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MULTIDIMENSIONAL DETERMINISTIC ELECTRON TRANSPORT CALCULATIONS
W. L. Filippone, B. D. Ganapol, S. P. Monahan

Introduction

This report summarizes research carried out for the US Air Force Rome Air Development
Center under contracts F 30602-81-C-0185 (P. R. No. §-6-7548) and E-21-669-S6 (P. R. No. S-
7-7522). The object of this work was to develop fast and accurate techniques for determining
electron fluxes and energy deposition profiles in complex multidimensional microcircuits, for use in
radiation hardness studies. Our approach was to use deterministic solutions of the multidimensional
Spencer-Lewis electron transport equation. To do this it was necessary to develop several special
numerical techniques which we describe below.

We begin with the deriviation of the Spencer-Lewis equation. Then we discuss SMART
scattering theory that enables us to replace the highly anisotropic electron scattering kernel by one
that is more amenable to nux-nerical treatment. Next, we describe several transport and diffusion
theory solution algorithms. Finally in Section IV we present several new analytical benchmarking

methods that will prove useful in generating more comprehensive benchmarks.

I. Deriviation of the Spencer-Lewis Equation
When continuous slowing down theory is valid, electron transport in homogeneous media is

governed by the Spencer-Lewis equation,

|

where

¥l

187 + 0] atcsdy = [a st o s + Qs 0

P s) = glectron density (electrons per unit volume per unit solid angle) at position r, direction
{1 and path length s,
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ofs) = total (scattering) cross section, and

Qﬁ"#.ﬁ) = electron source density (electrons per unit volume per unit path length per unit solid
angle).

According to the continuous slowing down approximation (CSDA) there is a one-to-one
correspondence between distance traveled and energy lost, and the path length s plays the role of an
energy variable. We prefer the Spencer-Lewis equation to the multigroup Boltzman equation,
because the latter is not particularly efficient at modeling electron energy loss. To obtain good
results normally requires an exceedingly large number of groups!s? (or other high resolution energy
discretization technique?), while coarse path length mesh solutions of the Spencer-Lewis equation are
normally sufficient,»¢ probably because the CSDA is built into the equation. Equation (1) was
presented by Lewis? in 1950 without proof, and ity first practical solutions for the infinite medium
case were obtained by Spencer® in 1955 using the method of moments. We have derived” Eq. (1)
and a time-dependent generalized Spencer-Lewis equation valid for inhomogeneous media from the

Boltzmann equation,

[-g—t + VY o(?,V)v] NTV,t) =
J' d3vo(T;V'—V) VNI, V",t) + q{T.V.,t) (V3]
where
N = electron density (electrons per unit volume per unit velocity) at position T, velocity V
and time ¢,

olT,v) = total (scattering) cross section
ot ,V'—V) = differential scattering cross section

q(r.v,t) = electron source density (electrons per unit volume per unit velocity per unit time)




A. Homogeneous Media
To derive Eq. (1) fro_m Eq. (2) we assume that
1.  Scattering changes direction but not energy, that is,
o=V = §(v-v') o(v, ¥~ Eh)/v2. 3)
2. Energy loss is completely determined by the stopping power |%|
3. The medium is homogeneous.
4.  The fixed source is of the form

qf V.t = QTV) it - T(V)] C))

where T(v) is the time it takes for an electron to slow down to speed v from some reference speed
Vg such as the largest speed in the system. (This source form is needed so that at time t all

electrons will have the same speed V(t).)

It can then be shown that

NEV.0) = NT.AL) v-Viyys (5)

- 5"’-3 in Eq. (2) where

<
2l

and Eq. (1) results from the substitution

EO
S(E) -J —dE_ ©)

and E, = E(v,). The details of this deriviation are given in Ref. 7.

If the source restriction [Eq. (4)] is relaxed, then the one-to-one correspondence between t
and v and therefore between t and s is lost; however, Eq. (1) remains valid as is evident by the

alternative deriviation discussed below.




B. Inhomogeneous Media
To obtain a Spencer-Lewis type equation for inhomogeneous media we assume that

1.  Energy loss and angular deflection are unconnected, that is that o{t’,v’—V) is of the

form
o V'—V) = §(E’-E) 07 .E¥—0) + &(@¥-0)) og@,E'—E) ™

2 An electron loses exactly the quantity of energy AE with each collision while

preserving the correct stopping power so that
opF.E~F) = == | &€ 7. | §E"-E-AE) ®)
E AE ' ds '’ :

Inserting Eqs. (7) and (8) into Eq. (1), taking the limit AE — 0, and making the

substitution
a__, . 1 a
= 5 ©)
dE
| 2o

we obtain after considerable manipulation [See Ref. 7]

l a A ~ A ~ a A
L+ OV +FHTIN) + 1T8) =] HTI00)
[vrr'm & a!]

- [dx”r o 3.r—0) ¢ 300 + aF 300 (10)

where
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. av | E@B |
I =o' I) - I (11)
| = 3|
TPH=1+ %ﬂ@_ . 12)
| & @9 |

Equation (10) is a generalization of the Spencer-Lewis equation valid for spatially

varying stopping powers. If the medium is homogeneous then

T —s, : (13)
HAE3.0) — ofs) (14)
173) ~ 1 (15)

and Eq. (10) becomes

| s |
< b
Pl

+ 0V + ofs) + g,-] #T s, 0t) = der ofs,fY—0) $Es 0 aFs) . (16)

Equation (16) is not simply the time-dependent form of Eq. (1). The variable ® in the later
equation is a number density (electrons/cm3) while ¢ in the former equation is a flux (cm

traveled/cm4/second). Integrating Eq. (16) over all time and putting

o0

B(r,s.) = j dt &7 .s,0Lt) (amn
0

and
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QR 5.0 = L dt qfF s,0,t) (18)

we obtain Eq. (1). This deriviation of Eq. (1) does not require the source restriction specified by
Eq. (4).
An independent verification” of Eq. (10) was obtained for the one-dimensional case using

particle balance considerations.

[I. Numerical Transport Methods

A. SMART Scattering Theory

Electrons interact via long-range electric forces, and therefore their cross sections tend to be
enormous and extremely forward peaked as compared to those of neutral particles. As a
consequence, electron transport is characterized by a large number of minute deflections in the
velocities of the electrons. This virtually rules out the possibility of direct modeling either through
Monte Carlo or discrete ordinates techniques.

Most Monte Carlo codes use condensed histories®:® because the large value of the scattering
cross section makes it impractical to follow each individual scattering event for a sufficient number
of histories.

The large scattering cross sections also .cause trouble for discrete ordinates codes by making
the spectral radius (without acceleration) for the source iteration nearly equal to unity. Furthermore,
the anisotropy of the scattering kernel can require a large number of discrete ordinates for an
adequate numerical treatment. Because of these problems, discrete ordinates solvers normally replace
the true transport model by one that is more easily simulated. This is done through the use of
effective cross sections. These sections have three important properties that make them suitable for
numerical calculations:

-They are much smaller than the true cross sections they replace.




-They are much less anisotropic.

-They yield good results in discrete ordinates codes.

With effective cross sections a few large angle deflections are used to model the combined effect of
many small angle deflections.

Effective scattering matrices are most often generated using Fokker-Planck19:11 methods or
the extended transport (deita function) correction.11,13 The major drawback with these techniques is
that they lead to nonpositive and therefore nonphysical scattering matrices.

We describe a special type of effective scattering matrix that we refer to as SMART
(simulation of many accumulative Rutherford_trajectories). The acronym is somewhat appropriate
(although not in the precise artificial intelligence sense) because the matrix elements are defined
such that they cancel errors due to angular discretization. It is this property that enables electron
discrete ordinates calculations to be performed with relatively few (typically 12) discrete directions.
It is also possible to refine the definition of these scattering matrices such that they cancel path
length in addition to angular discretization errors. We refer to such scattering matrices as very
SMART.

The theory of SMART scattering matrices is based on the conjecture that a scattering kernel
should be independent of the problem geometry. In particular, a scattering matrix that performs
well in an infinite medium should also perform well in a finite medium. Using the Goudsmit-
Saunderson!¢ theory of multiple scattering, exact infinite medium solutions are easily obtained.
Working backward from such results, we are able to deduce a suitable scattering matrix for the
discrete ordinates equation. In contrast to the Fokker-Planck kernel and the extended transport
corrected kernel (which is SMART with Gauss quadrature sets but not positive), positive SMART
scattering matrices are easily generated.

Positive scattering matrices have three important advantages:

-They guarantee positive solutions when used in conjunction with positive spatial

differencing schemes.
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-They enable the use of negative flux fixups. (Such fixups are justified when negative
angular fluxes result from spatial differencing errors, but not when tkey result from negative
scattering matrix elements.)

-They can be used in single collision Monte Carlo codes that require positive cross sections.

There are infinitely many ways to discretize the electron transport equation, an infinite
subset of which leads to the discrete ordinates equations. Corresponding to each discretization
scheme is a different SMART scattering matrix. In fact, if Gauss quadrature points are used, then
one of these schemes leads to the extended transport corrected scattering matrix. Fortunately, it is
easy to find discretization methods that lead to discrete ordinates equations and to positive SMART
scattering matrices as well.

L. The SMART Scattering Matrix

To illustrate the discretization possibilities, we begin with a weighted residual deriviation of

the Sy equations. (This section is condensed from Ref. 15.)

The Weighted Residual Deriviation of the Sy Equations

Let the flux in Eq. (1) be approximated by

HE5,0) » dp(Fs0) = i $EsBm (@) (19)

m=i

where the B™ are a set of M basis functions. The residual associated with ¢ is defined as
R{F,s,0) = [5"; + 0V o(s)] $r(@s.0D)

- Jdn’ d(s,ﬁ'—'ﬁ) hﬁ"s’fr)

- Qs . (20
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Forcing the residual to be orthogonal to a set of test functions, (T'“(ﬁ); m = 1.2..M]}, that satisfy

the conditions

Iw(ﬁ)*nm’(ﬁ) a0 = 6’ - Q1)
and

IW(ﬁ)*ﬁBm’ @ dan =msc 22)
we obtain

[% + r’.‘rn-v] 4207 5)

- i A )

m'=]
+QuTs) ,m=12..M , : (23)
where
Sem” = S'mm’ = B’ » (24)
S o’ = ”Tm(ﬁ)*a(s,s‘r-.ﬁ) B () d¥ dn (25)
Qu(r,5) = JT'“(ﬁ)"Q(r,s,ﬁ) an (26)

and from Eq. (22),

n = [Tt @ a0

“im | @7
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where {i= is the m'th discrete direction. The S’ mm’ are the elements of the conventional scattering
matrix §’. The matrix S defined by Eq. (24) has removal as well as scatter included in its definition.

It is referred to as the net conventional scattering matrix, and is normally approximated as

S’ * 0.0 ~{P) W - 08 (28)
where
wm = JBm(ﬁ) an . (29)

Because of the extreme anisotropy of o(s,ﬁ'-ﬁ), the major contribution to the integral of Eq.
(1) comes from values of ft = . Unless a very large value of M is used, this contribution is

normally missed with conventional scattering matrices. For this reason the error, defined as

(T s) m 627 .8) - O 8) (30)
can be quite large. To reduce this error, we replace S with a SMART net scattering matrix §,
which is designed to give good results when a coarse angular mesh is used. The matrix S is

obtained by forcing ¢m = 0 for a set of problems for which analytic solutions are available.

The Goudsmit-Saunderson Matrix

To obtain benchmark problems that are amenable to exact analytical solution, we consider an
infinite source-free medium with an initial (s = 0) distribution ¢(0.ﬁ) that is independent of position

T. For this case, Eq. (1) reduces to

[% + a(s)] s, Q) = Ia(s,?t-ﬁ) os.fD) aer . (31)
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We are interested in equating the discrete ordinates and exact solutions for identical initial
conditions. As seen from Eq. (19), the initial condition for the discrete ordinates equations must be

of the form

$p(0,0) = f: #2(0) B=(@) . (32)

m=]

With an initial distribution of this form, the exact ¢m(s) are given,® in matrix form by
$(s) = G(0—5) $7(0) (33)

where the components of -J and ?1- are ¢ and ¢T, respectively. The elements of the Goudsmit-

Saunderson matrix G are given by

G(34~*8) e’ ™ J‘Iw(n)og(soﬂ’ fir) B (fY) dﬂ ar (34)
wherel4
8(s,—s.0HT)
00 s
- Z 2£4:.l exp. ‘I [o4(s") = o4(s] a8’ Pg(ﬁ-ﬁ') . (35)
=0 So

and P, is the £'th Legendre polynomial. We emphasize here that Eq. (33) represents the exact
(continuous angle) solution for any source that can be expressed by Eq. (32). Although spatial
effects have been eliminated, the effects of multiple scattering are present and therefore Eq. (33)

should constitute a good benchmark for testing discrete scattering kernels.
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The Diamond-Difference SMART Scattering Matrix

Our two-dimensional Sy code described below uses diamond differencing in both space and
path length; however, only the numerical treatment of the path length variable affects the definition
of the scattering matrix. With diamond differencing and a piecewise constant scattering matrix, it is

easy to show1® that the Sy solution to Eq. (31) is

;?D(SM/: = [l - %sj'gi].1 [l + %Lgi]—;‘r(si-llz) ,

where the s/, are the edges, As; the size, and §i the SMART scattering matrix for the i'th path
length step.
To define the §, we force Eq. (36) to agree with the exact solution [Eq. (33)] at each value

of 8;,1/3. It is shown in Ref. 15 that the required scattering matrix is

§ = K_zsi- [T + G(0—5;41/3) G(0—5;.4/2)7 ]2
X [G(0—8;,1/3) G(0—s8;.4/2)72-] . (37

This scattering matrix cancels errors due to
-angular discretization
-diamond differencing in s
~-the piecewise constant (in s) approximation.

An example of a diamond difference SMART scattering matrix is given in Table I of Ref. 15.

Positivity
We demonstrate in Ref. 15 that the $'; will be positive provided that the As; are sufficiently

small, and the basis functions {the Bm(ﬁ)] are chosen positive.
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Although the deita function corrected scattering matrix is SMART if Gaus quadrature
points are used (this is only possible in one-dimensional geometries) it is not positive. (Compare
Table V with Table Il of Ref. 15.) As shown in Ref. 15, this is due to the fact that the basis
functions that yield the delta function corrected scattering matrix are the Lagrange interpolation
polynomials, which are not positive functions. With positive SMART scattering matrices problems
of negative fluxes do not occur. See Fig. 1 of Ref. 15.

SMART scattering matrices have produced excellent results in one-dimensional single
collision Monte Carlol® calculations (see Fig. 2 of Ref. 15) in two-dimensional SR calculations (see
Table I of Ref. 17) and in two-dimensional Sy calculations (See Figs. 3 and 4 of Ref. 15 and Fig. 2
of Ref. 18).

It appears that SMART scattering theory can be used to eliminate or reduce sevéral of the
classic problems associated with electron transport, namely,

-miniscule mean-free-paths that imply

a. slowly converging source iterations in Sy and SR codes

b. many collisions per history in Monte Carlo codes

c. relatively large ratios of cell-collided to cell-uncollided fluxes, which reduces
the accuracy of SR calculationst

-large angular discretization errors in Sy and SR codes

-nonpositive scattering matrices that

a. cannot be used in Monte Carlo codes
b.  should not be used in Sy codes with negative flux fixups

~the relatively minor problem of path length discretization errors.

SMART scattering matrices have performed well in SR, Sy, and single collision Monte Carlo
computer codes. They appear to be an attractive alternative to Fokker-Planck and extended
transport correction techniques for Sy and SR calculations and to the condensed history approach

for Monte Carlo calculations.
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Fokker-Planck methods give a good representation of narrow angle scattering but are
inappropriate for wide angle collisions.

Extended transport corrected cross sections can simulate both narrow and wide angle
collisions, and are in fact SMART if Gauss quadrature points are used. However, they are
nonpositive.

With the condensed history approach, direction change is determined by sampling the
Goudsmit-Saunderson distribution. Since this distribution is the solution of the space-independent
Spencer-Lewis equation, it is not valid near material interfaces and special techniques must be used.®
As speculated above, the validity of a SMART scattering matrix should not depend on the proximity
of a boundary. If this is indeed true, then the SMART scattering. matrices should prove useful in
Monte Carlo codes at least in the vicinity of interfaces. To date, our test problems have involved
only media with vacuum boundaries. To obtain a more stringent test of SMART scattering theory,
calculations with several closely spaced material interfaces will soon be carried out.

It may appear that the method for generating SMART scattering matricé is analogous to the
flux-weighting procedure used to determine effective meutron cross sections. Indeed, both
techniques use infinite media solutions to determine appropriate cross sections. However, the
SMART scattering matrix is by no means an angular flux-weighted average of the true scattering
kernel. In fact, the total cross section is much smaller and the average deflection per collision much
larger than those for the true scattering kernel.

SMART scattering theory appears to have an important advantage over flux-weighting
techniques. Flux-weighted cross sections are valid only for one particular spectrum, whereas the
SMART scattering matrix gives exact solutions for any arbitrary angular flux (provided it is spatially
independent.) Thus, flux-weighted cross sections are reliable only if the spectrum in the region to
be analyzed resembies that used to generate the cross sections. SMART scattering matrices should
be more versatile. Our current thinking is that these matrices will be nearly equivalent to the true
scattering kernels in most problem geometries, but exactly equivalent only in infinite media.

Although we cannot give a formal proof, our reasons for this assertion are as follows:
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-‘rho: SMART scattering matrix is not tied to a particular angular flux distribution.

~There is considerable numerical evidence that the SMART scattering matrices work well in
finite media.

-The physical model corresponding to SMART scattering theory (few relatively wide angle
collisions) seems to be a reasonable equivalent to the true situation (many small angle collisions).

-Certainly one can imagine pathological geometries in which trajectories with a large
number of small angle collisions could not be simulated by trajectories with a lesser number of large
deflections. Thus, it is doubtful in our opinion that an exact equivalence can be demonstrated for
the finite medium case.

We have observed:$ that the SMART and conventional scattering matrices are in close
agreement for those matrix elements that represent wide angle scattering. However, for narrow
deflections the elements of S exceed those of S. The augmented values of these elements in s
compensate for the large number of very narrow deflections that are too small for direct modeling
on the Sy quadrature set.

The conventional scattering matrix fails in electron transport because it misses the

accumulative effect of these narrow deflections.

2. SMART First Collision Sources

The material in this section is taken from Ref. 19. The use of analytic first collision sources
can greatly improve the accuracy of neutral particle Sy calculations. For electrons, because of the
strong anisotropy of the electron scattering kernel, many collisions are required before the flux from
a beam source is smooth enough to lend itself to practical numerical treatment. Thus the use of a
conventional analytic first collision source is of little value.

With SMART scattering theoryl® as described above, the true electron scattering law is

replaced by an equivalent one that involves many times fewer collisions but larger angular
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deflections per collision. With such a scattering law, the electron transport emulates that of neutral
particles. Hence, application of an analytic first collision source should be effective. Howaever,
SMART scattering cross sections are defined in terms of a scattering matrix and thus only apply for
scatter from one quadrature direction to another.

We have extended the theory to include scatter from (but not to) an arbitrary beam
direction. This entails the generation of one additional column S of the SMART scattering matrix.
The m'th element S2, of the vector S® is a SMART cross section for transfer from the beam to
direction {i.

The SP, are determined by a procedure similar to that used to determine the SMART
scattering matrix. We require that the Sy method with an analytic first collision source produce the
exact solution to an appropriate benchmark problem.

Again we choose Eq. (31) to define our benchmark problem and begin with the discrete
ordinates solution. We assume that the SMART scattering matrix S has already been determined.
Then, for the first path length step it is easy to showi® that the Sy expression for the multiply

scattered flux is:

-1
Bc(As) = [1 - %'g] L‘iip%;‘_’).'gb (38)
where
% = i Wi Sm (39)
m=]

wy = weight for direction, {im
?‘(As) = vector whose m’th component is the multiply scattered flux at fim and s = As. Let
the exact (continuous angle) expression for the multiply scattered flux be denoted by §(As). Then,

the exact and the S; solution agree provided that we put
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—

sh

ASs 3 [z
- eiﬁ"gab = [1- -i-s]‘a' (as) , (40)

and F¢(As) must satisfy the normalization1®

i Wy 85,(83) = 1 - exp(-c;, As) . (41)

m=]

These results require careful interpretation. Equations (40) and (41) are insufficient to
determine both S® and o, because the maximum component(s) of Z¢(As) is (are) not defined. Here
T°(As) represents the muitiscattered rather than the total flux. Ordinarily, these two fluxes differ
only by a delta function of negligible strength [exp(-cAs), where o is the true cross section] centered
at the beam direction. However, as explained above, it is necessary that o, << 0. This amounts to
broadening the definition of the uncollided beam to include some narrowly scattered electrons,
thereby reducing the maximum element(s) of F¢(As).

The amount of broadening is determined by ¢, which remains a free parameter. Once o}
is chosen, the maximum element(s) of F<(As) can be determined from normalization Eq. (41) and S®
from Eq. (40). This choice of S® guarantees that the Sy method will reproduce the exact
benchmark resuit, that is, the normalized §<(As).

Unlike oy, the attenuation factors for travel along any of the quadrature directions are
uniquely determined by SMART scattering theory,!® and they all have comparable values. Our Sy
code selects one of these (corresponding to m = k, for example) for o,,. Because of this choice and
the corresponding broadened meaning of the uncollided flux, the beam is not modeled by a
monodirectional ray; instead it is modeled by a cluster of rays with an angular spread commensurate
with w, .

Figure 1a of Ref. 19 shows the result of the application of the Sy method with the SMART
first collision source to a two-dimensional problem. A beam of 200-KeV electrons is assumed

incident on a 0.01 x 0.02 g/cm3 aluminum slab. The beam obliquity (in the x-y plane) is 45 deg,
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and the point of incidence is located at x = 0, y = 0.01 (as shown on the inset). The rectangular
slab is divided into 50 square zones (0.002 x 0.002), and the histogram displays the energy (in kilo-
electron-volts) deposited in each zone as obtained using an S, calculation. Figure 1b of Ref. 19
shows the result of the application of the ACCEPT (Ref. 20) Monte Carlo code to the same
problem. The two methods agree well. The S, calculation consumed %‘th of the computer time
required by the Monte Carlo code (100,000 case histories). It is anticipated that better agreement
would be achieved with a higher order calculation such as S,, which would run approximately three

to four times slower than the S,

B Extension. of the Streaming Ray (SR) Method To Two-Dimensional Homogeneous Media

This section is condensed from Ref. 17. The method of streaming rays (SRs) has been
shown previously* to be an effective algoridxm for one-dimensional electron transport studies. The
Spencer-Lewis equation®=7 is solved for the electron di;tribixtion in direction u, position x, and path
length s, and the continuous slowing down approximation is used to relate energy loss to distance
traveled, so that path-length-dependent cross sections can be defined. The SR algorithm for
electron transport calculations is advantageous because it facilitates modeling of the continuous
energy loss.

We have extended the SR method to two spatial dimensions (three phase-space dimensions,
X, ¥, and s).

In contrast to its one-dimensional predecessor,* the SR2D code accommodates nonuniform
cell dimensions in x and y and allows for arbitrary discrete ordinates quadrature sets (S,, S,, S,, S,,
S,;, or S;0). Families of streaming rays originate in the x = 0 plane with a uniform spacing and
overlay the three-dimensional Eulerian grid in x,y,s phase space. Each ray is defined by its

direction m and the coordinates of its origination point in the y,s plane. With this arrangement and

with As, the path length step equal to an integer multiple of DS, the spacing between streaming ray
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origination points, each slab of thickness As has an identical pattern of interlacing strea;ning rays
and path lengths need to be computed only once.

The SR2D code uses SMART cross sections!® that significantly reduce -angular discretization
errors. This allows the highly anisotropic electron scattering to be modeled with relatively few
discrete directions.

The code was used to calculate the energy deposition profile for an isotropic point so@ at
the periphery of a two-dimensional aluminum medium with dimensions 0.01 g/cm2 thick x 0.02
g/cm? wide. The computational grid was 5 x 10 uniform cells, respectively. The path-length
increment was 0.002 g/cm3? with 25 path-length increments chosen. An S; quadrature set was used.
The isotropic point source was normalized to one incident particle with an energy of 200 KeV.

To validate the SR2D results, the test problem was also solved using the electron/photon
Monte Carlo code TIGER (Ref. 9). The total energy deposited in the medium and peak cell
energies was selected to facilitate the comparison. Results for SR2D and TIGER are provided in
Table I of Ref. 17. For this problem, the calculated values of the total energy deposited in the
aluminum were within 1%, but peak cell energies varied by 4%. The largest relative error was
<30%, and this occurred where numerical values were small, well away from the area of peak
energy deposition. The TIGER results came from an evaluation of 50,000 case histories and were
within £9%. Other problems have been compared, particularly 2 monodirectional point source, with
equally good results.

C. The Two-Dimensional Multiregion Syy/Diamond Difference Algorithm
Although the SR2D code gives good results, the algorithm would be significantly more
complicated for multiregion problems. We therefore decided to use initially the somewhat less

complicated Sy method for our multiregion code.
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1. Theory
Extending from homogeneous to muitiregions introduces a complication. In the Spencer-
Lewis equation s is used to specify the electron’s energy. For homogeneous media, the CSDA
implies a one-to-one correspondence between E and s. However, with ﬁxultiregion problems this
one-to-one correspondence is lost (since the stopping power is spatially dependent) and s no longer

determines E.
Therefore, we redefine s to mean the path length that would be required to reach energy E

in an infinite homogeneous medium of the composition occurring at the electron’s location. That is,

we let
E
sm I dE” . (42)
0
dE -
‘ ds (E") .
where %% (E) is the stopping power in region r. Thus s is not the true path length for an
I

electron that has traveled in more than one region.

With this definition, E is determined by s and the electrons location. However, the electron
flux at a particular value of s is no longer continuous across material interfaces. Thus, the Sy
equations cannot be formulated in the conventional manner. However, the flux integrated over a
path length step will be continuous provided that the path length steps represent the same energy
intervals in each region. By substituting integrated quantities for cell center fluxes and some of the
edge fluxes we are able to use the standard Sy algorithm.

We consider first the standard discrete ordinates from 18,20 ot; Eq. (1) in x~y-s geometry, for

mesh cell As{ Ax; Ay, in region r:
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1 (. , 0% (gn  _gm
asf [‘h 3 4’:-;41:] " ax [¢u+§k % §k}

In this equation whole indices i,j,k are used for quantities that have been averaged over As{, Ax;
and Ay, respectively, while half indices represent cell edge values. (The need for the superscript r
on As{ is explained below). To better model the extreme anisotropy of the scattering kernel the
§,‘m,' are determined using SMART scattering theory.

The Sy algorithm cannot be applied directly to Eq. (43) because the edge fluxes ¢“‘ 1 and
y 3
2
¢;‘h , are not continuous at material interfaces. However, these same edge fluxes when multiplied
3
by As] are continuous provided that the As; define the same energy interval in each region, that is,

provided that

Asf-L o dE . (44)
i-; g_E_ »
zl 3 E)

r

where the energies Eu 1 defining the edges of the i'th path length step are identical in each

2
material region. Multiplying Eq. (43) by As{ we obtain




Ayk

) fne

where the bar (-) is used to indicate quantities that have been muitiplied by As{. All edge fluxes in
Eq. (45) are continuous, and except for the numerical treatment of the scattering term, the equation
is exact. However there are four unknowns, the cell center flux and the three cell exit fluxes. In

order to obtain a solvable system of equations we use the diamond difference approximation,2?

which here takes the form

=6 1+ (46)

Except for the appearance of As{ in Eq. (46) and its absence from Eq. (45), these last two
equations are identical in form to the conventional Sy/Diamond Difference equations.!$:20 Making
a minor adjustment for As{ we solve these equations using the usual Sy/Diamond Difference

algorithm.

2. Results

We have performed many two-dimensional multiregion problems. The results are
qualitatively correct and the calculations conserve particles to at least four significant figures. This

is encouraging, however we have not yet compared the multiregion results to accurate benchmark

solutions.
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The code has been verified with several single region problems. Figures 3 and 4 and Table
VI of Ref. 15 show a comparison of Sy and Monte Carlo calculations of the energy deposition
profile due to a 200 KeV isotropic point source of electrons incident on a two-dimensional
aluminum slab. Similar comparisons for both isotropic and monodirectional beam sources are shown

in Figs. 1 and 2 of Ref. 18. The two methods are in very good agreement.

3. Description of the SN2D Code
a. Input
The user may select
-Number of regions (1 to 15)
-Number of elements per region (1 to 10)
-Number of energy/path length mesh cells
-Number of x-mesh cells
-Number of y-mesh cells
-Sy number (2, 4, 6, 8, 12 or 16)
-Input in centimeters or micrometers
-Maximum number of source iterations per path length step
-Reduced or full printout option
-Type of source
1. Spatially distributed isotropic
2. Spatially distributed monodirectional along one of the quadrature
directions
3. Point source at user specified location in user specified direction
-Energy of source particles
-Negative flux fix-up option

1. No fix-up
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2. Negative flux fix-up
3. Negative flux fix-up and reduce As until scattering matrix is positive
4. Negative flux and negative source fix-up
5. Start with 2 and convert to | if the scattering matrix goes negative at
some path length step (we recommend option 3)
-Beam source representation
1.  Monodirection
2. Cluster of four nearly monodirectional beams. (This better represents the
slight spreading of a SMART "uncollided" beam as explained in Section
oA2
-Cross section option
1. Screened Rutherford
2. Riley (not fully debugged)
-Maximum order of Legendre cross section expansion for determining the Goudsmit-
Saunderson matrix. (The suggested value is 200)
-The energy mesh intervals (arbitrary spacing)
-The x-mesh intervals (arbitrary spacing)
-The y-mesh intervals (arbitrary spacing)
Output
The output from the code includes
-Angular fluxes for each cell
-The spatially integrated anguiar flux in each energy step
~The total flux for each mesh cell
-The total leakage currents (electrons per second) from each surface

-The energy deposited in each spacial mesh cell.
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D. The Super Computer Sy (SCS§) Method

The material in this section is taken from Ref. 21. When developed in the ‘50s and ‘60s, the
discrete ordinates method2? was tailored for optimum efficiency on the computers of the day.
Computation speeds and the available memory of those first computers were extremely poor by
today’s standards. Nevertheless, the Sy algorithm was and continues to be the method of choice for
many transport problems. However, Sy calculations have been plagued by two serious problems,
numerical diffusion and ray effects; the first arises from spatial discretization, and can be quite
severe?? near flux discontinuities; the second results from angular discretization and is very
pronounced for low scattering media. Although the SR method#*-22 eliminates the former problem it
does not eliminate the latter. We have developed a new discrete ordinates method specifically
designed for todays large memory, vector and/or parallel processing computers that sharply reduces
numerical diffusion and eliminates observable ray effects.

The method has been tested with excellent results on one-dimension homogeneous slab

problems. For these problems the Spencer Lewis equation [Eq. (1)] for discrete direction y™

becomes
Ly #(x,um ) = Seum® HXH7 8) + Q(x,4™5) C)
m’=]
where
3 )
Lm-§+pm F i (48)

Discretizing path length and space yields the following equation that is solvable by the

standard source iteration method,

PYLat R S - (LN (49)

where
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H(nl:) - i Senm’ ?m'(p) "'am ’ : (50)

m's]

?,(,',’) and 6‘?_ have components ¢,‘:)(xjpm,si) and Q(x;,s™.s;), j and i are the x and s discretization
indices, and L, is now the matrix representation of the original operator. It is evident from Eq. (3)
that each matrix element of (L, )"! represents the uncollided flux in a particular cell due to a
monodirectional unit source in another. Therefore (L,)"! is a very large and sparse matrix. The
conventional Sy algorithm enables Eq. (49) to be implemented without explicitly determining the
matrix elements of (L )", or explicitly executing the implied multiplications by zero. This is an
enormous advantage for low memory scalar computers, but it is also the major source of the
numerical errors. Although the matrix elements corresponding to adjacent cells are determined
accurately (implicitl;'), those corresponding to distant cells are not, because they are obtained
(implicitly) through the repeated application of a spatial differencing approximations. Some
elements which should be zero turn out positive (or ev.en negative if no fix-up is used) resulting in
numerical diffusion. Matrix elements for cells lying along a discrete direction tend to be over-
estimated causing ray effects. Since scattering tends to reduce the magnitude of the matrix elements
for the distant cells it also reduces the severity of these two errors.

The fundamental ideas of our method are simple:

~Calculate the elements of (L, )~? explicitly and accurately.

-Implement Eq. (49) in matrix form.

Item 2 above allows us to take advantage of vector and or parallel processing and thereby
compensate for the many multiplications by zero.

Since (L,,)"! represents an operator for uncollided transport, its elements can be calculated
to any degree of accuracy. However, this would require the evaluation of tedious integrals, and
instead we have adopted the following simple scheme.

The first step is to calculate the uncollided flux contribution from a monodirectional unit

source in cell i’, j° to the target path length cell i by:
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1_10-e%8y . .
% As¢(g)* ’
ch (51)
exp|- oy Asy [(1.0 - 7V 44)(1.0 - e™14%)

kei’+] ..
,i> 1

as; oy o

Although our code is more general, for simplicity in Eq. (51) we have assumed that the
mesh cells are square. Both expressions are derived by performing an uncollided electron balance
over the i'th path length cell. The uncollided flux is then distributed to the individual spatial cells
in proportion to the area subtended on the target cell by an angular cone, originating from the
source cell.

For this angular cone we use one of two forms, depending on the relative distance of the
target path length from the path length of the source cell.

Sigum 1 illustrates the construction of the angular cone for the discrete direction m, used
for target path lengths when i > i’ + 1. The angular cone is generated by extending the region of
influence of the discrete direction m to include half of the angular distance to each of the m+1 and
m-! directions. The area created by the intersection of this angular cone and the i + % bondaries
of the target path length cell defines a region over which ¢3' is to be distributed. The individual
elements of [L™] ! are then calculated based on the ratio of area contained within a particular mesh

cell to this total area,

- Area
o - 4 [X}a“] (52

where
Area ; = area of intersection within cell ij
and

Area ; = total area of intersection within path length cell i
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If a cell within the target path length is not intercepted by the angular cone the matrix element for
that target cell is zero. In fact the majority of these elements are zero, as is clearly evident from
Fig. 1.

Figure 2 illustrates the’construction of the angular cone for target path length cells for
which i < i’ + 1. Whereas the angular cone originated from the center of the source cell for the
target path length steps above, it is now constructed so that the m ¢ % boundaries of the cone,
originate from the centers of the spatial edges of the source cell. Once the area is defined Eq. (52)
is again used for calculating the individual elements.

The distinction between these two cases is made based on physical arguments. If the
previous cell centered scheme were used throughout the discrete ordinates grid, the elements of
[Lm]-! for adjacent cells would be underestimated. In fact, a simple examination of Fig. 1 shows
that for this scheme, regardless of the discrete direction, the elements of [L ] for the cells
immediately above and below the source cell, i’j’, would be zefo.

On the othér hand, if the above cell edge center scheme (Fig. 2) were applied to the entire
grid, the extended regions of adjacent discrete directions would overlap for distant cells
overcompensating for the use of discrete ordinates.

This semi-analytic geometric scheme described above for computing the elements [L, ]! is
the fundamental mechanism whereby both ray effects and numerical diffusion are removed. The
use of discrete ordinates is compensated for by extending the region of influence of each discrete
direction to include a portion of the previously ‘unseen’ space between adjacent directions. In this
manner the streaming particles are allowed access to the entire phase space. The numerical
diffusion has been reduced by explicitly setting to zero those elements of [L,,]"* which should be
zero.

The use of cones (instead of ‘discrete directions) is not a new idea,?3 however here they are
used to determine all of the matrix elements directly, and not just those corresponding to cells
immediately adjacent to the source cell. It is the use of cones for uncollided transport to distant

cells that eliminates ray effects. Unlike other ray effect mitigation techniques this new method is
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quite efficient, being 2.6 times slower than conventional Sy on scalar machines, but only 1.2 times
slower on vector machines.

Because of the many zeros in the matrix [L™]"! the SCSy method does not make efficient
use of computer memory nor does it make efficient use of the computational resources of a scalar
machine (due to the many unnecessary multiplications by zero). However with the large memory
machines now available the former inefficiency is often irrelevant and the fact that the source
iteration is cast in matrix form enables extensive use of vector and/or parallel processing that can
compensate for the latter inefficiency.

The SCSy method was tested using a 200 KeV isotropic point source incident on aluminum
slabs. With coarse mesh cells (37 mfp squares) the new and conventional Sy methods were in close
agreement (see Fig. 3). However, with fine mesh cells (3.7 mfp squares) the new method was not
subject to the ray effects evident with the conventional solution (see Fig. 4).

To demonstrate the lack of numerical diffusion obtained with the SCSy method we have
calculated the electron flux due to a monodirectional source (u = .30) incident on the s = 0 surface
of a vacuum. The results are shown in Table I along with those obtained from the conventional Sy
method with and without a negative flux fix-up, and in Table II along with those obtained using
the SR method with and without a ray effect mitigation routine.

The SCSy results are clearly superior to either of the conventional Sy solutions in
representing the discontinuity along the edge of the beam. If the source particles are interpreted as
a monodirectional beam, then the SR results with no ray effect mitigation represent the true solution
and all particles should remain within the dotted lines shown in Table II. On the other hand, if the
source particles are assumed to be distributed between u = 25 and p = .35, the edges of the cone
corresponding to direction u = .30, then the flux should be contained between the solid lines shown
in Tables I and II, and the results are best calculated by the SCSy method. For this interpretation
of the source, the SR method does better with the ray effect mitigation routine turned on, however,
it is evident that this routine is only partially successful, as the flux still peaks along the source
direction. -




IOI. Numerical Diffusion Theory

The mathematical/numerical description of how electrons interact with electronic devices can
be classified into three fundamental calculational categories. The probabilistic approach embodied in
the Monte Carlo method is simply a numerical simulation of the collision interactions and
subsequent streaming of electrons and requires considerable computational resources to use
effectively. The deterministic transport methods as described in Sections the previous sections offer
a viable alternative to the Monte Carlo method but may, in some cases, provide more detailed
information than is necessary for an adequate description. In particular, at the low end of the
electron energy spectrum when the electrons have experienced many collisions, the complete angular
flux variation in angle is not always necessary since the flux is nearly isotropic. For this reason, an
effort has been initiated to develop a diffusion theory description in parallel with the transport
theory description. The diffusion equation is a macroscopic deterministic description of electron
motion and involves far less computational effort than either Monte Carlo or transport theory

| methods.

The main goal of the diffusion theory component is to generate a reliable three-dimensional
algorithm that will be coupled to a 2-D or 3-D Sy algorithm at an appropriately low energy. In
this way, we hope to treat both the high and low energy regions with the greatest efficiency.

In the following, the progression toward the completion of the 3-D algorithm is documented.
We begin with a 1-D development which establishes an adequate foundation for the
multidimensional algorithms to follow. From this initial study, a proper understanding of how the
multidimensional algorithm is obtained. Many of the numerical features of the 1-D treatment have
been incorporated into the multidimensional algorithms making the 1-D study invaluable. An
alternative approach would have been to use an "off-the-shelf* diffusion code with enough
flexibility to accommodate electron motion in condensed matter; however, the benefit of the very

worthwhile learning experience would have been lost.
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A. 1-D Diffusion Theory
The generic diffusion equation describing electron transport as modeled by the Spencer-

Lewis equation (1) can be written in one-dimension as

% (x9) = Zpix9) Z #x9) - alxs) KxI) + S(x3) (53a)

where
#(x,s) = electron angularly integrated density (simply called density) for electrons having
transversed a total path length s to arrive at position x
p = diffusion coefficient
q = absorption cross section
S = external source,

The density is subject to the following initial and general mixed boundary conditions

#(x,0) = £(s) (53b)
1(8) %x‘ﬁ (x,8) + 714(8) H(x8) = (x)atx =2, b . (53¢)

at the boundaries a and b where «,, 7, are known functions. Equations (53) can be obtained from
Eq. (1) in many ways. The simplest method is to integrate Eq. (1) over u (in one dimension) and

define the density as

1
#x,3) = J ldu #(x,p,8)
and current as

1
J(x,3) = I du s #x,s,8)
-1
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and then invoke Fick’s law

Jxs) = - £ pixs) £z

The absorption term is included for generality and the boundary conditions result from partial
current considerations. Implicit in the derivation of Egs. (53) is the assumption of a linear angular
dependence of the angular flux on the electron direction u in one dimension. This is true only after
many collisions and a distance of at least three mean free paths from discontinuities such as material
boundaries and spatially localized sources. For these reasons, Egs. (53) are anticipated to be
applicable when thé electrons have traversed a relatively large péth length at (low energy) and in
large homogeneous regions. Nevertheless, a reasonable approximation can be obtained from

diffusion theory at material boundaries of scattering materials.

1. Point Spatial Finite Difference Scheme??
To derive a numerical algorithm to solve Egs. (53), we first partition the x variable into
discrete intervals as shown in Fig. 5. The interval midpoint is designated as i and the cell right and

left boundaries by i- % and i+% respectively. Next Eq. (53a) is integrated over cell i to give

xi 1 X 1
+ H 3 d 2
- J. dx q(x,s) ¢(x,s) + I dx $(x,s)

Xi_ %

Then integrating the second term exactly and using the approximations
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Xl
I " Sax bixs) W) = AR Mt B g )
X

-}

éég‘él = (4(s) - &, ())/Ax
Xi_ 1
Q%!xé). = ($41(8) - 4(8))/Axyy;
i+

H
we arrive at the spatially differenced equation

% $i(s) = a;(s) [6-1(8) - &;(s)] + c;() [B141(8) = #()] - Ti(s) &y(s) + Q(s)

where
%) = A"i(z:li‘f:)xiﬂ)
RN v
L) =  (als) ax; + qi(s) Axyy)/(Ax;+Axy,,)
QG = (5 Ax + §,,() Axyy, )/(AX;+AX,,)

(54a)

(54b)

(54c)

(54d)

(54e)

At this point there are several ways the path variable s could be handled and in the following

sections we discuss two of these.
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2, Continuous Analytical Continuation
A theoretically simple and computationally efficient method for effecting the s integration
of Eqs. (54) is found by using Taylor series.?® This method has been rediscovered recently and it is
quite surprising that it has not found more widespread use.
To begin with, we assume that p;(s), q;(s) and Si(s) are given functions of s in a

homogeneous cell i and these functions can be expanded in Taylor series in s._; < s < s, to give

0 r
(s) = Z 2%“-(s-sx..l)" (55a)
k=0

Q0
oe) = Z I (oo (550)
. |
I = Z o sk (55¢)

<
Q) = Z —;{-(s-s,.,)* . (55d)

According to Egs. (54b-e) the expansion coefficients ay, ¢;, Iy and Qy are related to the
expansion coefficients of p;, q; and §; around an arbitrary point s._;. When #(s) is similarly

expanded ins,.; €5 <5,
o0
$i(s) = Z ?‘E,ﬁ (8-8p.1 )% (56)
k=0

a recurrence relation results for ¢, when Eq. (56) is introduced into Eq. (54a)
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3 N k! .r 3 3
$ix = f &)1 Ay jléi1g - il +

j=0
(57a)
= -1
1 ' .
+ E (kkj)a ix-j [Bieny - o150 - i (kL.,')T iy 60 + Qs
j=0 j=0
with
0= $(sy) . (57b)

Thus, we have an explicit two-dimensional recurrence relation for ¢{, which when introduced into
Eq. (56) provides the solution #;(s). The advantage of this formulation is that round off error can
be controlled by the choice of the interval boundaries s,. These points are chosen such that the
series in Eq. (56) is convergent and requires less than about ten terms for convergence to a desired
accuracy. By using the previously calculated value ¢;(s..;) as the initial condition in the interval
S.; S8 Ss,, we are continually analytically continuing the Taylor series representation to the
subsequent intervals--hence the name of the method. This approach has been shown to be very
accurate in other areas of application such as neutron slowing down theory, extended gas kinetics
and radioactive decay. A second major advantage of the method (not used here) is in application to
nonlinear ordinary differential equations.

The method can equally be applied to the multidimensional diffusion equation and its

numerical implementation will be discussed for the 3-D application in a future report.

3. Path Length Discretization
Following along more conventional lines, the path length derivative can be descretized as
follows:

#ﬂ*l L]
As ¢i ¢n+1 #)/AS




In addition, if ¢y(s) is composed of fractions of ¢} and ¢{"*! in the form

hS) =a ¢+ (1-a) P, 0cacx,

Eq. (54a) becomes

[t-aﬁr] f71 e o 5t el Bt e e oy [0 v s

+(l-a) S + (582)
where
a® = (af+af*h2 (58b)
@ oa (Y2 (58¢)
= @@s1*H02 . (58d)
P s -&-§-T (58e)
Q@ o= Q@+ . (586)

In matrix form, Eq. (582) can be written as

&%s;é:'_ =Q é.n?nﬂ + (l-a) én?n +6n

¢n = 4(s,) (59)
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where A” is the classic tridiagonal matrix which will be exploited below.
By varying the value of , one obtains the following well-known discretization schemes
a=1 , implicit
a=0 , explicit

Crank-Nicolson.

a=3,

4. Numerical Implementation and Test Case Results
a. Iteration
Iteration is commonly used to solve Egs. (58) in lieu of the more costly direct inversion

methods. The scheme can be represented as follows:
@) gf*! = g0 (60a)
ﬁ)ﬁ*l - F[(j‘l)¢_:‘:11' ﬁ)&*l, ¢[n..|.1’ ¢in, ¢’::1] (60b)

wherr j is the iteration index. To test the iteration procedure, the volume source driven analytical

beuchmark with constant properties

.a#aﬁél- %-“x’s)‘;l ' (613)
#(x,0) = 0, (£ 1/2,0) = 0 ) (61b)

was used with the solution

[>.]

. (1) (1Bl
#(x.3) Zo: B, (1+5) [l e ] cos (B, x) (62)

where
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B, = (2o+l)x

Also of note is the approach to the "steady state" or equilibrium solution
#(x) = 1 - cosh (x)/cosh (1/2) (63)

as s approaches infinity.

Table 3 displays the relative error for increasing iteration index with a=0.5 at several points
within the slab and for a uniformly distributed source emitting electrons at all path lengths. A
rather large number of iterations are required to achieve acceptable accuracy which is considered to
be 10-3 for the electron studies presented here. The approach to the equilibrium solution is shown
in Figs. 6a,b with a graphical comparison of the exact and finite difference (FD) solution given in
Fig. 6¢c for As = 0.01 and Ax = 0.05. Again acceptable agreement is noted. Table 4 gives the
relative error variation with As at large values of s as ¢(s) approaches the equilibrium solution for
Ax = 0.05. There is some indicaﬁon that refining As without refining Ax does not improve the
results. This is an indication of a limitation resulting from the iteration procedure. Figures 7a,b
demonstrate that in general the best choice of a is % This choice of a apparently combines the
accuracy of the explicit method and the stability of the implicit formulation. A comparison of
results for different As’s is shown in Figs. 8a,b. The accuracy is apparently limited by Ax as was
similarly found in analyzing the approach to the equilibrium solution (see Table 4). Figure 9 shows
the improvement as Ax is reduced for a fixed As. Again the results are not expected to improve as
Ax is further reduced unless As is also reduced.

b.  Direct Matrix Inversion

The iteration process can be avoided altogether by utilizing a tridiagonal solver (TDS) to

perform the required matrix inversion of Eq. (59) in the form
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[ﬁ? - A"]-J"“ = (1-0) AR 9" + Q° (64)

That the iteration is responsible for an apparent instability when Ax is reduced with As
fixed is clearly demonstrated in Figs. 10a,b. In this figure and those to follow, L, is the number of
interval partitions of the slab length. The iterative solution oscillates widely about the exact solution
for small values of As; whereas, the TDS solution does not and consistently provides accurate results
for all values of Ax. Thus there is a compelling argument to abandon the iterative procedure in
favor of the TDS.

For the comparisons to follow, a global figure of merit to measure the error,

b Ly,
EgL(s) = g{; I dx |§(x.S) - ¢g(x.9)| = b—i; Z Ax;|4(s) - dgi(s)] (65)

a iml

has been found to give a reliable characterization of solution. L, is the total number of spatial
intervals between a,b and ¢ represents the exact solution. The variation of Egy, with s for several
L, is displayed in Figs. 11a,b again effectively indicating the increased stability of the tridiagonal
matrix inversion.

To further demonstrate the superiority of the TDS, several additional test problems with
analytical solutions have been considered. The test cases have been designed to span the types of
situations anticipated to occur when evaluating electron penetration in actual electronic devices.

The second problem considered is for a slab with constant properties p and q and is driven

by a boundary source ép. The analytical solution is
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sinh [\/3 x]

-m s
—_—2 Z s sin (7, X) (66)

NN sinh [s/i a] n=1

Yo = D%/2, § = q/p

Figures 12 again show unphysical behavior of the iterative solution as Ax is reduced. The more
well behaved solution obtained by the tridiagonal solver is shown in Fig. 12b. The density near the
source boundary seems to become less accurate as Ax decreases. This inaccuracy can be eliminated
_ if a finer mesh is specified near the boundary than for the interior. Figure 12c shows the
inprovement when only a single small additional interval is introduced at the boundaries--the
discrepancy is completely eliminatéd. Figures 13a,b,c give the corresponding global errors for the
second benchmark. The global errors for the variation of As in the iteration and matrix solutions
are shown in Fig-14a,b. Again the improvement -provided by the tridiagonal solver is clearly
evident.

As a final demonstration, the diffusion coefficient p in problem 1 was varied from 0.1 to 50
and the global error for the TDS is presented in Fig. 15. The accuracy decreases as p increases most
likely resulting from the increased emphasis of the discrete approximations used for the spatial 1
derivatives as p increases. These results indicate that variable electron properties can easily be

accommodated with acceptable accuracy.

5. Dose Calculation
In an attempt to apply the discretized solution to a realistic problem, the dose in thick

aluminum was determined. The diffusion equation describing the collided density f, is

[a% -pD ::,] Fo(xs) = 5= f(x) (67a)
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f(x0)=0 ,f (res)=0 | (67b)
where r, is the electron range in aluminum and all properties are assumed constant with
D = )*/3
The uncollided electron density for normal incidence is given by
e,

fox) = Ll 0sx)  nunss (68)

The electron density is therefore

#(x,5) = £(x,3) + f.(x,8) (69)
yielding the dose
To
D(x) = J as |9 ¢xe) (70)

for a constant stopping power and the dose normalized at x = 0, the results are shown in comparison
with other theories in Fig. 16. Surprisingly good agreement is achieved which is most probably

fortuitous given the crude nature of the dose approximation. The results, however, are encouraging.

B. 2-D Diffusion Theory

The diffusion equation in two-dimensions is
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% (x,y,8) = % p(x,y.s) 38; #x,y.8) +
+ 5“;- p(x.y.8) gy— #(x,y.8) - a(x,y,8) Kx,y,3) + S(x,y.8)
with boundary and initial conditions
“&Y#) = 0 «b,y,S) = Op

#x,c8) = op , Hx,ds)=op
#x,y,0) = f(x,y)

Integrating over cell (i,j) depicted in Fig. 17 and employing the approximations

dx dy ¥xys) = B Ay, + Ayey) (A + Ayy,y)
A
i§

S S At

AB 2
results in

dd .

TE""[% 1y * Cig Sy + by Gyl +

+ldy; g * £ byer + 01 - Gy 4y + Q

(71a)

(71b)
(71¢c)
(71d)

(72)

where 3,5, by, ¢, dij, €, fij, G  and QJ are cell constants. Several differencing schemes for

the path length variable will now be discussed: Note that one could, in addition, apply the

continuous analytical continuation technique (§IIL.A.2), however, that approach will only be applied

in the 3-D study.
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1. Two-Step Alternating Direction Implicit (ADI)
In this scheme, the path length derivative is split in the interval As and the resultant set of

equations is first solved in the x direction and then in the y direction. In step 1,

a+d

déy; %yl -4y
ds As/2
yielding
n«r% As n+% n+%
ﬁ.i -#‘J"—z—' a‘Jﬁ‘lJ"’cUéh-l +
(73)
o+ 3 As n n n
*bu‘u’] *3‘[diJ¢tJ-1*fu¢lJ+1*°u¢l.i -
! Asq.n.'.!
- By %’.4,{‘;3....2_ 3

Eq. (73) is solved using the TDS in the i direction. The second step consists of the approximation

gm ¢’n+1 - ﬁnf %
ds — "~ As/2

giving
1
) A (a+3) R
CHRRL TR ‘z’[ ]
(74)

(n+1) 1 AS ;n+1 AS Znet
+%—3-[ ] ‘ai? Tdﬂr°7®

where the terms in the brackets are the same as in Eq. (73) evaluated at the indicated discrete path
length. The TDS is then applied in the j direction giving the final solution at s, ;.




2.  Iterative Methods
As in the 1-D case, there exists an iterative formulation of the solution to Eq. (72) when the

backward finite difference approximation to the path length derivative is employed. The

formulation becomes

o = Fol, 400 o il (75a)
with |

Sy =adile(1-a) ¢, 0sasl . (75b)

In the following, several of the many possible ways of solving for ¢f;" are indicated:

a Line-Jacobi (LJ) with TDS

(0)4.{'}1 - (o)‘?.x
(76)
()gpr1 m IO, Mgl Megmed (e)gari)
b. Successive Overrelaxation (SOR) with Iteration
)9+t = w FIIGRLY, Mgy, (-Dgfitl, (-1gPrL ] 4 (1-w) G-DgRH? (772)
O<wel : (770)
c.  Successive Line Overrelaxation (SLOR) with TDS
WS = AL, M O, C Ve
(78a) |
Mgt = w Mgt + (1-w) Be-Dlgitt (78b) {
O<cw<l . (78¢) i

3. Test Results and Discussion

A source driven test problem with constant properties and a uniform source of the form
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s(s) = Qoe'h

will be used to test the various solution procedures described above. For zero density on the

boundary, the solution is

1
Wy = 2 Ams | (199)
o |
with
Apa ® i o P * B o (B ) cos (B ) (79b)

By ® (2n+1) x/a
By = (2m+1) x/b

A more numerically amenable solution is obtained by rearranging the series in Eq. (79a) in the form

[-.-]
W) w e i Amam - (80)

n=0) m=Q

Figures 18a,b,c show comparisons of the ADI, LJ and SOR solution at y = 0 and s = 0.5 to
the benchmark solution for the variation of Ax and Ay. L, and L, are the number of intervals in
the x and y directions respectively. All methods seem to give comparable accuracy. The ADI and
SOR methods require the largest computational time with the LJ technique requiring the least.
Further testing will determine the final selection of the best method for the anticipated vulnerability
studies.

4.  Transport/Diffusion Coupling

To demonstrate the coupling of a transport and diffusion calculation, Fig. 19 shows a
simulated two dimensional approximation to a one-dimensional transport result. For this calculation,
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the density profile at s = 5 was taken from an analytical transport theory calculation?® and used as
the initial condition to the 2-D LJ diffusion solution. Both the analyucal and diffusion theory
calculations were then run to s = 15 and Fig. 19 shows the comparison for several L,, L,.
Acceptable agreement is seen except possibly near the peak. The comparison can be improved,
however, by taking a finer mesh in region of the peak. Additional studies have been performed
indicating that the coupling of transport theory and diffusion theory in the above manner is a viable
calculational method. It is this coupling that will serve as the basis for future development of the

diffusion theory model.

IV. Development of analytical Benchmark Methods

The trademark of the electron transport theory methods development at the University of
Arizona has been and will continue to be the pursuit of analytical benchmarks while in the process
of forming numerical algorithms.30~32 The interaction of these two components has proved to be
invaluable in the development of reliable and efficient numerical methods.

The benchmark methods to be presented below represent an entirely new concept in
benchmarking. While the benchmarks established thus far are not directly applicable to the electron
transport application, the methods will certainly prove helpful in developing new ﬁenchmarks that

will be.

A. Benchmarks from Laplace Transform Inversion

The method in this section is taken from Ref. (30). Recently a highly reliable numerical
Laplace transform inversion has been developed based on the transformation of the Bromwich
inversion integral into a cosine integral. The cosine integral is then represented as an infinite series
of integrals. These integrals are evaluated using 2 Romberg integration scheme and the convergence
of the series is accelerated with an Euler-Knopp acceleration algorithm. In addition, the inversion

is performed on several contours and agreement is required. A demonstration of the accuracy of
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the inversion is shown in Fig. 20 where the algorithm accuracy ¢ was varied from 102 to 10-6.
This algorithm will now be used to provide highly accurate (3-5 digit) benchmarks for the stationary
one velocity Boltzmann equation.
Consider the one-group Boltzmann equation in a semi-infinite medium with isotropic

scattering

1
[n a%w l] Hx, 1) = % I ldn’ Hxp) . (81)

The flux illuminating the boundary is assumed to be isotropic

$Ou)=1 ,u>0

Then from integral transport theory we have

oo

#Op) = - ici L dx’ &7k ¢(x') (82)

for u < 0. By letting 4 — - 1/s where s is a complex variable, we note that Eq. (82) becomes a

Laplace transform. Thus upon inversion

-1

wo-1 |28 @

C

The inversion can be performed numerically since ¢(0,-u) is known to be

#0,-p) = 1 - VT-c H(p) (84)
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where H(u) satisfies the non-linear integral equation

1

IH ’
H@) = 1+ § u HQ) fodu fﬁ} . D)

The analytical continuation of #0,-u) to the complex s plane can easily be done thus allowing the
numerical inversion.

The numerical inversion is applicable to any linear transport problem in which the exiting
distribution is known. Figure 21a-d show results for several basic transport problems with isotropic
scattering in a semi-infinite medium including

1. beam source illuminating the boundary

2.  one-half space Milne problem

3. uniform source in right half space.

The method is equally applicable to the case of anisotropic scattering.

In the future an attempt will be made to apply the numerical inversion to the discretized

2-D transport equation in order to treat the s variable continuously and provide a reasonable 2-D

transport benchmark for electrons.

B. Moments by Continuous Analytical Continuation

Accurate moments of the Spencer-Lewis equation in one-dimension
1

[% +p % + A(S)] #(x,18,8) = Xs) J' du’ () Hx.1°,8) (86)
-1 :

in infinite geometry are of considerable importance in the reconstruction of the density. The

moments are defined by
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s 1
Mgx(s) m exp |- I ds’ Xs’) J-
0 -1

o

dp Py(p) I dx x® (x,s,s) @87
-Q0

where P, is the Legendre polynomial of order & My, satisfies the 'following set of ordinary

differential equations

93‘;“ +8g Mgypg + bg Mpgpg = As) (1-wg) Mgy + Qui(s) (83)

where

1
we = I ldu’ Po(') £04°0)

and Qg, contains boundary densities known from an independent calculation or approximated from

a lower order theory. Then by expanding Qg, and Mgy in Taylor series in the intervals, , <s <s.

O ,r

As) = Z %%(s—s,.l)"
n=0

> &
Q= ) 2 (oeg
n=0

0 agr
Mgy (s) = Z M:‘!u (s-8..1)*
n=0

we find the recurrence relation

M;,Lx =- M;-l.lﬂ,k-l - b er!-l,t-l,k-l +
(89)
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+ (1-wp) E (Tt:"ﬁ Xo-i Miex + Qs tu Moy =
j=0

M§ 2p = Midy (1)

My (s) can then be accurately obtained by defining as many s intervals as required for the desired
convergence.

The density can be reconstructed in the usual way by an expansion in orthonormal

polynomials A,
o0
Kx) = ) 86 A (90a)
k=0
with
[+ ~} .
Pp(s) = I dx A4(x) (90b)
-00
since

/A
Ag(x) = Z by; xJ
j=0

we have

$e(s) = i by My(s) (90¢c)
j=0

One must be alert to the possibility of round off error contamination in Egs. (89) and (90c¢).
Equations (90) are expected to provide accurate results away from the s,x wavefront. Acceleration
techniques are then applied to Eq. (50a) in an attempt to mitigate round off error and provide more

accurate solutions near the wave front discontinuity.
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Iteration

W LW WL R RN RN NN R — —\000 NS W -
SRUBLEBRYRRRURNEEEEIaarsnbCS hwn

Error

X4

1.0000E+00
4.4420E-01
2.6199E-01
1.5484E-01
1.1012E-01
7.2856E-02
5.5023E-02
3.8477E-02
2.9833E-02
2.1535E-02
1.6919E-02
1.2459E-02
9.8593E-03
7.3585E-03

5.8465E-03

4.4053E-03
3.5083E-03
2.6621E-03
2.1231E-03
1.6196E-03
1.2928E-03
9.9035E-04
7.9087E-04
6.0768E-04
4.8558E-04
3.7423E-04

2.9900E-04

2.3092E-04
1.8452E-04
1.4276E-04
1.1408E-04
8.8389E-05
7.0365E-05
5.4790E-05

- 55 -

Table 3

s = 0.01

Xg

1.0000E+00
4.4420E-01
2.6199E-01
1.7313E-01
1.2155E-01
8.6013E-02
6.4320E-02
4.7013E-02
3.6212E-02
2.6977E-02
2.1105E-02
1.5916E-02
1.2560E-02
9.551SE-03
7.5758E-03
5.7951E-03
4.6101E-03
3.5417E-03
2.8226E-03
2.1754E-03
1.7356E-03
1.3409E-03
1.070SE-03
8.2862E-04
6.6180E-04
5.1300E-04
4.0983E-04
3.1805E-04
2.5412E-04
1.9739E-04
1.5773E-04
1.2260E-04
9.7975E-05
7.6201E-05

Ax =10

1.0000E+00
4.4420E-01
2.6199E-01
1.7313E-01
1.2155E-01
8.8542E-02
6.6086E-02
4.9794E-02
3.8272E-02
2.9283E-02
2.2867E-02
1.7640E-02
1.3902E-02
1.0774E-02
8.5373E-03
6.6351E-03
5.2748E-03
4.1063E-03
3.2710E-03
2.5488E-03
2.0328E-03
1.5848E-03
1.2650E-03
9.8649E-04
7.8778E-04
6.1441E-04
4.9080E-04
3.8280E-04
3.0584E-04
2.3854E-04
1.9061E-04
1.4866E-04
1.1880E-04
9.2649E-05
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Figure 1. Angular cone construction for i > i’ + 1. Cross hatched area is
the extended region of influence for direction m. Double cross hatched area
is that fraction within the target cell ij.
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Figure 2. Angular cone construction for i < ¢/ +1. Cross hatched area is

the extended region of influence for direction m. Double cross hatched area
is that fraction within the target cell ij.
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Figure 3 Comparison of solutions obtained from the conventional Sy (DD) method and

the (SCSN) method for coarse

4,

. a) (DD) M = 4, b) (SCSN) M

(37 mfp) mesh cells

¢) (DD) M = 12, d) (SCSN) M = 12.




Figure 4 Comparison of solutions obtained from the conventional Sn (DD) method and
the new (SCSN) method for fine (3.7 mfp) mesh cells. a) (DD) M = 4, b) (SCSN) M =4,
c) (DD) M = 8, 4) (SCSN) M =8, e) (DD) M = 12, f) (SCSN) M =12.
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Table 4
Approach to "Steady State” ¢(x) = 0.11318

as s 403) ERROR

0.01 0.5 0.11229 79 x 103
0.02 1.0 0.11277 3.62 x 10-3
0.04 20 0.10913 3.58 x 10-2

0.08 4.0 0.09972 1.19 x 10=!
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Fig. 5 1-D ceil for point spatial finite difference scheme
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Problem ¢ 2 half-space Milne problem with source




