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Abstract

We describe and evaluate a strategy for declustering the parity encoding in a redundant disk array.
This declustered parity organization balances cost against data reliability and performance during

failure recovery in highly-available parity-based arrays for use in continuous-operation systems. It
improves on standard parity organizations by reducing the additional load on surviving disks dur-
ing the reconstruction of a failed disk's contents. This yields higher user throughput during recov-
ery, and/or shorter recovery time.

We first demonstrate a software implementation of declustered parity based on balanced incom-
plete and complete block designs. This implementation is then evaluated using a disk array simula-
tor under a highly concurrent workload comprised of small user accesses. We show that
declustered parity penalizes user response time while a disk is being repaired (before and during its
recovery) less than comparable non-declustered (RAID 5) organizations without any penalty to
user response time in the fault-free state.

We then show that previously proposed modifications to a simple, single-sweep reconstruction
algorithm further decrease user response times during recovery, but, contrary to previous sugges-
tions, this may be achieved at the cost of slower recovery in many declustered parity arrays. This
result arises from the simple model of disk access performance used in previous work, which did
not consider throughput variations due to positioning delays.
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1. Introduction

Many applications, notably database and transaction processing, require both high throughput and

high data availability from their storage subsystems. The most demanding of these applications require

continuous operation, which in terms of a storage subsystem requires (1) the ability to satisfy all user

requests for data even in the presence of a disk failure, and (2) the ability to reconstruct the contents of a

failed disk onto a replacement disk, thereby restoring itself to a fault-free state. It is not enough to fulfill

these two requirements with arbitrarily degraded performance; it is not unusual for a continuous operation

application to suffer financial losses substantially larger than their investment in computing equipment if

service is severely degraded for a prolonged period of time. Since the time necessary to reconstruct the

contents of a failed disk is certainly minutes and possibly hours, we focus this paper on the performance of

a continuous-operation storage subsystem during on-line failure recovery.

Redundant disk arrays, proposed for increasing input/output performance and for reducing the cost of

high data reliability [Kim86, Livny87, Patterson88, Salem86], also offer an opportunity to achieve high

data availability without sacrificing throughput goals. A single-failure-correcting redundant disk array con-

sists of a set of disks, a mapping of user data to these disks that yields high throughput [Chen9Ob], and a

mapping of a parity encoding for the array's data such that data lost when a disk fails can be recovered

without taking the system off-line [Lee91 ].

Most single-failure-correcting disk arrays employ either mirrored or parity-encoded redundancy. In

mirroring [Bitton88, Copeland89, Hsiao90], one or more duplicate copies of all data are stored on separate

disks. In parity encoding [Kim86, Patterson88, Reddy89], popularized as Redundant Arrays of Inexpen-

sive Disks (RAID), some subset of the physical blocks in the array are used to store a single-error-correc-

tion code (usually parity) computed over subsets of the data. Mirrored systems, while potentially able to

deliver higher throughput than parity-based systems for some workloads [Chen9Oa, Gray90], increase cost

by consuming much more disk capacity for redundancy. In this paper, we examine a parity-based scheme

called parity declustering, which provides better performance during on-line failure recovery than more

common RAID schemes, without the high capacity overhead of mirroring [Muntz90] 1.

Our primary figures of merit in this paper are reconstruction time, which is the wallclock time taken to

I



reconstruct the contents of a failed disk after replacement, and user response time during reconstruction.

Reconstruction time is important because it determines the length of time that the system operates at

degraded performance, and because it is a significant contributor to the length of time that the system is

vulnerable to data loss caused by a second failure. Given a fixed user throughput, contrasting user fault-

free response time to the response time both before and during reconstruction gives us the measure of our

system's performance degradation during failure recovery.

Section 2 of this paper describes our terminology and presents the declustered parity organization.

Section 3 describes related studies, notably the introduction of declustering by Muntz and Lui [Muntz9O],

and explains the motivations behind our investigation. Section 4 presents our parity mapping, which was

left as an open problem by Muntz and Lui. Section 5 gives a brief overview of our simulation environment

and Sections 6 and 7 present brief analyses of the performance of a declustered array when it is fault-free,

and when there is a failed disk but no replacement. Section 8 then covers reconstruction performance, con-

trasting single-thread and parallel reconstruction, and evaluating alternative reconstruction algorithms.

Section 9 concludes the paper with a look at interesting topics for future work.

2. The Declustered Parity Layout Policy

Figure 2-1 illustrates the parity and data layout for a left-symmetric RAID 5 redundant disk array

[Lee9l]. A data stripe unit, or simply a stripe unit is defined as the minimum amount of contiguous user

data allocated to one disk before any data is allocated to any other disk. A parity stripe unit, or simply a

parity unit, is a block of parity information that is the size of a data stripe unit. The size of a stripe unit,

called a unit for convenience, must be an integral number of sectors, and is often the minimum unit of

update used by system software. A parity stripe2 is the set of (data) stripe units over which a parity stripe

1. Muntz and Lui use the term clustered where we use the term declustered. Their use may be taken from"clustering" independent RAIDs into a single array with the same parity overhead. Our use follows the ear-
lier work of Copeland and Keller [Copeland89] where redundancy information is "declustered" over more
than the minimal collection of disks.
2. A parity stripe associates stripe units that contribute to the same parity computation. This is not the same
as a data stripe, often simply called a stripe, which might be defined as the maAimum amount of contiguous
user data that contains no more than one stripe unit from any disk. While most data and parity mappings are
chosen to coincide for performance reasons, an array's parity stripe mapping is not dependent on its data
stripe mapping.

Muntz and Lui [Muntz90] use the term group to denote what we call a parity stripe, but we avoid this
usage as it conflicts with the Patterson, et. al. definition [Patterson88l as a set of disks, rather than a set of
disk blocks.
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unit is computed, plus the parity stripe unit itself. In Figure 2-1, Dij represents the jth stripe unit of parity

stripe number i, and Pi represents the parity unit for parity stripe i. Parity units are distributed across the

disks of the array to avoid the write bottleneck that would occur if a single disk contained all parity units.

Offset DISKO DISKI DISK2 DISK3 DISK4

0 DO.0 DO.1 DO.2 DO.3 P0

I Dl.1 DI.2 D1.3 P1 D1.0

2 D2.2 D2.3 P2 D2.0 D2.1

3 D3.3 P3 D3.0 D3.1 D3.2

4 P4 D4.0 14.1 D4.2 D4.3

Figure 2-1: Parity and data layout in a left-symmetric RAID5 organization

Figure 2-1 shows a layout in which the parity allocation rotates to another disk at each stripe bound-

ary. In general, the parity allocation can be rotated after any number of stripes. It is important to note that a

left-symmetric RAID 5 organization defines its data layout to be sequential through parity stripes; that is,

user data is logically DO.0, DO.I, DO.2, DO.3, DL.0, D1.1, etc. In general, however, a parity mapping does

not imply a data mapping.

In Figure 2-1, parity is computed over the entire width of the array; that is, P0 is the cumulative parity

(exclusive-or) of units DO.0 through DO.3. When a disk is identified as failed, any data unit can be recon-

structed by reading the corresponding units in the parity stripe, including the parity unit, and computing the

cumulative exclusive-or of this data. Note, however, that all the disks in the array are needed by every

access that requires reconstruction.

Following Muntz and Lui, let G be the number of units in a parity stripe, including the parity stripe

unit, and consider the problem of decoupling G from the width of the array. This reduces to a problem of

finding a mapping that will allow parity stripes of size G units to be distributed over some larger number of

disks, C. For our purposes, this larger set of C disks is the whole array. For comparison purposes, the RAID

5 example in Figure 2-1 has G = C = 5. This property, that G = C, defines RAID 5 mappings in the context

of this paper.

One perspective on parity declustering in redundant disk arrays is demonstrated in Figure 2-2; a logi-

cal RAID 5 array with G = 4 is distributed over C=8 > G disks, each containing fewer units. The advan-
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Logical Array Physical Array

0 1 2 3 2 3 4 5

Figure 2-2: Declustering a parity stripe of size four over an array of tight disks.
tage of this approach is that it reduces the reconstruction workload applied to each disk during failure

recovery. To see this, note that for any given stripe unit on a failed (physical) disk, the parity stripe to

which it belongs includes units on only a subset of the total number of disks in the array. In Figure 2-2, for

example, disks 1, 2, 5, and 7 do not participate in the reconstruction of the parity stripe marked 'S'. Hence,

these disks are called on less often in the reconstruction of one of the other disks. In contrast, a RAID 5

array has C = G, and so all disks participate in the reconstruction of all lost units of the failed disk.

Figure 2-3 illustrates a a declustered parity layout for G = 4 and C = 5. The procedure for mapping

these particular parity stripes to disks is described in Section 4. What is important at this point is that five

parity stripes map fifteen data stripe units in the array's first twenty disk units, while in the RAID 5 organi-

zation of Figure 2-1, four parity stripes map sixteen data stripe units in the array's first twenty disk units.

More disk units are consumed by parity, but not every parity stripe is represented on each disk, so a smaller

fraction of each surviving disk is read during reconstruction. For example, if, in Figure 2-3, disk 0 fails,

parity stripe four will not have to be read in order to reconstruct it.

Offset DISKO DISK I DISK2 DISK3 DISK4

0 DO.O DO.I DO.2 PO P1I
1 DLO DLI 1312 D2. P2
2 D2.0 D2.1 D3.1 D3.2 P3

3 LJ L J._ ~j D4* 4 2 P
Figure 2-3: Example data layout in a declustered parity organization.

Muntz and Lui define the ratio (G-1)/(C-J) as a. This parameter, which we refer to as the declustering
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ratio, indicates the degree to which parity stripes are distributed over the array, or, equivalently, it indicates

the fraction of each surviving disk that must be read during the reconstruction of a failed disk. Note that

a = 1 for the RAID5 organization, indicating that every surviving disk participates in every reconstruction

access. All of our performance graphs in Sections 6, 7, and 8 are parameterized by a.

The parameters C and G and the ratio a together determine the reconstruction performance, the data

reliability, and the cost-effectiveness of the array. C specifies the number of disks in the array, and also

determines the data re!iability, since larger C implies a greater chance of a second (data-loss-causing) fail-

ure within the array during reconstruction. G, on the other hand, determines the percentage of total disk

space consumed by parity, 11G. Finally, the declustering ratio c determines the reconstruction performance

of the system; a smaller value should yield better reconstruction performance since a failed disk's recon-

struction workload is spread over a larger number of disks. In general, system administrators need to be

able to specify C and G at installation time according to their cost, performance, capacity, and data reliabil-

ity needs. This paper provides analyses upon which these decisions can be based.

3. Related Work

The idea of improving failure-mode performance by declustering redundancy information originated

with mirrored systems [Copeland89, Hsiao9O]. Copeland and Keller describe a scheme called interleaved

declustering which treats primary and secondary data copies differently. Traditionally, mirrored systems

allocate one disk as a primary and another as a secondary. Copeland and Keller instead allocate only half of

each disk for primary copies. The other half of each disk contains a portion of the secondary copy data

from each of the primaries on all other disks. This insures that a failure can be recovered since the primary

and secondary copies of any data are on different disks. It also distributes the workload associated with

reconstructing a failed disk across all surviving disks in the array. Hsiao and DeWitt propose a variant of

interleaved declustering called chained declustering, that increases the array's data reliability.

Muntz and Lui applied ideas similar to those of Copeland and Keller to parity-based arrays. They pro-

posed the declustered parity organization described in Section 2, and then model its reconstruction time

analytically, making a number of simplifying assumptions3. We attempt in this paper to identify the limits

of this theoretical analysis and provide performance predictions based instead on a software implementa-
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tion and array simulation. Toward this end we have two primary concerns with the Muntz and Lui analysis.

First, their study assumes that either the set of surviving disks or the replacement disk is driven at

100% utilization. Unfortunately, driving a queueing system such as a magnetic disk at full utilization leads

to arbitrarily long response times. Response time is important to all customers and critical in database and

on-line transaction-processing (OLTP) systems. An often-cited rule of thumb in the OLTP domain is that

90% of the transactions in a given workload must complete in under two seconds for the system to be

acceptable [Anon85, TPCA89]. In a continuous-operation system that requires minutes to hours for the

recovery of a failed disk, this rule will apply even during these relatively rare recovery intervals. Our anal-

ysis reports on user response time during recovery and presents a simple scheme trading off reconstruction

time for user response time.

Our second concern with the Muntz and Lui analysis is that their modeling technique assumes that all

disk accesses have the same service time distribution. Unfortunately, real disk accesses are subject to posi-

tioning delays that are dependent on the current head position and the position of target data. As an exam-

ple, suppose that a given track on a replacement disk is being reconstructed, and that a few widely scattered

stripe units on that track are already valid because they were written as a result of user (not reconstruction)

accesses during reconstruction. These units may either be skipped over by reconstruction, or they may sim-

ply be reconstructed along with the rest of the track and over-written with the data that they already hold.

To skip over them requires multiple disk accesses instead of one, which is quite likely to cause rotation

slips [Chen90b]. In either case, the fact that these sectors have been previously reconstructed is not going

to speed the reconstruction process. The Muntz and Lui model assumes that reconstruction time is reduced

by a factor equal to the size of the units not needing reconstruction divided by the size of the track, which

is not the case. This idea that disk drives are not "work-preserving" due to head positioning and spindle

rotation delays is an effect that is difficult to model analytically, but relatively straightforward to address in

a simulation-based study.

In this paper we will use balanced incomplete and complete block designs 4 to achieve better perfor-

3. Menon and Kasson [Menon92l also proposed a layout where the number of disks exceeds the number of
stripe units in a parity stripe, but they mention it only in passing, and do not analyze its benfits and draw-
backs.
4. Block designs and their parameters are described in Section 4.2.
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mance during reconstruction. Reddy [Reddy9l] has also used block designs for improving the degraded-

mode performance of a disk array. His organization uses a block design containing b tuples on C objects to

divide the array into exactly two parity groups: trackj on disk i is a member of parity group one if object i

is a member of block (j mod b), where b is the size of the block design, and is a member of parity group

zero otherwise. This generates a layout with properties similar to ours, but is restricted to the case where

G=C/2.

4. Data Layout Strategy

4.1. Layout Goals

Previous work on declustered parity has left open the problem of allocating parity stripes in an array.

Extending from non-declustered parity layout research, we have identified six criteria for a good parity lay-

out [LeegW, Dibble9O]. The first four of these deal exclusively with relationships between data stripe units,

parity stripe membership, and disk allocation, while the last two of these make recommendations for the

relationship between user data allocation and parity stripe organization. Because file systems are free to

and often do allocate user data arbitrarily into whatever logical space a storage subsystem presents, our

parity layout procedures have no control over these latter two criteria.

1. Single Failure Correcting. No two stripe units in the same parity stripe are allowed to reside on the

same physical disk. This is the basic characteristic of any redundancy organization that recovers the

data of failed disks. In arrays that inter-link disks by a common failure mode, such as power or data

cabling, this criteria should be extended to prohibit the allocation of stripe units from one parity

stripe to two or more disks sharing that common failure mode [Schulze89].

2. Distributed Reconstruction. When any disk fails, its user workload should be evenly distributed

across all other disks in the array. When the disk is replaced or repaired, its reconstruction workload

should also be evenly distributed.

3. Distributed Parity. Parity information should be evenly distributed across the array. All data updates

cause a parity update, and so an uneven parity distribution would lead to hot-spot contention, since

the disks with more parity would experience more load.

4. Efficient Mapping. The functions mapping a file system's logical block address to physical disk

address(es) for the corresponding data stripe unit(s) and parity stripe(s) (and the appropriate inverse

mappings) must be efficiently implcmentable; they should consume neither excessive CPU time nor
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memory.

5. Large Write Optimization. The allocation of contiguous user data to stripe units should correspond to

the allocation of stripe units to parity stripes. This insures that whenever a user performs a write that

is the size of the data portion of a parity stripe and starts on a parity stripe boundary, it is possible to

execute the write without pre-reading the prior contents of any disk data, since the new parity unit

depends only on the new data.

6. Maximal Parallelism. A read of contiguous user data with size equal to a stripe unit times the num-

ber of disks in the array should induce a single stripe unit read on all disks in the array (while requir-

ing alignment only to a stripe unit boundary). This insures that maximum parallelism can be

obtained.

As shown in Figure 2-1, the left-symmetric mapping for RAID 5 arrays meets all of these criteria.

4.2. Layout Strategy

Our declustered parity layouts are designed to meet our criterion for distributed reconstruction while

also lowering the amount of reconstruction work done by each surviving disk. The distributed reconstruc-

tion criterion requires that the same number of parity stripe units be read from each surviving disk during

the reconstruction of a failed disk. This will be achieved if the number of times that a pair of disks contain

stripe units from the same parity stripe is constant across all pairs of disks. Muntz and Lui recognized and

suggested that such layouts might be found in the literature for balanced incomplete block designs

[HaU86]. This paper demonstrates that this can be done and shows how to do it.

A block design is an arrangement of v distinct objects into b tuples5 , each containing k elements, such

that each object appears in exactly r tuples, and each pair of objects appears in exactly X tuples. For exam-

ple, using non-negative integers as objects, a block design with b = 5, v = 5, k = 4, r =4, and X = 3 is given

by:

Tuple 0: 0, 1, 2, 3 Tuple 3: 0, 2, 3, 4

Tuple 1: 0, 1, 2, 4 [ Tuple 4: 1, 2, 3, 4

Tuple 2: 0, 1, 3, 4

Figure 4-1: Sample Complete Block Design

5. These tuples are called blocks in the block design literature. We avoid this name as it conflicts with the

commonly held definition of a block as a contiguous chunk of data.
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This example demonstrates a particularly simple form of block design called a complete block design

which includes all possible combinations of exactly k distinct elements selected from the set of v objects.

The number of these combinations is W . It is useful to note that only three of v, k, b, r, and X are free vari-

ables because the following two relations are always true: bk = vr, and r(k-1) = X(v-1). The first of these

relations counts the objects in the block design in two ways, and the second counts the pairs in two ways.

The layout we use associates disks with objects and parity stripes with tuples. For clarity, the follow-

ing discussion is illustrated by the construction of the layout in Figure 4-2 from the block design in Figure

4-1. To build a parity layout, we find a block design with v = C, k = G, and the minimum possible value for

b (as we shall explain in Section 4.3). Our mapping identifies the elements of a tuple in a block design with

the disk numbers on which each successive stripe unit of a parity stripe are allocated. In Figure 4-2, the

first tuple in the design of Figure 4-1 is used to lay out parity stripe 0: the three data blocks in parity stripe

0 are on disks 0, 1, and 2, and the parity block is on disk 3. Based on the second tuple, stripe 1 is on disks

0, 1, and 2, with parity on disk 4. In general, stripe unitj of parity stripe i is assigned to the lowest available

offset on the disk identified by the/t h element of tuple i mod b in the block design. The layout shown in the

top quarter of Figure 4-2, and in Figure 2-3, is derived via this process from the block design in Figure 4-1.

It is apparent from Figure 2-3 that this approach produces a layout that violates our distributed parity

criterion (3). To resolve this violation, we derive the layout as above and duplicate it G times (four times in

Figure 4-2), assigning parity to a different element of each tuple in each duplication, as shown in the right

side of Figure 4-2. This layout, the entire contents of Figure 4-2, is further duplicated until all stripe units

on each disk are mapped to parity stripes. We refer to one iteration of this layout (the first four blocks on

each disk in Figure 4-2) as the block design table, and one complete cycle (all blocks in Figure 4-2) as the

full block design table.

We now show how well this layout procedure meets the first four of our layout criteria. Because each

tuple contains k distinct objects, nc, pair of stripe units in the same parity stripe will be assigned to the same

disk. This insures our single failure correcting criterion. The second criterion, which is that reconstruction

be distributed evenly, is guaranteed because each pair of objects appears in exactly X tuples. This means

that in each copy of the block design table, disk i occurs in exactly X parity stripes with each other disk.

Hence, when disk i fails, evcrv other disk reads exactly X stripe units while reconstructing the stripe units

9



Data Layout on Physical Array Layout Derivation from Block Designs

Parity Stripe TUPLE

1 0 241 Block
Offset DISKO DISKI DISK2 DISK3 DISK4 2 0, 1, 3, 4 Design3 0, 2, 3, 4 1 T able

2 D2.0 D2.1 D3.1 D3.2 P3 5 0, 1, 2 3
3 D.0 D.0 .1 7 4 60 12 4
43 5.0 D5.1 P5 D5.2 D6.2
5 8 0, 2, 3, 4 Full
6 D8.1 P8 D8.2 9 1, 2, 3 Block
7 8 . .

8 D10.0 Plo- o, T, 2. 3 Design
9 010, 1D 2, 3 Table
10 D12.0 P12 11 0
11 b14. P14 14.1 914. 132 : 0,1P
12 D15.0 D15.1 D15.2 D16.2
13 14
14 D17.0 D18.0 D18.2
15 a 15 0, 1, 2, 3

16 0, 1, 2, 4
17 0, 1, 3, 4

C =5, G =4 18 0 2 3 4
19 1

Figure 4-2: Full block design table for a parity declustering organization.

associated with each block design table. Note that the actual value of 4 is not significant. It is only neces-

sary that it be constant across all pairs of disks, and this is guaranteed by the definition of a block design.

Our distributed parity criterion is achieved because a full block design table is composed of G block

design tables each assigning parity to a different element of each tuple. Referring to Figure 4-2; if we

group together the vertical boxes in the right half of the figure we see that the parity assignment function

sweeps out the equivalent of one block design table over the course of the full block design table. Since

each object appears in exactly r tuples in a block design table, each will be assigned parity in exactly r

tuples in the full block design table, and so each disk will be assigned r parity stripe units in every full

block design table.

Unfortunately it is not guaranteed that our layout will have an efficient mapping, our fourth criterion,

because the size of a block design table is not guaranteed to be small. However, Section 4.3 demonstrates

that small block design tables are available for a wide range of parity stripe and array sizes.

Finally, our fifth and sixth criteria depend on the data mapping function used by higher levels of soft-

ware. Unfortunately, the simple mapping of data to successive data urts within successive parity stripes

that we use in our simulations, while meeting our large-write optimization criterion, does not met our
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maximal parallelism criterion; that is, not all sets of five adjacent stripe units from the mapping, DO.0,

D0.1, D0.2, D1.0, D1.1, D1.2, D2.0, etc., in Figure 4-2 are allocated on five different disks. Instead. read-

ing five adjacent data stripe units starting at stripe unit zero causes disk 0 and I to be used twice, and disks

3 and 4 not at all. On the other hand, if we were to employ a data mapping similar to Lee's left-symmetric

parity (for non-declustered RAID5 arrays), we may fail to satisfy our large-write optimization criterion.

We leave for future work the development of a declustered parity scheme that satisfies both of these crite-

ria.

4.3. On the Generation of Block Designs

Complete block designs such as that used in Figure 4-1 are easily generated, bi: in many cases they

are insufficient for our purposes. When the number of disks in an array (C) is large relative to the number

of stripe units in a parity stripe (G) then the size of the block design table becomes unacceptably large and

the layout fails our efficient mapping criterion. For example, a 41 disk array with 20% parity overhead

(G=5) allocated by a complete block design will have about 3,750,000 tuples in its full block design table.

In addition to the exorbitant memory requirement for this table, the layout will not meet our distributed

parity or distributed reconstruction criteria because even large disks rarely have more than 1,000,000 sec-

tors. For this reason we turn to the theory of balanced incomplete block desigs [Hall86].

Our goal, then, is to find a small block design on C objects with a tuple size of G. This is a difficult

problem for general C and G. Hall presents a number of techniques, but these are of more theoretical inter-

est than practical value since they do not provide sufficiently general techniques for the direct construction

of the necessary designs. Fortunately, Hall also presents a list containing a large number of known block

designs, and states that, within the bounds of this list, a solution is given in every rase where one is known

to exist. Figure 4-36 presents a scatter plot of Hall's list of designs. Whenever possible, our parity declus-

tering implementation uses one of Hall's designs.

Sometimes a balanced incomplete block design with the required parameters cannot be found. In par-

ticular, Hall's table lists only designs with G < C / 2, which is essentially equivalent to a < 1/2. In cases

where we cannot find a balanced incomplete block design, we attempt to use a complete block design on

6. Note to the reviewer. These (xgraph) figures are not in a satisfactory form for camera-ready submission.

Your format suggestions would be much appreciated.
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Figure 4-3: Known Block Designs
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the indicated parameters. When C and G differ by a substantial amount, this method becomes infeasible

because the layout table becomes large enough to violate our fourth criterion. In this case, we resort to

choosing the closest feasible design point; that is, the point which yields a value of x closest to what is

desired. All of our results indicate that the performance of an array is not highly sensitive to such small

variations in a. The block designs we use in our simulations are given in the appendix.

5. The Simulation Environment

We acquired an event-driven disk array simulator called raidSim [Chen90b, Lee9l] for our analyses.

The simulator was developed for the RAID project at U.C. Berkeley [Katz89]. It consists of four primary

components. At the top level of abstraction is a synthetic workload generator, which is capable of produc-

ing user request streams drawn from a variety of distributions. Table 5-1 (a) shows the configuration of the

workload generator used in our simulations. Each request produced by this generator is sent to a RAID

striping driver, which was originally the actual code used by the Sprite operating system [Ousterhout88] to

implement a RAID device on a set of independent disks. Table 5-1 (b) shows the configuration of our

extended version of this striping driver. These upper two levels of raidSim should actually run on a Sprite

machine. Low-level disk operations generated by the striping driver are sent to a disk simulation module,

which accurately models all significant aspects of each specific disk access (seek time, rotation time, cylin-

der layout, etc.). Table 5-1 (c) shows the characteristics of the IBM 0661 Model 370 (Lightning) disks on

which our simulations are based [IBM0661]. At the lowest level of abstraction in raidSim is an event-

driven simulator, which is invoked to cause simulated time to pass.

It is important to emphasize that the striping driver code was originally taken directly from the Sprite

source code, with essentially zero modification to accommodate simulation, and also that our modifications

conform to Sprite constraints. This assures that the reference streams generated by the driver are identical

to those that would be observed in an actual disk array running the same synthetic workload generator. It

also forces us to actually implement our layout strategy and reconstruction optimizations, since we have

extended the code in such a way that it could be re-incorporated into an operating system at any time. All

reconstruction algorithms discussed in Section 8 have been fully implemented and tested under simulation

in our version of the RAID striping driver.
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(a) Workload Parameters (b) Disk Parameters

Access size: Fixed at 4 KB Cylinders: 949

User access rate: 105, 210, and 378 accs/sec Tracks/Cyl: 14
Alignment: Fixed at 4 KB Sectors/Track: 48 @ 512 bytes each

Distribution: Uniform over all data Revolution: 13.9 ms

Write Ratio: 0% and 100%(Sections 6, 7) Seek Time: 2 ms min, 12.5 ms avg, 25 ms max

50% (Section 8) Track Skew: 4 sectors

(c) Array Parameters

Stripe Unit: Fixed at 4KB
Number of Disks: Fixed at 21
Head Scheduling: CVSCAN [Geist87]
Parity Stripe Size: 3, 4, 5, 6, 10, 18, and 21 (RAID5) stripe units
Parity Overhead: 33%, 25%, 20%, 17%, 10%, 6%, and 5%, respectively
Data Layout: RAID5: Left Symmetric

Declustered: By parity stripe index
Parity Layout: RAID5: Left Symmetric

Declustered: Block Design Based
Power/Cabling: Each disk independently powered and cabled

Table 5-1: Simulation Parameters

6. Fault-Free Performance

Figures 6-1 and 6-2 show the average response time experienced by read and write requests in a fault-

free disk array as a function of the declustering ratio, a. Our simulated system has 21 disks, so the fraction

of space consumed by parity units, 1/G, is 1/(20a+l). In the 100% read case we show three average

response time curves corresponding to user access rates ("Rate") of 105, 210, and 378 random reads of 4

KB per second (on average, 5, 10, and 18 user reads of 4 KB per second per disk are applied to disks capa-

ble of a maximum of about 46 random 4 KB reads per second). In the 100% write case we show two much

slower average response time curves corresponding to Rate = 105 and 210 random user writes of 4 KB per

second. User writes are much slower than user reads because writes must update parity units as well as data

units. Because the RAID striping driver does not have access to higher level software caching, it is unable

to exploit caching of the old contents of either data or parity units [Patterson88], and, because it does not

have control over the precise timing of its disks, it is unable to execute a parity read-modify-write sequence

in one disk access [Menon89]. Without these optimizations, our striping driver's fault-free behavior is to
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execute four separate disk accesses for each user write instead of the single disk access needed by an user

read. Because of this high cost for user writes, our system is not able to sustain 378 user writes of 4 KB per

second (this would be 72 4 KB accesses per second per disk).

Figures 6-1 and 6-2 show that except for writes with cc = 0.1, fault-free performance is essentially

independent of parity declustering. This exception is the result of an optimization that the RAID striping

driver employs when requests for one stripe unit are applied to parity stripes containing only three stripe

units [Chen9Oa]. In this case the driver can choose to write the specified data unit, read the other data unit

in this parity stripe, then directly write the corresponding parity unit in three disk accesses, instead of pre-

reading and overwriting both the specified data unit and corresponding parity unit in four disk accesses. In

the rest of this paper we will neglect the case of t = 0.1 (G = 3) to avoid repeating this optimization discus-

sion.

We note that our parity declustering implementation may not perform equivalently to a left-symmetric

RAID 5 mapping when user requests are larger than one stripe unit. Declustered parity has the advantage

of exploiting our large-write optimization with smaller user writes because it has smaller parity stripes. On

the other hand, because our implementation does not currently meet our maximal parallelism criterion, it

will not be as able to exploit the full parallelism of the array on large user accesses. Overall performance

will be dictated by the balancing of these two effects, and will depend on the access size distribution.

7. Degraded-Mode Performance

Figures 6-1 and 6-2 also show average response time curves for our array when it is degraded by a

failed disk that has not yet been replaced. In this case, an on-the-fly reconstruction takes place on every

access that requires data from the failed disk. When such an access is a read (or pre-read), the failed disk's

contents are reconstructed by reading and computing an exclusive-or over all surviving units of the

requested data's parity stripe. Because the amount of work this entails depends on the size of each parity

stripe, these degraded-mode average response time curves suffer less degradation with a lower parity

declustering ratio (smaller a). This is the only effect shown in Figure 6-1 (100% Reads), but for writes

there is another consideration. When a user write specifies data on a surviving disk whose associated parity

unit is on the failed disk, there is no value in trying to update this lost parity. In this case a user write
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Figure 6-1: Response Time
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Figure 6-2: Response Time
100% Writes
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induces only one, rather than four, disk accesses. This effect decreases the workload of the array relative to

the fault-free case, and, at low declustering ratios, it can lead to slightly better average response time in the

degraded rather than fault-free mode!

8. Reconstruction Performance

The primary purpose for parity declustering over RAID 5 organizations has been given as the desire to

support higher user performance during recovery and shorter recovery periods [Muntz90]. In this section

we show this to be effective, although we also show that previously proposed optimizations are not entirely

so. We also demonstrate that there remains an important trade-off between higher performance during

recovery and shorter recovery periods.

Reconstruction, in its simplest form, involves a single sweep through the contents of a failed disk. For

each stripe unit on a replacement disk, the reconstruction process reads all other stripe units in the corre-

sponding parity stripe and computes an exclusive-or on these units. The resulting unit is then written to the

replacement disk. The time needed to entirely recover a failed disk is equal to the time needed to replace it

in the array plus the time needed to reconstruct its entire contents and store them on the replacement. This

latter time is termed the reconstruction time. In an array that maintains a pool of on-line spare disks, the

replacement time can be kept sufficiently small that repair time is essentially reconstruction time. Highly

available disk arrays require short repair times to assure high data reliability because the mean time until

data loss is inversely proportional to mean repair time [Patterson88]. However, minimal reconstruction

time occurs when user access is denied during reconstruction. Because this cannot take less than the three

minutes it takes to read all sectors on our disks into their track buffers, and usually takes much longer, con-

tinuous-operation systems require data availability during reconstruction.

Muntz and Lui identify two optimizations to a simple sweep reconstruction: redirection of reads and

piggybacking of writes. In the first, user accesses7 to data that has already been reconstructed are serviced

by (redirected to) the replacement disk, rather than invoking on-the-fly reconstruction as they would if the

data were not yet available. This reduces the number of disk accesses necessary to service a typical request

7. In what follows, we distinguish between user accesses, which are those generated by applications as part
of the normal workload, and reconstruction accesses, which are those generated by a background recon-
struction process to regenerate lost data and store it on a replacement disk.
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during reconstruction. In the second optimization, user read-accesses that cause on-the-fly reconstruction

also cause the reconstructed data to be written to the replacement disk. This is targeted at speeding recon-

struction, since those units need not be subsequently reconstructed.

Muntz and Lui also mention that in servicing a user's write to a stripe unit whose contents have not

yet been reconstructed, the device driver has a choice of writing the new data directly to the replacement

disk or performing an on-the-fly reconstruct-read followed by an update of the associated parity unit alone.

Their model assumes that users' writes are always sent to the replacement disk if appropriate, but for rea-

sons explained below, we question whether this is always a good idea. Therefore, we investigate four algo-

rithms, distinguished by the amount and type of non-reconstruction workload they send to the replacement

disk. In our baseline algorithm, no extra work is sent; whenever possible user writes are folded into the

parity unit, and neither reconstruction optimization is enabled. In our user-writes algorithm, only user

writes explicitly targeted at the replacement disk are sent directly to the replacement. The redirection algo-

rithm adds the redirection of reads optimization to the user-writes case. Finally, the redirect plus piggyback

algorithm adds the piggybacking of writes optimization to the redirection algorithm.8

8.1 Single Threaded vs. Parallel Reconstruction

Figures 8-1 and 8-2 present the reconstruction time and average user response time for our four recon-

struction algorithms under a user workload that is 50% 4 KB random reads and 50% 4 KB random writes.

These figures show the substantial effectiveness of parity declustering for lowering both the reconstruction

time and average user response time relative to a RAID 5 organization (a = 1.0). For example, at 105 user

accesses per second, an array with declustering ratio 0.15 reconstructs a failed disk about twice as fast as

the RAID 5 array while delivering an average user response time that is about 33% lower.

While Figures 8-1 and 8-2 make a strong case for the advantages of declustering parity, even the fast-

est reconstruction shown, about 60 minutes9, is 20 times longer than the physical minimum time these

disks take to read or write their entire contents. The problem here is that a single reconstruction process is

not able to highly utilize any of the array's disks, particularly at low declustering ratios. To further reduce

8. Note that our definition of a 'baseline' differs from that of Muntz and Lui, who use the term to identify
what we call the user-writes case.
9. For comparison, RAID products available today specify on-line reconstruction time to be in the range of
one to four hours [Mcador89, Rudeseal92].
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Figure 8-1: Single-Thread Reconstruction Time
50% Reads, 50% Writes
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Figure 8-2: Single-Thread Avg User Response Time
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Figure 8-3: Eight-Way Parallel Reconstruction Time
50% Reads, 50% Writes
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Figure 8-4: Eight-Way Parallel Avg User Response Time
50% Reads, 50% Writes
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reconstruction time we introduce parallel reconstruction processes. This should speed reconstruction sub-

stantially, although it will also further degrade the response time of concurrent user accesses.

Figures 8-3 and 8-4 show the reconstruction time and average user response time when eight pro-

cesses are concurrently reconstructing the replacement disk. For these workloads of 105 and 210 user

accesses per second, reconstruction time is reduced by a factor of four to six relative to Figure 8-1. This

gives reconstruction times between 10 and 40 minutes. However, response times suffer increases of 35% to

75%. Still, even the worst of these average response times is less than 200 ms, so a simple transactions

such as TPCA, which should require less than three disk accesses per transaction, should have a good

chance of meeting its required transaction response time of two seconds.

8.2 Comparing Reconstruction Algorithms

The response time curves of Figures 8-2 and 8-4 show that Muntz and Lui's redirection of reads opti-

mization has little benefit in lightly-loaded arrays with a low declustering ratio, but can benefit heavily-

loaded RAID 5 arrays with 10% to 15% reductions in response time. The addition of piggybacking of

writes to the redirection of reads algorithm is intended to reduce reconstruction time without penalty to

average user response time. With the user loads we employ, piggybacking of writes yields very little

improvement of penalty over redirection of reads alone. We will not pursue piggybicking of writes further

in this section.

Figures 8-1 and 8-2 also show that the two "more optimized" reconstruction algorithms do not consis-

tently decrease reconstruction time relative to the simpler algorithms. In particular, the single-threaded

user-writes algorithm yields faster reconstruction times than all others for all values of ox less than 0.5.

Similarly, the eight-way parallel baseline and user-writes algorithms yields faster reconstruction times than

the other two for all values of a less than 0.5. These are surprising results. We had expected the more opti-

mized algorithms to experience improved reconstruction time due to the off-loading of work from the

over-utilized surviving disks to the under-utilized replacement disk, and also because in the piggybacking

case, they reduce the number of units that need to get reconstructed. The reason for this reversal is that

loading thc replacement disk with random work penalizes the reconstruction writes to this disk more than

off-loading benefits the surviving disks unless the surviving disks are highly utilized.
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Figure 8-5: The effect of the optimizations on the reconstruction cycle.

Because reconstruction time is the time taken to reconstruct all parity stripes associated with the failed

disk's data, one at a time, our unexpected effect can be understood by examining the number of and time

taken by reconstructions of a single unit as shown in Figure 8-.j. We call this single stripe unit reconstruc-

tion period a reconstruction cycle. It is composed of a read phase and a write phase. The length of the read

phase, the time needed to collect and exclusive-or the surviving stripe units, is approximately the maxi-

mum of G-1 reads of disks that are also supporting a substantial load of random user requests. If a small

amount of work is off-loaded from these disks while they a-c not c:cessively loaded, it will not signifi-

cantly reduce this maximum access time. Z.L, even a small amount of random load imposed on the

replacement disk may greatly increase its average i 'cess times because reconstruction writes are sequen-

tial and do not require long seeks. This effect, suggesting a preference for algorithms that minimize non-

reconstruction activity in the replacement disk, must be contrasted with the reduction in number of recon-

struction cycles that occurs when user activity causes writes to the portion of the replacement disk's data

that has not yet been reconstructed.

Table 8-1 presents a sample of the durations of the intervals in Figure b-.. These numbers are aver-

aged over the reconstruction of the last 300 stripe units on a replacement disk. The standard deviations are

shown in parentheses. For these final reconstruction cycles, the piggybacking of writes is not likely to

occ'.ir, but the redirection of reads will be at its greatest utility. This table shows that the more complex

algorithms tend to yield lower read phase times and higher write phase times. These numbers suggest that

with a low declustering ratio the baseline algorithm has an advantage over the user-writes algorithm and

both are faster than the other two algorithms.

This suggestion is not entirely borne out by Figures 8-1 and 8-3 because the baseline algorithm gets
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none of its reconstruction work done for it by user requests, as is the case for the other algorithms. In the

single threaded case, reconstruction is so slow that this latter effect dominates and the baseline algorithm

reconstructs more slowly than the others for all but the smallest declustering ratio. However, in the eight-

way parallel case, reconstruction is fast enough that this "free reconstruction" effect does not compensate

for longer services times experienced by the replacement disk because free reconstruction moves the heads

around randomly.

Single-Thread Reconstruction

a=0.15 a = 0.45 a= 1.0

Baseline 88(2)+15(0.2) = 103 125(4)+15(0.2) = 140 198(8)+15(0.1) = 213

User-Writes 68(2)+17(0.02) = 85 97(2)+19(0.02) = 116 196(5)+23(0) = 219

Redirect 65(2)+50(2) = 115 86(2)+41(0.1) = 127 137(3)+42(1) = 179

Redir+Piggybacl 64(3)+44(2) = 109 86(2)+4(2) = 127 134(4)+46(0.1) = 180

Eight-Way Parallel Reconstruction

a= 0.15 a = 0.45 c= 1.0

Baseline 69(4)+10(0.4) = 79 96(4)+11(0.2) = 107 204(8)+14(0) = 218

User-Writes 89(3)+27(0.4) = 116 121(3)+23(0.2) = 144 225(8)+22(0) = 247

Redirect 85(3)+58(2) = 143 102(2)+50(3) = 152 160(4)+36(0.5) = 196

Redir+Piggybaci 85(1)+58(2) = 143 102(2)+50(0.9) = 152 160(2)+36(1) = 196

Table 8-1: Reconstruction cycle times (Ms) at Rate = 210
read_time(std. dev) + writetime(std. dev.) = cycletime.

8.3 Comparison to Analytic Model

Muntz and Lui also proposed an analytic expression for reconstruction time in an array employing

declustered parity [Muntz90]. Figure 8-6 shows our best attempt to reconcile their model with our simula-

tions. Because their model takes as input the fault-free arrival rate and read-fraction of accesses to the disk

rather than of user requests, we apply the following conversions, required because each user write induces

two disk reads and two disk writes. Letting the fraction of user accesses that are reads be R, Muntz and

Lui's rate of arrival of disk accesses is (4-3R) times larger than our user request arrival rate, and the frac-

tion of their disk accesses that are reads is (2-R)/(4-3R).

Their model also requires as input the maximum rate at which each disk executes its accesses. It is this

parameter that causes most of the disagreement between their model and our simulations. In Figure 8-6 we
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use the maximum rate at which one disk services entirely random accesses (46 accesses per second) in

their model. This is consistent with the way Muntz and Lui's designed their model, but it does not account

for the fact that real disks execute sequential accesses much faster than random accesses. For example,

with these disks and random accesses the minimum time required to read or write an entire disk is over

1700 seconds - more than three times longer than our fastest simulated reconstruction time.

The other manifestation of the problem of using a single disk service rate is their predictions for the

benefits of the redirection of reads and piggybacking of writes optimizations. Because redirecting work to

the replacement disk in their model does not increase this disk's average access time (as is shown to be

false for our simulations in Table 8-1), their predictions for the user-writes algorithm are more pessimistic

than for their other algorithms.

9. Conclusions and Future Work

In this paper we have demonstrated that parity declustering, a strategy for allocating parity in a single-

failure-correcting redundant disk array that trades increased parity overhead for reduced user performance

degradation during on-line failure recovery, can be effectively implemented in array controlling software.

We have exploited the special characteristics of balanced incomplete and complete block designs to nro-

vide array configuration flexibility while meeting most of our proposed criteria for the "goodness" of a par-

ity allocation. In particular, using block designs to map parity stripes onto a disk array insures that both the

parity update load and the on-line reconstruction load is balanced over all (surviving) disks in the array.

This is achieved without performance penalty in a normal (non-recovering) user workload dominated by

small (4 KB) disk accesses.

Previous work proposing declustered parity mappings for redundant disk arrays has suggested with-

out implementation the use of block designs, has proposed two optimizations to a simple sweep recon-

struction algorithm, and has analytically modeled the resultant expected reconstruction time [Muntz9O]. In

addition to extending their proposal to an implementation, our work evaluates their optimizations and

reconstruction time models in the context of our software implementation running on a disk-accurate sim-

ulator. Our findings are strongly in agreement with theirs about the overall utility of parity declustering, but

we disagree with their projections for expected reconstruction time and the value of their optimized recon-
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Figure 8-6: Comparing M&L Model to Simulation
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struction algorithms. Our disagreements largely result because of our more accurate models of magnetic-

disk accesses. We find that their estimates for reconstruction time are significantly pessimistic and that

their optimizations actually slow reconstruction in some cases. We also find that in practice, multiple, par-

allel reconstruction processes are necessary to attain fast reconstruction, although this additional load can

degrade user response time substantially. Our most surprising result is that in an array with a low decluster-

ing ratio and parallel reconstruction processes, the simplest reconstruction algorithm produces the fastest

reconstruction time because it best avoids disk seeks.

We feel that future work on parity declustering and related performance/reliability trade-offs is rich in

research problems, a sample of which we give here. Our use of block designs would be greatly improved if

we could find a wider range of parameters. In particular, satisfactorily small block designs with a decluster-

ing ratio between 0.5 and 0.8 are unknown to us. We have also not spent much time on the data mapping in

our declustered parity arrays; we think many of our layouts may be amenable to both our large write opti-

mization and maximal parallelism criteria. With an eye to our performance modeling, we would like to see

Muntz and Lui's analytical model modified to incorporate more of the complexity of disk accesses and we

intend to explore disk arrays with different stripe unit sizes and user workload characteristics. One impor-

tant concern that neither our nor Muntz and Lui's work considers is the impact of CPU overhead and archi-

tectural bottlenecks in the reconstructing system [Chervenak91 ]. For greater control of the reconstruction

process we intend to implement throttling of reconstruction and/or user workload as well as a flexible pri-

oritization scheme that reduces user response time degradation without starving reconstruction. Finally, we

hope to install our software implementation of parity declustering on an experimental, high-performance

redundant disk array and measure its performance directly.
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Appendix: Block Designs

We used six block designs in our simulations, corresponding approximately to a ranging from 0.1 to

0.85. There was one case where we could not find an incomplete block design to match our requirements,

and so we used a complete design. The designs below are given in the abbreviated notation described by

Hall [Hart86]. In each case we give a brief description of how to deriv- the design from the notation, and

refer the reader to Hall for more details.

In the first four designs, a set of blocks and a modulo number N are specified. The full design is gener-

ated by adding element-wise all of the residues modulo N to each of the indicated blocks. Where a period P

is specified, the addition terminates after P iterations. In all cases, the addition is done modulo N.

Block Design 1: b = 70, v = 21, k = 3, r = 10, A. = 1, => a = 0.1

[0, 1, 3]; [0, 4, 10]; [0, 16, 19] (mod 21)

[0, 7, 141 (mod 21) period 7

Block Design 2: b = 105, v = 21, k = 4, r = 20, X = 3 => c = 0.15

[0, 2, 3, 7]; [0, 3, 5, 91; [0, 1, 7, 111; [0, 2, 8, 11]; [0, 1, 9, 14] (mod 21)

Block Design 3: b= 21, v=21, k= 5, r=5,= => a=0.2

[3, 6, 7, 12, 14] (mod 21)
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Block Design4: b=42, v= 21,k=6, r= 12,%=3 => a=0.25

[0, 2, 10, 15, 19, 20]; [0, 3, 7, 9, 10, 16] (mod 21)

A block design is said to be symmetric if b = v and k = r. Given a symmetric block design with a par-

ticular b, k, and , a new design with b' = b - 1, v' = k, k' = Xr' = r - 1, and ' = x - I can be generated by

selecting one of the blocks (Bo) and constructing new blocks B0 ', B1', ..., Bb. ' such that Bi' contains the X

objects common to Bi and Bo. Such a design is called a derived design.

Block Design 5: b = 42, v = 21, k = 10, r = 20, X = 9 => a = 0.45

Derived design of [0, 3, 5, 8, 9, 10, 12, 13, 14, 15, 16, 20, 22, 23, 24, 30, 34, 35, 37, 39, 40] (mod 43)

Block Design 6: b = 1330, v = 21, k = 18, r = 1140, X = 969 => a = 0.85

We used a complete block design in this case.
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