in the finite element mesh. This means that there are

NlxN2xN3xm nonlinear loading paths, which are generally different from each other,

Iin each nonlinear finite element analysis. Therefore, the material model evaluation is

required NlxN2xN3xm times in each finite element global iteration.

In strain-controlled, sm-space constitutive routines, the nonlinear finite element

Icu result in accurate solutions with good computation efficiency. In

stress-controlled, stess-space constitunive rouines, however, accurate solutions are

Iaccompaned by "local iteraons" between the constituive routine and the finite element

global ptocedure. These "local iterations" are necessitated due to the need of converting

strami incrats (from finite element global iteration) into sm increments for sress-

controlled material roudne.

As shown in Chapter 3, the "local iteration" provides a useful algorithm for the

I implementation of a nonlinear stress-concrolled constitve routine into a nonlinear finite

element procedure. This makes it possible to implement any (either stes-controlled or

strain-controlled) nonlinear maeial models into finite element procedure.

I
I
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In the nonlinear finite element procedure, it is important to point out that for both

Istess-controlled and siain-conrolled material routines one should always reitun elastic

sdfess matrix to finite element procedure at the beginning of the global iteration for

each increment. This 'eatment will guarantee faster convergence of the global iteration

especially when the structure is unloaded from a highly nonlinear stage since too much

compliant stiffness may produce very large strain increment during the unloading.

2.5 General purpose nonlinear finite element code-ABAQUS

Although the solution procedures developed can be incorporated in many general

purpose finite element programs, the ABAQUS nonlinear general purpose finite element

package was selected to carry out the specific finite element calculations for the study.

The ABAQUS program features relevant to this study are discussed in this section.

2.5.1 ABAQUS overview

ABAQUS is a general purpose finite element analysis code developed by Hibbit,

Karison, and Sorrenson, Inc. (HKS) specifically for applications in nonlinear mechanics

(User's Manual 1988a, Theory Manual, 1987, Example Manual, 1988b, and System

Manual, 1985]. It possesses a large number of standard features of a general purpose

finite element code including large element and material libraries, a number of analysis

classes and solution procedures, a group of post-processing options and a number

of features that are of importance to the type of analyses needed for metal matrix

ICompot
Several atractive features exist in ABAQUS. Fust, it uses recently developed

nonlinear solution procedures that are both efficient and stable. Second, it imposes
a song separation of element formulao, material property definitians, boundary

condition prescriptions and loading history specifications. Third, it supports a large



1 12

number of user defined subroutines including element formulation, material constiuve

1 formulation, boundary condition specification, and loading definition. In addition, the

ABAQUS's element library contains a layered shell type element that should be very

useful in the analysis of composite s'ucraes where differences in material behavior

must be enforced at the laminate leveL These features make ABAQUS attractive

in employing the more advanced nonisotropic and/or nonlinear material models with

various element types. Also, the ability to develop specialized material subroutines

within ABAQUS is of principal importance to our research in development of finite

element procedures for analysis of composite materials.

Tailoring ABAQUS to deal with functions not directly available within the program

is achieved through the available user definable routines. There are twenty user definable

routines in the program. Each user defined routine allows the analyst to cany out a

particular type of operation that alters data within ABAQUS's data structures.

The method used to provide thns functionality is to set aside a particular set of

subrouines for the vainous purposes. Each of these subrouines has a fixed name

and a fixed sequence for passing data in and out of ABAQUS. The particular user

defined routines that are invoked in an analysis are specified through the input file for a

particular analysis priblem. For example, the us defined material routine is invoked

by indicating that the raterial type for a paicular element set is the user defined

materia This keys th progra to call the user defined materia rune (UMAT),

which will use the infornaton passed to it as well as any informion UMAX manti

to calculate the maual si tesrts and s4Ps incremens which are then sa back

to the calling element routine. The user defined subroutine can access dam available in

the ABAQUS's dam suctumes for other pu.,poses.

The other flmctions that re also of importae to our study are the material

models supported by ABAQUS's matmal library, such as the kinematc hardening

I
I



Iopttmn the isotropic hardening option and the Hill's anisorrpic yil1cieiawt

kinetmoatcsOtropic hardening rule. These options accompanied with temperature

dependent features make it possible to model the inelastic behavior of metal matx

composites for certain idealized domains.

2.5.2 ABAQUS input data file

In a typical ABAQUS input data file there are two major groups of input data

entries including model data deck and history data deck. These input data decks are

capable of completely modeling the problems of interest.

The model data deck contains the definition of the analysis model including the

output heading, the data echo selections, the wavef'om minimization option, the restart

type of the analysis (optional), the node coordinates, the node set, element types, element

connectivities, element set, the material models, the boundary conditions, oentation of

the element coordinate system (if nonisotropic material is used), and the assignment of

specific material model and/or its orientation to the corresponding element set.

The history data deck contains the definition of the analysis type including the

submitting of subtitle for the analysis, the analysis classes, the loading history, the

tolerance and other control numbers for nonlinear analysis case, and other output

control options.

2..3 User definable routine - UMAT

ITis section limits its attention to the ABAQUS usa definable material routine

- -UMAT, morn specifically, the UMAT of ABAQUS version 4-7-25 which is the

program we have used for the analyses presented in this study.

2.5.3.1 Basic interaction of ABAQUS with UMAT routine

When UMAT is called by an ABAQUS element routin twenty seven variables

(matrices, vectors, and values) are passed and/or returned through the UMAT subroutm

I
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argumnm lst including:, material properies, current sie, s temperature, time,

state variables (which are needed in matea constitutive calculation), incremens m

srain, temperature, time, and updated suvss vector and ius stifness: matrix.

Note that if the material stiffness matrx is symmetric in the analysis, ABAQUS will

store the diagonal entries as well as the lower triangle part of the matix, therefore users

may update their instantaneous stiffness to those values only. This has the advantage

of avoiding the unnecessary operations which return the entries on the upper part of

the stiffness matrix to ABAQUS element routne.

2.S.3.2 Integration of material models into UMAT

In its application to composite materials, the UMAT subroutine works as

the mechanism which links the micro echanical level material model to the

macromechanical level behavior of a composite material. The essential part of the

UMAX procedure is the material routine which calculates the constitutive law at each

sampling poinL Any material model which saisfies the re.nrmnm stated previously

can be used in UMAX. The UMAT subrotine then performs six functions:

1. Initialize all solution dependent variables at the start of loading path.

2. Set up the comazn for indicating the mwtel poim amber.

3. Check the bepnig of a incrmnm, update solution dependent variables (from

Ip w aray) md rmurn elasc sti to ABAQUS element routive.

4. Calcte er st@ s vector and the instantameous sess due to sitra increment.

5. Store solution dependent variables in the temporary am.

6. Ren updated * stifmess matrix md m vectar to ABAQUS.

Some operaions for ntaion of a mai model into UMAT a dependent on the

type of material cotnmuve formulation. Details of these operations must therefore be

I
I
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described for specific material models. In Chapters 3 and 4, we describe implementation

of the PHA model and the BIMODAL theory, respectively, into UMAT subroutine.

2.5.4 ABAQUS post-processing capabilities

ABAQUS also supports a group of post-processing options including:

I 1. Output requests of line printer outputs, model plots (mesh plots - part or

I complete domain), result plots (contour plots - part or complete domain or even

combination of several plots, deformed shape plots, and history plots - for the

Ievolutions of specific quantity),...etc. for various of output devices.

2. Restart runs from previous results.

I 3. File transfer from local computer system to remote computer system for

subsequent ABAQUS runs on remote computer system. The binary format

for both computer systems may be differait dAzng the file transfer procedure.

4. User definable post-processing program for specific data process from the

ABAQUS result files.

I Detailed key features of ABAQUS post-processing capabilities can be found in

I Chapters 10 and 11 of ABAQUS Users Manual [1988a]. A procedure for running

ABAQUS on VAX system at RPI is shown in Appendix A.

I
I
I
I
I
I
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CHAPTER 3
PERIODIC HEXAGONAL ARRAY MODEL: DESCRIPTION

AND FINITE ELEMENT IMPLEMENTATION

The development of composite material models for the application in the elastic range

has been well established by two major approaches, namely, the Composite Cylinder

Assembly (CCA) model (Hashin & Rosen, 1964] which provides rigorous bounds on the

moduli. and the Self-Consistent Method (SCM) [Hill, 1965, and Budiansky, 1965] and

the Mori-Tanaka Method (Mori & Tanaka, 1973, Benveniste, 1987, and Dvorak, 1990a]

which both provide single estimate of each of the moduli. However, the application of

these models for prediction of elastic-plastic responses has certain limitations (see for

example, Dvorak & Rao [1976ab], Dvorak & Wung [1984] and Dvorak & Bahei-EI-Din

(1979]). The Periodic Hexagonal Array (PHA) model, (Teply,1984, Dvorak & Teply,

1985, and Teply & Dvorak, 1988] overcomes the shortcomings of the above models.

3.1 Overview of the periodic hexagonal array (PHA) model

The analysis of the PHA model begins with selection of an appropriat esentve

volume element (RVE) and the identification of an approp me set of periodic boundary

conditions which allows an analysis of the RYE that will yield usef inforation on the

overall behavior of the composite. One of the assuption that yield a set of boundary

conditions is uniform far-field strains on the micromechanical volume containing the

RYE. AItog ther are gradients in the solution at the macromechanical level, the

uniform smn field assumption is adequate for the purpose of determining the material

properdm. The se-nd asumption which is important to the consmtction of a convenient

set of boundary condition. is a regular packing of the fibers. In the PHA the Pecing

is assumed to be hexagonal within an individa lamina. Since the metal matix

composm considand aem typically nforced Imb cros-secto Contiruous

filaments aranged in a fairly regular array, this is an acceptable assumptio

17



18

Using the PHA formulaion, Teply (1984] has developed finite element based

upper and lower bound solutions for the RVE. Since our study is cnerned with

implementation of the PHA model into a displacement based finite element analysis

code, only the displacement based upper bound formulation is considered here.

3.1.1 Geometry ad assumptions of PHA model

In the PHA model, the fibers are assumed to be periodically distibuted throughout

the layers of the matrix material in a topologically periodic hexagonal configuration

(Fig.3.1).

Under overall uniform mess or strain applied to the periodic microstmcure, a

representative volume element (RVE) may be selected for the evaluation of overall

properties and local fields. The RVE must satisfy the following properties:

1. When repeated it covers the en&e macroscopic volume of the composite.

2. When the composite is loaded by uniform stresses or strains, the local stresses

and strains must be invariant under coordinate transformations which repeat the

RVE in the composite domain.

It is clear that the composite hexagons shown in Fig.3.1 may be selected as RVE.

If the area of the composite hexagon (Fig.3.1) is equal to unity, the dimensions

shown in thp figure can be found as function of the fiber volume fraction cf as [Teply,

1984]

t =- (3.1)

a 2 -- (3.2)

2
b -- (3.3)73=3



19

2C = (3.4)

As indicated by Dvorak & Teply (1985 and 19881 the composite hexagon is not

a particularly convenient choice due to the dificulty encountered in the application of

periodic boundary conditions. A more suitable selection of RVE is a triangle defined by

connecting the centers of adjacent fibers (Fig.3.2). In this way, the composite domain

is divided into triangular subdomains, these are identified by either the shaded or the

unshaded triangles shown in Fig.3.2. It can be shown [Teply, 1984] that the shaded

triangles can be converted into the unshaded triangles by a -6 transformation, where 6 is

the Kronecker's symbol. Either the shaded or the unshaded RVE is representative of the

composite domain. Figure 3.3 shows two adjacent triangles with shaded triangle in X!

coordinate system and unshaded mangle in Xi coordinate system. The transformation

X' = -6X + CO (3.5)

where for the configuration of Fig.3.3, Co = 10), converts the shaded
tragles into the unshaded ones throughout the composite domain. Also, it is shown

(Teply, 1984, Dvorak & Teply, 1985, and Teply & Dvorak, 1988] that under overall

uniform fields, both the overall and local stresses and strains ae invarimt under this

transfornmion, and that the surface tractons and displacemens in the two coordinate

sysms are identicaL Figure 3.4 shows a 3D view of the RVE used in the PHA model,

where cr denotes the fiber volume fraction of the composite.

3.1.2 Periodic boundary conditions, overall strain- displacement relation,

and overall stm-force relation of the RVE

The boundary conditions for the PHA model are imposed in the RVE to reflect

the penceicity of the microstuure. These boundary conditions are derived from
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the requirement that the local fields in the shaded and unshaded mangles remain

invariant under the transformation (equation (3.5)). These conditions together with the

requirement of displacement continuity across the RVE boundaries lead to expressions

for the boundary displacement in terms of internal point and vertex displacements.

Fig.3.5 shows detail of the RVE configuration. The displacement UM of the mid-point

M on the VIV 3 boundary of the RVE can be derived frm the expression of identical

strain in two adjacent RVE's and equation (3.5) (Teply & Dvorak, 1988]:

1 U

UM = -(Uv, + Uv.) (3.6)
2

where Uv,, Uv3 are the displacement at vertices VI, V 3 , respectively.

An expression for the displacement Um of arbitrary point on the V 1 V3 boundary

is derived due to the linear displacement fields in element 7 of Fig.3.5. From equation

(3.6) and the linear displacement along the boundary sm of element 7 and the boundary

rm of adjacent element (i.e. the element 7 of adjacent RVE), it is found that [Teply

& Dvorak, 1988, and Fig.3.51:

I 1
Urn = -(UvI + Uv 3 - Ur + Us) (3.7)

2

Similar equations can be written for the boundaries V1V2 and V2V3 .

The requirment of generalized plane stain of the fibrous medium in the fiber

direction is imposed by the following boundary condition (Fig.3.4):

1
Uk - Uj = UV. - I(Uv, + Uv.) (3.8)

where the coordinate of the point k is (1, X2, X3) and the coordinate of the point j

is (0, X2, X3).

I A set of support conditions for the RVE required to elirmi rigid body motions

are shown in Fig.3.4. In this figure, the vertex V 2 is fixed in X, and X2 directions,

vertex V3 is fixed in all three directions and vertex V4 is fixed in X2 direction.

I
I
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An equivalent homogeneous volume (EHV) which has identical support conditions

as the RVE is assumed for the derivation of the overall stramn-vertex displacement

relation and overall stress-vertex force relation. Let F and ? denote the overall stress

and strain, respectively, where

W kWIL. 722. W33. W12. .13. .23]r (3.9)

C-1= 1ci-.?22 . ?33. 2112. 2,13. 2,31T (3.10)

Uf denotes the displacements of the vertices Vi, V 2 , V 3 and V 4 , shown in Fig.3.5,

and F denotes the nodal forces at the vertices, where

I U = [uv1 . uv4 -vv. WVt. WV 2, WV 4] T  (3.11)

and

Fx,. F Y, F, (3.12)

Here, u, v, w are the vertex displacements in x, y, z direction and the subscripts

indicate the vertices.

For an equivalent homogeneous element with t-linear displacement functions, the

strain-displarement and is given by (Teply, 1984]:

1 = 9 T (3.13)

where " is deived from the multiplication of the differential operator matrix (which

is the mawix which relms the strain vector with t dispacemen vector) and the

-- shape function matrix (which is the matrix relates vertices displacement vector with the

3 displacement vector in the domain). For the vertices V1, V2, V3 and V4 indicated in

Fig.3.4, the 9 is found as:

I
I
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0 1 0 0 0 0
0 0 -r 0 0 0
0 0 0- (3.14)

-r 0 0 0 0 0

0 0 0 0 - 1
0 0 0 -r 0

Iwhere r ~and s -i/_ =1 .Ir

The stress-forces relation of the equivalent homogeneous element can be derived

from the virtual work equation which equilibrates the external work done by nodal

I forces and the internal work done by stresses in the element. This leads to the explicit

i expression for the sess-nodal force relation [Teply, 1984]:

.= ' (3.15)I

3.1.3 The overall instantaneous stiffness matrix (r) of the RVE

To detemine the overall instnaeous stiffiaess matix of the RVE, the equivalent

homogeneous volume of unknown material properties is again considered. It is

the instantaneous s parameters of the EHV that are needed to perform the

macromechanical analysis. The overall properties of the EHV are found by equating

the total stain energy computed for the EHV and the RVE when they axe subjected

to identical overall fields.

It is shown in [Teply, 1984] that the energy change in the EHV and the RVE,

I namely, AInERV Md AIRVE, are given by:

A EHV 1A .frf _F A- (3.16)
2

rIRVE = u-, I - &rTI (3.17)

2

I
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where

Au is a common set of nodal displacemez.s at Vi, V2 , V3 and V4 for both

the EHV and RVE.

B" is the strain-displacment matrix shown in equation (3.15).

AF is the nodal forces equivalent to surface tracuons acting on the EHV and

RVE.

E is the instantaneous stiffness of the EHV.

R is the stiffness matrix of the RVE finite element mesh, which is the assembly

of fiber and matrix subelement sdffness matrices, Lk, and as a result, it is also

a function of fiber and matrix subelement material matrices.

The composite overall instantaneous stiffness matrix L can then be found by

equating the equations (3.16) and (3.17). This yields the explicit form of the overall

instantaneous stiffness matrix in terms of local quantities:

L; = (U) 1- (3.18)

3.2 Thermomechanical lading

Under overall thesmomecamcal loads, the PHA boundary conditions, and stifess

marx (equation 3.18) remain unchanged. Only the solution of the RVE must be

modified. The the-momechanicaI correspondec derived by Dvorak [19861 can be used

to convert the ,oehanical loading path to a mechanical path. This important

result was derived from the folowing decompostion procedum

I 1. In the fir stop of the procedure, the phases ae sepaed and tractions appLied

3 to the sude of each phase to maintain the , cuim local phasi steaf and

strains. A unifom thermal change dO is then applied to both phases. Since

.
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the phaes have different coefficiews of thermal expansion, they will deform

differny under dO. Therefore, auxiliary uniform stresses must be applied

to both phases to ensure compatibility of the phases when the composite is

reassembled.

2. In the second step, the auxiliary stresses are computed from the requirement

that the phases must be compatible. The tracon equilibium at the fiber/matnx

interface and on the surface of the composite representative volume element is

automatically satisfied since the auxiliary field is spatially uniform.

3. In the third step of the procedure, the phases are reassembled and the surface

traction are removed.

It was shown by Dvorak (1986] that if the phases are transversely isotropic, then

the overall stress equilibrating the phase auxiliary stresses is axisymmetric (assuming

that the fibers are aligned in the X, direction):

do,,, S  d

do'22 ST

do, do'12  ST dO (3.19)

do'z 0
dfd,13. 0

where

SA -= (a3 b - ajb3)/(ajb2 - a2 b.) (3.20)

I
ST = (a2 b3 - a3 b2 )/(ajb2 - a2b,) (3.21)I

I aL = (n, + Cznf)/ (kEf ) -/(1.) (322)

l a2 = -If/ (ckEL) (3.23)

I
I
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a3 = 2(aT -Om) (3.24)

Ii =If (kf Ef) + 1/ (3K.) + cm/(cf Ef) (3.25)

b2 = -1/cfE (3.26)

I
b3 = f( 01 M) (3.27)

and

i Km is the matrix bulk modulus.

Im is the mate coefficient of thermal expansion.

Ef is the fiber longitudinal Young's modulus.

Laf Is the fiber longitudinal coefficient of thermal expansion.

a f is the fiber transverse coefficient of thermal expansion.

kf, If, rif ar the ill's moduli (1963J of the fibers

If -1 1/G -i ~ -4/E + 4 (L) /Ef (.28

I
IIf = Zkfvzf (3.2D)

nf = Ef + l/kf (3.30)

I
I
I
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G is the fiber transverse shear modulus.

Efr is the fiber ansverse Young's modulus.

f is the fiber longitudinal Poison's ratio.

When the composite is in the plastic range with a loading increment of dt7 and dO

(or de and d9) , the corresponding equivalent strain (or stress) increment are found

as [Dvorak. 1986):
de = hdG + M(do. - Sad9)

~(3.31)

do = SadO + L(de - hdO)
where

Sa - [SA. ST. ST. 0, 0, 0 ]T (3.32)I
h -[H, H, H, 0, 0, 0 T] (3.33)

|

H- =KS + am  (3.34)

and M and L are the instananeous compliance and stiffness matrices of the composite,

Irespectively.
With the help of equation (3.31), the composite thermal stre can be found by

setting the strain increment equals to zero (i.e. no mechanical load is applied):

Sdf't h me I = (Sa - Lh)dO (3.35)

I
In this way, the thermal load is converted to mechanical load. The usefulness

I of equations (3.31) and (3.35) is the implementation of this procedure into material

contve models. The applicatio of the decompo. o procedure into laminat

Iconmsitutive formulato is discussed Cbapr 5 (see Bahei-E-Din, [1990b]).

I
I
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3.3 Propammng algorithm of the PHA constitutive model

The orginal PHA upper bound constituive program developed by Teply (1984] has

been subsMMally modified. The program was first, modified by Shah (1986 to include

thermomechanical loading using the decomposition procedure, and later modified by

the author to improve its computation efficiency. For a set of given material properties

and loading path, the programming steps of the modified PHA constitutive program

are summarized below:

1. Read phase material constants.

2. Calculate basic material quanues such as Hill's moduli [Hill, 1964] and S.

and h vectors (defined in equations (3.32) and (3.33)).

3. Calculate the RVE smain-displacement matrix B in equation (3.15).

4. Calculate the stiffness conibutions of the fiber subelements to the stiffness of

the RVE (i.e. R in equations (3.17) and (3.18)).

5. Calculate die stiffness contributions of the mauix subelement to the stiffhess

of the RVE.

6. From steps 3 to 5, calculate the overall composite moduli 1 and the stre

ccentration fator of the phases.

7. Read the loading pah. T program stops if ths is the end of the loading path.

Othawise check the plasicity condition for each matrix subelements through

me concn tio facto

8. In the PHA consthitive program, the linear kinematic hardening is assumed for

all matrix subelemmts. Once the plasticity condition of the maix subelement is

detected the pwV m perform numerical integmion fbr the platicity quantities

such as the translation of the yield center of the matix subelements which have
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already yielded, and the instamane stiffness of the elastic-plasnc mamix

subelement.

9. Repeat steps 8, 5, and 6 until the current loading increment has been completely

integrated. Once the specific loading increment is absorbed, the program goes

to step 7 for another new loading increment.

Note that the PHA's programming stps described here are inmtended to serve as a

reviewing purpose mainly for the use of next section. Details of the data structure

and plasticity integration used in the PHA program can be found in Chapters 3, 4,

and 5 of Teply (1984].

3.4 Implementation into general purpose finite element code

As shown in Fig.2.1, in the finite element analysis of composites the material

consriutive model always requie consideration of materia nonlinearies of the matrix

phase. The composite mixing model considered here is the PHA model, and, in the case

of metal matix composites, the matrx is an elastic-plastic maliaL Therefore the PHA

evaluations are at the innermost loop of iteration in the nonlinear finite element analysis

process. This means that the integration of the PHA model in a macromechanical

finite element procedure must achieve t maximum comptaional efficiency of the

individual PHA calculations.

Referting again to Fig.2.1, it is the individual elemet subroutines that call the

UMAT routine st each nnmencal integration point at which the instantaeous material

stiffMss mai is to be updad. The UMAT routine i responsible for ordering the

information in the form needed for the PHA and calling the PHA. The PHA routine

then determines the overall properies at the material point baed on the constitent

properties. This requires thit the PHA routine ivokes some ohr subroutines to

calculam the material stiffess contributions of the matrix and the fiber phases through
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the maniz constiuve relation (may be elastic-plasc) and the fiber consttutve relation

(elastic response is assumed), respectively.

3.4.1 Integraton of periodic hexagonal array model into ABAQUS

The user-defined material routine within ABAQUS must perform operations

indicated in Section 2.5.3.

When the PHA model is implemented into the ABAQUS finite element procedure

through the UMAT subroutine, a complexity that arises in this process is that it

uses a stress increment to calculate the instantaneous stiffness and strain increment.

However, ABAQUS, which is a displacement-based finite element procedure, provides

the UMAT routine with a strain increment and requires back the instantaneous stiffness

and corresponding stress. Therefore it was necessary to introduce the local iteration

explained below into the UMAT routine. This procedure has been found, typically, to

converge within two or three iterations.

3.4.2 Local iteration and initial thermal stress in UMAT

When UMAT is called during a load increment including mechanical and/or thermal

loads, ABAQUS provides the current state (the results at the end of previous increment)

of sess (o'(A)), m'ain (C(A)) and temperature (T) for each global iteration. At the start

of a load increment, that is in the initial iteration of the current load step, the stain

inCtemmt is zero ((A)=O) and the temnperatre increment (AT) is the vahle for that

load inameatL The fimcdon of this initial iteration is to provide the macromechanical

analyas poedwe (ABAQUS) with an aproptiate - aeou tiness mamix and

the appropdate introduction of the effects of any themA load for that incremen. Unlike

the fint element procedure, where thermal effects are accounted for by the construction

of an initial main vecor, the approach used here is to convert the thermal imnrement

into an equivalen mechanical load through the use of an initial mess vector. The

I
I
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determinaion of this initial stress vector must be carried out at the micromechanical

level and account for the differem thermal charactersics of the maix and fibers. The

analysis is done using Dvorak's decomposition procedure (1986] (see Section 3.2). The

stiffess maix and initial stress vector are returned to ABAQUS, where the effects

of the pure mechanical load are combined with the initial stress vector to predict the

stramn increments for this load step. From this point through the remainder of the

macromechanical ABAQUS level iteraions for this load increment the UMAT routine

treats all load types as pure mechanical load at a temperature equal to T+ 4 6T.

In each of the subsequent macromechanical iterations for a load increment, UMAT

receives a non-zero strain increment predicted from the given instnaeous stiffness

and load incremems. This strain increment must be converted into a stress increment

(Ao(A)) and added to the stress at the curren state (0'(A)) to form a new stress vector

(U)U(U) --- o(A) + L-E(A) (3.36)

where

L is the stifns at the beginning of increment.

LAe(A) is the trial stress iflaem L

The PHA procedure calculatm a new smm vector (evj)) which must be compared

with th stain vector gven to UMAT by the maconechanical level (ABAQUS) model

(e(A) + AE(A)). If dy are not nearly equal, a local iteration in the UMAT rou ie is

inidmd where the ies- vector used in the PHA is updamd by

(1+1) _(1) + 0)(,A) + A(A) - e() I - O, 1, ... (3.37)O(U) =o(A) +L(U) (()+ A -EU) '

where

or(1+1) is the new mess vector for the PHA constimuve routine ipu
(U)
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(U) is the mess vector at the end of i* local iteration.

L is the instantaneous stiffness at the end of it local iteration.
(Ui)

e(A) is the strain vector at the beginning of the increment.

AE(A) is the strain increment at this global iteration.

e(u) is the strain increment at the end of idi local iteration.
(0)
(0) is the stress at the end of previous global iteration (maintained by the

UMAT routine).

The convergence criterion used in the UMAT iteration is:

0+1) + Ae(A)

(U) -- I A +A()). < tolerance (3-M8)

The selection of the tolerance depends on the tolerance used in the nonlinear finite

element procedure and the tolerance used in the nonlinear constitutive calculation.

These three tolerances should be chosen so that same level of accuracy is perfonned in

each process. Typical number for the toleranmce is between 10 to le - . In this work,

1O was chosen as tolerance for all calculation.

The local iterations will be repeated until equation (3.38) is satisfied, i.e. the

conve of the local iterations is reached. Figures 3.6 and 3.7 illustrate the iteration

process given by equations (3.36) to (3.38).

3.43 Prokramig step in UMAT with PHA model

The smmary of the steps camed out in the user-defined material routine UMAT

based on the PHA matenal model for metal matrix composites are:

1. At the beginning of an incremet, update the solution-dependent variables and

calculate initial ses due to temperatre change (if thermal load adst).

2. For other than the initiation of a load increment, calculate a new sess vector

for PHA (equanon(3.36)).
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3. Invoke the PHA procedure to calculate the strain vector and instanteous

stiffness due to the new stress vector.

4. Compare the strain vector from PHA to the stran vector from ABAQUS

(equanon (3.38)). If the strain vector has converged, reun the instantaneous

stifiess and stress vector to ABAQUS, otherwise adjust the stress vector by

using equation (3.37) and return to step 3.

5. The flow chart for these steps is shown in Fig.3.6.

The pseudo codes of UMAT with PHA and PHA routines and the User's guide of

PHA version UMAT are summarized in Appendix B.

3A.4 Applications

The UMAX subroutine developed for the PHA model was used to compute the

response of a P100 graphite-aluminum (Gr-Al) composites and laminates subjected

to cycles of uniform thermal change [Wu, et al, 1989]. The fibers are assumed to

be elastic, the matrix is an elastic-plastic solid of the von Mises type. Constitutive

equations of the matrix are given in the context of infinitesimal strains. The matrix

hardens kinematically, according to the Ziegler rule (1959]. Table 3.1 shows constituent

properties in the elastic range, the inelastic properties (i.e. the plastic tangent moduli)

are indicated in the subsequent figures for individual cases.

The examples examine the response of a laminated plate that consists of many

aknnitin lay= in a (±O). lay-up. The finite element model of the plte, Fig3.8,

consists of two eaght-noded solid elements, one for each +0 and - layer. Uniform

displacem s on each suzface were prescribed as boundary conditons. The selected

idealization for the (±O), of the solid finite elements allows the applicaton of the

PHA model to account for the micromechanical level plastcity of matx mraeial
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Figure 3.9 shows the response of the Gr-AI composite under a uniform thermal

change which starts at 200C and then follows the cycle to +120', - 1:0 C and +120 0 C.

Matrix (M) properties in the plastic range, are specified in terms of the ratio of a

constant tangent modulus, to the elastic Young's modulus, (E,,'.m. The axial strain

is plotted as function of the temperature change. The solid line indicates the response

of a unidirectionally reinforced plate, o=0*, whereas the dashed line represents laminate

response. In the elastic range the (±12), laminate is dimensionally stable in axial

direction, hence no axial overall strain is caused when the temperature changes from

20'C to 60'C which marks the onset of initial yielding in the plate. After that the plate

is seen to undergo axial contraction while the temperature increases to +120 0C. The

reversal of the direction of thermal change causes elastic unloading and therefore brings

back dimensionally stable response. Plastic loading sets in again at +500C and continues

until -120*C. No dimensional stability is seen in the response of the unidirectional plate.

However, the rate of plastic strain change is much lower in the unidirectional plate and

therefore, the total axial strain amplitude caused by the thermal change cycle is actually

smaller in the unidirectional plate.

Figure 3.10 shows a similar result for the same Gr-AI composite in which the

alumnmum matix has a larger tangent modulus. The unidireconal composite and the

laminated plate an again subjected to the thermal change prescribed in figure 5.4.

Owing to the greater stiffnes of the matrix in the plastic range, both plates experience a

smaller strain amplitud. Once again, the mai strain ampli-de of the laminate exceeds

that of the unidirc-i-I plate.

Figure 3.11 indicates the computed variation of the axial thermal expansion

coefficiems in the elastic and plastic regions, as a function of the lamination angle

6. Whe Linear hadening is assumed for the matrix, the composte's asymptotic tangent

modulus is constant, and the CTE in the plastic region is proportional to the slope



* 34

of the asymptotic portion of the sin/emperature curve in the plastic region (see for

I example, Figs.3.9 and 3.10). Figure 3.11 shows that elastic composite lamnates have

a vanishing axial CTE at about o=120, while the laminates with the stiffer matrix in

the plastic range show this property at 0=20. The laminate with the lower hardening

matrix has no dimensionally stable lay-up.

Figure 3.12 shows the total axial strain or amplitude of the three composites

subjected to the thermal cycle of Figs.3.9 and 3.10, again as a function of the lamination

angle o. For o=120, the magnitudes of the strain amplitudes during the cycle are shown.

As already mentioned, the results indicate that in the presence of plastic straining, the

unidirectional reinforced plate may have a better dimensional stability than a laminated

plate depending on the magnitude of manix plastic tangent modulus (see Figs.3.9 and

3.10 for the comparison of different plastic tangent moduli). Of course, the actual

response will also depend on the magnitude of the matrix yield stress. 7hw value used in

the present examples (Table 3.1) cozresponds to an as fabricated mateial. Higher yield

stres magnitudes and lower strain amplitudes can be achieved by heat treatment of the

matrx. More specific investigation of dimensional stability of laminates is summarized

I

i
I
I
I
I



Prmpertes Fiber matrx 3

Volume fraction0.0-

6.8955 x 10+5 7.2395 x 10+4(W~a)

Axial Poison's ratio 0.41 0.33

Axial shear modulus (MPa) 1.5517 x 10+4 2.7216 x 10+4

Axial CTE (m/mC) -1.6200 x 10-6 2.4000 x 10-5

Transverse Young's 6.0690 x 10+3 7.2395 x 10+4
modulus (MPa)

Transverse shear modulus 2.0690 x 10+3 2.7216 x 10+4
(MPa)

Transverse CM 1.0800 X 10-5 2.4000 x 10-5
(m/m°C)

Initial yield sum in
tension (MPa) 7.0000 x 10+1

Table 3.1 Material Properties for Pl00 Graphite-Aluminum Composite

I
I
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Figure 3.1 Dimendon of Periodic Hexagonal Army with Cylindlical Fber [TePly. 1984]
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I Figure 3.2 Transvus Cross Sccioas of Piziodic Hezagoaal Amy Models

I Hasgonal Cylindzic.1 Fibsia CTcply, 1984]
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Bimodal Plasticity Theory: Description and Finite Element Implementation
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CHAFER 4
BIMODAL PLASTICITY THEORY: DESCRIPTION

AND FINITE ELEMENT IMPLEMENTATION

The bimodal plasticity theory proposed by Dvorak & Bahei-EI-Din [19871,

Bahei-EI-Din & Dvorak [1989b, 19913 is a seni-phenomenological model which

assumes the plastic deformation of fibrous composites consisting of elastic fibers

and elastic-plastic, rate-independent matrix can be described in terms of one of two

deformation modes, the fiber-dominated mode (FDM) and the matrix-dominated mode

(MDM). In the fiber-dominated mode, both phases deform together in the elastic and

plastic range and the composite aggregate is treated in the context of heterogeneous

media elasticity and plasticity. In the matrix-dominated mode, plastic deformation is

caused by slip on matrix planes which are parallel to the fiber axis. The yield condition

corresponding to each mode provides a yield surface in the overall stress space. The

overall yield surfac of the composite is then given by the inner envelop of the FDM

and MDM yield surfaces. The dominant deformation mode is determined by the elastic

moduli of the phases, in particular the longitudinal shear modulus, and the overall

loads. For example, in the plane stress space, the matrix-dominated mode is active

in fibrous composites where the ratio of the longitudinal elastic shear modulus of

the fiber ano the matrix is large, for example, B/Al and SiC/Al composites. In this

case, the large shear stiffness of the fiber prevents slip on matrix planes other than

those allowed in the matrix-dominated mode. The fiber-dominated mode is found in

composite systems wher the fiber longitudinal shear modulus is comparable or smaller

than the matrix elastic shear modulus. This mode is also found where the overall axial

stress is dominant- Figures 4.1 and 4.2 [Dvorak & Balei-E-Din, 19871 show examples

of composite yield surface for a B/Al and a Gr/AI composite. In the plastic range, the

overall instantaneous moduli of the composite are found from the deformation mode

! 48
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corIning to the yield branch contaizziig the stess point. Recent experiments by

Dvorak. et A. (1988] on a B/Ad composite system have verified the existence of the

deformation modes postulated by the bimodal plasticity theory. Figures 4.3. and 4.4

[Dvorak & Bahei-El-Din, 1987], show comparison of the expermental yield points and

the bimodal yield surface for a B/Al composite.

In this chapter, the fiber-dominated mode and the matrix-dominated mode are

described and the constitutive program for each mode is presented. Also, the connection

between the two modes is investigated for a general loading path in which loading with

a specific mode may have been preceded by deformation with the other mode.

4.1 Fiber-dominated plasticity

Plastic deformation in the fiber-dominated mode is described with the averaging

models originally introduced by Hill (1963] for elastic phases. In this section, we

describe the governing equations and programming algorithms for implementation of

the constitutive relation.

4.1.1 Governing equations

I The consitutive relations of the phases are assumed to be known for the volume

average of the local fields. Under isothernal loads, the phase strain average dcr and

stress average dOer, am related by

I dor = LrdEr

where 
dE, =Md

I r = f or m, f--fiber phase and m=matix pha.

Lr = instantaneous stiffness matix of the phases.

I Mr = Lr- 1 = instantaneous compliance marix of the phases.

I
I
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Siilar relanons can be written for the composite overall uniform field:

Ido Lde
(4.2)Ide =Mdo"

where

I L - insa teou ess malrix of the composite.

M = L- instantaneous compliance matrix of the composite.

The volume average of the local stress and strain increments are related to their

overall counterparts by (Hill, 1963]:

d, = cfdo-f+cmdom

de = ctdef+cmdemI where

cIcm = fiber and matdx volume fractions; cr+cm = I.

In addition, the local fields are assumed to be related to the overall fields by:

dor = Brdo"
dEr =Arde (4.4)

where
Br instantaeu stress concentration factor of the phases.

I itar strain a on factor of the phases.

From equations (4.3) and (4.4), the phase concentration factors cam be related as:

cfAf +CmAm = I

cf Bf+cmBm 
= 1

I where I is a unit matrix of order 6.

I
I
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From equations (4.1), (4.2), and (4.3), the composite overall stiffnes and compliance

mamces are found as:

L = cfLfAf+cmLmAm
(4.6)

M = cfMfBf+cmMmBm

Simplified expressions of composite overall stiffness and compliance mamces are

obtained by substituting equations (4.5) into equation (4.6):

L = Lf+cm(Lm - Lf)Am

(4.7)
M = Mf+cm(Mm - Mf)Bm

The overall response of the composite is given in terms of the known local properties

of the phases, phase volume fractions, and the concentration factor of the matrix or

fiber phases.

4.1.2 Concentration factors

In the elastic range, the concenraon factors of the phases can be found from

an averaging model In the pIesmnt wodc, the method developed by Mon & Tanaka

(1973] was adopted for evaluation of the elastic concenrat-on factors. The fiber stress

concentration factor deived fiom the Mon-Tanaka method is given by (Benvenist,

1987, and Dvorak, 19904]:

B1 = W(cml + C w) (4.8)

where W is the fiber stmess concentrion factor of a dilute solution defed as:

W = LfTMm (4.9)
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T is the fiber straincnato factor of the dilute solution (i.e. found from the caue

when single fiber is embedded in an infinie matrix) defined as:

T = (I + P(Lf - Lm)]-' (4.10)

where P is a constant matrix which depends on the shape of the fibers and elastic

properties of the matrix. The explicit forms of P matrix for various fiber shapes can

be found in the literature (see for example, Dvorak (1990a]).

In the plastic range, a method, which was originally developed by Dvorak (1990a)

for the evaluation of the overall plastic strain in the binary composite systems, is utilized

to derzive the instantaneous concentration factors. For the composites with elastic fibers,

the plastic strain increment in the matrix phase (deP ) is related to the overall plastic

strain increment (deP) by

T m~ deP 4.1

whe e * the transpose of the matrix elastic stres concen tration factor defined

in equation (4.4).

The overall plastic strain and matrix plastic strain can also be expressed as:

ei e - demo
(4.12)

=e de - de.

where deme is the elastic part of the matrix swain increment, de. is the elastic paut of

the composite overall strain increment, de. is the matix total swain increment and de

is the composite overall total strain increment.

Assume that the plastic strain increment of the matrix phase is related to the matrix

sizesS increment (do-m) throgh the plastic compliance matrx G:

dP= Gdom. (4.13)
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where G is derived from the conStiutive model of the mati material (see Section 4.1.).

The matx i stress concentrAton factor (Bit) can be derived by

substituting equations (4.1), (4.11), (4.12), and (4.13) into equation (4.3). The explicit

form of the B t is shown as:

B'nst = [M *- Mg) + (I- Bm)G (Me - Mf)/cm (4.14)

where

M. is the composite overall elastic compliance matrix (= Mf + cm(I(Mme-

iMf)Bme].

Mi. is the matrix elastic compliance matrix.

Mf is the fiber compliance matrix ( assume always elastic).

The fiber instantaneous concentration factor (B"t) and matrix instananeous

concentration factor (Bil) can be related by substituting equation (4.10) into equation

(4.5):

Blus I - c.Bnt) (4.15)

It can be shown fiom equations (4.1) to (4.4) that the phase stress concentration

factor and smin cfao fctor we redas

A. = MrBAL (4.16)

where L is the composite overall stiess mauix given by equation (4.7).

Note that equation (4.16) is valid in both the elastic and plastic ranges since it is

derived from its iremental form.

From equation (4.7), we know ti once the s cocetrton

factors of the phases are found, the overall stiffness matrix is determined. Tbere is
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altermtve way of deemining composte i e imeu maui This method

is based on the numerical integration of Eshelby's S tensor (Eshelby, 1957], (Gavazzi

& Lagoudas, 19901. However, this numerical integration procedure losses computation

efficiency when the material is in nonlinear range. This is because that the matrix phase

is no longer isotropic in this stage.

4.1.3 Constitutive equations of the matrix

From equations (4.1.b), (4.12.a) and (4.13), it can be seen that the key quantity

that the matrix constiutive equations should provide is the plastic compliance matrix

G. For the associated flow rule which satisfies the normality requirement, the G marrix

is found as:

nnTiG = T (4.17)

where

n="-, f is the matrix yield function.

n = ni for i=l, 2, 3, and nt= i/2 for i;%4, 5, 6.

c = 2H/3, H is the matrix plastic tangent modulus.

Equation (4.17) contains another matrix plasticity parameter H which is known as

the matrix plastic tangent modulus. Several dories for evaluation of H under

nonprpoonal loads ae found in the liature. Two of the well known theories

are the muldac. tbAmy and the two surface eory. The multisurface doy model

was invodced by Mrz [1967]. In this model, the yield surface is initially surounded

by a series of concentric hypersurfaces which define a series of differn constant values

of H. This leads to a piecewie linear sams-strain response in the loading history.

The two surface models m developed (see for example, Hashiguchi (19881, Krieg

(1975] and Dafalias & Popov [1976]) mainly for the purpose of simplifying the

I
i
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c ompl which exists in the mulu'surface model. However, it rns out tathe

two surface model of Dafalias & Popov (1976] is the only one which allows for the

specification of an arbitrary hardening rule for the yield surface. Therefore in our work,

the matrix *n e plastic tangent modulus (H) is defined through the two surface

plasticity theory which was proposed by Dafalias & Popov (1975, 19761. The theory

postulates the existence of a yield surface and a bounding surface, which are capable

Iof defining H, ranging from infinity at the beginning of the yielding to an asymptotic

value Ho when the two surfaces are in contact. This two surface plasticity theory, as

Iindicated in the original paper (Dafalias & Popov, 1976], has the advantage of modeling

material behavior under cyclic load. A schematic representation of the two surface

Itheory is shown in Fig.4.5 where me bounding surface is an isotropic expansion of the

yield surface and these two surfaces are concentric at the initial state.

For a Mises marnix mmal with kinematic hardening, the yield surface

f(o-. - a.) and the bounding surface f(o" - 3) can be written as:

f(o - a.) = (0,. - am)Tc( m _ am) _ y2 = 0

f(o. - = -(O -,3 - 0
where

am is the t of matrix yield surface.

)3 is the center of matrix bounding surface.

C is a coasmx maix which relates the stes state to the yield function. The

exlcit form is found as

1 -0.5 -0.5 0 0 0
-0.5 1 -0.5 0 0 0

C -0.5 -0.5 1 0 0 0
0 0 0 300
0 0 0 0 3 0

0 0 0 0 0 3

I
I
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Y is the MMAX yield streSS In simple 
S6i2.

V is the size of matix bounding surface in simple tension.

Equation (4.18) can be rewriten in terms of overall sus sa:

f(a. _ a) = ((7 _ ,)T K(o, - a ) -y2 0
(4.19)

f (a,_0) = (ar_ )TK(r _-, ) _  0=

where

a is the center of the composite yield surface.

3 is the center of the composite bounding surface.

K = B*TCBm. = constant matrix.

The centers of composite yield surface a and composite bounding surface ,3 can be

Ifound from matrix cm, 0* through the matrix elastic str cncentraon factor Bre:

o4 - -Bm('m -a) (4.20)

The magnitude of H is defned as [Dafalias & Popov, 1976]:

H = Ho + h ( 6  (4.21)

I where

6 is the cuteng diz between o and .

6i. is the initial dis e between o and 7 at the onset of inial or subsequent

yielding-

Ho is the asymptotic slope of mess-plastic sam curve.

h, m are materIl pmetems to be determin f e pimeln datL

I
I
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Note that the 6 and 6 in in equation (4.21) are originaly calculated based on mamx

stress space. However, it is possible to be evaluated on overall stress state since the

composite overall yield surface and bounding surface can be found from matx state

through equations (4.19) and (4.20). The schematic presentation of equation (4.21) is

shown in Fig.4.6. It can be seen from Fig.4.6 and equaton (4.21) that when 6--in, the

plastic tangent modulus H is infinite whereas when 6=0 the plastic tangent modulus H

has the value which equals to the asymptotic slope Ho. Also, the plasticity parameters

h and m define the degree of nonlinearity of the stress-sain curve.

At the current overall state, o, a, and 03, the corresponding stress point on the

bounding surface, F, can be determined from equation (4.19) by setting the same

normal. This leads to the following relation

K(o- - a) K(Ur- (422
IK(o -a)l - IK(Y-)I n (4.22)

where n is the unit normal of current stress state. Since K (o" - a) and K (Y - () are

parallel, the vectors K-'K(o• - a) (= (o - a)] and K-K(Y - 03) [= (Y - /3)]

must also be parallel. Therefore, equation (422) becomes

(0- a) - ) (4.23)10" - r1 = Y I-0 1

Le R IY -/1/If" - a1, then equation (4.23) becomes

(Y - 0) = R(o - a) (4.24)

where the rato R is found by substituting equation (4.24) into equation (4.19b):

f( - 3) = R2(4"  a)TK(o. - ) - 2(
= p,.2y(4.25)-

Therefore, the ratio R 
becomes:

VR =V- (4.26)
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and the sums point F on the bounding muface is found as

/ + yo- )(4.27)

Evaluaton of the center of the bounding surface is found from equaions (4.24) and

(4.26) as (Dafalias & Popov, 1976]:

d = da - Zu (4.28)

with
U (4.29)

I- o'

and

Z 1 Ho) ds (4.30)

where

ds = ndo (4.31)

and

n = (4.32)IK(o. -o~

4.1.4 1rogramming algorihm for stress-corolled fber-dominated

constitive mode

In the s ,res-cof olled fiber-dominated consttuive program, all constunve

calcu]Lxis are done based on local phase quantities. For a given overall stress

increment do which activates the fiber-domnmated mode, the programming steps are

described in the oing:

1. Divide the overall ses incremnt do" into small subiimcea p'do, with pI

being a small number which is typically in the order of 10-6 to 10 at the
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beginning of an increment. However, the magnitude of p ae determined. by

Runge-Kuna-Fehlberg algorithm in the subsequent subincrements.

2. The coresponding stress increment of the local phases dUr are then defined as:

do'r = Br 
t pid" (4.33)

3. Check if this is a plastic loading or elastic unloading by use of the matrix

loading-unloading criteria:

Cif do'm - ZZ (4.34)

where

a- Plastic loading occurs when zz > 0.

b. Neutral loading occurs when zz = 0.

c. Eastic unloading occurs when zz < 0.

4. For plastic loading, zz > 0, a numerical integration/iteration scheme must

be introduced to integrate the plastic equations. In the bimodal plasticity

programmin work, the Runge-Kuat-Fehlberg algorithm (see for example,

Burden & Faires, [1988]) was chosen to perfosm the numerical integration.

DuAng the numerical integration, the size of the cu=n subancrement is checked.

If the cul Fnt mibincrement size is acceptable then the convergent solution of

local pimicity quanties are saved and the sze of next subincremen pi+

wll be computed based on the Rungt-.Kuua-Fehlberg algorithm. The Plasticity

qua e cont of.

a. Manix plastic stiam increment (de&).

b. Shift of the center of the matix yield surface (dam).

c. The center of the matrix bounding surface (d,=).
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d. The instat eoanus srSS concentranon factor of the phases (B" t ),

based on equations (4.14) and (4.15).

5. After the platicity quanities are found for the sub eM, the local seses

(dor), strains (der), cener of the yield surface (am), and the center of the

boundi surface (,3m), are updated to their new values:

dem = deme + deP (4.35)

def = defe (4.36)

anew  .oId + da (4.37)

enew= eold

dr , + de (4.38)

nOW old= d + dam (4.39)

13DW = a3 d + d3m (4.40)

de = crdem + cfdef (4.41)

enew = old + de (4.42)

onew = cold +pido" (4.43)
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6. Steps I to 5 are repeated until the whole increment has been Vplied.

7. The last step for each overall loading increment is to update the overall sdffness

matrix L using equations (4.7), (4.14) and (4.15).

From steps 1 to 7 and equations (4.7), (4.13), (4.14), (4.42), and (4.43), the algorithm

for the stress-controlled FDM calculation is completely defined.

4.1.5 Programming steps for strain-controlled fiber-dominated constitutive mode

In the material modelling procedure, the stress-controlled constitutive formulation

program has some advantages. For example, the specifications of the loading path for

uniaxial or biaxial load cases are easier than the specifications of equivalent loading

paths for the strain-controlled constitutve formulation program. However, the draw back

of the stress-controlled formulation is the significant computation inefficiency during its

finite element applications. Therefore, an alternative and more efficient algorithm for

the implementation of the material model into finite element procedure is desired. In the

current work, an efficient numerical procedure which is based on the stram-controlled,

stress-space formulation was developed. The basic idea of this algorithm is due to the

existence of equation (4.2) in each plastic subincremen. With the help of equations

(4.21) to (4.32), the constitutive calculations can be carried out on the composite level.

For a given overall strain increment de, the programming steps of the strain-controlled

algorithm ate summarized as the following:

1. Divide overall strain increment de into small subincrement pide with

pi being a small number (the magnitude of p! is determined by the

I same procedure described in step 1 of Section 4.1.4).

2. The corresponding overall stress subincrm i do" is found by-

do- = Lp'de (4.44)

where L is the composite instantaneous stiffness matix.
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3. The matrx stress subincrement do'm is then calculated based on

equation (4.33).

4. The matrix curent stress state (o. - am) is computed by:

(Im - am) = Bm.(o- a) (4.45)

5. With the known matrix stress state (am - a.) and its stress

subincrement dom, the loading-unloading criteria (i.e. equation (4.34))

is checked.

6. For the plastic loading case, the Runge-Kurta-Fehlberg numencal

algorithm is again used for the integration of plasticity quantities.

These quantities include the center of composite overall yield surface,

I dra and the center of the composite overall bounding surface, d3.

i 7. At the end of each subincrement, the plasticity quantities are then

updated to their new values:

anew =aOld + da (4.46)

Onew = o3d + dO3 (4.47)

I new = old + pide (4.48)

I .new = vold + do (4.49)

and the composite instantaneous s s maftri L is update based on

equations (4.7), (4.14), (4.17), and (4.21) to (4.32).

1 8. Steps I to 7 are repeated until a complkt increment has integrated.

I
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Steps 1 to 8 completely describe the algo-ithm used in the stram-controlled,

sress-space FDM constitutive calculation. The advantage of using Runge-Kutta-

Fehlberg integration algorithm for constituive calculation is that this algorithm has the

capability of predicting the maximum allowable subincrement size for next subincrement.

Therefore, the overall computation effort is minimized during the integration procedure.

The user's guide to the bimodal program and selected pseudo codes are given in

Appendix D.

4.2 Matrix-dominated plasticity

In the matrix-dominated mode, the deformation of the elastic part is assumed to

be the same as the fiber-dominated mode whereas the deformation of the plastic part

is derived from plastic slip along the plane(s) parallel to the fiber directimn [Dvorak &

Bahei-EI-Din, 1987, and Babei-El--Din & Dvorak, 1991].

4.2.1 The slip system

A typical slip system is shown in Fig.4.7 where the fibers are aligned in

X-direction. The vector n is a unit normal to the slip plane, s is the slip direction,

i3is the angle between slip plane and X1-X plane, and 0 is the angle between the

slip direction and X 1 -axis so that

n=(O cos3 -sin 3]T (4.50)

s = [cos 9 sin o sin0 cos3 sin 9 ]T (4.51)

For a specific overall mess stmae = [a-11 022 0'3 31 023 07 12]T with

the center of the yield surface a =---[ 1 1 C22 k33 Ot31 t 23 Z12]Tlhereolved
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Sheas r., on the slip plane of normal n and in the slip direction of s is found a"

r s= ni('j - ij)sj

1 -sin 20 sin 8((0'2 2 - a2) - (o'33 - a33)] s + COS ~3 cOS 0("12- (4.52)
2

a,12) - sin 3 cos 0(0'31 - Q31) + cos 2$ sin 0(o'23 - C923)

The resolved shear stress r.., on the slip plane is the magnitude of the shear stress

center, with components -r' and r2 , Fig.4.7, that can be found by substituting 9=0 and

0=,./2 respectively, into equation (4.52):

r, = cos 3(o-12 - a1 2 ) - sin 0(o'31 - a3l)
1 (4.53)

r 2 = - sin 20[(0"22 - a 2 ) - (0'33 - a33)] + cos 2,3('32 - a3 2 )

2

I Here,

I r -r12 2 (4.54)

and

- ~~r 3 --- ncosO8

I =msiG(4.55)
=2 r. sin 0 

(.S

I Among all the possible slip systems, the active slip planes are those that have the

I maximum resolved shear smu rm. This means that among all angles, the possible

active slip planes are found by seting.

I r(- = (4.S6)
88I

I
II
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From equadons (4.53) and (4.54), the condition stated in equation (4.56) becomes

the following trgonomemic equation:

g (g3) = 4(o: - ) - - ) (031 - a32)"I sin 40 + (032

I a32)[(o'22 - ,t22) - (a33 - C33)] cos 40 - [(o712 - 912)2/2-

(0'31 - C31)2/2] sin 2,3 - (ff12 - Ctl2)(03i - a3 1 ) cos 23

1 =0

(4.57)

I
To solve equation (4.57) for possible 4's, we should consider the following

charactenstcs of the trigonometric equaton:

1. The equation has its own period which is not necessarily equal to 2;.

2. In a specific angle range (say 3=0 to r), it is possible to find several 3's which

Iall satisfy the equation (4.57). However, only some of these O's are making

the manitude of r"u. an absolute maximum (since the periodic equation may

have several roots that maximize the equation locally).

I Since ev.aluation of the roots of equation (4.57) is not so straight forward, it is

worth making same effort on the development of an efficient numerical solution scheme.

Several useful algoithms have been investigated and summarized in the next section.

I 4.2.2 Nunerka evalitiom of the slip systems

I When the soluion of a specific periodic equation is concerned, two important

factors must be considered, include:

1 1. The solution range of interest

I
I ___
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2. The availability of efficient numerical solution schemes.

Referring to equation (4.57), the solution range for 3 is 0-3:S,-. This means that all

the roots (,3's) that are found from equation (4.57) are neglected unless they are in the

range from 0 to , in radians (or from 0* to 1800 in degree).

Various nunmerical schemes for obtaining the roots of nonlinear equations exist in the

literature, (see for example, (Burden & Faires, 19881). These methods may be divided

into two major families, namely iterative methods and direct methods. The iterative

methods find the roots of the equation using a series of trial-and-error root searching

schemes and the direct methods find the roots of the equation by numerically evaluating

of the roots from explicit expression of the solutions.

The iterative methods have the following advantages

1. The roots of any nonlinear equation can be found if the method is appropriately

used.

2. The programmmg algorithm is extremely simple.

However, there are some drawbacks which may render these methods inefficient, for

example:

1. Some roots may be missed during the root searching procedure, especially when

the magnimd of two (or more) roots are very close.

2. The size of each searching increment must be very sma L This requires more

computaion effort and reduces the computation efficiency.

On the other hand, the direct methods do have some advantages such as:

1. All the roo of the nonlinear equation can always be found if the roots exist

in the specified solution range.

2. No iteraniom are needed during the root searching Procedure.
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However, the disadvantage of the direct methods is that.

I1. The explicit form of the soluons of the nonlinear equation is not always

available.

I 2. The programming algorithm is more complex and require specific mathematical

I manipulations.

For the trigonometric equation shown in equation (4.57), it is found [Hall 1990] that

an equivalent nonlinear quartic equation could be obtained. Further development and

discussion on the solution scheme to the quartic equation for various stress states was

completed here. The study on the investigation of solutions to the equation (4.57) was

done jointly by author and by Hall (1990]. The reasons for making this investigation

are that

1. The efficiency of the solution scheme is very critical to the MDM constitutive

calculation and its finite element applications.

2. Based on the author's knowledge, almost all of the mathematics handbooks

are providing incomplete solutions to the quartic equations (i.e. the solution

formulae are good for some cases only). Therefore, dcomplete solution

I procedure is derived and implemented in the sequel

I In what follows, we consider the direct method and develop two methods for

evaluating the roots of equaion (4.57).

We begin by rewriting the equation (4.57) as:

I Asin 40 + B cos 4,3 - C sin 23 - D cos 23 =0 (4.58)

I where

A = ((022 - C2) - (0'33 - C3)]2/4 - (oPs2 - a 32) 2

B = (of32 - Ct32)R('22 - f22) - (or33 - c33)]

Ii
I
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C = [(01 - 012) 2 - (31 - a3i)2] /2

D = (o12 - Q 12 )(0'31 - Q31)

From properties of the trigonometric function, t_- equation (4.58) can be rearranged

into the following form:

2B cos 2 23 - D cos 20 - B = (C - 2A cos 20) sin 20 (4.59)

By squaring both sides of above equation and rearranging all terms, we obtain the

following quartic equation:

atY 4 + Oe2y + a3y 2 + a4Y + S= 0 (4.60)

where

y = cos 2/3

and

al = 4(A 2 + B 2 )

a2 = -4(AC + BD)

a 3 =-4(A 2 +B 2 -C 2 - D2 )

a4 = 2(2AC + BD)

cis = (B2 - C 2 )

The quarc equaion shown in the equation (4.60) may be reduced to a quardratic

equa"on o a trivial equation under the following -onaiderons: If a = 0, then

A = B = 0 and a 2 =0. The quartic equation becomes a qua i eq on:

a3Y2 + a4Y +a -= 0 (4.61)
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Consequentdy, for all sess states, there are only two possible types of equations,

namely quartic equation and quadratic equation, for the active slip planes (i.e. 3's).

More specifically, when the composite is under transverse shear load and/or transverse

tension/compression load, the quaic equation solver is needed for finding the O's. On

the other hand, if the composite is under longinudinal shear and trazsverse hydrostatic

loads, only the quadratic equation solver is needed for finding the O's. Furthermore, if

the composite is under transverse hydrostatic stresses, no slip planes are activated since

A=B=C=D=0 in this case and equation (4.60) is identically satisfied, then there is no

effects on MDM plasticity since the tivial condition is reached.

Note that the roots found from equation (4.60) are not all good for equation (4.59)

because of squaring operation from equation (4.59) to (4.60). These roots must be

substituted back to equation (4-59) to determine suitable roots. Once the roots (y's)

of equation (4.60) (which also sadsf equation (4.59)) have been found, the possible

slip planes are known as

y+1- (4.62)

From equations (4.60) and (4.62), we can find that the maximum number of slip

planes under specific ste ste is eight. However, the maximum resolved shear stress

(in its absolute value) may not occur on each of de eight slip planes. From the

numerical study on the dee mination of the number of slip planes, it is believed that

a maximmn of two active slip planes can be expected for all possible mess states

(also see HaL, (1990]).

Solution of the quaric equation (i.e. &I term exists in equation (4.7)) begins with

solution of a specific cubic equation of which the coeciews we calcuated from the

coeffciems of the quaruc equation (see for example, Spigal. [1968]).
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Assume the quamc equation has the form:

y4 + aly 3 + ay2 +a 3y+a 4 =0 (4.63)

where al, a2 , a3, and a.4 are reaL

The key step for solving the quartic equation is to reduce the order of the equauion.

In our case, we may tEamnge the equation (4.63) into the following form:

y2 + Ly X) 2 - (ry + s) 2 = 0 (4.64)

where X, r, and s are numbers to be determined. After expanding equation (4.61) and

compaiung the coefficients with equation (4.63) term by term, we have the following

equations:

r 2 a2 +X (4.65)
4

i x2  (~
s" - - a4  (4.66)

4

a1X a3
's = a(4.67)

4 2

Since al, a2, a and a4 ae known real nmbers, it is possible to find X, r, and

s from equatios (4.65) to (4.67) by seting the following equality-

rSK 2 - a2 + X - a4) = - ) (rs)2 (4.68)

This leads to a cubic equauon

X3 + (-a 2 )X2 + (alas - 4&4)X + (4a2a4 - a24 - 4) = 0 (4.69)
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Equaton (4.69) can be solved by the method described in Appendix C. Once the real

root of equation (4.69) has been evaluated, it is possible to determine r or s (either one

but not both) by substiming X into equation (4.65) or equation (4.66). However, the

third unknown among X, r, and s must be calculated with caution. This is because of

equation (4.67) that makes the signs of r and s coupled. Therefore, it is very important

to keep in mind that only the combinations of equations (4.65) and (4.67) or equations

(4.66) and (4.67) can be utilized during the solution procedure. This is the key point

that almost all the mathematics references are unable to address in their formula for

the solution of quartic equations.

With the known X, r, and s, the equation (4.64) can be rewritten in the following

quadratic form:

[y 2 + (!+r)Y+ (X+s)][y2(+ ( r)y+ (X-s)] =0 (4.70)

Therefore the roots of the quartic equation can then be computed based on two

quadratic equations:

[2+ -1 + r~y ( $1=

[Y 2 +)y + (X +s)].. 0(4.71)

y2+( r)y + (X s)] =0

In the direct mediods, there are two major algoritm which all the computations

are based on either complex numbers or real numbers

In the complex number verion of the algorithm all numbers are teated as complex

numbers and the equations (C.9) to (C.12) (see Appendix C) w used for cubic equation

solver. This algorithm has the advantage of being easy to pro na.
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In the real number version program, on the other hand, all numerical operations are

carefully managed so that any possible complex number encountered in the operations

is avoided. The equations (C.15), (C.16) and (C.18) (see Appendix C) are used for

finding roots of cubic equaion. Also in equAtion (4.71), the "quadratic discriinant"

of each qudratic equation is checked.

The comparison of efficiency among the iterative method, direct method based on

complex numbers, and direct method based on real numbers is shown next.

In the numerical study of the solution of quartic equations, the methods described

in Section 4.2.2 were all coded. The CPU time was measured for each method under

various cases. A large number of numerical tests had been completed. The ratios of

overall (i.e. the average of all tested cases) CPU time requirements in the cases of

iterative method, complex number method and real number method are approximately

equal to 20:2:1. Simila conclusion was made by Hall (1990] who used the author

developed solution scheme and real number version program for this numerical study.

4.2.3 The yield conditions

The yield function (f) of the matrix-dominated mode is defined, for the case of

kinematic hardening, as the followig.

f (- (a- - a),) -,o2 = ( (4.72)

where

(iu)w is the maximum resolved shear 4ess of (a-j - aU) on the slip

system(s).

"o is the manix yield stss in simple shear.

This mea that the posible slip system (i.e. the slip system which contains maximum

resolved shear stress) have reached the yield condition.
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It is obvious from equations (4.53), (4.54), (4.56) and (4.57) that under a general

stress state the MDM yield surface cannot be expresses in dosed form. Construction of

the overall yield surface, however, is not necessary in finite element implementations.

Only the yield stress under a specific loading path is of interest.

Consider first initial yielding under proportional load defined by the stress increment

do', Fig.4.7, the corresponding slip plane angle(s) 3 and resolved shear stress (Tr',)max

can oe calculated from equations (4.58) to (4.60). The stress magnitude (o-) on the initial

yield surface is found by scaling (Th)ma up to its initial yield stress (see Fig.4.8):

oY = -ydo" (4.73)

where -y = K "° I

Figures 4.9 and 4.10 show various cross sections of the MDM initial yield surface.

The curves in Figs.4.9 and 4.10 were found nnexically by evaluating the MDM initial

yield stress under stress probes applied in several directions.

Next, consider a subsequent yielding where the curzent stress state o is inside an

overall yield surface with center located at z. As discussed in Section 4.2.4, the center

o is computed from hardening on the active slip system and is assumed to be known

from the previous history. Now a stress increment do- is applied to the composite and

we would like to compute a factor p so that the stress state (o+pdo" - ct) satisfies

the MDM yield condition (see equation (4.72)).

Referring Fig.4.11, it is dear that different slip systems are activated as p varies

(since the pomible active slip systems will not remain the same along the segment from

o to (o.+pdo)). Therefore, the factor p for which the sms (oa+pdo- - a) satisfies

equation (4.72) will be found iteratively using the bisection method [Burden & Faires,

1988]. It was found that, the typical number of iterations required to compute p for

MDM yielding is about 25 for a relative tolerance equals to 10- 3, where the "relative
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tolerance" is defined as:

tolerance -- (ruz)=i TO (474)

This means that during each MDM plastic loading, the solver of the quartic equation,

equations (4.58) and (4.60), must be called 25 times in order to determine the acuve

slip plane(s). Development of an efficient solver for the quamc equations is therefore

important.

As seen in Figs.4.9 and 4.10, there are some comers in the yield surface. Since the

yield surfaces in Figs.4.9 and 4.10 were obtained numerically, we would like to examine

if there is indeed a discontinuity in the slope at the corners as indicated in Figs.4.9 and

4.10. A symbolic solution program (MAPLE, (Char, et al, 1988]) was used for this

purpose. If the slopes at the comer points are continuous, only a single valued normal

will be found at each point. Therefore, the problem of discontinuity check of the slopes

is reduced to the evaluation of the normal (O(m".,)/4o9) at each of those points.

Let

k, 0'22 -- f33

Tb
0"21

k2 =----
Tb (4.75)

0"31
k3 =

Tb
k =e co32

'"o

Then the coeffcient A. B, C, and D in equaions (4.58) and (4.60) become:
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1-\ 22-4 3 -2 --2) 2 ( -k2

0 2 ( 2 - 33 f 1  (272
A = -k4

o ro 2
'r r (4.76)

D = 02131 = k2 k3r~2

The procedure for the evaluation of a(r.,)/4O is summarized in the following:

1. From equation (4.60), MAPLE is used for determining four symbolic solutions

y ( say, yi, i=1,2,3,4) which are the roots of the quartic equation.

2. Substitute stress state (i.e. the stress state at the point of iterest) into yi to

find real roots, say y. (m=12,...j).

3. Keep yr in its symbolic form and solve equation (4.62) for 3,1 (/=l,2,...,2j)

symbolically.

4. From equation (4.53) with au = 0, we have:

-- = cos13k 2 - sin 3k3o ( 4 .MD
- - sin 213kj + cos 2,6k4

ro 2

and from equaions (4.54) and (4.55)

r- = + (4.78)

5. Substitue each j1 (1=1,2,...,2j) into equations (4.75) and (4.77) to have

(where lnl,2,...,2j) in symbolic forms.
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6. Substitute sress state into each (Zo)) and find the maximum (Tn.( ro )TOdfrdte aiu

7. Keep (ZL) which has the maximum value of (:&) in its symbolic form.(O .o
8. Differentiate ("ao)n with respect to specific component (i.e. kj, k2 , k3 and

k4) to find the component of the normal in each stress axis. This means that

we are trying to find the symbolic expression for 8( :m) /8kg, i=I, 2, 3, 4.

9. Evaluate O(za) /8ki numerically and check if the value is unique.

In the numerical study, selected comer points were investigated from steps

1 to 9. The typical result is found, for example in Fig.4.9, that the point of

ki ( = ff.) =1.43589, k2 (= A i.=0.0, k,,(= Eu~)=o.9o, and k.(= Ta)>o0oo

was checked and the 8( o/8k--t3.39286. This confirms that the normal (or slope)

at the comer points of MDM yield surface is discontinuous.

4.2.4 Plastic strain and overall stifless

The plastic slip [d-4P d7q] T on each active slip plane caused by the shear stress

[dr dr]T is found from the associaed flow rule and the normality requirement

[Bahei-E-Din & Dvorak, 1991]. From equation (4.72), the yield condition on a slip

system is written as:

f(r) = (71- 1)2 + (- _ t2) 2 - 2 = o (4.79)

where [df d42 ]T is the center of the MDM yield surface on the k* active slip plane.

The plastic sip is then given by:

I(,' - - - {2)fdr k--r2r

(4.80)

where H* is the plastic tangent modulus in shear.
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The overall plastic strain increment is found as the sum of the conmbutions of

each active slip plane. The contibution of plastic strain increment of each slip plane to

the composite plastic strain increment is found by coordinate tnformation from local

(slip plane) coordinate system to overall composite coordinate system. The final form

is found as (Bahei-El-Din & Dvorak, 1991]:

'dePl 0 0

de 0 4sin 2/3k
d P 1e~33 0 - sin 20k d-yP (481

deP' = 0sin 0~~ 3 k 2 2 $k~ Jk(4.81)

de P k=1 0 cos 2 k

de2 L COSk 0

where n is the number of the active slip planes under current ess state.

From equations (4.78), (4.79), and (4.53) we can find the MDM plastic compliance

matrix G" which is analogous to equton (4.13). The final form of G" matrix is found

as 'Bahei-EI-Din & Dvorak, 1991]:
a

G. F x  1T
= F 1- k(o - - a)TRk (4.82)

where

H, is the k slip plane's plastic tangem modulus found from a two-surface

theory (analogous to equations (4.21) and (4.28) to (4.32)), and

0 0 0 0 0 0
0 isin2 2 0k -1 sin 2 20k 0 sin 40k 0

4 4 2 ~~~
0 -sin 2 20k sin 2 0 - sin 4k 0

Rk= 0 0 0 sin2 3k 0 Isin 20k

0 sin 43k -- sin 43k 0 CO2 20k 0

0 0 0 -1 sin 20k 0 cos 2 3ok

(43)
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Although the plasic tangent modulus H; in equanons(4.80) and (4.82) is found

from the bounding surface theory which analogous to eqmons(4.21), (4.28) and (4.32),

there exist the following dffrences:

I. The plastic tangent modulus H used in FDM is xnpssed in simple tension and

the plastic tangent modulus H; is expressed in simple shear. However these

two quantities may be related through the effective suress increment-effective

plastic strain increment relation:

H = 3HZ (4.84)

2. The movement of the yield surface (da) and the movement of the bounding

surface (d) in the FDM are evaluated on the composite overall level. In the

MDM these quantities are evaluated on the local active slip plane level. In

order to avoid the confusion on the notations for the center of bounding surface

in FDM and for the position of slip plane in MDM, we shall use a* as the

center of composite bounding surface throughout this chapter. Assume that the

center of the yield surface on k slip plane is k =[4k T, the Center

of the bounding surface on that slip plane is ,k =-[17k qk T. In analogy

with equaton (4.53), 4k and 7k are rated to the overall center c and c,*,

respectively, by:

I c 21 - sinf3kots

k sin 20k(022 - a 33 ) + cos 20ka (4M

2a3
and

=7 k = Cos Oka;j - sinoka;t

Ik O ka;2  (4M)
22k = sin 2 (a;2 -h) + coo 2
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The cenler of the bounding surface can be witen as (see equations (4.28) to

(4.32)):

d7pk- d4 k-zuk (4.87)

Z I i ~ u (4.88)
)kU kT n'

where

Uk is the unit vector that coMects the loading point with normal

n'= cos 0 sin 9]T (0 is defined in equation (4.51)) and the point

on the bounding surface with the same normal.

a Ij are the components of the center of overall yield surface a.

a.t are the componets of the center of overall bounding surface a*.

Equations (4.85) and (4.86) are also valid for their incremental form since all the

opemios are dependent on slip angle only. The reverse relations of equations

(4.85) and (4.86) in their inremental forms are found as (Babei-EI-Din &

Dvorak, 1991]:

da 22 = -d0 33 = sin 2pkdf k

d0 3 1 = -sin Ok dfk

(4.89)
d032 = cos 2p3kdf k

dk2 1 = cos)9kdjk

and
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dc4 = =sin 2,Skd,da2 -- -da;3 -i 2 kw

da = - sin jkd7k
(4.90)

dc;2 = cos 2 d'1

da,, = cos )3kdr/k

It is shown in Section 4.3 that the equations (4.89) and (4.90) have provided an

important contribution in combining FDM and MDM into complete constitutive

model.

After the MDM plastic compliance matrix has been found (equations (4.82) to

(4.88)), the MDM overall instantaneous iess matrix L is calculated as:

L -- (M + G*) - ' (4.91)

where M. is the composite elastic compliance found from equation (4.7).

4.2.5 Hardening rules used in MDM

The MDM hardening rules are determined based on experimental observation from

the test performed by Dvorak, et aL, [1988] on a B/Al composite. More specific

description of the MDM hardening rule is found in Bahei-EI-Din & Dvorak [1991].

It is shown that de are three different hardening rules in six-dimensional sress

space:

1. Harening rul L

This is the coo when

(OV31 - C4 1 ) = (f32 - C42) = 0 (4.92)

ond
(o"21 - 21) > 1 (4.93)

(072 - a22) - (O3: -33) -
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The center of the yield surface daU is found as do2= dd'21 with all other

components equal to zero.

2. Hardening rule IL

This is the case when

(0'21 - k21) - (a"32 - 032) = 0 (4.94)

and
T a3 ) > 1 (4.95)

(0.22 - ok2 2 ) - (o33 - CE33) -

The center of the yield surface da U is found as da 3 l = d0.31 with all other

components equal to zero.

3. Hardening rule f.

For all cases other than cases I. and Uf. In this case, dU = df"U (i.e. Phillip's

hardening rule is assumed).

Note that from Fig.4.10 we can find that the hardening rules I and I are the cases

when the stress state is at the flat part of the yield surface.

4.2.6 Pror gmni algorithm for strain-controlled matrix.
dominated constltutlve mode

The proamming algorithm for suain-controlled matix-dominated constitutive

mode is analogous to the programming algoithm described in Section 4.1.5. For

a given overall srain increment de, the programming seps of the srain-controlled.

stress-space matix-dominaed conuuitutve mode are smarized as the following:

1. Divide overall strain increment de into small sibincrment pide with pi being

a small number.
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2. The co11ponding overall Stress subincrement do' is found by-

do" = Lpide (4.96)

where L is the composite instantaneous stiffness marx.

3. With the known overall stress o, center of overall yield surface a and overall

sess increment do", we can calculate the rial mess state as:

onew = o - a + do- (4.97)

4. Substitute onew into equations (4.57) and (4.72). The plastic loading will occur

when the value of equation (4.72) is greater than or equal to zero.

5. For the plastic loading case, the Runge-Kutta-Fehlberg numerica algorithm (see

(Burden & Faires, 1988]) is used for the integration of the plasticity quantities.

These quantities including the cat of the overall yield surface da and the

center of the overall bounding surface dc ° are found from equations (4.80)

to (4.95).

6. At the end of each subincrement the plasticity quantities are updated based on

equations (4.46) to (4.49).

7. The composite instantaneous sti L is updated based on equations (4.82),

(4.83) and (4.91).

8. Steps 1 to 7 are repeated until a complete increment has been integrated.

These steps completely describe the plasticity algorithn used in MDM case. Some

selected MDM brtmnes will be discussed in the next section.

4.3 Implementation of the bimodal theory for general loading

In the preceding two sections, the formulation of fiber-dominated mode and the

formulation of manix-dominated mode were described individually assuming that either
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mode is the only active mode during the loading path. Under general loading path,

activation of one mode in part of the loading regime may have been preceded by plastic

deformation with the other mode. Consequently, each deformation mode should not only

describe its constitutive behavior but also fully support all the data information which

may be shared by the other deformation mode. The basic requirement on this issue is

discussed in the next subsection. The program steps and the user's guide of the bimodal

model program are described at the end of this section and Appendix D, respectively.

4.3.1 Data base exchange between FDM and MDM

It is shown in Sections 4.1 and 4.2 that in the strain-controlled, stress-space

constitutive formulation, the most important plasticity quantities are the position of the

center of the composite overall yield surface, a, the position of the center of composite

overall bounding surface, a*, and the composite instantaneous plastic compliance

matrix G (in FDM case) or G* (in MDM case). The composite instantaneous plastic

compliance matrix is important due to the fact that the composite overall instantaneous

matrix L is always found by the inverse of the sum of the elasc compliance matrix

and the instaaeous plastic compliance matrix.

In the MDM, there are an infinite number of slip systems in the composite. Plastic

saining on the active sip system will also affect the inactive slip planes. This is

known as the lanze hardening of inactive slip systems. It is shown in Bahei-EI-Din &

Dvorak [1991] that the overall centers of the yield surface a and bounding surface a*

can be replaced by their local counterparts from the active slip systems or inactive slip

systems. Therefore i is possible to relate hardening of active slip systems with the latent

hardening of inactive slip systems. This mnm that duing the plastic deformation on

the active slip system, the inactive slip systems hardens simultaneously. This simplifies
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the operation of finding c= centers of yield surface and bounding surface during

the MDM constitutve calculation.

Once the plasticity quantities a and ct* are known, it can be shown that

1. From equations (4.21) to (4.32), the G is found based on the equation (4.17)

and da and da* ar updatd.

2. From equations(4.80) to (4.85), the G* is found by equations (4.82) and (4.83)

and da , da" are updated.

These mean that the response of both FDM and MDM can be calculated at any

loading point. Also, both modes are capable of sharing and updating the overall

instantaneous quantities (i.e. da, da* and L) which may be used at next loading

point for either mode.

4.3.2 Programming steps for the bimodal model

The programming steps for the bimodal model can be seen as the combination of

the programming steps used in FDM (Section 4.1.5) and MDM (Section 4.2.6).

The procedure is summarized as the following:

1. Divide overall strain increment de into small subincrement pide with pi being

a s=all number.

2. The. coreponding overall suessb m do is found by:

do = Lp'de (4.98)

where L is tie composite stffiU marix.

3. Check yield citeria for both modes (Le. equations (4.33), (4.34) and (4.45) for

FDM and equatno(4.54) to (4.58), (4.72) nd (4.96) for MDM) and determine

which mode yield fir

4. Set up the plasticity indicator to the mode which has been activated first.
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5. If FDM or MDM (with hardening rule III) is active then the composite will stay

in FDM or MDM during the loading increment. However, if MDM is active

and it is in the cases of hardening rule I or f, Step 4. must be checked at each

subincrement since it is possible to change from the cunt hardening rule to

the other hardening rule or even change to FDM.

6. Once the plasticity mode and type of the hardening rule (for MDM) have been

determined the rest procedure described in Section 4.1.5 or Section 4.2.6 will

be continued for the corresponding deformation mode.

7. Steps 1. to 6. are repeated until the current increment is completed.

A user's guide to the bimodal constitutve program is given in the Appendix L.

4.4 Implementation into general purpose finite element code

The general concepts of the integration of material model into ABAQUS have

been stared in both Chapters 2 and 3. Hcwever, there still exists some differences

in the implementation details due to the nature of the constitutive relations used in

the individual material model. In the development of the bimodal plasticity theory

based UMAT subroutine, there are several choices for the numerical implementation

algorithms. We have conducted a study on the material constitutive formulations and

their numerical implementation to arrive at the most effic implementation algorithm.

From the numerical experienmce obtained in this study, we concluded that the strain-

controied constitutive program has the bes computation performance for the composite

mateal models, therefore the consttutive program of the bimodal theory was then

developed based on ses-space, strai-controlled formulation.

During the development of the bimodal constitutive program, we discovered an

efficient algorithm for the smin-controlled constdirve calculaions. The most important

feature of this algorithm is that almost all the constitutive calculations are done on the
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composite overall level. The detail algothm is described in Sections 4.1.5 and 4.2.6

for FDM and MDM, respectively.

Since the bimodal plasticity program is based on the sutess-space, swain-controlled

formulation, the programming steps are different from the programming steps used in

PHA model (see Section 3.4.3). The summary of the steps which are carried out in the

UMAT with bimodal plasticity theory is the following:

1. At the beginning of a load increment, ABAQUS provides the solution dependent

variables to UMAT together with the load increment.

2. For an elastic response, the composite overall stiffness matrix (i.e. the stiffness

matrix at material point of finite element mesh ) is computed from the FDM

constitutive relation.

3. For an elastic-plastic response, the overall yield branch (FDM or MDM) which

contains the current stress point is determined and the corresponding constitutive

equations are used to compute instantaneous stiffness matrix.

4. Finally, the overall stesses, stiffness matrx, md the solution

dependent variables are updated at the end of the load increment.

The flow chart for these steps is similar to the flow chart shown in Fig.3.6 except

die local iteration loop (the loop that loops from equations (3.36) to (3.38)) since in

the srain-controlled constitutive formulation case, there is no need to perform local

iterations in its UMAT subroutine- The pseudo code of the bimodal theory based UMAT

subroutine is given in Appendix D.

4S Selected results

The CPU time and overall smuins found by the algorithms given in Section 4.4

for a (:10), P-100 Or/Al composite laminate under uniaxial cycle of ±400 MPa are
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shown in Tables 4.1 and 4.2. The materal properties of the constituents used in these

demonstration cases are listed in the Table 3.1 and the finite element model is shown

in Fig.3.8.

In Table 4.1, the relative computation efficiency of each algorithm can be found

by subtracting the elastic part of CPU time from total required CPU time. In this

table, only the CPU time that used for finite element procedure are counted. The CPU

time that used for input data syntax check is not included here. It is clear that the

strain-controlled bimodal formulation algorithm which described in sections 4.1.5 and

4.2.6 has the best computation performance.

In Table 4.2 the laminate overall longitudinal and transverse strains at the end of

loading cycle demonstrate the consistency of all the algorithms used in this example. In

both longitudinal and transverse response, the relative differences between algorithms

b, c, and d are all less than 1 percent. The difference between b and c is due to

stress-controlled and strain-controlled algorithms used in these two cases.

Figures 4.12 and 4.13 show the predictions of the bimodal theory and the PHA model

for the axial response and transverse response of a (±10). composite laminate consisting

of P-100 Gr/AI plies under uniaxial cycle of -400 MPa. The material properties are

again shown in Table 3.1 of Chapter 3. Linear kinematic hardening behavior, which

was assumed in the PHA model based UMAT subroutine, was simulated in bimodal

theory based UMAT subroutine by setting the size of the yield surface equal to the

size of the bounding surface so that the matrix i plastic tangent modulus

reaches its asymptotic value right after yi4ding. These two figures are used to show the

comparison between FDM and PHA model since it is in FDM under this load condition.

Figures 4.14 and 4.15 demonstrate the constitutive behavior of fibrous composite

when a bounding surface is used in the theory. The composite material system used in

I
the analysis is the B/Al where the material properties of the constituents we listed in

....I .- --- -
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Table 4.3. In Fig.4.14, the loading cycle is specified so that the maguimude of unloading is

small. Therefore, the reloading curve is flatter than unloading curve since the plastcity is

not well developed in the unloading stage. This results in the reloading curve departures

from initial loading curve. Fig.4.15 shows another loading cycle. In this case, the

plasticity has been well developed in both loading and unloading segment. Therefore,

when the composite is reloaded, the stress-strain curve merges to the asymptotic line.

Note that the stress-strain response of the loading segment is the same as the stress-strain

response shown in Fig.11 (bimodal MDM curve) of Dvorak, et al (1990].

Another illustration of the bimodal theory is shown in Fig.4.16 when the axial stress-

strain response of (±o), B/Al composite is given. A set of laminates with different

orientations (o=0 io 900 with 50 increment between cases) are investigated. The FDM

response is found in the cases when o is less than 250 and the MDM response is

found when p grea=e than 300. As expected, the response of the laminae is stiffer

under the FDM defonnation because of the constraints imposed by the fibers on the

matrix response.

Figures 4.17 and 4.18 show the response of B/Al unidirectional laminate under a

loading path which first activates the MDM, and then the FDL The loading path is

specified as follows:

1. At pbint A, o11=0 MPa and 2=0 MPa (XA=Xl).

2. At point B, a11= 10 Ma and c ,=100 NPa.

3. At point C, a ilO MPa and o22=75 MPa.

4. At point D, alO=0 MPa and a=75 MPa.

From point A to point B, the response is basically in MDM. In this loading segment,

the transverse response (aT-er) goes from elastic to plastic whereas the axial response

(a.--tL) remains elastic since there is no plastic stmain in fiber direction during matix-
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dominated deformaton. From point B to point C, the composie is in unloading from

MDM. This is indicated by linear segments of f'C in both 'A-eA curve and aT-eT

curve. From point C to point D, the composite is reloaded to FDM. As expected, the

axial response is much stiffer (compare to segment AB of a-T curve). The segment

D in aT---T curve is the response which induced by the axial load (o1=10 MPa to 600

MPa). Although it is in plastc range, the nonlinear curve can not be seen in this segment

since it is plotted in Cr-eT relation where aT is constant during the loading segment.

Figure 4.18 is an enlarged portion of loading points A-B-C of oa--eA curve shown

in Fig.4.17. These two figures can be used to demonstrate the data commurication

between MDM and FDM in the bimodal plasticity program.

Cases Fonnulation and algorithm Wes CPU time
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (Sec.)

PHA , sess-controlled, return intnaeus 2s
(Section 3.4)

b Bimodal, stress-controlled, remm instantaneous stiffness 2,115
(Section 4.1.4)

c Bimodal, strain-controiled, return stfess 1655(Section 4.1.5) ,5

d Improved bmodal, rt os t 616
(Sections 4.2.6 and 43)

e atic response (Section 4.1) 340

Table 4.1 CPU time required in different constituve formulation algorithms.
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Cases Axial stain (xlO-3) Transverse strain (x10-3)

a (PHA) 1.156675 -0,802513

b(Bimodal) 11.156075 -0.792350

c (Bimodal) 1.156075 -0.792488

d (Bimodal) 1.156075 -0.792488

Table 4.2 Overall Longitudinal and Transverse Strains After Loading Cycle.

I
I

I
I

I
I
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Properties matrix
Fiber

Volume fraction 05 0.5

Young's modulus (MPa) 4.0000 x 10+5 7.2500 x 10+4

Poison's ratio 0.20 0.33

Initial yield stress in 2.3640 x 10+1
tension (MPa)

Size of bounding surface 8.8335 x 10-I
in tension (MPa)

Ho for plastc tangent 2.1000 x 10+4modulus (W~a)

m value for plastic tangent 2.0
modulus

h value for plastic tangent 3.6000 x 10+5

modulus ([Pa)

Table 4.3 Material Properties for Boron-Aluminum Composite
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ABSTRACT

The rate-dependent behavior of high temperature composites reinforced with aligned
continuous fibers is evaluated numerically for an idealized periodic hexagonal array
geometry of the microstructure. The analysis employs the finite element method for a
representative volume element of the periodic geometry. Constitutive equations of the
phases are derived from a new thermo-viscoplasticity theory which is based on overstess
measured from an equilibrium yield surface, and a two-surface plasticity theory.
Numerical predictions of multistep creep strains compared fairly well with experimental
measurements for a SiC/Ti unidirectional composite.

INTRODUCTION

Future applications of fibrous metal matrix composites in aerospace and automobile
industries include high temperatures that may well exceed 10000C. In such environment,
the behavior of most conventional alloys is sensitive to loading rates. Creep, relaxation,
thermal recovery and other time-dependent phenomena are characteristic of their behavior
under high temperatures. In heterogeneous media, in general, and fibrous composites, in
particular, these phenomena take place under local stress and strain fields which are
neither uniform nor proportional. The local straining rates may, therefore, vary
considerably at individual material points within each phase. Under these circumstances,
material models which are both geometrically and intrinsically representative of high
temperature multiphase materials must be used in evaluation of their behavior.

Numerous analytical models have been proposed for prediction of the inelastic
response of fibrous composites. An extensive bibliography appears in the reviews by
Bahei-EI-Din and Dvorak (1989) and Dvorak (1991). Implementation of these models,
however, has been mostly limited to room temperature applications in which constitutive
behavior of the phases can be described by rate-independent plasticity theories. In this
context, a recent study by Dvorak et &.. (1990) of the reliability of the predictions made by
three specific models of fibrous composites in comparison to experiments showed that
somewhat detailed description of the microgeometry of the composite is essential for
reliable predictions of plastic strains.

This paper describes a viscoplastic analysis of fibrous composites under nonisothermal
loads in a high temperature environment. The analysis employs the periodic hexagonal
array (PHA) model (Dvorak and Teply, 1985; Teply and Dvorak, 1988) and the finite
element method to compute the overall response of unidirectional composites. A similar
analysis utilizing a rate-independent plasticity theory for the matrix was described by the



authors (Bakei-El-Din et al., 1989). In the present paper, constitutive equations of the
phases were derived from a viscoplasticity theory which includes many of the phenomena
observed in high temperature experiments of metallic alloys. First, we briefly describe the
composite representative domain based on the PHA model. The niw viscoplasticity
constitutive equations are presented next and followed by comparisoia of predicted and
measured imelastic strains of a unidirectional silicon carbide/titanium composite at
elevated temperature.

COMPOSITE REPRESENTATIVE DOMAIN

The composite domain used in predictions of fibrous composites was selected
according to the periodic hexagonal array (PHA) model developed by Dvorak and Teply
(1985) and Teply and Dvorak (1988). In this model, the microstructural geometry in the
transverse plane of a unidirectionally reinforced fibrous composite is represented by a
periodic distribution of the fibers in a hexagonal array. Cross section of the fibers is
approximated by a ,ax6--sided polygon. An example of the PHA microgeometry with
dodecagonal fiber cross section is shown in Fig. 1.

The hexagonal array shown in Fig. I is divided into two unit cells, as indicated by the
shaded and unshaded triangles. Under overall uniform stresses or strains, the two sets of
unit cells have related internal fields. Accordingly, under properly prescribed periodic
boundary conditions, only one unit cell from either set needs to be analyzed. Figure 2
shows a three dimensional view of one of the unit cells with hexagonal fiber cross section.

The actual analysis is performed by the finite element method. The unit cell is
subdivided into a selected number of subelements, element material properties are
prescribed as suggested in the sequel. The degree of mesh refinement may vary from few
elements in the matrix and fiber regions to several hundred elements. Figure 3 indicates
two possible subdivisions of the unit cell in the transverse plane. The effect of the mesh
geometry on the computed results was examined b Bahei-EI-Din et al. (1987, 1989), and
Sha and Teply (1989). In general, evaluation of t local fields requires a large number of
elements, while few elements are sufficient to satisfactorily compute the overall response.

THERMO-VISCOPLASTICITY OF THE PHASES

A number of viscoplasticity theories based on internal state variables have been
proposed in the literature. The work by Benallal and Ben Cheikh (1987), Chaboche (1989),
Krempl et al. (1986), Lindholm et al. (1985), and Walker (1981) is representative of the
modeling efforts for the time-dependent behavior of unreinforced materials under
thermomechanical loads. To reflect the particular inelastic behavior of ductile materials
under nonisothermal, nonproportional loading conditions that exist in the phases of a high
temperature composite, the present paper introduces a new rate-dependent constitutive
theory which is based on overstress measured from an equilibrium yield surface, and
incorporates a two-surface plasticity theory. At low homologous temperatures, and
isothermal conditions, the new constitutive equations reduce to the formulation by
Eisenberg and Yen (1981), albeit in a form more suitable for nonproportional loading.

Associated Flow Rule
We assume the matrix and fiber phases to be homogeneous and elastically isotropic.

Either phase may exhibit nonlinear response under thermomechanical loads which exceed
the elastic limit of the material. The total strain rate, lip is divided into elastic, thermal

and inelastic components:

.e .t .'

ti + ti+E 1i (1)ij -- ij "  i j  ij"(1

Assuming the thermoelastic properties to be temperature-dependent, the elastic and
thermal strain rates are given by

ij ijkl(o) Ok ,  
(2)
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= [(dMAf* (0)/ dO) ak + M ()] 9, (3)
ij Ijkl i

m () = 6l(0), (4)
i

where 0 is the current temperature, Mijkl() is the elastic compliance, bij is the
Kronecker's tensor, and f () is the coefficient of thermal expansion.

The inelastic part of the strain is found with the help of viscoplasticity theorems
based on overstress (Eisenberg and Yen, 1981; Krempl et al., 1986). We assume the
existence of an equilibrium yield surface which is the locus of all stress states that can be
reached from the current state by purely elastic deformation. Inelastic deformation
develops only when the stress point lies outside the equilibrium yield surface. In the
presence of kinematic and isotropic hardening, a Mises form of the current equilibrium
yield surface can be written as

f/= I($0 ) (,9j- a )-€ + ),=o, (5)

where stj is the deviatoric equilibrium stress tensor, aij denotes the center of the yield
surface, 1 = Y (9) is the yield stress in tension, which is independent of the loading rate,
and Q is an isotropic hardening function.

Corresponding to a given stress tensor, sij, which lies outside the yield surface (5),
there exists an equilibrium stress, sij, which satisfies (5), Fig. 4. Hence,

• [ ' Y (#) +J Q (0)] ' 1l2 I

ij 3sk- a i) (s k- a k) ~I ij (6)

The effective overstress, R, is a measure of the distance between the actual stress point, s..,

and the equilibrium stress point, a . It vanishes if the stress point lies on, or falls inside

the yield surface. In particular,

I

R " I -s)( S 3 ij)]2 if (s a > o (7)

R = 0 if f(s - a) )0. (8)

The inelastic strain rate is found from an associated flow rule in which the strain rate
is normal to the equilibrium yield surface and its magnitude is assumed in the form of a
power law of the overstress (Eisenberg and Yen, 1981):

i = 13/2) k (0) R ( soJ' ) , (9)
" = 1

where the functions k (0) and p (0) are material parameters and ni- is the unit normal to
the yield surface (5) at the current equilibrium stress point. From (5)

(s -a )(s -a)

n 1(3/2) i ij.(10)

S[(a' - C1 a )2(Y+ Q)kii hi



Un~er thermomechanical loads applied at high temperature, evolution of the
hardening variables Q and aiq, eq. (5), depends not only on the loading history but also on
time. In particular, thermal recovery of hardening caused by annealing may be significant.
The evolution equation for Q can be written in the following form which is suggested by
Nouailhas et al. (1983)

Q =q(0)lQa(#)-Q] '- br($)I Q-Q(6)1 (nr) r [Q-Qr()]. (11)

The functions Qa(d), q (0), br(8), Qr(8), and n,($) are material parameters, and ' is the
effective inelastic strain rate;

2=k()R ; c=-0. (12)

The first term in (11) represents isotropic hardening causei by inelastic flow, and the
second term represents thermal recovery of isotropic hardening. In the absence of thermal
recovery, the size of the yield surface f in the deviatoric stress space reaches the
asymptotic value ( Y + Qa). On the other hand, if the inelastic strain rate is zero, the size
of the yield surface Y in the virgia state is recovered either totally (Qr = 0), or partially
(Q # 0).

In analogy with (11), and permitting complete thermal recovery of kinematic
hardening, the evolution equation for the center of the yield surface, aij, can be written as

ij -c() (m(U)- l) (13)

In the absence of inelastic deformation, complete thermal recovery of kinematic hardening
is achieved by the second term in (13). The functions cr(O) and mr(0) are material

parameters, and Z is the magnitude of aij defined by the invariant

= )2 (14)

The first term in (13) represents kinematic hardening caused by inelastic deformation in
the tbsence of thermal recovery. The unit tensor vii defines the direction of translation of
the )Ield surface in the deviatoric stress space, and can be specified according to the
hardening rules applied in rate--independent plasticity theories. Here, we select the
Phillips hardenin& rule which has been observed in room temperature, and high
temperature experiments on certain materials (Phillips et al., 1972; Dvorak et al., 1988).
In particular, we specify

ij =ij /(s k )2  if # 0 (15)

v =n if a =0. (16)ii ij i

The factor u in (13) is found from Prager's consistency condition, f 0, when
translation of the yield sur ace is specified by the first term in (13):

f -- $sj o U ($ - U) ij- I(Y+-Q) (Y +Q) -- 0. (17)
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I Using (10)2, eq. (17) can be rewritten as

i8i- T -2/3) ( Y + Q)= . (18)
nii 3ij- ii ii

The first term in (18) is found by equating the inelastic strain rate given by (9) and the
inelastic strain rate given by the associated flow rule of rate-independent plasticity
(Eisenberg and Yen, 1981). The result is

ij ij = 1(2/3) [H(0) k (0) R + Y() (19)

where, H (9) is the instantaneous tangent modulus of the inelastic stress-strain equilibrium
curve. Substituting (11), retaining only the first term, and (19) into (18) and using (12),
the factor i can be found as

P (920I =(2/3) k (0) R 1 0 H (0) - q -Q]]J/ k1 v k1 (20)

Two-Surface Plasticity Theory
A bounding surface is used to establish the instantaneous tangent modulus H and to

describe the cyclic behavior of the material, Fig. 4. This surface is derived as an isotropic
expansion of the initial equilibrium yield surface. During inelastic deformation, the
boundin surface translates in the stress space and exhibits isotropic changes as well.
Translation of the bounding surface is dictated by the requirement that the yield surface
and the bounding surface have a common normal when they become in contact. Details of
this kinematic hardening rule are given by Dafalias and Popov (1976). In analogy with the
equilibrium yield surface, thermal recovery of isotropic as well as kinematic hardening of
the bounding surface can be included in our model. This is omitted here for brevity. We
only mention that the recovery terms for isotropic and kinematic hardening of the
bounding surface assume a form similar to those suggested above for the yield surface, but
with new material parameters.

The instantaneous tangent modulus, H, is found as a functicu of the distance, 6,
between the equilibrium stress, sij, and a corresponding point on the bounding surface, stj

with unit normal jij(iij) = nij(sjj)"

I H(0) = f(O) + h(0) [6/(60- 6)], (21)

I-6[23 o(1, s] (22)

where 60 is the distance between the yield surface and the bounding surface at the onset of
inelastic deformation. When the equilibrium stress point lies on the bounding surface, the
plastic tangent modulus assumes the asymptotic value Ho(9). Both Ho(O) and h (0) need to
be determined experimentally.

COMPARISON WITH EXPERIMENTS

The v 'coplasticity constitutive equations described in the preceding section were
implementet. in the ABAQUS Siite element program. The program was used to evaluatethe rate-dependent behavior of unidirectional composites using the geometry specified bythe PHA model. In the present paper, we used a coarser version of the mesh shown in
Fig. 3a (40 matrix elements, and 18 fiber elements) to evaluate and compare the overall
multistep creep strains of a unidirectional SCS6/Ti-1-3 composite to the experimental
results provided by Tuttle et al. (1990) at 5660 C.

Elastic, isotropic behavior is assumed for the silicon carbide fiber. The fiber
properties are shown in Table 1 at 50 C. The titanium matrix is elastic--viscoplastic.

"T-



The material parameters required by the viscoplasticity theory described above were found
by fitting the streh-train response measured experimentally for several unreinforced
titanium specimens fabricated by diffusion bonding of Ti-15-3 foils. The properties of the
neat matrix are therefore expected to be representative of the in itu properties of the
matrix phase in the composite.

Six unreinforced Ti-15-3 specimens were tested in uniaxial tension by Tuttle,
Rogacki and Johnson (1990) at room temperature, 4820C, and 6490C. At each
temperature, two tension tests were performed, one under stresa-controlled loading at a
rate of 2.6 MPa/s, the other under strain-controlled loading at a rate of 10-4/s. The
strain-controlled tests consisted of a number of loading and relaxation periods. The hold
strain and time are given in Table 2 for the three test temperatures. Figures 5 and 6
compare the computed and measured stress-strain curves. The matrix parameters used in
fitting the experimental curves are shown in Table 3. The script Latin letters shown in the
first column of Table 3 indicate material parameters related to the bounding surface and
have the same meaning of their yield surface counterparts. For example, F is the 'radius'
of the bounding surface, and Cr , r are material parameters which define the recovery
term for kinematic hardening of the bounding surface. Material parameters not shown in
Table 3 are assumed zero. For intermediate temperatures, the material constants are
found by linear interpolation between the values given in Table 3.

The phase properties determined above were used in the PHA model to compute the
overall strains in the fiber direction of a 00, SCS6/Ti-15--3 composite corresponding to the
multistep creep loading history shown in Fig. 7. The axial strain computed at 566oC is
compared to the experimental record provided by Tuttle et al. (1990) in Fig. 8. At the
onset of creep strain, marked in the figure for each stress level, the computeu and measured
axial strains are matched. In this way, we compare the results for the creep behavior
alone, and eliminate any descripancies between the experiments and the numerical
simulation that might have been caused during application of the overall stress.

CONCLUSION

The nonisothermal elastic-viscoplastic response of fibrous composites at high
temperatures was modeled using the periodic hexagonal array (PHA) model. Constitutive
equations of the phases were derived from a new viscoplasticity theory which is based on
overstress measured from an equilibrium yield surface, and includes isotropic and kinematic
hardening rules with thermal recovery terms. A two-surface plasticity theory was also
incorporated in the model to account for nonproportional loading. The model involves
several material parameters, the number of which increases as the material behavior
becomes more complex. For example, modeling complete thermal recovery requires four
parameters, two for isotropic hardening and two for kinematic hardening. Modeling partial
thermal recovery in isotropic hardening requires one additional constant.

Actual calculations of the over strains were performed with the ABAQUS finite
element program for a unit cell of the composite as defined by the PHA model. Axial
strains found in a high temperature multistep creep test performed on a SCS6/Ti-15-3
composite were successfully reproduced by the model.
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Table I Thermoelastic constants of SCS6 fiber

Temperature E *v t

(0C) (GPa) (10/ 0C)

566 397.1 0.25 4.6

I Young's Modulus.
tPoisson's Ratio.
S Coefficient of Thermal Expansion.

Table 2 Hold strain and time applied in relaxation tests of Ti-15-3 experiments

Hold Time (s)

Strain (%) 210C 4820C 6490C

0.75 - 690 450
1.50 300 300 300
2.25 300 540 300
3.00 300 480 300
3.75 300 600 300
4.50 300 480 300
5.25 300 540 300
6.00 - 480 300
6.75 660 -

Table 3 Elutic-thermoviscoplastic constants of Ti-15-3 matrix

Material Units 210C 4820C 6490C

Constant

E GPa 92.4 72.2 55.0
v 0.351 0.351 0.351
Y MPa 790 45 15.5
Ho MPa 1400 40 50
h GPa 21 350 162
F MPa 915 1100 316p 3.75 1.85 1.43

k (MPa)-P/s l.6x10 "I 4.2x10 "  3.2xI0 4

Q6 MPa -120 -10 -5.0
is MPa 350 100 95
q 800 5.5 2.61

9 800 5.5 2.61
mr 1.2 1.29 1.35

r 1.2 1.29 1.35

Cr (MPa)-r+1/s 8.0x10 "s  5.0x10 4  2.0x10 "l

I (MPa) - 4 r+l/s 8.0xlO-1 5.OxlO 4  2.0xlO'"
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IFig. 1 Transverse plane geometry of the PHA model with dodecagonal fiber cross

I 2

Fig. 2 Unit cell of the PHA model.
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Fig. 3 EXamnple. of finite element subdivisions of the PEA unit cell in the
transverse plane.

Surfs*e Bourng

t0i1 al1 .0) - 0

Fig. 4 Schematic of equilibrium yield surface and bounding surface in the deviatoric
stress space of an elastically isotropic material.
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Fig. 5 Comparison of measured and computed isothermal response of a Ti-15-3
specimen at room temperature, 482 0C, 649 0C, and stress rate of 2.6 MPa/s.
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Fig. 6 Comparison of measured and computed response of a Ti-15-- specimen at
room temperature, 482 0C, 649 0C, and strain rate of 10-4/s.
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Fig. 7 Stress history applied in multistep creep test of a SCS6/Ti-15-3 composite.
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Fig. 8 Comparison of computed and measured strain found in multistep creep test
on a SCS6/Ti-15-3 composite.
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Dimensional stability of metal-matrix
laminates
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The dimensional stability of metal matrix composite laminates under thermal
fluctuations and thermomechanical load cycles is examined. The system
considered as a model material is a Gr/AI (±q). laminate. The analysis is
performed by the finite-element method while the underlying constitutive
equations of unidirectional composites are provided by the periodic-
hexagonal-array (PHA) micromechanical model. A computationally more
efficient and equally accurate method based on fiber-dominated analysis of
unidirectional composites by the self-consistent method is also presented. The
results show that laminates of the model system with q = i2 are dimensionally
stable in the elastic range when subjected to pure temperature changes. Plastic
deformation of the matrix causes permanent dimensional changes, which can
be reduced by heat treatment of the composite. Under thermomechanical
loads, (±97), laminates are not in general dimensionally stable. Dimensional
stability of the laminate was enhanced by plastic deformation of the matrix for
in-phase thermal and mechanical load cycles and reduced for out-of-phase
cycles.

Keywords: metal matrix laminates, dimensional stability, thermoplasticity,
thermomechanical loads, finite elements, micromechanics.

I INTRODUCTION large. This causes large local stresses to develop
in the phases and it leads to plastic deformation

In certain aerospace structures, high specific in the matrix under small temperature changes.
stiffness and strict dimensional tolerances are For example, a simple calculation of the matrix
major design criteria. The typical loads consist of axial stress in a unidirectional 6061-F Al/Gr com-
thermal fluctuations in the range of ±2000 C, posite reveals that the composite yields after a
which may be accompanied by mechanical load temperature change of about 40C.' Similar
cycles. Among the leading material candidates in observations were found in tests performed on
these applications are metal matrix composites. Gr/A! and Gr/Mg composites." Under these
In particular, continuous graphite-fiber- circumstances, dimensional stability of metal
reinforced metals are considered for their high matrix composite materials and laminates should
axial stiffness and low coefficient of thermal be examined with accurate micromechanical
expansion. models, which permit plastic deformation of the

The thermal mismatch in the axial direction matrix.
between the fiber and matrix phases in In this paper, dimensional stability of Gr/AI
graphite-reinforced composites, however, is composite laminates is evaluated for purely

thermial as well as thermomechanical load cycles.
Structural Engineering Department. Cairo University, The effects of matrix yield stress, hardening, and

Giza. Egypt. coupling between thermal and mechanical loads

Composites Science and Technology 0266-3538/911$03.50 on the dimensional stability of (±qp), laminates

C© 1991 Elsevier Scence Publishers Ltd. are of primary interest. The elastic-plastic
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analysis used in this study is a finite-element- equations of the unidirectional composite are
based procedure that incorporates micromechani- provided by the PHA model.' Figure 1 shows
cal models for unidirectionally reinforced an example of the finite-element mesh for a
materials.5 6 The results presented here were (±q), laminate. It consists of two eight-noded
obtained from the ABAQUS finite-element brick elements, one for each +qp and -(p ply.
program with the constitutive equations derived Uniform displacements were prescribed on each
from the periodic hexagonal array (PHA) surface of the finite-element domain. To simulate
model." - The paper also presents a laminate the symmetric layup, the displacements in the x3
analysis, which can be used in lieu of the direction were prescribed as zero for the nodal
finite-element method for composite systems that points in the xx 2 plane.
exhibit fiber-dominated deformation,9 such as Another approach to the solution of the stated
graphite-fiber-reinforced composites. laminate problem is the laminate theory, which

The plan of the paper is as follows. In Section assumes that the plies have equal in-plane
2, we address the thermomechanical loading strains. As before, the response of each ply is
problem for laminates and discuss available derived from a micromechanical model of the
methods of analysis. A laminate analysis based composite. Bahei-EI-Din and Dvorak"0 found the
on correspondence between mechanical and solution for mechanical loads by using the
thermal loads is presented in this section. In laminate theory and the vanishing-fiber-diameter
Section 3, we present finite element results for (VFD) model." Their approach was used for
the dimensional stability of (±97), Gr/A! thermomechanical loading of unidirectional com-
laminates. Finally, the method of Section 2 is posites and laminates by Bahei-EI-Din' and Min
used to generate master curves for evaluation of and Crossman. 2 Alternatively, Bahei-EI-Din 2

axial strains in (±qq), laminates corresponding to converted the thermomechanical problem for
a wide range of axial load/temperature ratios. laminates to a mechanical loading problem that

can be solved by the laminate theory. The
method used is based on a decomposition

2 THERMOMECHANICAL ANALYSIS OF procedure which was introduced by Dvorak 3 for
LAMINATES unidirectional composites (see Appendix A). In

this method, the plies are separated and in-plane
Consider a symmetric laminate consisting of tractions are applied to each ply in order to
several identical unidirectionally reinforced thin maintain the current stresses. A temperature
laminae in which the matrix is isotropic, and the increment dO is then applied to the plies
fiber is transversely isotropic and their properties according to the procedure given by Dvorak. 3

are not a function of temperature. The plane of This leaves each ply with axisymmetric auxiliary
the laminate coincides with the xx 2 plane of a stresses, sA dO in the axial direction and ST dO in
Cartesian co-ordinate system that is parallel to the transverse plane. The corresponding over-all
the fIf 2 planes associated with the laminae. The

X3 and x3 axes are perpendicular to the plane of x,
the laminate. The fiber orientation of lamina i is
specified by the angle 4i between the local i,
axis and the overall x, axis. If the laminate is x2
subjected to the in-plane stress increments do,,, x2
don, do,,, together with the temperature 3
increment dO, we wish to evaluate the local
stresses in the matrix and fiber as well as the
overall strain.

The solution to this problem can be obtained
in several different ways. One approach, which is
employed in Section 3, uses the finite-element -0 py
method for a stack of elements, each of which
represents a unidirectional lamina with specified -- f x

fiber orientation. In the present study, we used mde
the ABAQUS program, in which constitutive Fig. 1. Finite element mesh for (9q'), laminates.I
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strains are isotropic and uniform in the entire axisymmetric stresses sA dO and St dO. The
composite (see Appendix A). Hence, the strains second term is the strain caused by application of
are compatible in the xjx 2 plane regardless of the the equivalent stress do*, eqn (4), to the
fiber orientation, and the laminate can be laminate.
reassembled. Upon reassembly. the laminate The non-zero matrix stresses in the plies are
supports an overall stress do. which equilibrates the in-plane stresses do , = [doT, do do ml r and
the lamina stresses. the out-of-plane component do7. The matrix

For the (±q), laminates considered in the stresses are non-uniform in reality." Here.
present paper, the stress components of do are however, we adopt Hill's approach 5  and
given by:2 compute the average stress in the phases. Let 19

dd,, -s, d0, dd22=s, dO, dI33 = stdO, (1) and y define the in-plane average stress
concentrations for the matrix of a specific ply

di 23 = d6 3, = d6,2 = 0, (2) under over-all in-plane stresses and out-of-plane
S1 =AO2+ 2normal stress, respectively. The first column of W

s + Si 2 
q. (3) is the stress do,,, caused by over-all stress do, = 1

s2 =sAsin' +STcos 9'. applied to the laminate, the second column
The stresses sA and ST are given in Appendix A. corresponds to dU22 = 1, etc. Similarly, 9 is the
The actual fields caused by the temperature stress do, caused by do 33 = 1. Now, the matrix
change dO are found by superposition of the in-plane stress in the ply under consideration
fields developed in the plies of the decomposed caused by do and dO can be written as:
laminate and those caused by removal of the do,=sTld0 + %(do'-sd0)--S~d6. (6)
over-all stress d . Simultaneous application of The ste d O + write as d
the in-plane stress increments dao,, do22, d, 2  The stress do is written as:
and the temperature increment dO to the daol= STdO+ T (do' - s dO)- OST dO, (7)
laminate is therefore equivalent to application of :
the mechanical load: where /, . are stress concentration factors for

matrix out-of-plane normal stress corresponding
do* = [(do,, - s, d0)(do 22 - s, dO) to over-all in-plane stresses and out-of-plane

- STdO do12 0 OJT. (4) normal stress, respectively. Formulae for the

The equivalent mechanical load (4) consists of concentration factors 19, .9, /1, , are given in
in-plne trequsaent han load normal ostess Appendix B. They are functions of the fiberin-plane stresses and out-of-plane normal stress. orientation, local instantaneous properties of the

Let a superimposed prime on the stress or phases, and phase volume fractions. The first
strain vectors indicate (3 x 1) arrays listing term in eqns (6), (7) is the isotropic stress caused
quantities associated with the xx 2 plane of the in the matrix by the axisymmetric stresses s, dO
laminate, e.g. and ST dO in the decomposed laminate (see

do' = [do, do do,2 ]T , Appendix A). In a plastically incompressible

d' = [de,, de2 2de,2IT. matrix, this isotropic stress state does not cause
plastic deformation. The second term in eqns (6).

The over-all in-plane strains caused by simul- (7) is the stress caused by the in-plane
taneous application of do' and dO are then found mechanical load (do' - s dO), and the third term
as:'2  is the stress caused by removing the out-of-plane

dE' = hi dO + A[do' - (sd8 + AST) dO] (5) normal stressSTdO.

where s = [s, S0 ]T , 1 =[1 1 0 JT
, and h is given

in Appendix A. Matrix A is the instantaneous 3 DIMENSIONAL STABILITY OF (±W),
compliance of the laminate associated with LAMINATES
in-plane loads, and A defines in-plane stresses
caused by unit out-of-plane normal stress when 3.1 Elastic coefident of thermal expansion
the in-plane strain dE' equals zero. Expressions
for A and A are given in Appendix B. The first The system under consideration is a graphite-
term in eqn (5) is the uniform strain generated in fibre-reinforced composite. This is a particularly
each ply of the decomposed laminate by the attractive system in dimensionally accurate



210 Yehia A. Bahei-EI-Din, George J. Dvorak, Jer-Fang Wu

Table 1. mawe, propertes for papme be ad alumi. can be reached from the current state by purely
alm Maix elastic deformation in the matrix phase for all

EA ET G4 VA a plies. The yield surface may translate in the
(Oa) (OPa) (GPa) (10-°C) (10- 6/°C) over-all stress space as a result of hardening of

P100Graphite 690 6-07 15.5 0-41 -1.62 10-8 the matrix and/or the constraint imposed on the
Aluminum 72.4 72.4 27-2 0.33 24-0 24-0 matrix deformation by the fibers.' Matrix

hardening takes place only when plastic strain
applications, since the graphite fiber has a develops in the matrix, whereas constraint
negative coefficient of thermal expansion (CTE) hardening is present for both elastic and
in the axial direction, which tends to reduce the elastic-plastic systems when mechanical loads are
axial thermal strain developed in metal matrix coupled with thermal changes. It was shown by
composites. A dimensionally stable laminated Dvorak, Rao, and Tam'6 and Bahei-EI-Din" that
system can therefore be designed by variation of the over-all yield surfaces of unidirectional
the fiber volume content and/or the fiber composites and laminates translate in the stress
orientation. Here, we assume that the fiber- space if the composite is subjected to a thermal

volume fraction is constant in all laminae at 0-5 change.

and select aluminum for the matrix material. For elastic laminates, the translation is given
Elastic properties of the matrix and fiber are by the stress vector dd (eqns (1)-(3)). '7

shown in Table 1. Evaluation of the yield surface translation for
The effect of the fiber orientation in (±q), elastic-plastic laminates is more complex. In the

laminates on the over-all axial CTE is examined examples given in the sequel, the over-all yield
in Fig. 2. Computation of the over-all response of surface and its translation were found from the
the laminate was made with the ABAQUS laminate analysis given in Refs 10 and 17.
program and the implemented PHA model by Figure 3 shows three sections of the initial
using the finite-element mesh of Fig. t. It is seen yield surface (A0 = 0) of (±12),, Gr/AI lamin-
that the unidirectional composite does not exhibit ates in the plane stress space. The yield surfaces
dimensional stability in the elastic range. were computed for a von Mises matrix and a
Dimensionally stable systems are found at
97 = 12, 380. Strength and stiffness considera-
tions exclude the system with 9p = 380. Our
subsequent analysis will therefore, focus on
(-12), laminates. G,,. c,. 0. ,,

3.2 lnttlal yelding A[ .. 4M--

The over-all initial yield surface of a composite - ------
laminate is the envelope of all stress states that I

-400 -200 0 200 400 600 80

0,, (MPa)
X, 200

z , asA 0 0_ _ __
Gr'IA c,. 0 5.....

/22-

0 " :12'piy
0 -4002-200 0 200 400 6W Wo

(' (MPa)
Fqlg 2. Vanatmon of axial elastic coefficent of thermal

expansion of (kIg'), larmnates. FiI ,3. Initial yield surfaces for a (:1:12). laminate.



Dimensional stability of metal-matrix laminates 211

matrix tensile-yield stress of 70 MPa. The latter is 3so
approximately the magnitude of the yield stress 30 G, Al c. .05

,E., E) 0 167

for 6061 aluminum in the as-fabricated condition.
For each ply, there is a yield surface in the
over-all stress space. The over-all yield surface is 0"
the inner envelope of the two surfaces shown in s "k

Fig. 3. Note that. in the 11,0.2 plane, the yield "'
surfaces of the +(p and -'p plies coincide. < -5,

Under a temperature change dO, the centers of -,0 12.

the yield surfaces for the +92 and -q plies are _1 ..

located at dd (eqns (1)-(3)). At the onset of -'20r e C0 )4 ° 4°

yielding, at least one of the yield branches Tep ,fa,e C)

contains the stress origin. This is shown in Fig. 3, Fig. 4. Temperature/axial-strain response of a unidirec-
tional composite and (±12), laminate with (E,,,iE)-=

where yield surfaces of the (±12), laminate are 0.167.

drawn at the yield temperature A0 = 420C. Note
that both plies yield together and that the Figures 4 and 5 show the axial thermal strains

response under subsequent mechanical loading generated in unidirectional and (±12), Gr/At
will be very much affected by the temperature laminates under the temperature cycle 20-

change. For example, after the temperature 120--+ -120--* 120°C. Although the composite is

change indicated, the laminate response is elastic dimensionally stable for q? = 12' in the elastic

under axial tensile stress a,, and elastic-plastic range, it is not stable in the plastic range.

under axial compression. In the a,,o,2 plane, the Furthermore, the 0* lamina, which did not

over-all elastic domain is reduced substantially exhibit stability in the elastic range, developed

after the temperature change, while it completely a total strain during the thermal cycle much

disappears in the 022012 plane. smaller than that found for 'p = 12°. Hence, the

The implication is that relatively small dimensional stability of the laminate was

temperature changes may cause yielding of enhanced by plastic deformation of the matrix for

laminates and that the over-all deformation the 0 laminate and reduced for the (±12),
under thermal loading can be affected sig- laminate. As expected, the over-all strains found

nificantly by the presence of mechanical loads for the composite with (E,.,/E), = 0-667 (Fig. 5)

and vice versa. Moreover, the mechanical- are much smaller than the strains found for

loading direction is expected to influence (E,,/E) = 0167 (Fig. 4).

dimensional stability under thermal loads. These The axial CTE in the elastic and elastic-plastic

effects are examined in the subsequent sections. ranges are compared in Fig. 6 for 0 5 q? < 45'.
The magnitudes of the over-all CTE were found
as the slopes of the linear parts of the

3.3 Dimensional stability under pure thermal strain-temperature curves computed for each
loading0

It was shown that initial yielding of the composite 3_ G,,. c, 0,5

laminate occurs for a temperature change of only (E..,C) - 0 67

42°C. In this section, we consider applications in 2W

which the laminate is subjected to thermal cycles
in the range ±120*C. Consequently, plastic 0 ,7_. -.....-- -
deformation develops in the aluminum matrix, so- - .

which may affect the dimensional stability of the O .

composite. Linear work-hardening was assumed 4 -so -0.0-

for the matrix response in the plastic range. Two -,00, 4 . .r
values were considered for the elastic-plastic _'20 , , ,

tangent modulus, E,.,, of the matrix, (E,../E),, Temperature (C

0.167, 0.667, which correspond to plastic tangent Fig. S. Temperature/axial-strain response of a unidirec-
moduli, H, of 14.5 GPa and 145 GPa, tional composite and (±12), laminate with (E,.,IE).=
respectively. 0.667.
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, unidirectional composite experiences dimensional
!1 changes during thermal cycling that are much

G,;AI c .o+ x, smaller than those found for other layups. Li
3 0 actual applications, however, small off-axis

ELATI angles may be required to enhance the transverse
E. E.. stiffness and strength of the composite.

The results are, of course, affected by the0 _ matrix properties, as is evident from the response
z Iof the two matrices considered here. Different3,,matrix responses can be achieved by heat

PLAsTIc treatment, which affects both the magnitude of
Ethe matrix yield stress and the plastic tangentS30 modulus. The effect of the matrix yield stress on

,oL dimensional stability of laminates is examined in
the sequel.

l%. 6. Variation of axial coefficient of thermal expansion
for (±p), laminates. 3.4 Dimensional stability under

thermomechaninkl loads
layup by using ABAQUS (see, for example, Figs
4, 5). It is clear that plastic deformation oi &.e In certain structural applications of fibrous
matrix affects the dimensional stability of composites, temperature changes generate mech-
composites to a great extent. For example, elastic anical loads. Statically indeterminate truss beams
laminates have a vanishing CTE for 97 = 120, 380, considered for space structures" are examples of
whereas laminates with the stiffer matrix in the this situation. To examine the effect of combining
plastic range show this property at qp = 28, 41*. mechanical and thermal loads on the dimensional
On the other hand, laminates with the softer stability of composites, we consider again the
matrix in the elastic-plastic range have a (±12), Gr/Al laminate with (E,,/E)m = 0-167.
vanishing CTE at 97 = 450. The large lamination The response under three separate loading cycles
angles are obviously not useful in real applica- is examined: (a) the thermal-loading cycle
tions since they lead to large plastic strains and applied in the previous section (20--. 120-
reduce the composite stiffness substantially. -120-- 1200C), (b) the same thermal-loading

Figure 7 shows the total axial-strain range cycle combined with the axial
found during the thermal loading cycle indicated tension/compression load cycle (0--+ 300-
in Figs 4, 5 as a function of the lamination angle, -300-- 300 MPa), (c) the thermal cycle combinedS q-. The strain magnitudes found for q = 120 with the axial compression/tension load cycle
during the cycle are indicated. It is seen that the (0-. -300-. 300--. -300 MPa). Let r and p

indicate the ratio of axial load to temperature
(MPa/°C) and the axial load amplitude (MPa),

' 1 c -0.5respectively. Hence, the three loading cases
low .11 120c indicated above specify thermal cycling in the

- o range ±120C with (r, p) = (0, 0), (2-5, ±300),
Wo (-2.5, M300), respectively.

0(E,,/E).. -1000The over-all strain computed in all three
(E.I ,V.. ) .67 loading cases is plotted as a function of

/ - temperature in Fig. 8. The mechanical-loading
5 . parameters r, p and the total strain range, AE1,,

10 W.O-0 found in each case are tabulated. As expected,
*0- '40- dimensional stability is lost in the elastic range
c, , when the laminate is subjected to mechanical
0 IS 30 ,5 loads. Since the axial elastic CTE vanishes, theI(d rm) strain developed in the elastic range is only

FiS. 7. Variation of axial strain range for (±q'). laminates mechanical. The elastic-plastic response under
under ±t 120 cycles. thermomechanical loads is also very different
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E.

SGt Al. c..-05
E E) = 0 167 ,

Gr AI. c.- 0 5 Y . 70 MPa
EE) 0167 -10 t 20 C...

Y . 70 MPaY.ZOM0 a -2 O'. MPa)

. as - -120' " C

-'20 CNIP&( C, Io

a 0 1 0 360
W -25 =300 '585 a) = =
C -25 "300 2324

a,, MPa
12502 -20 C

1000,e , -00 % 2

75O ( - 3 7 -"W' C .. ..

-25 " C , M P ajSoo

b r = 2.5 MPa(C. p = t300 MPa

S 0

(a) ~a(3 -25 0, W. M a)

-500 250 - .20 120 '20 C

-300 = 300 MPa 0," MPal-100( (C) -250-

-1250'
- 00 -60 -20 20 60 100 (c) r -25 MPa°C. p.;300 MPa

Temperature ('C) Fig. 9. Over-all yield surfaces of a (± 12), laminate in the

Fig. S. Temperature/axial strain response of a (±12). 0i,, plane corresponding to the thermomechanical load
laminate with matrix yield stress Y=70MPa under cycles of Fig. 8.

thermomechanical load cycles in the range ± 120"C.

1200C, the yield surface remains in contact with
the origin and the matrix deforms plastically. On

from the pure thermal loading case as indicated the reversed part of the cycle from 120 to
by the slopes of the strain/temperature seg- -120"C, the yield surface translates in the
ments. The loading direction affects the results direction of the negative o axis, where it
significantly. The results show that larger strains comes into contact with the origin at about 42°C.
occur when r is negative (case (c)). In this case, At this temperature, plastic deformation again
both the temperature change and the mechanical develops in the matrix, and the yield surface
load produce axial compressive stresses in the remains in contact with the origin to the end of
matrix. This causes the composite to yield at a this thermal-loading segment. In loading case (b).
lower temperature as compared with the cases r = 2-5, p = ±300 MPa, both the loading point
with r = 0 (case (a)) and r >0 (case (b)) and and the yield surface move along the positive ,,
results in larger plastic strains during the same axis but with different rates relative to the
thermal cycle. As may be seen in Fig. 8, the temperature. This delays yielding of the lamin-
dimensional stability of the laminate is enhanced ate, which occurs at about 80"C (see Fig. 8) and
by plastic deformation of the matrix for r > 0, axial load of 180 MPa (note that r = 3 for the first
and reduced for r s 0. loading segment). The yield surface translates at

The effect of thermomechanical loading on a higher rate than to the stress point, and as such
plastic deformation of laminates is illustrated the yield surface comes into contact with the
with the help of the yield surface in Fig. 9. The loading point at the trailing end of the surface.
initial yield surface of the (±12), laminate The process is repeated when the load and
together with the yield surfaces corresponding to temperature are reversed.
120 "C and -120"C are shown for the three Yielding of the composite is accelerated, on
loading cases indicated above. In case (a), r = 0, the other hand, when r<0 (loading case (c),
p = 0, the yield surface translates in the direction r = -2-5, p = T-300 MPa), where the loading
of the positive o,, axis and contains the stress point and the yield surface move in opposite
origin at 62"C (A = 42°C) as indicated pre- directions. The composite in this case yields at
viously. As the temperature increases from 62 to about 50"C (see Fig. 8) and an axial load of
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-90 MPa. Continued loading results in transla- '.

tion of the yield surface in the direction of the
negative o, axis where it remains in contact with c

the loading point. At 120 0C and -300 MPa, the E ;E)-..0,17 X2

yield surface is pulled back by the loading point y. 282Pa
to a position that is almost identical with the o 2500c
initial position. Loa" rtMP&'CI MPal 1

t., o 0 0 392

3.5 Effect of elevated yield stresb, .12 03® 150
-2 300 2334

In the preceding sections, we showed that plastic
deformation of the matrix may enhance or
reduce the dimensional stability of composites. 700Through heat treatment, it is possible to change o
the matrix properties in such a way that the 20

dimensional stability of the composite is en- 0)
hanced. We have already shown that increasing (a)
the plastic tangent modulus of the matrix reduces W-
the thermal strains significantly (Figs 4-7). In this -750
section, we examine the effect of the magnitude -1250 (C)
of the matrix yield stress, particularly when it is -2W -, 0 M

elevated by heat treatment (for example, by the Temperature ('C)

T6 temper). F. 11. Temperature/axial strain response of a (t12),Consider again the (±12), Gr/A! laminate and laminate with matrix yield stress Y=280MPa ..nder
assume that the matrix yield stress in simple thermomechanical load cycles in the range ±2500 C.

tension has been increased from 70MPa to
280 MPa. The computed axial strain is shown in (±1200 C), the laminate remains elastic. Compar-
Fig. 10 for the three loading cases described ing the strains found in this case with those given
previously. For the temperature range indicated in Fig. 8, we find that increasing the yield stress

1, by 400% reduced the strains developing under
1temperature coupled with compression/tension

loading (r = -2-5, p = T300) by about 25%. The
G,,A c,.05 strains found under temperature and tension/(E _ ,'E) . . 0.167 .
Y.EE Pa compression loading (r = 2-5, p = ±300), how-
AO t 120*c ever, increased by about 10% when the matrix
LOd" ONV ,,,PC) Poa -,' , yield stress increased.Figure 11 shows the response when the

0 0 0
-1: .2s ±0 ,754 composite is cycled between 250"C and -250*C.

, -25 0 1754 The axial strains developed in this case are
250 comparable with those developed under ± 120'C

'WO (b) cycles and 70MPa matrix yield stress (Fig. 8).
7W 'Consequently, if a certain tolerance is imposed
SM on dimensional changes of the laminate, they can
2W - be met for various temperature and mechanical0 _ __ (a) load ranges by changing the matrix yield stress

through heat treatment. In Section 5, we present
master curves that may aid in design for specific

.w (C) dimensional tolerances in Gr/Ai laminates.

- 00 -40 -20 20 0 100

Temperature (*C) 3.6 Sumnary

Fli . 10. Temperature/axial strain response of a (±12),
laminate with matrix yield stress Y - 280 MPa under The results presented in the preceding sections

thermomechanical load cycles in the range :120C. are summarized in Table 2. The case of a matrixI
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Table 2. Summary of dUesioma.stabillty results for "
P90Gr/AJ, (±12), laminate [ct=0-$, (E,.jE).=O."67I

Loading path Total axial-strain range,
e(10 m)rn/r

A0 r p 6061-O Al 6061-T6AI 0
'C (MPa/ 0C) (MPa) (Y=70MPa) (Y=280MPa) a, 9

±120 0 0 360 0
±120 2-5 ±300 1585 1754
±120 -2.5 T 300 2324 1754
±250 0 0 905 392 66"
±250 1.2 ±300 1002 1550±250 -1.2 ±300 2879 2335 Fig. 12. Schematic representation of temperature-axial-±250__-1_2_T_300_2879 _2334 _ strain curve for a laminate under thermomechanical loads.

yield stress of 70 MPa and temperature range of curve is bi-linear and consists of an elastic part.
±250°C is added to the cases discussed previously 00 - 0: < e where 0, is the yield temperature.
for comparison. and an elastic-plastic part, 0 > 6y. The slope of

For the model (± 12), laminate considered here the elastic segment of the curve is given by
and the temperature and axial loading ranges (r/E, + ox,), where r = a,1/(e - 0o), E, is the
indicated, we find: laminate axial elastic Young's modulus, and a, is

the laminate axial elastic coefficient of thermal
expansion. The slope of the elastic-plastic

(i) dimensional stability is achieved for the exaso.Te lpe fth eati-atc
(i) m pe on shmatai i i l a ed forthe segment is a function of the loading path, r, and
T6 temper of the matrix alloy and pure the matrix plastic tangent modulus, H. Let
thermal loading of + 120oC; s(r, H) denote the slope of the elastic-plastic

(ii) overaging enhances dimensional stability portion of the overall strain-temperature curve.
under pure thermal loads (r = 0), and The over-all axial strain is written as:
under out-of-phase thermal and mechani-

cal loads (r<0); 1= (r/E + al)(0 - 8o), 60 s Oe, (8)
(iii) the dimensional stability of the composite El = (r/E, + ar,)(6v - 8o)

is enhanced by plastic deformation of the
matrix when the temperature change and
the mechanical load are in-phase (r >0); The overall axial-strain/temperature curve can
otherwise it is reduced; easily be constructed for a cyclic proportional

(iv) the dimensional stability was unaffected axial-load/temperature regime as shown in Fig.
when the operating temperature range 12.
increased from ± 120*C to ±2500C and the The elastic over-all coefficient of thermal
matrix yield stress increased from 70 MPa expansion, a, and Young's modulus, E,, are
to 280 MPa. given in Figs 6 and 13 for a Gr/Al composite and

04- Gr/AI. c, - 0.5 .

4 DESIGN CURVES FOR GR/AL 0,

LAMINATES
- 03

In this section, we use the thermomechanical U

analysis described in Section 2 to produce master 02 -

curves for calculation of the axial strain in Gr/AI
(±q), laminates. The load consists of propor- 01
tional axial stress cy, and temperature change 0 _ 01

from a reference temperature 00. We assume a <
von Mises matrix with a bi-linear stress/strain 00 L 40 4t

curve. o (degrees)

Figure 12 shows a schematic representation of Fig. 13. Variation of axial elastic modulus for (±9q7),
the over-all axial-strain/ temperature curve. The laminates.
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0-- qps 45°. The magnitude of the yield tern- W I "
perature is a function of the matrix yield stress Gr0 I C. E 0.167C

and the ratio r between the mechanical load and .167

~60
the temperature change. Figure 14 shows yield
curves generated by the analysis of Section 2 for
selected values of the lamination angle q. Given 20

r, the curves provide the value of (y - O) and 0
the corresponding stress at the onset of yielding ( -20

in the laminate. For q? =0, the relationship -0
between the axial stress and the temperature C"

change is linear with slope r = 0.115. Under this _-
load/temperature ratio, the response of the 00 ._W .
lamina remains elastic. The slope, , of the < - 10 - - 6-4 -2 0 2 4 6 6

elastic-plastic segment of the over-all strain- Aimad Stress/Temperature (Mpa/C)
temperature curve, computed for selected valuesof the angle q' and H = 14.5 GPa, is given in Fig. Fig. 15. Computed axial elastic-plastic strain for selected

(±qg), laminates subjected to proportional axial-stress-
15 as a function of the ratio r between the axial temperature loading.
load and temperature change. Similar curves can
easily be generated for other composite systems results showed excellent agreement. The analysis
and layups with the analysis presented in Section in Section 2, however, may not provide accurate
2. Comparison of the computed over-all response results for composite systems that deform in the
for various (±q7), Gr/A! laminates under matrix-dominated mode9 such as B/Al and
thermomechanical loads with the finite-element SiC/Al composites.

'00
Gr'AI~~. ,.o. .! 5 CONCLUSION

S0Dimensional changes caused in metal-matrix
4' 2O0I composites and laminates may be restricted

05 o within specified tolerances by variation of the
-20 'laminate layup and the matrix yield stress and
-40 stress/strain response through heat treatment.

Depending on the operating temperature range
and the ratio of mechanical load to temperature

Tchange, the proper heat treatment can be
0 -, -o -4 0 2 a a 0 determined such that the dimensional stability of

TempfahurIY (C/MP) the composite is enhanced. For example, a 6061

AI/Gr (±12), laminate is dimensionally stable in
the temperature range ±420C for the as-

GrA, c.-Cl fabricated composite (matrix yield stress Y =
* "0 70 MPa) and stable in the range ± 1680C for the

T6 condition (Y = 280 MPa). The matrix plas-
> ticity may enhance or reduce the dimensional

stability of laminates subjected to combined
thermal and mechanical loads. The onset of

S- plastic deformation of the matrix is reduced for
2- _4' -out-of-phase thermal and axial mechanical loads

and enhanced for in-phase loads. Accordingly,
Ithe dimensional stability is affected by the way in

Temg.,aturey (C MPa) which the mechanical load and thermal change

FIg. 14. Initial yield curves for selected (±q). laminates are synchronized. In any case, accurate plasticity
under combined axial stress and temperature change, analysis must be performed for specific design

normalized with the matrix yield stress Y. loads and parameters.
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present paper to examine the response of 6. Wu, J. F., Shephard. M. S.. Dvorak. G. J. &
Bahei-EI-Din, Y. A., A material model for the finite

composite laminates under thermomechanical element analysis of metal matrix composites. Compos.

loads. One approach used here is based on the Sci. Technol., 35 (1989) 347-66.

finite-element method, where the underlying 7. Dvorak. G. J. & Teply, J. L.. Periodic array models for
plasticity analysis of composite materials. In Plastici,

constitutive equations of unidirectional plies are Today: Modeling. Methods and Applications (W
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are elastic; the fiber is transversely isotropic, and uniform in the entire composite:
the matrix is isotropic. The solution of this d = di,= di.= [h h h 0 0 OJT d9,
problem was found by Dvorak, 3 using a
decomposition scheme in which the fiber and h = ST/ 3Km + a. (A 10)

matrix phases are separated from each other and
subjected to the thermal change dO while
applying surface tractions to the surfaces of the APPENDIX B
phases to maintain the current stresses. Since the
phases deform differently under temperature Here wgie mtexpressions for the instantaneous
variations, auxiliary phase stresses are needed to compliance matrix a and in-plane stress vector

ensure compatibility of the phases. The auxiliary for (+he), laminates, together with expressions
stresses are found by satisfying compatibility of for the matrix stress-concentration factors S, y,

the phase deformations and equilibrium of the / '"

tractions at phase interfaces. In this way, the Consider a laminate loaded by in-plane stress

composite can be reassembled. Upon reas- do' and out-of-plane normal stress d0 33 , where

sembly, the unidirectional composite supports xtx2 is the plane of the laminate. The over-all

overall stresses dd, that equilibrate the phase in-plane strains can be written as:

auxiliary stresses. The over-all stress is axisym- de' = A do' + m do 33. (BI)
metric and given by: The over-all stress do' can be written in terms of

d&, = s, dO, de' and d0 33 as

d&22 = d&,3 = ST d8, do' = Z de' +4 d 3 3, (B2)

d& = dar, = d&12 = 0. (Al) where

Equivalent expressions for s, and ST can be =A',. = -2m. (3)

found in Refs 12 and 13. The latter are recorded Equations similar to eqns (Bi) and (B2) can be

here for phase thermoelastic properties that are written for each +97 and -97 ply. The over-all A

not functions of temperature: and m are given by:1 2

SA = (a~b, - atb3)/(atb2 - a2b1) (A2) A+)

ST = (a2b3 - a3b2)/(alb2 - a2b) (A3) where(B4)

a, = (n, + cml,)/(kEt) - 2/(3K.) (A4)
a2 ---.cas t, , -a,=,, i(a -a. (AS)97 (

a2 = -l(cfkfEL), a3=2(a.-1m) (AS) The subscripts +q and -97 indicate over-all
b, - l1 (k(EIL) + 11(3K.) + c./(cfEL) (A6) quantities for the +T' and -q7 plies, respectively,

b= - 1/(c1Ef), b3 = -(cr. - a,.). (A7) in the laminate co-ordinate system x,.
Sxw AThe ply compliances A. and a&, are given by:

where K. is the matrix bulk modulus, a. is the .4 = , -, = ,'A, i = +9T, -q, (B6)

matrix coefficient of thermal expansion, ElL is the where

fiber longitudinal Young's modulus, nf, kf, If are
Hill's moduli"' of the fiber, and aL and aT are cos 4p sin'9 sin 2q7

coefficients of thermal expansion of the fiber in A +, = sin 97 cos 2 97 -sin 297
the longitudinal direction and transverse plane, sin 297 J sin 2q cos 297 J
respectively. sn 2 (B7)

The auxiliary local stresses are given by:'3  Cs 97 sin2 97 -sin 2971

d6.= d, sT I I 10 0 0]'TdO (A8) g_,= / sin 297 cos 9 sin 29,

d6, - STl I 1 0 0 OJ dO2 L Isin29 in 2 cos 29 J
Y ( 1 - 0 )IC(. (A9) and A, A are the over-all compliances of a

unidirectional composite in the local co-ordinate

The strain field corresponding to eqn (Al) is system 1,, where 1 , is the fiber direction. Matrix
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A is associated with in-plane loading and A with APPENDIX C
out-of-plane normal-stress loading. Expressions
for A and is are given in Appendix C. The over-all compliances A and s of a lamina in

The ply in-plane stresses do,' and out-of-plane the i, co-ordinate system (,- axial direction)
normal stress doa can be written in terms of can be found in terms of the local properties and
their over-all counterparts do' and do 33 as: the concentration factors that relate the average

do: = X, do' +,A, do033, d = ---d33. (B8) local fields to the over-all uniform fields. 5 In the
notation used here, the over-all compliances 4.

The distribution factors X, A,, i = +q), - q, are w of a unidirectional lamina are given by:
given by: '2I X =.E, 4, =. m,(- ,). (B9) A+c[A -4)(m -t)I()

In the co-ordinate system i,, the ply stresses are (C2)

given by: where 4r, r, =f, m, are phase compliances

dd: = A, do:, d'3 = do 33, (B10) associated with loading in the ii 2 plane. and
with out-of-plane normal-stress loading, respec-

where the transformation matrix A, i = +q, tively.
-q), is given by eqn (B7). The concentration factors S, 4, T, q relate

The matrix average stresses in a specific ply matrix-stress averages to over-all stresses as
can be written in terms of the ply stresses as: expressed in eqns (B11) and (B12). For elastic

dom = ! dW11 + 4 dd, (B11) phases, the concentration factors can be found by
using an averaging model such as the self-

do33 =Jd&') + q d t, (B 12) consistent"' or Mori-Tanaka2 method. In this
where l, d, CT, q are instantaneous stress- case, the concentration factors are functions of
concentration factors for the ply under con- the elastic moduli of the fiber and matrix phases

nsideration (see Appendix C). and their volume fractions. If the matrix deforms

Finally, the matrix stresses can be written in plastically, the method described by Dvorak-' can

terms of the laminate stresses da' and do 33 as: be used to compute the instantaneous stress-
concentration factors in terms of their elasticI dOm = 1 do' +j do 33  (B 13) counterparts, the over-all instantaneous com-

do3 =T do' + @ do 33. (B 14) pliances A, us, the fiber elastic compliances .,
m, and the matrix instantaneous compliances A,,

From eqns (B8)-(BI4), we find: m. The latter can be found from a constitutive

g= ,t, ,= q !,,t, +4 (B 15) model of the matrix as described in Ref. 1.
i r=Crfl ,,, g+ (BI16)

1/
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ABSTRACT

Local stresses caused by mechanical and thermal loads in high temperature
intermetallic matrix composites are evaluated using a finite element solution for a periodic
hexagonal array microstructure. Both uncoated and coated elastic fibers are considered.
The matrix is assumed to be elastic-plastic and insensitive to loading rates. Mechanical
properties of the phases are function of temperature. It was found that a CVD deposited
carbon coating can be quite effective in reducing thermal stresses at the matrix/coating
interface. Certain mechanical stress concentration factors, however, may be aggravated by
the compliant coating. In composite systems with a ductile matrix, plastic deformations
reduce stress concentration and lead to stress redistribution. In such systems,
thermomechanical loading regimes can be designed to reduce adverse local stresses
introduced during fabrication, or example, by hot isostatic pressing.

INTRODUCTION

It is well known that the overall behavior of fibrous composites is directly affected
by the local phenomena. For example, the overall performance of a composite may be
impaired if damage or instability is initiated in the phases or at their interfaces. On the
other hand, the overall strength may be enhanced by plastic flow of the matrix. Therefore,
evaluation of local stresses in fibrous composites is important in material selection,
evaluation and design under both thermal and mechanical loads.

The present paper is concerned with evaluation of the local stresses in high
temperature fibrous composites under thermomechanical loads. Specifically, the stresses in
uncoated and coated fiber reinforced intermetallic matrix composites are examined. For
unidirectional composites, the analysis was performed for an idealized geometry of
the microstructure using the Periodic Hexagonal Array (PHA) model (Dvorak and
Teply, 1985; Teply and Dvorak, 1988). This geometry permits selection of a
representative unit cell, the response of which is identical with the response of
the composite aggregate under overall uniform stress or strain fields. The overall
response and local fields are then found in the unit cell using the finite element method.



The results reported in this paper focus on the effect of fiber coating on the local
thermal and mechanical stress concentration factors in elastic as well as elastic-plastic
matrices. Thermal residual stresses generated by cooldown of unidirectional composites
from fabrication temperatures are also evaluated. The present study examines various
thermomechanical loading regimes that may be applied during the fabrication process to
reduce the tensile stresses in the matrix.

The paper begins with a brief description of the PHA model for unidirectionally
reinforced composites. Next, material properties for the composite system examined in this
study are given. Two principal results obtained with the PHA model for intermetallic
matrix composites reinforced by uncoated and coated fibers are then presented and
discussed. One is concerned with the effect of fiber coating on thermal and mechanical
stresses, the other examines the effect of the thermomechanical loading regime applied
during fabrication of composites by hot isostatic pressing on the local stresses.

THE COMPOSITE MODEL

Several material models have been developed for elastic-plastic fibrous composites
under various approximations of the microgeometry. While averaging models, such as the
self-consistent model (Hill, 1965) and the Mori-Tanaka (1973) method, approximate the
microgeometry by a single inclusion embedded in an infinite mass of a different material,
periodic models (Aboudi, 1986; Dvorak and Teply, 1985; Nemat-Nasser et al., 1982)
consider actual details of the microstructure. The latter class of models assumes certain
periodic arrangements of the fiber in the transverse plane of the composite and performs
the analysis on a unit representative cell of the periodic microstructure. Other models
which are phenomenological in nature have been also developed (see for example the
Vanishing Fiber Diameter (VFD) model by Dvorak and Bahei-El-Din 1982; and the
Bimodal Plasticity Theory (BPT) by Dvorak and Bahei-E1-Din, 1987 but are more
suitable for prediction of the overall response of composites. A survey of the above models
can be found in the reviews by Bahei-El-Din and Dvorak (1989) and Dvorak (1991).

An essential requirement in the theoretical model used in the present study is the
ability to represent details of the local stress and strain fields in the phases of a
unidirectionally reinforced composite subjected to uniform overall stress and thermal
chan e. This narrows down our choices to the periodic models. In particular, we employed
the HA model developed by Dvorak and Teply (1985) and Teply and Dvorak (1988)
which we have verified experimentally (Dvorak et al., 1988; Dvorak et al., 1990). In this
model, the microstructural geometry in the transverse plane of a unidirectionally reinforced
fibrous composite is represented by a periodic distribution of the fibers in a hexagonal
array. Cross section of the fibers is approximated by a nix6-sided polygon. An example of
the PHA microgeometry with dodecagonal fiber cross section is shown in Fig. Ia. The
hexagonal array shown in Fig. la is divided into two unit cells, as indicated by the shaded
and unshaded triangles. Under overall uniform stresses or strains, the two sets of unit cells
have related internal fields. Accordingly, under properly prescribed periodic boundary
conditions, only one unit cell from either set needs to be analyzed. Figure lb shows a three
dimensional view of one of the unit cells.

The actual analysis is performed by the finite element method. The unit cell is
subdivided into a selected number of subelements in the matrix, fiber, and coating
subdomains. A fairly refined subdivision is required for evaluation of the local fields.
Figure 2 shows two examples of such a finite element mesh. The results reported here were
found with the ABAQUS finite element program. Resident constitutive relations were
used for the homogeneous phases. The fiber and the coating were assumed elastic, whereas
the matrix was assumed elastic-plastic, inviscid, and follows the Mises yield criterion.
Stress-plastic strain response of the matrix was assumed to follow a linear strain hardening
behavior, and the matrix yield surface to follow the Prager-Ziegler kinematic hardening
rule. Thermoelastic properties of the phases as well as the matrix yield stress and plastic
tangent modulus are piecewise linear functions of temperature.

22



(a) (b)

Fig. 1 Microgeometry of the Periodic Hexa onal Array (PHA) model,
(a) Transverse plane, (b) nit cell.

Fig. 2 Two refined meshes of the PHA unit cell.



THE COMPOSITE SYSTEM

An intermetallic matrix composite system reinforced by aligned continuous fibers is
considered. The matrix is a nickel-aluminide compound (NisAI), and the reinforcement is
a carbon-coated or uncoated silicon-carbide fiber (SCS6) at 25% volume fraction. The
carbon coating thickness is 10 Am. Tables 1 and 2 show material properties of the phases.
Thermoelastic constants of the silicon-carbide fiber and the carbon coating are not
function of temperature, while those of the nickel-aluminide matrix vary with
temperature. Also, the yield stress and the plastic tangent modulus of the Ni 3A1
compound vary with temperature. Figure 3 shows variation of the tensile yield stress with
temperature for the Ni 3A1 matrix. Unlike other aluminide compounds, for example Ti5 A,
for which the yield stress increases monotonically with decreasing temperature (see Fig. 3),
the yield stress of the nickel-aluminide compound decreases with decreasing temperature if
the latter is below 6000C. This causes plastic deformation of the matrix during cooldown
of Ni 3AI-based system which may help in reducing the adverse thermal residual stresses.

RESULTS

Effect of Fiber Coating on Local Stresses
To examine the effect of fiber coating on the local thermal and mechanical stresses,we plotted stress contours in the unit cell for the transverse local stress 022. Figures 4 and5 show the results for the SCS6/Ni 3AI composite in the elastic range under thermal

loading and overall transverse tension, respectively. It was assumed that the composite is
stress free at the fabrication temperature of 1200oC, and small increments of a temperature
decrease and transverse tensile stress were applied separately. The local stress a22 found
from finite element solution of the unit cell was then normalized by the applied load and
plotted in the transverse plane. The unit cell is indicated in Figs. 4 and 5 by the dashed
triangular boundary. The contours outside the unit cell were generated using the periodic
properties of the local stress field.

It is seen from Fig. 4a that tensile hoop stresses, and compressive radial stresses
develop in the matrix if the temperature is decreased, whereas compressive hoop stressesdevelop in the fiber. These stresses are caused by the mismatch between the thermal
strains generated in the fiber and the matrix. At the fiber/matrix interface in the system
under consideration, the matrix tends to move in the volume occupied by the fiber when
the temperature is decreased, but is prevented by the stiff fiber which deforms at a much
smaller temperature rate. Consequently, radial cracks may develop in the matrix under
cooling from the fabrication temperature. If, on the other hand, the coefficient of thermal
expansion of the fiber was larger than that of the matrix, local damage under temperature
reduction would take the form of disbonds at the fiber/matrix interface, and radial cracksin the fibers.

Applying a carbon coat to the fiber causes significant reductions in the local thermal
stresses, particularly at the fiber/matrix interface, Fig. 4b. Compared to the matrix and
the fiber, the carbon coating has a much smaller elastic stiffness in the transverse plane,
and as such it can accommodate the thermal strains developed in the phases. Conversely,
the coating enhances sharply the mechanical transverse stresses as seen in Fig. 5. This
tradeoff must be carefully considered in design of composites.

If the matrix deforms plastically, the local stresses are reduced substantially,
particularly under thermal loads. This is seen in the contours plotted in Figs. 6 and 7 after
loading the composite well into the plastic region so that the matrix subdomain is fully
plastic. In this case, the matrix is very much compliant compared to the fiber and
therefore can deform without developing large stresses. In fact, the stiffness of the matrixin the plastic range is comparable to the stiffness of the carbon coating so that thedifferences in the stresses developing in the coated and the uncoated systems are not

significant.

These results indicate that material selection may favor uncoated fibrous systems
with ductile matrices over coated elastic systems. Under repeated loads, however, low
cycle fatigue may develop in the matrix under cyclic plastic straining leading to nucleation
of small cracks. Certain tradeoffs therefore exist and must be applied in material selectionand evaluation.
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Table 1 Material properties of SCS6 fiber and carbon coating

1 2 3  4 5 7
EL ET GL GT

GPa GPa GPa GPa (10 "/°C)

SCS6 fiber 413.6 413.6 159.1 159.1 0.3 4.6 4.6
Carbon coating 172.4 6.9 14.5 3.8 0.3 1.8 28

Longitudinal Young's modulus

2Transverse Young's modulus
3Longitudinal shear modulus
4Transverse shear modulus
5Longitudinal Poisson's ratio
aLongitudinal coefficient of thermal expansion
7Transverse coefficient of thermal expansion

Table 2 Material properties of Ni3AI matrix (Stoloff, 1989)

T 2 3 4

0C GPa 10"6/ 0 C MPa GPa

1200 134 0.32 20.6 137 6.70
994 142 0.32 19.0 279 7.10
776 150 0.32 17.2 459 7.50
673 154 0.32 16.4 557 7.70
642 155 0.32 16.1 564 7.75
578 158 0.32 15.6 535 7.90
376 165 0.32 14.3 356 8.25
327 167 0.32 14.0 279 8.35
206 172 0.32 13.4 156 8.60
127 175 0.32 13.0 110 8.75

21 179 0.32 12.5 79 8.95

Temperature
2 Young's modulus
3Poisson's ratio
4Coefficient of thermal expansion
5Tensile yield stress
6Tensile plastic tangent modulus
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Fig. 3 Yield stress-temperature curve for Ni3A1 and Ti3A1 compounds.

Effect of Fabricattion Parameters on Resi dual Stresses
This part of out study of local stresses in fibrous system is concerned with

" evaluation of the thermal residual stresses generated during fabrication and examination of
possible thermomechanical loading regimes that can be applied during cooldown to room
temperature so that high tensile thermal stresses in the matrix can be reduced. The results

~presented in the preceding section indicate that plastic flow of the matrix causes
redistribution of the local stresses and reduction of the interfacial stresses in the matrix.
Consequently, in fabrication of intermetallic matrix composites by hot isostatic pressing
(HIP), one can select the optimum temperature/pressure path to follow so as to minimize
the adverse local stresses in the phases, particularly the matrix. This, of course, can be

; accomplished only for composites with a ductile matrix.

~Considering the SCS6/Ni3AI composite, we first examined the local stresses
retained in the system at room temperature after exposure to HIP temperature of 12000C
and hydrostatic pressure, a'o, of 200 MPa when the room temperature/zero pressure
condition it reached through the various unloading options shown in Fig. 8. In particular,

~we compared the magfnitude of the local interfacial stresses in the phases of uncoated and
coated systems for the various cases listed in Fig. B. In each case, the compoitewa
assumed to be free of internal stresses at the fabrication temperature (1200ZC), and the
hydrostatic pressure ao was applied in small increments up to 200 Mka Although the

~overall load applied in this segment of the loading path is isotropic, the matrix stress is not
necessarily isotropic, Nonetheless, the matrix isotropic stress was dominant so that the
matrix phase, which was assumed to be plastically incompressible, remained elastic under
200 MPa hydrostatic pressure and 1200oC. In a typical HIP process, the composite is

~treated at the HIP condition for a specific duration. In our simulation, however, we
assumed that the matrix is inviscid, and continued to unload the composite from the HIP
conditions to the room temperature and atmospheric pressure. Plastic flow of the

I nickel-aluminide matrix occurred in all the cases shown in Fig. 8 but the onset of yielding
varied among these cases. The local stresses retained in the composite at room temperature
are, therefore, expected to vary as well among the loading cases shown in Fig, 8.
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Fig. 8 Possible variations of the temperature/hydrostatic pressure loading path
applied to unidirectional composites during hot isostatic pressing.

Comparing the magnitude of the local interfacial stresses in the phases of the
uncoated and the coated SCS6/Ni3AI composite, we found that the stresses computed in
cases (a), (b), (d)-(e), Fig. 8, are very similar. On the other hand, the adverse stresses
were substantially reduced when the hydrostatic pressure, a., was sustained during
cooldown of the composite, Fig. 8c. Moreover, the stresses benefit from increasing the
magnitude of the hydrostatic pressure applied during the HIP process. Specifically, the
tensile stresses found in the phases were reduced substantially when aro was increased from200 MPa to 400 MPa.

Table 3 compares the interfacial stresses computed in uncoated and coated
SCS6/Ni 5A1 composites when the thermomechanical loading paths shown in Figs. 8a,cwere applied. The stresses found in case (c) under hydrostatic pressure of 200 MPa and
400 MPa are shown. The table lists the radial stress, ar, tangential stress, o'tt, and axial
stress, all, found at the interface at either point 'a' or point 'b' indicated on the unit cell
shown in the inset in Table 3. The isotropic stress in the matrix, (0O)., found in each case
is also indicated. It is seen that the tensile stresses at the fiber/matrix interface have been
reduced in the uncoated composite by maintaining the hydrostatic pressure while cooling
the composite down to room temperature. More reductions in the tensile stresses are
achieved by elevating the hydrostatic stress to 400 MPa. For example, the matrix hoop
stress is reduced by 18% when the pressure is 200 MPa, and by 37% when the pressure is
400 MPa. It appears that the tensile stresses can be reduced further by increasing the
hydrostatic pressure during the HIP process. However, the magnitude of the pressure that
can be applied during fabrication is usually limited by the equipment used in the HIP
process.

posThe matrix interfacial tensile stresses in the coated system have been also reduced,but to a lesser extent, by following the loading path indicated in Fig. 8c, Table 3. The
hoop stress in the coating, however, is not affected by the thermomechanical path applied
during fabrication. Except for the axial stress, elevating the pressure applied during the



Table 3 Maximum interfacial stresses found in a SCS6/NiA1 composite
at room temperature following hot isostatic pressing

I1u00C 1201c '12W"c
-*.21 - * -21-

Ioo -owM,. IoZ: .aM, I ,

Interfacial Uncoated Coated Uncoated Coated Uncoated Coated
Stress (MPa) Fiber Fiber Fiber Fiber Fiber Fiber

(Orr)e -980b -840b -790b -940b --600b -91Gb

(Oatt), 1900b 158Gb 1550b 1520b 1200b 1520b

(o~j). 1980b 1860b 1790b 1430b 1610b 1410b

(att)c 1850a - 1880a - 1880a

(all)c - -6680b - -6330b - -6240b

(arr)f -980b -1100b -790b -1220b -600b -1210b

(ot)f -940a -1080a -760a -1170a -590a -1160a

(ou)f -6050b -3640b -5520b -2800b -5000b -2610b

970b 870b 850b 670b 740b 670b

I

Table 4 Matrix internal stresses found in a SCS6/Ni 3A1 composite
at room temperature following hot isostati! pressing

1 T AT AT

I" t • I 20c'. 120"c

• % 0e ,00 -2+o,,,,, IOt -4 ..oob o

Stress at Uncoated Coated Uncoated Coated Uncoated Coated
'c' (MPa) Fiber Fiber Fiber Fiber Fiber Fiber

(ol). 213 213 195 179 177 177

(a22). 115 128 96 162 76 164

('o)= 101 105 90 106 79 106

I
32I



HIP process does not affect the stresses in the coated system. In any case, the matrix
isotropic stress, and consequently damage initiation, is affected by the thermomechanical
loading path followed during the HIP run.

Table 4 lists the local stresses found in the matrix internal point 'c' (see inset of
unit cell). The axial stress, (all)., the transverse stress, (022)., and the isotropic stress,
(ao)., are shown for three thermomechanical loading regimes applied during the HIP
process. It is seen that the stresses in the uncoated system are affected by the HIP regime.
Substantial reductions in the matrix stresses are achieved by cooling down the composite
under constant pressure, and by elevating the hydrostatic pressure applied during the HIP
run. While these factors reduce the matrix axial stress in the coated system, the transverse
stress is increased and the isotropic stress is unchanged.

The stresses found in the phases after the composite was reheated to 1200oC were
not affected by the loading path, or the magnitude of the hydrostatic pressure, ao, applied
during the HIP process.

DISCUSSION

A particular CVD deposited carbon coating can be quite effective in reducing the
adverse thermal residual stresses generated during fabrication of fibrous composites. The
fiber coating, however, enhances certain local mechanical stresses. In any case, the
significance of these effects depends on the relative stiffness of the matrix, the fiber, and
the coating. In particular, plastic flow of the matrix causes substantial reductions in the
tensile interfacial stresses in the phases. The implication is that mechanical compatibility
in fibrous composites is not only a function of the thermal properties of the phases, but alsb
depends on the constitutive behavior of the phases. Accurate evaluation of thermal
residual stresses, therefore, can be only performed with appropriate micromechanical
models.

Plastic flow of the matrix can be utilized to reduce the tensile local stresses
generated during hot isostatic pressing (HIP) of fibrous composites. Selection of the
temperature/pressure path as well as the magnitude of the hydrostatic pressure applied
during the HIP treatment should focus on inducing plastic deformation in the matrix early
during the cooldown cycle. In our study of the local stresses in a unidirectional
SCS6/Ni 3A1 composite we found that the matrix interfacial tensile stresses are lowest
when the isotropic pressure applied during the HIP process was maintained during cooling
to room temperature. Also the local stresses can be reduce-I by increasing the HIP
isotropic pressure. Our yet unpublished results indicate that more reductions in the
thermal residual stresses can be achieved through plastic deformation of the matrix if the
hydrostatic pressure applied during the HIP process is confined to the composite's
transverse plane. The results which qualify this proposition are published elsewhere
(Bahei-EL-Din et al., 1991).
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Introduction

During a stay at RPI, Rensselaer Polytechnic Institute, Troy, NY, from August 1989
to September 1990 as a visiting researcher, and while being supported by a grant form the
Fonds zur F6rderung der Wissenschaftlichen Forschung, Vienna, Austria, a Finite Element

for layered fiber reinforced composite shells has been developed by the author, implemented

into a commercial Finite Element code (ABAQUS), and tested extensively.

The displacement based degeneration principle is used in combination with specific

kinematic assumptions for deriving the governing equations. By treating each layer as an

individual shell and introducing kinematic constraints between the layer DOFs and the

conveniently chosen global DOFs a very good representation of the mechanical behavior

of the shell, including transverse shear, has been obtained.

Currently there are two material models available:

- A linear elastic model, in which the thermo-elastic material is either described by the

behavior of the local components, i.e. fiber and matrix material laws and geometrical

configuration in each layer, or by the overall orthotropic layer material laws.

- An elasto-plastic composite model, that is based on the assumption of linear elastic

behavior of the fibers and metal-type elasto-plastic behavior of the matrix.

Other material models can easily be implemented by using the specially designed in-

terface, LCSMAT.

* Current address: 144 Highland Ave., Apt. 302, East Lansing, MI 48823, Tel. (517) 351-1207
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1. FORMULATION OF THE LCSLFC-ELEMENT

1.1 INTRODUCTION

The LCSLFC-element (Itayerwise Constant Shear Laminated Fiber Composite) is
based on the degeneration principle (1,2]. Each layer is treated as a seperate shell element
with orthotropic material behavior. The layer DOF9 (degrees of freedom) of all layers are

transformed to a set of element DOFs along with the corresponding stiffnesses and nodal
forces. This procedure improves the transverse shear behavior of the shell element since

normal vectors of the shell are now able to undergo piecewise (layerwise) linear deforma-

tions (due to the assumptions included in the degeneration principle, normal vectors ia
each layer remain straight).

As a reminder, the well known linearized incremental equilibrium equation, including

thermal loading, derived from the virtual work principle, is given here [2]:

For the updated Lagrange formulation the stifess matrices and the nodal force vectors

for one general element (e) are given by the following integrals over the volume of the

element at the beginning of the increment:

( dY (2)
V

V
ni J ~ d (3)

I V

-(a = (5)
V
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In Eq. (1) the sum in square brackets represents the global tangent stiffness matrix K

at the beginning of the increment, consisting of the following contributions:

a) the material stiffness matrix, K,, which depends on the material behavior (expressed

by the current material matrix C) and the reference geometry (expressed by the linear

strain-displacement matrix Bj);

b) the initial stress or geometrical stiffness matrix, 16, which depends explicitly on the
current stresses (matrix 1) and the reference geometry (expressed by the nonlinear

strain-displacement matrix Bn1);

The external load vector at the end of the increment, R, is given by the surface and

body forces, concentrated or distributed; f is the vector of internal forces corresponding

to the stresses at the beginning of the increment (vector r); A~t, is the vector of internal

nodal forces equivalent to stress increments resulting from a temperature increment Atd

and computed by using the coefficients of linear thermal expansion (vector a).

1.2 STIFFNESS EXPRESSIONS FOR ONE LAYER

Each layer n is treated as a homogeneous shell with constant material properties over

the layer thickness. The degeneration principle is employed to derive the shell element

stiffness expressions from the 3/D continuum. This includes two assumptions [1,21:

I. The normal vectors of the layer's reference surface remain straight and inextensible

during deformation.

II. The contribution of the strain energy caused by stress components perpendicular to

the reference surface is set to zero by using a modified material law.

1.2.1 Description of Geometry

With assumption I the geometry of the layer can be described by one reference surface

and its corresponding normal vectors. With appropriate shape functions the matrices B,

and Vn1 (in Eqs. (2-5)) can be constructed. Due to the isoparametric element formula-

tion these matrices are functions of natural coordinates r, s, t, where r, s lie in the layer's
reference surface and t indicates the thickness direction, see Fig. 1.1.

-
* -4-



9 P

I node k _

IW

Fig. 1.1 Geometry of the degenerated shell (=layer) element

Interpolation of geometry (subscript n indicates the layer number):

z,1(r,aq,t) = ()r,)z~ + t h(.) cos k)

k=1I _ M

z,,(r,31t) = E 0kMh(rj)[(zn) + t hnk sin 'P$k) sin O~)]n

with 0(k)r,sj) being standard 2/1) shape functions (i.e. Lagrangian polynomials); M is theI number of nodes forming the element, h(& is the thickness of the laye at node k, ad *L4k)
and 41(k are used to determine the position of the layer's normal at node k, ame Fig.1.1-

U Given the geometry at the beginning of the increment (denoted by zn, Yn,, :,n) and the3initial geometry (denoted by On, O~n Ozn) the total displacements follow as:



un(r,a,t) = - Zn

vn(r~At) = Yn - Yn(7)

w.(r,s,t) = Zn - ozn

The incremental displacements Au,", Awn are defined similarly. They are related

to the nodal DOFs through the same interpolation functions as used for describing the

geometry (=isoparametric formulation). A linearization with respect to the increments of

the angles O ( ), % P (n) is necessary for the subsequent derivation of the stifiess expressions.

( tk)
1 0. 0 th,,)g() th ,k (k )I \ A .(r.,.t) /o h, c hn ,? x :

(Avn(r~it) =~krs 0 n 0 hgkk: bk (8)
(0 0 1th( th~n27

where Au ) represents the vector of DOFs at node k for layer n. The functions gk,,(,

can be found in the appendix, Eq. (A10).I
1.2.2 Description of Material

Assumption II for the degeneration priuciple is satisfied by forcing the normal stresses

in thickness direction to be zero. This results in a material law similar to that used under

plane stress conditions.

Usually the material matrix and the vector of coefficients of linear thermal expansion

of the unidirectionally reinforced layer (UD-layer) are defined in the local layer coordinate

system denoted by subscript L:

E11  E12  0 0 0 0
E22  0 0 0 0

0 0 0 0 (
C= L. ym. E44 0 0 0

E. 0

Each layer is assumed to exhibit orthotropic material behavior with respect to its

individual fiber-fixed local coordinate system 1, q, t (with I denoting the fiber direction; q

~-8-



and t transverse and thickness directions, resp.). This system is related to the element

fixed r, s, t system via the fiber angle e. The definitions of the different coordinate systems
and the fiber angle are shown in Fig. 1.2.

It (I3( Da

node 194 r

Fig. 1.2 Element fixed r, s, t coordinate system, local layer system 1, q

Since element geometry and fiber-direction are independent of each other the fiber angle
e is not necessarily constant within the element (see Fig. 1.2). Two ways of taking this
fact into account are implemented in the LCSLFC-element:

a) By assuming the fibers to be parallel within the layer's reference surface one can find

a geometric relationship that considers the variation of e (see (3]).

b) By specifying the e-angles at each nodal point of the element and using the 2/D shape

functions O(M(rs) (from the interpolation oft he geometry, Eq. (6)) one can interpolate

the e-angle at any point.

The Eq1 in qL can either be calculated from material data given for the layer, or from

the material data of fiber and matrix along with the fiber volume fraction.

-7-



If engineering material properties El, Eg, vqj, G1g, G1,, G, for the layer are given, the

E~j values in qL can be computed as

E
- E,4 = G,

E12= & E22  E5 = Gi, (10)

I E22 - EEss = Gq

If material properties of the constituents of the composite are given, a homogenization

technique has to be used to determine the qL matrix. For that purpose a software package,

developed at RPI, Troy, NY, by C.M. Huang (4] which is based on the Mori-Tanaka
I averaging scheme, has been adapted and implemented. Using this technique the effective

properties (El, and a,,) of a wide variety of composite materials can be computed from

fiber and matrix data, the volume fraction, and the geometrical setup. The fibers are

assumed to behave orthotropically (transversely isotropic) and the matrix isotropically.
Four options for the fiber arrangement are implemented in the LCSLFC-element:

- Aligned continuous fibersI Randomly oriented continuous fibers
Aligned whiskers

- Randomly oriented whiskers

When dealing with metal matrix composites one has to take into account the elasto-
plastic behavior of the matrix material. In the LCSLFC-element a special version of the

"VFD" model (5] is implemented in combination with classical plasticity theory including

kinematic hardening. This part of the element code was developed by A.J. Svobodnik, TU
Vienna, Austria; a detailed description of the theories used can be found in [6].

1.2.3 Integration of the Stiffness Expressions

An efficient way to reduce the numerical effort for computing the stifess matrix and

I the internal nodal force vector is the use of an analytical thickness integration as described

e. g. in (7,8,9]. However, a necessary requirement for this procedure is the neglection

I of the t-dependence of the Jacobian matrix. In [3] detailed analyses show that this

1 -8-



approximation is acceptable a. long as the shells are thin, their curvature is moderate, and

their thickness does not vary too much. The deinition of the Jacobian matrix is given in

the appendix, Eq. (Al).

In order to be able to perform the thickness integration analytically, the t-dependence

of all relevant terms of the integrands in Eqs. (2-5) must be clariied. From Eqs. (6,7) and

with the assumption mentioned above, the t-dependence of the displacement derivatives

can be expressed explicitly:

u,,j(r,,s,t) = U, 4 (r,,,) + t ,,,)
v,(r,a,t) = V-,,(r,a) + t ',.j(r,.) j = zyz (11)

Tew.,j(r,s,t) = w.,j(r,) + t j( r,s)

The specific formulas for V,,j, Urnw,,j, Uj,,,,v W,,,j can be found in the appendix,

Eqs. (A4, AS). In a similar way the derivatives of the displacement increments Aunj,

Avnj, Aw,,,j can be computed, see appendix, Eqs. (A7-A9).

With the definition of the Almansi strains and by invoking Eq. (11), one can extract

the t-dependence of the strains:

I] ,(r,s,t) = r,, (r,s) +t i(r,s) +t 2 ,i,(r,a) i,j = X,Y,z (12)

with the different components, e.g. for strain %21 :

FS= + V, - V,x 9,, - Vn,, U,1 - W,, ui,,)
, -'(X,, +' +,, - ,,,,, ' ,I,,, W,, ) (1

After transforming the material matrix and the vector of thermal expansion (Eq. (9))

to the global z, y, z system, and combining it with Eq. (12), the vector of Cauchy stress

components becomes:

Z(,,t,,) = (r,,)([r (r,) - 0(,);(rs)1 + t[(r,-,) - (,,) ;(ra)] + t2 K(r,)) (14)

where

2(",') = ,) 1(r 7) (",s) (18)
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The matrix T represents the transformation from the global z, y, z system to the local

I, q, t system. T is composed of the elements of the Jacobian matrix (and depends on the
fiber angle e). Therefore, since J is independent of t, so is T. The temperature field is

assumed to be linearly distributed over the thickness of the shell (and therefore over the

thickness of the layer), with r being the temperature load at the t = 0 surface and 3 being

the temperature difference between the surfaces of the layer.

The B, and B, matrices are constructed from derivatives of the displacement incre-

ments, therefore they can be decomposed similarly:

B= (rj g)(rs) + t (r,a) (17)

~~1(~s~t = 1(r's) + t in 1(r,j) (8

The detailed formulas for the matrices it I I, Rnt can be found in the appendix,

Eqs. (A13, A14, A17, A18).

Substituting Eqs. (14-18) into the expressions for the stifess matrices (Eqs. (2-5))

and invoking some abbreviations lead to:

+1+1

=f IF 1 + 1)+4T J(F +I g))det J I dr di (19)
-1-1

+1+1

WA)=f (n ,SInI+ 12 )+ Mj( ~ e dr dS (20)

+1,1

-1-1

+1+1

~ J(V~A~ I~~)+T~ ~ .A~)dtI Idi- d (22)

with superscript (n) denoting layer n. $1, Z2, S3 represent "stress integrals" and are coam-

puted by:

Si(r,s) = 'IT(,) f/Z(,,,t)t" dt if 1,2,3 (23)

0
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51, S21 s3 are equivalent to S1, S2, S3 but the elements are rearranged in special matrix

form, see appendix, Eq. (A19).

For elastic material these stress integrals can be computed analytically:

For other material models (where the stresses cannot be computed directly from the

total strains) a 2-point integration is used. By assuming the layer to be thin, a linear

variation of the stresses across the thickness is valid:

S1 ,t = C((r -a + a Z ~) (25))

with
S2= =Z(enl) + +

With Eq. (25) the stress integrals can be computed as follows:
rr.,)= Z'(rj)+ t r) (27)

Ir= + tm)

With Eqs. (26,27) the stress integrals can be evaluated from the stresses at t = 0 and

t = 1, which, in turn, are computed either from the Svobodnik'u elasto-plastic material

law (6], or by a user defined material law (using the LCSMAT interace).

The integrals in Eqs. (19--22) are computed numerically usn a standard Gaussian

quadrature procedure.
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1.3 ASSEMBLAGE OF ELEMENT STIFFNESSES

The procedure for establishing a connection between the individual layers is based on

kinematic assumptions. Using this assumptions a relationship between conveniently chosen

element DOFs and the layer DOFs can be derived.

1.3.1 Definition of Degrees of Freedom

To secure an easy and universal usage of the element, the denition of the element

DOFa is based on the concept of "inpiane" and "out-of-plane" quantities:

- 12 -



- Displacements of the shell's midsurface represent the "inplane" part (they are re-
lated to the membrane behavior).

- Rotations of shell-"normals" represent the "out-of-plane" part (they are related to

the bending and transverse shearing behavior).

Basically, the same notation as used in the degeneration principle is employed here.

The geometry of the entire shell is described in terms of:

- The coordinates of nodes (k) lying in the shell's midsurface, z(k), Vk), z(k),

- 2 angles at these nodes, (k), I() which determine the position of the shell's "nor-
mal" (this vector is not necessarily exactly normal to the shell's midsurface),

- 2(N - 1) additional angles at these nodes, W t), On) (n- 1,... , N- 1; N = number
of layers), which determine the positions of the normal vectors of the layers, and

- the thickness of the shell at these nodes h(k), see Fig. 1.3.

Correspondingly, the following DOFs per node are defned:

- 3 displacement increments, Au(k), Av(k), Aw(k), and

- 2N angle increments, L -(k), AM,( () ,,, An1'(k) (n = 1,..., N - 1).

Initially, the normal vectors of all layers lie on one straight line, namely the shell's

normal, which is determined by the initial angles 00(k), 01(k), and can be computed from
the nodal coordinates. By using the 2/D shape functions (k)(rs) (see interpolation of the

geometry, Eq. (6)), the shell's normal vector n is given by

(n.\
=In, = lv,,. lx OY, (28)

, 0z,. 0:,.

The formulas for the displacement derivatives z,,, y,r, z,7, z,,, y,., z,, can be found in

the appendix, Eq. (A20).

From n, computed at node k, the angles 041(k), 0(k) follow as

(k)n,)
o(k) = cartan :W

(29)
Mk2 Mk)2

oj(k) = arctan n +n,

- 13-



Alternatively, the initial position of the shell's normal can be defined by prescribing

direction cosines at nodes (in addition to the coordinates). This is sometimes useful if

two adjacent elements are inclined (i.e. have no common normal), which can lead to
inaccuracies-in. the analysis.

During loading, the normals of the layers deviate from the initial shell's normal. Due to
the degeneration principle, these layer-normals remain straight, so that a piecewise linear
deformation of the shell's normal occurs.

By defining a "secant" (which coincides with the shell's normal in the initial confg-

uration) and angles so), (k) as corresponding deviations of the layer-normals from this
~(k) (k) (M oalagesecant (see Fig. 1.3) one can compute the coordinates xn, Y.), z ) and the total anglesO ), T) for the layers.

1.3.2 Description of Geometry

The nodal coordinates for layer n at beginning of the increment can be computed from
the coordinates of the midsurface of the shell, the shell thickness, the angles of the "secant",
and the angles of the layer-normals as follows:

n-1

ZAk) T (k) lh(k) cosO1~) + 1- (N) cos(I&Mk +R)

j,,1

n-1

P/)=ik)-1~) sin I& (k) cos§ (k) + E h sin (91(k) + 1p~k)) cos(,O() + k)

2z(k) ) -JPh~) sin iT M~ sin O(k) + 0)h sin (*(k) + ,pk)sin(V(k) + k)
(30){ 1 <n<:5N -

It (k)nNN-
O= k - aCin( Ehin kk) n =NM¢ + 0¢() 1 <5 n< N - 1

.j-1 ,Nb)

The corresponding equation for the initial coordinates Ox ), OY(n), kO) can be found in

the appendix, Eq. (A21).

The nodal displacements for layer n can be computed similar to Eq. (30) in terms of

- 14-



the shell's nodal displacements and nodal angles:

t4 k = u jk -h(k)(COS q, k) _ CoO ,2(k))

n-I

+ Zh~) (COS(q(k) + 4,(k)) COS Oj(k))

vn(k) = v(k) - jh(k)(sin T(k) cos O(k) - sin (1 k) cos o())
n-I(1

+ Eh) (sin(Vk) + 0~)) cos(P() + wk)- sinOlP(k) coO ,(k)) (1

-
(k) = w(k) - jh(k)(sin T (k) sin ,( ) - sin OT (k) sin o(k))

n-1

+ 1 h( ) (sin(1(k) + 0, k)) sin( () + W sin OT(k) sin 0o())
i-i

The layer-coordinates from Eq. (30) and the layer-displacements from Eq. (31) are
then used for computing the stiffness expressions of the layer (section 1.2).

1.3.3 Transformation Layer -+ Shell

Equation (31) can be used for deriving the displacement increments. By assuming the
angle increments 0 (k), ;(k), A), A() to be small (< 1), the trigonometric functions

can be linearized with respect to these angles, which results in a linear relationship between

the layer DOFs (ts( ), 44k), Awl(), & ) and the shell DOFa (Au(k), AO), Aw(l),
i M,),A M n ,$k), n = 1,... , N - 1):

46~)=G(k),Au(k) (32)

The detailed formulas for the transformation matrix G$') and the definitions of the

vectors Au$,) and ku(k) can be found in the appendix, Eqs. (A25-A27).

The defnition of the angles Wn and o) as deviations from the "secant" renders some

distinct advantages:

Enforcing a straight shell normal (e.g. as a boundary condition) can easily be done by

setting the DOFs Ipn), AO, n = 1, ... N, - 1 to zero. This forces the total angles

n ), i) of all layers to be equal to the corresponding angles (k), T(k) of the shell.
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I - The piecewise linear deformations of the shell's "normal" result directly from the anal-

ysis in terms of the deviation angles.

By applying te transformation from Eq. (32) to all nodes the following global trans-
formation matrix can be derived:

IG. o ... o ... 0

) ... o

Gn '(33)
.Ym. ... 0

G nN)

with this equation, the stiffness matrix and the vector of internal nodal forces can be

transformed from the layer level to the element level:

i
N

1, ,,, n) + (34)

N
f= =- E .~(") _ Af W) (35)

n=1

I Consequently, K and are used in the incremental equilibrium equation, Eq. (1).

i
1.3.4 Distributed Loads

3In the LCSLFC-element distributed loads are taken into account in a simplified man-
ner. The equivalent nodal forces are computed for the entire shell (rather than seperately

for each layer) and added to the RHS-vector of Eq. (1).

Currently, the following distributed load types Ul - U5 (this notation corresponds to
the ABAQUS notation [10]) are implemented in the LCSLFC-element (for details on the
derivation of the equations see [3]):
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UI corresponds to a uniform pressure load p. By assuming the pressure to act on the

midsurface of the shell, the equivalent nodal forces ? prcs, can be computed by:

+1+1 XX

R' -e J r , (36)
-i--iZ,r Z,"

with I being the translational part of the interpolation matrix for the shell N, see

appendix, Eqs. (A29, A30).

U2 correspond to a gravity load in -z direction. The equivalent nodal forces Rgrav can

be computed by:

+1+1
r, ) ) T( 0)

NT=/ 0 0 rr. detl J I dr di (37'
~-Pg

--1

with 1 being the rotational part of the interpolation matrix N, see appendix,

Eqs. (A29, A31), and g being the gravity constant. 3, are the following thickness

integrals of the mass densities of the layers (p,):

N

n h=1-i (38)

P Pn with Sn 2 j-

U3 correspond to a uniform body force b in z direction. The equivalent nodal forces

Rbf. can be con- ted by:

+1+1 b
r'.9 ) det Idr d, (39)

-1-1

U4,U5 correspond to a uniform body force b in y, z direction, respectively. The equivalent

nodal forces can computed similar to Eq. (39) but the load direction has to be

adjusted accordingly.
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1.4 MODIFIED BUCKLING ANALYSIS

In the LCSLFC-element the buckling procedure implemented in ABAQUS [10] is used

in a modified way in order to improve the convergence behavior in cases where thermal

buckling is considered.

Instead of computing the current stifTness plus eigenvalue times an incremental stiffness

(this is the ABAQUS *BUCKLE procedure), the stiiess matrix is decomposed into a load
independent part and a load dependent part, which is used to formulate a linear eigenvalue
p roblem.

Starting from Eq. (1) and by linearizing the nonlinear relationship between the stiffness

matrix and the current load, an eigenvalue problem of the following form can be obtained

(for details see (11]), leading to an estimate for the critical load:.

( +7 1 )60=o 0 (40)

critical load 7 r1 x current load (41)

with Y71 being the smallest eigenvalue of Eq. (40). The eigenvectors 8g correspond to the

eigenvalues r7 and represent approximations of the buckling modes.

The error caused by the linearization mentioned above, vanishes and, hence, the esti-

mate (Eq. (41)) becomes accurate when the lowest eigenvalue t1l approaches 1, i.e. the

current configuration approaches the critical one.

I
I
I
I
I
I
I - 18-



2. USER MANUAL FOR THE LCSLFC-ELEMENT

2.1 SUMMARY OF ELEMENT CAPABILITIES

The following is a list of features implemented in the LCSLFC-element. Sections 2.2
and 2.3 include detailed descriptions of these capabilities.

* Element formulations:

- linear or

- updated Lagrangian

* Variable node numbers: 4-, 8-, 9- and 16-noded elements

* Variable integration order: from 1 x 1 up to 4 x 4

* Variable shell thickness within each element

* Free definition of directions of shell quasi-normals:

- prescribed or

- computed from initial geometry

* Convenient definition of DOFs:
- displacements of shell-midsurface plus

- rotations of shell quasi-normals plus

- seperate rotational DOFs per node for each layer

* Layerwise constant transverse shear

* Free laminate lay-up: each layer can have a

- different layer angle

- different thickness

- different material

* Free distribution of layer angles within elements:

- prescribed or

- computed from initial geometry

Material models:
- linear elastic model or
- metal-matrix-composite-type elasto-plastic model or

- user defned material modelI
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* Different types of material data input:

- layer data (= homogenized data) or

- data for fiber material and matrix material with
e aligned continuous fibers or
e randomly oriented fibers or
e aligned whiskers or

* randomly oriented whiskers

* Thermal loading in terms of temperatures at the surfaces of the shell

* Distributed loads (surface pressure and bodyforces)

Printout of layer stresses and strains at various locations

* Full usage of ABAQUS preprocessor capabilities

I
2.2 INPUT STRUCTURE

The LCSLFC-element works in conjuction with the FE-code ABAQUS [10] as a user

defined element by employing the UEL-interface. Therefore, the input for the LCSLFC-
element is based on the conventions and concepts of ABAQUS. In addition, line ("card")

oriented data input within the *UEL PROPERTY section is used to defne all the element

parameters necessary.

I 2.2.1 Introducing the LCSLFC-Element

I The LCSLFC-element is introduced via the keyword *USER ELEMNT in the input-deck.

In addition to the keyword, the parameters NODES, TYPE, COORDINATES, VARIABLES,

I PROPERTIES have to be entered with the following values:

IODES-4 or a8 or =9 or w1$ (= number of nodes forming the element, see note (1))

TYPE=Ul (= element identifier)

ICOORDINATES-S (= number of coordinates at each point, see note (2))

VARIABLESenn (= number of solution dependent variables, see note (3))I
PROPETIES-mm (= number of property values given in the *UEL PROPERTY option,

I see note (4))
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Notes:

(1) The 4-noded element should be used with care due to the possibility of shear-locking.

The 8-noded and 9-noded shells can exhibit membrane-locking effects for curvilinear

geometries. Thus they should be used primarily for planar problems.

The use of the 16-noded element is highly recommended since none of the adverse

effects occur.
The local element node numbering scheme for the different elements can be found in

Fig. 2.1.
Global Coordinates Natural Coordinates

I
I

=MOP-

I~~- ___S

4-noded bilinear 3 4

I 21
II

8

I 3 4

8- and 9-noded biquadratic

3

2 6 6 
"

7 14 13 P12,.

N 16-noded bicubic
3 9 10 -

I Fig. 2.1 Element node numbering scheme for 4-, 9-, 16-noded LCSLFC-element
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(2) 6 coordinates (z, yi, z coordinates plus x, y, z direction cosines) are used to define both

the position of the nodes in space and the direction of the shell normal. These coordi-

nates are entered in the *NODE section of the input-deck; input of the direction cosines
is optional; if they are not specified, the direction of the initial shell normal is com-
puted from the initial geometry of the shell (see Eqs. (28,29)). If the direction cosines
are specified, these directions will be used, unless the difference between the angles

computed from the geometry and those computed from the direction cosines is greater
than a given value (default: DANG= 100, or specified for each element, see Element Data

Block). DANG should be kept small to prevent excessive initial distortion of the element.
In cases where two adjacent elements are inclined (i.e. have no common normal) it is
sometimes useful to specify a particular direction of normal to reduce inaccuracies in

I the analysis.

(3) The number of solution dependent va.riables nn defines the length of the array SVARS,Iwhich contains certain element data. nn depends on the number of layers (parameter

MAXNUM), the number of integration points (parameters NIR, NIS), the number of element

nodes (parameter NNODE) and the number of items stored at each integration point at

each layer (parameter NLWA). nn is given by the following expression:

nn >: NSVAE.S = (NLWA + 8) * 2 * HIR NIS * MAXM + (MAXNVM + 3) * NNODE + 2

m The program checks whether nn is sufciently large and prints out SVA.S (NSVARS).

m (4) The number of property values equals 8 times the number of data lines within the *UEL

PROPER6TY section of the input-deck.I
2.2.2 Definition of Degrees of Freedom

After the line with the keyword *USE.R ELMNT, a line with a list of active DOFs per

I node has to be entered, which depends on the number of layers:

For a shell with only one layer, DOFa 1,2,3,4,5 have to be activated; for each additional

I layer two additional DOFs are necessary. For these DOFs the numbers 11,12,... should be

used (ABAQUJS has certain conventions for labeling the DOFs [10]), so that results can be

I printed out. However, if thermal load is applied, these DOFs cannot be used (these DOFs

are unavailable if the keyword *TEMPERATURE is used), instead DOFs 6,... ,10 can be

I used. In that case, however, only DOF 6 is available for print-out.
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The output variable identifiers for printing the DOFs are defined as follows (see also

ABAQUS Users' Manual, section 7.7.1). These identifiers can be used in the *NODE PRINT

option:
DOFs identifier

1,2,3,4,5,6 U

11,12,... NT11,NT12,...

DOFs 1,2,3 represent the displacement increments in x, y, z directions, DOFs 4,5 corre-

spond to the rotational increments of the shell secant, see Fig. 1.3. The remaining DOFs

are rotational increments of the normals of the layers as defined in section 1.3.1, see Fig.

1.3. Due to ABAQUS input conventions (only 16 integer items can be given in a data

line), the maximum number of layers is restricted to 6 (= 15 DOFs).

2.2.3 Element Properties

To define all element properties, the *VEL PRCPERTY section has to be used. The data
within this section are arranged in "card" form (i.e. the ordering of both the input lines

and the input items within each line are essential). The arrangement of the data items is

as follows (the names of the variables correspond to the LCSLFC-code):

KTEMP,NIR,NIS, ISTRES,MODEL, INMMAT,NNUMSPE
NP, NSCHDA (NP),NSCHLA, WHISKL
RHO (NP), PHCM,ALFT(I,NP), ALFT(2,NP), ALFT(3,NP)o ALFT(4,NP),ALFT(5,NP)

,... ,PROP(,NP)
EPROP(9,NP),... )

, (NUMMAT materials have to be defined)

~[PROPO(9SP),... 3]

NLFC, NSCHI (NLFC).s
ISCHI,ANSCHI(ISCHI,NLFC),THSCHI(ISCHI, NLFC),IMSCHI(ISCHI,NLFC) ,KISCHI
next ISCEI,... (until all layers are defined)
[NLFC,...

I (NUMSE laminates have to be defined)

ISCHIo...j
M, MTYP,IPSKG,KAANGMI, IANGL,DANG
[EH (1 , MAXIUM+ 1) HE (2 MAXNTUM+ ) ,...
EANGM(1) ,ANGM(2),... IInext M,... (until all elements are defined)
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These input data are structured into 4 blocks, see Fig. 2.2.

Control Data Block)

K\PMaterma Data Block(

.eight densities, coeicients of thermal expansion

mechanical properties

g ate Setup io 
()- for each layer: fiber angle, thickness, materil

SElement Data Block

l laminate setup, print flag, reference fiber angle

[r -(variable shell thickness )

IL(variable refeence fiber angle

Fig. 2.2 Input data structure within the *UEL PROPERTY section

Control Data Block ) : Defines all control paameters

Variable Entry Note

XTEMP Thermal load flag (1)
=0 ... no thermal load
-1 ... thermal loading is taken into account

VIIR Integration order in r-direction (2)
NIS Integration order in .9-direction (2)
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ISTRES Stress/strain output flag (3)

* 0... no stress/strain output

1... print layer stresses at layer midsurface

* 2... print layer stresses at bottom and top iurface

* 10... print layer status (for MODEL-2)
n100... print layer strains at layer midsurface

w200... print layer strains at bottom and top surface

MODEL Material model number (4)

-1... linear elastic

-2... elastic-plastic (MMC)

-4... user defined material

NUO(AT .Number of material specifications in the Material Data Block

default-1

NUMSPE Number of laminate specifications in the Laminate Setup Block

default,,±

Notest

(1) "In-plane" thermal loading (i.e. temperatures at the midsurface of the shell) is ap-

plied via the standard ABAQUS option *TEMPETURE in the history definition. Initial

temperatures can be defined by using the *INITIAL C0NDITIONS, TYPETEMERATUE

option.

"Thermal bending" loads (i.e. temperature differences between outer and inner sur-
faces of the shell) can be introduced via the *FELDVARIABLE- I option, in which the

temperature differences can be entered. Initial conditions are defined via the *INITIAL

CONDITIONS, TYPE"FIELD option.

(2) NIR and NIS define the order the reference surfaces of the layers are numerically inte-

grated (Gauss integration). The locations of these integration points with respect to

the natural coordinates r, s are as follows:

integration order r and s coordinates

lxI 0.0

2x2 r-3
3x3 0.0, ±__ 5

4x4 ±0.8611363116, =0.3399810436
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(3) ISTRES defines the type of stress/strain output. Input to ISTPRES consists of a number

containing three digits. The first digit controls the layer strain output, the second digit

controls the output of layer status, and the third digit controls the layer stress output.

E.g. ISTRES-111 produces output of layer stresses, layer strains and layer status, all

at the midsurface of the layers.

Output locations are the numerical integration points defined in the previous table.

Stresses and strains are referred to the local layer coordinate system 1, q, t (fiber direc-

tion, transverse direction, thickness direction).

(4) Three different options are available:

- A linear elastic model, in which either layer data or fiber and matrix data along with

the geometrical setup can be input (see Material Data Block);

- A special elasto-plastic material model for fiber reinforced metal matrix composites,

jdeveloped by Alfred Svobodnik, Institute of Lightweight Structures and Aerospace

Engineering, Vienna Technical University [6];

- A user defined material model (see section 2.3).

Material Data Block : Defines the materials of the layers of the composite. Each different

material combination (fiber and matrix) needs it's own material

data sequence. Thus it is possible to define hybrid composites.

M4AT material specifications have to be entered.

Variable Entry Note

Card 1:
NP Material set number

NSCEDAUP) Flag for type of material data input (1)
s0... fiber and matrix data
=I... layer data

NSCHLA Flag for fiber orientation (2)
-0... aligned fibers
-1 ... randomly oriented fibers

WHIM Length of whiskers (2)

Card 2 (if NSCHDA(NP)-0):

RHO (NP) Weight density of the fiber (3)

RHOM Weight density of the matrix (3)
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ALFT (1, NP) Coefficient of linear thermal expansion of the fiber
in fiber direction

ALFT (2, NP) Coefficient of linear thermal expansion of the fiber
in transverse direction

ALFT (3, NP) Coefficient of linear thermal expansion of the matrix

Card 2 (if VSCHDA(NP)=1):
RHO (NP) Weight density of the composite
P.OM not used
ALFT(1 ,NP) Coefficient of linear thermal expansion of the composite (4)

in i-direction (fiber direction)
ALFT (2, NP) Coefficient of linear thermal expansion of the composite (4)

in q-direction (transverse direction)

ALFT (3, IP) Coefficient of linear thermal expansion of the composite (4)
in iq-shear (inplane shear)

ALFT(4,]NP) Coefficient of linear thermal expansion of the composite (4)
in It-shear (transverse shear)

ALFT (5, NP) Coefficient of linear thermal expansion of the composite (4)
in qt-shear (transverse shear)

Card 3 (if NSCEDA(NP)"O):
PROP (1, NP) Axial Young's modulus of the fiber
PROP (2, NP) Transverse Young's modulus of the fiber

PROP (3, NP) Poisson's ratio of the fiber
PROP (4, NP) Axial shear modulus of the fiber
PROP (5, NP) Transverse shear modulus of the fiber
PROP (6, NP) Fiber volume fraction
PROP (7, NP) Young's modulus of the matrix
PROP (8, NP) Shear modulus of the matrix

Card 3a (only if MODEL=2):
PROP (9, NP) Yield stress of the matrix in tension
PROP (10 ,IP) Parameter defining hardening behavior of the matrix (5)
PROP(11,NP) Parameter defining hardening behavior of the matrix (5)
PROP (12, NP) Stress correction parameter (6)

•0... no stress correction
= ... correction after each increment
-2... correction after each subincrement
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Card 3a (only if needed for MODEL-4):

PROP (9 1 NP) Additional material property (7)
PROP(10,NP) Additional material property (7)

Card 3 (if NSCHEDA(SP)I):

PROP (1 ,NP) Young's modulus of the composite in I-direction
PROP (2, NP) Young's modulus of the composite in q-direction
PROP (3, NP) Poisson's ratio of the composite

PROP (4,N P) Inplane shear modulus of the composite (lq-shear)
PROP (5, NP) Transverse shear modulus of the composite (It-sheLs_)

PROP (6 ,NP) Transverse shear modulus of the composite (qt-shear)

Notes:

(1) For NSCHDA"0 the effective properties of the composite are computed from fiber and

matrix data as well as the volume fraction and the geometrical setup, which is entered on
cards 2 and 3. The Mori-Tanaka averaging regime in conjunction with the parameters

NSCHLA and WEISKL will be used in this case, see note (2). For NSCHDA-I the effective
properties of the composite have to be entered directly on cards 2 and 3.

(2) If WHISKL>0 then a whisker type composite is assumed, with whisker length=WHISKL.

XSCHLA indicates whether the fibers (or whiskers) are aligned or randomly distributed.
NSCHLA and WISKL are used only if NSCHDA-O.

(3) The fiber volume fraction is used to compute the weight density of the composite by
averaging the weight densities of the fiber and the matrix.

(4) For an orthotropic material only the coefficients of linear thermal expansion in the
principal directions (I and q) are different from zero. However, for a fully anisotropic

material additional coefficients for thermal shear can be entered.

(5) Two different hardening models are implemented. A detailed description of these can

be found in [6].
- Bilinear hardening matrix: PROP(10,N P) is set to zero and PROP(It,IP) has to
contain the value of the tangent modulus.

- Modified Ramberg-Osgood law: The classical Ramberg-Osgood approximation is:
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Here a and c denote stress and strain in simple tension, E is the Young's modulus, B

PROP (10, NP) and n PROP (±11, NP) are parameters describing the plastic behavior which

are determined from measured stress-strain curves.

(6) This parameter controls the stress correction. A description of the stress correction

can be found in [6].I Usually this parameter should be set to 1. For very large load increments a value of 2

is recommended.

(7) For the user defined material model, additional material properties may need to be

entered. The internal parameter NCON specifies the number of properties. It has to be

set accordingly (see section 2.3).

Laminate Setup Block : Defines the setup of the laminated composite. The fiber angle,

I the thickness, and the material definitio of each layer have to be

entered. NVMSPE laminate definitions must be specified.

I Variable Entry Note

I Card 1:
NLFC Number of laminate setup

IS LFC) Number of layers in this laminate setup

NSY Flag for symmetrical laminate setup (1)
-0... unsymmetric setupI1... symmetrical setup with respect to the

mid surface of the shell1
Card 2 (enter as many cards of this type as needed to define the laminate):

ISCHI Layer number (2)

ANSCRI (ISCRI, NLFC) Fiber angle for this layer (3)

TISCHI (ISCHI, ILFC) Layer thickness for this layer

IMSCHI (ISCHI, NLFC) Material label (4)

KISCEI Generation parameter (2)

1 -29-



i Notes:

(1) With NSY-1 the laminate setup is assumed to be symmetrical to the midsurface of the
shell. Layer n has the same fiber angle and thickness as layer NSCHI+I-n. Thus, only

the half laminate setup (ISCHI=I,2,... ,NSCHI/2) has to be entered.

With NSY-O all layers (ISCHI=I,2,... ,NSC9I) have to be defined.

(2) The sequence of the input cards for defining the layers can be chosen freely. However,

the highest number (-NSCHI/2 for NSY-I or -NSCHI for NSY-O) has to be in the last

line. With the parameter KISCRI layers can be generated, e.g. the card sequence

1,45.,0.1,1
7,60.,0.1,2.2

generates layers 3,5 with the same fiber angle, thickness, and material as layer 7.

1 (3) This angle is defined with respect to a reference axis, which, in turn, is prescribed by

the element geometry and a reference angle in the Element Data Block.

(4) For IMSCHI the number of the material defined in the Material Data Block (--+ NP) has

to be entered. Thus, it is possible to define hybrid setups containing different materials.

Element Data Block Contains additional element information. Elements with similarI data can be generated.

Variable Entry Note

Card 1:
I M Element number

MTYP Laminate setup for this element (1)

I IPS Stress/strain output control flag (2)

KG Generation parameter (3)

I Element thickness flag (4)
,,0... constant element thickness

(from laminate definition)
s "... element thicknesses at corner nodes prescribed

(requires additional card la)
w4... element thicknesses at all nodes prescribed

I (requires additional cards la, 1b)
ANGMI Angle between reference axis and r-axis (5)

i in local element node 1
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IANGL Flag for calculation of the reference angle (5)

-0... ref. angle is constant within the element (-ANGM1)
-1 ... ref. angles are computed from element geometry

-2... ref. angles at corner nodes prescribed
(requires additional card 1c)I4... ref. angles at all nodes prescribed
(requires additional cards 1c, id)

DANG Tolerance measure for angles of normal (defaults10*) (6)

Card la (only if KA-2):
HH(1,1MAXUM +1) Shell thickness at local element node 1

EE(2,MAXNUM+I) Shell thickness at local element node 2

SHH(3,MAXNUM+I) Shell thickness at local element node 3

HH(4,I4AXNUM+1) Shell thickness at local element node 4

Card is (only if KA4):

HI ( 1, KAXNUM+ 1) Shell thickness at local element node 1

EH(2,MAXNUM+I) Shell thickness at local element node 2

HH(8,AX1UM ±) Shell thickness at local element node 8

Card lb (only for 9- and 16-noded elements, if KA-4):

I 11(9, MX UM+1) Shell thickness at local element node 9

ICard ic (only if IANGL-2):

ANGM(1) Reference angle at local element node 1

I ANGM(2) Reference angle at local element node 2

ANGM(3) Reference angle at local element node 3

1 AN (4) Reference angle at local element node 4

I Card 1c (only if IANGL-4):
ANGM(1) Reference angle at local element node 1

I ANGM(2) Reference angle at local element node 2

I ANGM(S) Reference angle at local element node 8
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Card ld (only for 9- and 16-noded elements, if IANGL-4):

ANGM(9) Reference angle at local element node 9

Notes:

(1) For MTYP the number of the corresponding laminate, defined in the Laminate Setup
Block (NCFC), has to be entered.

(2) IPS controls the stress/strain output locations within the element. The input to IPS

consists of a number containing 3 digits. The last digit controls the increment of layer

output, the second digit controls the increment in s-direction, and the first digit controls

the increment in r-direction for output.

For IPSu2xx stresses/strains of all integration points in r-direction are printed.

For IPS=2zz, =3xx, etc. stresses/strains of every 2
"d, 3 d, etc. integration point in

r-direction are printed.

For IPS-xix, =x2x, etc. the same syntax as described above for the r-direction is used

for the s-direction.

For IPS-=l stresses/strains of all layers are printed.

For IPS=-2, =zz3, etc. stresses/strains of every 2
" d, 3 d, etc. layer are printed.

(3) KG is used for element information generation. For KG>O, information between the

element data card where KG is initially entered, and the following element data card is

automatically generated. Element data sets e, e + KG, e + 2 * KG,... are generated with

all data defined in the initial set of the generation sequence (element e).

(4) For KAO, shell thickness is constant throughout the element. Thickness is defined as

I the sum of the layer thicknesses given in the Laminate Setup Block.

For KA=2, bilinear variation of element thickness is assumed. For this purpose, an

additional card la is required which contains the shell thicknesses at the corner nodes

of the element. Thus, layer thicknesses defined in the Laminate Setup Block vary

bilinearly, too.

I For KA=4, the shape functions (bilinear, biquadratic, bicubic depending on the number

of nodes) define the variability of the shell thickness throughout the element. An

I additional card la is required which contains the thicknesses for the first 8 nodes. For

elements with more than 8 nodes, a 2nId additional card lb is required to define the

I thicknesses for the remaining nodes.
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(5) IANGL defines the variation of the angle between the reference axis (for defning the
laminate setup) and the local element r-axis.
For IANGL-O, the angle is constant throughout the element, with the value -ANGM1.
This is typically used for rectangular elements.
For IANGL- 1, the angles are computed from the element geometry and the given angle
at the local element node 1 (=ANGMI). This is useful for non-rectangular element cor-

ners and curved element edges (the fibers are assumed to be parallel within the shell
surface).
For IANGL-2, shape functions are used to interpolated the angles from the values given
at the corner nodes. Thus, an additional card ic is required which contains the nodal
information.

For IANGL-4, shape functions are used to interpolated the angles from the values given
at all nodes. Thus, an additional card Ic is required which contains the information
for the first 8 nodes. For elements with more than 8 nodes, a 2

"d additional card Id is
required to define the angles for the remaining nodes.

(6) If the direction cosines are specified in the *NODE section of the iLput-deck, these di-

rections will be used as initial shell normals, unless the difference between the angles
computed from the geometry and the angles computed from the direction cosines is
greater than DANG. If used, DANG should be kept small to prevent excessive initial dis-
torsion of the element.

2.2.4 Usable ABAQUS Options

The following is a list of ABAQUS (10] options that can be used in conjunction with

the LCSLFC-element, some of these have not been tested but they should work without
I problems:

Nodal Point Data: *NCOPY, *IFILL, *NGEN, *NMAP, *NODE, *NSET, *SYSTEM (not tested),

*TRAN SFORM (not tested)

Element Data: *ELCOPY, *ELEMNT, *ELGEN, *ELSET, *SLIDE LINE (not tested)

Kinematic Conditions: *BOUNDARY, *EQUATION, *MPC (with restrictions, see note (1))

Miscellaneous: *AMPLITUDE, *RESTART,**, *INITIAL CONDITIONS

Step: *STEP,*ENDSTEP
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Procedures: *BUCKLE (modified, see note (2)) $*STATIC, *MODEL CHANGE (not tested)

Loading: *CLCAD, *DLOAD (see note (3)), *FIELD, *TEMPERATURE (see note (1) in

Control Data Block, section 2.2.3)

Prescribed Boundary Conditions: *BOUNDARY

Print and File Output Definitions: *NCDE PRINT, *PRINT, *FILE FRMAT,*NODE FILE

Notes:

(1) MPCs have to be used with care due to the fact that the definitions of rotational DOFs

for the LCSLFC-element are different from the corresponding ABAQUS defitions.
MPCs 1,2,6,9,12 restrict the translational DOFs only and, therefore, can be used without

problems.

(2) In the LCSLFC-element a modified version for computing the buckling loads is imple-Imented, see section 1.4. Therefore, the sequence of *STEPs in the ABAQLUS input-deck

needed to perform a buckling analysis is a little different than described in the ABAQUS

manual f10]: After loading the structure to the load level desired, two *STEPs consisting

of the *BUCKLE,DEAD procedure and subsequently the *BUCKLE,LIVE procedure have

jto be performed. The resulting eigenvalues multiplied by the current load level give

estimates for the buckling loads. The eigenmodes are estimates of the buckling modes.

buckling load - eigenvalue x current load

(3) Currently, 5 different distributed load types are available (see section 1.3.4):

jU1 stands for uniform pressure load acting in -t direction (the t direction is defined

by the shell surface and the node numbering order, see Fig. 1.1). In the data card

of the *DLOAD option the magnitude of the pressure (p) has to be entered.

U2 represents gravity load in -z direction. In the data card of the *DLOAD option the
I gravity constant (g) has to be entered.

T3-US stand for uniform body force in z, y, z direction, respectively. In the data card of

the *DLOAD option the magnitude of the body force (b) has to be entered.
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2.3 LCSMAT, MATERIAL MODEL INTERFACE

The LCSLFC-element provides an interface whereby the user can write his own con-

stitutive model in the subroutine LCSMAT. The material constants that are needed in the

subroutine have to be entered in the Material Data Block as described in section 2.2.3.
If the number of material constants exceeds 8, then the parameter NCON has be adjusted

accordingly in the subroutine LCSPAR.

Most constitutive models require the storage of solution dependent variables (plastic

strains, failure parameter, etc.). The array WA(NLWA) can be used for this purpose; the

length NLWA of this array has to be set in the subroutine LCSPAR.

The interface to the subroutine LCSMAT is simple. When it is called, it is provided with

the material data, the state at the beginning of the increment (local strains, temperature,

I solution dependent variables), the current local strains and the temperature at the end of

the increment. The subroutine must perform two functions: it must compute the current

local stresses, and it must provide the current material matrix (it must also update the

solution dependent variables, if used).

LCSMAT will be called at each material calculation point of the shell, i.e. the 2/d

numerical integration points (Gauss-points), at the top and bottom of each layer. The

sample subroutine LCSMAT for linear elastic fiber and matrix materials is included in the

LCSLFC-program. The subroutine D3?R(C represents an application of the material model

interface (with some small modifications).

Interface cards:

SUBROUTINE LCSMAT (EEPSL,EEPSL0,WA,NLWA,PROP, NCON,ALFTEMAT,

I STRESO,STRESSTEMPO,TEPIINP)
C

IMPLICIT REAL*8 (A-,a-Z)

DIMENSION EEPSL(5) ,EEPSLO(S) ,WA(NLWA) ,PROP(NCON).ALFT(S),
1 I EMAT(C,5),STRES0(5) ,STRESS(5)

user coding...

RETURN

END
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Variables to be defined:

EMAT(5, 5) represents the current material stiffness matrix EL of the constitutive
model for modified plane stress conditions (no thickness normal stress,
but transverse shear stresses and strains), defined in the local 1, q,t
coordinate system. All entities have to be specified. However, an un-

symmetric constitutive model will not be treated correctly because the
global stiffness matrix is computed assuming symmetry.

Eu11  Eiiqq Eiuq Eit. Eliqt
Eqqu Ejqq Eqqliq Eqqlt Eqqqti L Elil El,,f Elog, Ealo, El,,,
Etal1 Etq E1 q Etzt Eltqt

\Eqt, Eqtqj Eqtq Eqjt, Eq, ,

with I... fiber direction,
q... inplane transverse direction,

t... thickness direction.

STRESS(S) stand the current stresses that correspond to the current strains (EEPSL)
and the current state of the solution dependent variables (WA). If ther-
mal load is applied (KTW =I), thermal stresses for temperature at the
3nd of the increment (-e TEP) have to be included.

STRESO (5) (need only be defined if thermal load is applied, i.e. KTENPw1) symbolize
the current stresses that correspond to the current strains (EEPSL) and
the current state of the solution dependent variables (WA) including
thermal stresses for temperature at the beginning of the increment (-.

TEMPO).

WA (NLWA) represents the array of solution dependent state variables. The values

at the beginning of the increment are transferred to the subroutine and

they have to be updated to the current values. The size of the array
NLWA is defined in the subroutine LCSPAR.
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Variables passed in for information:

EEPSL(5) represent the current strains in local (fiber fixed) coordinate system.

/t

t \'C,,!

EEPSLO (5) stand for the strains in local (fiber fixed) coordinate system at the

beginning of the increment.

NLWA indicates the number of solution dependent state variables.

POP (ICON) symbolizes the array of material constants entered in the Material Data
Block.

NCON represents the number of material constants.

ALFT(5) stands for the array of coelcients of linear thermal expansion entered
in the Material Data Block.

TEMP indicates the current temperature.

TEMPO symbolizes the temperature at the beginning of the increment.

IINP stands for the flag that defines the state of the analysis:
IINP=O... first call of LCSMAT at this point

1IN1P-1 ... subsequent calls

2.4 RUNNING ABAQUS WITH THE LCSLFC-ELEMENT

The LCSLFC-element can work in conjunction with some ABAQUS elements. How-
ever, special care is needed with the rotational DOFs due to their different definitions in

ABAQUS and the LCSLFC program, respectively.

To run ABAQUS and the LCSLFC-element together the standart command ADAQUS
(this calls the ABAQUS command file ABAQUS. COM) can be used. However, to get proper
file handling, some modifications prove necessary. The sample command file ABQS. COM
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includes all these changes. In order to run ABQ8. COM, the compiled LCSLFC program has
to exist in the working directory. By typing QABQ8 the program can be started.

The material and element information for the LCSLFC-element is printed on the
ABAQUS .DAT file. The stresses and strains are printed on a seperate file called file. STR.

Plotting is not supported by ABAQUS version 4-8. However, all the necessary state-
ments for version 5 (which is expected to support UEL-element plotting) are already in-
cluded in the LCSLFC code. Meanwhile, an auxiliary program (PLOTA) has to be used to

extract plotting data:

Once PLOTA has been started, it will request the ABAQUS .DAT filename. After t.he
filename has been entered, PLOTA searches through this file for element connectivities and
nodal displacements. Then it creates a . GED file, which contains the nodal coordinates and

the element connectivities and a .DIS file for each set of displacements. These data are
formatted for use with the post processing program MOVIE. BYU (version 5).

PLOTA will not create a .GEG file, unless all the element information is included in
the ABAQUS .DAT file. E.g. .DAT files from restart analyses do not contain all alement

information. The same can happen if the *PREPRINT option has been used.

In addition, PLOTA can be used to create imperfect geometries that can be applied for
post buckling analyses:

After the filename has been entered, PLOTA will request a scaling factor. If this number
is not zero, the displacements, multiplied by this factor are added to the initial (perfect)

geometry. This modified geometry is then printed onto the .GEO file (formatted for use in

an ABAQUS . INP file).
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3. VERIFICATION EXAMPLES

3.1 PRESSURE LOADED THICK SQUARE PLATE

A simply supported thick three-layer cross-ply square plate which is subject to a sinu-

soidal pressure load is used to demonstrate the accuracy of the LCSLFC-element. Both

the exact solutions and FE results (12,131 have been used for comparison.

Lay-up: (0/90/0]... three layer cross-ply, shell thickness h = 1 in.

Material: as specified in [12]

El =25000 kpsi Ev =1000 kpsi vqe =0.25
Gil = 500 kpsi G1t = 500 kpsi Get = 200 kpsi

Model: A quarter of the plate has been modelled by four 16-node LCSLFC-elements.
Width of the square a = 4 in. Symmetry conditions: along the z-symmetry line Av(k),

A(n), (n = N,..., N - 1) have been set to zero, and along the y-symmetry line

AU(, A#(k), &(k) (n = 1,..., N - 1) have been set to zero. The 0* layers have been

divided into two sub-layers to trace the variation of transverse shear within the layers.

Distributed load:

q(z, y) = qo sin(7rx/a) sin(7ry/a)

q0 = (7r/a)2

For comparison purposes, the following normalized quantities have been used:

100E~h2  = 00Eqh3 w =z/

qoa 3  qoa 4

h2

qoa qo a

Since nonlinear effects are not taken into account in (12], only a linear load step has

been performed. Figs. 3.1 to 3.3 show the through-the-thicmess distribution of both

the normalized inplane displacements u and the normalized stresses v,, . at specific

locations. Analytical solutions and the results from classical laminate theory (CLT) are

also given in these figures. Very good agreement can be observed between the LCSLFC-

element and the analytical solution despite the fact, that this "plate" resembles a solid

brick rather than a plate (the element length to thickness ratio is 1:1!).
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Fig. 3.1 Thickness distribution of normalized inplane displacements U of a thick
cross-ply square plate at x 0, Oy S ~ for h 1.0 and h 0.4
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Fig. 3.2 Thickness distribution of normalized in-plane normal stresses ar at the
center of a thick cross-ply square plate (z 1 , y = ) for h 1.0

0.5 Pagano
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Fig. 3.3 Thickness distribution of normalized transverse shear stresses 'r., of a
thick cross-ply square plate at x = 0, y =f for h = 1.0
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The same computation has been performed with a different shell thickness (h = 0.4)

in order to investigLte the importance of transverse shear. As one would expect, the
differences between the classical lamination theory and more advanced methods (like the
LCSLFC-element) become less pronounced as the thickness of the shell decreases, see Fig.
3.1. Table 3.1 lists some stresses and displacements for this case together with analytical
results and other FE results.

Table 3.1: Normalized stresses and displacements for h = 0.4

, - A) yl(,,( 1 ±!k), , ;F X(o, 1,o) f- ( , ,- 0)~,,)
Paao40.590 +0.285

Pagano -0.288 +0.357 +0.1228 +0.7530

(12] +0.5884 +0.2834-0.5879 -0.2873 +0.3627 +0.1284 +0.7531

LCSLFC-element +0.590 +0.285 +0.364 +0.1079 +0.7559-0.586 -0.283

These results clearly indicate that the LCSLFC-element is capable of handling thick

laminated shell problems with high accuracy.

3.2 CYLINDRICAL BENDING OF A PLATE STRIP

A two-layer cross-ply plate strip subject to a distributed normal load [14] has been used
to investigate the infuence of stacking sequence, geometrical nonlinearities and boundary
conditions on the mechanical behavior of laminated plates.

Lay-up: [0/90]... two layer cross-ply, layer thickness = 0.2 in.

Material: as specifed in (141
El =20000 kpsi Eq =1400 kpsi ,e = 0.3

G, = 700 kpsi Gt = 700 kpsi GO =700 kpsi

Model: The plate strip has been modelled by four 16-node LCSLFC-elements; length of
the strip I = 18 in., width b = 3 in. Both ends of the strip have been pinned. Each
layer has been divided into two sub-layers to ensure an accurate representation of the
variation of transverse shear within the layers.
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Different types of meshes have been tested to evaluate the robustness of the LCSLFC-
element. Even with an aspect ratio (length to width) of 11:1 very accurate results have
been obtained.

For comparison purposes the shell normals have been forced to remain straight. This
was accomplished by setting the rotational DOFs 6pk) A; ,) to zero. Excellent agreement
with the investigations in [14] have been obtained, see Fig. 3.4.

For simply supported ends, the magnitude of the displacements is independent of the
sign of the applied load, because the plate strip is essentially in pure bending, see [14]. Due
to the pinned ends of the strip in this study, in-plane stiffnesses are activated as soon as
out of plane deflections occur (geometrically nonlinear effect) and, therefore, quite different
results are obtained for positive and negative load directions (which can be translated into
a reversed stacking sequence), respectively, see Fig. 3.4. For a detailed explanation of this
phenomenon see [14].

/j linear

w/h

1.0. +p

0.8-

0.6

0.4. .. LCSLFC

LCSLFC, straight normals
0.2 [14)

0.0'

0.0 0.01 0.02 0.03 p gb/in 2

Fig. 3.4 Load-displacement path of a pinned two-layer cross-ply plate strip subject
to a distributed normal load
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Relaxing the boundary condition on the shell normals, which allows them to deform

layerwise linearly (therefore having a more realistic model), results in somewhat larger

deformationsi, as can be seen in Fig. 3.4. This indicates that transverse shear does not

play a significant role in this rather thin shell application.

3.3 THERMALLY LOADED SQUARE PLATE

In order to show the thermoelastic capability of the LCSLFC-element a uniform tern-

perature rise has been applied to a simply supported composite square plate. To verify the

results, comparative investigations with ABAQUS shell elements have been undertaken.

The following properties have been chosen:

Lay-up: [0/90]... two layer cross-ply, layer thickness = 0.2 mm

Material: Graphite/Epoxy
El = 127.5kN/mm 2  Ef =11.0k.N/mm 2  Vqj =0.35

Gq = 5.5 .kN/mm2  GI, = 5.5k'N/mm2  Gqt = 4.6k.N/mm 2

at =-0.08x10 - 5 °C- , - 2.90x10- oC-1

Model: The whole plate has been modelled by sixteen 16-node LCSLFC-elements, the

width of the square is 300 mm; all edges were restricted to remain straight.

Fig. 3.5 shows the nonlinear load-displacement path as well as an estimate curve for
the buckling load.

3Because of the constant temperature rise all over the plate and the simply supported

edges, no stability problem would be expected for a homogeneous isotropic plate. But, due

3to anisotropies occuring in the laminate, a linear buckling analysis (i.e. a buckling analysis

after a very small load step, i" = 1PC) yields a bifurcation point at " = 4C. However,

a detailed analysis of the buckling behavior indicates that the nonlinear pre-buckling de-

formations make the results of the linear buckling analysis rather meaningless. As can

be seen from the estimate-curve in Fig. 3.5, the estimates of the relevant buckling mode

Ichange during the incremental increase of the temperature and the critical temperature is

approximately 50 times higher than the corresponding value of the linear buckling analysis!

IThe comparison with the ABAQUS element has shown excellent agreement in the

displacements. However, it has not been possible to compute the detailed buckling behav-
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ior by using the ABAQUS elements. No convergence or only negative results have been
obtained during the eigenvalue extraction. Using the LCSLFC-element buckling loads
and buckling modes have been successfully computed by employing the modified buckling
procedure described in section 1.4.

I 250-

200 actual buckling temperature

'linear' buckling mode oe

150-I, actual buckling mode

U

I pI // ,..,.°- , ~~.................., --
/U

I deformed shape50-

I linear' buckling temperature u [mnm]
0 * I[=II] -m

0.0 0.02 0.04 0.06 0.08 0.10 0.12

I Fig. 3.5 Load-displacement path and estimate-curve for buckling load of a two

layer cross-ply square plateI
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Appendix

Jacobian matrix:
(X Z n,s Xt,

Yn,i Yn,s Yn~eJ( l
Zn,? Zn,# Zn t

with _~~ o

Zn~j =Xk + +th) CSn ) sn]~

k=i

Zn E()[h(k) +tnk) sn t() cs~)
k=i

Mn~ - [()(k)+itP(k) sin (k)]sn0M
k=1

Yn =E0)[~= i 1P cotM
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and=

k=j

MM

I0~ E Z )h~)(sin 41(k) sin 0() - sin0'11(k sin'-D))
k=1

where 
( = rj + k

=j J ~ .~ , 1  (A6)

j Ij, t,j correspond to the elements of the inverse of the Jacobian matrix J and 0O( (k),Oi)

are the angles of normal of the initial geometry.

I Incremental displacements:

I ~AUnj =ArZ,:j + t Ags, =(j7

An,) AnJ Ak

I wth= k) t4~ ~ k)t, h(g (z) 4) + e),k

k=1

M
E [0( ) AW~k) + 0(k) +~ ek + 70

I k=1

and
M

n I n z g~
kui
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where
0~ = a(k)-sin T'

4 )=..sin (() sin ql' CO (k) CO cosI~co'P (A10)

9Z CS 0(k.) sin 91(k) ell)= sinO) COS TPk

The functions g(k;) and g(~) represent linearizations of the trigonometric functions in

E qs. (A4, A5) at 4 nip () with. respect to the increment al rot ations n Aj

Strain-displacement matrices:

Linear Strain- displacement matrix:

with

= (i) ~(2) .. ~)

where (()~2 .

0 0 h~n)0(k) t'. g?() (k

o OM 0 0~)(k) t, g~k) k
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Nonlineax straini-displacemenit natrix:

Bn -= + t n (Al15)

with

i =A1) -j-2 . I
ll1 (.n n I (A416)

where
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S tress- integrals:

5xz Szi VSts
Sxx S:1  Sii SYS 0

S53  S1, Sys ,5  S -z Z
S= SSS

-. 03 S55  Sri, 5::

2V 0 sz SiZi SZ

SZS SY.- S,,

Displacement derivatives at shell's midsurface:

M

= > ,yk)

m~ L= ZM k (A20)
k=i

Zt0

IIot = 0

Zot = 0

Initial nodal coordinates for layer n:
n-1
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Relation between layer DOFs and shell DOFs:

Explicit:

Au~~Au~k - ~hk(~)ok
n-I

+ Eh k)(k)(4 o(k) + , + gIk)(aoL(k) +
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- n=N

60(k n)

with

sgk) = 0 esk) = -Sin (k)

(k) = Sin4 (k) Si qg(k k) = COS,(k) COS.k (A23)

cogk) CO(k)Sinip(k) =k Sint (k) COSi(k)

In matrix notation:

SG (k) Au(k)  (A24)
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Interpolation matrix for the shell:

N= IV+ ,. R - 0.5 <5 ,, < 0.5 (A2S)Iwith

=(N~i) N(2).. 9m

I where

9 k) ()( 0 0 0 (A30)
( 0 0 0 0)

andI 0gz(k) jk)

I 0 (k) jk)
I 9(k) and g(k) car z .ou.nd in Eq. (A27).
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Post-Failure Analysis of Layered Composite

Shells by Finite Element Method

" Konrad Dorninger"
Institute of Lightweight Structures and Aerospace Engineering

* Vienna Technical University, Vienna, Austria

V

ABSTRACT

Using the UEL-interface (user-defined element) a special shell finite element developed for
layered composite material (LFC-element) has been implemented in ABAQUS. The element
formulation is based on the degeneration principle including large displacements with an

efficient analytical thickness integration. Examining suitable failure criteria and taking into
account post-cracking stiffnesses allows for the investigation of progressive damage.

For load cases without failure analysis comparison of results obtained by the LFC-element
with those of the ABAQUS shell element shows the efficiency and accuracy of the new element.

Some examples illustrate that an extended range of composite specific problems can be covered
by this LFC-element.

1. INTRODUCTION

In designing shell structures the prediction of the limit load is crucial for fully utilizing
the material capabilities. Either buckling of the structure or the strength of the material (or
both) limit the sustainable load of the shell. In this paper special emphasis will be put on
investigating these two limiting factors, especially for layered composite shells.

By using a special shell finite element developed for laminated fiber-reinforced composites
(LFC-element, Dor inger, 1989) in conjunction with ABAQUS (ABA Q US, 1989) these limit
load analyses including the post failure regime can be conducted for arbitrary shell structures.

* Current address: Department of Civil Engineering, Rensselaer Polytechnic Institute,

Troy, NY 12180-3590, U.S.A.
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The onset of failure and the -ffective safety margin to overall collapse can be computed,
which is of considerable practical relevance.

The complexity of the internal stress state typically found in layered composite materials
and, in addition, the number of failure modes possible necessitate the introduction of some

simplifications and assumptions in order to make post-failure analyses feasible. The basic
assumptions are:

- Only inplane normal and shear stresses and out-of-plane shear stresses are considered (no

interlaminar stresses).

- No variation of stresses along the layer thickness is assumed.

- Only two inplane failure modes together with the corresponding post-failure stiffnesses
are considered: matrix cracking and fiber failure (either by cracking or by buckling).

The LFC-element is capable of handling thermal loading and material nonlinearities in
terms of the stiffness degradation mentioned above as well as geometrical nonlinearities due
to large deformations. By using the ABAQUS buckling procedure the buckling behavior of

layered composite plate and shell structures, including nonlinear pre-buckling deformations,
can be computed.

2. LFC-ELEMENT FORMULATION

A detailed description of the theoretical background of the LFC-element along with a
number of illustrative examples can be found in Dorninger, 1989. In this chapter only the

outline of the element formulation is presented with special emphasis on the failure analysis
modelling.

2.1 Basics

The element formulation is based on the well known degeneration principle, see e.g.
Ramm, 1976, Bathe, 1982. By using objective strain and stress measures, geometrically
nonlinear behavior in terms of large deformations is included.

IThe incremental finite element equation has the well known form:

rinK . -K ( u)' = -+l? ('f A ) (1)

The usual iterative application of Eq. (1) in each increment improves the result up to a
given accuracy.

For the updated Lagrange formulation the stiffness matrices and the nodal force vectors
for one element (e) are given by the following integrals over the element volume (mV):

I= L BT -C m BL dmV (2)

mK(e) -"'v~iBL -TiBrLdmV(3

fn~e
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m fe) f J LBT m 7 d'V (4)

f J-BTm-C a dmV()" \".

In Eq. (1) the sum in square brackets is often referred to as the current global tangent

stiffness matrix mK at state rn, comprised of 'K, (material stiffness matrix, depending on
I : the current material matrix -C which, in turn, depends on the local state of damage) and

mK, (initial stress or geometrical stiffness matrix, depending explicitely on the Cauchy stress

tensor, -T). The external load vector at the current state m + 1, m+lr, is given by the surface

and body forces, concentrated or distributed. 'f is the vector of internal forces corresponding

to the stresses at state m (vector mr) and Af# is the vector of internal nodal forces equivalent

to stress increments resulting from a temperature increment A and computed by using the

direction dependent coefficients of linear thermal expansion (vector a).

The general theory used to describe the degenerated shell element's geometry and its

deformations as well as the assumptions with respect to modified plane stress conditions are

in close analogy to Bathe, 1982, and are described in detail in Dorninger, 1989. For example,

the interpolation of the geometry is performed by

a l h(k)m.r(k)l
z ,(,,,t)= 0( )(r,s) [m,( ) + t cos %, (6)

where O(k)(r,.,) represent the standard 2/D shape functions (i.e. Lagrangian polynomials); M

is the number of nodes forming the element, h(k) is the thickness of the shell at node k and

the angles ik) are used to determine the position of the shell's normal at node k.

2.2 Material Description of the Multilayer Composite

Due to the anisotropic and layered setup of composite shells the overall material matrix C

in Eqs. (2,5) and the vector of coefficients of thermal expansion a in Eq. (5) become position

and orientation dependent. Each layer is assumed to have orthotropic material behavior with

respect to its individual fiber-fixed local coordinate system 1,q. The definition of the local

system and the nomenclature for the material setup of the LFC-element are shown in Fig. 1.

Assuming a linear elastic material (in terms of Cauchy stresses and Almansi strains) the

elasticity matrix and the vectors of stresses and strains can be defined corresponding to the

modified plane stress conditions (r3 = 0) resulting from the degeneration principle:

" r? = mC '( m ' - 1' rn, ) (7)

with "- being the temperature difference with respect to a stress-free reference temperature,

and /"/' I I (ell

I P 0 ' / 0 (8)

\r23 72r3/
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Eqs. (7,8) are referred to a local cartesian coordinate system x' (zI being tangential to

the natural coordinate r and z'3 being normal to the shell's midsurface), see Fig. 2.

The material matrix and the vector of coefficients of linear thermal expansion of the

unidirectionally reinforced layer (UD-layer) are defined in the local layer coordinate system

denoted by subscript L. A rotation transformation serves for computing C' and a' from CL

and aL. Since element geometry and fiber-direction are independent of each other the angle I
0, which denotes the fiber angle with respect to the x' coordinate system, is not necessarily

colistb.nt within the element (see Fig. 2). Two ways of accounting for this are implemented

in the L' C-element:

a) By assuming the fibers to be parallel within the layer one can find a geometric relationship

for the change of 8 (see Dorninger, 1989).

b) By specifying the O-angles at each nodal point of the element and using the 2/D shape

functions O(k)(r,s) (from the interpolation of the geometry, Eq. (6)) one can interpolate

the G-angle at any point.

After transforming the locally defined material laws of all UD-layers of the laminate into

the z, z2, z3 coordinate system and using the isoparametric concept one can express the

material matrix and the vector of coefficients of linear thermal expansion of layer n as a
function of the natural coordinates r, s and obtain

IC'(r,s) I 2a'(rs) - 1 < t <I2C r )2,1'(,.,s) It< t<2
C'(r,s,t) a, = . . (9)

c'(,s) 'a'I < t< +1

with

= -1 : -Z'h (definition of Jh see Fig. 1) (10) S
j=i

for the multi-layer compound with layer number n = 1,... ,N.

The degeneration principle includes the assumption that normal vectors (or quasi-normals)
remain straight during the deformation. In order to reduce the error resulting from this

kinematic restriction, which in many cases is negligibly small, shear-correctin factors can

be introduced. Noor, Peters, 1989, proposed a predictor-corrector approach which not only

improves the overall shear response but also the computation of interlaminar stress quantities.

As long as rather thin shells are considered the use of such corrections can be omitted.

2.3 Stiffness Expressions

Computation of the element stiffness matrix requires a three-dimensional integration (see
Eqs. (2-5)) which usually is performed by some sort of numerical integration technique.

Since we are dealing with multi-layer shells (with a very large number of layers allowed),

where each layer requires at least one (even better two or more) integration points over its
thickness, the numerical effort increases rapidly with the number of layers. An effective way

to overcome this difficulty is the use of a quasi-analytical thickness integration as described for

homogeneous shells e.g. in Stanley, 1985, Ramm, Matzenmiller, 1986. This, however, requires
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an assumption on the t-dependence of the Jacobian matrix (see e.g. Laochet, Jeusette,
Beckers, 1989). In the present work the t-dependence is neglected. This approximation is
acceptable as long as the shells are thin, their curvature is moderate and their thickness does
not vary too much. The neglection of the t-dependence of J has been successfully used by
Stegm~iller, 1985, for homogeneous shells and by Chao, Reddy, 1984, for layered composite
shells.

The displacements follow from the description of the geometry (Eq. (6)) and, therefore,
the t-dependence of the displacement derivatives can be formulated explicitely:

'Uij(r,s,t) = -zij-°zi,j = m Uij(r,a) + t "'ij(r,s) i,j = 1,2,3 (11)

Using this relation the Almansi strains cij can be decomposed into a t-independent
part (-"I ), a part linear in t (- F) and a t 2 -dependent part (-i F. Together with the
material matrix for the multi-layer compound and the vectors of linear thermal expansion
(Eq. (9)), both transformed properly to the global zl,z 2 ,z 3 system, the vector of Cauchy
stress components (Eq. (7)) becomes:

"1

(12)
wherejC(rjt) = 'GT(rs) C'(rst) 'G(r,s) (13)

M,(,,t) = G-'(r,s) a'(r,s,t) (14)

I The matrix "G represents the transformation from the global x system to the local
x' system. G is composed of the elements of the Jacobian matrix and, therefore, if J is
independent of t so is G. The temperature field is assumed to be linearly distributed over
the thickness of the shell, with t being the temperature load of the midsurface and j the

temperature difference between opposite points on the two surfaces of the shell.

The BL and BNL matrices are constructed from derivatives of the shape functions and,
therefore, they can be decomposed into a t-independent part (- BL, NL) and a part linear
in t (- BL, BWn). Now the stiffness matrices and nodal force vectors of Eqs. (2-5) can be
rewritten and the quasi-analytical thickness integration can be performed. By introducing

some abbreviations Ie), (e), f(e), Af() follow as:

+1+1
-11

"IBj) = ( (-C 1 -BL +-C2 -BL) +-BLC2 -BL + C BL)) detj -J I dr ds (15)

-11

in!!e) =[ [(mT (ml m'BNL + -- W rf3,L) + - T rS2 I NL.+ 'S3 'fBNL)) detj 'J I dr ds (16)

+1+1
mf~e) rns + m~' m52) deti 7J I dr ds (17)

+1+1

BL) 2fAOlAi 153 ))detI"J I (18)
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where the following abbreviations are used:

is 1 = mC"T-mClin' + 'C 2 F- ic 2 A - + "nC3 m
2

m57..(19)
Ms2 = "C2 m - Ync2th"9 + 'C3 mF- c3th - + nC4(

2

M S3 =~ mC3"' m j "9 'C~4 m' - 'C4, +m"CS M
2

are "stress integrals" and

M ci(r,s) = mGT(T,s) r C'i,s) m G(r,s) i =1,... 5 (20)
n1=1

N fti-n-lti i1..4 (
Mcitk(r,s) = mGT(r,s) E ~ _____)___r s 1.., (1

n1=1

are thickness integrals of the material matrix and the vector of linear thermal expansion.

'nS1, inS2, 'S 3 are equivalent to 'msi, 'S 2 , 's3, but the elements are rearranged in special
matrix form, see Dorninger, 1989.

The summations in Eqs. (20,21) are independent of the state m (as long as local failure is

not taken into account), thus they only have to be computed once (prior to the incremental

analysis). This results in a decrease in the numerical effort in each increment due to the

reduction of the 3/1) numerical integration to a 2/D one. The more layers there are within

the laminate the more efficient the analytical thickness integration becomes compared to the

fully 3/D) numerical integration.

2.4 Effects of Local Failure

Due to the nature of composite material the failure behavior is very complex with nu-

merous different failure modes possible. Therefore an accurate prediction of failure with

reasonable effort is almost impossible so that some restrictions have to be made. In this

paper a simple way of dealing with this kind of behavior was chosen:

As outlined in the introduction failure is considered to occur within the layers only and

delamination is not taken into account. With respect to this and by assuming a linear elastic

stress-strain relationship up to failure (which is valid for many fiber reinforced plastics, see

e.g. Tsai, Hahn, 1980) one can use proper strength criteria to determine onset of failure.

Although the following procedures are based on "homogenized" material, the local damage

of the composite, i.e. matrix or fiber cracking, can be estimated, compare Tsai, Hahn, 1980.

In this paper failure is indicated by a combination of two failure criteria, and two distinct

failure modes are assumed:

A quadratic strength criterion, the Tsai-Wu-criterion (Tsai, Hahn, 1980, Chaw la, 1987)

serves for predicting failure for stress states with relatively large transverse stress components

which affect the matrix material rather than the fibers. Therefore, violation of this criterion

can be related to matrix failure. Endurable stress states lie within a failure surface in the

stress space

FO 1 Ol + F1 1 C2 + F1 2 C1of + F 2  ±q F2 2  ,.,+ < (22)

154

.... ..



with
1 1-1 1

F14 I + F = F44 =
O T, C. '717-IuOl Cu g u (23)

F02 = + F22 = F 2 = -v'-lA. 2
rqTu Oqc. 1 17quc.

71',qq, -, are the inplane engineering stresses. With respect to material damage we use
the same laws for Cauchy stresses, too. The following notations are used

a',C. maximum endurable, i.e. ultimate uniaxial compressiorn stress in fiber direction,

a1rT . ultimate tensile stress in fiber direction,

17qCU ultimate compression stress normal to fiber direction,
o- ru ultimate tensile stress normal to fiber direction,

7Tqu ultimate shear stress.

Since in many cases the Tsai-Wu-criterion overestimates the strength of the UD-layer in
the case of stresses acting predominantly in fiber direction, a ma-imum stress limit in fiber
direction is imposed (the failure surface corresponding to the combination of Eqs. (22) and
(24) is shown in Fig. 3):

Ol C U < 1'11 < OTr (24)

Post-cracking stiffnesses are introduced according to the two assumed failure modes. In
the case of matrix cracking they take the form:

El E 1 E 1 2 0 0 0 0 (,EE11O0O0O 0 0
E2 2 0 0 0 0 0 0 0 0 0

0 0 0 0 matrix-cracking 0 0 0 0 (25)
CL sym. E44  0 0 I sYM. 0 0(2

I Es5  0 E55  0r E66 Es66
II

E 12 , E22 and E44 are set to zero, which is a simple representation of the matrix stiffness
Ti being removed. The reason for introducing a correction factor '3 E is twofold: First, a damaged

matrix also reduces the stiffness in fiber direction and, second, for nonstraight (e.g. wavy)
fibers the reduced support by the damaged matrix can lead to a further loss of stiffness.

1OE depends on the composition of the layer and must be given as an additional material
parameter.

In the case of fiber failure the reduced stiffnesses are modeled by:

ElE2 0 000 E212 000 0
E2 0 0 0 0 F-2 0 0 0 0

0 0 0 fiberfailure 0 0 (26)C ,L = M. E44 0 0 ""sym. E44 0 0 (6

SEs s 0 Ess 0
Eas F6e

As can be seen from Eq. (26), El is set equal to E22 . This is a simple representation of
the assumption that after fiber failure only the matrix stiffness remains.
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By assuming thin layers it is sufficient to investigate the stress state in the layers' mid-

surface only. In addition, if cracking occur the corresponding failure mode is taken to be

valid through the entire thickness of the layer. Thick layers with significant stress gradients
in thickness direction can be treated by subdividing them into several "thin" sublayers.

Equations (25,26) represent "secant"-stiffnesses of the material and, therefore, stresses
can be computed directly from the total strains. The following procedure, applied at each

load step m at each stiffness sampling point ri ,sj (= 2/D integration points) for all N layers
of the laminate, accounts for stiffness changes due to material cracking:

- The local inplane strains 'cL at the midsurface of layer n with respect to the layer's local
axis are derived from the global strain vector -e.

- With neL and the corresponding local elasticity matrix 'CL of the previous step an estimate

of the stresses is computed.

- In the next step the combined failure criterion is examined. If failure is indicated by a
violation of Eq. (22) or Eq. (24) the local stiffness matrix is changed according to Eq.
(25) or Eq. (26), respectively. The elements of 'CL to be reduced are properly subtracted
from the Ci matrices (Eq. (20)) and the cit vectors (Eq. (21)).

A flow chart of the complete algorithm along with some investigations on the influence
of the iteration scheme and the mesh size on the accuracy of the algorithm can be found in

Dorninger, 1989.

3. NUMERICAL EXAMPLES

3.1 Buckling and Postbuckling of a Multilayer Square Plate

This problem has been chosen to show the accuracy of the LFC-element, to quantify the
efficiency compared to the ABAQUS shell element and to conduct post-buckling analyses.

The practical purpose of this example can be seen in optimizing an inplane loaded plate with
given geometry and given material with regard to buckling.

Lay-up: [(+E/ - 0) 6 ,]... 24-layer angle-ply, layer thickness = 0.0529 mm

Material: Graphite/Epoxy
Et =127.5kN/mm2  Eq =11.OkN/mm 2  v€ =0.35
Gtq = 5.5kN/mm 2  G1, = 5.5kN/mm 2  G V = 4.6kN/mm2

Model: The whole plate has been modelled by sixteen 16-node LFC-elements, the width of the
square being 900 mm, see Fig. 4; boundary conditions: a) simply supported, b) clamped.

For several fiber angles e the buckling load has been computed by using the standard
buckling procedure implemented in ABAQUS. Fig. 5 indicates a strong dependence of the

buckling load and the corresponding buckling mode on the fiber angle. To verify this result
a similar FE-analysis by Nemeth, 1986, has been used for comparison. Fig. 5 shows the very
close agreement between these two analyses. For a few angles 8 the buckling load has also

been computed by employing 36 ABAQUS S9R5 shell elements (so that the number of nodes
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remains unchanged). Again, the results are almost exactly the same as obtained with the

16-node LFC-element (less than 1% difference in the buckling loads; no observable differences
in the displacements).

The advantage of the quasi-analytical thickness integration becomes evident in the follow-
ing example: For the 16-node LFC-element the CPU-time for one load step has been about

40% less than for the ABAQUS S9R5 element. For the 9-node LFC-element, which has the
same number of nodes as the ABAQUS element, the time savings have been increased to

66%! The 9-node LFC-element, however, yields somewhat higher buckling loads and, there-
fore, has not been used in subsequent analyses. To find out how the number of layers affects

the CPU-time the same plate has been investigated with only 4 layers: For the LFC-elements
no influence of the number of layers on the CPU-time has been observed. For the ABAQUS

element, in contrast, this reduction of layers by a factor 6 resulted in a decrease of CPU-time

* by a factor 3.

To get some idea on the post-buckling behavior of the plate a nonlinear load-displacement

analysis for fiber angle ) = 600 has been carried out. In order to achieve this an imperfection
was introduced into the geometry of the plate: the calculated mode shape with its amplitude

scaled to 1% of the shell thickness has been superimposed on the original (perfect) geometry.
Due to these imperfections the original bifurcation point vanishes and the plate exhibits
a nonlinear (nearly bilinear) behavior, see Fig. 6. The corresponding deformation figures

indicate that, after reaching the buckling load, out-of-plane deformations (corresponding to
the shape of the buckling mode) develop, which, in turn, drastically lower the overall stiffness

of the plate.

3.2 Thermally Loaded Cross-Ply Square Plate

A simply supported composite square plate has been loaded by a uniform temperature
rise. The following properties have been chosen:

Lay-up: [0/901... two layer cross-ply, layer thickness = 0.2 mm

t Material: Graphite/Epoxy

El = 127.5kN/mm2  Eq =il.OkN/mm2  v1 =0.35

Giq = 5.5kN/mrn2  Git = 5.5kN/rnm 2  Gqt = 4.6kN/mm 2

at =-0.08x10' oC- a, =2.90xi0 - *C-1

L Model: The whole plate has been modelled by sixteen 16-node LFC-elements, the width of
the square being 300 rm; all edges were restricted to remain straight.

Fig. 7 shows the nonlinear load-displacement path as well as an estimate curve for the

buckling load. The deformed shape of the plate is in good agreement with an analytically
derived solution, see Tauchert, 1986.

Because of the constant temperature rise all over the plate and the simply supported
edges, no stability problem would be expected for a homogeneous isotropic plate. But, due to

anisotropies occuring in the laminate, a linear buckling analysis (i.e. a buckling analysis after

a very small load step, = 1"C) yields a bifurcation point at "1 = 40C. However, a detailed
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analysis of the buckling behavior indicates that the nonlinear pre-buckling deformations make

the results of the linear buckling analysis rather meaningless. As can be seen from the estimate

curve in Fig. 7, the estimates of the relevant buckling mode change during the incremental
increase of the temperature and the critical temperature is approximately 50 times higher
than the corresponding value of the linear buckling analysis!

Again the comparison with the ABAQUS element has shown excellent agreement in the
displacements. It has not been possible to compute the detailed buckling behavior by using

the ABAQUS elements, no convergence or only negative results having been obtained during

the eigenvalue extraction. With the LFC-element buckling loads and buckling modes have

been successfully computed after introducing a slight modification to the buckling analysis:

Starting from Eq. (1) an eigenvalue problem of the following form can be obtained, for

details see Rammerstorfer, 1982:

(mK+ m,7 m K,) mf= 0 (28)

leading to an estimate for the critical load multiplier

*A : '71 'A  (29)

with m A being the actual load multiplier and " the smallest eigenvalue of Eq. (28). "iU
represents the eigenvector corresponding to the eigenvalue T'"7.

An imperfect plate (produced in the same way as described in example 3.1 by super-

imposing the actual buckling mode, scaled to 1% of the plate thickness, onto the original

geometry) displays almost exactly the same behavior as the perfect plate, except that the

actual bifurcation point does not occur any more, instead the estimate curve deviates from
the load-displacement path.

3.3 Bending of a Flexural Specimen

In this example the procedure for taking into account the local stiffness degradation has
been applied. For testing the ultimate flexural strength and modulus of a laminate of the type

typically used in aircraft structures a simple flexural specimen (i.e. a three point bending

bar) is used. This bar is loaded up to complete failure and the load-displacement path is

recorded. A comparison of the measured results with the finite element investigations shows

the applicability of the strength calculations included in the LFC formulation.

Lay-up: 30 layers of Kevlar29 fabric, effective layer thickness = 0.09 mm
For the FE model each fabric layer is subdivided into two sublayers in order to

approximate the woven reinforcement by UD-layers.

-. assumed lay-up: [(0/90)15,]... cross-ply, layer thickness = 0.045 mm

Model: one quarter of the bar has been modeled by eight 16-node elements

Material: Kevlar29 (UD)
Ei = 57.2 kN/mm 2  Eq = 3.9 kN/mm2  v,€ =0.35

Giq = 2.3 kN/mm 2  Gt = 2.3 kN/mm2  G = 2.3 kN/mm 2

oiT. =1300. N/mm 2  atc. =227. N/mm2  'r,, = 34. N/mm 2

aqT = 12. N/mm 2  aqc. = 53. N/mm2  OE = 0.2
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Fig. 8 shows the calculated and the measured load-displacement path of the flexural

specimen. Reasonably good agreement is obtained. First-ply-failure occurs at a relatively

low load level and might be interpreted as the beginning of the nonlinear deformations of the

experimentally obtained curve. However, in the FE calculations a noticable deviation from

the linear path is observed only at a much higher load level. The calculated deformations and

the calculated ultimate load are slightly lower than the measured values but for estimating

the nonlinear behavior of the material the procedure appears to be satisfactory.

4. CONCLUSIONS

The successful implementation of a special shell finite element into ABAQUS has been

shown. The theoretical background of this element (LFC-element) which is based on the

degeneration principle has been outlined and a simple way of taking into account fiber failure

and matrix cracking in terms of materially nonlinear behavior has been introduced.

By comparing the CPU time requirements it has been shown that the LFC-element be-

comes more efficient than the ABAQUS shell element with increasing number of layers. The

accuracy of the LFC-element in terms of displacements has been proven excellent compared

to analytical results as well as compared to ABAQUS shell element results.

Post-failure analyses in terms of post-buckling behavior have been conducted for a mechan-

ically loaded composite plate as well as for a thermally loaded composite plate. Somewhat

unexpected phenomena occurred with thermal loading and tracing the buckling behavior has

been a difficult task.

The investigation of a flexural specimen in terms of failure has shown the applicability of

the proposed simple failure analysis procedure.

Acknowledgement

The financial support of this project by the Federal Republic of Austria (Ministry of

Science and Research) and the Fonds zur F~rderung der wissenschaftlichen Forschung is

gratefully acknowledged.

References

ABAQUS Version 4-8 User's Manual, Hibbit, Karlsson & Sorensen Inc., Providence, RI,

* 1989.

* Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood

Cliffs, NJ, 1982.

Chao, W.C. and J.N. Reddy, 'Analysis of Laminated Composite Shells Using a Degenerated

3-D Element', Int. J. Num. Meths. Eng. 20, 1981-2007 (1984).

159



Chawla, K.K., Composite Materials, Springer Verlag, New York, NY, 1987.

Dorninger, K., Entwicklung von nichtlinearen FE-Algorithmen zur Berechnung von Schalen-

konstruktionen aus Faserverbundatoffen, Fortschritt-Berichte, VDI Reihe 18, Nr. 65, VDI

Verlag, Duisseldorf, FRG, 1989.

Laschet, G., J.P. Jeusette and P. Beckers, 'Homogenization and Pre-Integration Techniques

for Multilayer Composites and Sandwich Finite Element Models', Int. J. Num. Meths.

Eng. 27, 257-269 (1989).

Nemeth, M.P., 'Importance of Anisotropy on Buckling of Compression-Loaded Symmetric

Composite Plates', AIAA Journal 24, No. 11, 1831-1835 (1986).

Noor, A.K. and J.M. Peters, 'A Posteriori Estimates for Shear Correction Factors in Multi-

layered Composite Cylinders', J. Eng. Mechs. 115, No. 6, 1225-1244 (1989).

Ramm, E., Geometriach nichtlineare Elastostatik und finite Elemente, Habilitationsschrift,

University of Stuttgart, FRG, 1975.

Ramm, E., 'A Plate/Shell Element for Large Deflections and Rotations', Formulations and

Computational Algorithms in Finite Element Analysis, Ed. K.J. Bathe, J.T. Owen, W.

Wunderlich, Proc. U.S.-German Symp., MIT, Cambridge, MA, 1977.

Ramm, E. and A. Matzenmiller, 'Large Deformation Shell Analysis Based on the Degeneration

Concept', State.of-the-Art Tezts on FEM for Plate and Shell Structures, Eds. T.J.R.

Hughes, E. Hinton, Pineridge Press, Swansea, UK, 1986.

Rammerstorfer, F.G., 'Jump Phenomena Associated with the Stability of Geometrically Non-

linear Structures', Recent Advances in Non-Linear Computational Mechanics, Eds. E.

Hinton, D.R.J. Owen, C. Taylor, Pineridge Press, Swansea, UK, 1982.

Stanley, G.M., Continuum-Based Shell Elements, Dissertation, Stanford University, Stanford,

CA, 1985.

Stegmiiller, H., Grenzlastberechnungen fltissigkeitsgefillter Schalen mit "degenerierten"

Schalenelementen, Dissertation, University of Stuttgart, Stuttgart, FRG, 1985.

Tauchert, T.R., 'Thermal Stresses in Plates - Statical Problems', Thermal Stresses I, Ed.

R.B. Hetnarski, North-Holland, Amsterdam, 1986.

Tsai, S.W. and H.T. Hahn, Introduction to Composite Materials, Technomic Publishing Co.,

Lancaster, PA, 1980.

160



Figures

233

21I

* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' Fi.2Cod3t ytm fteLCeeet
local ~ ~ ~ ~ ~ ~ ~ ~ laeZytm'3q aua ordntsr ,t

lc lcayreinsse ',~2~goa atsa ytm2,2

1 1X3 h



Cqq

fibre cracking

0,11

fibre buckling 'q '~

Fig. 3 Failures surface in stress space of the combined failure criterion

.. .. .. 3
.. .. .. 2

2 *. * ..X*

2 .. .. *F

X16



g [-C]
250 estimate curve, 1% imperfect

actual buckling temperature - /

200 '
'linear' buckling mode

150-
~ actual buckling mode

100-

~ ,,/deformed shape
50-

0 'linear' buckling temperature IMMIn

0.0 0.02 0.04 0.06 0.08 0.10 0 .12

Fig. 7 Load-displatcement path and estimate curves for buckling loads of a thermally loaded
two-layer cross-ply plate

F (kNI va

0.5-0

0.4-
LFC calculation

0.3 -measured path

0.2-

first- ply-failure-load

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Fig. 8 Load-displacement path of a flexural specimen

164



F' JkNI LFC-element moecag

0.8

0.6 Nmt,18

0.4asipysPrt

0.2

0 10 20 30 40 s0 60 70 80 90

Fig. 5 Buckling load and buckling modes of inpiane loaded square plates as a function of fiber

angle and boundary conditions

F rk.N imperfect M% clamped

1.2-

1.0-

0.6-

0.4-

0.2

0.0 0.02 0.04 0.06 0.08 0.10 0.12

Fig. 6 Post-buckling behavior of an inplane loaded square plate with fiber angle E9 600

163



APPENDIX I

Composite Material Models in ABAQUS



COMPOSITE MATERIAL MODELS IN ABAQUS

N.D. Lambropoulos, J.F. Wu, M.S. Shephard,

S.S. Sternstein and G.J. Dvorak

Rensselaer Polytechnic Institute

Troy, NY 12180-3590

ABSTRACT

A finite element based procedure that accounts for

micromechanical level nonlinear behavior of the matrix material in

continuous fiber composites is presented. The micromechanical level

model is a periodic hexagonal array with elastic fibers and

nonlinear matrix material. A bilinear elastoplastic relation for

metal matrix and a nonlinear time-dependent relation for

thermoplastic matrix are used with this micromechanical model to

provide the overall instantaneous material properties of a

macromechanical finite element model of the composite structure

being ana.yzed. Example problems of simple composite systems

analyzed wicn this procedure are presented.

INTRODUCTION

The proper analysis of many composite material systems

requires a proper consideration of nonlinear material behavior.

Common examples where nonlinear behavior should be considered

include: 1) the design of metal matrix composites where the strain

to yield of the matrix is only a fraction of the strain to failure

of the fiber; 2) thermoplastic composites with substantial

transverse loads; and 3) metal matrix composites subject to high

temperature creep. A key feature of composites with nonlinear

material behavior is that the nonlinearities are due to nonlinear

behavior of the individual constituents. Typically the type and

degree on nonlinearity in the constituents is not the same. In the

cases above, the matrix undergoes nonlinear deformations while the
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fibers are essentially linear until failure. Therefore, any

analys-is of a composite which attempts to account for nonlinear

material behavior must consider the micromechanical behavior of the

constituents. Unlike the linear range, simple models to combine the

behavior Qf the constituents in the nonlinear rangg to arrive at a

macromechanical constitutive relationship do not yield satisfactory

results. This paper presents a composite material model which can

account for micromechanical level nonlinearities in a

macromechanical level finite element analysis. This procedure has

been integrated into ABAQUS through a user defined material
procedure.

The key to accounting for local matrix material nonlinearities

is the micromechanical mixing model. In this work the periodic

hexagonal array (PHA) model [TEPLY 84], [DVORAK and TEPLY 85] is

used. The PHA is capable of predicting the macromechanical

stiffness properties, as well as the stress and strain

concentration factors at a material point given the constituent

material properties, volume fraction of the constituents, and the

overall stress and strain field. One of the major advantages of the

PHA is its modular structure which can accommodate almost any kind

of constitutive relation for the matrix taterial. Currently, a

bilinear elastoplastic material model with a Mises type of yield

function and a kinematic hardening rule is used for metal matrix,

and a nonlinear time-dependent relation is also being used for

thermoplastic matrix.

ABAQUS and its use~efined material subroutine UMAT provided

the platform for implementing all these composite material models.

The example cases which illustrate the behatior of thlse models

have also been analyzed by ABAQUS.

PERIODIC BEXAGONAL ARRAX FOR CONTINUOUS FIBER COMPOSITES IN ABAQUS

The development of models that can accurately predict the

macromechanical behavir of composites based on a knowledge of the

constituent materials is critical to the ability to carrying out

engirftering analysis of composite structures. These models become

complex when micromechanical level nonlinear behavior of the

constituents must be considered to predict the macromechanical

behavior.

The Periodic Hexagonal Array (PHA) model [TEPLY 84], [TEPLY
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and DVORAK 88] addresses the difficulties of accounting for

micromechanical nonlinearities by explicitly modeling the

microstructural geometry. The analysis of the PHA begins with the

selection of an appropriate representative volume element (RVE) and

the identification of an appropriate set of boundary conditions

which allows an analysis of the RVE that will yield useful

information on the overall behavior. The assumption that yields a

convenient set of boundary conditions is a uniform strain far-field

on the micromechanical volume containing the RVE. Although there

are gradients in the solution at the macromechanical level, the

uniform strain field assumption is adequate for the purposes of

determining the material properties of the composite at that point.

In the PHA the fibers are assumed to be periodically

distributed throughout the matrix material in a topologically

hexagonal configuration. In this case the simplest RVE is a

triangle created by connecting the centers of adjacent fibers

(Fig. 1). This RVE can be isolated [TEPLY 84], by the proper

specification of periodic displacement boundary conditions.

Although limited to a single triangle, the complexities introduced

by the presence of two distinct phases and the nonlinear behavior

of the matrix phase, make it too difficult to obtain a closed form

solution. Therefore an analysis based on a finite element

discretization of the RVE is necessary. The coarseness of the

finite element mesh is dictated by the minimum number of elements

which allow a meaningful handling of the periodic boundary

conditions and at the same time yield useful results, by avoiding

overconstraint.

The primary purpose of the RVE analysis is to provide the

overall material properties needed to support a macromechanical

analysis. To achieve this goal an equivalent homogeneous volume

(EHV) of unknown material properties is introduced. It is the

instantaneous stiffness parameters of the EHV that are needed for

the macromechanical analysis. They can be determined by applying

the periodic boundary conditions to both the EHV and RVE and

equating the total energy change of the two.

Both upper and lower bound finite element formulations are

being employed [TEPLY 84], to qualify the amount of approximation

error introduced by the finite element discretization of the RVE

used in the energy change calculation. The calculation of the

displacement-based upper bound technique follows the basic steps
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below. The energy change an in the EHV and RVE, is given by:

1 TBT T -
EHV -an - L -L -a T  a1]

RVE A - a K Aa - AFT Aa [2]

where

Aa a cormon set of nodal displacements for the EHV and RVE

9 the strain-displacement matrix for EHV

AF the nodal forces equivalent to surface tractions

L the overall instantaneous stiffness of the EHV

K the overall stiffness matrix of the RVE finite element

mesh, which is the assembly of fiber and matrix subelement

stiffness matrices and as a result, it is also a function

of fiber and matrix subelement material matrices.

The final step in the process is to equate the energy change

of the RVE [Equ.l] and EHV [Equ.2], where the second terms

(potential due to applied loads) in both energy expressions drop

out, due to identical boundary conditions. This yields the explicit

form of the overall instantaneous stiffness matrix L, as:

L = CjT)- K B~)l (3]

which takes into account the material matrix Lk of each phase

subelement.

In the general nonlinear finite element formulation the

solution of the equilibrium equations requires the updating of the

global stiffness matrix of the structure being analyzed at every

step of the analysis. This implies the re-evaluation of the

individual element stiffness matrix for each element that has

demonstrated nonlinear behavior in that load step. This requires

the evaluation of the instantaneous material stiffness matrix, L,

at each sampling point in the element. It is this evaluation that

invokes the micromechanical level finite element analysis of the

PHA. Thus, the PHA calculations are the inner most loop of the

nonlinear finite element process (Fig. 2). Therefore, computational

efficiency of the PHA calculation is critical.

The integration of the PHA into a large scale nonlinear finite
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element code is greatly facilitated in the case of ABAQUS [V4.5 85]

by the modular separation of models (in particular material

models). The ability to tailor ABAQUS to deal with functions not

directly available within the program, is through a set of user

defined routines. Each one allows the analyst to carry out a

particular type of operation that alters data within ABAQUS's data

structures. For example, the user defined material routine (UMAT)

is invoked by indicating that the material type for a particular

set of elements is the user defined material. With this capability

users can define their own constitutive relation for cases where

the existing models are not adequate for predicting the material

behavior.

Two basic functions have to be performed by UMAT at each

sampling point in the finite element mesh:

1. Update the stresses and the solution dependent variables to

their values at the end of the increment.

2. Provide the material instantareous stiffness matrix

according to the constitutive model.

To carry out these operations the UMAT routine must be

supplied with the appropriate information. The generalized

interface allows the main program to pass the state information

used by the other portions of the program, as well as any specific

state information that is needed for the operation of the material

model, into the UMAT routine. The primary information provided to

UMAT for driving the solution process are strain and temperature

incrementr which have been determined by the global iterative

scheme in ABAQUS for the current load increment, as well as the

values of the state varables from the previous step. The UMAT

routine then updates the instantaneous stiffness and stresses for

the given increment and returns this information. This operation

has to be repeated until overall convergence for the current

loading step, is achieved.

METAL MATRIX COMPOSITE PHA

A complexity that arises in PHA for metal matrix composites is
i.at it was developed using a stress-space plasticity formulation.

This means that it uses a stress increment to calculate the

instantaneous stiffness and strain increment. However, ABAQUS

provides the UMAT routine with a strain increment and wants back
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the instantaneous stiffness and corresponding stress. Therefore it

was necessary to introduce a local iteration into the UMAT routine

[WU et al 88]. This procedure typically converges in two or three

iterations.

When UMAT is called during a load increment including

mechanical and/or thermal loads, ABAQUS provides the current state

(the results at the end of the previous increment) of stress

(G(A)), strain (a (A)) and temperature (T) . At the start of the

current load increment, that is on the initial iteration, the

strain increment is zero (Az (A).0) and the temperature increment
(AT) is the value for that load increment. The function of this

initial iteration is to provide the macromechanical analysis

procedure (ABAQUS) with an appropriate instantaneous stiffness

matrix including the effects of any thermal load for that

increment. Unlike the typical finite element procedure where

thermal effects are treated by the construction of an initial

strain vector, the approach used here is to convert the thermal

increment into an equivalent mechanical load through the use of an

initial stress vector. The determination of this initial stress

vector must be carried out at the micromechanical level on the PHA

accounting for the different thermal characteristics of the matrix

and fibers. The analysis is done using Dvorak's decomposition

procedure [DVORAK 86]. The instantaneous stiffness matrix and

initial stress matrix are returned to ABAQUS where the effects of

the pure mechanical load are combined with the initial stress

vector to predict the strain increments for this load increment.

From this point through the remainder of this load increment, the

UMAT routine treats all load types as pure mechanical load at

temperature equal to (T+AT).

In each one of the global iterations after the initial one,

UMAT receives a non-zero strain increment predicted using the given

instantaneous stiffness and the overall load increment. This strain

increment must be converted into a stress increment (Aa(A)) and

added to the stress at the current state (a(A)) to form a new

stress vector (a(U) (1)):

a(1) + L Aa [4]

(U) = (A) (A)

where: L is the stiffness at the beginning of this increment.

The PA procedure calculates a new strain vector (e(i)

(U)
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which must be compared with the strain vector given to UMAT by the

global iterative scheme (a(A)+(A) ). If they are not nearly equal,

a local iteration in the UMAT routine is initiated where the stress

vector used in the PHA is updated by:

a 1i+11 Wi L (i + &a - i-1, 2,.. 5

(U) C(U) +(U) (A) (A) (U))

where:

L (i) is the instantaneous stiffness at the end of ith(U)
local iteration (given by PHA based on stress state
o (i))

a(U) ).

(i) is the strain at the end of ith local iteration

(given by PHA based on stress state a(U) (j))

The convergence criteria on the UMAT local level iterations

is:

(A) + "' (A) (U) S

+A)) tolerance [6]

EXAMPLE OF METAL MATRIX COMPOSITE

A P-100 Gr/AIl metal matrix composite system of (±) laminates

with different # and different tangent modulus in the matrix was

analyzed for thermal cyclic loads in the range of ±120 0 C with an

ambient temperature at 200 C. The material model outlined above was

applied, and two layers of 8-noded three-dimensional elements with

a 2x2x2 integration scheme were used. Uniform displacements on each

surface of the model were specified as boundary conditions. For

the laminates with a fixed volume fraction for both phases, the

variations of axial coefficient of thermal expansion (C.T.E.) are

shown in (Fig. 3). One can see that there are several points at

zero C.T.E. condition. These are caused by the cancellation of the

contributions of both phases to overall response. From these three

curves one can predict the axial strain range of any (±+)a lay-ups

under thermal cyclic loads, provided that the initial yield

temperature for each lamina is known [WU et al 88].

TIMZ-DPZXDZNT CONSTITUT TV RRLAION FOR THEIOPLILSTIC ImRIX

A nonlinear viscoelastic material model with the essential
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mechanical characteristics of thermoplastics such as rate

dependence, stress component interactions and transient behavior

has been developed. A phenomenological approach was taken which

led to a minimum of material parameters, all of which can be

determined from straight forward mechanical tests.

The model is based on a one-dimensional rheological equation

which was used [CESSNA and STERNSTEIN 67] to describe time and path

dependent processes at the tip of a crack in glassy polymers. This

approach successfully related constant strain rate failure data to

constant load (creep) times to failure. Recently, the model has

been made three-dimensional [BANKERT, et al 86] for use as a matrix

constitutive equation for composite materials. In summary, the

hydrostatic component of strain is assumed to be linear elastic

akk ' 3B ekk (7]

while the deviatoric strain is nonlinear viscoelastic and coupled

to the hydrostatic stress component as follows:

2G1  3kk
Si j - 2G1 ei j  - Sij - 2G 1 K e sinh

rr S.. tS..
tSLij - 2G2(~ 1-32 j . dt] (8]

where: S jand Si the deviatoric stress and stress rate components

e jand eii the deviatoric strain and strain rate components

a kk and e kk the hydrostatic stress and strain components

The physical interpretation of the parameters is the following:

K activation energy needed to overcome potential barrier.

a activation volume of the polymer segment which has to

move as a whole for flow to take place.

p describes the pressure effect on shear 'yield' stress.

B elastic bulk modulus.

G shear modulus before 'yield'.

G2 shear modulus after 'yield'.

so~id state viscosity.
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The implementation of this constitutive relation for the

matrix material inside the User Defined Subroutine UMAT, is

primarily concerned with the deviatoric part. This requires an

integration in time which is carried out in the following steps:

Let us consider a time step at - t(n) - t(n-l)

i. ABAQUS supplies the stres3es (a) and (S), and the strains (e }

and {e) at t - t(n-1), and an estimate of the increment in

strains (at } corresponding to at.

2. Transform the constitutive relation [Equ.8] into an

incremental relation between deviatoric stresses (AS) and

total strains {Ae} using an explicit central-difference

approximation as a time integration operator.

3. Solve -the resulting six nonlinear equations for {AS) by

Newton-Raphson iteration. The resulting algebraic equations

are uncoupled because of the assumption of linear hydrostatic

component.

4. Update the total stress vector {} at time t(n), according to

the formula:

(a} - {SO} + (AS) + B [D2] (t} [9]

5. Determine the material Jacobian matrix, [Aa/aae], which

yields the incremental relation between total stresses (a) and

total strains (t) as:

E a 1 I. BED2] +
aaoJ

2GI(D1] + C 3cosh(A) G2 [DI] - C 3sinh(A) =B[D2]

1+ C1 + C3 cosh(A) uC2

where

A ec((SO) + !(AS) -2G (Dl] (a*) + I{Ae ) + 22p

and (SO), (a*) are the deviatoric stress and total strain at

the end of the previous increment, (AS), (Aa) the

deviatoric stress and total strain increments during the

current loading step, (P) a recursive vector used for
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keeping track of the solution of the integral term in

time C1, C2, C3 constants, and [Dl], (D2] coefficient

matrices.

EXAMPLE OF TEROPLASTIC HITRIX COMPOSITES

The desirable features that can also be recovered by the

predictions of the model are: 1) proper rate-dependency of the

onset of nonlinear response; 2) onset of nonlinear response at a
higher absolute value of hydrostatic compression than tension; and

3) 'Ratcheting' effect in cycling loading [LAMBROPOULOS 88].

To show the significance of using a realistic material

constitutive relation, the material model presented above was

incorporated into a detailed Mode II specimen analysis [BANKERT

et al 87). A beam specimen with a midplane blunt-tip crack is

subjected to bending loading, which produces an overall Mode II
stress-state at tne crack tip. A thin resin-rich layer with

isotropic but nonlinear viscoelastic behavior is introduced in

front of the crack tip, while orthotropic linear elastic material

properties are used for the rest of the beam. A qualitative

presentation of results is presented in (Fig. 4). In-plane shear

stress contours at three different steps of the loading history

illustrate the progressive redistribution of stresses around the

crack tip. Load factor 1 corresponds to the elastic range of the
material's behavior, therefore the response is fully symmetric. As

the stresses at both the highest concentration areas increase and

reach the onset of nonlinear response (load factor 6), significant
variations are observed. The upper half of the crack tip which is

under tension can no longer support stresses as high as the lower

half which is under compression. This can be explained by the

different behavior of the model in tension versus compression. For

load factor 6 the compressive part is still in the linear elastic

range, while the tensile one has already entered the 'post-yield'

range. When the compressive part also enters its 'post-yield' range

(load factor 10), the variations in stress distribution are found

to be even more dramatic.

Psa FOR THERMOPLASTIC MTRIX COMPOSITES

The structure of the PHA can accommodate any kind of

constitutive model for the matrix material including the one for

thermoplastics just presented. The basic steps of the PRA
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formulation remain the same, with slight differences described

below.

The expression for the overall instantaneous stiffness L in

terms of local moduli Lk requires the evaluation of the stiffness

matrix K of the RVE finite element mesh, as prescribed by (Equ.31.

The fiber contribution to stiffness is based on a linear elastic

material relation, while the matrix contribution is based on the

time-dependent nonlinear constitutive relation [Equ.10]. Since this

matrix constitutive relation is defined in strain-space (given

strain - return stress), it is compatible with the

displacement-based finite element method. This avoids the local

iterative scheme needed by the stress-space plasticity model used

for the metal matrix.

Because of the history-dependence of the model, information

must be stored at the end of each step, in order to be used in

subsequent ones. The storage is done in an optimal way (minimum

memory required), and special care is taken to recall this

information when and where it is appropriate.

Preliminary results from the testing of the PHA mixing model

with the viscoelastic constitutive relation for the matrix, are

presented next. A simple structure consisting of two 8-noded 3-D

elements, with a 2x2x2 integration scheme, is subjected to uniaxial

tension, in directions parallel and perpendicular to the fiber

orientation.

The tensile stress-strain curve for the composite is plotted

in (Fig. 5), along with the corresponding behavior of fiber and

matrix independently subjected to the same type of loading. A soft

fiber is chosen to illustrate the effect of matrix. However, it is

obvious that while the fiber response is linear elastic and the

matrix nonlinear, the composite lies in between, slightly nonlinear

starting at the point where the matrix 'yields'. The initial slope

of the curve, which determines the elastic longitudinal modulus,

follows approximately the well known "rule of mixtures". The

longitudinal (L) case is closer to the fiber, since it is mainly

fiber-dependent, while the transverse (T) response is closer to the

matrix behavior.
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CLOSING REM4ARKS

The basic argument for the use of mixing models in composites

is the level of scale that the analyst wants to look at. For small

scale systems where the fiber-matrix interactions, local plastic

deformations, debonding, delamination or even random fiber

distribution cannot be ignored, the use of a mixing model which

smoothes properties out, is inaccurate. On the other hand, when the

macroscopic behavior of a composite system is under consideration,

say for structural design purposes, the Periodic Hexagonal Array

model provides an accurate estimate of the overall properties,

still being able to capture those matrix dominated phenomena.

An important issue in the further development of these

techniques is to improve their computational efficiency. The most

critical area is the current need to use three-dimensional through

the thickness discretization on the structural level. This problem

can be eliminated by constructing a PHA for application at the

lamina level using the correct reduced dimension strain space.

This could then be combined with laminated shell finite elements to

more efficiently predict the response of composite structures.
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Figure 2. Placement of Composite Material Models into ABAQUS
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Overall specimen configuration
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Close-up of shear stress contours at the crack tip
for different levels of applied load

Figure 4. Orthotropic cracked beam with nonlinear
viscoelastic thin layer

225



Ov'erall specimen configuration
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Close-up of shear stress contours at the crack tip
for different levels of applied load

Figure 4. Orthotropic cracked beam with nonlinear
viscoelastic thin layer
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Figure 5. Longitudinal and Transverse tension of a
unidirectional composite specimen
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