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INTRODUCTION

The flux of relativistic (- MeV) electrons at geosynchronous altitudes shows a strong temporal
dependence on epoch relative to the onset of geomagnetic storms (Baker et al., 1979, 1986, 1987;
Nagal, 1987, 1988). This electron population has attracted significant attention in recent years,
partly because electrical discharges caused by these energetic particles have resulted in anomalous
behavior in satellite operations in geosynchronous orbit (Reagan et al., 1983; Vampola, 1987)
and on spacecraft operating within the outer Van Allen radiation belt. Quantitative modelling of
the temporal behavior of the electron flux can be used as an estimator of the electron flux when
direct measurements are required but are not available. A tenable and accurate forecasting tech-
nique would be an especially valuable application. Linear prediction filter techniques (e.g.,
Nagai, 1988) have shown considerable promise for applying time series of geomagnetic indices
as proxy data for the electron flux. The linear techniques provide a simple tool for identifying
the times of flux enhancements or dropouts, but they lack the ability to track the magnitude of
the electron flux accurately enough for practical applications. We have developed a simple and
accurate neural network model (essentially a nonlinear prediction filter) that we have used to
study the temporal behavior of the electrons (Koons and Gorney, 1991).

During extended intervals of geomagnetic activity, large fluxes of energetic electrons develop in
the outer magnetosphere. After the storm, they diffuse inward enhancing the flux at geosyn-
chronous orbit and in the outer Van Allen radiation belt. These penetrating electrons can
become embedded within dielectrics such as printed circuit boards and cable insulation on satel-
lites, building up electrical potentials over time that can exceed the breakdown potential of the
dielectric (Meulenberg, 1976; Vampola 1987). Theoretical and experimental results (Wenaas,
1977; Beers, 1977) have shown that breakdowns occur when the fluence of penetrating electrons
exceeds - 1012 cm"2 in time periods shorter than the leakage time scales of the dielectric
(typically several hours to a few days). Often, these fluence levels are exceeded in geosyn-
chronous orbit several days after major geomagnetic storms. A quantitative forecast of the daily
fluence of penetrating electrons at geosynchronous orbit would be quite valuable to the operators
of these vehicles.

Superposed epoch analyses have revealed a clear, repeatable pattern in the behavior of the flux of
relativistic electrons at geosynchronous orbit. Nagal (1988) showed the dependence of energetic
electron flux on geomagnetic activity as measured by the Kp and Dst magnetic indices. The first
feature is a rapid decrease in the flux at the onset of a geomagnetic storm. This decrease has
been attributed to the combined effects of the geomagnetic field becoming highly distorted (i.e.,
tall-like) and the convection electric field becoming enhanced at the onset of a geomagnetic
storm. The second observed feature is a flux enhancement extending from one to five days fol-
lowing the storm onset, and the final feature is an eventual return to "background" values about
ten days after the storm. Nagal (1988) produced a linear prediction model of - MeV electron
flux based on Kp.

Nagal (1988) related the daily sum of Kp (EKp) for 20 consecutive days to the logarithm of the
average electron flux (> 2 MeV) for the 20th day. This simple linear scheme proved quite suc-
cessful in reproducing the general features of the electron flux variations described above. The
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errors in the logarithm of the flux for this technique were less than 0.5 for about half of the days
for which measurements were available. As a characteristic of the linearity of the scheme, the
prediction errors tended to be largest (- one order of magnitude) for the more intense events.
Since these events are of most practical interest, an improved prediction procedure using a neural
network was developed by Koons and Gorney (1991).

They took a new approach toward modeling and forecasting the flux of energetic electrons in
geosynchronous orbit based on input values of Kp. They produced a neural network that suc-
cessfully reproduces electron flux values based on ten consecutive values of XKp. The neural
network was developed using BrainMaker, neural network simulation software from California
Scientific Software. Neural networks can be trained iteratively to recognize complex and non-
linear patterns in data. The neural network model provides higher accuracy than the linear tech-
niques, especially for large events where quantitative results are of the most practical benefit.
Although it is fundamentally more complex than linear prediction filters, the neural network still
is simple enough to be implemented on a small personal computer.

6



THE NEURAL NETWORK

The neural network used for this application consists of three layers of neurons as shown in
Figure 1. The 10 neurons comprising the first layer are connected to the input, consisting of the
values of MKp for ten consecutive days. A ten-day span was chosen because the impulse func-
tion obtained by Nagai [1988] from the GMS-3 electron data became essentially zero at a time
lag of 10 days. Day 0 is defined to be the day for which the electron flux is calculated. The sec-
ond layer of neurons, often referred to as the hidden layer, consists of 6 neurons. It is common
to construct neural networks such that the number of hidden neurons is half the sum of the num-
ber of inputs and outputs. A single neuron is connected to the output, which represents the loga-
rithm of the average flux of electrons for Day 0.

Input layer Hidden layer Output layer
ij k1(p average

day OfAsxelectron
flux

day -1>.

day -2

day -9

Typical Neuron

input I >--- signed Transfert

input 2 - weighted Actiation Function

_n umo output*iput n .--- inputs Valuesuof utt

threshold

Figure 1. Electron flux prediction network. Diagram shows the structme of the
neural network used for predicting the geosync -s energetic electron flux
based on input values of Mp. The values W-i and Wik represent weight matri-
ces that couple input and output values to the hidden layer of neurons. hbe
bottom diagram represems the internal function of a typical neuron.
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Connections only exist between any single neuron and the neurons in the previous layer of the
network. Neurons within a given layer do not connect to each other and do not receive inputs
from subsequent layers. For example, neurons in layer 1 send outputs to layer 2, and neurons in
layer 2 take inputs from layer 1 and send outputs to layer 3. The connection strengths between
any two layers constitute the elements of a real-valued matrix (W). The elemental values Wij rep-
resent the connection strength or weight between neuron i (in one layer) to neuron j (in the next
higher layer). The weight matrices are modified by training using actual data, and these matrices
ultimately contain all of the information relating the input (EKp) to the output (the logarithm of
the electron flux).

The electron data used to develop the neural network were collected by a SEE (Spectrometer for
Energetic Electrons) instrument. The SEE sensor was designed and built by the Los Alamos
National Laboratory. For a description of the instrument see Baker et. al. [1986). This design
has flown aboard a number of geostationary satellites. An edited data set covering the period
from 19 April 1982 to 4 June 1988 from one spacecraft, 1982-019, was provided for our use.
The data set consisted of daily average count rates with background (consisting mainly of galactic
cosmic rays) removed.

The network was trained using count rates from the high energy (> 3 MeV) electron channel.
The results have been converted to flux using a geometric factor of 0.08 and an efficiency of 0.3
for the 3 MeV channel (J. B. Blake, private communication, 1989). The training data set con-
sisted of 62 days of data from 1 July 1984 to 31 August 1984. The training interval was selected
on the basis of data continuity and the occurrence of several discrete flux enhancements within
the chosen interval. In order to obtain convergence in the neural network, the training criteria
was set at 10% of the complete range of output, corresponding to -0.5 for the logarithm of the
flux or, equivalently, about a factor of three. Training required 2652 passes through the 62 pat-
terns in the training set. The 62 patterns were processed by the network in chronological order.
This is not a requirement. A random order might converge more rapidly if there are systematic
trends in the data. The calculations were performed on a 16-MHz Compaq Deskpro 386 per-
sonal computer in 72 minutes. Once the network is trained, many cases can be run through the
network quickly by simply evaluating the functional relationship, which can be written in closed
form as (Koons and Gorney, 1991)

03, = (I + eXp[s(ithol + eXp[uronIaWu2 +ae W2e ?+ T3)

The appropriate weight matrices and threshold neuron values are given in Table 1.
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Table 1. Weight matrices and neuron thresholds required to evaluate the electron flux
from the neural network mod& given by Eq. 5.

2.374 -0.639 1.889 1.842 1.216 4.204

0.868 -0.264 2.198 -0.723 -1.853 -1.111

0.790 -2.876 -1.457 0.141 -2.302 -3.078

-1.060 0.605 1.482 -1.812 -2.802 2.245

W12= -1.061 -1.293 -0.649 -0.689 -1.999 -2.245

-0.756 -0.489 2.684 -1.255 -3.711 2.609

4.986 0.369 1.885 -1.571 -2.256 -1.377

-1.358 -0.916 1.143 -1.196 -0.759 -3.052

-2.553 -0.588 -0.197 -2.524 -0.155 -0.903

-0.028 0.723 -3.071 -2.401 -2.857 1.131

T2(= 0.818 4.236 -0.797 2.582 7.999 -1.8901

-2.019

1.929

W23= 2.464

4.248

-4.000

-5.139

T3= 0.077
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FORECASTS

UNNORMALIZED MODEL.

The neural network model, together with projections of 1:Kp based on its historical behavior, can
be used to make day-ahead forecasts of the relativistic electron flux at geosynchronous orbit
This is possible because 1Kp is not a truly random variable and because the electron flux is
strongly dependent on recent (1 to 3 days) magnetic activity. We have examined the time series
of XKp from 1932 to 1988 and we find that there is a strong tendency for quiet and moderately
disturbed periods to persist and for violently disturbed periods to be followed by moderately
disturbed periods. This behavior is shown in Figure 2 where the probability density function for
ZKp for a given day, here called Day 0, is shown parametrically for ZKp for the previous day,
Day -1. The overall probability that the value of UKp on Day 0 is within its most probable bin is
42%, and the overall probability that the value of ZKp on Day 0 is within ± 1 bin of the most
probable value is 86%.

Figure 3 shows a simple application of this forecasting technique to a 60-day period in early
1985. For each day, a set of calculations was performed using the actual values of £Kp for the
preceding 9 days and 10 values of XKp from 0 to 72 in steps of 8 for the day to be forecast. The
three curves in Figure 3 are, in order from top to bottom, the highest forecast flux, the most prob-
able flux (from the most probable value for XKp for Day 0), and the lowest forecast flux. An
interesting characteristic of the forecast is that the most probable flux tends to be quite close to
the highest forecast flux. The lowest flux is always forecast for a day on which £Kp has its high-
est possible value, 72.

Figure 4 compares the flux measured by the SEE instrument for this time period with the most
probable flux forecast by this technique. The agreement is excellent In particular, the most
probable flux obtained from the forecast matches or slightly exceeds the measured flux at the
peaks, which are the times of most concern to spacecraft operators.

It is fortunate that large magnetic storms (which can not yet be forecast) produce the lowest flux
levels on the day they occur. Thus, the time periods of largest error in the forecast are those of least
hazard to spacecraft from these relativistic electrons. The neural network model should thus serve as
a useful forecasting tool for the large flux levels that are of primary concern to spacecraft operators.
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Figure 2. Probability density function for IKp for Day 0 plotted paranietrically
for eight ranges of I'Kp for the previous day, Day -1. These statistics were
obtained for the period from January 1, 1932 through June 30, 1988.
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Figure 3. Application of forecasting technique to produce one-day ahead
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1985. The top curve is plotted for the highest flux predicted. The middle curve
is the flux predicted for the most probable value of EKp for the day of the fore-
cast. The lower curve is the lowest flux predicted. The lowest flux normally
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Figure 4. Comparison of measured flux to forecast for one-day ahead forecasts for
the electron flux for 60 days from January 22 through March 22, 1985. The solid
curve is the flux predicted for the most probable value of ZKp for the day of the
forecast. The dashed curve is the flux obtained from the SEE observations.

13



This model has been coded for IBM-compatible personal computers. The source code,
FORECAST.C, is provided in Appendix A, and a sample output forecasting the flux for 2 July
1984 by the command line:

FORECAST 21.0 21.0 20.7 27.9 16.4 17.3 19.6 23.9 15.7 12.4 > PRN

is shown in Figure 5.

The Aerospace Neural Network Model for
Relativistic Electron Flux at Geosynchronous Orbit

by H. C. Koons and D. J. Gorney
Space Sciences Laboratory
The Aerospace Corporation
El Segundo, California

Input values (Sum Kp): 21.0 21.0 20.7 27.9 16.4 17.3 19.6

23.9 15.7 12.4

Log Electron Flux (> 3 MeV) for Day 0 = 0.880468

Predicted Log Electron Flux (> 3 MeV) for Day +1:
Sum Kp = 0 - 8 Log Flux = 1.059 Probability = 0.052
Sum Kp = 8 - 16 Log Flux = 0.911 Probability = 0.319
Sum Kp = 16 - 24 Log Flux = 0.764 Probability = 0.392
Sum Kp = 24 - 32 Log Flux = 0.583 Probability = 0.170
Sum Kp = 32 - 40 Log Flux = 0.314 Probability = 0.050
Sum Kp = 40 - 48 Log Flux = -0.082 Probability = 0.013
Sum Kp = 48 - 56 Log Flux = -0.539 Probability = 0.002
Sum Kp = 56 - 64 Log Flux = -0.903 Probability = 0.001
Sum Kp = 64 - 72 Log Flux = -1.104 Probability = 0.000

Very High (>2.7) Probability = 0 %
High (1.7-2.7) Probability = 0 %

Intermediate (0.7-1.7) Probability = 76 %
Low (< 0.7) Probability = 24 %

Figure 5. Sample otput from FORECASTEXE for 2 July 1984.
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The overall performance of the network was measured by comparing the model outputs with
measured fluxes over the entire -6-year period from April 19, 1982, to June 4, 1988. The distri-
bution of errors is shown in Figure 6. The distribution is somewhat skewed with a preponderance
of cases for which the calculated value from the network model exceeds the measured value. The
average log error is -0.41 and the RMS log error is 1.08.

30 0 . , . , ,. *.. * , ,

250

200

. 0 t II I

E 150 , -

z _I _ I

- Il100,
---

50I ea.

0 , t I I I I I I I I I I I 1 1 -

-3 -2 -1 0 1 2 3

Log Flux, (measured - calculated)

Figure 6. Error distribution for the unnormalized model (FORECAST.C) tor the
entire data set from April 19, 1982 to June 4, 1988.
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NORMALIZED MODEL.

The model described above makes a forecast based solely on a time series of I-Kp without any
information about the actual flux levels. Since measurements of the relativistic electron fluxes at
geosynchronous orbit are routinely made by the GOES spacecraft, we have developed a second
neural network model that includes as an additional input, the measured daily averaged flux of
> 3 MeV electrons on Day 0. Note that the GOES fluxes must be scaled to > 3 McV for this
application. This network has 11 input neurons, 7 hidden neurons (one more than the unnormal-
ized network), and one output neuron. The network was trained using the same training set from
July and August 1984. This model has also been coded for IBM-compatible personal computers.
The source code, FORECST2.C, is provided in Appendix B and a sample output forecasting the
flux for 2 July 1984 by the command line:

FORECST2 07/02/84 0.08 0.47 21.0 21.0 20.7 27.9 16.4 17.3 19.6
23.9
15.7 12.4 > PRN

is shown in Figure 7

The Aerospace Neural Network Model for
Relativistic Electron Flux at Geosynchronous Orbit

Version 2.0 7/11/91

by H. C. Koons and D. J. Gorney
Space and Environment Technology Center

The Aerospace Corporation
El Segundo, California

Input values:
(Day 0): 07/01/84
Flux for (Day - 1): 0.080
Flux for (Day 0): 0.470
Sum Kp: 21.0 21.0 20.7 27.9 16.4 17.3 19.6 23.9 15.7

12.4

Log Electron Flux (> 3 MeV) for Day 0 = 0.136922

Predicted Log Electron Flux (> 3 MeV) for (Day +1l):
Sum Kp = 0 - 8 Log Flux = 1.461 Probability = 0.052
Sum Kp = 8 - 16 Log Flux = 1.061 Probability = 0.319
Sum Kp = 16 - 24 Log Flux = 0.657 Probability = 0.392
Sum Kp - 24 - 32 Log Flux = 0.271 Probability = 0.170
Sum Kp = 32 - 40 Log Flux = -0.078 Probability = 0.050
Sum Kp = 40 - 48 Log Flux - -0.377 Probability = 0.013
Sum Kp = 48 - 56 Log Flux = -0.621 Probability = 0.002
Sum Kp = 56 - 64 Log Flux = -0.813 Probability = 0.001
Sum Kp = 64 - 72 Log Flux = -0.959 Probability = 0.000

Very High (>2.7) Probability = 0 %
High (1.7-2.7) Probability - 0 %

Intermediate (0.7-1.7) Probability = 37 %
Low (< 0.7) Probability = 63 %

Figure 7. Sample output from FORECST2.EXE for 2 July 1984.
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The overall performance of the network was also measured by comparing the model outputs with
measured fluxes over the entire -6-year period from April 19, 1982, to June 4, 1988. The distri-
bution of errors is shown in Figure 8. The average log error is -0.16, and the RMS log error is
0.69. This distribution is significantly narrower than the error distribution for the unnormalized
model shown in Figure 6. Thus, the normalized model should be used for forecasting when reli-
ably measured fluxes are available.

300 '

250

200

E 150

50
0 150 tVIIa

-3 -2 -1 0 1 2 3

Log Flux, (measured - calculated)

Figure 8. Error distribution for the normalized model (FORECST2.C) for the
entire data set from April 19, 1982 to June 4, 1988.
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The distribution of errors for the normalized model for the 100 days with the highest measured
flux from April 19, 1982 to June 4, 1988 is shown in Figure 9. The distribution is very narrow,
indicating that the neural network model is particularly effective in estimating the flux during
periods when it is enhanced.

2 5 , , , , , , , , , , , , , , , . , . . . .

20

L. 15
U,,

E
Z 10

5

0
-3 -2 -1 0 1 2 3

Log Flux, (measured - calculated)

Figure 9. Frr" distribution for the normalized model (FORECST2.C) for the
100 days with the largest measured flux from April 19, 1982 to June 4, 1988.
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The normalized model can also be used with flux measurements having thresholds other than 3
MeV provided a simple arithmetic conversion is applied to the data input. The energy depen-

dence of the electron flux at geosynchronous orbit tends to have a simple exponential
dependence given by

/dJE = (dJ/dE)o exp ( -E / Eo) (cm2 /s-ster-keV),

where E0 , the spectral e-folding energy, is about 0.6 MeV (Baker et. al., 1987). Then the integral
flux JE above some threshold El can be written

JE = (dJ/dE)o exp(-EE 0)dfmdE.

The ratio of the flux above energy E2 to that above energy El is then

JE2 / JEI = exp [ (E1 -E2)/E 0 ].

Taking the logarithm to the base 10

loglo JFE2 = logl0 JEl + [ (El -E2) / E0 I logl0 e.

For E2 = 3 MeV,

1og 10 JE2 = log 10 JEl + I (EI - 3.0) / 0.6] * 0.43429.

Example: Suppose a measurement of the integral flux above 2 MeV is available,
and the value of the logarithm to the base 10 of the daily average flux is 2.64.
What value should be used as the model input? Here El = 2.0 MeV, and log10

JE1 = 2.64. From the last equation above the model input value, log10 JE2 is
given by

log 10 JE2 = 2.64 + [ (2.0 - 3.0) / 0.6] * 0.43429 = 1.916.
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SUMMARY

We have developed two neural network models that provide practical, day-ahead forecasts of the
relativistic electron flux at geosynchronous orbit. The less accurate model uses only the daily
sum of the planetary magnetic index, Kp, as its input. The more accurate model is normalized by
using the known flux from the preceding day as an additional input.

The models are sufficiently accurate to serve as forecasting tools for times of high relativistic
electron flux. This should be especially useful to operators of geosynchronous and other high-
altitude spacecraft that may be susceptible to anomalies caused by these electrons.
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APPENDIX A

/* Program: FORECAST.C

Copyright 1990 by H. C. Koons
Space Sciences Laboratory
The Aerospace Corporation
El Segundo, CA

Revised: 2/16/90

The program predicts the flux of -3 MeV electrons at
geosynchronous orbit from ten values of the daily sum
of the planetary magnetic index Kp.

The algorithm is based on the neural network algorithm
in BrainMaker, neural network software, from California
Scientific Software.

The weight matricies from ENET1.MTX are used.

Input: 10 values of (Sum Kp) for 10 consecutive days.
(day zero is the day of the prediction)

Output: The logarithm of the electron flux for day zero
for electrons with energies greater than 3 MeV.

The predicted log of the electron flux for day
one as a function of (Sum Kp)

The probability that the flux will exceed certain
values related to bulk charging.*/

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define CR TO FLUX 1.62
#define NUM IN 10
#define NUM--HID 6
#define NUMOUT 1
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double w12[][NUM HID] = {
{ 2.374, -. 639, 1.889, 1.842, 1.216, 4.204),
{ .868, -. 264, 2.198, -. 723, -1.853, -1.111 ,
{ .790, -2.876, -1.457, .141, -2.302, -3.078),
f-1.060, .605, 1.482, -1.812, -2.802, 2.245),
(-1.061, -1.293, -. 649, -. 689, -1.999, -2.245),
{ -. 756, -. 489, 2.684, -1.255, -3.711, 2.609),
{ 4.986, .369, 1.885, -1.571, -2.256, -1.377),
{-1.358, -. 916, 1.143, -1.196, -. 759, -3.052),
{-2.553, -. 588, -. 197, -2.524, -. 155, -. 9031,
( -. 028, .723, -3.071, -2.401, -2.857, 1.131)};

double wl2th[] = { .818, 4.236, -. 797, 2.582, 7.999,
-1.890);

double w23[] = (-2.019, 1.929, 2.464, 4.248, -4.000,
-5.139};

double w23th = 0.077;

double prob[10] [10] = {
(.410, .387, .142, .047, .012, .002, .001, .000, .000,

.000},
{.178, .457, .248, .085, .026, .005, .001, .000, .000,

.000),
(.052, .319, .392, .170, .050, .013, .002, .001, .000,

.000),
(.014, .127, .387, .328, .115, .020, .007, .002, .000,

.000),
{.003, .067, .211, .362, .273, .064, .017, .002, .001,

.000),
{.005, .057, .158, .262, .324, .147, .033, .014, .000,

.000),
{.001, .010, .153, .214, .265, .204, .092, .051, .010,

.000),
(.000, .000, .000, .040, .560, .240, .080, .080, .000,

.000),
(.000, .000, .000, .000, .667, .000, .333, .000, .000,

.000)
};

char *msg(4] = {"Low (< 0.7)", "Intermediate (0.7-1.7)",
"High (1.7-2.7)", "Very High (>2.7)");

double enet (double a[]);
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void main(int argc, char *argv[])

register int bin;
register int k, 1;
double binprob[4];
double dayzero;
double flux;
double input[10];
double probability;

if (argc != 11)
clrscro;
fprintf(stdout, "\n*** Input Error ***\n");
fprintf(stdout, "Enter 10 values of Sum Kp on the

command line with Day 0 first\n");
fprintf(stdout, "followed by Day -1 etc. For

example, enter 37.7 for 38-\n");
fprintf(stdout, "38 for 38 or 38.3 for 38+\n");
exit (0);

clrscro;
printf (" The Aerospace Neural

Network Model for\n");
printf(" Relativistic Electron Flux at

Geosynchronous Orbit\n\n");
printf(" by H. C. Koons and D.

J. Gorney\n");
printf (" Space Sciences

Laboratory\n");
printf (" The Aerospace

Corporation\n");
printf (" El Segundo,

California\n");

printf("\n Input values (Sum Kp): ");
for (k = 0; k < NUM IN; k++)

printf("%4.lf 7, atof(argv[k + 1]));

/* scale input into the range from 0.0 to 1.0 */
for (k = 0; k < NUM IN; k++)

input[k] = atof(argv[k+l]) / 50.0;

/* save day zero value of Sum Kp */

day_zero = atof(argv[1]);

flux = enet(input) + CRTOFLUX;

printf ("\n\n");
printf(" Log Electron Flux (> 3 MeV) for Day 0

=%f\n", flux);
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/* move inputs by one day */
for (k = NUM IN - 1; k > 0; k--)

input[kT = input[k - 1];

for (bin = 0; bin < 4; bin++)
binyProb[bin] = 0;

printf ("\n");
printf ("Predicted Log Electron Flux (> 3 MeV) for Day

+1 :\n") ;

for (1 = 0; 1 < 9; 1++) {
input[0] = ((double) 1 * 80.0 + 40.0 )/ 500.0;

/* for (k = 0; k < NUM IN; k++)
printf("%f ", input[k]);*/

flux = enet(input) + CR TOFLUX;

probability = prob[(int) (day_zero / 8.0)1[1];

printf("Sum Kp = %3d - %3d Log Flux = %6.3f"
" Probability = %5.3f", 1 * 8, (1 + 1) * 8,

flux,
probability);

if (flux >= 2.7)
bin-prob[3] += probability;

else if (flux >= 1.7 && flux < 2.7)
binyprob[2] += probability;

else if (flux >= 0.7 && flux < 1.7)
binprob([] += probability;

else
binyprob(0] += probability;

if (flux >= 2.7)
printf(" * Warning ***\n");

else
printf ("\n");

printf("\n");
for (bin = 3; bin > -1; bin--)

printf("%22s Probability = %3d %\n",
msg[bin], (int) (binprob(bin] * 100.0 + 0.5));

A
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1* -- - - - -- - - - -- - - - -- - - - -
double enet (double input[]){

register int i, j;
double activation2[NUMHID];
double activation3;
double output2[NUMHID];
double output3;

/* calculate output from hidden neurons */
for (j = 0; j < NUMHID; j++) {

activation2[j] = 0.0;
for(i = 0; i < NUM IN; i++)

activation2[jT += input[i] * w12[i] [j];
I

activation2[j] += wl2th[j];
output2[j] = 1.0 / (1.0 + exp(-activation2[j]));

/* calculate output from output neuron */
activation3 = 0.0;
for (j = 0.0; j < NUM HID; j++)

activation3 += output2[j] * w23[j];

activation3 += w23th;
output3 = 1.0 / (1.0 + exp(-activation3));

return 5.0 * output3 - 3.0;
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APPENDIX B

Program: FORECST2.C

Copyright 1991 by H. C. Koons
Space and Environment Technology Center
The Aerospace Corporation
El Segundo, CA

1.00
1.01 Revised: 2/16/90
2.00 Derived from FORECAST.C

The program predicts the flux of -3 MeV electrons at
geosynchronous orbit from ten values of the daily sum
of the planetary magnetic index Kp.

The algorithm is based on the neural network algorithm
in BrainMaker, neural network software, from California
Scientific Software.

The weight matricies from ENET11A.MTX are used.

Input: The date for Day 0.

The logarithm of the electron flux for Day - 1
and Day 0 for electrons with energies greater than

3 MeV.

10 values of (Sum Kp) for 10 consecutive days.
(Day 0 is the day of the prediction)

Output: The logarithm of the electron flux for day zero
for electrons with energies greater than 3 MeV.

The predicted log of the electron flux for day
one as a function of (Sum Kp)

The probability that the flux will exceed certain
values related to bulk charging.

*#

#include <conio.h>
#include <stdio.h>
linclude <stdlib.h>

#include <math.h>

#define CR TO FLUX 1.62
#define NUM IN 11
#define NUM HID 7
#define NUM-OUT 1
#define NUM-KP 10

double w12[] [NUMHID] = {
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{ 2.991, -1.361, 1.698, 1.355, -2.283, -1.441,
-2.960),

(-1.106, -0.233, -0.292, 0.405, 0.439, -0.418,
-0.564),

{ 1.775, 1.973, -1.366, -3.321, 3.331, 2.332,
0.383),

{-2.269, -1.343, 4.283, 0.303, -0.469, -0.874,
-1.6491,

( 1.365, -0.458, 0.536, 0.833, -0.823, -1.896,
-0. 955 ),

(-0.650, 0.827, 1.806, -0.811, -0.095, -1.604,
-1.6261,

{ 2.831, -1.391, 0.178, -0.574, 0.827, -2.436,
-2.112),

( 0.999, 1.957, -2.351, -3.139, 0.705, 3.033,
-1.5521,

f-4.199, 1.196, 0.976, -0.670, -0.026, 0.338,
-0.0221,

(-0.429, 1.563, -0.594, 2.302, -2.182, 1.466,
-1.000},

t-0.328, 1.718, -0.600, -1.065, -0.657, -3.181,
3.874)};

double wl2th[] = { 0.849, -0.841, -1.792, 2.996, 1.404,
0.385, 4.998);

double w23[] = (3.479, 0.319, 4.526, -3.983, -3.765,
3.867, 0.549);

double w23th = -1.070;

double prob[(1O] [0 = {
(.410, .387, .142, .047, .012, .002, .001, .000, .000,

.000),
(.178, .457, .248, .085, .026, .005, .001, .000, .000,

.000),
(.052, .319, .392, .170, .050, .013, .002, .001, .000,

.000),
{.014, .127, .387, .328, .115, .020, .007, .002, .000,

.000),
(.003, .067, .211, .362, .273, .064, .017, .002, .001,

.000),
(.005, .057, .158, .262, .324, .147, .033, .014, .000,

.0001,
(.001, .010, .153, .214, .265, .204, .092, .051, .010,

.0001,
(.000, .000, .000, .040, .560, .240, .080, .080, .000,

.000),
(.000, .000, .000, .000, .667, .000, .333, .000, .000,

.0001
I;
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char *msg[4] = ("Low (< 0.7)", "Intermediate (0.7-1.7)",

"High (1.7-2.7)", "Very High (>2.7)");

double enet (double a[]);

/* ------------------------------------- *
void main(int argc, char *argv[])
{ register int bin;

register int k, 1;
double bin_prob[4];
double day_zero;
double flux;
double input[NUM IN];
double probability;

if (argc != 14) f
clrscro;
fprintf(stdout, "\n*** Input Error ***\n");
fprintf(stdout, "Enter the date for (Day 0) as

mm/dd/yy and\n");
fprintf(stdout, "enter 1 value for Log Flux for

(Day - 1) and\n");
fprintf(stdout, "enter 1 value for Log Flux for

{Day 0} and\n");
fprintf(stdout, "enter 10 values of Sum Kp on the

command line with {Day 0) first\n");
fprintf(stdout, "followed by Day -1 etc. For

example, enter 37.7 for 38-\n");
fprintf(stdout, "138 for 38 or 38.3 for 38+\n");
exit (0);

clrscr );
printf(" The Aerospace Neural

Network Model for\n");
printf(" Relativistic Electron Flux at

Geosynchronous Orbit\n\n");
printf(" Version 2.0

7/11/91\n\n");
printf(" by H. C. Koons and D.

J. Gorney\n");
printf(" Space and Environment

Technology Center\n");
printf(" The Aerospace

Corporation\n");
printf(" El Segundo,

California\n\n");

printf("Input values:\n");
printf(" (Day 0): %s\n", argv[1]);
printf(" Flux for (Day - 1): %5.3f\n", atof(argv[2]));
printf(" Flux for (Day 0): %5.3f\n", atof(argv[3]));
printf(" Sum Kp: ");
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for (k = 0; k < NUM KP; k++)
printf("%4.lf ", atof(argv[k + 4]));

/* scale count rate for day -1 */
input[0] = ((atof(argv[2]) - CR TOFLUX) - (-3.0)) /

5.0;

/* scale input into the range from 0.0 to 1.0 */
for (k = 0; k < NUM KP; k++)

input[k + 1] =-atof(argv[k+4]) / 50.0;

/* save day zero value of Sum Kp *1
dayzero = atof(argv[4]);

flux = enet(input) + CR TOFLUX;

printf("\n\n");
printf(" Log Electron Flux (> 3 MeV) for Day 0

- %f\n", flux);

/* move inputs by one day */
for (k = NUM KP; k > 0; k--)

input [kil] = input[k];

for (bin = 0; bin < 4; bin++)
bin_prob[bin] = 0;

printf("\n");
printf("Predicted Log Electron Flux (> 3 MeV) for (Day

+ 1):\n");
input[0] = ((atof(argv[3]) - CR TOFLUX) - (-3.0)) /

5.0;
for (1 = 4; 1 <= 68; 1 += 8) {

input[l] = (double) 1 / 50.0;

/* for (k = 0; k < NUM IN; k++)
* printf("%5.2f ", input[k]);

flux = enet(input) + CRTOFLUX;

probability = prob[(int) (day_zero / 8.0)][(int)(1 / 8)];

printf("Sum Kp = %3d - %3d Log Flux = %6.3f"
" Probability = %5.3f", 1 - 4, 1 + 4, flux,

probability);
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if (flux >= 2.7)
bin_prob[3] += probability;

else if (flux >= 1.7 && flux < 2.7)
bin_prob[2] += probability;

else if (flux >= 0.7 && flux < 1.7)
bin_prob[1] += probability;

else
bin_prob(0] += probability;

if (flux >= 2.7)
printf(" *** Warning ***\n");

else
printf ("\n");

printf("\n");
for (bin = 3; bin > -1; bin--)

printf(" %22s Probability = %3d %\n",
msg[bin], (int) (binyprob[bin] * 100.0 + 0.5));

printf("\f");
I

/* ------------------------------------- *
double enet(double input [])
(

register int i, j;
double activation2[NUMHID];
double activation3;
double output2[NUMHID];
double output3;

/* calculate output from hidden neurons */
for (j = 0; j < NUM HID; j++)

activation2[j -- 0.0;
for(i = 0; i < NUM IN; i++)

activation2[JT += input(i] * w12(i] (j];
I

activation2[J] += wl2th[j];
output2[j] = 1.0 / (1.0 + exp(-activation2[j]));

/* calculate output from output neuron *I
activation3 = 0.0;
for (j = 0.0; j < NUM HID; j++)

activation3 += output2[j] * w23[j];

activation3 += w23th;
output3 = 1.0 / (1.0 + exp(-activation3));
return 5.0 * output3 - 3.0;
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TECHNOLOGY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security programs,
specializing in advanced military space systems. The Corporation's Technology Operations supports the
effective and timely development and operation of national security systems through scientific research
and the application of advanced technology. Vital to the suceess of the Corporation is the technical staff's
wide-ranging expertise and its ability to stay abreast of new technological developments and program
support issues associated with rapidly evolving space systems. Contributing capabilities are provided by
these individual Technology Centers:

Electronics Technology Center:. Microelectronics, solid-state device physics, VISI
reliability, compound semiconductors, radiation hardening, data storage technologies,
infrared detector devices and testing; electro-optics, quantum electronics, solid-state
lasers, optical propagation and communications; cw and pulsed chemical laser
development, optical resonators, beam control, atmospheric propagation, and laser
effects and countermeasures; atomic frequency standards, applied laser spectroscopy,
laser chemistry, laser optoelectronics, phase conjugation and coherent imaging, solar
cell physics, battery electrochemistry, battery testing and evaluation.

Mechanics and Materials Technology Center:. Evaluation and characterization of new
materials: metals, alloys, ceramics, polymers and their composites. and new forms of
carbon; development and analysis of thin films and deposition techniques;
nondestructive evaluation, component failure analysis and reliability; fracture
mechanics and stress corrosion; development and evaluation of hardened components;
analysis and evaluation of materials at cryogenic and elevated temperatures; launch
vehicle and reentry fluid mechanics, heat transfer and flight dynamics; chemical and
electric propulsion; spacecraft structural mechanics, spacecraft survivability and
vulnerability assessment; contamination, thermal and structural control; high
temperature thermomechanics, gas kinetics and radiation; lubrication and surface
phenomena.

Space and Environment Technology Center. Magnetospheric, auroral and cosmic ray
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and
ionospheric physics, density and composition of the upper atmosphere, remote sensing
using atmospheric radiation; solar physics, infrared astronomy, infrared signature
analysis; effects of solar activity, magnetic storms and nuclear explosions on the earth's
atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate
radiations on space systems; space instrumentation; propellant chemistry, chemical
dynamics, environmental chemistry, trace detection; atmospheric chemical reactions,
atmospheric optics, light scattering, state-specific chemical reactions and radiative
signatures of missile plumes, and sensor out-of-field-of-view rejection.


