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ABSTRACT

Currently there is some disagreement about what constitutes an adequate sample

of a time series with which chaos measures may be quantified. In this thesis, a method

for objectively determining such a sample is presented. This method is based on a new,

relatively efficient measure, the Histogram Measure, which allows large amounts of

data to be considered. This measure also may be used to distinguish the chaotic from

the transient, or nonchaotic, portions of the solution that are inherent in any chaotic

time series. This is a crucial consideration, since transients contaminate the chaotic

characteristics of any time series, be it from observations or models. This measure also

leads to a predictability estimate--that of loss of information gain--as functions of

sample length and elapsed time.

The Histogram Measure is tested with time series generated by the Lorenz

(1963) three-component model of Rayleigh-Bknard convection. It is shown that the

determination of criteria for quantifying adequate samples of data yields a definitive
a

cost/benefit result. In effect, there is a balance between obtaining the greatest possible

accuracy and spending the fewest resources; beyond a particular time or number of data

- points, only a minimal benefit is realized for the increased cost. It is also shown that the

S
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results are extremely sensitive to the manner in which the data are sampled; the greatest

of these sensitivities is in the time step size that is used to create the data set. Data sets

generated with two different time steps are considered; when viewed in terms of series

length, the ones created with the larger time step are shown to more efficiently produce

convergent results. A similar conclusion is also reached for estimating the Correlation

Dimension Measure (Grassberger and Procaccia 1983b). These results give validity to

the notion that optimal sampling strategies can be found that best lead to acceptable

values for chaos quantities, at least to within suitably small tolerances. This finding has

important consequences for chaotic time series that are longer, more complicated, and

more operational than those for the Lorenz model.
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The Histogram Measure is tested with time series generated by the Lorenz
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points, only a minimal benefit is realized for the increased cost. It is also shown that the
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results are extremely sensitive to the manner in which the data are sampled; the greatest

of these sensitivities is in the time step size that is used to create the data set. Data sets

generated with two different time steps are considered; when viewed in terms of series

length, the ones created with the larger time step are shown to more efficiently produce

convergent results. A similar conclusion is also reached for estimating the Correlation

D_)i~:<~ .,. .Mca:c (Gr: ..s er .nnd Procaccia 1983b). These results give validity to

the notion that optimal sampling strategies can be found that best lead to acceptable

values for chaos quantities, at least to within suitably small tolerances. This finding has

* important consequences for chaotic time series.that are longer, more complicated, and

more operational than those for the Lorenz model.
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CHAPTER 1

INTRODUCTION

In recent years, numerous researchers within the atmospheric science

community have recognized the importance of quantifying the behavior of the

atmosphere and its climate via application ox the principles of chaotic dynamical

systems, whether with simplified models (e.g., Lorenz 1963, 1982, 1984) or with

observed data (e.g., Fraedrich 1986; Hense 1987). Despite the existence of numerous

successful methods for finding chaotic attractors of dynamical systems and for

quantifying their characteristic fractal structures from time series (e.g., Grassberger and

Procaccia 1983a, b; Lorenz 1963; Mandlebrot 1977; Takens 1981), these measures are

relatively expensive to calculate with the amount of data that is most often used. As a

result, many investigators have published results claiming success with limited data sets

(e.g., Brandstiter et al. 1983; Nicolis and Nicolis 1986). Therefore, in this study, we

primarily determine the amount of data necessary for adequately sampling chaotic time

series, using the Lorenz (1963) simplified model of atmospheric convection and
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utilizing a new, inexpensive measure that allows us to work with relatively large data

sets. In finding these required data sets, we obtain relevant predictability estimates

(comparable to loss of information gain) and comment on numerous sampling issues

inherent to the model characteristics.

1.1. Background and Motivation

Chaos is the term used to describe a particular type of behavior inherent to

dynamical systems and whose principles were first recognized by Edward Lorenz, a

meteorologist at the Massachusetts Institute of Technology. In his simplified model of

Rayleigh-B~nard convection (Lorenz 1963), he found that trajectories through two

points initially very close to one another eventually diverge and evolve in totally

different manners. After a certain time, there is no similarity in their evolutionary

behavior; they may as well have been randomly picked. This characteristic is more

commonly known as sensitive dependence on initial conditions. Even more fascinating

is that, above a particular value of the system forcing, the time-dependent variables,

when displayed together, outline a unique geometric structure on which all of the points
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lie; this structure is more commonly known as the attractor of the system. All attractors

of this type, which are called strange or chaotic, usually exhibit a noninteger orfractal

dimension value, which must be less than the degrees of freedom of the system

(Mandlebrot 1977).

Throughout the 1970s and 1980s, the study of chaotic dynamical systems

blossomed within the scientific community, spanning numerous disciplines ranging

from mathematics (e.g., Mandlebrot 1977; Takens 1981) to astronomy (H~non 1976) to

physics (e.g., Feigenbaum 1978; Gollub and Swinney 1975; Grassberger and Procaccia

1983a, b; Ruelle 1979) to chemistry (R6ssler 1981), to name a few. Order within

disorder became the buzzwords linking the scientific community together (Gleick

1987).

Generally speaking, it was not until the early 1980s that researchers began using

the principles of chaotic dynamical systems to describe the behavior of certain physical

quantities in the natural sciences. Guckenheimer and Buzyna (1983) found, using a

rotating annulus whose flow was within a geostrophic turbulence regime, that there

exists a fractal dimension value between seven and 12 for an attractor. Brandst~ter et al.

(1983) found a stable dimension value between four and five for an attractor within the

turbulent regime exhibited by Couette-Taylor flow. Nicolis and Nicolis (1986) obtained
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a definitive dimension value (- 3.1) for a time series of deep-sea oxygen isotropes,

while Henderson and Wells (1988) determined a definitive range of dimension values

for 500 millibar height indices and vertical wind velocities. Many others have also

reported similar successes in quantifying the dimensions of climatic and atmospheric

data (e.g., Fraedrich 1987, 1988; Krishna Mohan et al. 1989; Thomson and Henderson

1989); some limited success has even been achieved in predicting the future behavior of

these and related quantities over time scales of approximately one to seven days

(Abarbanel et al. 1989).

Despite the advantages of characterizing these physical quantities in terms of

their chaotic dynamics, there are limitations and tradeoffs that are encountered when

conducting these types of studies. Most notable is the lengthy time needed to calculate

these measures and, thus, expense becomes a key issue in determining the extent of the

study. As a result, the bulk of these investigations have been done with relatively small

data sets (< 3,000 points). For example, Nicolis and Nicolis (1986) claim that they

obtain an attactor using the equivalent of only 184 points spanning over 1,000,000

years. Grassberger (1986) counters that their results are not valid, based on his own

calculations using a larger sample of the same data series (- 500 points). He concludes

that with these few data points, it is nearly impossible to differentiate between the
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deterministic behavior desired and the noisy behavior that contaminates the results.

Despite these limitations, some success has been achieved using methods for

optimizing the results given by limited data. Ben-Mizrachi et al. (1984) successfully

characterized noise in the Lorenz attractor using only 600 points by noting the

correlation dimension behavior as a function of the ratio of a range of time scales

(small, noise-plagued values versus larger, more deterministic values). Abraham et al.

(1986) have successfully reconstructed, to within a reasonable tolerance, the values of

the correlation dimension for the H6non attractor using subsets of a larger data set.

Ellner (1988) has developed a dimension measure, the Maximum-Likelihood (ML)

method, specifically designed for use with small data sets (< 250 points). He claims that

this method is superior to the Grassberger and Procaccia (1983b) Correlation

Dimension Measure because it is less subject to distortions at small distances owing to

finite-sample effects; moreover, the dimension estimate is accompanied by confidence

intervals that quantify the uncertainties owing to finite sample size.

Thus, it is apparent that there remain conflicts between those investigators who

question the accuracy of results based upon quantifying relatively small data sets and

those who maintain that these small data set results are indeed valid. In this thesis we

determine criteria for datasets that can be used to estimate unambiguously the chaotic
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behavior of a sampled attractor.

1.2. Objectives of Study

Despite the above-mentioned successes obtained with limited data sets, there is

little written within the scientific community as to what constitutes unambiguously

adequate data samples for quantifying chaotic systems. Because of the expense of these

measures, the pervading arguments center on how to optimize chaos estimates using the

minimum number of data points. Thus, undersampling of data sets is a key issue that

many argue invalidates the results of many of these studies (cf. Grassberger 1986 vs.

Nicolis and Nicolis 1986).

In this study, we seek to determine objectively the length of data sets that is

necessary for adequately quantifying chaos measures. Because we intend to work with

relatively large data sets, we use a chaotic dynamical system, the Lorenz (1963) model

of convection. To avoid the large expense that would be required when using such large

data sets to estimate the conventional chaotic measures, we develop a new, relatively

inexpensive statistical measure, called the Histogram Measure, that quantifies essential
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information about the chaotic solutions of the model.

We show that the utility of the Histogram Measure is indeed far-reaching. To

find adequate samples of the data, we simply observe the intervals at which the

histogram structures converge to within a reasonable tolerance, whether subjectively

through superimposing them or more objectively, through mean difference calculations.

In doing so, we find that the lengths of these optimum samples are dependent upon

numerous factors, but are most sensitive to the time step that we use.

This measure also allows us to distinguish transient, or nonchaotic, subsets of

the data that are inherent in chaotic time series. This is an important finding, as

transients will contaminate the chaotic characteristics of any time series; eliminating the

transient behavior in any time series is thus crucial for obtaining valid results. We find

that the duration of the transient behavior is highly dependent upon the initial

conditions that we use.

We also quantify the predictability characteristics of the adequate data samples,

namely their information loss as functions of series length and elapsed time. We believe

that these quantities may provide an inexpensive analog to the widely used Lyapunov

exponents (Osledec 1968) or local divergence rates (Nese 1989). These rates of
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information loss show exponential behaviors that are remarkably independent of sample

size and initial condition.

To aid us in attempts at finding adequate samples with the Histogram Measure,

we also use the more conventional Correlation Dimension Measure (Grassberger and

•Procaccia 1983b) because its results are well known. Although not able to use nearly

the same amount of data with this measure that we can with the Histogram Measure, we

do find fascinating quantitative links between the two. As a result, we theorize that the

Histogram Measure may have far-reaching benefits in the quantification of chaotic time

series.

By finding adequate samples of chaotic data, we overcome the problems

involved with chaos estimates used on potentially undersampled data sets. In addition,

we have a control case upon which to base optimal sampling strategies of the data.

Based on sampling issues uncovered when finding adequate data sets (particularly that

of the benefits of using a larger time step to sample the data over that of a smaller one),

we theorize that these adequate data sets can indeed be sampled in ways that most likely

preserve their chaotic characteristics, at least to within suitably small tolerances. If

these strategies indeed prove viable, then chaos estimates can be obtained by using

fewer points, which is particularly important when working with relatively long time
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series.

In Chapter 2, we first describe in detail the characteristics of the Lorenz (1963)

Rayleigh-B6nard convection model with which we have chosen to work. Having done

this, we then explain the procedures that we use to obtain both the Histogram Measure

and the standard Correlation Dimension Measure, providing introductory examples

upon which to base further computation.
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CHAPTER 2

A SIMPLE QUANTITATIVE MEASURE OF ATTRACTOR STRUCTURE

We wish to work with a nonlinear, deterministic system that exhibits chaotic

behavior, is well studied, and is an archetypical model of the atmosphere. Edward

Lorenz's three-component convection model (Lorenz 1963) fits these criteria nicely.

During the past 30 years, this simple model has been used to forge a basic

understanding of predictability characterisitics and their possible links to the chaotic

behavior seen in the atmosphere. However, many of the conventional measures

presently used to quantify the characteristics of this chaotic attractor are

time-consuming, and thus expensive, to use. In this chapter, we introduce a new, simple

measure, the Histogram Measure, that not only provides us with essential quantitative

information about this chaotic attractor, but at a much lower cost.
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2.1. Lorenz Rayleigh-Binard Convection Model

Before discussing how the Histogram Measure works, we first need to

understand fully the motivations for and intricacies of the Lorenz model and its

solutions. Classical Rayleigh-B6nard convection describes the evolution of fluid

motions as functions of heating from below and cooling from above. As the fluid is

initially warmed, heat is transported vertically by conduction, or molecular processes,

until a critical temperature gradient across the fluid domain is reached. Above this

critical temperature gradient, heat is transported instead by a convective, or overturning,

process that causes roll-like motions to occur. The Lorenz (1963) three-component

model of classical Rayleigh-Bdnard convection provides the simplest representation of

some of these convective states (Shirer 1987b).

The set of three ordinary differential equations of the Lorenz model describes a

shallow, two-dimensional, incompressible Boussinesq flow. Using trigonometric

functions to describe the velocity and temperature characteristics of the flow, restricting

the choice of vertical and horizontal wavenumbers to n=1, m=l and n=2, m=O

respectively, and integrating over the cyclic, dimensionless domain 0 : x : 2x and 0 -
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z : x yields the spectral system (Shirer 1987b)

*dX= p+ yX--"-PX+PY, (2.1)

d= _ XZ + RX _ y, (2.2)

ZdZ=t= XY- BZ, (2.3)

in which X describes the temporal behavior of the velocity field and both Y and Z

describe the temporal behavior of the temperature field. The variable P is the Prandtl

number that measures the relative efficiency of the dissipation of momentum to that of

heat. The normalized Rayleigh number R is the ratio of the vertical temperature

difference driving the flow to the viscous effects that retard it and is the forcing

parameter for this system. The variable B = 4/(l+a2) is related to the aspect ratio a of

the flow field; this ratio is defined to be the height divided by the half-width of the

convective domain. The time-dependent solutions X(t), Y(t), and Z(t) are confined to a

three-dimensional region in phase space. In contrast to physical space, which we most

commonly use to describe fluid motions via the temporal variations of certain scalar

and vector quantities at fixed spatial positions, phase space solutions are those in which

fluid motions are represented by the temporal variations of the amplitudes of specified
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waveforms (Higgins 1987). Indeed, physical and phase space comparisons are easily

illustrated graphically as seen in Figure 2.1.

The three-component Lorenz model (2.1-2.3), as with most similar systems, can

only be solved analytically in certain special cases. Here, we are forced to determine its

chaotic solutions using a numerical method. Over the years, many methods have been

employed successfully to find the temporal solutions to this nonlinear hydrodynamical

system. We decided to use one. of the more efficient and accurate differential equation

solvers known as the IMSL subroutine DVERK that uses a fifth-order Runge-Kutta

scheme. All of the results in this thesis are based on time series produced by this

numerical method. After specifying some initial condition for each of the phase space

variables X, Y, and Z in (2.1-2.3) and after fixing the values of B, P, and R, we use this

routine to provide a value for all three variables at each time step. The values of B, P,

and R that we use are the standard ones originally chosen by Lorenz and by most others

studying this system: B=8/3, P=10, and R=28. For these particular values of B and P,

this value of R is greater than the critical value RH - 24.74 at which the steady

convective solutions become unstable and the only stable solution is chaotic. For now,

we choose a relatively small time step of ts = 0.005 to ensure an accurate representation

of the model solutions. The chaotic, or Lorenz, attractor is visualized most readily via
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Figure 2.1: A representation of linear wave translation in physical
space (a) and the corresponding trajectory in phase space
(b). In (b) the arrows point in the direction of increas-
ing values of t (from Higgins. 1987).
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plotting one of the variables X, Y, or Z against any or both of the remaining two

(Lorenz 1963).

The existence of this chaotic attractor needs explanation. In the chaotic regime,

the phase space solutions are characterized by three Lyapunov exponents--one positive,

one zero, and one negative (Nese 1987). Together, these exponents give a quantitative

description of the average stability properties of orbits on the phase space attractor.

Negative Lyapunov exponents measure the average rate of exponential convergence of

trajectories onto and within the attractor, while positive exponents measure the average

rate of exponential divergence. For the Lorenz attractor, the positive Lyapunov

exponent is associated with the growth of solutions away from the unstable convective

solutions and accounts for the stretching of the attractor along the unstable manifold.

The negative Lyapunov exponent is associated with dissipation in the system and

accounts for shrinking along the stable manifold. However, this argument alone does

not explain the unique geometry exhibited by this attractor. For this and other chaotic

dynamical systems, it is possible to define the existence of a trapping or bounded region

in phase space. The existence of such a trapping region ensures that all orbits in the

neighborhood of any fixed point are bounded, regardless of their local stability

properties (Dutton and Wells 1984). These effects are illustrated in Figure 2.2, the
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Figure 2.2: The evolution of a three-dimensional phase space volume
for three types of attractors: (a) For a stable fixed
point, all three Lyapunov exponents are negative and the
volume contracts in all three directions. (b) For a stable
periodic attractor, two exponents are negative and one zero,
so the volume contracts in only two of the three directions.
(c) For a strange attractor, one exponent is positive, so
the volume evolves into a sheet that, because of its
boundedness in phase space, is infinitely folded by the
flow (from Nese, 1987).
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combination of which yield the Lorenz attractor in which sheets of divergent

trajectories are infinitely folded by the bounded flow (Nese 1987). Figures 2.3-2.5 show

the two-dimensional projections of the Lorenz attractor that we produced with the

standard parameter values; shown are the values from the last 5,000 time steps of a

15,000-step integration for which the initial conditions are X=0, Y=1, Z=0. Confident

that the integration scheme is producing the correct model representation, we now

describe the new measure that we have developed, one that quantifies the chaotic

structure and characteristics of the model solutions.

2.2. The Histogram Measure

We seek a measure for accurately quantifying the structure of a chaotic attractor

in a computationally inexpensive manner. Now as we run the model integration, instead

of providing only the value of each phase-space variable, we also calculate a

three-dimensional Euclidian distance du given by

dU = [(X X) 2 + (Y - YO) 2 + (Z - ZO) 2 , (2.4)
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Figure 2.3: The Lorenz attractor in X-Y phase space representing the

last 5,000 points of a 15,000-point data set.



19

50-

40-

30-

z

20

10-
Initial Condition: X=O Y=1 Z=ONumber of points: 5,000
Time step: 0.005

0-*1 I ' I I 1I

-25 -15 -5 5 15 25
Y

Figure 2.4: The Lorenz attractor in Y-Z phase space representing the
lost 5,000 points of a 15,000-point data set.
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Figure 2.5: The Lorenz attractor in X-Z phase space representing the

last 5,000 points of a 15,000-point data set. Note the
classical butterfly shape.
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in which X0 , Y0 , and Z0 represent the coordinates of some specified reference point.

Once this distance has been calculated, it is placed into a specified bin or distance

interval. When the integration is complete, the number of points in each bin is

normalized by the total number of points produced by the integration. Normalizing the

results ensures that we can easily compare results obtained when using different

numbers of points to represent the solution.

To fully understand the intricacies of this measure, we first need to explain the

motivations for the particular values that we use to generate it. First, we must choose a

reference point (X0 , Y0 , Z0). For simplicity, we picked the phase space origin (0,0,0).

This is not, however, the only reason for our choice. In the Lorenz model, it is this

unstable stationary point that represents the conductive solution and plays a unique role

in both defining the stability characteristics of the system and in creating the chaotic

attractor itself. As the forcing rate R is increased to one, this solution changes from a

stable and globally attracting one to an unstable one from which trajectories tend to

move toward the two convective solutions (Sparrow 1982). In the chaotic regime of this

model, the origin and nearby points in phase space on the attractor, although rarely

visited, help define the unstable manifold along which trajectories diverge. With the
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origin as our reference point, we seek the rate of occurrence of these rare events.

Second, we need to determine how to bin the distances. To do this, we must

ensure that we capture all of the possible distances from the origin in phase space; that

is, we first need to know the maximum Euclidean distance dM. Once this value is

found, we must define a constant bin width value bw for each bin. Specifying the

number of bins Nb yields the following relation:

dM (2.5)
Nb

The maximum Euclidean distance is estimated by simply examining the attractor plots

shown in Figures 2.3-2.5 and noting the associated phase space distances. Upon doing

this, we choose dM = 50. Using 128 distance bins Nb, we obtain a bin width value bw of

0.4. For now, we reserve further comment on the bin width.

Finally, we must specify the initial conditions. This specification is most

important, as we want eventually to discover a control histogram that is independent of

the initial condition used. To do this, we choose three separate sets of initial conditions.

These values are based upon radial distances from one of the two unstable convective

solutions. These two solutions are given by
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1/2
XC = Yc± (B (R-1)) / ZC=R-1, (2.6)

We arbitrarily choose the solution with positive values, although it does not matter

which we choose because the attractor is symmetric. The three sets of initial conditions

used are 1.0, 0.10, and 0.01 percent perturbations from this solution. Specifically, these

sets correspond to (X0 , Y0 , Z0 ) = (1.01 XC , 1.01 YC' 1.01 ZC), (1.001 XC , 1.001 YC,

1.001 ZC), and (1.0001 XC, 1.0001 YC, 1.0001 Zc) respectively.

To illustrate the information provided by this measure, we introduce examples

to analyze briefly. In Figures 2.6-2.8 are shown the histograms that we produced for

each of the three initial conditions by using the last 80,000 points of a 100,000-point

series. On examining these figures, we observe a number of similarities and differences

between them. The similarities involve the general shape of the histogram structure.

Each has a bimodal appearance with closely corresponding primary and secondary

maxima and a relative minimum between them. On either side of these maxima, the

curve drops off quite dramatically toward zero. The primary maximum in the

percentage of distance values h occurs between bins 45 and 55, with the secondary

maximum occurring between bins 85 and 95; these bins correspond to phase space
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Figure 2.6: The normalized histogram for the 1.0x initial condition
representing the lost 80,000 points of a 100,000-point
data set. Note the spiky appearance.
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Figure 2.7: The normalized histogram for the 0.10% initial condition
representing the last 80,000 points of a 100,000-point
data set. Note the spiky appearance.
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Figure 2.8: The normalized histogram for the 0.01% initial condition
representing the last 80,000 points of a 100,000-point
data set. Note the spiky appearance.
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distances of approximately 18 to 22 and 34 to 38, respectively. The relative minimum

exists between bins 75 and 85, or at distances of 30 to 34.

At first glance, the histogram shape is somewhat disturbing since the attractor is

spatially distributed symmetrically about the Z-axis. However, the time spent in each

portion of the attractor is not the same. That is, as the trajectory passes along the

attractor, its speed depends upon its location on that attractor (Nese 1989). Thus, we

conclude that the distance maxima correspond to those parts of the attractor in which

trajectories are moving slowly, with the relative minimum corresponding to those parts

in which the trajectories are moving quickly. The sharp decrease in the percentage of

bin distances visited is simply related to the bounded nature of the attractor.

By superimposing the three figures as seen in Figure 2.9, we observe that

remarkable differences also exist. These substantial differences are intriguing. Each

form is somewhat jagged, suggesting a noisy behavior possibly related to insufficient

sampling. In Figure 2.10 we show the results of applying a 1-3-1 smoother to the data

in Figure 2.9. Although the magnitudes of the structural differences are slightly smaller,

they do remain. These differences are troubling, since they imply structure that is

dependent upon initial conditions and therefore inconsistent with that of other measures

presently used to quantify chaotic time series. This result, however, may be just a
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Figure 2.9: The normalized histograms superimposed for all three initial
conditions representing the last 80,000 points of a
1 00,000-point data set.
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Figure 2.10: The normalized histograms superimposed for all three
initial conditions and smoothed with a 1-3-1 filter,
representing the last 80,000 points of a 100.000-point
data set.
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function of the way that we have sampled the data. Before making any firm

conclusions, we must test the effects of including more points. It may be that we require

more than 80,000 points for the measure to converge. We return to this and related

considerations in Chapter 4.

To understand further the benefits that the Histogram Measure provides, we

quantify chaotic attractor structure--the Correlation Dimension. By comparing a

standard quantitative measure with the Histogram Measure, we will learn the utility of

the measure as well as the data requirements for using it.

2.3. The Correlation Dimension Measure

Many measures have been developed to quantify the complex fractal structure

of chaotic attractors. One of these is the Correlation Dimension Measure. Whereas

measures such as the fractal and information dimension are based upon estimating the

number of cubes of a certain size that are required to cover the attractor, the Correlation

Dimension Measure is based upon the average density of a trajectory in neighborhoods
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of points, and therefore on the distribution of nearby leaves of the attractor, as well as

on certain trajectory recurrence characteristics. Thus, unlike these other dimensions, the

correlation dimension captures some of the dynamics of the system (Nese et al 1987).

The correlation dimension is calculated as follows (Henderson and Wells 1988).

Let , i=l,..., n be n points on an attractor in an N-dimensional phase space. A point

N,1

remaining n-1 points are calculated using any normalized distance definition. Then, the

number of points falling within a specified distance E of the point X. is calculated for

numerous choices of E. This process is repeated for all points Xi on the attractor and

yields the Correlation Integral C(s) given by

C()= lim 1 H( - JJXi -N j (2-7)
n -00 1 n2 - n J,k=

j k

in which H(y) is the Heaviside Function that has a value of one if y 2 0 and zero

otherwise. Finding C(c) is equivalent to calculating the density of points on an attractor

within a range of distances E from a point X and then finding the average of the density

over all n points. Generally if our attractor ,s v-dimensional, then we expect that

t
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C(= EV, (2.8)

where v is the correlation dimension and measures the size of the subset of the phase

space that is continually visited by the trajectory. Since there is no information on

contraction or expansion in v, this parameter can only quantify the geometric structure

The greatest advantage of the Correlation Dimension Measure is its ability to

distinguish between deterministic chaos and random noise in an N-component data

series, because in a random series, C(F) = EN (Grassberger and Procaccia 1983b). Its

primary disadvantage is the lengthy computational time required to calculate it, and so

it is relatively expensive to determine. Since its introduction by Grassburger and

Procaccia (1983b), the Correlation Dimension Measure has been used to quantify the

dimension of numerous attractors. For the Lorenz attractor, the value of v is

approximately 2.06.

To determine v from a time series, we must also consider two other fundamental

concepts: time lag and embedding dimension. The time lag At is related to the notion

that knowledge of a sampled trajectory of points [x(t), x(t+At)] is equivalent to the
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knowledge of the actual trajectory of points [x(t), x(t)] (Takens 1981). Unfortunately,

the optimum choice of At is generally a matter of trial and error. If At is too small, then

the points x(t) and x(t+At) are not independent and will mimic a one-dimensional

system; if At is too large, then we undersample the time series. Assuming the

Shadowing Lemma is valid (i.e. the Lorenz attractor is sufficiently hyperbolic), then the

sufficiently such that the spatial correlation is maintained.

The embedding dimension dE is related to the idea that a phase space trajectory

x(t)=[XN(t), x2(t) , x3(t), ... , x1(t)], given that the above theory holds, can be replaced by

a trajectory in some m-dimensional artificialphase space where x(t)=[y(t), y(t+At),

y(t+mAt)] and ni is the number of times that the series is iaggcd .y At from ytt) = xl(t).

Thus, a sequence of points representing the attractor can be constructed in this artificial

phase space. For any chaotic attractor, the embedding dimension dE is the mimimum

dimensionality m of the artificial phase space that is necessary to capture the attractor.

For n-dimensional smooth manifold dynamical systems, it has been shown that dE <

2n+1; for more general attractors, it has been conjectured that dE - 2r+I where r is the

attractor dimension (Packard et al. 1980; Takens 1981). Given this relation for the

Lorenz attractor, we should see convergence of the correlation dimension by an
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embedding dimension of approximately seven.

Therefore, we must first specify both a proper time lag and an embedding

dimension. The embedding dimension is found by calculating the value of v for

increasing values of m until convergence is seen (e.g., Henderson and Wells 1988). The

appropriate time lag, however, is harder to determine. To find this quantity, we rely on

appropriate time lag is the one that provides us with the optimum reconstructed view of

our attractor. By simply plotting the value of one variable from a time series with a

single time-lagged value of that variable, we seek the two-dimensional view that best

simulates the actual two-dimensional attractor. In Figures 2.11-2.13, we show the

At=20, and At=40, respectively; many others values of the time lag were investigated as

well. Comparing these three reconstructed attractor plots against the true attractor

representation shown in Figure 2.3, we conclude that the time lag value At = 20 is the

optimum one for a time series created with a time step ts=0.005.

Using the values of dE and At, we can next calculate the correlation dimension

for any time series that we create; here we use the standard Euclidean distance in our

dimension calculation. The classical way to determine the correlation dimension is to
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Figure 2.11: The reconstructed Lorenz attractor versus its lagged
series XLAG for a time lag value of five. Note that this
shape does not best simulate the actual attractor
structure.
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Figure 2.12: The reconstructed Lorenz attractor versus its lagged
series XLAG for a time lag value of 20. Note that this
shape best simulates the actual attractor structure.
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Figure 2.13: The reconstructed Lorenz attractor versus its lagged
series XLAG for a time lag value of 40. Note that this
shape does not best simulate that of the actual attractor
structure.
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find the slope of a plot of ln[C(E)] versus ln(e) (Grassberger and Procaccia 1983b) since

v = In C(E)/ln (E) by (2.8). For this introductory example, we have specified integer

values of the critical distance F. Figure 2.14 shows a correlation dimension plot that we

have produced using a time series that represents the last 10,000 points of a

100,000-point data set with the 0.01 percent initial condition. We use a time step ts of

gLiw)5i. rt. !a,_" At of 20, and an einbedding dimension d E of seven. The correlation

dimension value is calculated by determining the slope of the curve. This can be done

with more sophisticated techniques such as finite-differencing, or more simply, by eye.

However, regardless of the method we choose, finding the appropriate value of the

slope is still a highly subjective process. Although this particular case, Figure 2.14, is

r..!:itivclv wefl-!ehavd., upon closer inspection, the curve does not increase with

increasing E in a perfectly linear manner, and so we can not be certain of the appropriate

e interval in which to estimate the dimension; this appropriate interval is known as the

scaling region. The very small E range is sampled too infrequently to truly represent the

attractor structure, and so these results most likely include noise. Too large a value of r

provides too coarse a resolution and so misses relevant details in the structure. Thus, the

resultant value of our correlation dimension v is highly dependent on the E range that is

examined.
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Figure 2.14: The classical way to view the correlation dimension. Its
value is determined by calculeting the slope of the line.
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A more objective way of calculating v is to employ a slope-finding algorithm to I

the above curve. Once we plot the slope value as a function of the distance E, we can

determine the scaling region. For simplicity, we employ a scheme based on a Taylor

series expansion using three adjacent, unequally spaced points (E -h2, E, E +hi) that is

given by I

+P
C(hh 2

2 + h2 h 2 ) j (2.9)

where

h1 = in (E + AE) -In (E), (2.10)

I

I

The expressions for h1 and h2 involve natural logarithms owing to the logarithmic form I

of the data. In Figure 2.15, we show the result of using this slope estimate on the same 3
data set used to generate Figure 2.14. We observe that we have slope values for all of

the E distances; these values represent those of the correlation dimension v. Although I
we do not obtain exactly the accepted value of 2.06 for this particular case, the values of

v that we do obtain are close enough to warrant our confidence in the above I
I
I
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Figure 2.15: The correlation dimension value as a function of bin
distance using the slope formula. Note a relatively
stable value of correlation dimension (approximately
1.9) through the first 20 distance bins.
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slope-finding method. There are many reasons why we did not obtain the expected

value; we address this issue further in Chapter 4.

As with the previous section explaining the Histogram Measure, this section is

meant strictly to give an introduction to the Correlation Dimension Measure. In Chapter

4, we describe in detail how sensitive this measure is to changes in the parameter

importance is in helping us understand the capabilities of our Histogram Measure.

Before we do that, however, we investigate an issue that is important in working with

any chaotic time series. We want to ensure that any time series that we use is not

contaminated by nonchaotic behavior arising from transients. In the next chapter, we

, L
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CHAPTER 3

IDENTIFYING TRANSIENTS WITH THE HISTOGRAM MEASURE

Given that we normally do not choose an initial condition on the attractor itself,

the time-dependent solutions of the Lorenz model must evolve toward the chaotic one.

The details of this evolutionary behavior are dependent upon numerous factors, such as

integration method, the values of parameters B, P, and R that are chosen, and the initial

conditions that are used (lU-renz 1963). These solutions show an amplifying periodic

behavior until a nonperiodic, or chaotic, pattern is seen (Figure 3.1). To ensure that we

are working with a chaotic time series, it is extremely important that we omit these

oscillating or transient portions of the solutions.

Conventional measures successfully quantify the characteristics, properties, and

structure of chaotic data, whether model-generated or observed, only when such

transients are removed from the data. Figure 3.2 shows the correlation dimension v

calculation for the 0.01 percent initial condition using the first 10,000 points of the
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Figure 3. 1: The X time series for the Lorenz attractor. Note that the

behavior changes from growing periodic to chaotic.
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Figure 3.2: The correlation dimension value as a function of bin
distance using the slope formula for the first 10,000
points of the O.01% series, one in which transients are
most likely present. Stable behavior at a value near 2.06
is not evident.
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model-generated series, a series that is most likely dominated by transients. Comparing

these results with those in Figure 2.15, a plot in which we have used the last 10,000

points of a 100,000-point series, we note that significant differences exist. Unlike

Figure 2.15 that exhibits values of v rather near its accepted value of 2.06, the data set

that contains transients (Figure 3.2) does not produce values for v anywhere near that

•.:J 

is obviously inaccurate and unrepresentative of the attractor.

To ensure an accurate representation of the chaotic structure, we must work

strictly with the chaotic portion of the solution. These observations apply to the

Histogram Measure as well. In the previous chapter, we described in detail the

pm~cedurcs that we used to develop our Histogram Measurc. and wre gained sonic

insight into its structure and characteristics. In developing our histogram plots,

however, we arbitrarily determined that the duration of the transient portion of the

solution was less than the first 20,000 time steps, which we discarded from the data.

However, we have not shown that this was a proper assumption to make. In this

chapter, we show how to use the Histogram Measure to provide us with simple new

ways for identifying transients in time series.
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3.1. The Spike Signature Method

Instead of eliminating the first 20,000 time steps from the time series, we use

the entire portion. In this example, we choose the same parameter values and conditions

that were used to generate the smoothed 0.01 percent histogram plot in Figure 2.10.

Figure 3.3 shows tile histogram that results. In Figure 3.4, we compare tle histograms

in Figures 2.10 and 3.3, and we find a remarkable difference between them. In the new

histogram, there is a tall, narrow spike that is confined to a small range of bin distances.

This range covers the bin distances 74 to 78, corresponding to a phase space distance

range of approximately 30 to 32. All values at the other bin distances match nearly

identically.

The above results require careful analysis. The range of distance values within

which the spike signature occurs is easy to understand. It is related entirely to the X, Y,

and Z values that we used to define the initial condition. As described in Chapter 2,

these values are combined to form a three-dimensional Euclidean distance from the

origin, and they correspond to a Euclidean distance of approximately 31. The narrow

range of distances producing the spike is a result of the trajectory slowly spiralling as it
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Figure 3.3: The 0.01% initial condition histogram using all 100,000

point of the s...-ies. The transient portions of the solution,
which are included when using all of the points, are
responsible for the large spike seen in bins 75-80.



49

0.020I I I I I I I I I

N

0.015 -'

o -ol- -

A pcint~s

0 .0 0 5 -
-

Initial Condition: O.01%
Number of Points: 100,000
Time Step: 0.005

0.000 I
0 20 40 60 80 100 120

BIN
Figure 3.4: Comparison of the 0.01% initial condition histogroms

between that produced by using oll the points of a
1 00,000-point series and that produced by eliminating
the first 20,000 points of the some series. All of
their bin values match nearly identically, with the
exception of the large spike located in bins 75-80.
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evolves inside one of the elliptically-shaped lobes outward from the unstable

convective solution and toward the attractor. Not so clear is the reason why the spike is

positioned near the primary minimum in the histogram. The existence of this minimum

may be linked to the fact that the nontransient portion of the trajectory does not occur at

those distances as it winds around the positive and negative attractor lobes. Of course, a

is probably somewhat rapid, yielding a smaller contribution to the histogram than do

other portions of the trajectory along which the motion is slower.

With the discovery that transients produce a spike signature in the histogram, we

may use this property to identify the duration of the transient in any model-generated

lmc sci-l(s. Fo uixaij this duration, we remove intervals of points from the beginning

of the data. After we have removed all points contributing to the transient, we should

detect the disappearance of the spike. Figure 3.5 shows the result of removing

increasing numbers of points in 3,000-point blocks from the beginning of the series for

the 0.01 percent case. Since the spike is gone once 12,000 points have been removed,

we may be initially misled into believing that the transient is completely gone.

However, we must be careful here. Upon closer inspection, we notice that small

differences still remain when comparing this histogram with the one produced after
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Figure 3.5: The 0.01% initial condition histograms superimposed for
increasing blocks of data removed from the initial portion
of the series. The histogram structures do not converge
until approximately 15,000 points have been removed from
the data; this number represents the initial transient
portion of the series.
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3,000 more points have been removed. Only when such consecutive histograms show

very few structural differences between them can we be confident that our series

contains only the chaotic behavior. Seeing no differences in histogram structure

between the 15,000-point and 18,000-point cases, we are fully confident that the

transient is gone once we have eliminated the first 15,000 points from the data set. We

difference being in the interval removed; for the 0.10 percent case, we examined

2.000-point intervals and for the 1.0 percent case, we tried 1.000-point intervals. Using

the same method for detection, we find that the transient is gone once we have

eliminated from the data set the first 10,000 and 5,000 points, respectively, in these two

sh.n in . ii2ur-' 3.6 m, 3.7.

The fact that the duration of the transient varies with initial condition seems

straightforward. What is most interesting, however, is that for each 10-fold magnitude

decrease in initial distance from one of the two nontrivial unstable convective

solutions, there is a 5,000-point increase in the length of the transient within a time

series. This relation tells us that we can estimate the duration of the oscillating portion

of the solution by simply calculating the initial distance from the attractor. However, for

initial conditions outside of the two attractor lobes, this relation may not hold. Even so,
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Figure 3.6: The O.10 initial condition histograms superimposed for
increasing blocks of data removed from the initial portion
of the series. For this case, the histogram structures do
not converge until approximately 10,000 points have been
removed from the data; this number represents the initial
transient portion for this series.
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Figure 3.7: The 1.0 initial condition histograms superimposed for
increasing blocks of data removed from the initial portion
of the series. In this case, the histogram structures do
not converge until approximately 5,000 points have been
removed from the data; this number represents the initial
transient portion for this series.
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the transient identification method will still work. Only in this case, the spike is less

pronounced because outside of the attractor lobe, the trajectory is not limited to a small

range of distances as it evolves toward the attractor; Figure 3.8 shows the results using

the initial condition X=O, Y= 1, Z=O. We may use the same test for transient duration

knowing that the transient is gone once the histogram structures converge. Thus, no

!:1', - h:C , i tii ! co7At i.n wc use, this method provides us with an efficient and

inexpensive way to identify a transient-free time series.

3.2. The Offset Mean Absolute Difference Method

Although confident that the spike method can successfully identify transient

solutions, we question its accuracy because it involves a rather subjective analysis. In

this section, we present a more quantitative approach Lhat identifies transient portions

of a time series and determines their duration. The results that we obtain with this

method are strikingly consistent with those obtained using the spike method. We

describe this alternative method here.

Rather than comparing the differences between two histograms by merely
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Figure 3.8: The histogram produced using the first 10,000 points

for an initial condition outside of the elliptically-
shaped lobes. The large spike signature is not evident
here because the trajectory is not bound to a small
range of distances as it evolves toward the attractor.
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superimposing their structures, we instead calculate their mean absolute differences.

For each bin j, we compute the differences between two histograms Ha and Ha- of fixed

length and offset by a predetermined interval, and then square the result to eliminate

negative values. We then add these 128 bin differences, take the square root of the

result, and finally divide by 128 to obtain a single characteristic offset mean absolute

128 (z)H ) 2 1/12

128' [ (Ha azi -~ Ha J (3.1)128 j=1

Figure 3.9 shows the results of this calculation for the 0.01 percent case and a sample

fI.(th, 'f 1 . ., n,. T , , i s the DP a-" \N owCs ... . ie thth r_,.scl .l:!

identifies the range of points used to create the two histograms Ha and Ha-. For

example at x=O, we compare the first 100,000-point histogram (time steps 0-100,000)

with the one produced using a series offset by 5,000 points (time steps 5,000-105,000).

At x=5, we compare the 5,000-105,000 time step histogram with the 10,000-110,000

time step one and so on. Our choice of 100,000-point blocks is arbitrary. From the

figure, we see a large decrease in difference values as the interval moves away from the

initial part of the series. We argue that these large initial differences are a direct result
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Figure 3.9: The offset mean absolute difference value D,,, as a
function of the offset histogram series (in thousands) for
the 0.01% initial condition. Note that at 15, the curve has
first reached a tolerance value D.., of approximately 0.02.
This suggests that to avoid the transient portions of the
solution in this case, we must remove the first 15,000
points of the series. Thus, values of D,,, above 0.02 are
related to the transient, while those below are functions
of characteristic intrinsic variabilities.
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of the transient; these differences continue to decrease as we remove an increasing

number of initial points from the data.

What is at first puzzling, however, is that we seem to obtain a significantly

different duration for the transient portion using this method than we obtained using the

spike method. For this particular initial condition, we discovered from the spike

shows a continued sharp decrease in mean-square differences up to this interval;

however, this decrease continues through the first 25,000 points to a relatively stable

differe nce floor value (Daa -0.01), largely contradicting the transient duration results

from the other method. Upon closer inspection, however, we observe that once

ai~pro;:i niy 1i5,(( poin~ts i;x'c been rc ,.oved, th- difference value D : 0.01 )

(Table 3.1) has first reached an error threshold or tolerance. We note that the Daa-

maximum threshold value is 0.0192 at x=95 in Table 3.1. Within this tolerance level

(Daa- < 0.02), we argue that the small differences between the histograms are most

likely functions of their intrinsic structural variabilities, although their average

difference values appear closer to 0.01. For values above this tolerance level (Daa >

0.02), we conclude that the histogram differences we observe are most likely caused b.

the transient. Based on this argument, then, the duration of the transient portion of this

IM I I H n l Nl ~ e
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Table 3.1: The offset mean absolute difference values Daa' for three sample lengths
within the 0.01% initial condition as a function of the offset histogram

intervals (Ha and Ha-). The asterisks note the maximum threshold values for ..

each sample length; values in bold type flag the point interval at which the

threshold values are first reached from the initial portion of the series. This
point interval (15,000) represents the number of points that must be omitted

from the initial part of the series in order to avoid the unwanted transient

solutions.

Offset Histogram Intervals Sample Length

100,000 200,000 300,000

1aia

0 5,000 0.0981 0.0498 0.0331

5,000 10,000 0.0967 0.0492 0.0327

10,000 15,000 0.0832 0.0418 0.0275

15,000 20,000 0.0189 0.0132 0.0062

20,000 25,000 0.0116 0.0091 0.0058

25,000 30,000 0.0079 0.0081 0.0066

30,000 35,000 0.0141 0.0064 0.0047

55,()00 4),0G0 0.0102 0.)076 0.0046

40,000 45,000 0.0081 0.0068 0.0049

45,000 50,000 0.0079 0.0038 0.0063

50,000 55,000 0.0081 0.0130 0.0045

55,000 60,000 0.0123 0.0121 0.0027

60,000 65,000 0.0095 0.0078 0.0046

65,000 70,000 0.0133 0.0105 0.0035

70,000 75,000 0.0070 0.0056 0.0065

75,000 80,000 0.0088 0.0135* 0.0067*

80,000 85,000 0.0097 0.0089 0.0062

85,000 90,000 0.0142 0.0092 0.0055

90,000 95,000 0.0168 0.0111 0.0060

95,000 100,000 0.0192* 0.0068 0.0041

100,000 105,000 0.0188 0.0090 0.0048
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series is again approximately 15,000 points, in virtual agreement with the results that

we obtained using the spike method.

Varying the size of the sample length provides us with even more convincing

evidence. Figure 3.10 shows a superposition of the plots for three sample lengths:

100,000, 200,000, and 300,000 points; their Da- values are given in Table 3.1. All

mean absolute difference Daa- and in their associated tolerance levels. This decrease in

difference value with an increase in the number of points used is an interesting finding,

but not extremely meaningful, as we should expect this behavior when we add more

points to the normalized histogram. What is most intriguing is that, despite the size of

s3y :1ic -nc, I- tollance level is rteached once appr:OXimna'ely 15,000 poin s have

been removed from the data.

We next determine whether this method gives consistent results for the time

series produced using other initial conditions. Figures 3.11 and 3.12 show the

superposition of the results obtained using three different sampling intervals for both

the 0.10 and 1.0 percent initial condition cases; their Daa- values are given in Tables 3.2

and 3.3. Using the same argument as above, we observe that their associated tolerance

levels are reached by approximately 10,000 points in the 0.10 percent case and by
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Figure 3.10: The offset mean absolute difference value Da" as a
function of the offset histogram series (in thousands) for
the 0.01% initial condition and three separate sample
lengths. Despite the dependence of Dd, values upon
the sample length, the interval at which the separate
tolerance values is first reached remains the same
in each case; again this 15,000 points represents the
number that must be removed from the initial part of
the series in order to avoid the unwanted transient
portions of the solution.
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Figure 3.11: The offset mean absolute difference value D. as a

function of the offset histogram series (in thousands) for
the 0.10 initial condition and three separate sample
lengths. Consistent with that of the 0.01% case, the
interval at which the tolerance is first reached is the
some for all three sample lengths. Only now the point
interval, which represents the transient portions of the
solution, is approximately of length 10,000.
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Figure 3.12: The offset mean absolute difference value D - as a

function of the offset histogram series (in thousands) for
the 1.0% initial condition and three separate sample
lengths. Consistent with the other two initial condition
cases, the point interval at which the tolerance is first
reached is the some for all three sample lengths; in this
case, the interval that represents the transient portions
of the solution is approximately 5,000 points in length.
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Table 3.2: The offset mean absolute difference values Daa, for three sample lengths

within the 0.10% initial condition as a function of the offset histogram

intervals (Ha and Ha-). The asterisks note the maximum threshold values for

each sample length; values in bold type flag the point interval at which the

threshold values are first reached from the initial portion of the series. This

point interval (10,000) represents the number of points that must be omitted

from the initial part of the series in order to avoid the unwanted transient

solutions.

Offset Histogram Intervals Sample Length

100,000 200,000 300,000

Ila Dal

0 5,000 0.0971 0.0488 0.0325

5,000 10,000 0.0843 0.0421 0.0283

10,000 15,000 0.0184 0.0125 0.0072

15,000 20,000 0.0101 0.0101 0.0021

20,000 25,000 0.0110 0.0067 0.0024

25,000 30,000 0.0123 0.0061 0.0048

30,000 35,000 0.0156 0.0065 0.0039

35,000 40,000 0.0131 0.007 i 0.U 050

40,000 45,000 0.0118 0.0083 0.0023

45,000 50,000 0.0171 0.0081 0.0045

50,000 55,000 0.0187 0.0078 0.0051

55,000 60,000 0.0085 0.0096 0.0062

60,000 65,000 0.0145 0.0081 0.0073

65,000 70,000 0.0106 0.0075 0.0051

70,000 75,000 0.0122 0.0083 0.0058

75,000 80,000 0.0120 0.0072 0.0075*

80,000 85,000 0.0189* 0.0095 0.0066

85,000 90,000 0.0161 0.0131* 0.0075*

90,000 95,000 0.0088 0.0124 0.0072

95,000 100,000 0.0114 0.0087 0.0048

100,000 105,000 0.0083 0.0044 0.0052
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Table 3.3: The offset mean absolute difference values Daa • for three sample lengths
within the 1.0% initial condition as a function of the offset histog:am

intervals (Ha and Ha-). The asterisks note the maximum threshold values for
each sample length; values in bold type flag the point interval at which th
threshold values are first reached from the initial portion of the series. This
point interval (5,000) represents the number of points that must be omitted
from the initial part of the series in order to avoid the unwanted transient
solutions.

Offset Histogram Intervals Sample Length

100,000 200,000 300,000

li a  ia Da a

0 5,000 0.0853 0.0399 0.0283

5,000 10,000 0.0288 0.0129 0.0083

10,000 15,000 0.0255 0.0087 0.0063

15,000 20,000 0.0221 0.0035 0.0042

20,000 25,000 0.0107 0.0036 0.0021

25,000 30,000 0.0152 0.0076 0.0019

30,000 35,000 0.0091 0.0072 0.0034

40,00 0 G.009- .075 0 1

40,000 45,000 0.0121 0.0071 0.0042

45,000 50,000 0.0129 0.0067 0.0039

50,000 55,000 0.0096 0.0070 0.0020

55,000 60,000 0.0098 0.0067 0.0049

60,000 65,000 0.0096 0.0065 0.0046

65,000 70,000 0.0246 0.0134* 0.0081

70,000 75,000 0.0233 0.0124 0.0074

75,000 80,000 0.0286 0.0123 0.0084*

80,000 85,000 0.0161 0.0112 0.0033

85,000 90,000 0.0203 0.0077 0.0032

90.00 95,000 0.0154 0.0083 0.0032

95,000 100,000 0.0153 0.0088 0.0051

100,000 105,000 0.0292* 0.0094 0.0040
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approximately 5,000 points in the 1.0 percent case. These results also agree with those

obtained from the spike method, and so provide us with a more robust and reliable way

to detect the presence of unwanted, nonchaotic portions of a time series. Most

important from these results is that both methods presented here demonstrate that, in

order to avoid unwanted transient contamination, eliminating the first 20,000 points

f:-m the dat. S w -did in Chapter 2 is in fact adequate fr Wil three sets of initial

conditions.

The two methods described in this chapter for detecting and identifying the

duration of nonchaotic portions of a solution work well for this model because these

transient portions exist totally in the initial part of the time series. We note that for other

series, which may be generated from another model or obtained from obser-vations, the

transient behavior may not be as well-behaved. We therefore caution that, although

these methods show merit in the Lorenz model, limitations may become apparent when.

we apply these methods to a more complicated time series. We address this concern in

some detail in the conclusions. For now, we are quite confident in the ability to identify

transient-free, model-generated data.

Our next task is to identify the minimum number of points that are required for

us to have an adequate sample of the chaotic attractor. To do this, we use the simple
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Histogram Measure to look for convergence of the histogram shape as points are added

to the series. If convergence does occur, then the resulting control histograms become

key elements in the development of sampling strategies. In pursuit of a control

histogram, we also use information that we obtain from the more conventional

Correlation Dimension Measure, and we address in detail the numerous sampling issues

invoIVed in CrC;lti-n;. !f :'1Ceu1te dat, h .'!tS .



69

CHAPTER 4

SAMPLING ISSUES RELATED TO FINDING CONVERGENT MEASURES

Now that we have ensured that we have data representing a chaotic attractor, we

seek the minimum number of data points needed to quantify essential information about

this attractor. To do this, we use the Histogram Measure to define a convergent or

control histogram. However, finding this histogram requires a more extensive and

tirme-ccnsuming effort than mhht be expected. because obt'ining convergence depends

greatly upon the way in which we sample the attractor. Therefore, in finding criteria for

convergence, we focus on a detailed discussion of the relevant sampling issues, relying

heavily on results that we obtain from correlation dimension calculations. Furthermore,

we comment throughout on the importance of quantifying these sampling issues and on

their relations to the predictability characteristics of the Lorenz model.
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4.1. The Histogram Measure

A common property of most fractal dimension measures that are used to

quantify chaotic attractor structure is the independence of the dimension value as the

initial conditions are varied (i.e. insensitivity to initial conditions). In this section, we

first determine whether the Histogram Measure displays this same independence. Once

we accomplish this, we then seek convergence within each of the initial conditions.

To find convergence among initial conditions, we obtain histograms from time

series of fixed length for each of the three initial conditions, and then we compare these

histccrams with each other. Throughout this chapter, the values of B. P, and R remain

the same as those used in Chapter 2, and the time step is 0.005; we also use the 1-3-1

weighted filter to smooth the data. We recall that in Chapter 2 we employed this

comparative procedure using the Histogram Measure for the last 80,000 points of a

100,000-point data set. The distinct nonconvergent behavior that we obtained led us to

conclude that either we detected a significant initial condition dependence or we simply

did not use enough points to sample the attractor. To determine which possibility is

correct, we work here with vastly longer time series, superimposing the histograms
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using the three initial conditions for series lengthening by blocks of 100,000 points.

Based on our results in Chapter 3, we discard the first 20,000 points in order to avoid

virtually all of the unwanted transient portions of the solutions. We do this for all of the

results that we discuss in this chapter.

For each successive interval increase, the structural differences between the

after using the last 980,000 points of a 1,000,000-point series, detectable structural

differences remain. This is fi fascinating, yet disturbing result that contradicts the notion

of measure independence with initial condition. In addition, this result raises the issue

of just what we mean by convergence. Some might argue that this degree of

coivc:gcncc u ,nough fOr thcir purposes. However, seckiag to :uamhiguouslv

find convergence, we argue that we do not yet have convergent histograms. With a time

step of 0.005, this 980,000 points corresponds to a dimensionless time t* of 4900. The

dimensionless time t* is related to the real time t by

t =t 2 (1+a2 ) (4.1)

For atmospheric application, z is defined to be the height of the boundary layer (1
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Figure 4.1: The three initioi condition histograms superimposed on

each other representing the lost 980,000 points of a
1,000.000-point data set. Although the curves are
relatively similar, they do not exhibit unambiguous
convergence.
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kilometer), K is the thermal dissipation rate (30 m2 s- 1), and a is the domain aspect ratio

for which a2 = 0.5 (Shirer 1987). This expression yields a value for t that is

approximately 30 hours--much longer than the convective time scale of the atmosphere.

This result is troublesome, because convergence requires much longer to achieve than

the time (- 4 hours) for which the governing Boussinesq system equations are

thc :t ovcr, tis rcsdLth is inconsistent with that of the more standard

fractal measures and also brings into question the validity of the use of Monte Carlo

techniques to determine the predictability of an operational model. We discuss this

technique in greater detail later in this chapter. For now, we raise a red flag. Assuming

that the Histogram Measure is accurately quantifying the attractor, we consider two

distinct possibilites: 1) The Histogram Measure is so sensitive that the differences it

detects represent some large, intrinsic variability within the attractor that other

measures can not detect or 2) We still have not sampled the attractor adequately to find

the reasonable convergence that does actually exist.

4.2. The Correlation Dimension

To further analyze the above dilemma, we employ the correlation dimension v.

The advantage of working with this standard measure is that its behavior is

well-known--the dimension value of the Lorenz attractor is approximately 2.06
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(Grassberger and Procaccia 1983b). After finding the conditions necessary to produce

convergence to this optimum value of v, we apply that knowledge toward finding --

convergence in the Histogram Measure.

In Section 2.3, we described in detail the method used to calculate the

correlation dimension. Here, we add a new feature by calculating v using ten

s iccessively lenLeheninc series for the atractor. !n doing so, we can observe th-e

convergent properties of this measure. Using data from the interval 990,001 to

1,000,000 time steps, we superimpose v values for integer distances of radius E for the

ten interval lengths ranging from 1,000 to 10,000 points. Figures 4.2-4.4 show results

using an embedding dimension dE of seven for each of the three initial conditions. We

recall that the time step ts is 0.005 and that we use an optimal attractor reconstruction

time lag At of 20. All three figures show similar behavior, with pronounced peaks and

valleys. Figures 4.2 and 4.4, corresponding to the 1.0 and 0.01 percent perturbations,

show the most distinct similarities; each has two distinct maxima and two minima, and

they occur in the same range of . values. However, determining an appropriate scaling

region seems unclear from these figures. Both maxima have peak values corresponding

to v between 2.1 and 2.4, and the minima are much lower. These results appear suspect,

not only because of the particular values that we obtain, but because using increasingly
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Figure 4.2: The correlation dimension value as a function of bin
distance using the slope formula for a 1.0% initial
condition and integer bin distances. Note the distinct
dependence of the correlation dimension value on the
interval length. Also note that the values are generally
below two, inconsistent with the accepted value of 2.06.
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Figure 4.3: The correlation dimension value as a function of bin
distance using the slope formula for a 0.10% 1nitiol
condition and integer bin distances. Again, there is a
dependence of the correlation dimension value on the in-
terval length and its values are consistently below two.
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Figure 4.4: The correlation dimension value as a function of bin
distance using the slope formula for a 0.01% initial
condition and integer bin distances. As with the other
two initial conditions, there is a distinct dependence of
the correlation dimension value on the interval length;
in addition, the values remain inconsistent with the
accepted correlation dimension value.
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long data intervals does not clearly lead to any convergence. This result is disturbing, as

calculating v for 10,000 points is expensive.

This lack of convergence may be the result of using too small an embedding

dimension. A Whitney Embedding Theorem would imply that dE =7 should be

sufficient to capture this attractor in artificial phase space and has been shown to have

merit in studics usin, ob.;ervcd atmospheric data (e.g., Fraedrici 1986).

To test the possibility that the value of dE should be larger, we perform the same

calculations for an embedding dimension of nine; the results are shown for each initial

condition in Figures 4.5-4.7. We observe that changing the embedding dimension value

has a profound effect on the correlation dimension plots. The maximum that is located

in the largest E distances (40-45) has a much larger value than that seen in Figures

4.2-4.4. This value, approaching or even exceeding 3.0, obviously is unrepresentative

of the actual dimension, which must be less than three. However, the other maximum

now has a much broader peak spread over a greatc- range of c distances; most

importantly its maximum value has generally decreased to between 2.0 and 2.2, values

that are more consistent with the accepted correlation dimension value. Perhaps this

maximum in bins 20 to 26 does occur in a true scaling region and shows that the true

value for v is 2.06 ± a, where Y is the variance.
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Figure 4.5: The correlation dimension value as a function of bin
distance using the slope formula for a 1.0z initial
condition and integer bin distances. Increasing the
embedding dimension value from seven to nine changes
the behavior markedly. It is heartening to note a
reasonably good convergence to a dimension value near
2.06 in the bin distance range 20-26.
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Figure 4.6: The correlation dimension value as a function of bin
distance for a 0.10% initial condition and integer bin
distances. For this case, it is harder to argue for a
reasonable convergence to a correlation dimension
value near 2.06.
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Figure 4.7: The correlation dimension value as a function of bin
distance for a 0.01% initial condition and integer bin
distances. Similar to the 1.0% case, increasing the
embedding dimension produces a reasonably good conver-
gence to a correlation dimension value near 2.06 in a
similar bin distance range (22-28).
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*he above conclusion, however, is a troubling one for many reasons. First, the

correlation dimension changes dramatically with changes in embedding dimension. If

something like the Whitney Embedding Theorem is indeed valid, then both the values

of dE that we used should have captured similar v behavior. Having to test values of dE

greater than nine to determine when the value of v stabilizes is extremely

t r - m., e~ ~ ng d rhighly imnractica!. Besides. ,r , fixed inte:rval. increasin., the

embedding dimension decreases the sample size and thus most likely decreases the

validity of the results. Second, there continues to be a lack of convergence among not

only the ten separate data intervals, but also among the three sets of initial conditions

shown in Figures 4.5-4.7. Finally, the apparent scaling region that we have found is at a

much larger, macroscale distance E than that reported by others (Nese 1985) and is also

inconsistent with the definition of v, which is formally valid only in the limit as F

approaches zero. In our plots, the values of v are well below its accepted value of 2.06,

ranging from 1.5 to 1.9 at the smaller c distances.

The suspicion above most likely to be correct is that using integer values of E

actually represents too coarse a resolution to approximate the true fractal structure of

the chaotic attractor. To find a more representative depiction of this structure, we use a

smaller bin distance E for estimating the cumulative correlation C(e) from which we
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obtain v. By decreasing the size of the E bins, we now look for dimension estimates in

the microscale range. Using the same data set as above, we now increment the E value

in hundredths. Figure 4.8 shows a 1.0 percent initial condition correlation dimension

plot for c values ranging between 0.01 and five. Comparison of Figure 4.8 with Figure

4.5 reveals a marked microstructure not seen in the larger scale. Unfortunately, that

structure continu s to sho w littlc if , 'y c r-Tnce ton value 'f v n.:,r t- :crc:ed

value of 2.06. The other two initial conditions display similar behavior, and so these

results are discouraging.

We consider yet another factor. As with the early histogram plots, these

correlation dimension plots may be characterized by some noisy contamination. This is

a plausible argument, as these small E distances most likely produce a data set

containing some intrinsic roundoff error. An even more satisfying argument is that,

within the smallest bins, the percentage of total information contained within them is

very small. We need only look at Figure 2.14, the plot of In C(E) versus In E, to verify

this notion. In effect, there is most likely a distinct undersampling problem at the

smallest e distances.

To reduce this potential source of error and to provide some consistency with

our smoothed Histogram Measure, we now use a bin smoother to determine a value of
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Figure 4.8: The correlation dimension value as a function of bin
distance for a 1.0% initial condition and bin distances
in hundredths ranging from 0.01 to five. It is discouraging
to note the lack of convergence in the smallest of bin
distances to a correlation dimension value above two.
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v. This smoother averages the cumulative correlation integral C(c) values over the

number of bins we specify before we employ the slope finder to calculate the

dimension. Although we tried many smoothers, all produce relatively disappointing

results. Figure 4.9 shows the 1.0 percent plot for a five-bin grouping on the data and

given by

=[C( -2) + C(E-1) + C(E) + C(E+I) + C(F+2) 1 (4.2)
5 1

We have used this noniveighted smoothing function for simplicity. Unfortunately, we

still have found no pronounced convergence of v near to 2.06 and no consistency

among initial conditions.

Efforts to find convergence to an acceptable correlation dimension value up to

this point have been fruitless. Before we give up hope, however, there is one other

sampling issue we have yet to discuss: the time step ts that we use to produce the

model-generated data sets. Fortunately, it is this particular issue that yields the

resolution of the problem.

The original time step value of 0.005 was used in order to sample the attractor

very accurately. We now choose a significantly larger time step of 0.05 to produce a



86

5 I

Initial Condition: 1.0%
Number of points: 1,000-10,000
Time step: 0.005
Embedding Dimension: 9
Time Lag: 20

3-

2-

.41

0- 50 100 150 200 250 300 350 400 450 500

Figure 4.9: The correlation dimension value as a function of bin
distance for a 1.0% initial condition with bin distances
in hundredths ranging from 0.01 to five, after a nonweighted
five-bin smoother has been applied to the data. Despite
the smoothing of the data, there still is no significant
convergence to a correlation dimension value above two.
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new data set, and then we redo the correlation dimension calculations using the data

from 990,001 to 1,000,000 time steps. Before we can accomplish this, however, we

must ensure that the time lag At is appropriate for the new time step value. After testing

numerous values, we decide that the optimum reconstruction occurs at a At value of 2,

as seen in Figure 4.10. We first test the new time series by specifying integer e values

and dE of nine. These correlation dimension plots are shown for ten data intervals and

for all three initial conditions in Figures 4.11-4.13. Although the general shapes here

are similar to those in Figures 4.5-4.7, encouraging differences are apparent. First, we

are pleased to note a significant increase in the value of v at the smallest E distances

(0.01-5), increasing from between 1.5 and 1.8 to between 2.0 and 2.1. Second, we

observe a strikingly greater degree of convergence displayed by superimposing the

results from the ten separate data intervals that we have chosen. Unlike the results that

we obtained with the smaller time step, we now observe that a 1,000-point data set

exhibits behavior that is more consistent with that given by a 10,000-point set.

However, we still note that some structural differences remain among the three initial

conditions. Even so, we have renewed hope that we can obtain some convergent

behavior in v to a value near 2.06 at small e distances.

Utilizing the same microscale e distances and five-bin smoother (4.2), we
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Figure 4.10: The reconstructed Lorenz attractor X against the lagged

series XLAG for a time lag value of 2. For this larger
time step value, this lag value represents the optimum
one to use when calculating the correlation dimension.
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Figure 4.11: The correlation dimension value as a function of bin
distance for a 1.0 initial condition and integer bin
distances. Increasing the time step value changes the
behavior dramatically. Unlike the great dependence of
correlation dimension value upon interval length that
was seen earlier with the smaller time step, all of the
curves converge quite well. In addition, there is now
convergence to a value above two for the smallest
bin distances.
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Figure 4.12: The correlation dimension value as a function of bin
distance for a 0.10% initial condition and integer bin
distances. Again, with the larger time step, there is
strong convergence between all the data intervals and
the correlation dimension values for the smallest
distance bins are reassuringly above two.
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Figure 4.13: The correlation dimension value as a function of bin
distance for a 0.013 initial condition and integer bin
distances. Consistent with the other two initial conditions
using the larger time step, the data intervals exhibit
strong convergence and the correlation dimension values
for the smallest distance bins remain above two.
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calculate v again for an E distance range from 0.01 to five for each of the three initial

conditions. These very encouraging results are shown in Figures 4.14-4.16. We argue in -i
all three cases that after some initial noisy behavior for E : 1, we achieve some

convergent behavior near v = 2.06 once we have used approximately 3,000 points. For

1 - c : 5, the variance o of v about 2.06 is remarkably small, leading us to conclude

th tI this mny inleed be th elusive scalin region thit we have been seeking. Further

tests reveal that beyond E = 5, the value of v begins decreasing slowly below a value of I

two. Even more remarkably and reassuringly, we note that this convergence shows

little, if any, difference atnong the three initial conditions. I

4.3. The Histogram Measure Revisited

i

Concluding that we have now found time series that produce a reasonable

convergence of v to its widely accepted value, we now use the same series to look for

histogram convergence to within a very small tolerance among the three initial

conditions. Two possibilities exist: -j

1) We will find reasonable convergence in the three histograms,
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Figure 4.14: The correlation dimension value as a function of bin
distance for a 1.0% initial condition with bin distances
in hundredths ranging from 0.01 to five, after a
nonweighted five-bin smoother has been applied to the
data. Using the larger time step to produce the data sets
yields a correlation dimension value that converges
remarkably to within a small variance about its accepted
value of 2.06 for values greater than approximately 100.
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Figure 4.15: The correlation dimension value as a function of bin
distance for a 0.10% initial condition with bin distances
in hundredths ranging from 0.01 to five. after a
nonweighted five-bin smoother has been applied to the
data. Again, using the larger time step data sets yields
correlation dimension values that converge to 2.06. to
within a remarkably small variance.
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Figure 4.16: The correlation dimension value as a function of bin
distance for a 0.01% initial condition with bin distances
in hundredths ranging from 0.01 to five, after a
nonweig hted five-bin smoother has been applied to the
data. Consistent with the data sets produced with the
larger time step for the other two initial conditions,
there is eventual convergence to a correlation dimension
value that fluctuates closely about 2.06.
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indicating that the histogram structure is relatively independent of initial

condition. This finding is essential to the eventual development of "

sampling strategies and suggests that predictability estimates involving

comparison of the divergence rates between numerous solutions having

different initial conditions, as in the Monte Carlo technique, do have

2) We will not find reasonable convergence in the histograms,

because there are large, detectable, intrinsic differences in these

numerically generated data sets. This finding would imply that

developing representative sampling strategies would be very difficult

and would lead us to conclude that predictability estimates would vary

greatly with initial condition.

To look for convergence in the Histogram Measure, we calculate histograms

using the 0.05 data set for the three initial conditions and compare their structures with

each other. For now, we do not change the bin width value bw, as was useful earlier

when we calculated v. For the remainder of the chapter, we use bw = 0.4. Figure 4.17

shows the histograms for the three initial conditions superimposed for the last 980,000

points of a 1,000,000-point data set. Unlike Figure 4.1 that shows a distinct lack of
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Figure 4.17: The three initial condition histograms superimposed on
each other representing the lost 980,000 points of a
1,000,000-point data set. Note that the degree of
convergence exhibited by the three histograms is
remarkably good when using the larger time step value.
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convergence between the three histograms, this figure shows that the degree of

convergence between the three initial conditions is extremely good. Indeed, we argue

that the histograms do exhibit reasonable convergence.

Thus, as in the calculation of v, we also conclude that the key issue in our

efforts to detect convergence in the histograms is the time step size that we used to

, ( , r . !i .,ii' ), poin-s it ;i tiuc S ,,. o .JU5 Inoust likeiy

corresponds to a series length of only 98,000 points sampled at a time step of 0.05.

Thus our early failures indicate a distinct undersampling problem. Our newly found

results lead us to conclude that the robustness ,,f ne aspects of the Lorenz attractor is

extremely sensitive to the manlier in which we sample it; hence, finding an optimum

sampling is crucial to its quantitative study. More specifically, we conclude that

sampling more leaves of the attractor less accurately by using a coarser temporal

resolution provides a more accurate representation of its chaotic characteristics than

does sampling fewer leaves more accurately using a finer temporal resolution. This

theory indicates that a certain minimum number of circuits around the attractor is

necessary to define fully its quantitative information, a point that we address further

later in the chapter.

Now that we have obtained what we believe to be a reasonable convergence of
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the three histograms, we next wish to determine some minimum number of points that

yields this convergence. To accomplish this objective, we first superimpose histograms

that were obtained using the same series length for the three initial conditions. Figures

4.18-4.22 show these superimposed histogram plots for data sets lengthening by

succe.ssive 100,000-point intervals ranging from 80,000 to 480,000 points. We observe

that although the 480,000-point series still exhibits a pronounced convergence, there is

a noticeable increase in the differences among the histograms with decreasing numbers

of points; indeed the 80,000-point results exhibit very little convergence (Figure 4.18).

Unfortunately, this method is quite subjective, and so it is difficult to determine which

data interval is the minimum one necessary for producing convergence. As a result, we

employ a more objective method to help us.

4.3.1. The Average Mean Absolute Difference Method

Instead of comparing superimposed histogram structures, we now define a

measure of the average mean absolute difference among the three histograms. We recall

that we used a similar method in Section 3.2 to find the transient portion of a series.
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Figure 4.18: The three initial condition histograms superimposed on

each other representing the lost 80,000 points of a
1 00,000-point data set.
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Figure 4.19: The three initial condition histograms superimposed on

each other representing the last 180,000 points of a
200,000-point data set.
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Figure 4.20: The three initial condition histograms superimposed on

each other representing the last 280,000 points of a
300,000-point data set.
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Figure 4.21: The three initial condition histograms superimposed on

each other representing the last 380.000 points of a
400.000-point data set.
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Figure 4.22: The three initial condition histograms superimposed on

each other representing the last 480,000 points of a
500.000-point data set.
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Here, we define a similar difference expression Dik to that used in (3.1) and is given by

128 2 (43

j=l

where j represents the bin number and Hi and Hk are the histograms for any of the three

initial conditions with i or k = 1,2,3. We use (4.3) to calculate the three possible

differences (D 12 , D13 , D23 ) and then sum them to produce the average mean absolute

difference value Davg given by

avg D12 + D13 + D23 (4.4)3

In Figure 4.23, this average difference value is plotted as a function of series

length Lser. The ordinate represents Davg and the abscissa denotes the series length in

increments of 50,000 points up to length 800,000. We recall that with the first 20,000

points discarded, the value of 30 actually represents the last 30,000 points of a

50,000-point series and so on. We observe the existence of an exponential type of

decrease in the average difference values Davg among the three initial conditions as the

interval length increases. Convergence to a relatively constant Davg value is apparent in
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Figure 4.23: The average mean absolute difference values D, g between
the three initial condition histograms as a function of
series length L_, (in thousands). Note that the
difference values decrease to a floor with an average
value of approximately 0.008 by 480,000 points.
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Figure 4.23; this value (Davg - 0.008) represents the average minimum intrinsic

difference among the histograms and may be related to using finite temporal

approximations to describe solutions of an ordinary differential system. Having

successfully quantified a difference value representing a reasonable histogram

convergence, we seek the series that first displays this minimum difference or floor

value; after using this number of points, we feel confident that we have found the

greatest achievable convergence among the three initial conditions. Using this argument

and Table 4.1, we conclude that 480,000 points represents the minimum series length

needed to specify a control histogram because a longer series does not yield a better

one.

There is another way to view these results. Although we are quite certain of

convergence by 480,000 points, if similar results hold for larger numerical models that

are much more expensive to run, then we would need to be able to make estimates with

far fewer points. We may interpret the results in Figure 4.23 as giving a relation

between the numerical accuracy of the Histogram Measure and the number of points we

may consider. Wishing to use as few points as possible, and still have reasonable

confidence in our results, we notice that the bulk of the difference between the three

initial conditions has been eliminated by 230,000 points and yields an average mean
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Table 4.1: The average mean absolute difference values Davg as a function of the
series length Ls r . Note a-continuous decrease in values up to a series
length of 480,000 points, after which the values fluctuate about
approximately 0.008. This value represents the minimum average intrinsic
difference between the histograms and suggests that beyond 480,000 points,
no additional information can be gained.

Lser Davg

30,000 0.0440

80,000 0.0361

130,000 0.0223

180,000 0.0177

230,000 0.0139

280,000 0.0133

330,000 0.0113

380,000 0.0112

430,000 0.0098

480,000 0.0081

530,000 0.0078

580,000 0.0082

630,000 0.0081

680,000 0.0083

730,000 0.0077

780,000 0.0079
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absolute difference value of approximately 0.014. Thus, by using half the number of

points, we have only increased our average difference value by approximately 0.006,

which is rather small. Because there exists a tradeoff between obtaining the maximum

possible accuracy in defining convergence and the expense we incur by doing so, we

must determine the optimal choice for our particular application.

Another issue that we consider is the rate of decrease in difference value as a

function of series length. Quantifying this decrease certainly has ramifications for

estimating the predictability of an attractor. We discuss this issue in detail later in this

chapter.

43.2. The Asymptotic Mean Absolute Difference Method

Having quantified convergence among the three initial conditions, we feel

confident that there must also exist a convergent or control histogram within each of the

three cases. We recall from Figures 4.14-4.16 that the correlation dimension

calculations for the 0.05 time step data set showed a pronounced convergence to its

accepted value of 2.06 within each of the initial conditions by approximately 3,000
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points. Understanding the importance of using the larger time step to produce data sets

yielding convergence in the value of v, we now hope to quantify successfully histogram

convergence using the data set produced with the larger time step.

As we did previously, we first seek a qualitative judgement about the

convergent properties of the histograms. We do so by superimposing five histograms

obtained for successively longer series for a single initial condition. These series range

from the first 80,000 to 480,000 points--again we recall that the initial 20,000 points for

all series have been removed. Figures 4.24-4.26 show the results that we obtain for each

of the three initial conditions; all indicate a distinct convergence in structure. This

finding certainly supports the existence of convergence by 480,000 points, as found in

Figure 4.23.

To quantify this convergence, we use a difference method similar to the ones

already used in (3.1) and (4.3); only now we calculate the mean absolute difference

between the normalized histograms Ha and Hb for series of increasing lengths within

one initial condition, where the asymptotic mean absolute difference Dab is given by

128 
] 12Dab 128 (Hb(Zj)-Ha(zj)) , (4.5)

j=1
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Figure 4.24: The histograms superimposed on each other representing

the five data set lengths within the 1 .0 initial
condition.
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Figure 4.25: The histograms superimposed on each other representing

the five data set lengths within the 0.10% initial
condition.
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Figure 4.26: The histograms superimposed on each other representing

the five data set lengths within the 0.01% initial
condition.



114

Figure 4.27 shows these results for each of the three initial conditions. As in Figure

4.23, the ordinate is simply the magnitude Dab of the difference values. The abscissa - -

now has a different interpretation than that of Davg; each of the values of Dab represents

a comparison between two sample lengths. For example, at the value of 30 is given the

comparison of histograms between the last 30,000 points of a 50,000-point series and

the last 80,000 points of a 100,000-point series; at the value of 80 is given the

comparison between the 80,000-point and 130,000-point histograms and so on.

What initially strikes us is the consistent behavior displayed by all three initial

conditions. As before, we observe an early, exponential-type decrease in difference

values with increasing series lengths. Employing the same argument that we used

earlier to define histogram convergence, we note that the differences in all three cases

approach a distinct floor. However, given the behavior of all three cases, we are less

certain of a definitive floor value and therefore the length of the data series at which the

histogram structures converge than we were with Davg. In Table 4.2, the difference

values are given for all three cases. To determine the minimum length of the data set for

which we find convergence, we use the larger of the two series interval values that are

compared with one another. Using this convention, we find that convergence occurs by

430,000 points at values generally near Dab = 0.0026. However, in the next interval
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Figure 4.27: The asymptotic mean absolute difference values D.,
for each of the initial condition cases as a function of
increasing series length comparison (in thousands) for a
sampling interval of 50,000 points. Note that all sets
of difference values decrease to a similar floor value.



116

Table 4.2: The asymptotic mean absolute difference values Dab for all three initial
conditions and a sampling interval of 50,000 points as a function of
increasing histogram series length comparison (Ha and Hb). The average
Dab value (ab) has been computed for each initial condition over a range
of series intervals in which the difference values fluctuate about a minimum
range; these values represent the average minimum intrinsic difference
between histograms of increasing series length for this particular sample
size. The series length comparison interval displayed in bold type
represents that after which no additional information can be gained
(480,000 points).

Histogram Series Length Dab

Ha Hb 1.0% 0.10% 0.01%

30,000 80,000 0.0151 0.0200 0.0294

80,000 130,000 0.0156 0.0123 0.0132
130,000 180,000 0.0071 0.0089 0.0086
180,000 230,000 0.0057 0.0103 0.0069
230,000 280,000 0.0038 0.0038 0.0042
280,000 330,000 0.0043 0.0035 0.0040

330,000 380,000 0.0039 0.0046 0.0038
380,000 430,000 0.0026 0.0023 0.0026
430,000 480,000 0.0022 0.0022 0.0023
480,000 530,000 0.0021 0.0023 0.0022
530,000 580,000 0.0023 0.0023 0.0023
305,000 330,000 0.0026 0.0026 0.0023

Dab in range (430,000-580,000): 0.0022 0.0022 0.0023
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(430,000-480,000 points), in two of the three cases, there is a continued drop to

difference values closer to 0.0022. Beyond this point interval, the values generally

fluctuate in the range between 0.0021 and 0.0023. As a result, although we are

confident that a floor does exist, there is some subjectivity in determining its value.

We believe that a less ambiguous way to determine the valu. of the floor is to

average the difference values of Dab once we determine the range of points within

which these Dab values exist. This average value (Dab) assures us not only of better

finding a minimum data set that defines convergence in each case, but also corresponds

more closely with the definition of convergence given by the other difference method

Davg. Averaging these values for each of the three cases, we note more consistent

minimum difference values between them: Dab = 0.0022 for the 1.0 and 0.1 percent

cases and Dab = 0.0023 for the 0.01 case. Taking the larger of the two values as our

difference floor (0.0023), we conclude that in all three cases the histogram structures

converge by 480,000 points, a value consistent with the one that we found with Davg.

Using more points than this will yield little, if any, additional improvement in the

information content of the histogram. As before, we see a similar tradeoff between the

degree of accuracy we wish to achieve and the expense in generating a long series.
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More specifically, although 480,000 points represents the minimum data set required to

achieve maximum convergence, we observe that using 280,000 points is quite adequate

for capturing the bulk of the convergence within all of the initial conditions.

i

Although these are good results, we have not fully addressed this convergence

issue. Unlike the convergence that we found among the three initial conditions at a

fixed data interval, we can calculate the convergence within each initial condition by

incrementing the sample by various amounts. Up to now, the results that we have

obtained are based solely upon the comparison of histograms with a sampling interval

of 50,000 points.

To investigate this sensitivity, we employ the same tests as those used above for

sampling intervals of 25,000 and 100,000 points. Figures 4.28 and 4.29 show these

results. In comparing these figures with Figure 4.27, we observe distinct similarities

and differences when the sampling interval is changed. Although all three cases display A

the same exponentially decreasing behavior, the most reassuring behavior among the

three is their convergence to a reasonably similar average minimum difference value

Dab. The difference values are given for the 25,000-point and 100,000-point intervals

in Tables 4.3 and 4.4, respectively. Employing the same method as was used above, we
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Figure 4.28: The asymptotic mean absolute difference values Dab
for each of the initial condition cases as a function of
increasing series length comparison (in thousands) for a
sampling interval of 25,000 points. Despite the change
in sampling size, all three sets of difference values
again decrease to similar floor values.
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Figure 4.29: The asymptotic mean absolute difference values Dab
for each of the initial condition cases as a function of
increasing series length comparison (in thousands) for a
sampling interval of 100,000 points. As with the other
two sample sizes, all three sets of difference values
again decrease to similar floor values.
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Table 4.3: The asymptotic mean absolute difference values Dab for all three initial
conditions and a sampling interval of 25,000 points as a function of
increasing histogram series length comparison (Ha and Hb). The average
Dab value (5ab) has been computed for each initial condition over a range
of series intervals in which the difference values fluctuate about a minimum
range; these values represent the average minimum intrinsic difference
between histograms of increasing series length for this particular sample
size. The series length comparison interval displayed in bold type
represents that after which no additional information can be gained
(280,000 points).

Histogram Series Length Dab

Ha Hb 1.0% 0.10% 0.01%

30,000 55,000 0.0178 0.0188 0.0198

55,000 80,000 0.0146 0.0095 0.0141

80,000 105,000 0.0103 0.0092 0.0107

105,000 130,000 0.0105 0.0068 0.0052

130,000 155,000 0.0066 0.0060 0.0062

155,000 180,000 0.0050 0.0065 0.0055

180,000 205,000 0.0048 0.0036 0.0055

205,000 230,000 0.0044 0.0033 0.0037

230,000 255,000 0.0034 0.0028 0.0034

255,000 280,000 0.0022 0.0025 0.0023

280,000 305,000 0.0025 0.0021 0.0021

305,000 330,000 0.0026 0.0026 0.0023

330,000 355,000 0.0025 0.0031 0.0027

355,000 380,000 0.0027 0.0024 0.0019

380,000 405,000 0.0026 0.0021 0.0022

Da in range (255,000-405,000): 0.0025 0.0025 0.0023
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Table 4.4: The asymptotic mean absolute difference values Dab for all three initial
conditions and a sampling interval of 100,000 points as a function of
increasing histogram series length comparison (Ha and Hb). The average
Dab value (Dab) has been computed for each initial condition over a range
of series intervals in which the difference values fluctuate about a minimum
range; these values represent the average minimum intrinsic difference
between histograms of increasing series length for this particular sample
size. The series length comparison interval displayed in bold type
represents that after which no additional information can be gained
(580,000 points).

Histogram Series Length Dab

11a  Hb 1.0% 0.10% 0.01%

80,000 180,000 0.0176 0.0178 0.0181

180,000 280,000 0.0064 0.0072 0.0101

280,000 380,000 0.0068 0.0057 0.0042

380,000 480,000 0.0091 0.0040 0.0041

480,000 580,000 0.0025 0.0024 0.0025

580,000 680,000 0.0026 0.0027 0.0029

680,000 780,000 0.0018 0.0029 0.0019

780,000 880,000 0.0029 0.0020 0.0030

880,000 980,000 0.0025 0.0025 0.0027

Dab in range (480,000-980,000): 0.0025 0.0025 0.0026
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observe that the values of Dab range between 0.0023 and 0.0025 for the 25,000-point

samples (Table 4.3) and between 0.0024 and 0.0026 for the 100,000-point samples

(Table 4.4). This similarity is a fascinating discovery and leads us to conclude, given

these limited results, that the minimum difference values Dab between histogram

structures appear to be relatively independent of both the initial condition value and the

sampling interval that we use.

The existence of a nonzero minimum value in the histogram difference suggests

that there is some small variability intrinsic to the analysis. We wonder, however, if this

value is indeed intrinsic to the Lorenz model solutions or if it is related directly to the

way in which we have defined the measures that we use. The value of this minimum

difference is most likely a function of many factors. First, it may be a function of the

time step chosen; we have already verified qualitatively that the minimum series length

needed for convergence is highly dependent upon this value. Second, it is most likely a

function of the bin width bw because changing the bin width changes the resolution at

which the attractor leaves are being separated; we expect that the difference values

would increase as bw decreases. Third, the difference value may be a result of the way

in which we defined our expressions for Davg and Dab; their average minimum values
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differ by approximately a factor of three. Finally, the minimum difference values that

we have obtained could be the result of the fact that the ideal histogram is simply an

approximation of the derivative of a nondifferentiable function. Thus, the limit of the

histograms as the bin width bw-- and as the series length Lser-* 00 is strictly a

generalized function. Employing a true and continuous function such as the area under

the histogram curve may yield eventually a zero difference floor. We elaborate on these

possibilities further in the conclusion.

The most remarkable difference that we observe when we compare the three

sample size cases in Figures 4.27-4.29 is the data interval at which we feel confident in

defining histogram convergence. We recall in the 50,000-point case that we achieved a

reasonable convergence once the series had approximately 480,000 points. To

determine the data set representing the minimum for histogram convergence, we

employ the same method as that above. Using the largest of the three Dab values (Dab

= 0.0025) in Table 4.3, we observe that adding data in 25,000-point increments, as

shown in Figure 4.28, yields convergence at a value representing the last 280,000 points

of a 300,000-point series for all three initial conditions. Using the same procedure for

the 100,000-point increment cases seen in Figure 4.29, we observe that convergence

occurs when we have obtained the last 580,000 points of a 600,000-point series (Table
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4.4); this value is somewhat larger than that found when we compared the three initial

conditions in Figure 4.23. These differences seem counterintuituve, -!' migi expect,

using round-off error arguments, that if differences do occur, then the 100,000-point

case would show a faster convergence to some minimum difference value than would

the 25,000-point case. What does seem clear, however, is that there is a dependence of

he minimum data set necessary to produce histogram convergence on the sampling

interval that we use, at least for intervals less than or equal to 100,000 points. These

results indicate the variabilities that are produced using a "snapshot" or "stroboscopic"

view to capture the attractor data. The causes of these variabilities are unclear. We

theorize that there may exist attractor fluctuations or smearing of its approximation

owing to roundoff error. Based on these results, we conclude that the data that we have

produced with this model are extremely sensitive to the sample length that we use to

quantify histogram convergence. Figure 4.30 highlights the distinct similaities and

differences by showing a superposition of the results from the three sampling intervals

in Figures 4.27-4.29 for the 0.01 percent initial condtion.

These results are exciting, yet are conflicting and confusing in numerous ways

that we have already briefly mentioned. What does seem certain and is most important

to us from all the results that we have obtained thus far in this chapter is that, despite
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Figure 4.30: The asymptotic mean absolute difference values Dob
for the 0.01% initial condition case as a function of
increasing series length comparison (in thousands) for
all three sampling intervals. Note their decrease to a
similar floor value despite the change in sample size.
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the dependence of the rate of convergence on the series increment used, we now have a

quantitative estimate for the minimum series length that we need to define histogram

convergence. For this Lorenz model, we are confident that we have a control histogram

if we use at least 580,000 points to define it, as long as we choose a time step value of

0.05. This number of points assures us of a reasonable histogram convergence whether

we use a single initial condition or an average of three initial conditions. Applied to

atmospheric models, these results tell us that both single and multiple initial condition

integration methods that are presently used to estimate predictability have merit.

Although we have achieved the primary goal of finding the minimum series

length necessary for histogram convergence, there are other issues related to this

convergence that require further quantitative study. These issues not only justify the

extreme sensitivities related to the way that we sample the model data, but also help us

quantify predictability estimates. These results further describe the attractor in the

low-order Lorenz model and provide useful information that has potential applications

to larger, more complicated time series.
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43.3. Finding Convergence as a Function of Time 1

Throughout this chapter, we have quantified convergent behavior in the I

histograms by calculating their difference values using data sets generated with a time
I

step of 0.05. Now we focus on the behavior of the histogram convergence as a function
I

of the time step value and the total time of record. By quantifying these behaviors, we

seek to determine whether using a larger time step is indeed most beneficial for finding

convergence as well as to express convergence as a function of time, not series length. I

I
4.3.3.1. Differences Based on Time Step Value

We begin this section by comparing the average mean absolute differences Davg

(4.4) for the two time step values: 0.05 and 0.005. In Figure 4.31, we present those

results. Whereas the larger time step curve shows a smooth, exponential-type decrease

to a minimum value by 480,000 points, the smaller time step curve shows a relatively

rugged, generally decreasing behavior with no discernible minimum, even by 980,000

points. This quantitative result agrees with the nonconvergence in histograms that we
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Figure 4.31: The average mean absolute difference values D
as a function of series length L (in thousands for
the two time step values. Note that convergence to a
definitive floor is not apparent in the smaller time
step (0.005) curve.
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saw earlier in Figure 4.1. Both sets of difference values are provided in Table 4.5. k

Because the smaller time step values continue to decrease, we believe that convergence

as we have defined it does exist, but with a much greater number of points. In the next

subsection, we seek this number. For now, suffice it to say that if reasonable

convergence does exist with a data series produced with a time step of 0.005, then we 7
believe that the required series length is quite large. If this length proves consistent with

previous hypotheses, then we expect that this value would be approximately 4,800,000 '1
points.

There is another observation that warrants further explanation. Comparing the .1

two sets of data in Table 4.5 more closely, we observe significantly large differences in

Davg values for each series interval. Upon comparing these values over all the intervals,

we conclude that when using the larger time step, we obtain the same degree of

accuracy with only 15 to 25 percent of the points than we would need if using the 1

smaller time step. This observation provides further evidence of a distinct

undersampling problem when using too fine a temporal resolution and reinforces the

conclusion that we made earlier concerning the benefits of sampling the model data at a
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Table 4.5: The average mean absolute difference values Davg as a function of the
series length Lser for both.values of time step (0.05 and 0.005). Note that,
unlike the distinct convergence to a difference floor value that is exhibited
when using the larger time step, there is no corresponding convergence of
the data to a minimum value when using the smaller time step (out to
980,000 points).

Lser Davg

0.05 0.005

30,000 0.0440 0.0927
80,000 0.0361 0.0657
130,000 0.0223 0.0683
180,000 0.0177 0.0509
230,000 0.0139 0.0574
280,000 0.0132 0.0522
330,000 0.0113 0.0464
380,000 0.0112 0.0348
430,000 0.0098 0.0331
480,000 0.0081 0.0338
530,000 0.0078 0.0332
580,000 0.0082 0.0329
630,000 0.0081 0.0300
680,000 0.0083 0.0309
730,000 0.0077 0.0262
780,000 0.0079 0.0217
830,000 0.0216
880,000 0.0209
930,000 0.0180
980,000 0.0182



132

coarser resolution.

We now make the same comparative calculations using Dab (4.5) for each of the

three initial conditions. In this section, since all three initial condtions show relatively

similar behavior, for brevity, we show only the results for the 0.01 percent initial

condition case at a sampling interval of 50,000 points. In the next subsection, we

comment further on the other two cases and the importance of including those results.

The difference values for this case are plotted in Figure 4.32 and given in Table 4.6.

Again, significant differences between the two time step curves exist and seem

somewhat consistent with previous results; the smaller time step yields larger difference

values and displays a much rougher behavior than that seen with the larger time step.

However, the separation between the two curves is much less dramatic than that seen in

the previous case (Figure 4.31). What first strikes us is the apparent convergence

displayed by the smaller time step data that was not seen before. Using the same

method that we employed in the previous section to find Dab, we obtain a value of

Dab= 0.0027 for the smaller time step (ts = 0.005). As a result, we are confident of

histogram convergence by 680,000 points at a Dab value that closely corresponds to that

of the larger time step (Dab = 0.0023). As above, we still find histogram convergence
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Figure 4.32: The osymptotic mean absolute difference values D.,
as a function of increasing series length comparison
(in thousands) for the 0.01% initial condition at a
sampling interval of 50,000 points. Unlike that seen for
D(,,, the D0 values generated with the smaller time
step (0.005) do exhibit convergence to a floor.
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Table 4.6: The asymptotic mean absolute difference values Dab as a function of
increasing histogram series length comparison (Ha and Hb) for both values
of time step (0.05 and 0.005) and the 0.01% initial condition. Note that,

unlike the nonconvergent behavior in Davg values exhibited when using the

smaller time step, their Dab values do satisfy the criteria for convergence,
although at a larger series interval than that exhibited when using the larger
time step value (680,000 vs. 480,000).

Histogram Series Length Dab

Ha Hb  0.05 0.005

30,000 80,000 0.0294 0.0736
80,000 130,000 0.0132 0.0186

130,000 180,000 0.0086 0.0159

180,000 230,000 0.0069 0.0118

230,000 280,000 0.0042 0.0141

280,000 330,000 0.0040 0.0170

330,000 380,000 0.0038 0.0115
380,000 430,000 0.0026 0.0095
430,000 480,000 0.0023 0.0076

480,000 530,000 0.0022 0.0053

530,000 580,000 0.0023 0.0092
580,000 630,000 0.0064

630,000 680,000 0.0026
680,000 730,000 0.0027

730,000 780,000 0.0023

780,000 830,000 0.0026
830,000 880,000 0.0023
880,000 930,000 0.0031

930,000 980,000 0.0032

Dab in range (430,000-580,000): 0.0023

Dab in range (630,000-980.000): 0.0027



135

with fewer points (480,000) when using the larger time step than when using the

smaller time step (680,000). However, it is troubling that the advantage in using the

larger time step in this case appears greatly reduced. This limited result even suggests,

at least for the smaller time step, that using a single initial condition run to identify

convergence might be superior to using comparisons of multiple initial

conditions--results inconsistent with those obtained when using the larger time step.

Given these inconsistencies, it seems that it is more important to quantify histogram

convergence as a function of total time of record.

4.3.3.2. Differences Based on Total Time

To provide an improved basis for comparison of the convergent histogram

behaviors for the two time step values, we compute the total elapsed dimensionless time

trot. To calculate this value, we simply use the time step value ts and the length of series

Lser via

ttot = ts * Lser . (4.6)
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Figure 4.33 displays the average difference values Davg between the three initial

conditions as functions of total time ttot for both time steps. -

Comparing these two curves now in terms of total time, we notice a dramatically

different relationship between them than we obtained when viewing them as a function

of series length. Both sets of difference values are given in Table 4.7. Consistent with

Figure 4.33 and (4.6), the larger time step curve exhibits convergence at ttot = 24,000.

However, unlike the nonconvergence that we found with the smaller time step value in

Figure 4.31, we now find a reasonable convergence to that value by ttot = 19,900. This

tto t value corresponds to a series length L r of 3,800,000 points and represents a value

approximately 20 percent smaller than the value that we previously thought necessary

to produce histogram convergence. An even more intriguing behavior is that, although

using the smaller time step yields a much higher difference value initially, we see that

its decrease is much more rapid than that for the larger time step--so much so that for

values of ttot z 1,900, the difference values for the smaller time step are less that those

for the larger time step, indicating that in fact the 0.005 data set is more accurately

representing the attractor than is the 0.05 data set.

Using the same procedures with the 0.01 percent initial condition curves seen in

Figure 4.32, we produce plots in Figure 4.34 of the difference values Dab as functions
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Figure 4.33: The average mean absolute difference values D, 9
as a function of total time ttt for the two time step
values. In terms of total time, the smaller time step
0.005) curve exhibits convergence to the floor sooner
19,900 than does that of the larger time step24,000.
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Table 4.7: The average mean absolute difference values Davg as a function of the

total time of record tro, for both values of time step (0.05 and 0.005). When

viewed in terms of total time instead of series length, the difference values

generated when using the smaller time step display convergence to a I
minimum value faster than does using the larger time step ( 19,900 vs.

24,000).

0.05 0.005

ttot Davg ttot Davg

1,500 0.0440 150 0.0927

4,000 0.0361 400 0.0657

6,500 0.0223 650 0.0683 !
9,000 0.0177 900 0.0509

11,500 0.0139 1,150 0.0574

14,000 0.0132 1,400 0.0522

16,500 0.0113 1,650 0.0464

19,000 0.0112 1,900 0.0348

21,500 0.0098 2,150 0.0331 "

24,000 0.0081 2,400 0.0338

26,500 0.0078 2,650 0.0332

29,000 0.0082 2,900 0.0329

31,500 0.0081 3,150 0.0300

34,000 0.0083 3,400 0.0309

36,500 0.0077 3,650 0.0262

39,000 0.0079 3,900 0.0217

4,150 0.0216
4,400 0.0209

4,650 0.0180

4,900 0.0182

9,900 0.0148
14,900 0.0113

17,400 0.0096

19,900 0.0079
22,400 0.0079

24,900 0.0081

27,400 0.0081
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of increasing total time comparison between histograms Ha and Hb; these values are

given in Table 4.8. Here, we observe an even greater disparity in convergent behavior

between the two time step curves than we saw in Figure 4.33. First, the smaller time

step curve shows an even greater rate of decrease in difference value; this value

becomes less than that of the larger time step by roughly a time value of 500. Second,

the smaller time step curve exhibits a pronounced convergence to an average minimum

difference value Dab = 0.0026 at a time of 3,400. Because a time of 24,000 in the 0.05

curve is required to obtain its value of Dab, we conclude that histogram convergence

occurs at a rate nearly seven times faster when using the smaller time step than that

obtained when using the larger time step.

This large disparity between the two time step values in the total times

necessary to obtain convergence profoundly contradicts the results that we obtained

when viewing convergence in terms of series length. However, this result is based on

the behavior of only one of the three initial conditions. To ensure that we are not basing

conclusions on a potentially anamolous case, we produce Figure 4.35 that shows a plot

of Dab as a function of increasing total time comparison for all three initial conditions;

the values are given in Table 4.9. Using the same method that we described earlier to
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Figure 4.34: The asymptotic mean absolute difference values Db
as a function of increasing time comparison for the two
time step values for the 0.01% initial condition. Note
that the smaller time step curve exhibits convergence to
the floor approximately seven times faster (3,400) than
does that of the larger time step curve (24,000).
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Table 4.8: The asymptotic mean absolute difference values Dab as a function of

increasing histogram time comparison for both values of time step (0.05
and 0.005) and the 0.01% initial condition. For this case, the difference
values generated with the smaller time step exhibit convergence to a

minimum nearly seven times faster than that produced with the larger time

step (3,400 vs. 24,000).

0.05 0.005

Histogram Total Time Dab Histogram Total Time Dab

Ha Hb Ha Hb

1,500 4,000 0.0294 150 400 0.0736
4,000 6,500 0.0132 400 650 0.0186

6,500 9,000 0.0086 650 900 0.0159

9,000 11,500 0.0069 900 1,150 0.0118

11,500 14,000 0.0042 1,150 1,400 0.0141

14,000 16,500 0.0040 1,400 1,650 0.0170

16,500 19,000 0.0038 1,650 1,900 0.0115

19,000 21,500 0.0026 1,900 2,150 0.0095

21,500 24,000 0.0023 2,150 2,400 0.0076

24,000 26,500 0.0022 2,400 2,650 0.0053

26,500 29,000 0.0023 2,650 2,900 0.0092
2,900 3,150 0.0064
3,150 3,400 0.0026

3,400 3,650 0.0023
3,650 3,900 0.0026

3,900 4,150 0.0023
4,150 4,400 0.0021
4,400 4,650 0.0031
4,650 4,900 0.0032

Dab in range (19,000-26,500): 0.0023

Da in range (3,150-4,900): 0,0027
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Figure 4.35: The asymptotic mean absolute difference values Db
as a function of increasing time comparison for the
smaller time step curves of all three initial conditions.
All three curves exhibit convergence to the floor at
nearly the same elapsed time.
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Table 4.9: The asymptotic mean absolute difference values Dab as a function of
increasing histogram time comparison for all three initial conditions and
generated with the smaller time step value (0.005). Within all three sets of
initial conditions, convergence to their minimum difference values range
from a total time of 3,400 for the 0.01% case to a time of 4,150 for the
1.0% and 0.10% cases.

Histogram Total Time Dab

Ha Hb 1.0% 0.10% 0.01%

150 400 0.0942 0.0836 0.0736
400 650 0.0154 0.0239 0.0186
650 900 0.0181 0.0238 0.0159
900 1,150 0.0182 0.0303 0.0118
1,150 1,400 0.0054 0.0068 0.0141
1,400 1,650 0.0075 0.0038 0.0170
1,650 1,900 0.0124 0.0064 0.0115
1,900 2,150 0.0045 0.0047 0.0095
2,150 2,400 0.0055 0.0101 0.0076
2,400 2,650 0.0052 0.0035 0.0053
2,650 2,900 0.0038 0.0037 0.0092
2.900 3,150 0.0058 0.0034 0.0064
3,150 3,400 0.0033 0.0035 0.0026
3,400 3,650 0.0055 0.0052 0.0027
3,650 3,900 0.0076 0.0026 0.0023
3,900 4,150 0.0019 0.0018 0.0026.
4,150 4,400 0.0026 0.0026 0.0023
4,400 4,650 0.0023 0.0023 0.0031
4,650 4,900 0.0027 0.0022 0.0032

Dab in range (3,900-4,900): 0.0024 0.0023

Dab in range (3,150-4,900): 0.0027
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find the value of Dab, we find Dab = 0.0024 and 0.0022 for the 1.0 and 0.10 percent

cases, respectively; the time values for both cases equal 4,150, a value quite close to

that for the 0.01 percent case. Assuming that this value (4,150) is a conservative

estimate for the dimensioness total time needed to find convergence in all three initial -7

conditions, we still find that convergence occurs five times faster using the smaller time 1
step value than that for the larger one. Thus, we now feel quite confident that a large

disparity in the total times necessary for obtaining convergent series does exist and is a

function of the time step that we use.

What is clear, based on these results, is that the expectation of the benefits of I

choosing a larger time step over that of a smaller value to produce optimum

convergence in the histograms as theorized in Section 4.2 was not necessarily correct. It

,a

seems now that choosing an optimum time step for sampling the attractor depends upon

the limitations under which we are placed. More specifically, when choosing a time

step value, there is a crucial tradeoff between the degree of accuracy that we require

and the number of points that we desire to use. If we want to find histogram

convergence to a high degree of accuracy, despite the large number of data points, then

we would choose a smaller time step; if we want to limit the length of the series, at the

expense of accuracy, then we would choose a larger time step. Using either of these two
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time steps eventually yields histogram convergence to within a small variability that is

intrinsic to the model.

From this argument, it seems that the optimum way to represent the attractor is

to use the smaller time step value and then to sample the model-generated series using a

certain frequency, say every tenth point. In doing so, we obtain the best of both

characteristics, achieving a high degree of accuracy even though using fewer points.

This conjecture, at least for the Lorenz model, certainly lends credibility to the use of

sampling strategies in order to find optimum subsets of the adequate data samples. We

expand on these ideas in the conclusion.

43.4. Relation to Minimum Circuits Around the Lorenz Attractor

Early in this chapter, we argued that sampling at a coarser temporal resolution

produces a better quantitative representation of the attractor data than does using a finer

resolution. This argument led us to conclude that it is more important to sample the

entire attractor more frequently than to sample separate leaves more accurately. Since

then, we have come to understand that choosing an optimum time step value is a
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function of the limitations with which we are most comfortable. In this section, we seek

to find the minimum number of circuits around the attractor that are necessary to define I
the histogram convergence that we have quantified as functions of both values of time

step.
I

We begin with the results that we obtained when using the larger time step (ts -
7

0.05). To calculate the minimum number of circuits required about the attractor, we

need to know two separate quantities. One is the total dimensionless time ttot that is

nekessary to produce convergence of the histograms to their minimum difference value. -

Taking the most conservative estimate of the values that we obtained using the larger

ti,.ie step, we choose a value of 24,000.

The other quantity, the average time tattr required to traverse once around the

attractor, involves some calculation. We find this by defining a reference point on the

attractor and then by determining the time t(b) at which the trajectory returns to within

srime minimum proximity 6 of that point. For simplicity, we define this reference point

tc be on the Z-axis (Z a 25). Using a reference point anywhere else on the attractor

would yield difficulties because there are two lobes about which the trajectories travel.

Besides, the dynamics of the Lorenz system is strongly tied to the trajectory behavior

near the Z-axis that is on the stable manifold (Nese 1987). Upon finding t(6), we can
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calculate this average time via

tattr = t(6) * ts  . (4.7)

Analysis of the time series reveals that t(b) is approximately 32; thus, the average time

tattr to traverse once around the attractor is approximately 1.6.

Having these two quantities, we can now calculate the minimum number Cmin

of circuits that are required to define convergence for the Lorenz system, given by

_trot

Cmin "tt . (4.8)tattr

Substitution of the above values for ttot and tattr yields a value for Cmin of 15,000. For a

time step value of 0.05, this number represents the minimum number of times that we

must sample completely around the attractor in order to be confident of convergence in

the histograms.

To find the value of Cmi n for the smaller time step case, we use the same

method. Although ts changes, the total time tattr needed to traverse once around the

attractor does not; that value of 1.6 is a relatively constant one. Recalling the large
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disparity in convergence times between Davg and Dab in the smaller time step case, we

should expect a large disparity in the values of Cmin as well. Using the time estimate of

4,150 that we obtained for Dab (Table 4.9), we use (4.8) to find Cmin - 2,600. We

obtain a more conservative estimate of Cmin when we use the value of ttot obtained -7

from Davg. With ttot, = 19,900 (Table 4.7), we use (4.8) to find Cmin - 12,400. As with

the results above using the larger time step value, Cmin represents the minimum number

of circuits required to capture histogram convergence.

Besides giving a nice quantitative relation between the Histogram Measure and

the structure of the Lorenz attractor itself, we believe that the value of Cmin has many

applications. The most interesting one is a possible link between histogram

convergence and the spatial resolution given by the time step of the attractor. Although

we do not address it further, the value of Cmin is obviously dependent upon other

factors such as changes in forcing value, integration method, and so on.

4.3.5. Rate of Decay of New Information Gain

Earlier in this chapter, we commented briefly on the exponential form of the

decrease in the mean absolute difference values to a minimum or floor as the series
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lengthens. We believe that by successfully quantifying this predictive behavior for the

Lorenz model, we might use these results as stepping stones eventually to quantify the

predictability characteristics of larger, more complicated time series, whether

model-generated or from observations. In this section, we obtain this quantification.

Because of their monotonic appearance, we look strictly at the behavior

exhibited by the larger time step ts = 0.05 curves. To accurately calculate this behavior,

we must first subtract the value of the floor at every data point; in effect, we must create

a new set of data having a zero floor. Once we have accomplished this, we must

determine what type of mathematical law this curve appears to follow. Given the nature

of the model with which we are working, we expect that all of the curves will satisfy

either of two types of laws: power or exponential.

To determine which law better describes the behavior, we use the new data set

that we obtain by subtracting the average difference floor and then determine best fit

lines for the result. If the data behave in some power law relation, then the best fit

would be given by a log-log display of the data; if we have an exponential relation, then

the best fit would be given by a log-linear display. Figure 4.36 shows a log-log view of

the new data set that was produced from Figure 4.23, in which we compared the

average difference values Davg for all three initial conditions in 50,000-point blocks.
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Figure 4.36: The log-log representation of D . as a function of

series length ",. The best fit line (solid) is not I
a reasonably good one and thus the curve does not
exhibit a power low relation.
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Figure 4.37 shows the same data set, only now using a log-linear representation of it.

Although this latter fit is not a perfect one, it certainly captures the typical behavior of

the difference values much better than does the log-log display. For histogram

convergence between the three initial conditions, then, the behavior of the difference

values Davg with total series length x is given by the exponential relation

0O.0073x
Davg(X) = 0.041 e"  + 0.008, (4.9)

in which x is expressed in thousands.

Armed with this knowledge, we wish to use the same approach to find the

relation for each of the initial conditions; we hope to find a similar relation to that in

(4.9). Since the behaviors have been shown to be quite similar between each of the

three initial conditions, for brevity we address only one. Although the result is not

shown, consistent with the Davg data, the power law again simply does not fit the data

very well. We recall that the series length at which we were assured of convergence

was a function of how we sampled the data. Using the same procedures as above to

obtain the new data sets, we produce Figures 4.38-4.40 that exhibit the best exponential

fit for the 0.01 percent initial condit, 7n data sampled at every 25,000, 50,000, and
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Figure 4.37: The log-linear representation of D ,, as a function
of series length L. The best fit line (solid) in
this case is much better than that for the log-log
display. Thus, the curve better follows an exponential
relation.
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Figure 4.38: The lnq-linear representation of Df as a function
of in, easing series length comparison for the 0.01%
initial condition and 25,000-point sampling interval.
Consistent with the D, results, this fit is a
reasorinbly good one.
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Figure 4.39: The log-linear representation of Dab as a function
of increasing series length comparison for the 0.01%
initial condition and 50,000-point sampling interval.
Note again a relatively good fit to the Gata.
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Figure 4.40: The log-linear representation of Dw as a function
of increasing series length comparison for the 0 01%
initial condition and 100,000-point sampling interval.
This fit is an extremely good one.
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100,000 points respectively. Again, we conclude that the exponential fits of the data are

relatively good ones. However, the values of the exponential decay rate are functions of

sample size. The expressions for each are given in Table 4.10a. These results are

somewhat disappointing, as we hoped to see a universal relation independent of both

the sample size and the initial condition.

What may prove more successful is to reexpress these relations in terms of time

instead of series length. We can convert the expressions for Davg and Dab into ones

involving time by recognizing that the series length x is simply the ratio of the

dimensionless time t and the time step ts . For each expression, then, we obtain the time

t such that

t = x * ts, (4.10)

When we apply this relation to the earlier expression for Davg(x) in (4.9), we obtain:

Davg(t) = 0.041 e"0"176 t +0.008, (4.11)

Applying the same relation (4.10) to the nine Dab expressions representing all

combinations of the three initial conditions and the three sampling intervals, we
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Table 4.10: The exponential expressions quantifying the rate of decay of new
information gain

(a) within the 0.01% initial condition as a function of sampling interval.
Note that in terms of series length x, the decay rate is largely
dependent on the size of the sample.

Sampling Interval Expression

25,000 Dab(x) = 0.024 e-0 "0 13x + 0.0023

50,000 Dab(x) = 0.026 e- 0 "0 10 x + 0.0023

100,000 Dab(x) = 0.028 e-O0Sx +0.0026

(b) for all three initial conditions and all three sampling intervals,
In terms of time t, the decay rate is relatively independent of
both the sampling interval and the initial condition that is used.

Sampling Interval Initial Condition Expression

25,000 0.01% Dab(t) = 0.024 e- 0 " 168t + 0.0023

50,000 0.01% Dab(t) = 0.026 e"0 .18 1t + 0.0023

100,000 0.01% Dab(t) = 0.028 e"0 "18 9 t + 0.0026

25,000 0.10% Dab(t) = 0.023 e 0 l 6 9 t+ 0.0025

50,000 0.10% Dab(t) = 0.020 e"O 158 t + 0.0022

100,000 ').10% Dab(t) = 0.023 e 0 16t + 0.0025

25,000 (.0% Dab(t) = 0.022 e"0 177t + 0.0025

50,000 1.0% Dab(t) = 0.023 e"0 "182t + 0.0022

100,000 1.0% Dab(t) = 0.021 e0,6 + 0.0025
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produce the expressions that are shown in Table 4.10b. We observe that all nine

expressions show relatively similar exponential decreases as functions of time. These

nine separate expressions averaged together satisfy the relation

Dab(t) = (0.024 ± 0.004) e -(0 "175 ± 0.017)t + (0.0024 ± 0.0002), (4.12)

Thus to within only a 10% variability, we have found an expression quantifying the rate

of decay of new information gain that is independent of both initial condition and

sample size.

The above method seems viable for quantifying the decay rate of information

gain for Dab. However, we believe that a better, more reliable estimate is obtained by

averaging all nine data sets together and then finding one bestfit to that data set. When

we do this, we obtain the relation

Dab(t) = 0.024 exp "0 .172t +0.0023, (4.13)

Comparing the expression for Davg (4.11) with the one for Dab (4.13) yields a

fascinating result. Although the values of their floors and intercepts differ, their values

of exponential decay rate of new information gain are the same to within only a 2%
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difference. This is exciting, as we have found a general expression that is not only

independent of the initial condition that we use and the way that we sample the

model-generated data, but also on whether we use a single or multiple initial condition

integration method.

One parameter that we have not taken into consideration is the time step value.

We rec'all that in the beginning of this section we justified the decision to use the larger

time step value because of its monotonic appearance. However, despite the greater

irregularities seen in the smaller time step (0.005) curves, we speculate that there may

well exist in them similar relations to those found in the larger time step curves,

although their predictability estimates may be more suspect, because we are fitting

exponential curves to data sets that are less well-behaved.

Having quantified the above behavior for the low-order Lorenz model, we

believe that similar predictability estimates are possible when applying these

procedures to longer time series. Quantifying this rate of decay in information gain to

within a small tolerance is an exciting prospect; these expressions may even represent

less expensive analogies to the Lyapunov exponents (Osledec 1968) or local divergence

rates (Nese 1989) that are widely used to quantify the stability properties of dynamical

systems.
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Based on numerous successes in quantifying adequate data samples through

histogram convergence, we feel quite confident in utilizing the simple, relatively

inexpensive Histogram Measure as a reference for the eventual development of

optimum sampling strategies. Although not attempting to do this here, we have

successfully addressed many of the sampling issues that must be understood before

determining such optimum strategies for a particular model. By doing so, we have laid

the groundwork for related studies using longer, more complicated time series that are

either model-generated or observed.
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CHAPTER 5

SUMMARY OF RESULTS AND RELATED CONCLUSIONS

In this study, because of the current arguments over what constitutes adequate

samples of chaotic time series upon which to quantify chaos measures, we have

determined objectively the amount of data necessary to achieve such samples. Before

accomplishing that, however, we distinguished the chaotic solutions from the transient,

or nonchaotic, solutions that are inherent in chaotic time series. This is a crucial

consideration, as transients contaminate the chaotic characteristics of any time series.

Because current conventional measures that are used to quantify chaotic time series are

quite expensive to calculate, we have developed a new, relatively inexpensive measure,

the Histogram Measure, that allows us to successfully work with large data sets. This

measure quantifies the structure of an attractor by giving the distribution of trajectory

distances from the phase space origin. We have also demonstrated the links between

this measure to that of the more conventional Correlation Dimension Measure
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(Grassberger and Procaccia 1983b) that is used to quantify chaotic time scries, and we

have successfully quantified a unique predictability estimate, that of loss of information

gain as functions of series length and elapsed time.

We have demonstrated remarkable success in using the simple, inexpensive

Histogram Measure to distinguish between the chaotic and nonchaotic portions of a

time series. We find that the duration of the transients can be determined by either

noting the interval at which the histogram structures appear to converge or more

objectively, by noting when the bin values of the histograms differ by less than a

specified tolerance after sufficient portions of data have been eliminated from the initial

part of the series. We also find that this transient duration is highly dependent upon the

value of the initial condition, but largely independent of sample size. For the three

initial conditions values with which we work, we are confident that transient solutions

have been eliminated once we have removed at least 15,000 points from the initial

portion of the series. Despite this success, we caution that the determination of

transients and their duration with these methods is series dependent, since the transients

in other chaotic time series may be more strongly masked.

Once we have eliminated definitively the nonchaotic poritons of these series, we

have successfully found adequate data sets of the Lorenz (1963) Rayleigh-B~nard
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convection model of chaos. Quantifying these required data sets, however, is not

straightforward, as the model data are extremely sensitive to the manner in which they

are sampled, as they are functions of sample size, initial condition, and time step. The

most notable of these sensitivities is in the time step used to generate the data set. When

viewing histogram convergence as a function of series length, we find that sampling the

data with the larger time step value (0.05) produces convergence with fewer points than

does sampling at the smaller time step (0.005). In effect, sampling every point in the

0.05 case is most likely analogous to sampling at every tenth point in the 0.005 case,

thereby giving validity to the notion of optimal sampling strategies. In terms of total

time, however, we have shown that the data sets produced with the smaller time step

converge five to seven times faster than do the larger time step data sets, indicating that

sampling with a smaller time step yields a better, more accurate representation of the

attractor. Thus, there are benefits and tradeoffs related to the way that we sample; the

choice of time step with which to sample the attractor can be tailored to the specific

needs and limitations of the user.

The existence of relatively stable minimum differences in the histograms, both

among and within initial conditions, suggests that there is a variability intrinsic to the

Lorenz model upon which we can not improve significantly beyond a certain time or
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number of data points. This first suggests that the best that we can do is to quantify

adequate data sets to within a reasonable tolerance; once at that tolerance value, using

larger data sets does not provide better estimates. This also suggests that a definitive

cost/benefit analysis is possible--in effect, the degree of error that we are willing to

tolerate when making predictability estimates from chaotic time series is balanced

against the expense of generating enormous data sets. For example, we recall in Section

4.3.1. that the mean average absolute difference value Davg when displayed as a

function of series length (Figure 4.23) exhibits a sharply decreasing, exponential

behavior to a stable floor at a value of approximately 0.008 by 480,000 points.

However, by using less than one half the number of points (230,000), we have only

increased the error to approximately 0.014. This suggests an important tradeoff between

obtaining the maximum possible accuracy in defining convergence and the relative cost

that we incur by doing so.

Another intriguing result of this study demonstrates the similarities in sampling

between the Histogram Measure and the more conventional Correlation Dimension

Measure v that is used commonly to quantify estimates of chaotic time series. After

conducting numerous tests in order to find reasonable convergence in the correlation

dimension, we determine that choosing a larger time step value is the key issue.
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Applying this knowledge to finding convergence with the Histogram Measure, we

observe the same dramatic improvements in the degree of convergence exhibited by the

data series. Even more remarkably, we note that just as the optimum correlation

dimension plots (Figures 4.14-4.16) exhibit a small variability about the value 2.06 of v

that is usually stated for the Lorenz model, the Histogram Measure flags unique

intrinsic variabilities also with values that are dependent on the manner in which the

data are sampled. These are exciting results, as we have developed a measure possibly

comparable to the standard Correlation Dimension Measure that does not exhibit

similar severe, cost-limiting constraints on the amount of data that can be sampled.

However, the full extent of the relation between the two measures remains

inconclusive. Preliminary tests show that reducing the bin width within the Histogram

Measure to the optimum one (0.01) used in the Correlation Dimension Measure yields a

significantly noisier histogram structure with a relatively large variability about the

mean. In addition, attempts to quantify the fractal dimension of the histogram structure

itself have not yielded any significant success. Further work is necessary in these areas

to determine the full extent of the benefits that the Histogram Measure provides over

that of the more standard fractal dimension measures.

Quantifying the rate of decay of information gain of the data have also yielded
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fascinating results. We have found that, given a particular time step with which to

sample the data, there is a time-dependent, exponential decrease of information to be

gained that is relatively independent of not only the initial condition and sample size,

but also of the type of series comparison used (single or multiple initial condition). This

result certainly verifies that the use of Monte Carlo techniques, which involve

comparison of the divergence rates between solutions having different, randomly

chosen initial conditions, have merit for estimating the predictability characteristics of

chaotic time series. More importantly, this result suggests that we can optimize the

choice of time step with which to sample the data; the larger the exponential decrease to

a reasonable tolerance, the faster the series will converge to an adequate sample. This

predictability estimate may possibly provide an inexpensive analog to the widely used

Lyapunov exponents (Osledec 1968) or local divergence rates (Nese 1989).

Having utilized the simple, inexpensive Histogram Measure to successfully

obtain adequate data sets that are sampled at every point, we theorize that optimal

subsets of these data may be possible that optimize chaos estimates with far fewer

points, at least to within suitably small tolerances. This reasoning stems from our

results in Chapter 4 from which we conclude that the data sets that exhibit greater

degrees of convergence and that are generated by using a larger time step (0.05) may
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indeed be analogous to data sets produced using every tenth point having a time step of

0.005. Work is currently in progress, using the Histogram Measure and other statistical

methods, to begin quantifying these subsets of the data and their resulting reliabilities in

quantifying chaos estimates. If these sampling strategies prove successful for yielding

adequate data sets generated with a low-order model, then we have reason to believe

that similar applications can be made to chaotic time series that are longer, more

complicated, and more operational in nature.
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