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MENTAL WORKLOAD ASSESSMENT IN THE COCKPIT:
FEASIBILITY OF USING ELECTROPHYSIOLOGICAL MEASUREMENTS

PHASE I FINAL REPORT

I. PERSONNEL

Project Period. 90SEPT--91FEB
Alan Gevins, Principal Investigator, 58 hours
Mark Filidei, Research Associate, 477 hours
Tom Laidig, Programmer, 406 hours
Harrison Leong, Signal Processing Engineer, 220 hours
James Johnston, Biophysicist. 214 hours

(Hours are direct costs to the project. Phase II proposal preparation is an indirect cost.)

i. IDENTIFICATION AND SIGNIFICANCE OF THE PROBLEM

Limitations in people's ability to process and respond to information have become a limiting factor in
advanced military aircraft systems. Accordingly, the USAF OSR has been sponsoring research on
measuring mental workload as a prerequisite to developing cockpit systems which take the pilot's men-
tal status into account in order to optimize overall system performance (Gomer et al., 1979; Wickens,
1979; O'Donnell and Eggemeier, 1988).

The sources and types of information demanding a pilot's attention have increased greatly over the last
30 years (Sexton, 1988). Managing this information intelligently has become crucial in preventing
degradation of pilot performance due to excessive mental workload. At the other end of the spectrum,
low mental workload during long periods of routine or automated flight is also a problem (Nagel, 1988;
Wiener, 1988). This suggests that man-machine system performance could be improved by monitoring
a pilot's mental workload and increasing or decreasing task demands to maintain optimum workload
levels. Advances in cockpit automation and information display technology have provided ways to
accomplish this, but these capabilities cannot be fully exploited for lack of a suitable measure of mental
workload. Hence, research on mental workload measurement has become an important topic for human
factors engineers, psychologists, and lately, cognitive neuroscientists.

Both theoretical and practical considerations have made it difficult to devise mental workload measures
suitable for use in the cockpit. A task's mental load depends on properties of the task, the mental stra-
tegy used to perform it, and the capacities of the neural processes underlying perception, thought and
decision, and motor control. The mental resources required to execute a task can change in importance
and kind as mental strategies change with experience (Natani and Gomer, 1981). These resources can
have have nonlinear interactions as well (Gevins, 1989b; Freeman and Skarda, 1985; Freeman, 1983).
Hence, characterizing how mental resources are used and the relationship to overall mental load is, even
conceptually, a difficult problem. Practical measures for assessing mental load in the cockpit have the
added problem of being sensitive to irrelevant factors. For example, measurements based on the elec-
troencephalogram (EEG) are sensitive to head, jaw, limb and other movements that may or may not be
relevant to the mental load of the task at hand.

In the laboratory, much progress has been made in quantifying mental workload (for reviews, see Boff
et al., 1986; Boff and Lincoln, 1988). Many different methods of measuring mental workload have
been explored (see Appendix B), including: subjective estimates; direct task performance measures;
secondary task performance; speech characteristics; and physiological measures such as pupil response,
evoked potentials (primarily P300), electrocardiograms (EKGs), electroencephalograms, skin conduc-
tance, eye movements and blinks, and respiration. Most of the methods are not suitable for the active
cockpit and other field situations in which near real-time assessment is needed and high load episodes
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are frequent and unpredictable. The best candidates seem to be electrophysiological measurements,
specifically continuous EEG, eye blinks and movements, scalp muscle potentials, heart rate, and respira-
tion. Unlike other candidate measures, these are continuously available, do not restrict or alter task
structure, and do not introduce additional workload. The measures are complementary; some are rela-
tively specific and some are non-specific with regard to particular mental resources (Andreassi, 1989).
Thus use of several types of measure may provide an ability to index mental workload in a wide variety
of situations. In addition, technology for measuring these signals can be unobtrusively integrated into
the active cockpit environment as an integral part of a flight suit and helmet (Albery and Van Patten,
1991; Lewis et al., 1988; Cammarota, 1990, 1991).

Though perennially promising, a review of the psychophysiological workload literature reveals that
much research is needed before practical metrics can be developed. In most studies reviewed in
Appendix B, conceptual problems or practical considerations limit the generalizability of indices found.
For example, in the case of EEGs, it is particularly easy to be deluded into thinking that one is measur-
ing varying levels of mental workload, when one in fact is measuring cortical signals associated with
varying amounts of limb movements. Since it is well known that frontal and central EEG low frequency
power increases with increased motor response activity (Gevins and Schaffer, 1980), power in these
bands can appear to index mental workload in tasks in situations in which mental workload levels also
differ in amount of hand movements, eg. easy and hard levels of many video games. Such an index
would not generalize to tasks where increased mental workload was not associated with increased limb
movements and, at worst, could be fooled by movements that are unrelated to task performance. In
addition, an index that depended on EEG low frequency activity would not work in practice since head
and eye movement artifacts are strong in this band; in an actual or simulated flight situation, these
movements are prodigious. For these reasons, in our Phase I feasibility study, low frequency EEG
activity from frontal and fronto-central scalp locations were excluded from consideration.

Although laboratory studies of workload are important prerequisites to developing a mental workload
index, we believe that extension to more realistic tasks is a necessary step which has not received ade-
quate attention. Our intent is to remedy this with a three-pronged approach consisting of developing
improved data acquisition technology, developing effective automatic artifact processing techniques, and
developing methods to construct and apply mental workload indices based on continuous electrophysio-
logical signals. The research discussed here is concerned with the third topic.

Current methods to obtain electrophysiological recordings require substantial preparation of the subject
and, hence, are impractical for routine use. With funding from USAFSAM, we are developing an ele:-
trophysiological recording system built into a flight helmet that requires no preparation of the scalp.
The system is currently being tested and refined.

Artifacts from head, body, limb, eye, and other motor activities often hide useful components of electro-
physiological signals. For example, the spectral characteristics of these artifacts can overlap those of
cognitive-related EEG components. Consequently, considering the level of physical activity in the cock-
pit, especially during periods in which mental workload assessment would be most useful, developing
automatic techniques to effectively dctcct and, when possible, correct artifacts is crucial to constructing
a practical system.

Methods to construct workload indices constitute the third component of our approach. The methods
would need to handle the signals output by our in-flight recording system after they have been classified
as clean by the automatic artifact proccssing system. Here we describe the initial feasibility test to
discriminate two mental workload levels using neural network pattern recognition methods. Ile
significance of the work is that most prior workload studies have measured a single variable derived
from a single physiological measurement, and have applied standard linear statistical tests (typically
Analysis of Variance) to test for significant differences across mental workload levels. Our results sug-
gest that linear statistical methods are suboptimal for this problem. We observed that combining
several types of physiological measurements, possibly using several variables derived from each,
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substantially enhanced the ability to discriminate mental workload levels. The multivariate approach is
in accordance with the view that mental workload is differentially expressed by many physiological
subsystems spanning both the central and autonomic nervous systems. Another important benefit of
using a combination of measures is reliability: Signals from one modality may be temporarily unus-
able due to artifact while another modality remains clean; e.g., jaw clenching may contaminate EEGs,
but eye movement measures would be unaffected.

III. OBJECTIVE

Identify regional EEG features, scalp muscle activity features, eye blink features, and heart rate and
heart rate variability features that, in combination, are best at distinguishing between the performance of
two workload levels of a laboratory visuomotor memory task. Constrain the analysis to signal features
and signal processing methods that would potentially be practical to use in real-time assessment of men-
tal workload of aircraft fighter pilots in action.

IV. STATUS OF RESEARCH EFFORT

A previous experiment on sustained mental work (Gevins et al., 1988a, 1990. see Appendix C) gave us
the opportunity to analyze EEG, EKG, and eye blink data that were recorded while USAF fighter test
pilots performed two laboratory tasks that differed only in the amount of mental effort required.

1. Description of the Experiment

We analyzed data recorded from four right-handed, male USAF fighter test pilots. The pilots practiced
a brief battery of tasks, including a visuomotor memory task at two difficulty levels, for about six
hours, until the learning curves for response time and error stabilized. Subjects began at about 13:30
the following day, and performed the task battery during the ensuing 10 to 14 hours. The session con-
sisted of a 5-8 hour work period, a brief dinner break, then another 5-7 hour work period which ended
when t'ie subject was too exhausted to continue. We analyzed visuomotor-memory task data collected
between 13:30 and 20:30, before subjects showed subjective, behavioral or neural signs of fatigue.

1.1. The Visuomotor-Memory Task

The less difficult level of mental workload, called the zero-back task, required pilots to respond to a
visually presented numeric digit with a precise finger pressure on an isometric pressure transducer in
proportion to the numeric value of the stimulus. No response was to be made when the value of the
stimulus was zero, which occurred in roughly 20% of the trials, randomly distributed. The more
difficult level of mental workload, called the two-back task, required a response with a finger pressure
proportional to a visual stimulus that had appeared two trials back. No response was to be made when
the current stimulus number was the same as the two-back number, which occurred in roughly 20% of
the trials, randomly distributed. For example, if the stimulus sequence were 9, 7, 6, 3. 6 they would
need to repond with finger pressure .9 kg to the first 6, .7 kg to the 3, and would not respond to the
second 6. Each trial consisted of a cue, which consisted of the disappearance of an X centered on the
video screen, a 100 msec numeric stimulus which appeared 750 msec following the cue, a response, and
one second after the response, feedback consisting of a two digit number characterizing the accuracy of
the response. Pilots were instructed to try to only blink during the inter-trial interval when a dot was
on the screen.
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1.1.1. Relationship to Mental Workload

Note that these two tasks had exactly the same stimulus characteristics and required exactly the same
type of responses, namely an isometric finger pressure response with minimal overt movement. The
tasks thus differed only in the level of mental workload. In the zero-back condition, pilots simply
needed to produce a graded pressure after evaluating the stimulus. The two-back condition was more
complex: pilots had to remember the two previous numbers in the presence of numeric distractors (the
feedback stimuli), evaluate the current stimulus to determine if a response was actually required, and
produce the graded pressure response when required.

1.2. Physiological Measurements

The following signals were recorded. EEG from 27 electrodes referenced to the right mastoid, vertical
(VEOG) and horizontal (HEOG) eye movements, EMG activity of the right flexor digitorurn muscles,
EKG, respiration, and EEG activity at the left mastoid. Signals were digitized beginning with the get-
ready cue and continued through 1.5 seconds following feedback stimuli. All signals were amplified by
a Bioelectric Systems Model AS-64P amplifier with 0.016 to 50 Hz passband and digitized to 11 bits at
128 Hz. The reference for EEG signals was converted to digitally linked mastoids.

2. Analysis

The main goal of the analysis was to find features based on electrophysiological signals that would
accurately distinguish 0-back trials from 2-back trials. Two subgoals guided our choices in this
analysis: 1) to simulate signal analysis appropriate to workload measures which could be made in-flight,
and 2) to determine the usefulness of multimodality signals to quantify mental workload.

We achieved the first subgoal by training and testing pattern classifiers with overlapped sets of trials.
This simulated using a sliding window of data to obtain a continuous estimate of workload where,
within this window, portions of the signal would not be used because of contamination. In addition, we
did not consider EEG signal features below 4 Hz since, in the cockpit, highpass filters with approxi-
mately a 4 Hz cut-off would be required to reduce or eliminate ubiquitous head and body movement
artifacts. We achieved the second subgoal by investigating the classification power of EEG, EMG, and
EKG based features alone and in combination. Eye movement features were not used because there was
insufficient data, resulting from the instruction to subjects to blink only during inter-trial intervals.

2.1. Overview

The Phase I analysis consisteu of removing trials with contaminated data, making separate training and
testing data sets, choosing signal features using prior knowledge about the problem, computing feature
values on the training data, examining the distributions of these values to choose a set of candidate
features for classifier-directed feature selection and classification analysis, performing these analyses for
several candidate feature sets, and validating classification performance using an independent subset of
data. In accord with our belief that a viable workload measure will need to be adjusted to each person,
the analyses were done independently for each subject.

2.2. Artifact Processing

The EEG data were reviewed and edited for gross head and body movement artifacts, excessive muscle
contamination, eye movement and blinks, artifacts due to poor electrode contact, and dead or saturated
channels. EKG signals were contaminated with EMG bursts and varying degrees of movement. EKG
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dat was reviewed and marked for contaminants during the extraction of interbeat intervals (IBIs), the
interval between successive R-waves. Trials with less than 2 IBIs or with incorrect R-wave detections
were deleted.

2.3. Signal Features

2.3.1. EEG

Based on past work (Gevins, 1979abc, and Appendix B), we searched for spectral bands for which
power differed between the two workload levels. To do this, power spectra were computed for each
trial windowed with a 25% cosine taper. Each trial had roughly 3-4 seconds of data. We examined
average spectra for 16 channels of EEG (see Figures 1 through 4 in Appendix A).

After reviewing these plots, we choose to use fairly standard EEG bands: theta (4 to 7 Hz), alpha (8 to
13 Hz) and betal (14 to 25 Hz). Our previous work suggested that both alpha and beta band power
decrease with increasing workload, while theta band power increases (Gevins et al, 1979abc). Thus, not
finding anything in the spectral plots to indicate otherwise, we chose these standard spectral power
bands for the EEG feature domain. Hanning-windowed FIR filters with 0.5 second impulse response
length (6 dB down at the edge frequencies; 17.8 db/octave rolloff) were constructed and applied to each
trial.

2.3.2. EKG

Two features were extracted from the EKG data: heart rate (HR) based on IBIs and heart rate variation
(HRV) based on the root mean square of successive differences between successive IBIs (Heslegrave, et
al., 1979). Because no data were collected between trials, we could only estimate HR and HRV within
trials; typically, estimates were based on 3 to 4 IBIs. To measure IBI, our program detected R-waves
by using a weighted average with a 3-5 second time constant for an adaptive baseline offset, and an
adaptive threshold based on a slower average of already detected R-peaks. Timing constraints were
used to ignore peaks too close together, or to ignore IBIs that were too long. Moderate baseline varia-
tion within a trial and moderate EMG bursts were handled well by the detector.

2.3.3. EMG

Scalp EMG features were generated from a 25-55 Hz, Hanning-windowed FIR band-pass filter with 0.5
second impulse length, applied to lateral and frontal peripheral EEG channels.

2.3.4. EOG

We examined waveform features of vertical eye signals (VEO) following recent work on eye blinks and
workload (Morris, 1984ab, 1985; Skelly, et al., 1987; Wilson, et al., 1987). We could not examine eye
blink rate measures (e.g., Stern and Skelly, 1984) since our data were not continuously recorded.
Features included peak amplitude, total blink duration (defined as peak width at 50% peak amplitude),
area (computed as peak amplitude times duration), aspect ratio (the ratio of peak amplitude over total
duration), and asymmetry (trailing edge duration over leading edge duration). To compute these
features, VEO data were filtered through a 15-Hz, Hamming-windowed, FIR lowpass filter with an
impulse response length of 0.0625 sec. After filtering, the feature detector located the peak signal level
within each trial, and labeled that point as a blink candidate. All timepoints where the signal magni-
tude was less than 5% of the peak level were considered to be part of the baseline, and a linear least-
squares fit was performed on these points to estimate baseline offset and drift (trend). The feature
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detector subtracted this estimate, recalculated which points met the 5% criterion, and iterated until no
significant change occurred. The detector then computed the width of the blink by finding the 50%
points on the leading and trailing edges of the blink. With the peak point, these points defined the total
duration of the blink, and the duration of the leading and trailing edges.

Following these computations, we found that there were an insufficient number of events for
classification analysis; we therefore dropped these features from further consideration.

2.3.S. Windowed Features

All raw feature values were converted to windowed features by computing means and variances over
successive windows of n consecutive trials. Windows overlapped by n-1 trials. This high degree of
overlap corresponds to an updated workload measurement roughly every 3-4 seconds with a time reso-
lution of roughly 3n to 4n seconds.

We were careful to separate trials into training and test sets before applying the windowing operation.
Hence, classifiers were guaranteed to be tested on data independent of that used to construct them.
Classification results could have been biased because data samples were highly correlated due to the
high degree of overlap. So, as a further precaution, we tested classifiers with windowed features corn-
puled with successive non-overlapped windows; this was done only when n was sufficiently small to
provide a reasonable number of testing samples.

2.4. Selecting Features for Neural Network Classification Analysis

Our general approach was to compute a one-dimensional classification error probability for each candi-
date mean and variance feature and select those features with low error probabilities, taking care to
select a group of features that had a good representation of electrode locations and frequency bands and
excluding features that might be overly prone to artifact (e.g., frontal theta from tiny eye movements).
Error probabilities were estimated by computing z-scores across workload conditions, estimating the dis-
tributions of these values, and finding a threshold for which classification based on this threshold would
result in minimal errors. Figure 5 shows an example of these values across the EEG channels studied.

We divided the pattern recognition study into two parts differing according to the features used: 1) EEG
measures unconfounded by non-cognitive processes (e.g., neural control of movement and muscle
activity), the "clean neurocognitive signal" (CNS) study, and 2) EEG measures mixed with scalp EMG,
the "mixed measures" (MM) study. For the CNS study, we excluded beta-band features from peripheral
channels, which are likely to have EMG contamination; frontal and central theta-band features, which
are likely to have significant motor control components; and the EMG band (25-55 Hz). For the MM
study, we relaxed these constraints. It turned out that we could not include EKG features in the MM
study for lack of sufficient trials. (We were surprised to find that the intersection between trials with
non-contaminated EEG and trials for which EKG IBIs could be estimated was so small for each sub-
jecL)

For one subject, in the CNS study, Principle Components Analysis (PCA) had to be performed to find
features with good classification performance. PCA features were examined exactly as non-transformed
features were examined. In performing PCA, it was possible to perform some feature selection: we
examined the weights of the original features in the PC's which had low error probabilities. Those that
had little influence in this subset of PC's were excluded and PCA was performed on the remaining
features.
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2.S. Neural Network Classification

We used a pattem classification algorithm that., from a set of candidate variables, automatically gen-
erates a two-layered, feed-forward neural network; trains and tests the network; and identifies small sub-
sets of variables that produce the best classification (Gevins, 1980; Gevins and Morgan, 1986, 1988;
Viglione, 1970; Joseph, 1961). In brief, the Joseph-Viglione algorithm chooses small, unique combina-
tions of candidate variables with which to construct candidate neural units to use in the first layer, the
"input" layer, of the network. Discriminant analysis is used to determine characteristics of the candi-
date units. Initially, the candidate unit with the best classification performance is selected and con-
nected to the single output unit of the network. The connection weight to the output unit and its thres-
hold are adjusted iteratively to minimize classification error. The algorithm continues to add "input"
layer neural units one at a time until a pre-specified limit is reached or an addition fails to significantly
improve classification accuracy. At each iteration, the algorithm picks the candidate neural unit that
maximally improves classification accuracy. This algorithm was given 10 to 20 candidate variables and
found subsets of 2 to 4 variables that gave high classification performance.

3. Results

3.1. EKG

Table I (all tables appear in Appendix A) reports univariate classification accuracy, 100(I - error proba-
bility), for data processed by a 20-trial window. Mean HR. variance of HR, and mean of HRV are
shown. We included all trials for which IBI could be estimated irrespective of the cleanliness of EEG.
EKG data was not recorded for subject two. Mean classification performance across EKG derived
features for the other three subjects were 63%, 72%, and 70%. The results suggest that the EKG
features were not very sensitive indices of mental workload for our laboratory tasks. EKG features may
be more sensitive in the cockpit environment where autonomic arousal varies widely.

3.2. Clean Neurocognitive Signal (CNS) Study

High classification results were achieved with a 20-trial window length which translates to roughly 80
second resolution. Results are shown in Table 2. We report test set performance for the simplest neural
network that achieved at least 90% classification accuracy in training. Test accuracies for the four sub-
jects were 97%, 100%, 100%, and 92%. The most important features for classification were different
for each subject. Temporal theta and/or alpha activity were highly important features for three of the
subjects. Occipital theta, frontal alpha, and central beta activity were each highly important for at least
one of the subjects. For subject four, principal components were used as input variables to the neural
network algorithm. The relative feature weightings reported for this subject are the effective weightings
after accounting for the relative importance of cach feature in each principal component used and the
relative importance of each principal componcnt in the network classifier.

3.3. Mixed Measures Study

Good classification results were achieved with a 5-trial window which translates to roughly 20 secoid
resolution (Table 3). We report test set performance for the simplest neural network that achieved at
least 90% classification accuracy in training. Test accuracies for the four subjects were 95%, 100%,
99%, and 94%. Test accuracies achieved for test set data which had been windowed with non-
overlapped, 5-trial windows were 92%, 94%, 100%, and 94%. There was insufficient data to determine
whether or not there was a significant difference between the two sets of accuracies but they appear to
be comparable. Frontal and occipital EMG activity was highly important for three of the subjects. For
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subject two, temporal and frontal alpha activity were still the most important features despite the hgher
time resolution of this study, however, we note that high classification accuracy could not be achieved
at this time resolution it scalp EMG was excluded. We are not aware of any prior publications report-
ing the sensitivity of scalp EMG to mental workload.

4. Discussion

In this small-scale experiment, we determined the feasibility of distinguishing between two levels of
mental workload of a laboratory task using subject-specific measures of ongoing EEG and scalp muscle
activity (EMG). Since stimulus and response properties were exactly the same between workload levels,
and since we did not use measures which are particularly sensitive to head, body and eye movement
artifacts, there is a reasonable inference that the physiological measures actually reflect mental work-
load.

The good results we achieved in both the clean neurophysiological signal (CNS) and mixed measures
(MM) studies support the view that mental workload can be indexed in several ways. Which way
would be best depends on many factors including the spectral regions in which clean signal would be
available, the task contexts in which a mental workload measure would be desired, and the generaliza-
bility and sensitivity of the index within these contexts. Our experimental results illustrate one of the
trade-offs that would need to be considered. The CNS study was conducted with the thought that an
index which depended only on signals that were likely to have a direct relationship with a spectrum of
higher cognitive brain functions would be more likely to generalize across tasks since it would not
depend on idiosyncratic perceptual and motor demands of a task. Clearly, the trade-off was that time
resolution was fourfold less than that achievable by including scalp muscle potential (EMG) measure-
inents in the index. The best practical solution may be a combination of indices, each optimal in a
different situation, possibly a requirement if time resolution is to be improved while maintaining sensi-
tivity and generalizability.

Although scalp EMG was found to be an important indicator of mental workload for all subjects, it was
also apparent that the finer details of index structure were highly specific to each subject. This is con-
sistent with the view that mental workload consists of multiple effects over a cross section of neural
subsystems, each having a different electrophysiological representation. The exact representation
depended on each subject's own functional neuroanatomy. In addition, the mental effort required to
perform a task depended on each subject's past experience, abilities, and present model of the task.
The conclusion that can be drawn is that it is possible to find common factors of mental workload but
the particular pattern of expression of mental workload through these factors can differ considerably
among individuals. To minimize the effects of these differences on index sensitivity and reliability, any
index of mental workload must be capable of being calibrated to an individual.

Results of our MM study are limited to EEG and EMG because the original experiment whose data we
analyzed here was not designed to make multi-modal measurements of mental workload. Discontinuity
in EKG and respiration signal recordings between trials strongly compromised our ability to adequately
estimate EKG features; pilots were instructed to blink between trials when data was not recorded; and
task stimuli were small and centrally displayed to minimize eye movements. Our Phase I research will
allow us to investigate this possibility by using continuously recorded electrophysiological signals and
tasks requiring a wider variety of mental and physical responses.

The most important extension of these results will be to test the methods on other tasks. The tasks used
here tested differential loading on working memory; hence, generalization to other mental resources
remains unknown. The repetitive nature of our task protocol may also limit generalizability. Since
pilots performed very similar mental tasks during each trial, computing means of the spectral features
across trials could improve the signal to noise ratio and bring out components of the signals that
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happened to be topographically stable across trials. In actual or simulated flight situations, these
benefits would not be realized since, in general, there would be a continuously changing variety of men-
tal processes. Hence, the discriminations we achieved may be based on unrealistically "clean" signals
and topographical differences that are peculiar to the tasks we chose. On the other hand, the electro-
physiological signals used in the CNS study are considered general measures of arousal and concentra-
tion and, thus, would have minimal dependence on the particular mental resources and structural details
of a task. Also considering that we excluded the possibility of dependence on idiosyncratic perceptual
and motor components of the tasks by design, it seems plausible that the indices we found in the CNS
study may be truly valid across tasks.

Regardless, in our Phase II research, generalization will be tested directly by using several distinct fami-
lies of tasks, each of which demands a different mix of cognitive resources, and an appropriate task
presentation protocol to sidestep the pitfalls we have noted. Using families of tasks will allow us to
develop methods to index more than two levels of mental workload. Candidate indices will be tested
for their ability to interpolate or extrapolate levels of mental workload other than those used to derive
them. This must be done in parallel with analyzing data collected in flight and in moving base flight
simulators to identify practical constraints that must be considered so that indices are robust against the
physical and psychological extremes of the cockpit.
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Figures I to 4: Average power spectra of EEG data for the low (0 back -- thin line) and high
(2-back -- thick line) mental workload conditions from each subject for all 16 channels exam-
ined. Signals of each trial were windowed with a 25% cosine taper before taking the FF1.
Spectra averaged over all trials are shown. EEG channel names are shown above each plot.
For all subjects but one, one or more channels exhibit depressed alpha activity (around 10 Hz)
and increased beta and scalp EMG activity (above 13 Hz) with increased workload. The
exception is subject 4 who shows decreased beta and scalp EMG activity with higher workload.
These plots helped determine spectral features used in the pattern recognition analysis.
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Subject 3, means from 5 trial windows.
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Figure S: One-dimensional error probability of subject 3 for distinguishing zero-
back from two-back conditions for the four frequency bands used. The single
best discriminator was left occipital (AOI) EMG activity which correctly
distinguished the workload conditions about 95% of the time (error probability
0.05). From this graph, we selected channels and frequency bands with error
probability below 0.3 for the MM study and 0.35 for the CNS study for further
investigation using neural networks. Some channels and frequency bands picked
did not correspond to minima in error probability but were picked to have
adequate representation across scalp locations and frequency bands.
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Mental Workload Classification
Accuracy Using Heart Rate

tHR mean HRdnce HRV mean

1 58% 71% 61%

3 76% 62% 77%

4 69% 69% 72%

Table 1: Results of classifying high an low mental workload conditions using
univariate heart rate measures. HRV = heart rate variance. (EKGs were not
recorded for subject 2.)
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Mental Workload Classification Accuracy
Using Clean Neurocognitive Signals

Test set
classification Most important Relative

Subject accuracy features feature weights

1 97% T5-theta I1

A02-theta 354

2 100% T3-alpha 1

AFI-alpha .73

3 100% AOl-theta 1

4 92% C3-beta 1
T4-theta .86

A02-alpha-var .53
ACZ-beta .45
T4-alpha .38
P3-beta .37
F8-alpha .32

T4-theta-var .29

Table 2: Neural network classification results with sets of EEG features which are
minimally sensitive to non-cognitive processes. Variances are labeled "var". For
subject 4, principal components were used as inputs to the neural networks.
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Mental Workload Classification Accuracy
Using Mixed Measure Signals

Test set
classiication Most important Relative feature

Subject accuracy features weights

1 95% AQI-cing I
A02-beta I
P3-emng .54

2 100% T3-alpha 1
Fl7-alpha .31
F78-emng .29

3 99% F8-emng 1
AOI-emg .80
API-beta .42

4 94% A02-emig 1
A172-beta .67
T5-emng .53

Table 3: Neural network classification results using both EEG and scalp EMG features.
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1. Subjective Estimates of Workload

This is the most common form of workload estimation. The measure is surprisingly consistent, but
accuracy has been questioned (Gopher and Donchin, 1986; Kantowitz and Casper, 1988; Metcalfe,
1988). In many instances, subjective estimates are heavily influenced by the subject's conception of the
task rather than how they actually responded to the task (Gopher and Braune, 1984). It is clear that
these drawbacks are inherent to the measure considering that behavior is determined by both conscious
and unconscious processes: workload is a function of both processes and, by definition, subjects can
only report conscious experiences.

2. Overall Behavioral Performance

This measure is insensitive to gradations in mental workload primarily because it does not measure the
use of resources until close to the capacity limits of at least one resource dimension. Performance can
be held constant as workload changes dramatically (Kahneman, 1973). These deficits render the meas-
ure inappropriate for use in intelligent aircraft management systems since by the time performance
decrements are observable, it may be too late.

3. Performance on Secondary Tasks

Many-secondary tasks have been found to be sensitive to workload for many primary tasks (Kantowitz
and Casper, 1988). Unfortunately, difficulties abound, many of them pointed out in a recent review
(Gopher and Donchin, 1986; Boff and Lincoln, 1988). The relationship of the secondary to the primary
task is crucial to the sufficiency of the former as a metric of workload. A major difficulty is to detr-
mine the relationship between the mental resources required by primary and secondary tasks and mental
capacity. For example, a primary and secondary task may place high demands on motor output. This
means the secondary task would be primarily sensitive to motor workload and insensitive to other men-
tal resources such as memory. Nonlinear information processing capabilities of the brain increase the
difficulty of quantifying the relationship: emergent resource demands may result from juxtaposing
several tasks. Subjects may develop new, wholistic strategies to perform multiple tasks. Unless we
have a model of cognitive function that completely specifies all sources of mental capacity and their
interactions, we can only rely on secondary tasks to index mental workload in the context of a particu-
lar set of primary tasks.

Secondary task workload measures are inappropriate to use in intelligent aircraft management syster.ns.
Secondary task indices are very specific to their associated primary task(s), secondary tasks necessarily
change the structure of primary tasks, and, by definition, secondary tasks introduce an additional infor-
mational load. These features would be highly unacceptable in a system in which operator performance
is paramount.

4. Pupil Response

Pupil size has been observed to be a scnsiuve indicator of mental workload. Specifically, changes in
pupil size have been correlated with changes in the load on memory storage and retrieval (Kahneman
and Beatty, 1966; Beatty, 1982; Kahneman and Write, 1971; Stanners, 1972). Pupil size has also been
observed to be correlated with stimulus probability (Qiyuan et al., 1985); this suggests that the measure
might be useful in a manner similar to the P300 component of the evoked potential. Unfortunately, he
sensitivity of pupil response was tested in circumstances where ambient lighting could be carefully con-
trolled. The applicability of the method under conditions of variable ambient lighting awaits develop-
ment of technical means to correct for ambient lighting.
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S. Speech Signals

Parameters of speech signals including amplitude and pitch have been found to be sensitive to both high
levels of stress (Kuroda et al, 1976) and subtle levels of workload (Brenner and Shipp, 1988). Other
measures of speech quality, such as speech rate, energy distribution, amplitude shimmer, and frequency
shimmer weakly distinguished workload conditions. By contrast, in a subcritical tracking task, heart
rate was found to be a more reliable measure of tracking difficulty (Brenner and Shipp, 1988). Data
reported in a preliminary study of speech qualities and workload (Alpert and Schneider, 1988) did not
demonstrate a clear relationship. A major drawback is that speech samples may not be available at crit-
ical moments.

6. P300 and other brain evoked potentials (EPs)

Among brain evoked potential components, the P300 has received the most attention as a candidate
metric for mental workload. This is a late evoked potential peak occurring about 300-600 msec follow-
ing the reception of a stimulus which is preferably task relevant and relatively infrequent. Changes in
the amplitude, latency or power integrated over a small interval of P300 have been observed to be sen-
sitive to changes in workload. This sensitivity was observed for both active and passive P300 tasks
where, in the former, subjects respond to the oddball events, and in the latter, no response was required
(Kramer et al., 1981). The passive P300 findings suggest that a P300 metric could be used in systems
requiring real-time monitoring of operator workload. Unfortunately, there are several problems. One
problem is that, to effectively evoke P300s, oddball events must be task relevant stimuli (Duncan-
Johnson and Donchin, 1977; Israel et al., 1980; Polich, 1989). For some primary tasks, this would be
restrictive. Another problem is that P300s may only be sensitive to a restricted class of mental
resources (Gevins and Cutillo, 1986). A series of studies have implicated P300 to be related to
resources involved in evaluating stimuli (Kutas et al., 1977; Donchin et al, 1978; McCarthy and Don-
chin, 1981). These studies have demonstrated that latency of the P300 is independent of response
selection and execution time. Indeed, it has been observed that when evaluation of stimuli was not an
important variable in changing workload, P300 was insensitive to the change (Wickens et al, 1977).
Thus, the specificity of the P300 may severely limit its utility. Finally, a P300 metric may not be
robust over time. In early sessions of a flight simulation task with auditory stimuli for evoking P300,
significant differences were observed in latencies and integrated power of P300 between two workload
levels. This difference was substantially weaker in later sessions (Natani and Gomer, 1981).

Other EPs that have been examined include steady state EPs (Regan, 1980; Wilson and O'Donnell,
1986; Kramer et al., 1988), visual EPs evoked by task specific stimuli (Horst et al., 1984), and non-task
specific visual stimuli (Trejo et al., 1987). Despite some promising initial results, several properties of
EP metrics may limit their applicability in intelligent aircraft management systems. Single tial EPs
have low signal-to-noise ratios and this may compromise reliability. Depending on the number of trials
averaged, enhancing EPs by averaging may compromise time resolution. To evoke the necessary sig-
nals, either extraneous stimuli must be imposed or events that are naturally part of the operator environ-
ment must be used. The latter option would be optimal, but a workload measurement may not be avail-
able when most needed. Using simple extraneous stimuli would only test loading on primary sensory
resources and complex extraneous stimuli would impose an additional informational load.

7. Continuously Measurable Physiological Signals

Physiological measures that are particularly well adapted for use in real-time intelligent aircraft
management systems include background EEG, scalp muscle activity, EKG, and measures of eye blink
and movement, skin conductance, and respiration. Signals are continuously available for all of these
measures except eye movements and blinks and respiration. All measures do not require imposing
additional workload and do not impose any structural requirements on the operator's tasks. A few
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recent positive results using these measures are mentioned below.

7.1. Electrocardiograms (EKGs)

Heart rate (HR) has been observed to increase with rising workload over two related arithmetic tasks
(Sharit and Salvendy, 1982) and over two levels of difficulty in a subcritical tracking task (Brenner and
Shipp, 1988). Significant differences in heart rate variability and power spectra of IBIs have been
observed over four workload levels of a dual stimulus memory task (Aunon et al., 1987). Heart rate
variability power around 0.1 Hz was observed to decrease with increasing workload in a study using a 2
and 4 item memory task (Aasman et al., 1987). Respiratory sinus arrythmia (RSA) may be an indicator
of parasympathetic activity relevant to workload (Gawron et al., 1989). RSA can be estimated from
frequency analysis of EKG interbeat intervals (Porges, 1986). But Grossman (1983) showed the use of
combined EKG and respiratory data to be superior in a context involving change in mental workload.
T-wave amplitude has been related to cognitive or anticipatory stress (Heslegrave and Furedy, 1979).

7.2. Ongoing Electroencephalograms (EEGs)

EEG alpha and theta activity diminished with higher workload in a flight simulator task (Natani and
Gomer, 1981). These results were robust over time compared to P300 workload related differences
which diminished with practice. EEG high beta activity significantly increased as tasks changed from
signal detection to signal recognition to memory to mental arithmetic (Kakizaki, Preprint). Peak alpha
activity was observed to shift toward higher frequencies with higher workload for arithmetic and visual
imagery tasks (Osaka, 1984). Theta suppression has been correlated with improved performance in
vigilance tasks (Beatty et al., 1974; O'Hanlon and Beatty, 1977; Beatty and O'Hanlon, 1980). In-flight
EEG data, primarily banded spectral power, indicate relevance to pilot cerebrocortical arousal in condi-
tions of G-induced loss of consciousness (Lewis, et al., 1987) and fatigue (Howitt, et al., 1978). Reduc-
tion in alpha activity over one hemisphere with respect to the other is sensitive to secondary task per-
formance performed in-flight during normal flight duties (Sterman, 1989).

7.3. Skin Conductance

Skin conductance has been observed to increase with increasing levels of semantic processing where
phonetic processing is baseline (Cohen and O'Donnell, 1988). Lindholm and Cheatham (1983) found
FR and skin conductance response (SCR) to be reliable indicators of short-term workload increases
indexed by simulated aircraft carrier landings. In subsequent work, they found HR to be more stable
than SCR in highly realistic simulated landing tasks (Lindholm. et al., 1984).

7.4. Eye Moveaent and Blink Measures

Eye blink rae has been observed to decrease with increases in visual processing demands (Stem and
Skelly, 1984). Morris (1984ab, 1985) found blink rate, amplitude and duration were predictors of
greater performance variability in straight and level and in maneuvering flight with fatigued pilots. This
study, along with Skelly, et al. (1987) and Wilson, el al. (1987), suggests that eye blink waveform
features such as mean duration may index the general state of cerebrocortical arousal of the pilot
(Gawron, et al., 1989; see also Stem, et at., 1984; Fogarty and Stem, 1989).
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7.5. Respiration Measures

Respiration rate (RR) by itself has shown only minor promise for indexing workload (Wierwille and
Conner, 1983; Casali and Wierwille, 1984). Respiration data may be important for getting good meas-
ures of respiratory sinus arrythmia (RSA), an important measure for improving estimates of HR varia-
bility measures (Grossman and Wientjes, 1986).

7.6. Caveat

These physiological measures are usually individually tested for sensitivity to workload (e.g., Lindholm
& Sisson, 1985; WierWille, et al., 1985; Casali and Wierwille, 1984; Lindholm, et al, 1984; Wierwille
and Conner, 1983). The best performers vary from one experiment to the next, even within the same
laboratory. Often, one or two are reported as doing well while two or three others do poorly. This has
lead some to conclude that one or more of these measures are unreliable measures of workload (John-
son, 1980). In addition to variations in the type and quality of experimental design and execution
(Gevins and Schaffer, 1980), lack of a precise definition of workload has also been cited as causing
inconsistent results (Williges, et al., 1979; Aunon, et al., 1987).
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