
AD-A254 050

REPOT SEUR~l~ ~ Ib RESTRICTIVE MARKINGS
SECURITY CLASFCTO AU 'dY E L EC TE 3 DISTRIBUTION /AVAIIBj' -t cben

'ELSIIAINDWG % M 1cZment hasbenProdfor public release and sale; itp

PDECMLASSIFICATION I DOWNGRA% Sc Un i mi-ted distribution is unimite&

PERFORMING ORGANIZATION 5. MONITORING ORGANIZATION REPORT NUMBER(S)

. NAME OF PERFORMING ORGANIZATION I 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Sciences Department (If applicabWe)
University of Wisconsin Office of the Chief of Naval Research
ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City; State, and ZIP Code)

1210 West Dayton Street 800 N. 0uincy Street
Madison, WI 53706 Arlington, VA 22217-5000

I. NAME OF FUNDING ISPONSORING 8Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) ARPA Order No: 6378
DARPA ONR Contract No: N00014-88-K-0590
ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Boulevard PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209-2308 ELEMENT NO. NO. NO ACCESSION NO.

1. TITLE (In lude Security Classification)

Final Report: Software Support for Programming in the Large

2. PERSONAL AUTHOR(S)
Reps, Thomas; Horwitz, Susan; Solomon, Marvin

3a. TYPE OF REPORT 113b. TIME COVERED 4. DATE OF REPORT (Year, Month, Day) 15, PAGE COUNT
Final FROM 7/88 TO 12/91 1992, August, 6 11

6. SUPPLEMENTARY NOTATION

7. COSATI CODES ' 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD I GROUP I SUB-GROUP Software development environment, version control,

configuration management, program integration, program
slicing, persistent object store

9. ABSTRACT (Continue on reverse if necessary and identify by block number)
The research supported under this contract concerned the design and implementation of
interactive environments for computer programming. Activities were carried out in two
main areas:

Semantics-based progrom integration
By progra= integration we mean the merging process that one has to go through when a
program's source code diverges into multiple variants (e.g., supporting different
features, different operating systems, or incorporating different bug-fixes). The
goal of our research is to create a system that tests whether the enhancements made
to two or more variants of a program interfere, and - if there is no interference -
automatically integrates (combines) the variants so as to incorporate all the
different enhancements in one program. This would be applied, for example, when a
number of collaborators are collectively producing updates in a large programming
project,

0 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 OTIC USERS Unclassified

!2a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code)I 2c. OFFICE SYMBOL
Thomas Reps (608)262-2091 5387

10 FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

eU.&& Gmi m ~m in~em-e

19. Abstract (Continued)

Logic-based tooZs for prograin-in-the-Zarge

The CAPITL program-development environment is an integrated collection to
tools supporting cooperative development of moderate to large programs. It
includes a database for storing software objects such as program source
modules, executable programs, and documentation, as well as arbitrary
properties and relationships among objects. The database efficiently
supports multiple snapshots or versions of the objects and relationships.
A sophisticated deductive query language - based on Prolog - supports
configuration management.

Final Report: Software Support for Programming in the Large
(ARPA Order No.: 6378; ONR Contract No.: N00014-88-K-0590)

Thomas Reps (PI.). Susan Horwitz, and Marvin Solomon
University of Wisconsin-Madison

vrICQ'1
Accesion Fr

NTIS CRAI

JustiititO1I

Distiittol.........

L
IAva

l : ;(
r

92- 22924

Final Report: Software Support for Programming in the Large
(ARPA Order No.: 6378; ONR Contract No.: N00014-88-K-0590)

Thomas Reps (PI.), Susan Horwitz, and Marvin Solomon
University of Wisconsin-Madison

1. Introduction

This report summarizes the activities that were carried out under ARPA Order No. 6378, monitored by the
Office of Naval Research under contract N00014-88-K-0590. The contract provided full or partial support
for three faculty members, two visiting faculty members, one post-doctoral associate, ten graduate students,
one undergraduate student, and two staff programmers.'

The research supported by contract N00014-88-K-0590 concerns the design and implementation of
interactive environments for computer programming; the goal is the development of powerful language-
specific tools that support program development, debugging, and testing, and exploit state-of-the-art per-
sonal computing hardware. Activities were carried out in two main areas:
Semantics-based program integration

By program integration we mean the merging process that one has to go through when a program's
source code diverges into multiple variants (e.g., supporting different features, different operating sys-
tems, or incorporating different bug-fixes). The goal of our research is to create a system that tests
whether the enhancements made to two or more variants of a program interfere, and-if there is no
interference-automatically integrates (combines) the variants so as to incorporate all the different
enhancements in one program. This would be applied, for example, when a number of collaborators
are collectively producing updates in a large programming project.

Logic-based tools for programming-in-the-large
The CAPITL program-development environment is an integrated collection of tools supporting
cooperative development of moderate to large programs. It includes a database for storing software
objects such as program source modules, object modules, executable programs, and documentation, as
well as arbitrary properties and relationships among objects. The database efficiently supports multi-
ple snapshots or versions of the objects and relationships. A sophisticated deductive query
language-based on Prolog-supports configuration management.

2. Semantics-Based Program Integration
Our goal is to design a semantics-based tool for program integration. We want a tool that-given program
Base and two variants A and B--makes use of knowledge of the programming language to determine
whether the changes made to Base to produce A and B have undesirable semantic interactions; only if there
is no such interference should the tool produce a merged program M.

While our long-term goal is to design such a tool for a full-fledged programming language, for the short
term we have been using a simplified model of the program-integration problem so as to make the problem
amenable to theoretical study. This model possesses the essential features of the problem, and thus permits
us to conduct our studies without being overwhelmed by inessential details. Our integration model has the
following characteristics:
(1) We restrict our attention to the integration of programs written in a simplified programming language

that has only assignment statements, conditional statements, while loops, and final output statements
(called end statements); by definition, only those variables listed in the end statement have values in
the final state. The language does not include input statements; however, a program can use a variable
before assigning to it, in which case the variable's value comes from the initial state.

(2) When an integration algorithm is applied to base program Base and variant programs A and B, and if
integration succeeds-producing program M-then for any initial state c; on which Base, A, and B all

'Other support for the work has been provided by the National Science Foundation under grants DCR-S552602. DCR-8603356, CCR-
8958530. and CCR-9100424, by a David and LAuile Packard Fellowship for Science and Engineering. and by donations from Cray
Research Foundation, DEC. Eastman Kodak. HP. IBM, Siemens, Xeroxt, and 3M.

-2-

terminate normally,2 M must have the following properties:
(i) M terminates normally on a.
(ii) For any variable x that has final value v after executing A on a, and either no final value or a dif-

ferent final value v' after executing Base on Y, x has final value v after executing M on a (i.e., M
agrees with A onx).

(iii) For any variable y that has final value v after executing B on a, and either no final value or a dif-
ferent final value v' after executing Base on C, y has final value v after executing M on a (i.e., M
agrees with B on y).

(iv) For any variable z that has the same final value v after executing Base, A, and B on a, z has final
value v after executing M on a (i.e., M agrees with Base, A, and B on z).

(3) Program M is to be created only from components that occur in programs Base, A. and B.
A more informal statement of Property (2) is: changes in the behavior of A and B with respect to Base

must be preserved in the integrated program, along with the unchanged behavior of all three.
Properties (1) and (3) are syntactic restrictions that limit the scope of the integration pmhlem. Property

(2) defines the model's semantic criterion for integration and interference. Any program M that satisfies
Properties (1), (2), and (3) integrates Base, A, and B; if no such program exists then A and B interfere with
respect to Base. However, Property (2) is not decidable, even under the restrictions given by Properties (1)
and (3); consequently, any program-integration algorithm will sometimes report interference-ad conse-
quently fail to produce an integrated program--even though there is actually no interference (i.e., even
when there is some program that meets the criteria given above).

The Horwitz-Prins-Reps Algorithm for Program Integration
The first algorithm that meets the requirements given above was formulated by S. Horwitz, J. Prins, and T.
Reps in early 1987 (see [Horwitz88,Reps88] and publication [6] in the list provided in Section 4). That
algorithm-referred to hereafter as the HPR algorithm-is the first algorithm for semantics-based program
integration.

The HPR algorithm represents a fundamental advance over text-based program-integration algorithms
(such as the UNIX utility di3), and provides the first step in the creation of a theoretical foundation for
building a semantics-based program-integration tool. Changes in behavior rather than changes in text are
detected, and are preserved in the integrated program. To be more precise, by the "behavior" of a program
component on some initial state a, we mean the sequence of values produced at the component when the
program is executed on a. By "the sequence of values produced at a component," we mean: for a predi-
cate, the sequence of boolean values to which the predicate evaluates; for an assignment statement, the
sequence of values assigned to the target variable; for the final use of a variable in an end statement, the
singleton sequence containing the variable's final value.

Although it is undecidable to determine whether a program modification actually leads to a change in
program behavior, it is possible to determine a safe approximation by comparing each of the variants with
the original program Base. To determine this information, the HPR algorithm employs a program
representation that is similar to the program dependence graphs (PDGs) that have been used previously in
vectorizing and parallelizing compilers [Kuck81,Ferrante87]. The algorithm also makes use of Weiser's
notion of a program slice [Weiser84, Ottensteing4] to find the statements of a program that determine the
values of potentially affected variables.

Given PDGs Ggin, GA, and GB (for programs Base, A, and B, respectively), the HPR algorithm performs
three steps. The first step identifies three subgraphs that represent the changed behavior of A with respect
to Base, the changed behavior of B with respect to Base, and the behavior that is the same in all three pro-
grams. The second step combines these subgraphs to form a merged dependence graph Gm. The third step
determines whether A and B interfere with respect to Base; if there is no interference, an integrated pro-
gram M is produced from graph GM.

Considerable effort was spent on correctness considerations related to the HPR algorithm. This work
was reported in publications [16) and [261, which are summarized below.

1l'here am two ways in which a prolpan may fail to tenninaia normally on some initial rate: (1) the prmn contais a non-
tenninating loop, or (2) a fault ocouan, uich as division by zero.

-3-

Semantic foundations of the HPR algorithm (publication 1161)
The HPR algorithm makes use of the notion of a program slice to find just those statements of a pro-
gram that determine the values of potentially affected variables. Consequently, W. Yang and T. Reps
studied the relationship between the execution behavior of a program and the execution behavior of its
slices. Our main results were two theorems: one shows that a slice captures a portion of a program's
behavior in the sense that, for any initial state on which the program halts, the program and the slice
compute the same sequence of values for each element of the slice; the other shows that if a program
is decomposed into (two or more) slices, the program halts on any state for which all the slices halt.
These results were then used to show that the HPR algorithm meets the semantic criterion for integra-
tion that was given at the beginning of this section as Property (2).

Correctness of an algorithm for reconstituting a program from a dependence graph (publication [261)
A rather involved argument was necessary to establish the correctness of the method used in the HPR
algorithm for reconstituting the text of the integrated program from the merged program dependence
graph.

A Prototype Program-Integration Tool
An important component of our work has been the implementation of a prototype program-integration sys-
tem that realizes the HPR algorithm (see publications [32] and [27]). This work has been carried out by T.
Bricker, G. Rosay, V. Barger, and T. Reps. The prototype integration system allows us to demonstrate the
concepts of slicing and integration, and serves as a testbed for some of the ideas developed by members of
the project that go beyond the HPR algorithm (see below). Fcr example, it has been extended to demon-
strate the algorithm we developed for efficiently testing whether two slices are isomorphic (see publication
[21).

The user interface for the integration tool incorporates a language-specific editor created using the Syn-
thesizer Generator, a meta-system for creating interactive, language-specific program-development systems
[Reps88a, Reps88b]. Data-flow analysis of programs is carried out according to the editor's defining attri-
bute grammar and used to construct the underlying program dependence graphs. An integration command
added to the editor invokes the integration algorithm on the program dependence graphs, reports whether
the variant programs interfere, and, if there is no interference, builds the integrated program.

During Spring 1990 we began distributing the prototype integration system under license from the
University of Wisconsin-Madison, and an enhanced version of the system was distributed in Spring 1992
(see publication [221). The system has currently been licensed to eight sites.

Algebraic Properties of Program Integration
The issue here was to understand the algebraic properties of the program-integration operation, such as
whether there are laws of associativity and distributivity. These are of interest when dealing with composi-
tions of integrations. For example, if three variants of a given base program are to be integrated by a pair
of (two-variant) integrations, it is important to know whether there is a law of associativity to guarantee
that it does not matter which two variants are integrated first. (Such a law does, in fact, hold.)

To demonstrate such properties, we first reformulated the integration algorithm as an operation in a
Brouwerian algebra constructed from sets of dependence-graph slices. (A Brouwerian algebra is a distri-
butive lattice with an additional binary operation, denoted by -, which is a kind of difference operation.)
In this algebra, the program-integration operation can be defined solely in terms of u, n", and -. By mak-
ing use of the rich set of algebraic laws that hold in Brouwerian algebras, we were able to establish a
number of the integration operation's algebraic properties (see publications [13] and [31).

The prototype integration system was extended to implement these ideas by adding to the system an edi-
tor and an interpreter for a higher-order functional language that operates on values of type Brouw, where a
Brouw value is a set of slices of a certain form. The primitive operations on Brouw values are the join,
meet, and pseudo-difference of a Brouwerian lattice, together with a ternary operation for integration.
Functional expressions are built up using lambda-abstraction, application, conditional expressions, let-
clauses, and a least fixed-point operator. A free variable in an expression (say x) denotes the Brouw value
created from the program in editing buffer x. If no such buffer exists, the value is 1, the least element in
the Brouwerian lattice of slice sets. An evaluation command added to the editor invokes the interpreter on
the expression, and-if the final result is a Brouw value-builds the corresponding program (if one exists).

G. Ramalingam and T. Reps have also pursued some other approaches to studying the algebraic proper-
ties of program-integration algorithms (see publications [91, [8], and [24]).

-4-

Illustrating Interference
T. Bricker and T. Reps studied how an integration tool can illustrate the causes of interference to the user
after interference is detected (see publication [14]). Our main technical result was an alternative character-
ization of the HPR algorithm's interference criterion that is more suitable for illustrating the causes of
interference. We proposed a number of methods for an integration system to display information to
demonstrate the causes of interference to the user. One of these methods was then incorporated into the
prototype integration tool.

Identifying Syntactic and Semantic Differences in Versions of Programs

S. Horwitz and W. Yang studied techniques for identifying syntactic and semantic differences in two ver-
sions of a program. The techniques used by the HPR algorithm for identifying the changed behaviors of
the variant programs with respect to the base program were adapted by Horwitz for use in a language-
based tool for identifying the semantic and textual differences between two versions of a program (see pub-
lication [!2]). The prototype integration system was extended to incorporate these ideas.

Yang's syntactic matching algorithm (see publication [4]) operates on the abstract-syntax tree represen-
tations of two programs. The algorithm finds a maximum matching between the two trees; after the match-
ing, unmatched components are identified to the user as the syntactic differences between the two pro-
grams. An implementation of this algorithm (for C programs) was put in the public domain.

Extending the Range of Applicability of the HPR Algorithm
A major focus of our work has been on how to extend the set of language constructs to which our ideas
about program-integration are applicable. These issues have been a fertile source of topics for Ph.D.
dissertations.

Languages With Procedure Calls
D. Binkley, S. Horwitz, and T. Reps investigated definitions of integration and interference that are suitable
for integration of programs in languages with procedure calls. We first considered the problem of interpro-
cedural slicing-generating a slice of an entire program, where the slice crosses procedure boundaries. To
solve this problem, we introduced a new kind of graph to represent programs, called a system dependence
graph, which extends previous dependence representations to incorporate collections of procedures (with
procedure calls) rather than just monolithic programs (see publication [30]). Our main result was an algo-
rithm for interprocedural slicing that uses the new representation (see publications [17] and [5]).

The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called
procedure. To handle this problem, system dependencz graphs include some data-dependence edges that
represent transitive dependences due to the effects of procedure calls, in addition to the conventional
direct-dependence edges. These edges are constructed with the aid of an auxiliary structure that represents
calling and parameter-linkage relationships. This structure takes the form of an attribute grammar. The
step of computing the required transitive-dependence edges is reduced to the construction of the subordi-
nate characteristic graphs for the grammar's nonterminals.

Results on the integration problem for programs in languages with procedure calls are presented in D.
Binkley's Ph.D. dissertation (see publication [18]).

Accommodating Semantics-Preserving Transformations
A limitation of the HPR algorithm is that it is overly conservative in its definition of interference. For
example, it will report interference (and hence fail to produce an integrated program) when one variant
changes the way a computation is performed-without changing the values computed (i.e., the change is a
semantics-preserving transformation)-while the other variant adds code that uses the result of the compu-
tation. To address this limitation, W. Yang, S. Horwitz, and T. Reps devised a new integration
algorithm--referred to hereafter as the YHR algorithm--that uses more powerful notions of equivalence
than slice-equality and consequently is able to accommodate semantics-preserving transformations (see
publications [29], [11], and [1]).

The YHR algorithm is parameterized by an auxiliary algorithm that determines, for each component of
Base, A, and B, which other components are congruent. (Roughly, two components are congruent only if
they compute the same sequences of values when their respective programs are executed on the same ini-
tial state.) The YHR algorithm then uses an operation called limited slicing to extract program fragments
from the base program and its variants that are smaller than the fragments extracted by the HPR algorithm.

-5-

Because the YHR algorithun is parameterized by the congruence-testing algorithm used, the YHR algo-
rithm is actually a class of integration algorithms that accommodate semantics-preserving transformations.
Although in general it is undecidable to identify congruent vertices exactly, the YHR algorithm can employ
any safe congruence-testing algorithm (i.e., one that identifies a subset of the exact set of congruent pairs of
vertices). Starting from an algorithm given by B. Alpern, M. Wegman, and K. Zadeck [Alpern88] we
were able to develop one such congruence-testing algorithm (see publication [31]).

These results were the subject of W. Yang's Ph.D. dissertation (see publication [21]).

Languages With Pointer Variables
Past work by other researchers has provided techniques for determining data dependences for languages
with scalar variables and arrays. Work carried out by P. Pfeiffer, S. Horwitz, and T. Reps focused on
methods for determining data dependences for languages with pointer-valued variables and heap-allocated
storage (e.g., Lisp and Pascal). Using the framework of abstract interpretation, we defined a family of
algorithms that compute safe approximations to (i.e., supersets of) the flow, output, and anti-dependences
of a program written in such a language. Our algorithms account for destructive updates to fields of a
structure and thus are not limited to the cases where all structures are trees or acyclic graphs; they are
applicable to programs that build cyclic structures. The abstract-interpretation framework allowed us to
demonstrate the correctness of these algorithms (see publication [15]).

Techniques for ci 'ating dependence graphs for languages with pointer variables are presented in P.
Pfeiffer's Ph.D. dissertation (see publication (191).

3. Logic-Based Tools for Programming-in-the-Large

The CAPITL program-development environment is an integrated collection of tools supporting coopera-
tive development of moderate to large programs. The tools are all based on a persistent object store built
with the Exodus database toolkit [Carey90]. Closely integrated with this object store are an interactive
browsing interface constructed using the InterViews windowing system [Linton89], a Unix compatibility
interface, and a deductive query language.

3.1. The CAPITL Object Store

CAPITL's persistent storage is structured as a labeled, directed graph of terms. A term is either an atom or
an internal node. Atoms currently come in five flavors: integers, real numbers, printable strings, byte
strings, and "variables." (Variables are explained later in the section on Congress.) An internal node has a
character-string label, and a table of references to terms indexed by distinct strings called selectors. In
other words, a CAPITL database may be thought of as a directed graph with leaves containing data and
arcs and internal nodes labeled by character strings. If t is a term and s is one of its selectors, the s attribute
of t (denoted t.s) is the term referenced by selector s in t.

CAPITL is "identity-based" in the sense that each term has a unique identity: References identify
specific instances of terms. Two terms with identical contents may nonetheless be considered distinct.
Terms are explicitly created, and creating a new term is different from changing the contents of an existing
one. A term reference is similar to a pointer in Pascal or C except that term identities are never reused; a
reference to a newly allocated term can never be confused with a reference to one created earlier. An
internal node is similar to a C struct, Pascal record, SNOBOL table, AWK associative array, PostScript dic-
tionary, or LISP atom. It differs from a struct or record in that the set of selectors may be changed dynami-
cally and the value associated with a selector must be a non-nil pointer rather than data of arbitrary type.

CAPITL maintains multiple snapshots or versions of the database. Each operation accessing the CAP-
ITL database is done in the context of a designated current version. Changes affect only this version. A
new version is conceptually created by making a complete copy of the entire database. In fact, the imple-
mentation uses an algorithm due to Driscoll and others [Driscol189] that only requires copies of the terms
that have actually changed. The algorithm is also efficient in time: operations to switch versions, traverse a
particular version of the graphs, or make changes are nearly as fast as they would be were multiple ver-
sions not supported.

Each version has a version ID, which is a non-empty sequence of positive integers. The root version is
version "0". The ID of the first child of a given version is formed by incrementing the final component of

Computer-Assist Pmrramming In The Large

-6-

the parent's id. Sibling versions are formed by appending zeros. For example, the children of version
1.3.2 would be labeled 1.3.3, 1.3.3.0, 1.3.3.0.0, etc. This numbering is similar to the scheme used by RCS
and SCCS, and seems more natural than "Dewey decimal" numbering in the common case of long
sequences of single-child versions. For example, a sequence of consecutive derivations from 1.3.2 would
yield 1.3.3, 1.3.4, 1.3.5, etc. This numbering scheme can, however, become quite confusing when multiple
versions are derived from the same parent. We expect that versions will normally be selected by symbolic
name or other attributes stored in an index structure (itself stored in the database) rather than version ID.
(This part of the database is still under development.)

Although an internal node may have any set of selectors, some terms are marked as objects. An object is
a "heavier weight" internal node that is guaranteed to have certain selectors with "built-in" semantics.
Objects are further classified as directories, files, symbolic links, and other. Some CAPITL operations
(particularly those associated with the interactive browser) view the extent of an object to be the set of
terms reachable from it by paths (sequences of selectors) that do not go through other objects.

Every object has a contents attribute. Directory, file, and link objects are collecuvely called Unix-
like objects. Unix-like objects have integer attributes owner, group, permissions, mtime,
atime, and ctime.

A directory object is similar to a Unix file-system directory. Its contents attribute is a list of Unix-
like objects. Each object is contained in a unique parent directory. (CAPITL does not support the
equivalent of Unix "hard" links.) Every object has a directory attribute that points to its parent (the
root directory is its own parent), and a name attribute, which is a printable-string atom. The set of all
Unix-like objects forms a tree. Afile object corresponds to a Unix "plain" file. Its contents is a byte-
string atom. A symbolic link object's contents is a printable-string atom. The distinction between file
and link objects is only important in the context of the Exodus File System (EFS) described below.

3.2. Accessing a CAPITL database
A CAPITL database can be accessed and manipulated in (at least) four ways:
" Directly, through programs written in the E programming language, a persistent extension of C++

[Richardson]
" Through the Unix-compatible EFS interface.
" Through an interactive X-based browser.
" Through the Congress deductive query language.

CAPITL is written in the E programming language, so all of its structures can be accessed as data struc-
tures in E. For example, terms are all instances of the class Term, which exports such methods (member
functions) as

boolean IsAtomo;

which enquires whether the term is an atom, and

Term *Subterm(char *selector);
which returns the term referenced by a particular selector (if the term is not an atom). Class Integer is
a subclass of Term with an IntVal () method that returns its integer value, and so on.

An interactive browsing interface has been written on top of the X window system using the InterViews
toolkit.

3.3. EFS
The Exodus File System (EFS) allows a CAPITL database to be mounted and accessed as if it were a Unix
filesystem. The EFS server daemon efsd listens on a UDP port for NFS service requests. The Unix mount
command may be used to graft any subtree of a CAPITL database into an existing Unix directory tree.
Once a CAPITL database is mounted, Unix programs can access Unix-like objects just as if they were
actual Unix files, directories, and symbolic links. For example, the Unix open system call binds a file
descriptor to a CAPITL object, and the Unix read, write, and seek system calls can access or
modify its contents attribute (more precisely, they modify the value of the byte-string atom referenced
by the contents selector). Because this facility is implemented by the NFS feature of the Unix kernel,
neither client programs nor the Unix kernel need be modified in any way. EFS allows the other "Unix-
defined" attributes (owner, mtime, etc) to be accessed through the stat, lstat, and fstat system
calls and modified through Unix calls such as chown, chmod, and utimes. Other attributes are not

-7-

accessible through the EFS interface.4

Path names have the same semantics in EFS as in Unix, although the implementation is different. Since
hard links are not supported, each object lives in a unique directory and has a unique pathname. The final
component of the pethname is stored in the object itself as its name attribute.

The EFS supports version selection though an extension of pathname syntax. A version ID followed by
a colon is interpreted as a request to resolve a pathname in a designated version of the database. Path-
names without version ID's are resolved in the current default version. For example,

diff 3.3:prog.c prog.c

compares version 3.3 of prog. c with the current version, and

(echo -n "updates done "; date) >> 3.5:log

adds a line to version 3.5 of log. A version ID can actually appear anywhere in a path name, although
complicated pathnames with embedded version ID's may produce surprising results. The notation ID: at
the end of a pathname or followed by "/" is an abbreviation for "ID:.". As in Unix, a pathname that does
not start with "r is interpreted relative to the current directory (and version).

Since the Unix kernel uses the same mechanism to resolve chdir requests as open, the shell's cd
command can be used to navigate among versions. For example,

cd 3.2.1:
sets 3.2.1 as the default version for subsequent file-system requests. The pathname supplied in a mount
request is interpreted in the same way, so a default version can be specified at mount time, as in

mkdir project.old
mkdir project.new
mount capitl:/3.4: project.old
mount capitl:/3.5: project.new.
cd project.new/include
vi defs.h

3.4. Congress
Depending on your point of view, Congress may be viewed as a logic programming language, a deductive
database query language, an embedded query language, or a library of classes for convenient database
access. Since Congress is implemented as a library of classes, any E program can use Congress as a
"higher level" alternative or enhancement to the raw E interface. Congress programs not only manipulate
CAPITL terms, they are CAPITL terms, so they can be stored in the database and manipulated and
invoked from the interactive interface. Congress is an embedded query language for E. A Congress query
can be invoked from within an E program; the result is (loosely speaking) a set of Term data structures
that can be processed by the E program. Congress also provides a convenient way for E procedures to be
invoked by Congress programs, so in a sense, E is also embedded in Congress. Congress also has a
character-string syntax, so that ad hoc queries or whole programs can be typed in from the keyboard.

Congress is closely modeled on the LOGIN language of Ait-Kaci [Ait-Kaci86] which in turn is derived
from Prolog [Clocksin84I. The main differences between LOGIN and Prolog (for our purposes) are that
subterms are identified by selectors rather than position, and that terms are not restricted to trees, but can be
arbitrary (cyclic) graphs. The main extensions to LOGIN provided by Congress are a concept of object
identity and an assignment operation that allows terms to be updated in place, extending the assert and
retract operations in standard Prolog.

A Congress program is a set of procedures, each of which is a list of clauses. A clause consists of a
term called the head of the clause, and a sequence of zero or more terms called the body. A clause with an
empty body is called a fact. Since Congress programs are built out of terms, they can be stored (in
"parsed" form) in the object store. More importantly, all terms in the object store can be treated as facts by
a Congress program.

A recent Ph.D. thesis (publication [20) explores the application of logic programming to the mega-
programming task of configuration management. Each object is represented by a term that describes the
properties of the object in great detail. The descriptive information has the structure of a type in a rich
higher-order polymorphic type calculus. These descriptions are provided for source objects (program

'Extensions to support EFS access to other sulbutes am under coasideatiom.

-8-

source modules) as well as tools- executable programs that truansform and combine other objects. Each
type has two components, aform and afunctionality. For example, the form of a Pascal compiler written in
C is "C-source"; its functionality is to translate an object whose form is "Pascal-source" into an object of
form "object code" while preserving functionality.

A request for a derived object is presented in the form of a goal term. The contents attribute of the goal
is left unspecified. Other attributes may be unspecified or partially specified. A planner program (written
in Congress) figures out how to build an object matching the goal by applying existing or derived tools to
existing or derived objects. In effect, given a type, the planner finds an expression of that type. Sophisti-
cated inferences are possible. For example, given an application program written in Pascal, a Pascal com-
piler written in C, and an executable C compiler, the planner will construct a plan to build an executable
Pascal compiler and use it to compile the application.

4. Publications Citing Grant N00014-88-K-0590
Journal Publications
[1] Yang, W., Horwit S., and Reps, T., "A program integration algorithm that accommodates semantics-preserving

transformations," To appear in ACM Transactions on Software Engineering and Methodology.

[2] Horwitz, S. and Reps, T., "Efficient comparison of program slices," Acta Informatica 28 (1991). 713-732.
[3] Reps, T., "Algebraic properties of program integration," Science of Computer Programming 17 (1991). 139-215.
[4] Yang, W., "Identifying syntactic differences between two programs," Software - Practice & Experience 21, 7

(July 1991), 739-755.
[5] Horwitz, S., Reps, T., and Binkley, D., "Interprocedural slicing using dependence graphs," ACM Transactions on

Programming Languages and Systems 12, 1 (January 1990), 26-60.
[6] Horwitz, S., Prins, J., and Reps, T., "Integrating non-interfering versions of programs," ACM Tran~actions on

Programming Languages and Systems 11. 3 (July 1989). 345-387.

Invited Papers
[71 Horwitz, S. and Reps, T., 'I'he use of program dependence graphs in software engineering." In Proceedings of the

Fourteenth International Conference on Software Engineering, (May 11-15. 1992, Melbourne, Australia), ACM,
New York. NY, 1992.

Conference Publications

[8] Ramalingam, G., and Reps, T.. "Modification algebras," to appear in Proceedings of the Second International
Conference on Algebraic Methodology and Software Technology (AMAST), (Iowa City, Iowa, May 22-24, 1991).

[9] Ramalingam, G. and Reps, T, "A theory of program modifications." in Proceedings of the Colloquium on Com-
bining Paradigms for Software Development, (Brighton. UK, April 8-12, 1991)' Lecture Notes in Computer Sci-
ence, Vol. 494, S. Abramsky and T.S.E. Maibaum (eds.). Springer-Verlag, New York, NY, 1991. pp. 137-152.

[10] Rich. A. and Solomon, M., "A logic-based approach to system modelling," in Proceedings of the Third Interna-
tional Workshop on Software Configuration Management, (Trondheim, Norway, June 1991).

[11] Yang, W., Horwitz, S., and Rep, T., "A program integration algorithm that accommodates semantics-preserving
transformations," in SIGSOFT '90: Proceedings of the 4th ACM SIGSOFT Symposium on Software Development
Environments, (Irvine, CA. December 3-5, 1990), pp. 133-143. Appeared as: ACM Software Engineering Notes
15, 6 (December 1990).

[12] Horwitz, S., "Identifying the semantic and textual differences between two versions of a program," in Proceedings
of the ACM SIGPLAN 90 Conference on Programming Language Design and Implementation, (White Plains, NY,
June 20-22, 1990), pp. 234-245. Appeared as: ACM SIGPLAN Notices 25, 6 (June 1990).

[131 Reps, T., "Algebraic properties of program integration," in Proceedings of the 3nd European Symposium on Pro-
gramming (Copenhagen, Denmark. May 15-18, 1990), Lecture Notes in Computer Science, Vol. 432, N. Jones
(ed.), Springer-Vedag, New York, NY. 1990, pp. 326-340.
Invited for a special issue of Science of Computer Programming (see [31).

[141 Reps, T. and Bricker, T., "Illustrating interference in interfering versions of programs," in Proceedings of the 2nd
International Workshop on Software Configuration Management, (Princeton, NJ, October 24-27, 1989), pp. 46-55.
Appeared as: ACM Software Engineering Notes 17,7 (November 1989).

[15] Horwitz, S., Pfeiffer, P., and Reps, T., "Dependence analysis for pointer variables," in Proceedings of the ACM
SIGPLAN 89 Conference on Programming Language Design and Implementation, (Portland, OR, June 21-23,
1989), pp. 28-40. Appeared as: ACM SIGPLANNotices 24.7 (July 1989).

-9-

(16] Reps, T. and Yang, W., 'The semantics of program slicing and program integration." in Proceedings of the Collo-
quium on Current Issues in Programming Languages, (Barcelona. Spain. March 13-17, t989), Lecture Notes in
Computer Science, Vol. 352, . Diaz and F. Orejas (eds.), Springer-Verlag. New York. NY, 1989, pp. 360-374.

[17] Horwitz, S., Reps, T., and Binkley, D., "Interprocedural slicing using dependence graphs," in Proceedings of the
ACM SIGPLAN 88 Conference on Programming Language Design and Implementation, (Atlanta, GA. June 22-
24, 1988), pp. 35-46. Appeared as: ACM SIGPLAN Notices 23, 7 (July 1988).

Ph.D. Dissertations
[18] Binkley, D. Multi-procedure program integration. Ph.D. dissertation and Tech. Rep. TR- 1038, Computer Sciences

Department, University of Wisconsin, Madison, WL August 1991.
[19] Pfeiffer, P. Dependence-based representations for programs with reference variables, Ph.D. dissertation and Tech.

Rep. TR-1037, Computer Sciences Department, University of Wisconsin. Madison. WI. August 1991.
[20] Rich. A. Logic-based system modelling. Ph.D. dissertation. Computer Sciences Department, University of

Wisconsin, Madison, WI. May 1991.

(21] Yang. W. "A new algorithm for semantics-based program integration," Ph.D. dissertation and Tech. Rep. TR-
962, Computer Sciences Department, University of Wisconsin. Madison. WI, August 1990.

Software
[22] Reps, T., Bricker, T., et al., The Wisconsin Program-Integration System. Release 0.5, April 1990. Release 1.0,

April 1992. Licensed to 8 sites.

Other Publications and Reports
[23] Ball, T. and Horwitz, S. "Constructing control flow from control dependence," TR-1091. Computer Sciences

Department, University of Wisconsin-Madison, June 1992.
[24] Ramalingam, G. and Reps, T., "New programs from old," TR-1057. Computer Sciences Department. University

of Wisconsin-Madison. November 1991.
Submitted for journal publication.

[25] Ramalingam, G. and Reps, T., "On the computational complexity of incremental algorithms," TR- 1033, Computer
Sciences Department, University of Wisconsin-Madison, August 1991.
Submitted for conference and journal publication.

[26] Ball, T., Horwitz, S., and Reps, T, "Correctness of an algorithm for reconstiwtir,, a program from a dependence
graph," TR-947, Computer Sciences Department, University of Wisconsin-Madison July 1990.

[27] Reps, T., The Wisconsin Program-Integration System Reference Manual. Computer Sciences Department,
University of Wisconsin-Madison. April 1990.

[28] Ramalingam, G. and Reps, T., "Semantics of program representation graphs," TR-900, Computer Sciences
Department, University of Wisconsin-Madison, December 1989.

[29] Yang, W., Horwitz, S., and Reps, T., "A new program integration algorithm," TR-899, Computer Sciences
Department, University of Wisconsin-Madison. December 1989.

[30] Binkley, D.. Horwitz, S., and Reps T," 'The multi-procedure equivalence theorem," TR-890, Computer Sciences
Department, University of Wisconsin-Madison. November 1989.

[31] Yang, W., Horwitz, S., and Reps, T., "Detecting program components with equivalent behaviors," TR-840, Com-
puter Sciences Department. University of Wisconsin-Madison. April 1989.

[32] Reps, T. "Demonstration of a prototype tool for program integration." TR-819, Computer Sciences Department,
University of Wisconsin-Madison. January 1989.

5. Additional References
Ait-Kaci86.

Ait-Kaci, H. and Naa, R.. "LOGIN: A logic programming language with built-in inheritance," Journal of Logic
Programming, pp. 181 -215 (March 1986).

Alpern88.
Alpern B., Wegman. M.N., and 7adeck, F.K., "Detecting equality of variables in programs," pp. 1-11 in Confer-
ence Record of the Fteenth ACM Symposium on Principles of Programming Languages, (San Diego. CA, Janu-
ary 13-15, 1988), ACM, New York, NY (1988).

Carey9O.
Carey, M.. DeWitt, D.. Graefe, G.. Haight, D.. Richardson, J., Schub, D., Shekita, E., and Vandenberg, S., "The

-10-

EXODUS extensible DBMS -,oject: An overview," in Readings in Object-Oriented Databases. ed. D.
Maier,Morgan-Kaufman (1990).

Clocksing4.
Clocksin, W.F. and Mellish, C.S.. Prugramming in Prolog, Springer-Verag, New York, NY (1984).

Driscoll89.
Driscoll, J.R., Sarnak, N. Sleator, D.D., and Tarjan, R.E.. "Making data structures persistent," Jourr-al of Com-
puter and System Sciences 38(1) pp. 86-124 (February 1989).

Ferrante87.
Ferrante, J., Ouenstein, K., and Warren, J., "The program dependence graph and its use in optimization," ACM
Trans. Program. Lang. Syst. 9(3) pp. 319-349 (July 1987).

Horwitz88.
Horwitz, S., Prins, J., and Reps, T., '"ntegrIani ion-interfering versions of programs," pp. 133-145 in Conference
Record of the Fifteenth ACM Symposium on Principles of Programming Languages, (San Diego, CA, January 13-
15, 1988). ACM, New York, NY (1988).

Kuckgl.
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, DA., and Wolfe, M., "Dependence graphs and compiler optimiza-
tions," pp. 207-218 in Conference Record of the Eighth ACM Symposium on Principles of Programming
Languages, ,Williamsburg, VA, January 26-28, 1981), ACM, New York, NY (1981).

Linton89.
Linton, M.A., Vlissides, J.M., and Calder, P.R., "Composing user interfaces with InterViews," IEEE Compuler,
pp. 8-24 (February 1989).

Ottenstein84.
Ottenstein, K.J. and Onenstein, L.M., "The program dependence graph in a software development environmenL,"
Proceedings of the ACM SIGSOFTISIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, (Pittsburgh, PA. Apr. 23-25, 1984), ACM SIGPLAN Notices 19(5) pp. 177-184 (May 1984).

Reps88.
Reps, T. and Horwitz, S., "Semantics-based program integration," pp. 1-20 in Proceedings of the Second Euro-
pean Symposium on Programming, (Nancy, France, March 21-24, 1988), Lecture Notes in Computer Science, Vol.
300, ed. H. GanzingerSpringer-Verlag, New York, NY (1988).

Reps88a.
Reps, T. and Teitelbaum, T., The Synthesizer Generator: A System for Constructing Language-Based Editors,
Springer-Verlag, New York, NY (1988).

Reps88b.
Reps, T. and Teitelbaum, T., The Synthesizer Generator Reference Manual: Third Edition, Springer-Verlag, New
York, NY (1988).

Richardson.
Richardson, J., Carey, M., and Schuh, D., "The design of the E programming language," ACM Trans. Program.
Lang. Syst., O. To appear.

Weiser84.
Weiser. M., "Program slicing," IEEE Transactions on Software Engineering SE-10(4) pp. 352-357 (July 1984).

