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MULTIDIMENSIONAL DETERMINISTIC ELECTRON TRANSPORT CALCULATIONS

W. L. Fllippone, B. D. Ganapol, S. P. Monalan

Introduction

This report summarizes research carried out for the US Air Force Rome Air Development

Center under contracts F 30602-81-C-0185 (P. R. No. S-6-7548) and E-21-669-$6 (P. R. No. S-

7-7522). The object of this work was to develop fast and accurate techniques for determining

electron fluxes and energy deposition profiles in complex multidimensional microcircuits, for use in

radiation hardness studies. Our approach was to use deterministic solutions of the multidimensional

Spencer-Lewis electron transport equation. To do this it was necessary to develop several special

numerical techniques which we describe below.

We begin with the deriviation of the Spencer-Lewis equation. Then we discuss SMART

scattering theory that enables us to replace the highly anisotropic electron scattering kernel by one

that is more amenable to numerical treatment. Next, we describe several transport and diffusion

theory solution algorithms. Finally in Section IV we present several new analytical benchmarking

methods that will prove useful in generating more comprehensive benchmarks.

1. Deriviation of the Spencer-Lewis Equation

When continuous slowing down theory is valid, electron transport in homogeneous media is

governed by the Spencer-Lewis equation,

+ 6V + o(s) 0(r'snfl) - Jdf' o(slr--fn) 4 ,rsr) + Q(÷'sh) (1)

where

4Wsfn) - Rlectron density (electrons per unit volume per unit solid angle) at position r, direction
nl and path length s,
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O(s) - total (scattering) cross section, and

WX,) - electron source density (electrons per unit volume per unit path length per unit solidangle).

According to the continuous slowing down approximation (CSDA) there is a one-to-one

correspondence between distance traveled and energy lost, and the path length s plays the role of an

enery variable. We prefer the Spencer-Lewis equation to the multigroup Boltzman equation,

because the latter is not particularly efficient at modeling electron energy loss. To obtain good

results normally requires an exceedingly large number of groups1.2 (or other high resolution energy

discretization techniqueS), while coarse path length mesh solutions of the Spencer-Lewis equation are

normally sufficient, 1", probably because the CSDA is built into the equation. Equation (1) was

presented by Lewiss in 1950 without proof, and its first practical solutions for the infinite medium

case were obtained by SpencerG in 1955 using the method of moments. We have derived7 Eq. (1)

and a time-dependent generalized Spencer-Lewis equation valid for inhomogeneous media from the

Boltzmann equation,

Id3v'O('-*'.1V) v') ' I,,t) + q('Y,t) (2)

where

N - electron density (electrons per unit volume per unit velocity) at position' , velocity V

and time t,

ofr,v) - total (scattering) cross section

- differential scattering cross section

q(r7,t) - electron source density (electrons per unit volume per unit velocity per unit time)
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A. Homogeneous Media

To derive Eq. (1) from EQ. (2) we assume that

1. Scattering changes direction but not energy, that is,

0(;r_--- - 6(v-v') o(v,&l.-)/v,. (3)

2. Energy loss is completely determined by the stopping power2.s

3. The medium is homogeneous.

4. The fixed source is of the form

q(?.V,t) - Qr,-) 6[t - T(v)j , (4)

where T(v) is the time it takes for an electron to slow down to speed v from some reference speed

v., such as the largest speed in the system. (This source form is needed so that at time t all

electrons will have the same speed V(t).)

It can then be shown that

',Vt - N(r, Lt) 6[v-V(t)J/v' , (5)

and Eq. (1) results from the substitution in Eq. (2) where
V at as

S(E) - dE (6)
E Jd

and E. - E(vd). The details of this deriviation are given in Ref. 7.

If the source restriction [Eq. (4)] is relaxed, then the one-to-one correspondence between t

and v and therefore between t and s is lost; however, Eq. (1) remains valid as is evident by the

alternative deriviation discussed below.
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B. Inhomogeneous Media

To obtain a Spencer-Lewis type equation for inhomogeneous media we assume that

1. Energy loss and angular deflection are unconnected, that is that (irV'---) is of the

form

-- $E'-E) q0 (1t,E,f-.•) + 6(fr-•) o ,E'--E) (7)

2. An electron loses exactly the quantity of energy AE with each collision while

preserving the correct stopping power so that

' I !L (r-,E') I (E'E..AE) .(8)

Inserting Eqs. (7) and (8) into Eq. (1), taking the limit AE -. 0, and making the

substitution

NE 1 dE (9)

we obtain after considerable manipulation [See Ref. 71

r + Irr S)a

- df&l' J,tr-.6) Orr'7,6,t) + qr' ,ft) , (1)

where
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W.,h) -au) - iE)

ds

Equation (10) is a generalization of the Spencer-Lewis equation valid for spatially

varying stopping powers. If the medium is homogeneous then

1 - s, (13)

Bru A,*'L) --, Os) (14)

" 1 (15)

and Eq. (10) becomes

IV+ o(s)8 + (,sft) = R df o(s,fr- n) ¢Kr(,sf,t) q(r,s,nt) (16)

Equation (16) is not simply the time-dependent form of Eq. (1). The variable 4' in the later

equation is a number density (electrons/cm 3) while 0 in the former equation is a flux (cm

traveled/cm 4/second). Integrating Eq. (16) over all time and putting

"AoC
f(r,sfl) 0 dt Kr3,st) (17)

and
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(• ,• n]0dt A(',,t)

we obtain Eq. (1). This deriviation of Eq. (1) does not require the source restriction specified by

Eq. (4).
An independent verification7 of Eq. (10) was obtained for the one-dimensional case using

particle balance considerations.

UL Numerical Transport Methods

A. SMART Scattering Theory

Electrons interact via long-range electric forces, and therefore their cross sections tend to be

enormous and extremely forward peaked as compared to those of neutral particles. As a

consequence, electron transport is characterized by a large number of minute deflections in the

velocities of the electrons. This virtually rules out the possibility of direct modeling either through

Monte Carlo or discrete ordinates techniques.

Most Monte Carlo codes use condensed histories",9 because the large value of the scattering

cross section makes it impractical to follow each individual scattering event for a sufficient number

of histories.

The large scattering cross sections also cause trouble for discrete ordinates codes by making

the spectral radius (without acceleration) for the source iteration nearly equal to unity. Furthermore,

the anisotropy of the scattering kernel can require a large number of discrete ordinates for an

adequate numerical treatment. Because of these problems, discrete ordinates solvers normally replace

the true transport model by one that is more easily simulated. This is done through the use of

effective cross sections. These sections have three important properties that make them suitable for

numerical calculations:

-They are much smaller than the true cross sections they replace.
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-They are much less anisotropic.

-They yield good results in discrete ordinates codes.

With effective cros sections a few large angle deflections are used to model the combined effect of

many small angle deflections.

Effective scattering matrices are most often generated using Fokker-Planck1 0O1 1 methods or

the extended transport (delta function) correction.11'13 The major drawback with these techniques is

that they lead to nonpositive and therefore nonphysical scattering matrices.

We describe a special type of effective scattering matrix that we refer to as SMART

(simulation of many accumulative Rutherfordtrajectories). The acronym is somewhat appropriate

(although not in the precise artificial intelligence sense) because the matrix elements are defined

such that they cancel errors due to angular discretization. It is this property that enables electron

discrete ordinates calculations to be performed with relatively few (typically 12) discrete directions.

It is also possible to refine the definition of these scattering matrices such that they cancel path

length in addition to angular discretization errors. We refer to such scattering matrices as very

SMART.

The theory of SMART scattering matrices is based on the conjecture that a scattering kernel

should be independent of the problem geometry. In particular, a scattering matrix that performs

well in an infinite medium should also perform well in a finite medium. Using the Goudsmit-

Saunderson' 4 theory of multiple scattering, exact infinite medium solutions are easily obtained.

Working backward from such results, we are able to deduce a suitable scattering matrix for the

discrete ordinates equation. In contrast to the Fokker-Planck kernel and the extended transport

corrected kernel (which is SMART with Gauss quadrature sets but not positive), positive SMART

scattering matrices are easily generated.

Positive scattering matrices have three important advantages:

-They guarantee positive solutions when used in conjunction with positive spatial

differencing schemes.
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-They enable the use of negative flux fixups. (Such fixups are justified when negative

angular fluxes result from spatial differencing errors, but not when they result from negative

scattering matrix elements.)

-They can be used in single collision Monte Carlo codes that require positive cross sections.

There are infinitely many ways to discretize the electron transport equation, an infinite

subset of which leads to the discrete ordinates equations. Corresponding to each discretization

scheme is a different SMART scattering matrix. In fact, if Gauss quadrature points are used, then

one of these schemes leads to the extended transport corrected scattering matrix. Fortunately, it is

easy to find discretization methods that lead to discrete ordinates equations and to positive SMART

scattering matrices as well.

1. The SMART Scattering Matrix

To illustrate the discretization possibilities, we begin with a weighted residual deriviation of

the SN equations. (This section is condensed from Ref. 15.)

The Weighted Residual Deriviation of the S, Equations

Let the flux in Eq. (1) be approximated by

4{•,s)- _r~(V•,f) • t)Bm (O) , (19)

where the Bm are a set of M basis functions. The residual associated with O is defined as

R sfl - + A1.V + o(s) ' ,A
RIr n ) ci n .I O T r

- fdr o(s,fr-n) r3,s,fr)

- S) (20)
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Forcing the residual to be orthogonal to a set of test functions, (TM(I); m - 1,2...,M), that satisfy

the conditions

" "(h ) dfl - S ,ne (21)

and

A A X

f )*M (n) d.l - n'•m, (22)

we obtain

X

- Mý (r',s)
m'=1

+ Qm(r,s) , m = 1,2,...,M , (23)

where

Sm, S'n=, - a6 , , (24)

s'n,- nJ=(n)*(sfl') B'" (fr) dfl' dnl , (25)

QU(r,s) - TIr(n)*Q(r,s,n) dn , (26)

and from Eq. (22),

x (A A M(

nm - f"I'(n)*nBm ) df

ft, n ,(27)



10 -

where bm is the m'th discrete direction. The S'.. are the elements of the conventional scattering

matrix S. The matrix S defined by Eq. (24) has removal as well as scatter included in its definition.

It is referred to as the net conventional scattering matrix, and is normally approximated as

4P,,- (28)

where

(ml a Bm(n) dfl (29)

Because of the extreme anisotropy of o(sf-4), the major contribution to the integral of Eq.
ofA 

_A

(1) comes from values of " - (. Unless a very large value of M is used, this contribution is

normally missed with conventional scattering matrices. For this reason the error, defined as

dm(V,s) a q.(•,s) - n(r',s) , (30)

can be quite large. To reduce this error, we replace S with a SMART net scattering matrix S,

which is designed to give good results when a coarse angular mesh is used. The matrix S is

obtained by forcing Em - 0 for a set of problems for which analytic solutions are available.

The Goudsmit-Saunderson Matrix

To obtain benchmark problems that are amenable to exact analytical solution, we consider an

infinite source-free medium with an initial (s - 0) distribution 0(0,fl) that is independent of position

"F. For this case, Eq. (1) reduces to

+ O(S) S,fl) - J(S, ) s,fr) df'. (31)



We are interested in equating the discrete ordinates and exact solutions for identical initial

conditions. As seen from Eq. (19), the initial condition for the discrete ordinates equations must be

of the form

Or(O'n)- . (O) Bm(h) (32)
m-1

With an initial distribution of this form, the exact Om(s) are given,15 in matrix form by

0(s) - G(O--s) 4 T(0) , (33)

where the components of 0 and OT are #m and qq, respectively. The elements of the Goudsmit-

Saunderson matrix G are given by

s ffTm(fl)'g(s..*s, r'•) Bin"(fr) dO df , (34)

where14

g(So--s,An.f

U2÷ + 1 II e - s') - at(s')] ds" 'tn- , (35)

&0 -e p [40  (3)

and Pt is the Cth Legendre polynomial. We emphasize here that Eq. (33) represents the exact

(continuous angle) solution for any source that can be expressed by Eq. (32). Although spatial

effects have been eliminated, the effects of multiple scattering are present and therefore Eq. (33)

should constitute a good benchmark for testing discrete scattering kernels.
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The Diamond-Difference SMART Scattering Matrix

Our two-dimensional SN code described below uses diamond differencing in both space and

path length; however, only the numerical treatment of the path length variable affects the definition

of the scattering matrix. With diamond differencing and a piecewise constant scattering matrix, it is

easy to show1 s that the SN solution to Eq. (31) is

where the SLtl/2 are the edges, s the size, and Si the SMART scattering matrix for the i'th path

length step.

To define the ý we force Eq. (36) to agree with the exact solution [Eq. (33)] at each value

of st+1/2. It is shown in Ref. 15 that the required scattering matrix is

SI [1 + G(O-s 1 + 1 / 2 ) G("-.si- 1 /)2l

X [G(0--'sj+j/) G(0-_-/2)-I-I] (37)

This scattering matrix cancels errors due to

-angular discretization

-diamond differencing in s

-the piecewise constant (in s) approximation.

An example of a diamond difference SMART scattering matrix is given in Table m of Ref. 15.

Positivity

We demonstrate in Ref. 15 that the S'j will be positive provided that the As are sufficiently

Asmall, and the basis functions [the Bm(fl)] are chosen positive.
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Although the delta function corrected scattering matrix is SMART if Gauss quadrature

points are used (this is only possible in one-dimensional geometries) it is not positive. (Compare

Table V with Table II of Ref. 15.) As shown in Ref. 15, this is due to the fact that the basis

functions that yield the delta function corrected scattering matrix are the Lagrange interpolation

polynomials, which are not positive functions. With positive SMART scattering matrices problems

of negative fluxes do not occur. See Fig. 1 of Ref. 15.

SMART scattering matrices have produced excellent results in one-dimensional single

collision Monte Carlo16 calculations (see Fig. 2 of Ref. 15) in two-dimensional SR calculations (see

Table I of Ref. 17) and in two-dimensional SN calculations (See Figs. 3 and 4 of Ref. 15 and Fig. 2

of Ref. 18).

It appears that SMART scattering theory can be used to eliminate or reduce several of the

classic problems associated with electron transport, namely,

-miniscule mean-free-paths that imply

a. slowly converging source iterations in SN and SR codes

b. many collisions per history in Monte Carlo codes

c. relatively large ratios of cell-collided to cell-uncollided fluxes, which reduces

the accuracy of SR calculations4

-large angular discretization errors in SN and SR codes

-nonpositive scattering matrices that

a. cannot be used in Monte Carlo codes

b. should not be used in SN codes with negative flux fixups

-the relatively minor problem of path length discretization errors.

SMART scattering matrices have performed well in SR, SN, and single collision Monte Carlo

computer codes. They appear to be an attractive alternative to Fokker-Planck and extended

transport correction techniques for SN and SR calculations and to the condensed history approach

for Monte Carlo calculations.



- 14-

Fokker-Planck methods give a good representation of narrow angle scattering but are

inappropriate for wide angle collisions.

Extended transport corrected cross sections can simulate both narrow and wide angle

collisions, and are in fact SMART if Gauss quadrature points are used. However, they are

nonpouitive.

With the condensed history approach, direction change is determined by sampling the

Goudsmit-Saunderson distribution. Since this distribution is the solution of the space-independent

Spencer-Lewis equation, it is not valid near material interfaces and special techniques must be used.'

As speculated above, the validity of a SMART scattering matrix should not depend on the proximity

of a boundary. If this is indeed true, then the SMART scattering matrices should prove useful in

Monte Carlo codes at least in the vicinity of interfaces. To date, our test problems have involved

only media with vacuum boundaries. To obtain a more stringent test of SMART scattering theory,

calculations with several closely spaced material interfaces will soon be carried out.

It may appear that the method for generating SMART scattering matrices is analogous to the

flux-weighting procedure used to determine effective neutron cross sections. Indeed, both

techniques use infinite media solutions to determine appropriate cross sections. However, the

SMART scattering matrix is by no means an angular flux-weighted average of the true scattering

kernel. In fact, the total cross section is much smaller and the average deflection per collision much

larger than those for the true scattering kernel.

SMART scattering theory appears to have an important advantage over flux-weighting

techniques. Flux-weighted cross sections are valid only for one particular spectrum, whereas the

SMART scattering matrix gives exact solutions for any arbitrary angular flux (provided it is spatially

independent.) Thus, flux-weighted cross sections are reliable only if the spectrum in the region to

be analyzed resembles that used to generate the cross sections. SMART scattering matrices should

be more versatile. Our current thinking is that these matrices will be nearly equivalent to the true

scattering kernels in most problem geometries, but exactly equivalent only in infinite media.

Although we cannot give a formal proof, our reasons for this assertion are as follows:

mnmm~nn~gu nna III lU IIIMIIIIIIIIIIIN inlllnlnilinlmmm nMI MII Mn~lA
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-The SMART scattering matrix is not tied to a particular angular flux distribution.

-There is considerable numerical evidence that the SMART scattering matrices work well in

finite media.

-The physical model corresponding to SMART scattering theory (few relatively wide angle

collisions) seems to be a reasonable equivalent to the true situation (many small angle collisions).

-Certainly one can imagine pathological geometries in which trajectories with a large

number of small angle collisions could not be simulated by trajectories with a lesser number of large

deflections. Thus, it is doubtful in our opinion that an exact equivalence can be demonstrated for

the finite medium case.

We have observed's that the SMART and conventional scattering matrices are in close

agreement for those matrix elements that represent wide angle scattering. However, for narrow

deflections the elements of S exceed those of S. The augmented values of these elements in S

compensate for the large number of very narrow deflections that are too small for direct modeling

on the SN quadrature set

The conventional scattering matrix fails in electron transport because it misses the

accumulative effect of these narrow deflections.

2. SMART First Collision Sources

The material in this section is taken from Ref. 19. The use of analytic first collision sources

can greatly improve the accuracy of neutral particle SN calculations. For electrons, because of the

strong anisotropy of the electron scattering kernel, many collisions are required before the flux from

a beam source is smooth enough to lend itself to practical numerical treatment. Thus the use of a

conventional analytic first collision source is of little value.

With SMART scattering theory's as described above, the true electron scattering law is

replaced by an equivalent one that involves many times fewer collisions but larger angular
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deflections per collision. With such a scattering law, the electron transport emulates that of neutral

particles. Hence, application of an analytic first collision source should be effective. However,

SMART scattering cross sections are defined in terms of a scattering matrix and thus only apply for

scatter from one quadrature direction to another.

We have extended the theory to include scatter from (but not to) an arbitrary beam

direction. This entails the generation of one additional column Sb of the SMART scattering matrix.

The m'th element St of the vectorlSb is a SMART cross section for transfer from the beam to

direction nm.

The St are determined by a procedure similar to that used to determine the SMART

cattering matrix. We require that the SN method with an analytic f'rst collision source produce the

exact solution to an appropriate benchmark problem.

Again we choose Eq. (31) to define our benchmark problem and begin with the discrete

ordinates solution. We assume that the SMART scattering matrix S has already been determined.

Then, for the first path length step it is easy to show's that the SN expression for the multiply

scattered flux is:

OCA)- [I I- ex*06o AS)-g 6  (38)

where

ab E W. (39)

m-1

w. - weight for direction, t's

0%&s) - vector whose m'th component is the multiply scattered flux at tm and s - As. Let

the exact (continuous angle) expression for the multiply scattered flux be denoted by f(As). Then,

the exact and the St solution agree provided that we put



- 17 -

1- OXP(-Vb s) 2 i(s

and Tc(As) must satisfy the normalization 1 '

WM 8(AS) - I - exp(-'Vb A) (41)
mn-I

These results require careful interpretation. Equations (40) and (41) are insufficient to

determine both ib and uo because the maximum component(s) of ic(As) is (are) not defined. Here

7Ce(As) represents the multiscattered rather than the total flux. Ordinarily, these two fluxes differ

only by a delta function of negligible strength [exp(-oAs), where a is the true cross section] centered

at the beam direction. However, as explained above, it is necessary that Ub<< a. This amounts to

broadening the definition of the uncollided beam to include some narrowly scattered electrons,

thereby reducing the maximum element(s) of -T(As).

The amount of broadening is determined by ob, which remains a free parameter. Once ab

is chosen, the maximum element(s) of ic(As) can be determined from normalization Eq. (41) and Sb

from Eq. (40). This choice of-6b guarantees that the SN method will reproduce the exact

benchmark result, that is, the normalized -Tc(As).

Unlike ab, the attenuation factors for travel along any of the quadrature directions are

uniquely determined by SMART scattering theory,15 and they all have comparable values. Our SN

code selects one of these (corresponding to m - k, for example) for ab. Because of this choice and

the corresponding broadened meaning of the uncollided flux, the beam is not modeled by a

monodirectional my, instead it is modeled by a cluster of rays with an angular spread commensurate

with Wk-

Figure la of Ref. 19 shows the result of the application of the SN method with the SMART

first collision source to a two-dimensional problem. A beam of 200-KeV electrons is assumed

incident on a 0.01 X 0.02 g/cmr aluminum slab. The beam obliquity (in the x-y plane) is 45 deg,
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and the point of incidence is located at x - 0, y - 0.01 (as shown on the inset). The rectangular

slab is divided into 50 square zones (0.002 x 0.002), and the histogram displays the energy (in kilo-

electron-volts) deposited in each zone as obtained using an S4 calculation. Figure lb of Ref. 19

shows the result of the application of the ACCEPT (Ref. 20) Monte Carlo code to the same

problem. The two methods agree well. The S4 calculation consumed -L'th of the computer time
30

required by the Monte Carlo code (100,000 case histories). It is anticipated that better agreement

would be achieved with a higher order calculation such as S., which would run approximately three

to four times slower than the S4.

B Extension of the Streaming Ray (SR) Method To Two-Dimensional Homogeneous Media

This section is condensed from Ref. 17. The method of streaming rays (SRs) has been

shown previously4 to be an effective algorithm for one-dimensional electron transport studies. The

Spencer-Lewis equationg- T is solved for the electron distribution in direction i, position x, and path

length s, and the continuous slowing down approximation is used to relate energy loss to distance

traveled, so that path-length-dependent cross sections can be defined. The SR algorithm for

electron transport calculations is advantageous because it facilitates modeling of the continuous

energy loss.

We have extended the SR method to two spatial dimensions (three phase-space dimensions,

x, y, and s).

In contrast to its one-dimensional predecessor, 4 the SR2D code accommodates nonuniform

cell dimensions in x and y and allows for arbitrary discrete ordinates quadrature sets (S., S4, Se, S8,

Sul or Sw). Families of streaming rays originate in the x - 0 plane with a uniform spacing and

overlay the three-dimensional Eulerian grid in x,ys phase space. Each ray is defined by its

direction m and the coordinates of its origination point in the ys plane. With this arrangement and

with As, the path length step equal to an integer multiple of DS, the spacing between streaming ray
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origination points, each slab of thickness As has an identical pattern of interlacing streaming rays

and path lengths need to be computed only once.

The SR2D code uses SMART cross sections's that significantly reduce angular discretization

errors. This allows the highly anisotropic electron scattering to be modeled with relatively few

discrete directions.

The code was used to calculate the energy deposition profile for an isotropic point source at

the periphery of a two-dimensional aluminum medium with dimensions 0.01 g/cmr thick X 0.02

g/cm2 wide. The computational grid was 5 X 10 uniform cells, respectively. The path-length

increment was 0.002 g/cm2 with 25 path-length increments chosen. An S. quadrature set was used.

The isotropic point source was normalized to one incident particle with an energy of 200 KeV.

To validate the SR2D results, the test problem was also solved using the electron/photon

Monte Carlo code TIGER (Ref. 9). The total energy deposited in the medium and peak cell

energies was selected to facilitate the comparison. Results for SR2D and TIGER are provided in

Table I of Ref. 17. For this problem, the calculated values of the total energy deposited in the

aluminum were within 1%, but peak cell energies varied by 4%. The largest relative error was

<30%, and this occurred where numerical values were small, well away from the area of peak

energy deposition. The TIGER results came from an evaluation of 50,000 case histories and were

within :9%. Other problems have been compared, particularly a monodirectional point source, with

equally good results.

C. The Two-Dimensional Multiregion SN/Diamond Difference Algorithm

Although the SR2D code gives good results, the algorithm would be significantly more

complicated for multiregion problems. We therefore decided to use initially the somewhat less

complicated SN method for our multiregion code.
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1. Theory

Extending from homogeneous to multiregions introduces a complication. In the Spencer-

Lewis equation s is used to specify the electron's energy. For homogeneous media, the CSDA

implies a one-to-one correspondence between E and s. However, with multiregion problems this

one-to-one correspondence is lost (since the stopping power is spatially dependent) and s no longer

determines E.

Therefore, we redefine s to mean the path length that would be required to reach energy E

in an infinite homogeneous medium of the composition occurring at the electron's location. That is,

we let

E

SdE (42)

electron that has traveled in more than one region.

With this definition, E is determined by s and the electrons location. However, the electron

flux at a particular value of s is no longer continuous across material interfaces. Thus, the SN

equations cannot be formulated in the conventional manner. However, the flux integrated over a

path length step will be continuous provided that the path length steps represent the same energy

intervals in each region. By substituting integrated quantities for cell center fluxes and some of the

edge fluxes we are able to use the standard SN algorithm.

We consider first the standard discrete ordinates from 12,10 of Eq. (1) in x-y-s geometry, for

mesh cell A Axj A yx in region r:
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+. -rbt r.. -
IAjk IriJkJ 0;-j - Qk+4 + lC (43

In this equation whole indices ij,k are used for quantities that have been averaged over &sF, Axj

and &Yk respectively, while half indices represent cell edge values. (The need for the superscript r

on 4s is explained below). To better model the extreme anisotropy of the scattering kernel the

are determined using SMART scattering theory.

The SN algorithm cannot be applied directly to Eq. (43) because the edge fluxes Zk and

are not continuous at material interfaces. However, these same edge fluxes when .multiplied
Wit

by Asf are continuous provided that the Aif defime the same energy interval in each region, that is,

provided that

fi+I dE' (44)

(E ~Ir

where the energies E 1 defining the edges of the i'th path length step are identical in each

material region. Multiplying Eq. (43) by As we obtain
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where the bar (-) is used to indicate quantities that have been multiplied by A.sf. AUl edge fluxes in

Eq. (45) are continuous, and except for the numerical treatment of the scattering term, the equation

is exact. However there are four unknowns, the celi center flux and the three cell exit fluxes. In

order to obtain a solvable system of equations we use the diamond difference approximation,"-

which here takes the form

n

J~ AJ lk Ii- ik
i+ ilk 21

Except for the appearance of As in Eq. (46) and its absence from Eq. (45), these last two

equations are identical in form to the conventional SN/Diamond Difference equations.tlxs Making

a minor adjustment for as" we solve these equations using the usual SN/Diamond Difference

algorithm.

2. Results

We have performed many two-dimensional multiregion problems. The results are

qualitatively correct and the calculations conserve particles to at least four significant figures. This

is encouraging, however we have not yet compared the multiregion results to accurate benchmark

solutions.
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The code has been verified with several single region problems. Figures 3 and 4 and Table

VII of Ref. 15 show a comparison of SN and Monte Carlo calculations of the energy deposition

profile due to a 200 KeV isotropic point source of electrons incident on a two-dimensional

aluminum slab. Similar comparisons for both isotropic and monodirectional beam sources are shown

in Figs. I and 2 of Ref. 18. The two methods are in very good agreement.

3. Description of the SN2D Code

a. Input

The user may select

-Number of regions (1 to 15)

-Number of elements per region (I to 10)

-Number of energy/path length mesh cells

-Number of x-mesh cells

-Number of y-mesh cells

-SN number (2, 4, 6, 8, 12 or 16)

-Input in centimeters or micrometers

-Maximum number of source iterations per path length step

-Reduced or full printout option

-Type of source

I. Spatially distributed isotropic

2. Spatially distributed monodirectional along one of the quadrature

directions

3. Point source at user specified location in user specified direction

-Energy of source particles

-Negative flux fix-up option

1. No fix-up
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2. Negative flux fix-up

3. Negative flux fix-up and reduce As until scattering matrix is positive

4. Negative flux and negative source fix-up

5. Start with 2 and convert to I if the scattering matrix goeb negative at

some path length step (we recommend option 3)

-Beam source representation

1. Monodirection

2. Cluster of four nearly monodirectional beams. (This better represents the

slight spreading of a SMART "uncollided" beam as explained in Section

U.A.2

-Cross section option

I. Screened Rutherford

2. Riley (not fully debugged)

-Maximum order of Legendre cross section expansion for determining the Goudsmit-

Saunderson matrix. (The suggested value is 200)

-The energy mesh intervals (arbitrary spacing)

-The x-mesh intervals (arbitrary spacing)

-The y-mesh intervals (arbitrary spacing)

b. Output

The output from the code includes

-Angular fluxes for each cell

-The spatially integrated angular flux in each energy step

-The total flux for each mesh cell

-The total leakage currents (electrons per second) from each surface

-The energy deposited in each spacial mesh cell.
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D. The Super Computer SN (SCSN) Method

The material in this section is taken from Ref. 21. When developed in the '50s and '60s, the

discrete ordinates method2o was tailored for optimum efficiency on the computers of the day.

Computation speeds and the available memory of those first computers were extremely poor by

today's standards. Nevertheless, the SN algorithm was and continues to be the method of choice for

many transport problems. However, SN calculations have been plagued by two serious problems,

numerical diffusion and ray effects; the first arises from spatial discretization, and can be quite

severe22 near flux discontinuities; the second results from angular discretization and is very

pronounced for low scattering media. Although the SR method4,22 eliminates the former problem it

does not eliminate the latter. We have developed a new discrete ordinates method specifically

designed for todays large memory, vector and/or parallel processing computers that sharply reduces

numerical diffusion and eliminates observable ray effects.

The method has been tested with excellent results on one-dimension homogeneous slab

problems. For these problems the Spencer Lewis equation [Eq. (1)] for discrete direction AHm

becomes

LM #XsAs) - 57S=' Ox,p ',s) + Q(xjP,,s) (47)
m'=l

where

L, + + -+ (48)

Discretizing path length and space yields the following equation that is solvable by the

standard source iteration method,

" "-(P+') - (L )-I"•) (49)

where
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Wn-1

";) and 4Pm have components k(.P)(xjPmsj) and Q(xj, 9p,s 1 ), j and i are the x and s discretization

indices, and L. is now the matrix representation of the original operator. It is evident from Eq. (3)

that each matrix element of (Lm)' represents the uncollided flux in a particular cell due to a

monodirectional unit source in another. Therefore (.m)" is a very large and sparse matrix. The

conventional SN algorithm enables Eq. (49) to be implemented without explicitly determining the

matrix elements of (Lm)-1, or explicitly executing the implied multiplications by zero. This is an

enormous advantage for low memory scalar computers, but it is also the major source of the

numerical errors. Although the matrix elements corresponding to adjacent cells are determined

accurately (implicitly), those corresponding to distant cells are not, because they are obtained

(implicitly) through the repeated application of a spatial differencing approximations. Some

elements which should be zero turn out positive (or even negative if no fix-up is used) resulting in

numerical diffusion. Matrix elements for cells lying along a discrete direction tend to be over-

estimated causing ray effects. Since scattering tends to reduce the magnitude of the matrix elements

for the distant cells it also reduces the severity of these two errors.

The fundamental ideas of our method are simple:

-Calculate the elements of (Lm)-1 explicitly and accurately.

-Implement Eq. (49) in matrix form.

Item 2 above allows us to take advantage of vector and or parallel processing and thereby

compensate for the many multiplications by zero.

Since (Lm)-1 represents an operator for uncollided transport, its elements can be calculated

to any degree of accuracy. However, this would require the evaluation of tedious integrals, and

instead we have adopted the following simple scheme.

The first step is to calculate the uncollided flux contribution from a monodirectional unit

source in cell i', j' to the target path length cell i by.
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1 1.0 -,-Or

4- (5I)

F -i+lp Aj(1.0 - O.UrPASXl.0 - 0041

Although our code is more general, for simplicity in Eq. (51) we have assumed that the

mesh cells are square. Both expressions are derived by performing an uncollided electron balance

over the i'th path length cell. The uncollided flux is then distributed to the individual spatial cells

in Proportion to the area subtended on the target ceil by an angular cone, originating from the

source cell.

For this angular cone we use one of two forms, depending on the relative distance of the

target path length from the path Length of the source cell.

Figure 1 illustrates the construction of the angular cone for the discrete direction m, used

for target path lengths when i > i' + 1. The angular cone is generated by extending the region of

influence of the discrete direction m to include half of the angular distance to each of the m+l and

mn-I directions. The area created by the intersection of this angular cone and the i ± 1bondaries2

of the target path length cell defines a region over which eo is to be distributed. The individual

elements of [LIU]- are then calculated based on the ratio of area contained within a particular mesh

cell to this total area,

Wmi~ Area j,(52)
C-111 O- T O Area1

where

Area ij- area of intersection within cell ii

and

Area -total area of intersection within path length cell i
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If a cell within the target path length is not intercepted by the angular cone the matrix element for

that target cell is zero. In fact the majority of these elements are zero, as is clearly evident from

Fig. 1.

Figure 2 illustrates the:construction of the angular cone for target path length cells for

which i :s i + 1. Whereas the angular cone originated from the center of the source cell for the

target path length steps above, it is now constructed so that the m ±k I boundaries of the cone,

originate from the centers of the spatial edges of the source cell. Once the area is defined Eq. (52)

is again used for calculating the individual elements.

The distinction between these two cases is made based on physical arguments. If the

previous cell centered scheme were used throughout the discrete ordinates grid, the elements of

[Lm]"1 for adjacent cells would be underestimated. In fact, a simple examination of Fig. 1 shows

that for this scheme, regardless of the discrete direction, the elements of [Lm]-J for the cells

immediately above and below the source ceil, i'j', would be zero.

On the other hand, if the above cell edge center scheme (Fig. 2) were applied to the entire

grid, the extended regions of adjacent discrete directions would overlap for distant cells

overcompensating for the use of discrete ordinates.

This semi-analytic geometric scheme described above for computing the elements [Lm]-1 is

the fundamental mechanism whereby both ray effects and numerical diffusion are removed. The

use of discrete ordinates is compensated for by extending the region of influence of each discrete

direction to include a portion of the previously 'unseen' space between adjacent directions. In this

manner the streaming particles are allowed access to the entire phase space. The numerical

diffusion has been reduced by explicitly setting to zero those elements of [Lm]-l which should be

zero.

The use of cones (instead of discrete directions) is not a new idea,23 however here they are

used to determine all of the matrix elements directly, and not just those corresponding to cells

immediately adjacent to the source ceil. It is the use of cones for uncollided transport to distant

cells that eliminates ray effects. Unlike other ray effect mitigation techniques this new mnethod is
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quite effkient, being 2.6 times slower than conventional SN on scalar machines, but only 1.2 times

slower on vector machines.

Because of the many zeros in the matrix [Lm]-" the SCSNJ method does not make efficient

use of computer memory nor does it make efficient use of the computational resources of a scalar

machine (due to the many unnecessary multiplications by zero). However with the large memory

machines now available the former inefficiency is often irrelevant and the fact that the source

iteration is cast in matrix form enables extensive use of vector and/or parallel processing that can

compensate for the latter inefficiency.

The SCSN method was tested using a 200 KeV isotropic point source incident on aluminum

slabs. With coarse mesh cells (37 mfp squares) the new and conventional SN methods were in close

agreement (see Fig. 3). However, with fine mesh cells (3.7 mfp squares) the new method was not

subject to the ray effects evident with the conventional solution (see Fig. 4).

To demonstrate the lack of numerical diffusion obtained with the SCSN method we have

calculated the electron flux due to a monodirectional source (p - .30) incident on the s - 0 surface

of a vacuum. The results are shown in Table I along with those obtained from the conventional SN

method with and without a negative flux fix-up, and in Table II along with those obtained using

the SR method with and without a ray effect mitigation routine.

The SCSN results are clearly superior to either of the conventional SN solutions in

representing the discontinuity along the edge of the beam. If the source particles are interpreted as

a monodirectional beam, then the SR results with no ray effect mitigation represent the true solution

and all particles should remain within the dotted lines shown in Table II. On the other hand, if the

source patrticles are assumed to be distributed between ;& - .25 and p& - .35, the edges of the cone

corresponding to direction i - .30, then the flux should be contained between the solid lines shown

in Tables I and II, and the results are best calculated by the SCSN method. For this interpretation

of the source, the SR method does better with the ray effect mitigation routine turned on, however,

it is evident that this routine is only partially successful, as the flux still peaks along the source

direction.
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HIL Numerical Diffusion Theory

The ma m lnumerical description of how electrons interact with electronic devices can

be classified into three fundamental calculational categories. The probabilistic approach embodied in

the Monte Carlo method is simply a numerical simulation of the collision interactions and

subsequent streaming of electrons and requires considerable computational resources to use

effectively. The deterministic transport methods as described in Sections the previous sections offer

a viable alternative to the Monte Carlo method but may, in some cases, provide more detailed

information than is necessary for an adequate description. In particular, at the low end of the

electron energy spectrum when the electrons have experienced many collisions, the complete angular

flux variation in angle is not always necessary since the flux is nearly isotropic. For this reason, an

effort has been initiated to develop a diffusion theory description in parallel with the transport

theory description. The diffusion equation is a macroscopic deterministic description of electron

motion and involves far less computational effort than either Monte Carlo or transport theory

methods.

The main goal of the diffusion theory component is to generate a reliable three-dimensional

algorithm that will be coupled to a 2-D or 3-D SN algorithm at an appropriately low energy. In

this way, we hope to treat both the high and low energy regions with the greatest efficiency.

In the following, the progression toward the completion of the 3-D algorithm is documented.

We begin with a I-D development which establishes an adequate foundation for the

multidimensional algorithms to follow. From this initial study, a proper understanding of how the

multidimensional algorithm is obtained. Many of the numerical features of the I-D treatment have

been incorporated into the multidimensional algorithms making the I-D study invaluable. An

alternative approach would have been to use an "off-the-shelf" diffusion code with enough

flexibility to accommodate electron motion in condensed matter, however, the benefit of the very

worthwhile learning experience would have been lost.

L .. . .. . . .. .. .. .. .. . . .. . .
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A. I -D Diffusion Theory

The generic diffusion equation describing electron transport as modeled by the Spencer-

Lewis equation (1) can be written in one-dimension as

* x) Px aOx)- q(xs5) #~xs) + S(x~s) (53a)

where

€#x,s) - electron angularly integrated density (simply called density) for electrons having

transversed a total path length s to arrive at position x

p - diffusion coefficient

q - absorption cross section

S - external source.

The density is subject to the following initial and general mixed boundary conditions

4x,0) - f(s) (53b)
,1(s) •-20 (x~s) + yl(s) O(x~s) .- o(x) at x - a, b (53c)

at the boundaries a and b where , "T are known functions. Equations (53) can be obtained from

Eq. (1) in many ways. The simplest method is to integrate Eq. (1) over i (in one dimension) and

define the density as

1

(xs) - Jd# (x,#,s)

and current as

a
J(x,s). fci[ dAu (,•
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and then invoke Ficks law

J(xjs)- a- pX") 0-3••~)

The absorption term is included for generality and the boundary conditions result from partial

current cosideratios. Implicit in the derivation of Eqs. (53) is the assumption of a linear angular

dependence of the angular flux on the electron direction p in one dimension. This is true only after

many collisions and a distance of at least three mean free paths from discontinuities such as material

boundaries and spatially localized sources. For these reasons, Eqs. (53) are anticipated to be

applicable when the electrons have traversed a relatively large path length at (low energy) and in

large homogeneous regions. Nevertheless, a reasonable approximation can be obtained from

diffusion theory at material boundaries of scattering materials.

1. Point Spatial Finite Difference SchemesT

To derive a numerical algorithm to solve Eqs. (53), we first partition the x variable into

discrete intervals as shown in Fig. 5. The interval midpoint is designated as i and the cell right and

left boundaries by i-1 and i+ 1 respectively. Next Eq. (53a) is integrated over cell i to give

fuI÷dx O(xs)• F x -Lp 20 (xs)-
Sx. i x. xt

Xi I a x i j ax ax2 2~

- f I 1+ 1 2dx cq(xs) #xs) + J S(xs)

Then integrating the second term exactly and using the approximations
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2

ax (Oi (,(s) - ,s)/x+

we arrive at the spatially differenced eQuation

aj A(s) - a1() (s)  s) - j + c1(s) [0A+1(3) - 01(s)] - r 1(s) A(s) + A(s)(4a

where

a;(s) * Is (54b)
A1(Ax1+Ax141)

ci (S) - 2 p141 (S) (54c)
Ax41,(Axi+Ax 141 )

r, (s) - (q1(s) Axi +* qI(s) Axi 41)/(Axi.Axi41) (54d)

Q - (S1(s) Ax1 + S141(s) Ax141 )/(Ax+Axi+ 1 ) -(54e)

At this point there are several ways the path variable s could be handled and in the following

sections3 we discuss two of these.
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2. Continuous Analytical Continuation

A theoretically simple and computationally efficient method for effecting the s integration

of Eql. (54) is found by using Taylor series.28 This method has been rediscovered recently and it is

quite surprising that it has not found more widespread use.

To begin with, we assume that pI(s), qj(s) and S1(s) are given functions of s in a

homogeneous cell i and these functions can be expanded in Taylor series in sj s s < sr to give

a,(s)- a (s-,._,)k (55a)

k-O

ci(s) - (s-sr.s1 )k (55b)

k-O

ri(s) - •.. - (s-,. 1)k (55c)
k-O

Q4(s) - . (,(s-sr_)k . (55d)

k-O

According to Eqs. (54b-e) the expansion coefficients aik, ck, rik and Qjk are related to the

expansion coefficients of pi, q, and S, around an arbitrary point s,,. When Oh(s) is similarly

expanded in st-1 _< s __.

CO- (s-sr.,k (56)

k-O

a recurrence relation results for O when Eq. (56) is introduced into Eq. (54a)
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kio
j,-o

(57a)

+ Idk k! Qk-(k-j)! Ci,,,k.j -1 fil- (k-j)! qk-. Of + .k
j-o j-o

with

,o" Oh(s,.,) (57b)

Thus, we have an explicit two-dimensional recurrence relation for which when introduced into

Eq. (56) provides the solution Oi(s). The advantage of this formulation is that round off error can

be controlled by the choice of the interval boundaries sr. These points are chosen such that the

series in Eq. (56) is convergent and requires less than about ten terms for convergence to a desired

accuracy. By using the previously calculated value O(sr.1 ) as the initial condition in the interval

stt i s :s s1, we are continually analytically continuing the Taylor series representation to the

subsequent intervals--hence the name of the method. This approach has been shown to be very

accurate in other areas of application such as neutron slowing down theory, extended gas kinetics

and radioactive decay. A second major advantage of the method (not used here) is in application to

nonlinear ordinary differential equations.

The method can equally be applied to the multidimensional diffusion equation and its

numerical implementation will be discussed for the 3-D application in a future report.

3. Path Length Discretization

Following along more conventional lines, the path length derivative can be descretized as

follows

A (O"1+1 - R)/
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In addition, if Oh(s) is composed of fractions of R and Ctl in the form

0A(S) - a .a+l + (1-a) OP 0 _5 a _5 1,

Eq. (54a) becomes

[.± - a -& +a' i1+(a)i I -+[1a) b' + +

+ (1-a) •+ (58a)

where

* (aý+ aý"')/2 (58b)

Pi a (cn + c+l)/2 (58c)

a (r. +'+')/2 (58d)

R 1 *-f (58e)

a~ (q + q1+')/2 (58f)

In matrix form, Eq. (58a) can be written as

Sa A + (I-a) YOn +Q

os - _( )(9
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where An is the classic tridiagonal matrix which will be exploited below.

By varying the value of a, one obtains the following well-known discretization schemes

a- I , implicit

a - 0 , explicit

a - 1, Crank-Nicolson.
2'

4. Numerical Implementation and Test Case Results

a. Iteration

Iteration is commonly used to solve Eqs. (58) in lieu of the more costly direct inversion

methods. The scheme can be represented as follows:

) =(60a)

wherr j is the iteration index. To test the iteration procedure, the volume source driven analytical

beuchmark with constant properties

a4KXS) = 082KXS) - Ax,s) + I (61a)
as ax2

O(x,0) - 0, 0(± 1/2,0) - 0 (61b)

was used with the solution

00 r 2(_l) [1_.•,B
-(x~s) = .D-l.., 5,7(2 cos (B. x) (62)

n-O)

where
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Bn - (2n+lr.

Also of note is the approach to the "steady state" or equilibrium solution

O(x) - 1 - cosh (x)/cosh (1/2) (63)

as s approaches infinity.

Table 3 displays the relative error for increasing iteration index with awO.5 at several points

within the slab and for a uniformly distributed source emitting electrons at all path lengths. A

rather large number of iterations are required to achieve acceptable accuracy which is considered to

be 10-S for the electron studies presented here. The approach to the equilibrium solution is shown

in Figs. 6ab with a graphical comparison of the exact and finite difference (FD) solution given in

Fig. 6c for As = 0.01 and Ax - 0.05. Again acceptable agreement is noted. Table 4 gives the

relative error variation with As at large values of s as O(s) approaches the equilibrium solution for

Ax - 0.05. There is some indication that refining As without refining Ax does not improve the

results. This is an indication of a limitation resulting from the iteration procedure. Figures 7a,b

demonstrate that in general the best choice of a is 1. This choice of a apparently combines the

accuracy of the explicit method and the stability of the implicit formulation. A comparison of

results for different As's is shown in Figs. 8a,b. The accuracy is apparently limited by Ax as was

similarly found in analyzing the approach to the equilibrium solution (see Table 4). Figure 9 shows

the improvement as Ax is reduced for a fixed As. Again the results are not expected to improve as

Ax is further reduced unless As is also reduced.

b. Direct Matrix Inversion

The iteration process can be avoided altogether by utilizing a tridiagonal solver (TDS) to

perform the required matrix inversion of Eq. (59) in the form
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-a An w (I-a) An on +Qu (64)
(AS -J)_' '

That the iteration is responsible for an apparent instability when Ax is reduced with As

fixed is clearly demonstrated in Figs. lOa,b. In this figure and those to follow, L, is the number of

interval partitions of the slab length. The iterative solution oscillates widely about the exact solution

for small values of As; whereas, the TDS solution does not and consistently provides accurate results

for all values of Ax. Thus there is a compelling argument to abandon the iterative procedure in

favor of the TDS.

For the comparisons to follow, a global figure of merit to measure the error,

bL
EGL(s) dx I0xs) - l3(xs)l a (65)

has been found to give a reliable characterization of solution. L. is the total number of spatial

intervals between ab and O represents the exact solution. The variation of EGL with s for several

Lx is displayed in Figs. I la,b again effectively indicating the increased stability of the tridiagonal

matrix inversion.

To further demonstrate the superiority of the TDS, several additional test problems with

analytical solutions have been considered. The test cases have been designed to span the types of

situations anticipated to occur when evaluating electron penetration in actual electronic devices.

The second problem considered is for a slab with constant properties p and q and is driven

by a boundary source OT. The analytical solution is
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OI~s - LJnh(,- )+ 2  e_!,sin (%X) (66)
sinh (V61 a) nn-I

",y - na'/a, o.q/p

Figures 12 again show unphysical behavior of the iterative solution as Ax is reduced. The more

well behaved solution obtained by the tridiagonal solver is shown in Fig. 12b. The density near the

source boundary seems to become less accurate as 4x decreases. This inaccuracy can be eliminated

if a finer mesh is specified near the boundary than for the interior. Figure 12c shows the

inprovement when only a single small additional interval is introduced at the boundaries--the

discrepancy is completely eliminated. Figures 13ab,c give the corresponding global errors for the

second benchmark. The global errors for the variation of As in the iteration and matrix solutions

are shown in Fig "14a,b. Again the improvement -provided by the tridiagonal solver is clearly

evident.

As a final demonstration, the diffusion coefficient p in problem 1 was varied from 0.1 to 50

and the global error for the TDS is presented in Fig. 15. The accuracy decreases as p increases most

likely resulting from the increased emphasis of the discrete approximations used for the spatial

derivatives as p increases. These results indicate that variable electron properties can easily be

accommodated with acceptable accuracy.

5. Dose Calculation

In an attempt to apply the discretized solution to a realistic problem, the dose in thick

aluminum was determined. The diffusion equation describing the collided density f, is

pD f, (x,s) 1 f,(x~s) (67a)



- 41 -

fe(xO) - 0 , f,(r,.s) - 0 (67b)

where r. is the electron range in aluminum and all properties are assumed constant with

D - A*/3 .

The uncoilided electron density for normal incidence is given by

fe(x"s) jw 11ýý O(s-x), a x/s (68)

The electron density is therefore

#(xs) - fo(xs) + fe(xs) (69)

yielding the dose

r

D(x) - Ja d, I !L Ax's) .(70)

for a constant stopping power and the dose normalized at x - 0, the results are shown in comparison

with other theories in Fig. 16. Surprisingly good agreement is achieved which is most probably

fortuitous given the crude nature of the dose approximation. The results, however, are encouraging.

B. 2-D Diffusion Theory

The diffusion equation in two-dimensions is
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OXys ) a P(X.YS) -LO(x1 Ys) +

(71Ia)

+ P(xys) - O(xys) - q(x.y~s) O(z,3,s) + S(xys)

with boundary and initial conditions

O(a,y,s) - oL , 0(b,ys) -OR (71b)

O(x~c,s) - ar , O(x,ds) - as (71c)

O(x,y,O) - f(x,y) (71d)

Integrating over cell (i,j) depicted in Fig. 17 and employing the approximations

dx dy 1(x,ys) - 4. (Ayj + Ayj-i) (Ax 1 + Ay 1+1)

fadA p' ±utA AA1

results in

ds-U [aJ -j + caj01+C j + bbij •] +

(72)

+ [d~,j Oj~ + fij Oj + e19j] - 41 Oj + 4

where Nt, bt, cij, jetj e fj, fj and 4j are cell constants. Several differencing schemes for

the path length variable will now be discussed' Note that one could, in addition, apply the

continuous analytical continuation technique (§m.A.2), however, that approach will only be applied

in the 3-D study.
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1. Two-Step Alternating Direction Implicit (ADI)

In this schee, pth length derivative is split inte terval s and the resutant set of

equations is frst solved in the x direction and then in the y direction. In step 1,

ds As/2

yielding

a.4.,

(73)

Eqi. (73) is solved using the TDS in the i direction. The second step consists of the approximation

+_ _ ,j <-'1 jA

ds - 1/2

giving

OU~ ](+ ,a z

(74)

where the tems in the brackets are the same as in Eq. (73) evaluated at the indicated discrete path
length. The TDS is then applied in the j direction giving the fsnal solution at si tm.

I I I • I I | • I I • I I I I II I II I s •-1
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2. Iterative Methods

As in the I-D case, there exists an iterative formulation of the solution to Eq. (72) when the

backward finite difference approximation to the path length derivative is employed. The

formulation becomes

O ,- O.!., CiA . Oj+?e] (75a)

with

Ot1 (s) W a C, + (l-a) #ý, 0:5 a S I (75b)

In the following, several of the many possible ways of solving for are indicated-

a. Line-Jacobi (U) with TDS

(O)OU1 . (O)gj

(76)

b. Successive Overrelaxation (SOR) with Iteration

- w Fvk)g , k)j.lI, (k1) +'j, (k-1)C 1 ] + (I=-) (-h)OC (77a)

0,ca , 1 (77b)

c. Successive Line Overrelaxation (SLOR) with TDS

(78a)

) (k) (I-w) (k+)#J 1  (78b)

0 C< I (78c:)

3. Test Results and Discussion

A source driven test problem with constant properties and a uniform source of the form
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u(s) -Oe-

will be used to test the various solution procedures described above. For zero density on the

boundary, the solution is

O(XY.3 -16 QS 7 7a
#xys)- ab . 7k)

with

A.,. a ef-e"(q+p(3 + 9s))s cos (B. x) cos (By y) (79b)

B * a (2n+l) i/a

13=, - (2m+l) i/b

A more numerically amenable solution is obtained by rearranging the series in Eq. (79a) in the form

16 Q 0 0
"-xys) - ab Z (80)

nO m-O

Figures 18a,b,c show comparisons of the ADI, LJ and SOR solution at y - 0 and s - 0.5 to

the benchmark solution for the variation of Ax and Ay. L. and I.Y are the number of intervals in

the x and y directions respectively. All methods seem to give comparable accuracy. The ADI and

SOR methods require the largest computational time with the LJ technique requiring the least.

Further testing will determine the final selection of the best method for the anticipated vulnerability

studies.

4. Transrt/Diffusion Coupling

To demonstrate the coupling of a transport and diffusion calculation, Fig. 19 shows a

simulated two dimensional approximation to a one-dimensional transport result. For this calculation,
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the density profile at s -5 was taken from an analytical transport theory calculation'2 and used as

the initial condition to the 2-D UJ diffusion solution. Both the analytical and diffusion theory

calculations were then run to s = 15 and Fig. 19 shows the comparison for several Lx, Ly.

Acceptable agreement is seen except possibly near the peak. The comparison can be improved,

however, by taking a finer mesh in region of the peak. Additional studies have been performed

indicating that the coupling of transport theory and diffusion theory in the above manner is a viable

calculational method. It is this coupling that will serve as the basis for future development of the

diffusion theory model.

IV. Development of analytical Benchmark Methods

The trademark of the electron transport theory methods development at the University of

Arizona has been and will continue to be the pursuit of analytical benchmarks while in the process

of forming numerical algorithms.30 31 The interaction of these two components has proved to be

invaluable in the development of reliable and efficient numerical methods.

The benchmark methods to be presented below represent an entirely new concept in

benchmarking. While the benchmarks established thus far are not directly applicable to the electron

transport application, the methods will certainly prove helpful in developing new benchmarks that

will be.

A. Benchmarks from Laplace Transform Inversion

The method in this section is taken from Ref. (30). Recently a highly reliable numerical

Laplace transform inversion has been developed based on the transformation of the Bromwich

inversion integral into a cosine integral. The cosine integral is then represented as an infinite series

of integrals. These integrals are evaluated using a Romberg integration scheme and the convergence

of the series is accelerated with an Euler-Knopp acceleration algorithm. In addition, the inversion

is performed on several contours and agreement is required. A demonstration of the accuracy of
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the inversion is shown in Fig. 20 where the algorithm accuracy e was varied from 10-2 to 10-6.

This algorithm will now be used to provide highly accurate (3-5 digit) benchmarks for the stationary

one velocity Boltzmann equation.

Consider the one-group Boltzmann equation in a semi-infimite medium with isotropic

scattering

a 1 #xp) 2 d' •(x,;') (81)

The flux illuminating the boundary is assumed to be isotropic

#OjO-I ,p>0

Then from integral transport theory we have

J0op) f dx e/" O(x') (82)

for 1 < 0. By letting & -+ - I/s where s is a complex variable, we note that Eq. (82) becomes a

Laplace transform. Thus upon inversion

-1

ow [K X/s (83)
c 5

The inversion can be performed numerically since 0(0,-A) is known to be

I-,-)- I - v'• H() (84)
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where I-j() satisfies the non-linear integral equation

H(p) - l + - is H()J) d ! H• A (85)

The analytical continuation of 0(0,-u) to the complex s plane can easily be done thus allowing the

numerical inversion.

The numerical inversion is applicable to any linear transport problem in which the exiting

distribution is known. Figure 21a-d show results for several basic transport problems with isotropic

scattering in a semi-infinite medium including

1. beam source illuminating the boundary

2. one-half space Milne problem

3. uniform source in right half space.

The method is equally applicable to the case of anisotropic scattering.

In the future an attempt will be made to apply the numerical inversion to the discretized

2-D transport equation in order to treat the s variable continuously and provide a reasonable 2-D

transport benchmark for electrons.

B. Moments by Continuous Analytical Continuation

Accurate moments of the Spencer-Lewis equation in one-dimension

[-+ I !-+ A(s)] ,(x,,,s) - •s) Jdl" f(ii',a),x,p',) (86)

in infinite geometry are of considerable importance in the reconstruction of the density. The

moments are defined by
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Mt.,k(S) • exp ds" A(s) PL) dx x (x,ps) (87)Mj~)a x os'Xl - I dp xn~p

where P is the Legendre polynomial of order L Mt.k satisfies the following set of ordinary

differential equations

ýMu + al M÷z•.. 1 + bt MeII..I A(s) (I-WO) MIk + Q%(s) (88)

ds

where
I

we dp' Pt(jA') f&",..)

and % contains boundary densities known from an independent calculation or approximated from

a lower order theory. Then by expanding Qg and MCk in Taylor series in the interval s,1 : s :5 Sr

n-0

00

Qt-kQr.

• •s) =W- (s-sr-,)P

n-O

MLWkS) - 7 n
n-0

we find the recurrence relation

M; - - ac MW e.i÷k1-. - bt Mn.1,t-1 +

(89)
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n-o

Mt(s) can then be accurately obtained by defining as many s intervals as required for the desired

convergence.

The density can be reconstructed in the usual way by an expansion in orthonormal

polynomials At

tx,s) - Ot(s) At(x) (90a)

k-0

with

00

ot(s) f dx At(x) (90b)

since
t

Ai(x) - bj xi
j-.o

we have

Ot(s) - t b Moj (s) (90c)

j-o

One must be alert to the possibility of round off error contamination in Eqs. (89) and (90c).

Equations (90) are expected to provide accurate results away from the s,x wavefront. Acceleration

techniques are then applied to Eq. (90a) in an attempt to mitigate round off error and provide more

accurate solutions near the wave front discontinuity.
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Table 3

Iteration Error s - 0.01 Ax - 10

J X4 X6 X8

2 1.0000E+00 1.0000E+00 1.0000E+00
3 4.4420E-01 4.4420E-01 4.4420E-01
4 2.6199E-01 2.6199E-01 2.6199E-01
5 1.5484E-01 1.7313E-01 1.7313E-01
6 1.1012E-01 1.2155E-01 1.2155E-01
7 7.2856E-02 8.6013E-02 8.8542E-02
8 5.5023E-02 6.4320E-02 6.6086E-02
9 3.8477E-02 4.7013E-02 4.9794E-02
10 2.9833E-02 3.6212E-02 3.8272E-02
11 2.1535E-02 2.6977E-02 2.9283E-02
12 1.6919E-02 2.1105E-02 2.2867E-02
13 1.2459E-02 1.5916E-02 1.7640E-02
14 9.8593E-03 12560E-02 1.3902E-02
15 7.3585E-03 9.5515E-03 1.0774E-02
16 5.8465E-03 7.5758E-03 8.5373E-03
17 4.4053E-03 5.7951E-03 6.6351E-03
18 3.5083E-03 4.6101E-03 5.2748E-03
19 2.6621E-03 3.5417E-03 4.1063E-03
20 2.1231E-03 2.8226E-03 3.2710E-03
21 1.6196E-03 2.1 754E-03 2.5488E-03
22 1.2928E-03 1.7356E-03 2.0328E-03
23 9.9035E-04 1.3409E-03 1.5848E-03
24 7.9087E-04 1.0705E-03 1.2650E-03
25 6.0768E-04 8.2862E-04 9.8649E-04
26 4.8558E-04 6.6180E-04 7.8778E-04
27 3.7423E-04 5.1300E-04 6.1441E-04
28 2.9900E-04 4.0983E-04 4.9080E-04
29 2.3092E-04 3.1805E-04 3.8280E-04
30 1.8452E-04 2.5412E-04 3.0584E-04
31 1.4276E-04 1.9739E-04 2.3854E-04
32 1.1408E-04 1.5773E-04 1.9061E-04
33 8.8389E-05 1.2260E-04 1.4866E-04
34 7.0365E-05 9.7975E-05 1.1880E-04
35 5.4790E-05 7.6201E-05 9.2649E-05

Ax 10
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Figure 1. Angular cone construction for i> i: + 1. Cross hatched area is
the extended region of influence for direction m. Double cross hatched area
is that fraction within the target cell ij.
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Figure 2. Angular cone construction for i < i' + 1. Cross hatched area is
the extended region of influence for direction m. Double cross hatched area
is that fraction within the target cell ij..
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C0,

0

Figur 3 Comparison of solutions obtained from the conventional SN (DD) method and
the (SCSN) method for coarse (37 mfp) mesh cells. a) (DD) M - 4, b) (SCSN) M = 4,
c) (DD) M = 12, d) (SCSN) M = 12.
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b)b

4)

we 
I)

_v~we 4 Comparison of solutions obtained from the conventional SN (DD) method andthe new (SCSN) method for fine (3.7 znfp) mesh cells. a) (DD) M =4, b) (SCSN) M =4,c) (DD) M =8, d) (SCSN) M = 8, e) (DD) M =12, f) (SCSN) M = 12.
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Table 4

Approach to "Steady State Ox) - 0.11318

as 4O) ERROR

0.01 0.5 0.11229 7.9 x 10-3

0.02 1.0 0.11277 3.62 x 10-3

0.04 2.0 0.10913 3.58 x 10"-

0.08 4.0 0.09972 1.19 x 10-1
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Fig. 5 I-D cell for point spatial finite difference scheme
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