August 1991 : . Report No. STAN-CS-91-1375

AD-A254 048
MR

Fast Approximation Algorithms for Multicommodity
Flow Problems

by

T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, S. Tragoudas

nTgé*’“"
L

£ Lb
o kE F e

oy Py ¢

s
X2 oy
L8

i
[l

o)
b (T
©

FV R e
i -]
. &
*

u

Department of Computer Science

Stanford University
Stanford, California 94305

" DASTRIBUTION STATEMENT A
J-pptvvod for publie ralaan;

92-22 ,
92 8 18 030 (ilii(lllhlﬂlflﬂllllllllllﬂ lllllllhllli

——_'———'-“

Form Approved
OMS No. 0704-0188

REPORT DOCUMENTATION PAGE

Fast Approximation Algorithms for Multicommodity
Flow Problems

tmluﬁﬂ
Tom Leighton, Fillia Makedon, Serge Plotkin,
Clifford Stein, Eva Tardos, Spyros Tragoudas

. Pt @ ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION 1

REPORT NUMBER
Dept. of Computer Science, Stanford University

STAN-CS-91-1375

9. SPONSORING / MONITORING AGERSY K 5+16:5) AND AOORESS(ES) W AING / MONITORING
NSF Research Initiation Award CCR-900-8226, AGENCY REPORT NUMBER

US Army Research Office Grant DAAL-03-91-G-0102,

ONR Contract N00014-88-K-0166

T ———
11. SUPPLEMENTARY NOTES

1773, OISTRIBUTION/ AVAILABILITY STATEMENT 120. OISTRIBUTION coot |
unlimited

-,

.1’. ABSTRACT (Maximum 200 woras)

In this paper, we describe the first polynomial-time combinatorial aigorithms
for approximately solving the multicommodity flow problem. Qur algorithms are
significantly faster than the best previously known algorithms, that were based
on linear programming. For a k-commodity multicommodity flow problem, the
running time of our randomized algorithm is (up to log factors) the same as
the time needed to solve k single-commodity flow problems, thus giving the
surprising result that approximateiy computing a k-commodity maximum-flow
is not much harder than computing about k single-commodity maximum-flows
in isolation. Given any multicommodity flow problem as input, our algorithm
is guaranteed to provide a feasible solution to a modified flow problem in which
all capacities are increased by a (1 + ¢)-factor, or to provide a proof that there
is no feasible solution to the original problem.

We also describe faster approximation algorithms for multicommodity flow
problems with a special structure, such as those that arise in the “sparsest cut”

" problems and the uniform concurrent flow problems if k£ < \/m.

14. ;Ulllg' 'ile S. NUMBER OF PAGES
analysis of algorithms, mathematical theory of computation, 25
combinatorial mathematics 16. PRICE COD

17, SECURITY CLASSIFICATION 118 SECURITY CLASSIFICATION]19. SECURITY CLASSIFICATION | 30. UMITATION OF ABSTRACT |
OF AEPORT OF THIS PAGE OF ABSTRACT

NS 7520-01-180.$530 Stancard Form 298 tdev . -

Jooarr PEG To a%Y 2 Y0 ¢

Fast Approximation Algorithms
for Multicommodity Flow Problems*

Tom Leighton? Fillia Makedon? Serge Plotkin®

Clifford Stein¥ Eva Tardos! Spyros Tragoudas™

Unaron-nced O
Justification—————1

e ——
J—

Distributiog/

Availabi%{ﬁy Cgﬁes
“lavail and/of

cneclial

A l
[N

*A preliminary version of this paper appeared in the Proceecdings of the 23rd Annual Symposium on Theory of
Computing, 1991, pp. 101-111.

tDepartment of Mathematics and Laboratory for Computer Science, MIT, Cambridge, MA. Research supported
by DARPA under Contracts N00014-87-1X-825 and N00014-86-K-0593, the Air Force under Contract OSR-89-0271,
and the Army under Contract DAAL-03-86-1-0171.

'Mathematics and Computer Science Department, Bradley Hall, Dartmouth College, Hanover, NH 03755

SDepartment of Computer Science, Stanford University, Stanford CA. Research supported by NSF Research Initi-
ation Award CCR-900-8226, by U.S. Army Research Office Grant DAAL-03-91-G-0102, by ONR Contract N00014-
88-K-0166, and a grant from Mitsubishi Corporation.

TLaboratory for Computer Science, MIT, Cambridge, MA 02139. Support provided by NSF PY] Award CCR-89-
96272 with matching support from UPS and Sun and by an AT&T Bell Laboratories Graduate Fellowship.

ISchool of Operations Research, Cornell University, [thaca NY. Research supported in part by a David and Lucile
Packard Fellowship and by the National Science Foundation, the Air Force Office of Scientific Research. and the
Office of Naval Research, through NSF grant DMS-8920550.

**Department of Computer Science, Southern Illinois University, Carbondale, Illinois 62901. Supported by an
ACM-SIGDA Design Automation Award and the CLEAR Center at UTD, UTD proposal #870049.

July 1991

Abstract

All previously known algorithms for solving the multicommodity flow problem with ca-
pacities are based on linear programming. The best of these algorithms [14] uses a fast matrix
multiplication algorithm and takes O(k*%n%m*log(nDU)) time to find an approximate solu-
tion, where k is the number of commodities, n and m denote the number of nodes and edges
in the network, D is the largest demand, and U is the largest edge capacity. Substantially
more time is needed to find an exact solution. As a consequence, even multicommodity flow
problems with just a few commodities are believed to be much harder than single-commodity
maximum-flow or minimum-cost flow problems.

In this paper, we describe the first polynomial-time combinatorial algorithms for approxi-
mately solving the multicommodity flow problem. The running time of our randomized algo-
rithm is (up to log factors) the same as the time needed to solve k single-commodity flow prob-
lems, thus giving the surprising result that approximately computing a k-commodity maximum-
flow is not much harder than computing about % single-commodity maximum-flows in isolation.

In fact, we prove that a (simple)} k-commodity flow problem can be approximately solved
by approximately solving O(klog® n) single-commodity minimum-cost flow problems. Our k-
commodity algorithm runs in O(knmlog*n) time with high probability. We also describe a
deterministic algorithm that uses an O(k)-factor more time. Given any multiconunodity flow
problem as input, both algorithms are guaranteed to provide a feasible solution to a modified
flow problem in which all capacities are increased by a (1 + ¢)-factor, or to provide a proof that
there is no feasible solution to the original problem.

We also describe faster approximation algorithms for multicommodity flow problems with
a special structure, such as those that arise in the “sparsest cut” problems studied in [8, 10, 9],
and the uniform concurrent flow problems studied in [12, 9] if £ < \/m.

1 Introduction

The multicommodity flow problem involves simultaneously shipping several different commodities
from their respective sources to their sinks in a single network so that the total amount of flow
going through each edge is no more than its capacity. Associated with each commodity is a
demand, which is the amount of that commodity that we wish to ship. Given a multicommodity
flow problem, one often wants to know if there is a feasible flow. i.e. if it is possible to find a
flow which satisfies the demands and obeys the capacity constraints. More generally. we might
wish to know the maximum percentage = such that at least z percent of each demand can be
shipped without violating the capacity constraints. The latter problem is known as the concurrent
flow problem, and is equivalent to the problem of determining the minimum ratio by which the
capacities must be increased in order to ship 100% of each demands.

In this paper, we describe the first combinatorial approximation algorithms for the concurrent
flow problem. Given any positive ¢, the algorithms find a feasible flow that ships at least (1 — ¢)z
percent of each demand, where z is the maximum percentage obtainable. The running times of
the algorithms depend polynomially on ¢!, and are sign.icantly better than those of previous
algorithms when ¢ is a constant. More specifically, we prove the following result. (Throughout,
we use 1, m and k to denote the number of nodes, edges and commodities, we assume that the
demands and the capacities are integral, and use D and U to denote the largest demands and
capacities, respectively.)

Theorem 1.1 For any fixed € > 0, a (1 — ¢)-factor approximation to the simple! concurrent flow
problem can be found by a randomized algorithm in O(kmnlogk log®n) time and a deterministic
algorithm in O(Ic2m1zlog;klog3 1) time, where the constant depends on «.

Our expected running time is the same (up to polylog factors) as the time needed to compute
k maximum-flows, thus giving the surprising result that approximately computing a k-commodity
concurrent flow is about as difficult as computing & single commodity maximum-flows. In fact, we
formally prove that a A-commodity flow problem can be approximately solved by approximately
solving O(k log klog n) min-cost flow problems.

The running times in the above theorem can be improved when k is large. Let A~ denote the
number of different sources. In both the randomized and the deterministic algorithm we can replace
k in the running time by &* at the expense of having to replace one of the log n terms by a log(nl’).
Notice that A* is at most n for all multicommodity flow problems.

As a consequence of our approximation algorithm for the concurrent flow problem. we obtain a
relazed decision procedure for multicommodity flow feasibility. In particular. given a multicommod-
ity flow problem, we can either prove that it is infeasible, or give a feasible flow for the problem in
which every capacity is increased by a factor of 1 + €. Since in practice. the input to a multicom-
modity flow problem may have some measurement error, bv making ¢ small enough. we can obtain
a procedure for determining feasibility up to the precision of the input data.

The only previous algorithms for solving (or approximately solving) the general concurrent flow
problem use linear programming. The concurrent flow problem can be formulated as a linear pro-
gram in O(mk) variables and O(nk + m) constraints. Linear programmming can be used to solve
the problem optimally in polynomial time. Kapoor and Vaidya [7] gave a method to speed up
the matrix inversions involved in Karmarkar-type algorithms for multicommodity flow problems:
combining their technique with Vaidya’s new linear programming algorithm that uses fast matrix
multiplication [14] yields a time bound of O(k3*n3m*®log(nDU)) for the concurrent flow problem
with integer demands and an O(k23n?m-5log(ne~! DU)) time bound for the approximation prob-
lem. When ¢ is not too small (e.g. if € is constant), then the running time of our algorithm is much
faster than that of the previous algorithms for most multicommodity flow problems. In addition.
the fact that our algorithm consists of only O(klog klogn) minimum-cost flow computations means
that it might be more suitable for implementation in practice. (Minimum- «st flow problems are
efficiently handled by the network simplex algorithm in practice.)

The only previous combinatorial polynomial approximation algorithns for concurrent flow prob-
lems handle only the special case when all the capacities are 1. For this special case, Shahrokhi
and Matula [12] gave an algorithm that ran in O(nm”) time. A faster algorithm was later given
by Klein, Plotkin, Stein, and Tardos [9] which runs in expe ted O((k + m){(m + nlogn)logn)
time. Our new algorithm can be applied to this special cuse and gives improved bounds when
k < v/m/(lognlogk).

Our algorithm is similar in spirit to those of [12] and [9] in that we start with a flow that
satisfies the demands but not the capacity constraints, and then we iteratively reroute parts of the
flow so as to produce a flow tiat is closer to optimal. However, our algorithm can handle networks
with arbitrary capacities. Our approach diffrrs from that in previous work in that we are able
to reroute an entire commodity during each iteration instead of only a single path of flow. To

1By simple, we mean that each commodity has a single source and a single sink.

do this, we compute a minimum-cost flow in an auxiliary graph and reroute a portion of the flow
accordingly. As a consequence, we are able to make much greater progress during each iteration.
Of course, the time to run each iteration goes up. but the tradeoff proves to be worthwhile since the
improvement obtained in each iteration is large enough so that we need to solve only O(klog k log n)
minimum-cost flow problems in order to get an approximately optimal solution.

The running times of the presented algorithms depend polynomially on ¢~!. The deterministic
algorithm runs in time proportional to ¢~2 and the randomized one runs in time proportional to
€3, Goldberg [3] and Grigoriadis and Khachiyan [5] have shown how to improve the dependence
on ¢ of the randomized algorithm to e2.

Leighton and Rao [10] have shown how to use an approximately optimal solution to a concurrent
flow problem to find an approximately sparsest cut in a graph. As a consequence, they also showed
how to approximately solve a wide variety of NP-hard graph problems, including minimum feedback
arc set, minimum cut linear arrangement, and minimum area layout. This result has recently heen
generalized by Klein, Agrawal, Ravi and Rao [§] to find an approximately most congested cut in a
general concurrent flow problem. Given a solution to the concurrent flow problem. they showed how
to approximately solve a variety of NP-hard problems, including minimum deletion of clauses of a
2-CNF= formula, via minimization, minimum chordalization of a graph and register sufficiency.

The previously known concurrent flow algorithms (12, 9] cannot be used in these approximation
algorithms except in the special case of problems without capacities, or edge weights. The only
algorithms previously known for the capacitated case used linear programming. Using the results in
this paper. we can now efficiently approximate all the problems considered above for arbitrary edge-
weighted and node-weighted graphs (when appropriate). For example, we can prove the following
result.

Theorem 1.2 The most congested cut in a graph with integral demands and capacities can be ap-
proximated within a factor of O(lognlog kD) in expected O(k*nm log>® nlog nl/) time, where k* is the
number of different sources among the commodities.

The concurrent flow algorithm can also be used to give an O(n?m log® nlog nl’) expected time
algorithm for finding a cut in an edge (and node) weighted graph that is sparsest up to a factor of
O(logn). For the important special case of regular graphs and unit node weights. we can further
improve this bound to O(m?log®n).

Our model of computation is the RAM. We shall use the elementary arithmetic operations
(addition, subtraction, comparison, multiplication, and integer division), and count each of these
as a single step. All numbers occurring throughout the computation will have at most O(log(nl"))
bits. For ease of exposition, in Section 4 we shall use a model of computation that allows exact
arithmetic on real numbers and we shall assume that exponentiation is a single step. In Section 5
we show how to convert the results to the usual RAM model.

2 Preliminaries and Definitions

An instance of the simple multicommodity flow problem consists of an undirected graph G = (1", E).
a non-negative capacity u{vw) for every edge vw € E, and a specification of k& commodities.
numbered 1 through A, where the specification for commodity i consists of a source-sink pair

si,t; € V and a non-negative demand d;. We will denote the number of different sources by &=,
the number of nodes by n, and the number of edges by m. For notational convenience we assume
that m > n, and that the graph G is connected and has no parallel edges. Also. for notational
convenience, we arbitrarily direct each edge. If there is an edge directed from v to w. this edge is
unique by assumption, and we denote it by vw. We assume that the capacities and the demands
are integral, and denote the largest capacity by U and the largest demand by D.

A multicommodity flow f consists of a function f;(vw) on the edges of G for every commodity
t, which represents the flow of commodity ¢ on edge vw. If the flow of commodity i on edge vw is
oriented in the same direction as edge vw, then f;(vw) will be positive. otherwise it will be negative.
The signs only serve to indicate the direction of the flows. For every commodity i we require the
conservation constraints:

() Y flwv)= D filrw)=0 for every node v ¢ {s;,;}.

wvEE vweE

We require also that }, ..z filvw) = d; for v = s;. We define the value of the total flow
on edge vw to be f(vw) = 3 ;|fi(vw)|, and say that a multicommodity flow f in G is feasible if
Sf(vw) < u(vw) for all edges vw. (Note that f(vw) is always non-negative.)

We consider the optimization version of this problem, called the simple concurrent flow problem,
first defined by Shahrokhi and Matula {12]. In this problem the objective is 1o compute the
maximum possible value z such that there is a feasible multicommodity flow with demands z-d; for
every 1 <i < k. We call z the throughput of the multicommodity flow. An equivalent formulation
of the concurrent flow problem is to compute the minimum A = 1/z such that there is a feasible
flow with demands d; and capacities A - u(vw). We shall use the notation A(rw) to denote the
congestion f(vw)/u(vw) of an edge vw € E, A = maxy,eg A(vw). and A\~ to denote the optimal
(minimum) value of A.

A multicommodity flow f satisfying the demands d; is e-optimal if X is at most a factor (1 + ¢€)
more than the minimum possible value. The approzimation problem associated with the concurrent
flow problem is to find an e-optimal multicommodity flow f. We shall assume implicitly throughout
that ¢ is at least inverse polynomial in n and is at most 1/9. 1If € is bigger than 1/9. we can run the
algorithm for € = 1/9. If € is less than any polynomial in n, our algorithms will still vield a correct
solution. However, in this case, the running times of our algorithms will be somewhat greater and
will be dominated by the time to solve the problem exactly.

We can extend all the results in the paper to the case where the input graph is directed. In
this case we require that all flows are non-negative and oriented in the same direction as the input
graph. It is easy to verify that all the results in this paper carry through to this case. Henceforth.
we focus only on the undirected case.

The general multicommodity flow problem is a natural extension of the simple problem when
each commodity has more then one source and sink. For every commodity ¢ we are given a demand
vector d;(v). (A negative demand denotes a supply.) We require that 3_, di(v) = 0 and we shall
use D; to denote max,,{lti‘-(v)|}. The conservation constraints of equation (1) are replaced by the
more general conservation constraints:

(2) Z fi(wv) — Z fi(vw) = d;(v) for every commodity / and every node v.
wv€EE vw€E

Many of our results can be extended to this slightly more general model. However. the main
point in introducing this model is to reduce the number of commodities. Every simple concurrent
flow problem is equivalent to a general concurrent flow problem with at most n commodities.
Because of this fact and because the running times of our algorithms are proportional to the
number of commodities, we will assume that the number of commodities is polynomial in n; this
will simplify the expressions for the running times.

We can convert a simple concurrent flow problem to a general concurrent flow problem with &=
commodities by combining those commodities which share a source. For cach source s we define
a demand vector (Zs(v) as follows: for each commodity ¢ with s; = s we set (25(15) = d;; we set
dy(s) = = Y {d; : s; = s}; all other demands are set to zero.

Lemma 2.1 Consider a simple £ commodity concurrent flow problem and the corresponding A*-
commodity problem defined above. Any feasible solution to one can be converted to a solution to
the other with the same value of A. The conversion of a solution for the /*-commodity problem to
one for the k commodity problem can be done in O(k*nm) time, or in O(L~mlogn) time using the
dynamic tree data structure.

Proof: The conversion of a solution of the simple concurrent flow with A commodities into a
solution of the k*-commodity problem is straightforward. Assume that we are given a solution to
the general concurrent flow problem with A* commodities. Decompose the flow of each commodity
into paths and cycles and combine the flows on paths that have the same source and sink nodes.
disregarding the cycles. The running time of this procedure is dominated by the time it takes to
decompose flows into paths and cycles, which yields the claim of the lemma. |

Notice that the sources and sinks play a symmetric role in the (undirected) problem, and hence
k* in the lemma could have been defined as the number of nodes in a subset that contains an
endpoint of each commodity. While finding a minimum such node set is NP-complete, we mention
this formulation because in some cases it leads to an efficiently computable &> which is smaller than
the one defined above.

Lemma 2.1 implies that one can replace ntost of the bounds that are dependent on & by ones
that are dependent on k*. Throughout this paper, unless we explicitly state that a bound is for
the simple concurrent flow problem, & can be replaced by &k* when applied to a simple concurrent
flow problem.

The main subroutine of our algorithm is a minimuin-cost flow computation (of a single com-
modity). We will use the following, slightly unconventional definition. Given a cost vector ¢ € RE,
the cost of a flow f; is 3, .er c(vw)|fi(vw)|. Given a demand vector d;(v), and capacities u’. the
minimum-cost flow problem is the problem of finding a flow of minimum cost which satisfies the
conservation constraints (2) and has |f;(vw)] < u/(vw) for every edge vw. The residual graph of
a flow f; is the graph consisting of the set of edges for which f;(vw) < u/(vw) and the reversal
of the set of edges for which f;(vw) > —u/(vw). In Section 6.2, we will need to work with the
linear-programming dual of a minimum-cost flow. The dual variables on the nodes are commonly
referred to as prices, and will be denoted by p. A price function is a vector p € R''. The reduced
cost of an edge vw € E is ¢(vw) + p(v) — p(w), and the negative of this for reverse edges. Linear
programming duality implies that a flow f; is of minimum-cost if and only if there exists a price
function p, such that the reduced cost of the edges in the residual graph of f; are nonnegative
(complementary slackness conditions).

Linear programming duality can also be used to give a characterization of the optimum solution
for the concurrent flow problem. Let { : E — R be a nonnegative length function. For nodes
v,w € V let disty(v,w) denote the length of the shortest path from v to w in G with respect to
the length function ¢. The following theorem is a special case of the linear programming duality
theorem.

Theorem 2.2 For a simple multicommodity flow f satisfying the demands d; and capacities - u(vw),
and any length function ¢,

k
D low)| fi(vw)] > Y diste(s;, ti)d;.

1 vweE i=1

(3) A Z L(vw)u(vw) > Z flrw)(vw) =

k
vweE vweFE i=

Furthermore, a multicommodity flow f minimizes) if and only if there exists a nonzero length function
(for which all the above terms are equal.

3 Relaxed Optimality Conditions

Theorem 2.2 is a characterization of optimality that relates the value of A to the lengths of the
shortest path for each commodity. To drive our algorithm, we will use a slightly different character-
ization, one which relates the value of A to the costs of minimum cost flows in appropriately derived
graphs. While these characterizations can be proven to be equivalent, by measuring optimality in
terms of minimum-cost flows, we are able to develop faster algorithms.

Let £ be a nonnegative length function on the edges, f a multicommodity flow, and A\ =
maXywek A(vw). Let C; be the cost of the current flow for commodity 7, using (as the cost
function. For a commodity ¢, let C'7(A) be the value of a minimum-cost flow f* satisfving the
demands of commodity 7, subject to costs { and capacities A - u(vw), i.e. let fr be a flow that
satisfies | f*(vw)| < A - u(vw) and minimizes the cost C2(A) = 3, | f*(vw)|f(vw). For brevity we
shall some times use C} to abbreviate C'7()).

Theorem 3.1 For a (general) multicommodity flow f satisfying capacities \ - u(vw), and a length
function ¢,

k

k k
(4) A Z L(vw)u(vw) > Z Z | i (vw)|((vw) = ZC,’ > ZC,-‘(/\).
i=1 i=1

vweE i=lvw E

Furthermore, a multicommodity flow [minimizes \ if and only if there exists a nonzero length function
(for which all the above terms are equal.

We would like to be able to say that the ratio of the last term and the multiplier of A in the first
term gives a lower bound on the optimal value A*. The analogous statement for the inequality (3)
is obvious, because neither of the two terms depend on A. In Theorem 3.1 the last term, 3°; ('*(A),
depends on A. Observe, however, that the minimum cost of a flow subject to capacity constraints
A - u(vw) cannot increase if A increases.

Lemma 3.2 Suppose that we have a multicommodity flow satisfying capacities A - u(vw) and (is a
length function. Then the value S5, CHM/(Evweg tlvw)u(vw)) is a lower bound on *.

The goal of our algorithms is to find a multicommodity flow f and a length function (such that this
lower bound is within a (1+ ¢) factor of optimal, i.e. A < (1+¢) Zle CHA /(e (rw)u(vw)).
In this case, we say that f and { are e-optimal. If f and (are e-optimal then Lemma 3.2 implies
that f is e-optimal.

The complementary slackness conditions given by linear programming can be reformulated in
terms of conditions on edges and individual commodities. A multicommodity flow f has minimum
A if and only if there exists a nonnegative and non-zero length function £ such that:

1. for every edge vw € E, either ((vw) =0 or f(vw) = A-u(vw),
2. for every commodity i, C; = C'*()).

These two conditions characterize when f and (are optimal, we shall give two conditions on
a multicommodity flow f and a length function (such that together they imply that f and (are
e-optimal. These conditions will be relaxed versions of the complementary slackness conditions
above. Similar relaxed versions of Theorem 2.2 were used in {9].

Let € > 0 be an error parameter. f a multicommodity flow satisfying capacities A - u(vu). and
¢ a length function. We say that a commodity 7 is e-good if

Ci—Cl(N) £ eCi+ e% Z u{vw)l(vw).
vweE
Otherwise, we say that the commodity is €-bad. Intuitively, a commodity is e-good if it is almost
as cheap as the minimum cost possible for that commodity or it is at most a small fraction of
A weg w(vw)l(vw), the total cost of the network. We use this notion in defining the following
relazed optimality conditions (with respect to a multicommodity flow f that satisfies capacity
constraints A - u(vw), a length function ¢ and an error parameter ¢):

(R1) For every edge vw € E either (14 €)f(vw) > A - u(vw)
or u(vw)l(vw) < &3 g u(vw)l(vw).

;
(R2) > Ci<e)y CHA).

i ¢-bad =1

By a proof similar to that of Theorem 3.2 of [9], we can show that if we can satisfv the relaxed
optimality conditions then we actually have an O(¢)-optimal flow.

Theorem 3.3 Suppose f, (, and ¢ satisfy the relaxed optimality conditions and ¢ < 1/9. Then [is
O(¢)-optimal, i.e. A is at most a factor (1 4+ 9¢) more than the minimum possible value.

As we shall see in the next section, the relaxed optimality conditions will guide our algorithm.

4 Solving Concurrent Flows

In this section, we give approximation algorithms for the concurrent flow problem. As the basic
step of our algorithm is finding a minimum-cost flow, we bound the time needed to find a concurrent

flow in terms of a' number of minimum-cost flow computations. In Section 4.1. we will show Low to
find a “good” initial solution to the given concurrent flow problem. In Section 4.2, we will describe
procedure DECONGEST, which takes a flow with congestion A and produces a new flow that is either
9¢-optimal or has congestion at most A/2. Finally, in Section 4.3 we will use these results to give
bounds for how long it takes to solve a concurrent flow problem in terms of the number of minimum
cost flow computations for two cases — a case of € being a fixed constant. and a more involved case
in which € is o(1).

For simplicity of presentation, throughout this section we shall use a model of computation that
allows the use exact arithmetic on real numbers and provides exponentiation as a single step. In
Section 5 we will show how to modifv our algorithms to work in the standard RAM model. The
question of which minimum-cost flow algorithm to use is also deferred to Section 5. where we show
that the cost-scaling algorithm of Goldberg and Tarjan [4] is a good choice in most instances.

4.1 Finding an Initial Solution

To find an initial solution, we separately route each commodity /. For commodity i, we find A,
and a flow f;, such that f; satisfies the demands of this commodity and obeys capacity constraints
Ai -u(vw). Let AT denote the minimum possible A;. For each commodity 7 we have AT < A*, If the
commodity has a single sink and a single source with demand d;, then the value of the maximum-
flow in the graph with capacities u(vw) is d;/A;. If the commodity has more than one sink or
source, then a A; < 2A7 can be found by binary search. Since A7 must be between D;/(nl") and
nD;, we need to try only O(log nl/) values. Therefore. we have the following lemma.

Lemma 4.1 An initial multicommodity flow satisfying demands such that A < £A* can be found by
k maximum-flow computations for the case where each commodity has a single source and a single
sink. In the case of multiple sources and multiple sinks a flow such that A < 2k\™ can be found by
O(klog nl’) maximum-flow computations.

4.2 Rerouting Flow

Now, we show how, given a flow, we can iteratively reroute commodities in order to produce a
new flow that is closer to optimality. We give a procedure DECONGEST which takes a flow f with
congestion Ay and produces a new flow f’ that is either 9¢-optimal or has congestion X < Ay/2.

The basic idea is that the procedure reroutes an appropriatelv chosen fraction of the flow of
an e-bad commodity onto the edges of a minimum-cost flow associated with this commodity (as
described below), in order to reduce congestion. We use a length function €(vw) = e v®) [u().
where the value of a will be chosen later. This length function has the property that the length
of an edge vw is a function of the congestion, i.e. the fraction (possibly greater than 1) of the
capacity of that edge which is being used. Intuitively, by using lengths as costs in the computation
of the minimum-cost flow, we are penalizing edges with high congestion.

At the beginning of procedure DECONGEST, a is chosen so that Relaxed Optimality Condition
R1 is always satisfied. The act of rerouting flow gradually enforces Relaxed Optimality Condition
R2. When both conditions are satisfied, then Theorem 3.3 can be used to infer that f is O(¢)-
optimal. Alternatively, DECONGEST terminates if A decreases by more than a factor of 2.

o]

DECONGEST(f, €)

a—2(1+e)dtem In(me) ; Ag — A,

While A >)y/2 and f and (are not 9e-optinmal
T —

=
For each edge v, {(vw) — €M) /y(vw).
Find an e-bad commodity 7.
Formulate an auxiliary minimum-cost flow problem on G, where each node v has demand d,(v).
and the flow on edge vt is constrained to be between —A - u{vw) and A - u{vw).
Compute flow f7 that minimizes C7(A) =5, . |f7(vw)|€(viw) in the auxiliary problem.
For all vw € E, fi(vw) — (1 — o) fi(vw) + o [} (vw).
Return f

Figure 1: Procedure DECONGEST

More formally, procedure DECONGEST (see Iigure 1) takes as input a multicommodity flow f
with congestion Ao, where f satisfies the demands, and an error parameter €. In each iteration. we
first choose an ¢-bad commodity 7. and formulate an auxiliary minimum-cost flow problem. The
demand of each node v in the auxiliary problem is equal to d;(v), and the desired flow fr(vw) is
constrained to be between —A-u(vw) and A-u(vw), where A is the current congestion. The objective
is to minimize C}(A) = 3, |f7(vw)|l(vw). Given an optimal solution to this problem. we reroute
a 0 = g% fraction of the flow f; onto the edges of f by .etting fi(vw) — (1 -0o)fi(vw)+o [(vw).
recompute the length function, and repeat. Upon termination, DECONGEST returns an improved

flow f which is either 9¢-optimal or has maximum congestion A < Ag/2.

We now show that we can always clioose a so that Relaxed Optimality Condition 1 is satisfied.

Lemma 4.2 If f is a multicommodity fiow which satisfies demands and a > (1 4+) A" te ' in(re1)
then f and length function ((vw) = €M) /y(vw) satisfy Relaxed Optimality Condition R1.

Proof: We show that if an edge v'w’ violates the first part of Relaxed Optimality Condition 11
then it must satisfy the second part. For this edge A - w(v'w’) > (1 + €)f(v'w’). Let r=w”™ be the
edge such that A(v*w*) = A. Then

Y oow Wvw)l{vw) _ u(vTw)((vTw™) e m
w(v'w)(v'w') T eaN(1+¢) = eoM(1+e) = ¢

In the beginni.g of procedure DECONGEST. « is set equal to 2(1 + €)Ao e~ In(mc™") and
throughout DECONGEST A > \o/2. Therefore a > (1 + €)M~} “?In(me~!) throughout.

To measure progress of our algorithm. we introduce a potential function ® =5, u(vu){((rw).
We now show that rerouting the right amount of flow results in a significant decrease in ¢.

Lemma 4.3 Let i be an e-bad commodity, € < 1, and let f; be a minimum-cost flow for this com-
€

modity, as described above and let 55 < ¢ < 5. Let the new flow for commodity ¢ be defined by
filvw) — (1 = o) fi(vw) + o fr(vw). Then & — &’ > Q(%fb), where @’ is the value of the potential

function associated with the new flow.

9

Proof: Denote by {(vw) and {’(vw) the length of edge vw before and after rerouting, respectively.
Let 6(vw) denote the increase in flow on vw due to rerouting. Recall that, after rerouting, the flow
of the rerouted commodity ¢ on vw is |[(1 — o) fi(vw) + o f7(vw)|, and hence |6(vw)| < a| 7 (vw) —
filvw)| < o(|fi(vw)| + |fF(vw)]). Moreover, since both f; and f* have congestion at most).
[6(vw)| < 20 Au(vw).
By definition of the length function, ¢/(vw) = e/ (vw)+5(vw))/u(vw) [y () = oS (vw)/ulewdn [y ().

where n = adé(vw)/u(vw). Observe that |n| < 2acX < ¢/4 < 1/4. Using the Taylor series, we see
that |g| < €/4 < 1/4 implies that for all x, e7*7 < €® + ne® + §|y|c*. Therefore. we have:

(vw) < ((vw)+ pb(vw) + %|17|((mu)
aollfrwe)l = Lol o caollfitv)] + 1z (vw))

u(vw) 2u(vw)

{(vw).

We use this bound to estimate the decrease in the potential function.

-9 = Z (b(vw) — C'(vw))u{vw)
vwe€E

ac Y (| filvw)| = | f7 (vw)e(vw) ~ 00% Y fitww)] + | f7 (vw))(we).

vw

v

Using that 3 ,..(| filvw)| + | f(vw)])l(vw) < C; + CF(A) < 2C; and the fact that commodity i
is e-bad we get

QoeN

{(vw)u{vw)

. o.

(5) - >as(C;—C*N)) - aoeC; > ac (cCi + €l L) —aaeC; =

Plugging in the value of o from the statement of the lemma, we get that the decrease is £ %@).

Theorem 4.4 Procedure DECONGEST terminates in O(¢ 3k log n) iterations. If the initial congestion
Ao is O(¢€)-optimal then DECONGEST terminates in O(¢~%klogn) iterations.

Proof: Theorem 3.3 implies that if f and ¢ satisfy both of the relaxed optimality conditions
than they are 9¢-optimal. By Lemma 4.2, the Relaxed Optimality Condition R1 is maintained
throughout all iterations. If f is not yet 9¢-optimal then Relaxed Optimality Condition R2 is
not satisfied. Hence there exists an e-bad commodity. But every rerouting of flow from an e-bad
commodity to the corresponding minimum-cost flow results in a reduction in @ of at least Q(%@).
Since 1 — z < 7%, it follows that every O(ke=?) iterations reduce ® by at least a constant factor.

Next we bound the number of times ¢ can be reduced by a constant factor. Let Ay be the
congestion of the initial flow. For each edge vw, A(vw) < Ag, so initially, ® < me®%. We know
that in the beginning of the last iteration at least one edge has congestion at least Ag/2 and all
edges have integral capacities, so ® > e * /2. Thus the number of times @ can decrease by a
constant factor is O(aAg + log m) = O(a)g). Combining this with the number of iterations needed

10

to reduce ¢ by a constant factor and plugging in the value of a, we get that the total number of
i"erations is O(¢~3k log(ne~!)). We have assumed that ¢ is at least inverse polvnomial in n, so this
is in fact O(e3klog n).

If the initial flow is O(¢)-optimal then we know that throughout DECONGEST , A will never go
below (1 + O(¢€))Xo. Thus, we have the tighter bound of e>(1+0() ™ d < & < me®o. Combining
this with the number of iterations needed to reduce ® by a constant factor and plugging in the
value of a, we get that the total number of iterations is O(¢"%klogn). |

The only computation-intensive part of DECONGEST is finding an e-bad commodity and com-
puting minimum-cost flows. All the rest can be done in O(m) time. The simplest way to find an
é-bad commodity is to compute the costs C; = 3, ,.cg | fi(vw)]((rw) and the costs of the minimum-
cost flows and compare them. In the worst case we need to check all £ commodities. Hence, an
iteration can be implemented in the time it takes to perform & minimum-cost flow computations.

As in 9], we can perform this computation more efficiently by using a simple randomized
strategy. If we compute the cost C; of each commodity and then randomly choose a commodity
with probability proportional to its cost, then with probability of at least e. we have chosen an
¢-bad commodity. By computing a single minimum-cost flow we can check whether the commodity
is indeed e-bad. We expect to perform this computation ¢! times. and hence an iteration can be
implemented in expected time equal to O(mk) plus ¢! times the time to perform a minimum-cost
flow calculation.

Observe that if & < n (this will be the case when Lemma 2.1 is applied) the time to compute
the cost of all current flows is dominated by the time to compute a minimum-cost flow. If the
time required to compute the costs of the & commodities is nét dominated. we can use a strategy
similar to that of [9] in which we pick an edge with probability proportional to the cost of flow
through this edge, and then a commodity with probability proportional to the cost of flow of
this commodity through this edge, and reduce the time for random selection from O(km) to the
minimum of O(m + k) and O(mlogk).

After every k iterations we can compute minimum-cost flows associated with all the flows and
determine whether the current flow is 9e-optimal. Therefore. we can implement DECONGEST as
a Las-Vegas algorithm. Note that this results in at most a factor of 2 increase in the number of
minimum-cost flows computed during the execution of DECONGEST. We sumimarize the combina-
tion of this discussion with Theorem 4.4.

Theorem 4.5 Procedure DECONGEST can be implemented randomly using an expected O(e= 4k log 1)
minimum-cost flow computations and O(e~4mklogn log k) additional time, or deterministically using
O(€e3k? log n) minimum-cost flow computations, assuming that exponentiation can be implemented in
O(1) time. If the initial congestion A\ is O(¢) optimal, then both the randomized and deterministic
versions of DECONGEST can be implemented in Q(e~!) less time.

4.3 Putting It Together

We consider two cases for solving a concurrent flow problem. We first consider the case when ¢ is
a fixed constant less than 1/9. In this case, we first find an initial solution by solving O(klog(nl’))
maximum flow problems, as is discussed in Section 4.1. This gives us a flow with A < 2kM*. We
then call DECONGEST O(log k) times in order to produce a flow such that A < (14 9¢)A". Applving

11

the first part of Theorem 4.5 we get the following result:

Theorem 4.6 For a constant ¢, an ¢-optimal solution for the concurrent flow problem can be found af-
ter initialization (Lemma 4.1) by a randomized algorithm that uses an expected number of O(k log n log k)
minimum-cost flow computations and O(kmlognlog? k) additional time, or deterministically using
O(k?log nlog k) minimum-cost flow computations, if exponentiation can be implemented in O(1) time.

Observe that for most known algorithms the time to perform O(klogn log k) minimum-cost flow
computations dominates the time to perform O(klog(nl’)) maximum flow computations needed for
the initialization stage when we solve and instance of the general multicommodity flow problem.

When € is o(1) we use e-scaling. First we find an e-optimal multicommodity flow with ¢ = 1/9
using the above procedure. The rest of the computation is divided into scaling phases. We start
each phase by dividing € by 2. Thus our current flow is 18¢-optimal with respect to the new e. The
second part of Theorem 4.5 implies that the expected number of minimum-cost flow computations
needed to convert this flow into an 9¢-optimal one is bounded by O(¢ 3klogn). The time spent
on the e-scaling phase is proportional to €73, and therefore the last scaling iteration dominates the
time spent on all the scaling iterations.

Theorem 4.7 For ¢ > 0, an ¢-optimal solution for the concurrent flow problem can be found after
initialization (Lemma 4.1) by a randomized algorithm that uses an expected number of O(k(log/ +
€73)log n) minimum-cost flow computations, and O(km(logk + €2)log/k logn) additional time, or
deterministically using O(k?(log k + ¢~2)logn) minimum-cost flow computations, if exponentiation can
be implemented in O(1) time.

Goldberg [3] and Grigoriadis and Khachiyan [5] have shown how to reduce the running time
of our randomized algorithms by an e~! factor. Goldberg gives a somewhat simplified version of
our proof that leads to a randomized selection strategy which avoids having to search for an e-bad
commodity. Grigoriadis and Khachiyan generalize our algorithm to solve certain tvpes of convex
programming problems. Their algorithm, when specialized to the case of solving multicommodity
flows, also avoids searching for an ¢-bad commodity.

5 Implementing One Iteration of DECONGEST

In this section we shall address the issue of how to implement an iteration of the procedure
DECONGEST. In the previous section, we assumed a non-standard model of computation that
allows exponentiation to be implemented in O(1) time. In this section, we show how to implement
an iteration in the standard RAM model of computation, achieving the same time bounds. e
then derive bounds on the time to find a minimum-cost flow.

More specifically, in Section 5.1, we will first show that a flow that satisfies a relaxed set of
minimum-cost flow constraints will suffice. We then show that a flow satisfving a second set of
relaxed constraints can be modified in O(m) time to satisfy the first set of relaxed constraints while
having the additional property that the resulting flow can be represented in O(log(nU)) bits per
commodity/edge pair. We then give an approximate length function that uses O(log(nl’)) bits
per edge which can be used in a minimum-cost flow algorithm to produce a flow that satisfies the
second set of relaxed constraints.

12

In Section 5.2, we discuss which minimum-cost flow algorithm to use. We will use different
minimum cost flow algorithms in different situations. For general concurrent flow problems. the
best choice seems to be either the algorithm of Goldberg and Tarjan [4] or that of Ahuja, Goldberg.
Orlin and Tarjan [1]. For concurrent flow with uniform capacity, we use Gabow and Tarjan's [2]
algorithm for the assignment problem. When both the demands and capacities are uniform. we
use the algorithm that iteratively computes shortest paths in the residual graph with nonnegative
costs discovered independently by Ford and Fulkerson [6] and Yakovleva [15].

5.1 Rounding the Flows and Lengths

Procedure DECONGEST, as described in the previous section, iteratively computes f7. which is a
flow that satisfies the demands of commodity ¢ subject to capacity constraints Au{vw) on cach edge
vw, and minimizes C7 = ¥, cp | ff(vw)|((vw). Instead, we will compute an approximation f7
to f7. The flow f* can have cost somewhat more than the cost of £, and it may satisfv slightlv
relaxed capacity constraints. The key to showing that this flow can be used in the algorithm instead

of f7 is to prove a relaxed version of Lemma 4.3.

Theorem 5.1 Let C; denote the cost of the current flow of commodity i with respect to the current
length function, and let f* be a flow that satisfies demands of commodity and the constraints

(6) Vow € I': frow) < 2Xu(vw)
Ywweg | [F(vo)ll(vw) < CF+ %,—(GC,- +€¥ .

Then, if we use [instead of f7 in the concurrent flow algorithm with - < 0 < £,

bound on the decrease of the potential function by Q(%@).

we get a

Proof: The difference between this proof and that of Lemma 4.3 is as follows. Here we can
conclude that |§(vw)| < 3oAu(vw), and |n| < 3acA < 3¢/16. We use that || < 3¢/16 < 1/4
implies ¥t < €% + ne® + 1%‘; nle*. We modify equation (5) appropriately. and conclude that
® -9 > aedd - () |

In fact, we won’t find such a flow directly. What we will do is to compute a flow that satisfies
the somewhat tighter constraints,

(7) Vow E_E: J;i‘(vw) < %/\u(vw)
Twwee [(vo)lf(vw) < 7+ §(eCi + A).

We will then modify this flow slightly so that it satisfies conditions (6) and the new flow can be
represented in O(log(nl/)) bits.

Theorem 5.2 Let f; be a flow that satisfies conditions (7)._Then, in O(m) time, we can convert it
into a flow f; that satisfies (6) and such that (1—0)f;(vw)+0o f*(vw) can be represented in O(log(nl’))
bits.

Proof: Given the flow f,-, we first compute the flow (1 — o)f; + af,-‘ where o is chosen as in
Theorem 5.1. In order to allow this flow to be represented in O(log(nl/)) bits, we will round the

13

flow on edge vw to an integer multiple of v = €2/(128m?ka). Observe that if we just rounded the
flow on every edge vw to the nearest integer multiple of v, we would have no guarantee that the
flow conservation constraints of equation (2) are still satisfied. Thus, we must round more carefully.
Let T be a spanning tree in the graph. We round the flow on all the non-tree edges to the nearest
multiple of . This rounded flow will not necessarily satisfv the conservation constraints. so we
use the tree edges to correct for the violations we may have introduced. It is easy to see that by
computing the flow values on the edges of T in topological order we can carry out this step in O(m)
time. Observe that the amount of flow we had to add to any non-tree edge is at most v and the
amount that we had to add to any tree edge is at most mv, as the flow on a tree edge may have to
correct for the violation across the cut defined by that edge and the tree.

The resulting rounded flow implicitly defines a f7 as it can be written as (1 - a)f; + o~ for
an appropriately chosen f*. The flow f* on edge vu is f (vw) plus ¢~} times the rounding crror
on the edge. We now show that it satisfies the conditions (6). The rounding error on any cdge
is at most mwv, therefore for every edge, fr(vw) < fr(vw) + o~ 'mu. Plugginn in the bounds on
fr(vw) from (7) and the values of ¢ and v we get an upper bound of /\u(vw)+ LA Since u(rw)

is integral. we conclude that f*(vw) < 2Au(vw). We bound the cost of [as follows.

Sow 00 (vwe) < (1 fx(vw)] + o~ i me)((vw)
< Toulf(ow)l(vw) + motmpen
< Ch 4+ 21{ €Ci + —L—('\e.ﬂ) + < C\e (by (7) and the definitions of ¢ and »)
< Ch+ % i+ #) (using & > ¢4

Therefore we have satisfied the conditions of the theorem. |

Combining the previous two theorems we get the following corollary:

Corollary 5.3 A flow f;-* satisfying equations (7) suffices to get a bound on the decrease in the
potential function by Q(%@) while maintaining flows represented by O(log(n{")) bits per edge.

Now we will show how to compute a flow that satisfies (7). Clearly we could do so by finding a
minimum-cost flow with respect to the exact length function (.

Unfortunately, this length function is exponential in the size of the input and computing it
exactly might take too long. Instead, we will describe how to compute an approximate length
function {, such that the flow that has minimum cost with respect to { will have cost at most
Cr + exd/(8k) with respect to £. By Corollary 5.3, such flow can be used in order to implement
the rerouting step in our algorithm.

The new length function ¢ will be integral, it will consist of Q(log(n{’)) bits per edge. will be
approximately related to ¢ by the scalar multiplier v = ee™/(16Umk). and will satisfy 7((ruw) <
{(vw) on every edge vw. It will take O(logn) time to compute é(vw) on each edge vw. In the
following we will use C; and C? to denote the current cost and the minimum cost of commodity ¢
with respect to length £, respectively.

For each edge, first we compute e*(/(vw)/u(vw)=3) 3pproximately to have at most ¢ = ¢/(16km)
additive error, then we multiply the result by (~!U, divide by u(vw). take the integer part. and set
Z(vw) to be this value. Using the Taylor series we can compute one bit in an €7 in (J(1) time. Since
eolf(vw)/ulvw)=4) is at most 1 on every edge, it is sufficient to compute Q(log(1/¢)) bits to achieve the

14

desired approximation. Computing the approximate length function takes O(log(1/¢)) = O(log n)
time for each edge, and O(mlogn) time in total.

Because of the approximation and the integer rounding. a flow f7. which has minimum cost
with respect to £, is not necessarily the minimum-cost flow with respect to {. However. we will
show that a flow that is minimum-cost with respect to (will satisfy conditions (7).

Lemma 5.4 Let f* be a flow that is minimum cost with respect to the costs (defined above. Then
fr has cost (with respect to () at most €A®/(8)) more than the minimum.

Proof: Recall that vy = ¢2'(/U, and ¢ = ¢/(16mk). We bound the difference between (and ~(.
a scaled up version of the approximate length function. In computing y(, we introduce errors in
two places. First, when computing e™(M¥®)=M to a precision of ¢, we introduce an error of ¢. This
error gets scaled up by (~!U/u(vw) when we scale up and gets increased by 1 when we round ¢

down to an integer. Finally, if we scale { back to be compatible with ¢, the whole error gets scaled
by 7. Thus,

; /) U
(8) Llvw) - vlvw) <y (g (3(1}“))) + 1) =9 (u(vw) + 1> .

We defined ¢ so that yé(vw) < £(vw) on every edge, hence we have that

(9) (7 <Cr

Using these two equations and the fact that ® > e>' we get that:

Sow Sl = €7 < Ty 17 1l(vw) =€ (by (9))
< Lol (Cvw) = 3iow))
(10) < Yuwlffly (,,(,,w) + 1) (by (8))
5 e U
< ZZz/w /\u(vw) [(u(2vw))
< mM\Pe _ A
= 18km Sk
1

Notice that this flow actually satisfies slightly stronger conditious than (7). We will use this
stronger condition in the next subsection.

In the randomized implementation we used the cost of the current flow ('; for the selection of
a bad commodity i. We will use the rounded cost (’; instead. The rounding error is small relative
to 5, Cr, therefore using C; does not significantly decrease the probability that a bad commodity
will be selected.

To summarize, we have just described how to implement DECONGEST in the RAM model of
computation. We first compute approximation £ to the length function (. Then we compute
the approximate cost of each commodity and choose a commodity to reroute. either randomly or
deterministically. Next we compute an approximate minimum-cost flow for that commodity with
respect to the costs £. This gives us an approximate minimum-cost flow that satisfies equations (7).
We then update the flows for commodity ¢. Finally, we modify the updated flow as described in
Theorem 5.2, represent it in O(log(nl/)) bits per edge, and start the next iteration. As the above
discussion shows, the time to do this is O(mlogn) plus the time to compute a minimum-cost flow.

15

Theorem 5.5 For ¢ > 0, an ¢-optimal solution for the concurrent flow problem can be found after
initialization (Lemma 4.1) by a randomized algorithm that uses an expected number of Q(k(logk +
¢~3)log n) minimum-cost flow computations and O(km(log k+¢=3) log? n) additional time, or determin-
istically using O(k%(log k+¢~2)log n) minimum-cost flow computations, and O(km(log k+<=2)log? n)
additional time.

5.2 Choosing a Minimum-Cost Flow Algorithm

In this subsection we consider the problem of choosing the appropriate minimum-cost flow routine
to use for finding a minimum-cost flow subject to the costs {(vw). In some cases we will only
compute an approximate minimum-cost flow subject to cost { by further rounding the costs before
the minimum-cost flow computation. However, in all cases we will find a flow that satisfies (7).

First, we consider the general concurrent flow problem.

Lemma 5.6 For a commodity i, a minimum-cost flow with respect to (can be tound in
O(nmlog(nl/)log(n?/m)) time.

Proof: The Goldberg-Tarjan minimum-cost flow algorithm runs in O(nmlog(n?/ni): g(nC')) time.
where C is the maximum value of the cost of an edge assuming that the costs are integral. Tor

the rounding described in Lemma 5.4, it is easy to verify that the maximum edge cost is at most
16kml’ i
e

The above bound can be improved if the capacities are small relative to n?/m. In this case
we will round the demands and solve this rounded problem using tlie double scaling algorithm
of Ahuja, Goldberg, Orlin, and Tarjan [1]. We will then satisfv the remaining flow on arbitrary
paths. This flow will still satisfy (7) and the rounding will allow us to use a faster algorithm. More
precisely, we will prove the following lemma:

Lemma 5.7 For a commodity i, a flow satisfying (7) can be found in O(nm log(nl)loglog(nl))
time.

Proof: Assume without loss of geuerality that ¢~! is an integer and define p = Ne/(16nk). We
round the demands for commodity ¢ to integer multiples of 1 such that the absolute value of cach
demand does not increase, the rounded demands still sum to zero. and the total decrease in the
absolute values of the demands is at most 2nu. (Recall that each node may have a positive or a
negative demand.) Since the absolute value of the demand for commodity i has not increased at
any node, there must exist a flow satisfving these demands with cost at most 7, subject to costs
(.

Both the demands and the capacities are integral multiples of . If we divide both the demands
and the capacities by p, we get a problem where the maximum capacity of an edge is A\/u =
16Unke~". We can then use the double scaling algorithm of Ahuja, Goldberg, Orlin and Tarjan [1]
for solving the minimum-cost problem with rounded demands. By Lemma 5.4, this gives a flow that
satisfies the capacity constraints Au(vw) and has cost at most eA®/(8%) more than the minimum
cost but does not satisfy all the demands. We then satisfy the remaining demands by arbitrary
paths from nodes with excess to nodes with deficit. The last step increases the flow on an edge by no

16

more than 2nu = eX/(4k) < Au(vw)/4, and adds a total of no more than 2np ", . g ((€) < Aed/(8k)
to the cost of the flow subject to costs ¢.

Combining the minimum-cost flow with the flows on the additional paths. we get a flow that
satisfies (7) and proves the lemma. |l

In the case of the simple concurrent flow problem we can make the time required for solving
the minimum-cost flow problem independent of 7.

Lemma 5.8 For the simple concurrent flow problem, a flow of a commodity i satisfying (7) can be
found in the minimum of O(nm lognlog(n?/m)) and O(nm log nloglog n) time.

Proof: We reduce d; by a factor of (1 — ¢/8). We then find a flow f] which satisfies the reduced
demand d! = (1—¢/8)d; and which cost with respect to { is no more than €\ 3w ((vw)u(vw)/(16k)
above the minimum cost. Then we multiply the flow on every edge by (1 — ¢/8)™'. This gives a flow
that satisfies demands, obeys the slightly increased capacity constraints (1 — ¢/8)7! A - u(vw). and
has cost (subject to £) at most €C;/4+eA®/(4k) above C*, where & is the current potential function
value. By Theorem 5.2, we can use this flow and still get the same asymptotic improvement in the
potential function.

Define g/ = ed;/(8m), and round the capacities Au(vw) used for the min-cost flow problem,
down to multiples of y’. It is easy to show that the minimum-cost flow with respect to (that
satisfies the decreased demand d} and rounded capacity, is no more than C7.

For getting the approximate minimum-cost flow we can work with a further rounded length
function. We take {(vw) to be the integer part of d,7{»»},/(AU). Since after the capacity rounding
we consider only edges with Au(vw) > p/, we have

= 16~ YkemU d; 16e~Ybmd,;
< - v 2 T “2Lm?).
f(vw) < A NG 7 Cle *km*)

Therefore the Goldberg-Tarjan minimum-cost flow algorithm runs in O(nmlog(n?/m)logn) time
on this problem.

Now we show that the resulting flow, after multiplication by (1 — ¢/8)7!, satisfies (7). The
minimum-cost flow has a single source and a single sink and non-negative costs. therefore no edge
will carry more than d! units of flow. Let f7 be a minimum-cost flow with respect to {. By an
argument similar to the proof of Lemma 5.4 we get that the cost of this flow with respect to (is at
most md; - \U/d; - ee®* [(16kmU) < eA® /(16k) larger than the cost of f! with respect to (. where f!
is the minimum-cost flow with respect to (that satisfies the reduced demand di. Now Lemma 5.4
implies that (7) is satisfied.

For all but very dense graphs the double scaling algorithm of Ahuja, Goldberg, Orlin and
Tarjan [1] gives a better bound. As we observed no edge will carry more than d! units of flow in
the optimal flow of commodity i. Thus we can also limit capacities to be no more than . i.e.
we can set u/(vw) = min{[‘\“fl#lju’,(lg}. With this modification, the largest capacity is at most
d; = O(me~1y'). The demand and the capacities are multiples of y’. Dividing through by the scale

factor p’ we get a problem with integral capacities using O(logn) bits. |

Combining Theorem 5.5 and Lemmas 4.1, 5.6, 5.7 and 5.8 we get the following theorem:

17

Theorem 5.9 For ¢ > 0, an ¢-optimal solution for the simple concurrent flow problem can be
found either in expected O(mnk(e¢~3 + log k) min{log(n?/m).loglog n} log n) time or O(mnk=(¢=3 +
log k*) min{log(n?/m),loglog nl"} lognl") time; and deterministically by a factor of k and k= more
time with the power of epsilon modified to be (—2).

If the capacities in the concurrent flow problem are uniform then the capacities in the mininium-
cost flow problem are all equal to A. In this case, there are more efficient minimum-cost flow
algorithms than the ones mentioned above.

Lemma 5.10 For the simple concurrent flow problem with uniform capacities, a flow for a commodity
i satisfying (7) can be found in O(m®3/2logn) time.

Proof: A minimum-cost flow problem with demand A|d;/\| and capacities A can be reduced to
an assignment problem with O(m) edges and O(m) nodes. We shall use the assignment algorithm
of Gabow and Tarjan [2] to solve this rounded problem. The remaining flow can be routed by a
shortest path computation in the residual graph. The bounds follow by arguments similar to the
used in the proof of Lemma 5.7. |}

The resulting time bound for the concurrent flow algorithm with uniform capacities improves

the previous best bound {9] if & < \/m/(logn logk).

Theorem 5.11 For € > 0, an e-optimal solution for the simple concurrent flow problem with uniform
capacities can be found in expected O(km%/2log? n(¢=3 + log k)) time and in O(A2mn3/2log? n(e=2 +
log k)) time deterministically.

When both the capacities and demands are-uniform and & is relatively large. we can obtain
better performance by using the minimum-cost flow algorithms of [6] and [15] that repeatediy
augments the flow along the shortest path in the residual graph. The resulting time bound is the
same up to log factors as those obtained in [9].

6 The Minimum-Ratio Cut Problem

As an application of our concurrent flow algorithms we give fast implementations of the minimum-
ratio cut approximation algorithms of Leighton and Rao [10], its extension to hypergraphs by
Makedon and Tragoudas [11], its extension to node weighted graphs, and the approximation algo-
rithm of Klein, Agrawal, Ravi, and Rao [8]. The computational bottleneck of these algorithms is
solving a concurrent flow problem and its linear programming dual. First, we will summarize the
minimum-ratio cut approximation results. Then we will show how our concurrent flow algorithm
can be used to find an approximately optimal dual solution to the corresponding concurrent flow
problems in addition to finding a near optimal flow. Finally, we shall give even faster running
times for the special case of the Leighton-Rao problem where the input graph G has low maximum
degree.

6.1 Cut Approximation Results

Let G be an undirected graph with capacities on its edges. For a subset of the nodes . we use .1
to denote the complement of A, the associated cut is the set of edges I'(4) leaving the set A. Let

18

u(I'(A)) denote the sum of the capacities of the edges in the cut. Leighton and Rao {10] gave an
O(log n)-approximation algorithm for the problem of minimizing the ratio u(I'(A))/(]A}|A]) over
all cuts. By applying this approximation algorithm thev obtained polylog-times-optimal approx-
imation algorithms for a wide variety of NP-complete graph problems. including minimum flux.
minimum feedback arc set, minimum cut linear arrangement, and minimum area layout. Makedon
and Tragoudas [11] extended this result to hvpergraphs.

Consider the concurrent flow problem on G with one unit of demand between every pair of
nodes. Clearly A* must satisly A* - w(I'(A)) > d(A, A) = |A||A4] for every cut T(A), where d(-. 1)
denotes the sum of all demands across the cut. Therefore, min u(T'(A))/(]A||A]) over all cuts I'(1)
gives an upper bound on 1/A*. Leighton and Rao show that this minimum is within an O(log)
factor of the value 1/A.

The computational bottlencck of the Leighton and Rao algorithm is computing a nearly optimal
A and the corresponding near optimal linear programming dual solution for the concurrent flow
problem on (' with one unit of demand between every pair of nodes. The dual solution is a
non-negative length function (that maximizes the ratio }_, , dist/(v.w)/(3,..ep u(rvw)((ru)) (see
Theorem 2.2). Linear programming duality implies this maximum is equal to A*. Leighton and
Rao use a linear programming algorithm to find the length function.

A natural extension is the problem where we are given nonnegative node weights () for v € 1
in addition to the capacities on the edges. For a subset X of V' let #(.X') denote the sum of the
weights on the nodes in X. Consider the extension of the minimum-cut problem to minimizing
u(F'(A4))/(v(A)r(A)) over all cuts. The Leighton and Rao algorithn can be extended to give an
O(log n) approximation algorithm for this problem. The corresponding concurrent flow problem
has demand between every pair of nodes, where the demand d(s,t) between nodes s and ¢ equals
to v(s)r(t). (If the weights are scaled so that the total node-weight is ». then the main change to
the Leighton-Rao algorithm is to select the node s for starting a tree with v(s) maximum.)

Klein, Agrawal, Ravi, and Rao [8] extended the Leighton and Rao results to the case of simple
concurrent flow problems with integral capacities and arbitrarv integral demands. For a source-
sink pair (s, 1), let d(s,t) denote the corresponding demand. The minimum ratio cut problem is to
minimize the ratio u(I'(A))/d(A, A) over all cuts.

The minimum value is an upper bound on 1/A* for the concurrent flow problem. Klein. Agrawal.
Ravi. and Rao (8] proved that this upper bound is at most a factor of O(log nl’ log kD) above 1/*
in general and gave an O(log nl log kD) approximation algorithm for the minimum cut problem.
where U is the maximum capacity and D is the maximum demand. Tragoudas [13] has observed
that their algorithm can be modified to give the O(log nlog kD) factor instead.

Using this result they give approximation algorithms for chordalization of a graph and for
register sufficiency. Similar to the Leighton-Rao algorithm, the computational bottleneck of their
algorithm is solving the dual of the concurrent flow problem, i.e., finding a length function (such
that the ratio 3, ey d(s,1)diste(s,1)/ 3 e g u{vw)l(vw) is close to maximum.

6.2 Finding Good Dual Solutions

In order to be able to replace linear programming in the minimume-ratio cut algorithms by our more
efficient algorithm, we need to compute a length function ¢, such that for some constant € > 0, this

19

function satisfies -

Zste\ d(s,t) dlst[(s t) A=
Yuwer f(vw)u(vw) 215 e

(11) R(f) =

In other words we wish to find a length function, f, for which the ratio between the first term
without the A and last term in (3) is at least A*/(1 + ¢). In order to do so, we will use the
concurrent flow algorithm to find a length function (. We show with respect to this length function
the ratio of the first term without the A and last term in (4) is close to A*. We then show how to
modify this length function so that if satisfies (11} above.

First we consider the concurrent flow problem that directly corresponds to the given minimum-
ratio cut problem, and combine all the commodities that share a source into a single commodity
as suggested Lemma 2.1. This decreases the number of commodities to k= < n. We shall index the
resulting commodities by their sources. Given a target ¢, if our concurrent flow algorithm used the
exact length function {, it would compute a flow satisfving capacities A - u(vw) such that:

0= DN EAPY! > AT ‘
YwweE ow)u(vw) = 14 ¢

But we actually compute flows with respect to an approximate length function (, described in
the proof of Lemma 5.4. Let () denote the corresponding ratio with (replaced by (and C replaced
by C?. First we show that @ is almost as close to A* as Q).

Lemma 6.1 Let f be the flow and (be the length function returned by our algorithm. Then) > 1+2c

Proof: Let v = €*'/(16mkU). Recall that this is the factor that approximately relates the
real] lengths to the approximate lengths. By the way the approximate lengths were computed.
v {(vw) < £(vw) for every edge vw. Also, by arguments similar to those used to derive (10) we have
that

Cr —7Cr < eAD/(8k) < X"/ (4k).

Using these two facts, we have the following bound on Q:

0 = 75, Cr(\)
Y vwe YE(vw)u(vw)
> 732 CHA
B ZUwEE' e(vw)u(vw)
> T CHA) = A3 ek ((vw)u(1vw)/4
B > vweE ((vw)u(vw)
. ne
- T wweE Hvw)u(vw) €A™ /4
> XN, Xy

14¢ 4 T 142

Now we describe how to modify this length function to produce one that satisfies (11) above.
Observe that setting ¢ = { does not necessary work, since >stev d(s, t)disti(s, t) might be signifi-

cantly smaller than 3, C2()). Instead of using ¢ directly, we will compute a new length function

20

(. The idea is to compute a minimum-cost flow with respect to costs { and capacities \ - u(vw) for
each commodity and then use the optimal price function p, to change ¢ by adding to it the sum of
the absolute values of reduced costs for edges with negative reduced costs.

Let _fs" denote the minimum-cost flow for commodity s with respect to {, and §, the optimal
price function. Let us denote (;(vw) = — min{0, Z(vur) + ps(v) = ps(w)}; i.e. ((vwr) is the absolute
value of the reduced cost if it is negative, and zero otherwise. Recall, that the complementary
slackness conditions imply that if £(vw) > 0 then fr(vw) = Au(vw). We define the new length
function as {(vw) = f(vw) + 3, €4 (vw).” We need the following lemma to estimate the numerator

of R(¥).

Lemma 6.2 The flow f* is minimum-cost subject to cost £ + £, its cost is 2odls dist;, (s,1).

Proof: We prove the optimality of fs' by showing that f;“ and the price function p; satisfyv the com-
plementary slackness conditions. By the definition of ¢, we have that {(vw) + (s(vw)+ ps(v) — pslw)
is nonnegative and it is positive if and only if { (vw) + ps(v) — ps(w) is positive. By complementary
slackness applied to cost (, flow f* and prices ps, if this value is positive, then fx is zero.

Now consider the cost of fs subject to the cost function £ 4 ;. There arc no edges with negative
reduced cost, therefore the cost of the flow is at least 5, d(s,t)(ps(t) — ps(s)). All edges that carry
flow have zero reduced cost. This implies that the cost of the flow is equal to 5°, d(s.1)(ps(1)—ps(s))
and p,(t) — ps(s) = dist;,, (s,1). |

Theorem 6.3 R(() > (1 + 2¢)~1)".

Proof: We shall estimate the numerator of R(() using the above lemma. For a source s we have
that

Zd(s t)dist;(s,t) > Z(l (s t)dlstH_L (s,t) = Z((vw)+L(vw) fs vw) = ";‘(/\)—i-z (s(mn)f_;‘(rw).

W vw

By complementary slackness, and the definition of {, we find that if (;(vw) # 0 then fr(vu) =
Au(vw). Summing over all sources we get that

z (l(s,t)(listé(s, t) > Z é;(,\) + A Z u(vw) Z C(vw).

s,teV
Dividing the two sides of this equation by T, ((vw)u(vw) we get that

() > s CiN + AT, wlow) T, (lew)
T Y e wvw)l(vw) + 5, w(vw) zs (vw)

Applying the simple mathematical fact that for positive a, b, x and A, 1_f afb < Xthen (a+Ax)/(b+
z) > a/b, we see that the left side of the above equation is at least @ which by Lemma 6.1 is at
least A*/(1+2¢). 1

Corollary 6.4 An ¢-optimal flow and length function pair (f,{) produced by our concurrent flow
algorithm can be translated into a length function { needed by the minimum-ratio cut algorithms
in O(k*nmlog(n?/m)log(nl)) time. The dual objective value associated with (will be within an
(1 — O(¢)) factor to the optimum.

2]

We can use the approximate minimum-cost flow computation in Lemma 5.7 instead of Lemma 5.6.
With an argument similar to the above, but somewhat more involved, we replace the log(n?/m) in
the theorem by a loglog(nl/). We obtain the following corollary.

Corollary 6.5 An O(log n)-approximation to the node weighted cut problem with general capacities
can be found in O(n2mlognU log? n min{log(n?/m),loglog nl’}) expected time. An O(lognlogkD)
-approximation to the minimum-ratio cut problem with general demands and capacities can be found
in O(k*nmlog nl log klog n min{log(n?/m),loglog nlU}) expected time.

An analogous theorem can be obtained for finding approximately sparsest cuts in hyvpergraphs using
the concurrent flow algorithm in conjunction with the approximation algorithm of Makedon and
Tragoudas [11].

6.3 Graphs with Low Maximum Degree

Next we improve the running time given in Corollary 6.5 for low-degree graphs GG. Tlie new running
time will depend on A, the maximum degree of any node in the graph.

We consider the minimum-ratio cut problem for graphs with unit demands, where the graph
that has an edge between the source and sink of each commodity is a constant degree expander on
V. (We call this graph the demand graph.) While the case of the expander demand graph with
unit demands seems like an obscure special case, it is in fact an important one. The Leighton and
Rao [10] algorithm uses the solution of a concurrent flow problem in which the demand graph is
the complete graph. However, one can modify the Leighton and Rao algorithm to use the solution
to this new concurrent flow problem and its dual problem to derive an O(logn) approximation to
the minimum-ratio w(T(A))/(]A[|A]) over all cuts. To get an idea how the two problems are related
consider a cut I'(A) and assume that [A] < [A|. Because the demand graph is a constant degree
expander, c|A| < d(A, A) < é A] for some constants ¢ and é. Therefore, w(I'(A))/d(A.A) is O(n)
times more than u(I'(A))/(|A]lA}).

The first step in solving this problem is to round all the capacities up to integer multiples of a
parameter g in such a way that the ratio u(I'(A))/(|A}]A]) is not changed by more than a factor of
two. Notice that [T(A)] < A[A|. We shall use 7 to denote the maximum of [['(A)]/d(A. A) over all
cuts I'(A). Notice that »r < A/c, where ¢ is the expansion parameter of the demand graph.

Theorem 6.6 Let * be the optimum value of the concurrent flow problem, and let ;1 < (rA*)~L
If we round each capacity u(e) up to i(e), the next integer multiple of 1, then the minimum ratio
@(T(A))/(|A]|A]) of a cut T(A) with capacity @ is at most twice of the minimum ratio with «.

Proof: For all cuts I'(4), it must be that A*u(I'(4)) > d(A, A). The rounding error a(I'(A)) -
u(T(A)) is at most u|T'(A)] < [T(A)|(2rA*)~! < d(A, A)|/A* < w(T(A)). This implies that for every
cut w(T(A)|/(1AllA]) € 2u(T(A))/(JA]|A]), i.e. the new ratio is at most twice the old ratio. |

Rounding to integer multiples of y preserves the minimum-ratio cut up to a factor of two. If
we want to preserve A* up to a constant factor we have to do a somewhat finer rounding.

Theorem 6.7 Let A* be the optimum value of the concurrent flow problem
and let i < €(20rA*log mU logn)~!. If we round each capacity u(e) up to i(e), the next integer

22

multiple of y, then the minimum congestion A* subject to capacities &t{€) 1s at most a factor of 1 + ¢
less than the minimum congestion * with .

Proof: The idea is to use the O(lognlog kD) approximation result of Klein. Agrawal. Ravi, and
Rao [8] as improved by Tragoudas [13]. Consider the following auxiliary concurrent flow problem.
The graph is (G with capacities «. For every edge vw € E there is a demand of value d(v.w) =
t(vw)— u(vw) from v to w. Observe that the demands in the auxiliary problem are integral and at
most g, and log x is at most log(emU/(20rlognU logn)) < 2log(mU). Using the same estimates
as in the previous proof we can conclude that the minimum of w(I'(A))/d{ A, A) over all cuts I'(A4)
is at most ¢/(20log mU logn). By the above approximation result the minimum congestion A* for
this problem is at most €. That is, the added capacities can be routed in an e-fraction of the original
capacities u.

Now consider an optimal flow f of congestion A* in the rounded problem. To get a solution
in the original problem we route the part of flow f that uses the added capacity in the way this
demand js routed in the optimal solution to the auxiliary problem. This does not increase the
congestion by more than a factorof 1 +e. |

Next consider the question of how long it takes to solve a rounded concurrent flow problem.
For simplicity we shall restrict our attention to the case when ¢ is a constant. The number of
commodities is O(n). The capacities in the minimum-cost flow problem are integer multiples of
Apt. We shall use the minimum-cost flow algorithm due to Ford-Fulkerson [6] and Yakovleva [15].
that repeatedly augments the flow along the shortest path in the residual graph. to solve these
problems. Given a concurrent flow with congestion A, the number of shortest path computations
in a minimum-cost flow subroutine is at most p='A~! + 1. the upper integer part of the demand.
which is 1, divided by the unit of the capacity. which is Ap.

We use these ideas to solve the minimum-ratio cut and the concurrent flow problem. The
O((A"'u~! + 1)(m + nlog n)) time required for solving the minimum-cost flow problem might not
dominate the O(mlogn) needed to compute the approximate length function. To simplify the
bounds we shall count each minimum-cost flow computation as O((A~1u~! + mlogn)) time.
These bounds can be further improved by using the data structures described in [9).

Notice that here we do not have time to find an initial flow using & maximun-flow computations
suggested in Lemma 4.1. The capacities of this problem are not rounded, therefore we have to use
a general maximum-flow algorithm, and all such algorithms take Q(mn) time. However. an initial
flow that is optimal up to a factor of O(mk) can be computed by routing eachk demand on the path
with maximum bottleneck capacity from its source to its sink.

An iteration of the algorithm will use Theorem 6.6 or 6.7 with u defined by ¢(ANg)™! (respec-
tively ec(20AMglogmUlogn)~'). We terminate the iteration if A\ decreases below Ag/2. At that
point we divide Ao by two, and start the next iteration. We use the flow obtained in the previous
iteration as our initial flow.

Theorem 6.8 An O(logn) approximation to the minimum ratio w(I'(A))/(|A||A]) over all cuts ['()
in a graph with capacities u and maximum degree A can be computed in O(nmA log® n) expected

time.

Theorem 6.9 For any constant ¢, an ¢ approximation to a unit demand concurrent flow problem in

23

a graph with maximum degree A with a constant degree expander demand-graph can be computed in
O(nmAlog* nlog nl/) expected time.

In regular grap.ns nA = m, therefore the running times of the above two algorithms are roughly
(up to a polylogarithmic factor) O(m?).

Acknowledgments

We are grateful to Andrew Goldberg, Tishva Leong, Jim Orlin, Rina Rotshild, David Shmovs and
Peter Shor for helpful discussions.

References

[1] R. K. Ahuja. A.V. Goldberg. J. B. Orlin, and R.E. Tarjan. Finding minimum cost flows by
double scaling. Sloan Working Paper 2047-88, MIT, Cambridge, MA, 1988.

[2] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM Journal
on Computing, 18:1013-1036, 1989.

[3] A. V. Goldberg. A natural randomization strategy for multicommodity flow and related algo-
rithms. Unpublished manuscript, 1991.

[4] A. V. Goldberg and R. E. Tarjan. Solving minimum-cost flow problems by successive approx-
imation. Mathematics of Operations Research, 15(3):430-466, 1990.

[5] M. D. Grigoriadis and L. G. Khachiyan. TFast approximation schemes for convex programs
with many blocks and coupling constraints. Technical Report DCS-TR-273, Department of
Computer Science, Rutgers University, New Brunswick, NJ, March 1991.

(6] L. R. Ford Jr. and D. R. Fulkerson. Flows in networks. Princeton University Press, 1956.

[7] S. Kapoor and P. M. Vaidya. Fast algorithms for convex quadratic programming and multicom-
modity flows. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing.
pages 147-159, 1986.

[8] P. Klein, A. Agrawal, R. Ravi, and S. Rao. Approximation through multicommodity flow.
In Proceedings of the 31st Annual Symposium on Foundations of Computer Sciencc. pages
726-727, 1990.

[9] P. Klein, S. A. Plotkin, C. Stein, and E. Tardos. Faster approximation algorithms for the
unit capacity concurrent flow problem with applications to routing and finding sparse cuts.
Technical Report 961, School of Operations Research and Industrial Engineering, Cornell
University, 1991. A preliminary version of this paper appeared in Proceedings of the 22nd
Annual ACM Symposium on Theory of Computing, pages 310-321, 1990.

[10] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with applications to approximation algorithms. In Proceedings of the
29th Annual Symposium on Foundations of Computer Science, pages 422-431, 1988.

24

