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1. INTRODUCTION

This report describes the work performed by Dr. Stephen Welstead,
COLSA, Inc., Huntsville, AL, on the project "Algorithms for
Multichannel Optical Processor", contract number F30602-88-D-
0028, subcontract number RI-74242X. The period of performance
covered by this report is 15 January 1991 through 14 January 1992.
Laboratory work was performed at the Photonics Center of Rome
Laboratory, Griffiss Air Force Base, New York. Analysis work was
performed at COLSA headquarters in Huntsville, AL.

This report discusses several alternative algorithms for
implementation in an optical signal processor to perform adaptive
interference cancellation. A new algorithm is introduced which
shows great promise for implementation in the multichannel optical
processor. The effort reported here is a continuation of work
reported in [1,2,3].

2. BACKGROUND

The application problem and the optical processor architecture have
been reported on elsewhere [3]. We include a brief summary here in
order to introduce the notation and to establish the advantages and
limitations of the optical processing scenario in which the
algorithms will be used.

2.1 The Application Problem

The signal processing application problem considered here is that of
adaptive cancellation of interference, or jamming, signals. We are
primarily interested in applying our results to radar signals.
However, the methods discussed here can be applied to other types
of signals, both active and passive.

We assume the following scenario, which is standard for adaptive
signal processing [4]. A main antenna receives the signal d(t), which
is comprised of the desired signal s(t) and an additive interference
signal n(t). The characteristics of both s(t) and n(t) are unknown.
To determine the characteristics of n(t), one or more omni-
directional auxiliary antennas are used to sample the interference
environment. These auxiliary signals are denoted by nl(t),...,nM(t)
(where M is the number of auxiliary antennas). The interference
signal n(t) may consist of a linear combination of delayed versions



of some jamming signal j(t). However, for the purpose of cancelling
n(t), the only information available to the system designer comes
from the auxiliary signals nl(t),...,nM(t). Thus, in what follows, we
will discuss estimates of n(t) only in terms of nl(t),...,nM(t), and
will not specifically refer to the jamming signal j(t).

The problem in general is to determine the linear combination of
delayed versions of the signals ni(t) which forms the best estimate
y(t) of the main antenna interference n(t). The best estimate is
defined as that y(t) which minimizes the energy of the error signal

e(t) = d(t) - y(t). (2.1.1)

The algorithms of section 3 are concerned with finding the optimum
coefficients and delays to be used in constructing the interference
estimate y(t).

2.2 The Optical Processor

The optical processor is described in [3]. For the purpose of
algorithm analysis, it is sufficient to think of the processor as
consisting of two subsystems. In a multichannel implementation,
each of these consists of several parallel channels. The first of
these forms a correlation of the error signal e(t), given by (2.1.1),
with the auxiliary signal ni(t). This is done in parallel for each of
the M auxiliary inputs. An electronic microprocessor then
determines the optimum coefficients and delays, using one of the
algorithms which we will discuss in section 3. This information is
then fed to the second optical subsystem which applies the
coefficients and delays to the auxiliary signals ni(t) to form the
interference estimate y(t).

The first optical subsystem uses a multichannel acousto-optic (AO)
cell and a time integrating detector array to perform the correlation
function in a fairly standard way. This subsystem works well,
providing sufficient dynamic range and spatial resolution to achieve
the overall system performance goals. Optical processing enables
parallel computation of the correlation function, providing real time
performance with essentially unlimited spatial resolution.

The correlation is currently being computed over a 5 psec delay
range. Delay time is determined by the characteristics of the AO
cell. Higher delay times can be achieved using different cells. The
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correlation function over this range is sampled in parallel by a 512
element detector array. This number can also be improved by a
factor of as much as eight with currently available detector arrays.
Due to the parallel nature of the optical processing, there is no real
time penalty incurred from computing a larger array of correlation
values.

The second optical subsystem also uses a multichannel AO cell to
apply time delays to the auxiliary signals ni(t). This system also
requires spatial light modulation to pick out and weight the
appropriate delay values along the AO cell. Several candidate
spatial light modulators (SLMs) have been considered for this task
[5]. Issues such as speed, contrast ratio, and dynamic range have led
to the decision to ý;se a steering AO cell as an SLM. The idea here is
that by varying the carrier frequency that is applied to the cell, one
can vary the angle of the first order diffracted beam. Several
different carrier frequencies can be combined in one signal to obtain
several distinct angles simultaneously. These different angles
correspond to unique tap positions on the delay line.

While this AO SLM approach provides sufficient speed, contrast
ratio, and dynamic range for our performance goals, it does impose a
limitation on the system. Specifically, we are limited to a small
number of optical beams that can be generated at any one time in
each channel of the AO cell. This means that there is a limited
number of delay positions that can be simultaneously tapped per
channel. This limit comes both from limitations of the AO cell
itself, as well as from the practical limitations of generating a
large number of carrier frequencies simultaneously. The exact upper
limit is not known, but for the purpose of algorithm development, we
are planning on having no more than eight delay taps per channel
available.

It should be kept in mind that these delay taps can be used to select
from a continuum of delay values available from the second AO cell.
Thus, we have much more than, for example, an eight tap delay line
with fixed tap positions. Our configuration enables us to handle up
to eight multipath copies per channel of an interference signal, with
delay positions being selected from anywhere along a 5 gsec delay
range.
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The advantages and limitations of the optical processor have a
significant impact on algorithm design. We discuss the algorithms
in the next section.

3. THE ALGORITHMS

3.1 Steepest Descent

The traditional approach to adaptive processing is to use some
variation of the steepest descent algorithm. While this algorithm
has been discussed elsewhere [1], it is instructive to review the key
points here, in order to see the relevance of the various quantities
involved.

It is assumed that there is a finite number of fixed delay positions
Xl,X2,...,XN available across the total delay range D. Thus we have

0:< Xl < X2 < ... < XN <5 D.

Typically, the distance between delay positions is fixed, for example

at

A= D/N

so that xi = (i - 1) A. In our optical processor, the number of fixed
delay positions would correspond to the spatial resolution of the
detector array.

We now introduce the so called weight vector

W - (Wl,W2,...,WN)

and form the signal

y (W; t) - wl nj(t- Xi) + w2 nl(t- X2) + ... + WN nl(t - XN)

- (W,R(t)) (3.1.1)

(for ease of notation, we consider only the single channel case here;
the theory is the same in the multichannel case). In (3.1.1), the
notation ( , ) indicates vector inner (or scalar) product, and R(t) is
the vector function whose ith component is ni(t - xi). The signal
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y(W; t) is the estimate of the interference signal n(t). The problem
is to determine the appropriate weight vector W in order to make
this the best estimate.

We emphasize at this point that the weight vector is a consequence
of the choice of algorithm. It is not inherently part of the adaptive
processing problem. Any weight vector approach will be limited in
performance by the number of available tap delay positions. If the
true delay falls between two fixed tap positions, performance will
suffer. This problem can be alleviated by providing more tap
positions, but this places more demand on system resources and may
slow down the algorithm. It is possible, although difficult, to
approach the problem directly from a multivariable optimization
point of view, with the delay positions (chosen anywhere along the
delay range) and coefficients forming the higher dimensional
optimization space. We discuss this approach in section 3.3.

The goal of the steepest descent algorithm is to determine the
weight vector W which minimizes the error energy:

t+T

E(W;t) = ft (d(s) - y(W;t))2dso~t (3.1.2)

This expression is the energy of the error signal given by (2.1.1) over
the time interval [t,t + T].

The steepest descent algorithm is an iterative method that finds the
minimum of E(W;t) by moving in the direction of the negative
gradient of E with respect to W. Recalling that y(W;t) - (W,R(t)),
the gradient of E(W;t) is easily computed from (3.1.2) as the vector
whose ith component is

t+T

(VE)M(t) = f e(W;s)n1 (s - xi) ds.It (3.1.3)

where e(W;t) - d(t) - y(W;t). Note that VE can actually be viewed as
a correlation function sampled at the points xi. This is why
correlation is significant in the implementation of steepest descent
algorithms.
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The iterative algorithm for finding the optimum W can be formulated

as

new W - old W + stepsize • AW (3.1.4)

where stepsize is a positive scalar quantity used to control
convergence, and AW - -1/2 VE.

The steepest descent algorithm can usually provide an adequate
solution, subject to the limitations of fixed tap positions mentioned
above. There are, however, two drawbacks. One is that steepest
descent is notoriously slow, typically requiring hundreds of
iterations for convergence. The other, more serious, drawback is
concerned with implementation in our optical processor. While we
have no trouble forming the correlation vector AW with essentially
unlimited spatial resolution, we cannot form the interference
estimate y(W; t), given by (3.1.1), for an adequate number of tap
delay positions. This is due to the spatial light modulator
limitations mentioned in section 2.2.

Because of these limitations, we have been led to consider a new
class of weight vector algorithms which are a modification of
steepest descent. These algorithms are discussed in the next
section.

3.2 Limited Output Weight Position Algorithms

Limited spatial light modulation capability has led us to consider a
new class of weight vector algorithms. These algorithms involve
using only a limited number of the available tap delay positions to
form the estimate y(W; t), while maintaining full spatial resolution
to construct the correlation vector whose components are given by
(3.1.3). All tap delay positions are used to form the update weight
vector (ie., correlation vector) that is input to the algorithm, while
a weight vector with only a limited number of nonzero components
is output from the algorithm to form the signal y(W;t). Thus, we
call these algorithms limited output weight position algorithms.

Limiting the number of output weight positions does somewhat limit
the multipath scenarios which can be handled by these algorithms.
However, we believe we can provide enough output positions to
handle most foreseeable scenarios. The algorithm should still
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provide a significant degree of cancellation performance even for
those cases which exceed the capacity of the output weights. A
bonus for this type of algorithm is that it is usually orders of
magnitude faster than steepest descent with a full output vector.
This is reasonable if one considers the fact that if, for example,
only 4 weights are needed to achieve cancellation, then it is a
burden to have to maintain and update 512 output weight positions.

Several variations of the limited weight position algorithms are
discussed here. One is a highly promising algorithm that was able to
handle most of the multipath scenarios presented in the simulation
tests. This algorithm is recommended over the other two
algorithms, which are included here only for historical perspective.
The intent is only to record the fact that they were considered and
rejected. The version of this algorithm recommended for
implementation is the sequential method discussed in section 3.2.3.

3.2.1 The Largest Component Selection Method

This algorithm has been discussed in [2]. It was the first algorithm
of the limited output weight position type considered. The idea is
simple: pick the largest of the weight vector components for output.

Let N be the total number of tap positions, or weight vector
components, available (so, for example, N might be 512). Let No << N
be the number of nonzero output weight vector positions available
(so, for example, No might be 4 or 8). At each iterative step, the
correlation update vector is computed, as given by (3.1.3), and the
weight vector is updated as in (3.1.4). However, to form the
interference estimate, a new weight vector Wo is constructed. This
vector has N components, all but No of which are 0. The No nonzero
positions correspond to the No positions of W with the largest
component values (see Sect. 3.2.4 for an efficient way to choose the
No largest values). Note that a cumulative weight vector containing
all vector components is maintained in computer memory and the
output weight positions are chosen using this weight vector.

This method works well in the case when there is just a single delay
to solve for. Oscillatory problems can arise if this delay falls
between tap positions, but these can be minimized by providing a
high density of tap positions for the input correlation vector.
Performance of this algorithm suffers when No > 1 and only a single
delay is to be found. The algorithm clusters all available weights
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near the actual delay position, and then must spend time suppressing
the unneeded weights. A more serious problem arises when two or
more delays must be found, with different signal amplitudes
corresponding to each delay. In this case, the method tends to throw
all No of its available output weights at the delay which causes the
largest correlation amplitude. The other delays are ignored. This
situation is depicted in Fig. 3.2.1.1. The method will not converge in
this case.

1.5- 1.0-

"4) 1.0 " .

0.5 - .--.--.--.-.--......

E 0.5- Aft -

0.0 0.0_ ...... '...........................
0 10 20 30 40 1 40

Component Number Component Number

(a) Correlation with two delays of (b) All available output weight
unequal amplitude positions are assigned to the

larger amplitude delay.

Figure 3.2.1.1 Two delays with unequal amplitudes cause problems for this method.

3.2.2 Correlation Peak Location Method

The correlation vector contains a significant amount of information
about the relative delays of the two signals being correlated. The
correlation vector, when viewed as a spatial function of the delay
variable, will have local maxima at locations corresponding to
relative common delays. The relative amplitudes corresponding to
these delays are proportional to the amplitudes of the correlation
maxima. This is the motivation for considering an algorithm which
constructs a weight vector by using information about local peaks in
the correlation vector.

Let Wo represent the output weight vector (with, as above, only No
allowable nonzero components), and let Vc be the correlation vector
whose ith component is given by
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.t+T

(V 0 )i(t) = r- e(Wo;s)nl(s - xi) ds, i= 1,...,N.
at (3.2.2.1)

Note that negative values in (3.2.2.1) are allowed, and in fact are
essential for changing the locations and values of the output weight
components. Since this vector is stored digitally, negative values do
not present a problem.

Form the intermediate weight vector Wi:

WI - Wo + stepsize - Vc (3.2.2.2)

As in the steepest descent algorithm, stepsize is a parameter used
for controlling convergence (in general, the stepsize here can be
larger than that used for steepest descent). Note that W1 is not an
accumulation of previous weight vectors, as was used in the largest
component selection method. Rather, it consists only of the latest
output weight vector added to a correlation vector, which was
formed with an error function constructed with that output weight
vector.

It should be noted that the cumulative weight vector that is
maintained in the previous method is actually of limited usefulness.
It is an accumulation of correlation update vectors generated by
incorrect interference estimates y(W;t) which have been
constructed with limited output weight vectors. This is not a true
gradient descent process, and so convergence to the correct solution
vector is not guaranteed, or expected.

The intermediate vector Wi is then searched for local maxima. This
is done using a discrete approximation to the first derivative and
noting when this expression changes sign. Since we are dealing with
a discrete vector, rather than a continuous function, it is feasible to
search a small neighborhood near where the first derivative changes
sign, and obtain the exact vector component which is a local
maximum.

Let Np be the number of local maxima obtained in this way. Note

that Np is at least 1, since, for example, if the correlation vector is

constant, then each component is a local maximum, and if it is
monotonic increasing or decreasing, then one of the endpoints will
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be a local maximum. In general, Np > No so we have to choose the No
largest components from those which were selected as local maxima
(once again, see Sect. 3.2.4 for an efficient way to do this). The
indexes and values of these components are saved.

The new output weight vector is constructed by first setting all
components equal to 0, and then setting those components at the
saved indexes equal to the saved local maxima values. In order to
represent the dynamic range limitations of the optical system,
output component values larger than 1.0 are truncated, and negative
values are set equal to 0.

In some cases, this algorithm works very well, as can be seen in the
simulation results in the next section. In fact, with an optimum
stepsize parameter, it is possible in some cases to obtain a correct
solution in one iteration. However, the algorithm is seriously
limited by its failure to handle two cases which are quite likely to
occur in practice.

The first of these is illustrated is Fig. 3.2.2.1. While this algorithm
can easily handle two widely separated delays, such as the case
illustrated in Fig. 3.2.1.1, a problem arises when it must identify
two closely spaced delays. The larger of the two correlation peaks
in Fig. 3.2.2.1 (a) is actually due to two closely spaced delays of
different amplitude, as can be seen in Fig. 3.2.2.1 (b). The algorithm
can locate one of the two closely spaced delays, but not the other.
The iterations in this case either become unstable, or tend to
oscillate, rather than converge to a solution.

A second, equally serious, drawback to this algorithm is the fact
that it cannot handle signals on a carrier, that is, when the signals
are of the form fc(t)r(t), where fc(t) is a high frequency sinusoid.
The presence of a carrier introduces a large number of local maxima
into the correlation function, as shown in Fig. 3.2.2.2. The example
shown here corresponds to only a single relative delay between the
interference and auxiliary signals. The algorithm, however, will
pick out a large number of local maxima. Note that applying the
algorithm "twice" won't work either. It is true that applying the
local maxima search to the list of local maxima will produce the
local maxima of the envelope function. However, some of these are
actually local minima of the correlation function. This will lead to
an incorrect choice of output weight vector.
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0.5
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Component Number Component Number

(a) Correlation Vector (b) Delay positions and amplitudes

Figure 3.2.2.1 The correlation function shown in (a) was constructed with an
interference signal consisting of three delayed copies of the auxiliary signal nl (t) (a

gaussian pulse). The delay positions and amplitudes are shown in (b). The two closely
spaced delays produce only a single local maxima in the correlation function.

1.0-

0.51

0.. V

E v

-0.5 --v

-1.0

0 10 20 30 40

Component Number

Figure 3.2.2.2 A single delay correlation of signals on a carrier has many local
maxima; only one corresponds to the true delay position.
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3.2.3 The Sequential Method

This method originally was developed to deal with the largest
component selection method's problem of throwing all of its
resources at the largest correlation peak. However, it also
successfully deals with the shortcomings of the peak location
method. The idea behind this method is to use the output weights
one at a time. Do the best that you can with one output weight, until
no further cancellation is achieved. If the error amplitude exceeds
tolerance, then allow two output weights. Continue this process
until either the allowable number of output weights has been
reached, or the error amplitude has been reduced to below the
allowable tolerance.

This approach clearly avoids the problem of applying too many
output weights to a single correlation peak. However, this method
can also handle closely spaced delays (even those delays
corresponding to consecutive weight vector components). It works
as well with signals on a carrier as it does with signals with no
carrier. Moreover, it is suited to responding to a dynamically
changing weight vector.

The key to this algorithm's success is that it uses the intermediate
weight vector given by (3.2.2.2) as the basis for the sequential
search, rather than the cumulative weight vector of the largest
component selection method. This means, for example, that it is not
necessary to keep track of components used previously in the output
weight vector. These components are present in the first term of
the vector sum (3.2.2.2). If these components continue to merit
consideration for use in the new output weight vector Wo, then they
will have a strong presence in the intermediate vector Wi. If they

are no longer needed, then negative values in the corresponding
components of the correlation vector Vc will reduce the influence of

these components in WV. In this way, the algorithm can quickly

respond to a dynamically changing weight vector.

We now summarize the key steps of this algorithm:

(1) Form the correlation vector V¢, as defined by (3.2.2.1), using the
error function e(Wo;t) formed with the previous output weight
vector Wo. On the initial iteration, Wo is the zero vector. Note that

12



Vc can have (and must be allowed to have) positive and negative
values.

(2) Form the intermediate weight vector W1, given by (3.2.2.2). Wi
is allowed to have positive and negative values.

(3) Identify the Ns largest components of Wi (using the search
algorithm described in section 3.2.4 below). Ns is initially 1, and is
updated as described below. Save the indexes and values of these
vector components.

(4) As in the peak location algorithm, construct the new output
weight vector Wo by first setting all components equal to 0, and
then setting those components at the saved indexes equal to the
saved component values from step 3. To represent the limited
dynamic range of the optical system, truncate output components
larger than 1, and set negative components equal to 0.

(5) Form the interference estimate y(Wo;t), given by (3.1.1), and the
corresponding error function e(Wo;t). If the amplitude of e(Wo;t) is
less than the error tolerance, then you are done. (If weight
adaptation is performed in the presence of a main signal, then the
amplitude (computed as the peak to peak height) of the correlation
vector should be used, rather than the amplitude of e(Wo;t).) If the
absolute difference between the amplitude of e(Wo;t) on this
iteration and the amplitude on the previous iteration is less than
some factor times the error tolerance (with the factor typically
being 0.1), then increment Ns by 1, otherwise do not change the value
of Ns. If Ns < No (the maximum number of nonzero output components
allowed) then go to step 1, otherwise terminate iterations (this is
the best you can do with No output components).

3.2.4 Choosing the Largest Component Values

Each of the algorithms discussed in sections 3.2.1-3.2.3 requires at
some point the selection of the K largest values from a list of L
numbers. Here, K and L are integers, and K < L (K and L assume
different values in each of the algorithms). Since this selection
process is fundamental to each of the algorithms, it is worthwhile
to examine an efficient way of accomplishing it. The method
described here is what has been used in the simulations of the
algorithms reported on below.
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If K = 1, then it is a simple matter to search the list of L items and
determine the maximum component. However, if K > 1, then we don't
want to have to search the entire list K times. The K largest
components can be located in one search of the list. To do this, we
need to maintain an auxiliary list of length K. This list will
eventually hold our K largest components. To start, load the first K
components of the main list into the auxiliary list. Identify the
minimum element of this auxiliary list, and its index in the auxiliary
list. To qualify for membership in the auxiliary list, a main list
element must exceed this minimum element.

Begin checking the main list elements, starting with index K + 1. If
a main list element exceeds the minimum element in the auxiliary
list, then replace that minimum element with the new element from
the main list. Now, search the new auxiliary list for its minimum
(which may or may not be the new element that was just added).
Note the index and value of the new auxiliary list minimum.
Continue checking main list elements against the auxiliary list in
this way. When the end of the main list is reached, the auxiliary list
will contain the K largest values.

3.3 Other Algorithms

In [2], other algorithmic approaches, including non-weight vector
approaches, to this problem were considered. We briefly mention
these here for the sake of completeness; the reader is referred to [2]
for a more complete discussion.

The parabolic interpolation algorithm is a single variable algorithm
for finding a local minimum of a nonlinear function. It requires no
information other than the function values at given points. It is a
robust algorithm that is useful for adjusting single parameters (as
suggested, for example, in the final section of this report).
However, it becomes unwieldy in the multivariable case, and is
probably not suitable for finding multiple delays and amplitudes.

Conjugate gradient and conjugate direction methods are weight
vector algorithms that require specific information about the
problem scenario that is not available in our optical processor. The
main advantage of these algorithms is that they guarantee
convergence in a finite number of steps. However, in our problem,
that finite number is the number of tap positions. This number is
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generally quite large, so this finite convergence feature is not likely
to present an advantage over the approaches considered here.

Simulated annealing is a multivariable minimization algorithm
designed to find the global minimum of a multimodal nonlinear
function. However, it is not well suited to real time performance in
problems with a large number of variables.

Finally, neural network approaches to this problem have also been
considered [6]. Neural networks may provide some utility in
supplementing other algorithms for performance enhancement, or
perhaps may prove useful for data preprocessing tasks. However,
the task of training a network which would be adaptable to all
possible signal scenarios does not appear to be practical.

4. ALGORITHM PERFORMANCE

This section presents simulation results for the algorithms
discussed in sections 3.1 and 3.2. Algorithm performance was
investigated for four test cases representing four distinct multipath
delay signal scenarios. Each test case was further subdivided into
two cases: one with a carrier signal present and one without a
carrier signal. The simulation was carried out on a digital computer.

4.1 Test Case Definitions

The four test cases were chosen as representative examples of
multipath delay environments that would illuminate the strengths
and weaknesses of each algorithm. The sequential method of section
3.2.3 handled these cases better than either of the other algorithms
discussed in section 3.2.

The basic signal type considered for each test case is the gaussian
pulse:

r(t) - exp (-t2 ) if Itl < 1.0 (4.1.1)
-0 otherwise.

The algorithms have also been tested with monotone and two-tone
sinusoid signals, as well as square pulse signals. The results do not
differ significantly from the gaussian pulse case. The gaussian
pulse simulates a broadband signal environment and captures all of
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the signal characteristics that are significant for our purposes, thus
we report only on this case.

While the simulation is essentially unitless, the relationships
among the variables are such that one can think of the basic time
unit as a gisec, and the basic frequency unit as a MHz.

Each test case assumes one auxiliary antenna which receives the
auxiliary signal

n1 (t) = 0.5 * r(t - 0.5). (4.1.2)

The weight vector algorithms considered here can handle additional
auxiliary channels without difficulty. Such additional channels
would, however, unduly stress the processing capabilities of the
personal computer used for the simulations. For this reason, we
consider only the single channel case here.

The interference signal has the form

K

n(t) Xa r(t - di)
= 1 (4.1.3)

Thus, K is the number of multipath delays, the di are the delay
values, and the ai are the associated amplitudes. The parameter
values which define each test case are as follows:

Test Case 1: K-1,a, -1.0, d1 =1.0.

Test Case 2: K -2, a, - 1.0, a2 -0.5, d1 - 1.0, d2 -4.0.

Test Case 3: K - 3, a, - 1.0, a 2 - 0.5, a3 - 0.3,

d = 1.0, d2 =4.0, d3 - 1.25.

Test Case 4: K - 3, al - 1.0, a2 = 0.9, a3 - 0.8,
dl = 1.0, d2 = 1.25, d3 = 1.5. (4.1.4)

Test case 1 thus represents the simplest delay estimation problem,
that of determining a single relative delay. Test case 2 is a
straightforward multipath problem with two widely separated
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delays that will produce two distinct peaks in the correlation
function. Test case 3 is a more complicated multipath problem,
with three delays, two of which are closely spaced. These three
delays produce only two correlation peaks, as illustrated in Fig.
3.2.2.1, and again in Fig. 4.2.3. Test case 4 is also a three delay
case, with three closely spaced delays. This test case is an example
that stresses the sequential algorithm.

The carrier signal is given by:

fc(t) = cos ((27) 12t). (4.5)

Each test case is considered both with and without the presence of
this carrier signal. When the carrier signal is present, the basic
reference signal r(t) is replaced by fc(t)r(t).

The simulations were run with weight vectors with N - 40
components. Thus, the correlation vectors consisted of 40
components, and 40 positions were available for the output weight
vectors. The total delay range is set at D = 5.0 g.sec. Thus the delay
increment is

A = 5.0/40 = 0.125 gisec.

The relatively small number of weight positions is chosen only to
ease the computational burden on the digital simulation. The
relative delays di are chosen so that an exact solution is possible

with this delta. In the actual processor, the number of weight
positions N would be much larger, giving a smaller delta and
alleviating performance problems due to lack of resolution across
the delay range.

The error tolerance (for the amplitude of the error function) was set
at 0.01. Thus, cancellation to this tolerance of an interference
signal of amplitude 1.0 would correspond to a 100:1, or "40 dB",
cancellation ratio.

4.2 Simulation Results

Figures 4.2.1 (a) - 4.2.4 (a) show plots of the correlation vectors for
test cases 1 - 4, while figures 4.2.1 (b) - 4.2.4 (b) show the
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corresponding correlation vectors in the presence of the carrier
signal given by (4.5). (Note that the 40 component correlation vector
does not adequately "sample" the true correlation function in the
presence of this 12 MHz carrier. Reconstruction of the true
correlation function is not necessary for these algorithms to work,
however. It is only necessary to know the value of this function at
the spatial positions corresponding to the vector components.)

Algorithm performance is summarized in Tables 4.2.1 - 4.2.4. Not
all cases are listed for each algorithm, due to the failure of the
algorithm to converge to a solution in some cases.

For test case 1, without a carrier signal, the peak location and
sequential algorithms work equally well. The steepest descent
algorithm eventually converges, but it is very slow. Steepest
descent results are included here for comparison only. In the
presence of a carrier signal, however, the sequential algorithm is
the only algorithm of this group that works at all. Moreover, its
performance is not affected by the presence of the carrier signal.
The peak location algorithm does not work at all in this case, due to
the presence of the many local maxima of the carrier signal. The
steepest descent algorithm ought to work in this case, however, the
iterations displayed diverging oscillations of the error magnitude.
It is believed that these oscillations are due to the nonlinearity
introduced by forcing the output vector to have only nonnegative
components. The carrier signal introduces negative values into the
correlation vector, so that this algorithm version no longer
represents the true linear steepest descent algorithm.

The peak location algorithm actually exceeds the performance of the
sequential algorithm in test case 2, in the absence of a carrier
signal. With the correct stepsize choice, this algorithm actually can
obtain a solution in one iteration, even with multiple delays. The
sequential algorithm, on the other hand, will always require at least
as many iterations as there are delays. This case shows the
motivation for considering a peak location type of algorithm.
However, once again, in the presence of a carrier signal, this
algorithm fails to work at all, while the sequential algorithm
remains unaffected.
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Figure 4.2.1 Correlations for Test Case 1: Gaussian pulse with a single delay

Algorithm Stepsize # Iterations Final Error
Without Carrier Signal

Sequential 0.5 6 0.004
0.75 3 0.001
0.85 1 0.000
1.00 oscillates* -

Peak Location 0.5 6 0.004
0.75 3 0.001
0.85 1 0.000
1.00 1 0.000

Steepest 0.125 30+ 0.323
Descent 0.15 300 (est.)** 0.25 <

0.2 oscillates* _

With Carrier Signal
Sequential 1.5 3 0.002

1.75 1 0.000
2.0 diverges

Table 4.2.1 Simulation results for test case 1.

• Error remained bounded, but algorithm produced nonlinear

oscillations, failing to converge.

** Iterations continued to converge very slowly. Final number of

iterations is estimated; final error is estimated to be smaller than
error shown.
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Figure 4.2.2 Correlations for Test Case 2: Gaussian pulse with two delays of unequal
amplitude

Algorithm " Stepsize -T# Iterations I Final Error
Without Carrier

Sequential 0.5 7 0.005
0.75 4 0.005
0.85 3 0.009
1.00 oscillates* _

Peak Location 0.5 6 0.004
0.85 1 0.009

Steepest 0.15 300 (est.)** 0.25 <
Descent I I I _I

With Carrier
Sequential T -1.75 1 4 F 0.002

Table 4.2.2 Simulation results for test case 2.

• Error remained bounded, but algorithm produced nonlinear

oscillations, failing to converge.

** Iterations continued to converge very slowly. Final number of

iterations is estimated; final error is estimated to be smaller than
error shown.
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Figure 4.2.3 Correlations for Test Case 3: Gaussian pulse with three delays of unequal
amplitudes (two of the delays are closely spaced and produce only one peak in the

correlation vector)

Algorithm Stepsize # Iterations Final Error
Without Carrier

Sequential 0.5 9 0.008
0.65 7 0.003
0.75 oscillates* -

Peak Location 0.5 stuck** 0.298
0.65 stuck** 0.298

Steepest 0.15 300 (est.)*** 0.22 <
Descent I

With Carrier
Sequential 1.25 7 0.009

Table 4.2.3 Simulation results for test case 3.

• Error remained bounded, but algorithm produced nonlinear

oscillations, failing to converge.

Further iterations failed to reduce error

Iterations continued to converge very slowly. Final number of
iterations is estimated; final error is estimated to be smaller than
error shown.
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Figure 4.2.4 Correlations for Test Case 4: Gaussian pulse with three closely spaced
delays of nearly equal amplitude

Algorithm Stepsize # Iterations Final Error
Without Carrier

Sequential 0.25 46 0.665
0.5 50 0.648

Steepest 0.1 120+ 0. 198**
Descent __ _ _I_ _ _ I _ _ _

Descent With Carrier
Sequential 0.5 48 0.045*

1.0 27 0.042*
1.25 20 0.045*

Steepest 0.1 70+ 0.339*
Descent

Table 4.2.4 Simulation results for test case 4.

* Final error could have been reduced by lowering the error

tolerance.

** Iterations continued to converge very slowly. Final number of
iterations is estimated; final error is estimated to be smaller than
error shown.
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Table 4.2.3 shows that the peak location approach can fail even when
there is no carrier signal. The difficulty arises here from the fact
that the large delay at d, = 1.0 gisec dominates the smaller
amplitude delay nearby at d3 = 1.25 /sec (note that these

correspond to relative delays of 0.5 and 0.75 gsec, respectively, of
the auxiliary signal nl (t) given by (4.1.2)). The resulting correlation

shows only a single peak near the components corresponding to the
relative delays 0.5 and 0.75 Isec. The peak location algorithm is
never able to resolve the smaller amplitude delay at 0.75 gisec. Note
that the steepest descent algorithm eventually outperforms peak
location, although it takes many iterations to do so.

The sequential algorithm handles this case both with and without a
carrier signal. Further tests showed that this algorithm could
handle delays as closely spaced as consecutive weight positions
without difficulty.

Finally, Table 4.2.4 shows that the sequential algorithm can fail to
provide sufficient interference cancellation in some cases. Reasons
for this are put forth in section 5. Closely spaced delay components
with similar amplitudes can result in a correlation vector whose
maximum components do not correspond to the maximum delay
amplitudes. Note, however, that the steepest descent algorithm
works in this case, although slowly. It is encouraging to note that
the sequential algorithm does perform adequately in this case in the
presence of a carrier signal. The reason for this will also be
discussed in section 5.

4.3 Conclusions

The sequential algorithm was able to provide a solution for test
case 1,2 and 3 with and without a carrier signal, and was able to
solve test case 4 in the presence of a carrier signal. The only
difficulty for this algorithm occurred in test case 4 without a
carrier signal. The algorithm in this case was not able to resolve all
of the delays, and as a result provided only partial cancellation. The
steepest descent algorithm was able to provide better cancellation
in this case, but at the cost of many iterations, as is typical for this
algorithm. Given that steepest descent is not an option for
implementation on our optical processor, the sequential algorithm is
clearly the algorithm of choice. In the next section, we will analyze
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this algorithm more closely. Some caveats will be discussed in
section 6. However, this appears to be a very promising algorithm
for the optical processor.

5 ANALYSIS OF THE SEQUENTIAL ALGORITHM

The results of the previous section show that the sequential
algorithm is superior to the other weight vector algorithms in most
9f the signal scenarios considered. In this section we examine this
algorithm more closely in order to gain some insight into its
operation.

5.1 An Example

Test case 3 of the previous section provides a good example for
showing how the sequential algorithm eventually arrives at the
correct solution consisting of three distinct delays with different
amplitudes. Figs. 5.1.1 - 5.1.7 show the evolution of the
intermediate and output weight vectors through the 7 iterations
needed to reach the final solution for this case. For clarity of
presentation, we consider only the non-carrier signal case. A
stepsize of 0.65 was used (stepsize selection is discussed in the
next section). Recall that the interference signal in this case
consists of a summation of three copies of the auxiliary signal, with
relative delays at 0.5, 0.75 and 3.5 igsec, with amplitudes of 1.0, 0.3
and 0.5, respectively.

Fig. 5.1.1 shows the first iteration. The initial correlation is of the
complete interference signal n(t) with the auxiliary signal n1 (t).
The output vector W0 is initially set equal to the zero vector, so the
initial intermediate vector W1, defined by (3.2.2), is just the
correlation vector Vc scaled by the parameter stepsize. The number
Ns of output components to be selected is initially set at 1. The
maximum of this vector is located at component position 5,
corresponding to a relative delay of 0.5 gisec. The amplitude of this
component is very nearly 1.0. The output weight vector Wo thus has
a single nonzero component, at position 5, with amplitude close to
1.0.
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The error signal e(Wo;t) is formed by subtracting the estimate
y(Wo;t) from n(t). The resulting correlation of this error signal with
ni(t) is shown in Fig. 5.1.2 (a). The effect of removing the dominant
interference component at the relative delay 0.5 can be clearly seen
in the reduction in amplitude of the correlation vector. This new
correlation vector, scaled by stepsize, is added to the previous
output vector Wo to get the new intermediate vector Wj. Ns is still
1 at this point, so the maximum of this new intermediate vector is
located. This maximum occurs at the same location as in the
previous iteration, with little change in amplitude. The new output
vector Wo is thus virtually the same (recall that amplitudes greater
than 1.0 are truncated, so the new output amplitude is now exactly
1.0).

Once again, the error signal e(Wo;t) is formed with the new Wo, and
a new correlation vector is computed. The error signal amplitude
and the correlation vector amplitude are essentially unchanged since
the previous iteration. The effect of this is that the number of
output components Ns is incremented to 2. The intermediate vector
is formed as before, but now is searched for its 2 largest
components, using the search algorithm of section 3.2.4. These
occur at component 5, and component 29, which corresponds to a
relative delay of 3.5 gsec. The new output weight vector Wo
displays these 2 nonzero components (Fig. 5.1.3 (c)).

The correlation amplitude can be seen to be further reduced in Fig.
5.1.4 (a) by the introduction of this second output component.
Iteration 4 provides additional adjustment to the value of the second
output component.

Further refinement of the second output component does not lead to
further reduction in the error amplitude or correlation vector
amplitude. So, in the fifth iteration shown in Fig. 5.1.5, Ns is
incremented to 3, and the three largest components of the
intermediate vector are selected. The third component is located at
position 7, corresponding to a relative delay of 0.75. The amplitude
values are refined in iterations 6 and 7, leading to the final solutioh.
The correlation vector can be seen to be nearly 0 in Fig. 5.1.7 (a).

5.2 Analysis

The sequential algorithm is new, and, as such, is lacking a proof
which would delineate conditions under which it will always provide
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the correct solution. Clearly, it works for a wide variety of sample
problems, as illustrated in the preceding sections. However, the
nonlinearity of the algorithm makes analysis difficult. Table 4.2.4
indicates that there are cases where the algorithm fails to provide
the optimal solution.

Let us consider the simple situation where the interference n(t) has
exactly the form

N
n(t) = •ai nj (t - (0-1 )A)

i=1 (5.2.1)

with A and N as in section 3.1 (some of the ai may be 0). The
estimate y(W;t) has the form

N

y(W;t) = wi n1 (t - (i-1 )A)
i=1 (5.2.2)

for any of the weight vector approaches (some of the w1 may be 0).
The correlation component (Vc)k (see equation (3.2.2.1)) of e(W;t)
with ni (t) can thus be written as

(VC)k(t) = - wi)n 1(s - (i - 1)A) nl(s - (k - 1)A) ds
i=1

N t+T

,w(aj- wj) n 1(s-(i- 1)A)n 1(s-(k- 1)A) ds.
i=1

(5.2.3)

The correlation vector V0 can thus be written in matrix-vector form
as

Vc(t) - R(t)(A - W) (5.2.4)

where A - (al ,...,aN), and R(t) - (rij(t)) is a real symmetric matrix
whose ij entry is given by
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t+T
ri1(t) = Jt nl(s - (i - 1)A)nl(s - - 1)A) ds. (5.2.5)

It can be shown that rij(t) is a maximum when i - j. Also, under
appropriate conditions on the range of integration, rij(t) depends
only on Ii - Jl, so that R(t) is a Toeplitz matrix [7] (this fact is not
essential, but it does simplify the analysis somewhat). Under these
conditions, the diagonal elements have the same value:

t+T

r(t) = , n2(s) ds 1 (5.2.6)

and this value is at least as large as any other entry in R(t).

The sequential algorithm relies heavily on the assumption that the
largest amplitude delays will result in the largest correlation
components in V¢. Relative to equation (5.2.4), this says that the
largest components of A - W should result in the largest components
of the product R(t)(A - W). While this assumption is reasonable, and
is likely to happen most of the time, unfortunately it is possible to
construct fairly simple examples (eg., 3 X 3 matrices) of diagonally
dominant Toeplitz matrices R(t) and vectors A in which the
maximum components of R(t)A do not correspond to the maximum
components of A. With this in mind, it appears unlikely that a
convergence proof of this algorithm will be available, except under
specialized conditions on the signal ni (t).

An example of such conditions would be those which would make the
matrix R(t) nearly diagonal. This would happen, for example, if the
signal ni(t) were orthogonal to delayed versions of itself over the
interval of integration. This would make the integrals equal to 0 in
(5.2.5) for i * j. Such a property is likely to hold for high frequency
sinusoid signals. This may be why the sequential algorithm
converged in the carrier signal case of test case 4 (Table 4.2.4),
while failing in the absence of a carrier signal for the same problem.

The lack of a convergence proof should not detract from the utility
of this algorithm. It is well suited to the limited spatial light
modulation capabilities of the optical processor for which it was
designed, and it works well in the presence of carrier signals, which
will be the case in the optical processor.
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5.3 Stepsize Selection

The stepsize values used in the simulation results given in section 4
were arrived at through trial and error. It is possible to use the
analysis of the previous section to obtain bounds for the stepsize
value.

Ponsider the simple case when all components of A are 0 except for
a single component with value a. Then all components of R(t)A are 0
except for a single component with value r(t)a. The sequential
algorithm will select the corresponding component of the
intermediate vector on each iteration. The algorithm is essentially
linear in this case with the iterations having the form

W(n+l) - W(n) + a R(t)(A - W(n)) (5.3.1)

where we have deroted the nth iterate of the weight vector by W(n),
and the stepsize by a. In scalar form, the iterations for the one
nonzero compo, ent of W are given by

w(n+l) w(n) + a r(t)(a - w(n)) (5.3.2)

- (1 - a r(t))w(n) + a r(t) a.

Once again, the superscript in parentheses indicates iterate. Thus,

n
w(n)= .10 - a r(t))i (x a.

j=o (5.3.3)

If I1 - a r(t)l < 1, then the geometric series in (5.3.3) will converge

as n - =. Thus, an upper bound on a is

a < 1.0/r(t). (5.3.4)

This bound will work in the single delay case. A worst case multiple
delay scenario might suggest the use of the bound

a< 1.0 / rij(t)

(5.3.5)

32



The bound in (5.3.5) should be small enough to work in every case,
but is probably too small for most cases. In practice, a stepsize
somewhere between the bounds given in (5.3.4) and (5.3.5) should be
used. Computation oi these bounds requires the correlation of ni(t)
with itself (autocorrelation). This will require additional hardware
considerations in the optical processor.

6 ISSUES AND CONCLUSIONS

A new algorithm for performing multipath delay estimation and
interference cancellation has been introduced in this report. This
algorithm has been shaped by the demands and restrictions of
implementation in an optical signal processor. The sequential
algorithm presented here provides significant performance
advantages over traditional adaptive weight vector algorithms such
as steepest descent. It can easily be extended to the multichannel
case without performance penalty. However, there are some caveats
to keep in mind when applying this algorithm.

The sequential algorithm, as with all weight vector approaches, is
sensitive to both the resolution of spatial information, and the
potential corruption of spatial information. This is particularly true
in the presence of a carrier signal. Spatial resolution refers to the
density of tap weight positions across the total delay range. Higher
spatial resolution results in a smaller A. Fortunately, spatial
resolution can be increased in the optical processor by using a larger
detector array. For best system performance, spatial resolution
should be made as high as practical. A large number of tap weight
positions will not significantly slow down the sequential algorithm.

Corruption of spatial information refers to a mismatch of spatial
information between the first half and the second half of the
system. That is, the signal delay associated with a vector
component position in the input correlation vector does not equal the
signal delay of the corresponding component position in the output
vector used to construct y(W;t). The algorithm cannot adapt
spatially to correct this mismatch.

This lack of robustness with respect to discrepancies in spatial
information can be addressed in two ways. One, of course, is careful
calibration of the optical system. This can be done by incorporating
a spatial shift parameter into the algorithm, and adjusting its value
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while operating the system with signals that differ by known delays.
A second approach is to use an algorithm such as parabolic
interpolation, mentioned in section 3.3, in conjunction with the
sequential algorithm. The idea here is that parabolic interpolation
could be used to adapt the single spatial shift parameter, while the
sequential algorithm provides the delay and amplitude values. For
test purposes, calibration of the system will probably suffice.
Given the analog nature of the optical processor, however, it will
probably be necessary to include some type of robust spatial
adaptivity in any weight vector algorithm.

In addition, we observed in Table 4.2.4 that this algorithm does not
converge in every case to an optimal solution. This problem seems
to be mitigated in the presence of a carrier signal. Since it is
anticipated that the signals encountered by the optical processor
will be on carriers, the algorithm should be able to handle most
foreseeable signal scenarios.

In conclusion, the sequential algorithm provides a good combination
of ease of implementation, real time performance, and ease of
application to multiple delay and multichannel scenarios. Steepest
descent is not an option due to lack of adequate spatial light
modulation. Of the algorithms investigated to date, the sequential
algorithm is recommended for implementation in the optical
processor for test and prototyping phases.
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