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The work done the past two years with Air force support has been
very productive with regard to research done, papers published
and students trained.

I am proud to say that two students working in my laboratory
on these light scattering problems have received advanced
degrees.

Gorden Videen defended his PhD Dissertation in March getting his
doctorate from the University of Arizona Optical Sciences Center.
Please note that he is a co-author on all of the above papers. He
was totally responsible for the theoretical work and took full
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very best small particle light scattering (electromagnetic)
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the Physics Department at Dalhouise University in Halifax Nova
Scotia.
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We are thankful to William L. Wolfe of the Optical Sciences
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The Air Force Support for this two-year project was $49,000.
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don't need much money. However I am fortunate to attract good
students who are interested in this area of physics and are
willing to work hard. There is a growing need to train students
in the basics of experimental science. This modest AF program has
contributed to the education of many potential scientists.
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Light scattering from a sphere on or near a surface

Gordon Videos

Optical Sciences Center. Unversity of Arizona. Tucson, Arizona 8,5721

Received April 27, 1990: accepted October 20. 1990

The light -sca tiering p roble m o f a sphere on or near a plane surface, is solved by using an extension of the M ie thc ory.
The approach taken is to solve the boundary conditions at the sphere and at the surface simultaneously and to
develop the scattering amplitude and Mueller scattering matrices. This is performed by projecting the fields in the
half-space region not including the sphere multiplied by an appropriate Fresnel reflection coefficent onto the half -
space region including the sphere. An assumption is that the smsttered fields from the sphere. reflecting off the
surface and interacting with the sphere. are incident upon the surface at near-normal intidence. The exact solut~n
is asymptotically approached when either the sphere is a large distance from the surface or the refractive index of
the surface approaches infinity.

INTODUCTON radiation is a plane wave trai eling in the x-z plane, oriented
Light scattering from a cylinder was solved independently avne aectrepc or the lan Te wavel oaebngth nd
by Lord Rayleigh' in 1881 and by von lgnatowsky2 in 1906. w -veto fo- h ln aei tennbob ,nn
A few years later. NOe solved the scattering from a sphere magnetic incident medium below the substrate are A and ki,
Liang and Lo4 extended this theory for two phees respectively. The complex wave vectwr for a plane wave of

Katawa an Den3confirmed the existence of resonances the same frequency in the 3phere and the medium above the
discovered by Wang et 41., who measured microwave scat-. ufc r . ndk epciey
tering from two dielectric spheres. Bobbert and Vlieger
used operators to solve for the scattering of a small sphere SOLUTION
near a surface. Yousits soilved for the scattering from tw The solution to the light scattering from a sphere on or nc ar
parallel cylinders and recently solved for the scattering froms a sufc-stetdhr nsvrlsbetos nSb"
a cylinder on a surface. Yousifs results have bo erfe tics 1 the scalar wave equation in solved. and the vector wave
experimentally by comparing his theory to the light-scatter- functions and Debye potentials aic developed. In Subsec-
ing Mueller matrix elemente measured for a cylinder on a tion 2 the scattering coefficients are solved tor a general cese
surface. 9 His approach to the problem of a cylinder on a In Subsection 3 the specific case of a sphere-surface system
suirface has been adopted to solve the scattering of a sphere illuminated with plane-wave incident radiation is solved.
on or near a surface. The approach is siaf~ to that tae Finally, in Subsection 4 the Mueller matrix elements are
by Rao and Bsralat.10 who calculated the scatter by a con. deie rmtesatrn ofiins
duacting cylinder partially buried in a conducting medium.

The method used to calculate the elect-mage~ redia- LWveSqad
tion sateed by th sstem isto addrss bwate wav Th starting point for this scattering problem is the vector

strikes the sphere either directly or after interacting with the wae q atin ch sdeie i los n tx n i
medium at the sis, in which cmse It Is an image pas tromagneticter"
wave. Far-field radioi is a result of a superposition of aix as
fields either dreW thed sphere or from the img- At E 0
sphere. The Asid Se~ from the sphere may as
reflect off the sw** swd lataract with the sphere agam.q - ##ai ax
The magnitude swd phs of the Blld about the Jimage 2 0.
sphere are altered by the reflecions that take place at the
surface by the Presnel coefficients. One msumption as that where It and H are the electric and niagnetic field vectors.
the scattered fields from the sphere, refletin off the sur- rnwe~ly With the seumption of&a time dependence of
fAce and interacting with the sphere, are incdet on the the for exp-iwt) then. equations can be 'ised for derrving
surface at near-normal incidence. The exact solution is th scalar wave equation which in spheical polar cooiri-
asymptotically approached When either the sphere is a lorp nates msy be expres so -
distance from the surface or the refractive index of the sur-
face approaches infinity. _L8 2 !!A + I ai __

Figure I show the geometryo *.Ihe scattering system. A rZ*\ ( /p r2SW05j 60)AJ
sphereofradlus a is located on thetauis adistance dbelow a
plane surfaces bounding two medi or different refractive +. I. -ax

indicias oriented perpendicular to the s axis. The incident P2 ain 0',p

0740-323"AIMflM34S8.00 0 191 Optica Society of America
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- t 3(k'rsn + l)PO,(coa o)exp(ino)]

Su r dr siw t)zPit)J

Rather than expanding the electric and magnetic filids in

sphatterms of the vector wave functions as in Eq. (1.2), it is often
convenient to expand the fields in terms of the Debys poten.

E SVX (rpxau) + V X VX (rq,,ugj)
n.4M

IMA W. a 
(1.7)

Fig. 1. Goometry of scatterizK system. A sphere of radius a is The 1ebys potentia ane p,,.u' and q.. TheI ucoscz.

located a distance d from a surface. A plane wave travels in the z-a Cients p. and q,..n are common to both potentials and vector
piane at angle a with respect to the z urns. wave function. makin it convenientto comsiderthe scatter-

ing problem from either perspective.

separable solution of the following form is asumed:- L Sctern Ci6deft5 peeo rna

The general case for scattering from asbr no o

U~rO~p - R WOW ). (.3) surfaces can be treated by representing the incident field on
Is~, t,) R~e(~)4t,) (13) the sPheeasuPePOaitionoatterms in the expansion given

T7he particular functions satisfying Eqs. (1.2) and (1.3) are yE.(.)

0()- ezp0in), E-htm - ,ar.

e'-f'~) ,[(2n + 1)(n - rn)f 112 A0
e 'O) - I(Cs0 2(ns + in)! I P.,(cog 0), h

2 ~~ ~Eo H' M
-- X ,J + (1)

R(P) - z,(kr) - 2r ~ 1 ~k) (1.4) -0 -

The coefficients a.. and b.. will be solved for the special 1

where PT'(cos 0~) are associated Lagendre polynomials and cme of an incident plane wav- e in Subsection &. The radial f.

z.dkr) awe either spherical Bessel functions of~ h fatkid functions used in expanding the vector function. for the

j,4kr). or spherical Henkel functions of the firt kind. incident radiation are the spherical Dessel functions j. (hr).

h"(kr). The electric and magnetic fld~s maybhe expanded In this section the scattering coefficients will be solved in

in terms of the vector wave functions U1,1 an MIMI U - I terms of these coefficients. The scattered field is also ex-

corresponds to j,(kr)'s being usned and i 3 corresponds to pne:

hi, ,(kr)'s being usedl: rw X~ e M +~~

Em + f,+ nNrn)

M0 rn-rn

U"U The radial functions are the spherical Hankal functions of
the first kind hi,(k) The fields inside the sphere are alsu

The vector wave functions W. and N'.1. asume the follow- expanded:
ing form: n

M L~n [.2.a R) cos O)exp(imo)]n mr

d E .. pu6 - "" X j~ + caM) 1231
din A) - n
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The radia functions for the internal fields are the spherical I
Bessel functions jjk,,r). To this point. the aralysis is

identical to those given by Refs. 11-14 for the case of a single ll~
sphere (Mie theory). excep that here the coeffii'ienta a,,
and b,, will include a reflct from the surface. In addi- 1.

tion to the three fields described by Eqs. (2.1)-(2,3), a fourth
field is incident upon the Sphere. The field is a result of
the scattered field of the sphere's reflecting off the surface'aand striking the sphere. This interacting field is also ex.
panded'.Sat

EACa" '' g,,M',I + N1U

R a., -"' h,,,,M) + gnN) 12.4)

spheraical functions used for the interacting field are the
shrclBessel functions j.dkr).

The next step is to apply the boundary conditions at the
surface of the sphere. The coefficients for th'e internal
fields, e.,~ and d.,,,. can be eliminated, and the scattering imiM ast
coefficients can be solved-' Fig. 2. Image co int surface is located a distanc 2d fromn the

sphere coordinate sysm along the positive z amle Fields in the
a-(a., + gu) mage cootdi:.zto sytmn at inverted. esg.. the image of the incident

Plane wave travels in the s-c plane at angle r - a with respect to the
- kg,,4o(k),(ksa) * Asia.

*(,,+ An approximation iss nade in order to account for the inter-

f -b + h.) action. The interacting radiation is asumed to strike the
surface at normal inciden A Fresnel reflection at normal

kq- k*,,,(kOc)*bk))-incidence is then used to account for the reflection loss at the
k4,(k)VfAk.,~) - ,~a) 1 ke) surface 'Ism same approximation was used by Youaif to

jolve, for the scattering from a cylider on a surface that has
*(b,.,, + h,)ft (25 been verified by experiment. Justification for this approxi-

mation can be see by traing rays from the image coordi-
where 0(r) and J(P) are the Riccati-Bmeel functions defined nate system to the edges of the sphere, a in Fig. 3. The

by maximum angle at which anry emanatin from the center of
by ,(2(r) the Fresol coefficients ae fairl constant from normal ici-

and the primes denote derivatives wiM respect to th up dence out to this angle for most optical materials. For
moot. highly conductin optical surfaces, such a mirrors, the Free-

The interactiou coefficiets can be sol by uigte not coefficients are nearly constant from 0* to 901, and. as

re tiosh__e the refractive index approaches -, the Fresel coefficients
fiol. 7w Iterdin aidIs ue o &b sctteal e~s are constants and there is no approximation. The Fresnel

rfeld.en eee off isPA w W~ dim o h scat nter-ed reflection and transmission coefficients for this system can

action field is the ftw o do sased field Identically, be written as follows:
the intarctionpo W I* ueof thescattred poten- 1 ~Z 2 Cos -P - Z, R - (n1/nt )2 sm2 

pJjL/2

Figure 2 shows the two coordinate systens. one centernd Z o~ ~1-( 1 n) i 2~~
about the real sphere and one at an image location of the 2Z2 onO

coordinate system, a distance of 2d along the positive z axis. TT(q15) a 2Co +Z1- #,%2W2OI2

It is eesiosttoconsider potentials whon solving for the inter- ~ ~ ~+Zl-(,, 2 sn ~"
action coefficients. The interaction potentials are the scat. ZI Cos,), - Z2(1 _ (#%,/n) sin2 j2

2

termn potentials centered about the image coordinate. The R~m(O) - - ICg#+Z1 -nM2W2))l,
interaction coefficients, however, are inverted and underp aZ 1 cs,+Z 2  -(a/.)si

2 fl'
reflection at the surface. The inversion can be explained by 2Z an0
taking advantage of the nature of the associated Legend:- TMO -0
Polynamiala that make up the potentials; iLe., Z, Cos 0i + Z211 - (nl/n5)2 owl ~j

P*a(i~ - -O VA~%csjfI (2.7) where
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S~us~ a ae,, + R(0O)

The only unknowns are the translation Coefficientsc .

71 These were solved by Bobbert and Vlieger by way of remu.
sion relations. In this paper the translation is along theI a positive z axis rather than the negative:z axiso. This creates
some minor differences. The coefficients can be deter.
mined by using the followin equations:

Is.0  (2n + 1)"1 h"PMA2d) (2.14)

S~bW while
Maximum angle of incidence on the surface -Y for an inter-.T

I ay occurs for a ray traced from the Lmage coordinate system 1'
epd at the center of the image sphere) to the edge ofthei sphere c'--'--2 )2.1(Ad,(2.15) re

ii greates when the image sphere touches the real sphere (the of

v tuchm the surface). This angle can beno greater than 30. [(n' - rn + 1)n' + MAU(2 + I)]I12cWi'SIX
F'rosnel equations are fairly constant near normal incidenes. 10i( - rn + W)n +0 mn)(2n + )sc"

.r. -(29)n + n)(n M+ 1in

2 A-A, (.9 - 2k ( nI + (2.16) t

TE and TM subscripts pertain to the transverse electric (n-1 s

transverse magnetic cases, and the subscripts I and 2 * (.'.mI"(47

or to the optical parameters ofa the media below and above
surface, respectively. The interaction terms can be ex- 12,,+ 1/2' I ,sj.j2n+jI\1/2
sed in the image coordinate system as (2n 17:) (n Ic"'~1n' +31

-R(00)(- '"e,,,u (~ V' n
rnmunmftift,(Zni )1/- (nip 1n'1 1

(2.10 .- (6( r'f 3 (?1n 1)Cn.R2t n + '1)1
I'MUR not 2.1(2.18)

ere the primes denote quantities in the image coordinate
tam. Note that Rr(0) - Rmt(01 - R(0O). With the use of these equations. the translation coefficients
kt this poinkt the scattering coefficients are essentially can be deotermined, and the only remaining unknowns in
ved. but they wre coefficients of functions in a different Eqs. (2.12) are the coefficients for the incident field. [n
ordinate system The next stop is to find a representationl Subsection 3 thse coefficients will be solved for the particu.
the functions in the unprimeod coordinate syosem Eaich lar case of an arbitrail incident plane wave.
the primed functions can be expanded in team of ftun
as in the unprimed system; i.e.. 3. The Cas df PlaaeWave Incident ladladmn

The incident radiation on the sphere can be separated into
- R()(~1*~e~5' c"4~,two parts. One pert strikes the sphere directly, and the

other part reflects off the surface before struking the sphere.
The part that reflects off the surface will undergo a Fremnel

(32.11) reflection on striking the surface, and it will also be out of
- (0(-)~ Z~M~u~. (211 phase by an motuntxp(iZkd coo a). The Fresnel reflection

.a9 term depends on whether the plane wave is TE or TM with

is interaction coefficients can be solved by extnding sum-. respect to the plane of incidence (the x-a plane). Both case
iions over n and mn. Collecting like terms yields must be considered separately. Equations (2D must be

- separated into two pats one for the TZ case and one for

-R(04) ()'",," ithe TM case The field can be expressed by including both
parts of the incident radiation a follows:

*EP 11 + R~ra(a)exp(2ihd coe )-
- R(0-) 5' , +~1a ,c(iR. (2.12)

x alIM" + bTN

ibetituting these expressions into Eqs. (2.) yields '1-O ni-
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-L (li.. LJ + "~)*~ os 0a)( jl~ TII
i~Th -,T (1+[l"~J + RT&~A)-)"" exp(2ikd cos a)Jbl,,

X ~ bTEM" + aT + R(1)

[I +14 R,-.aM zp2ikd -ma)()1J

[IRTM(cl)(-1)"4 ""exp(2ikd coo a)JbT7.

TMf I I R~a)ezp(2;*kd coo 0) ]V'" + "rO.~1) 11F " ? 36

- In practice the infinite number of terms in these equations
X" 'bT~MII) + CIMNII(.) are not needed. Experimental precision determines the

~~ number of terms needed. In any case the scattering coef'fi-
cients may be solved, since there always remains an equiva-

'he factor of (-lP'4 "~ is a result of Eq. (2.7). since the lent number of equations and unknowns. The next step in
iflocted plane wave is traveling in the x-a plane at an angle this analysis is to develop the Mueller scattering matrix.
fr-awithrespecttothesaxis. Coef.5cientsa2jao., bT,
nd b ' are now the coefficients for a plane wave traveling in 4. The Mueller Scattering Matrix
Is r-* plane at an an&l a with respect to thez axis. The Two axiam ane used for determining the Muelle scattering
ath to the solution is outlined by Strattoew (the case for a matrix, one perpendicular to the plane, of incidence (,)) and
, 00 is solved). The result, affter much algebra is one parallel to the plane of incidence (#). The matrix will

Tz in__ -')( n4 1"PR+(oea also be derived for the far-field solution, where Ar >> nZ. In
n(n +.1) 11( M)(n ] (o )this limit the spherical Hankel functions reduce to spherical

wavel:
- fn - in +. Wn +. mjj"co a)l 1(, .2 ~ 41

W ~4  a)co 3) Ar
n(n +.1 The 3.) flel below the surface is composed of two part. One

bT8 n22 + 1 part resuts from the sphere diretl. The other part results
-FM P::~~ from the field reflecting off the suirface. This part is cen-

n(n +.1) '.tered about the image coordinate system and is. in fact, the

n 4.M 1)(M - in +.2)",'/ interaction term. In thefar fieldthe contributions of apher-
Un4 + )(n ) I:,, (coo a) ical waves can be added without translating the image coor-

I. -~dinate system. This image field will contain a Fresnel re-

X F(n4 +n m. +)n +. Pn + 2)1A flection term a phas term equivalent to ezp(-24kd cos iP).

Mr +2. 1)(2m + 3) JJ and an inversion term equivalent to (-l)n+. The field
above the surface results only from the scattering directly

W+2 JV2 m&1P,0(coe a) (3) from the sphere that is reduced by the Frie transmission
n(us + 1) sin a factor when passing through the surface.

arm = bTThe1 starting point for calculating the Muelimr scattering
MM' &bM, (3.4) matrix is the amplitude scattering matrix, which is defined

bT by

From these exrin I% (U.) WM on th following [E~ e'[ ~ ~(4.2)

The scattering amplitude matrix elements are solved byF'4.1 RM(a)(-fl" exp(1d ans G)IGNT expanding the scattered electric fields in terms of the vector
wave fuactioma and then expanding the vector wave func-
tions in term of the polarization directions by using Eqs.

4. ,-~O) ~ ~(1.6). The scattering amplitude matrix elements for 101> i4+ 1 'OO 2 sasume the following form:

C - 41. Rr,,(a)(-1)* eixp(2ihd coo a)JaTM X 1

X It[ + RM(s' - 4P-1" eap (-2ikd coo 04)

+. Rvj(O) (_)~t1c(WM Q. X . P'(Cos A~) 4. eR ( PCos L)
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x ( + RTM(r - L(-1)'" esp(-2ikd cosn 0)1

X[!,Z 7 P(coe0) + P,"r(Cosdi)] where int -in. If the Mueller scattering matrix is me&a.
sin J adsured in the plane of incidence 4~ - 00), then from these

n symmetries and Eqs. (4.3) and (4.4), S3 and 54 reduce to zero,
-- i ''' (-on"e' since for the normalized associated Legendre polynomials

x[( + RT.%(Wl - ,)-)""eipe-2ikd cos 0~)1 P,-,Z) -46

[,TE Of the Mueller scattering matrix elements, only four remain
~(Coo ,) + ' f'(o that are not zero or simple multiples of another element.
sin 0The"e may be determined with the followingrelations:

4 - S '(-irce' St - '12 11
2 + IS212).

%.0 S12 - '/ 1
2 SIM

x (I + R~r-' - ~){1'~'eip(-2ihd con ) S33 - R(I2)

- Fn SU - IM(S2SI*)- 47

Lsi 0 4 ev I~ in the plane of incidence these four matrix elements ae

7'he elements behind the surface (101I <r/2) take on the form suficient to categorize th. fight scattering from a sphere on
or near a plane surface.

S 1 aS' ~(-i)e~Tm'1)CONCLUSION

1 Relations for calculating the light-scattering Mueller matrix
Pm P (coo 0% + eT.9 P"co6 for a sphere of arbitrary sine ad optical parameters on or

Lsi 0 near a surface of arbitrary complex refractive index, illuini-
- ,' nated by light of arbitrary wavelength and incident angle.

S, -i 'S '(-&)eT,(6) are provided. When the matrix is determined in the plane
- - of incidence, the Mueller matrix can be characterized by four

elements.r The particular functions used in the derivation facilitate
si J 0V- the calculation of the matrix elements. IncorporatingEs

(2.7), (4.5), and (4.6) into a scattering program will signifi-

S3 - 5 ' -)"~Nj~ cantly reduce the number of calculations and the run time.
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ERRATA

Light scattering from a sphere on or near a surface: errata

Gorden Videen

Optical Scences Center. University of .irizona. Tucson. Arizona 85721

A few errors in the far-field expressions for the light scat- e, -
tered from a sphere on or near a surface' are corrected in e a - -R( 0  - "
these errata. The equations for the interference coeffi-

cients are x [/. D .. - ., IQ",

g, ,u, - -R(0)(-1 emu,,. [ fb, + R(00)(-1)

- fmu .2.10)

The interference coefficients must be translated by x f e. . D J' "I }Q. 2.13)

means of the vector wave functions."3 This interference The expressions for the incident fields are
field may be expressed as

- 7 a Z ( - Rrg(a)
S 4 

- 0 a-- 4Ent X en(-D"-m) R(0)M,- x exp(2ikd cos a) (-1)-M4ag "3) +N bT,.

+ f,(--)4 R(0 )Na. + bNM[l + RtE(a)exp(2ikd cos a) (-. ..U ..

- ~ X e.,(-),''R(0) H -.- b.[1 + RE(a)

)( exp(2 ikd cos a)(-1f J.'A
x [~C~R~a.M2""' .- . , + a[1 - RTL(a)exp(2ikd cos a)(- )'N,,

+ f,+,(- "'R(")

x exp(2ikd cos a) (- 1)"

- X (1),.R(0) bi1 + RT.(a)exp(2ikd cos a) -"'N
"'0 "- 4at
x {[,D2~"' .. " ....... H --'-- ~ b.k?(j + RTM(a)-- e[...,,,1° M~q . |tagl q- a,- ."-,

+ D, .. . (2.11a) X exp(2ikd cos a)(-1^"]M,.

+ a^.1 - Rr(a)exp(2ikd cos a)-1' "' ,
where 3. 1)

The scattering coefficients are
2kn+ , i l r2, % *-. 3a n + 1 +t

2- - RTZ(a)(-1)"" exp(2ikd cos a)]a.2kd n - mlnm el..

2n - I + RTE(O) (-)""f.D.. -e,, Q . , Q.
-2ikd " "*!mlD +' 1 ) me2"(2.11b) TMt 1 elm - {l - Rrn(a)(-1)D" expf2ikd cos a aT

are given in Refs. 2 and 3. Equations (2.11) lead to eRrM(0 °)  -1" f D2 -el ,, ' ,lQ",

- ~RIO),1)' D; - C -,f (I + RrT(a)-1 exp(2ikd cos a ,

h.. - RtO')(-t)"f1.C*" - e.,D,""1, (2.12) + Rv(O) 4 (-1)''[fXtC:,'' - e.D,' - Q'.
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fT. R3= -L (-Wn exp(im(P)

{ ,( RTa)(-D" ' exp(2ikd cos a)jbr $S3 -,

T- RrM(x) (1) [fC " - eDl x - R%.4 rr - D"' exp(-2ikd cos ,1

(3.6) eTme., ,(Co 0) + [11 RT.N( "07 -1 "

sin t O

The scattering amplitude matrix elements below the sur-
face C1 > 1r/2) are x exp(-2ikd cos 6)]fr- pCos

S, i '-W expump)S - -)
4 epi)

-0 t. $' =-i)' exp4imp)

X I l l - R E 1, - 0) ( 1 " e x p ( - 2 i k d c o s & IXR E 1 D ' e p 1k o )e dx +1 RrA(ir - )(-1)" exp(-2ikd cosi ]
frem -,( .
x -~-P cosio - [t - Rrgz(r - O)(-1F" fr.m
sin 10 x f' ,(COS ) + [1 -RTZ(r - ) -

"1× sin 0t sx exp(-2ikd cos )]er.. -47(cosO0)} T.
x exp(-2ikd cos &)]e2,±P,'(cos i1) 14.3

S2 -i X X (-i)" exp(imo)
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Coherent fluorescent emission and scattering from a uniform cylinder

Gorden Videen, William S. Bickel, and Joseph M. Boyer
Department of Physics. Uniersity of Arizona, Tucson. Arizona 8572)

kReceived II October 1990)

The coherent light inelastically scattered from an ideal fluorescent cylinder illuminated by an ar-
bitrary electromagnetic wave is analyzed using an extension of Rayleigh's theory. Scattering
coefficients are solved specifically for a plane wave illuminating the cylinder normal to the axis of
the cylinder. The resulting inclastically scattered radiation is not entirely unlike that of elastically
scattered radiation from a perfect cylinder. These results are illustrated by numerical calculations
for several specific, but arbitrary, cases.

[. [,NTRODUCTION stimulate the individual molecules to emit as they are for
coherent Raman processes where more intense internal

Inelastically scattered light is subject to the morpholo- fields are generated, often by employing a second laser.
gy and optical properties of the particle that interacts Although our theory is limited as a model for Raman
with the incident electromagnetic radiation. Experimen- scatter because it incorporates only an incident field of
tally, morphology-dependent resonances have been ob- one frequency, an extension of it to multiple-field interac-
served in the elastically scattered light emitted from glass tions would follow the same basic procedure. However,
fibers coated with fluorescent dyes by Owen et al. 1 we expect the main qualitative features of the scatter gen-
Fluorescence enhancement by a uniform cylinder was crated with this simplified model to remain unchanged.
studied by Sekerak2 and Abromson. 3 Uniform spherical Knowledge of the interaction of the incident electric
particles were examined by Biswas et al.4 and Benner fields and the fluorescing medium which produces the
et al.5 Theoretically, Raman and fluorescent emission by emitted fields is necessary to accurately determine the
a molecule embedded in a dielectric cylinder has been de- inelastically scattered radiation. We assume that the po-
rived by Chew, Cooke, and Kerker.6  Kerker and larization within the fluorescing medium is proportional
Druger 7 theoretically studied fluorescent molecules em- to the internal electric fields due to the incident elec-
bedded in spheres. Das and Metius took a quantum- tromagnetic field. We also assume all media are isotro-
mechanical approach in examining fluorescence enhance- pic, homogeneous. With these assumptions, the deriva-
ment. Ching, Lai, and Young examined microspheres as tion is straightforward.
optical cavities.9 For a uniform distribution of molecules
within a cylinder, the coherent process can be treated by ii. THEORY
adding the resulting amplitudes, molecule by molecule,
over the cross section of the cylinder. A shortcut to this The starting point is to derive the internal fields within

summation may be achieved by examining the polariza- the uniform, fluorescing cylinder having the same fre-

tion induced at the new frequency within the cylinder.
This is the method used in this paper.

In this paper we derive and examine the effects of
coherent, inelastic scattering due to the geometry im-
posed by an infinitely-long, circular cylinder composed of
fluorescing material. The approach taken in this paper is
an extension of Rayleigh's solutiou to the elastically scat-
tered light from an inalnitely-loeg, circular cylinder.10

The derivation elsey follows Bohren and Huffman's
derivation, and we represent the final scattered and radi- y
ated fields in terms d Mueller matrix elements.'.

Inelastic scattering occurring in particles is a process
which may be solved in three parts. First, the boundary x
conditions of the particle are used to determine the inter-
nal electromagnetic fields within the particle. Second,
these internal fields are used to determine the fields pro-
duced by the fluorescing medium. And third, the bound-
ary conditions of the particle are used to determine the
inelastic fields emitted.

The fluorescence process outlined here is very similar FIG. I. The scattering geometry showing the riur.-.ona
to coherent, Raman processes. For incoherent Raman cylinder of radius a, centered on the origin. oriented rJrsI

processes, the internal fields are not intense enough to the z axis.

43 5655 0 1991 The Aserican Physical Soi.ety
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quency of the incident radiation. This is done by apply- ing fields of the incident radiation may be expanded .s
ing the boundary conditions of the cylinder on the elec- follows (see Bohren and Huffman, for instance):
tromagnetic field and follows the same procedure used to
derive the scattered field. E,.= a .IqI +b N".',I.[ .p!-- n.1 l .pl

A. The fields for the incident wavelength
Hic 1 = I an', Ip

Figure I shows the scattering geometry of the system. • 1/.t , = -P

A cylinder of radius a, centered on the origin is parallel
to the z axis. The first step is to derive the internal elec- where k, =2i'/3, is the wave number, co, is the angular
tric fields of the cylinder. For wavelength .,, the com- frequency, and /i, is the permeability of the incident
plex refractive index of the cylinder is i n. The illuminat- medium at k.. The vectors M' and N . are given by

M40 =(k2-h 20/ 2 in '( I) ,-- )'(P a

R .P , i n P Z , , P ) eq," z ', a

N'.P (k 2 -h 2 ) /k, f,-hn +P (k2-h 2 )1/2Z("(p, re), ,2b)

The superscript identifies the Bessl functions used to medium for wavelength X, and ;4' is the permeability of
represent the fields. For example, i = I corresponds with the cylinder medium at wavelength X . The functions
the use of the functions Z')(p) =J, (p), i = 2 corre- representing the internal fields are of the form
sponds with the use of the functions Z,2)(p)_ Y.(p), and uThe scattered fields are
i =3 corresponds with the use of the functions Z.3)(p)
=H, (p)=J.(p)+iY.(p). The functions representing E, , 01 , +,4a)
the incident radiation are of the form uinc -A

=J(p| )e' 4 e '%
'

. The internal fields are also generated: -ik+
11m I = . e.., l , 1  .. ,4b)

F-nt. I C, ,t1) ,# I N1# I '3)W11R -

4-0 The functions representin the scattered fields are of the

- ik' form u,., = H., "(p,)e ' '.H~n, I=-- -  cn N'.P+d, jM*=|,  (3b) Setting is,=14'1114, g|=xjsin~o, 171=x,(m ICoO L

WIA/I - and xI =ka, four boundary conditions on E and H must

where k= k---m I is the wave number inside the cylinder be satisfied:

5bi

and

a4 .|,J,(l|,)4-e4 h N, me)/k +,i.|[J1 (v |)] + . "|~H|(|/ ='|h'h+~hn mk -d,

a..IgJ (g) e lgJg' t j) c.+V,,.. Oll ) ] +e.., I . ;j,)k

B. Plam-wave llmlmeado a,,. =0, bIE 0 ( -i)*/k, sin6e0 ,

When the coefficients an. I and b, 1 are known, then the where E0 is the magnitude of the electric field. NeIx t.e
other field components of Eq. (5) can be solved. For the consider the expansion of a plane wave of the i m
case of plane-wave illumination, h, - -k, cos 0 , E2 j, eoe traveling along the negative x
pl-kirsino, and p"k'rm2-cos20 0 )I/0 where 0o is The expansion coefficients for the TM cas are
the angle of incidence measured from the z axis. We con- b
sider first the expansion of a plane wave of the form .10, a.D"-iE0 (-i)4 /k, sing 0 .

E-a8fZoe -,k 1 -,i traveling along the negative x axis. For the case of a normally incident plane
The expansion coefficients for the TE case are f 0o0-i/2), many of the terms in Eqs. (Oa)- 5 d
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(since h , 0). The internal and scattered field coefficients medium (in the case of Raman scatter. a corresponds to a
are simple expressions. For the TE case (incident electric gain term). We consider the coherent field produced ha.-
field parallel to the z axis), ing the specific characteristic wavelength, angular fre-

d= , ( aH lj, H 8a quency, permeability, and wave number in the incident

d, _ _b _ _,_ _8a) medium, of X2, W; A21 and k 2, respectively. The refrac-
n ",tive index, wave number, and permeability of the cylinder

at ., are m,, k,, and A;, respectively. We first expand
m 1J.1( t)J ( 11 - J .,('iI (S ( 8b) the field oscillating at w, into its components,

c,. e,..O . (c) "a=- "" ,. .2= .pM'.+b, ',

For the TM case (incident magnetic field parallel to the - ik;
z axis), H".2 = a W) N . , . I b)

C. a, , (9a) In order for the fields to behave as expanding cylindrical
waves, the functions of the fields created by fluorescence

are of the form u,.=H The source of

e..=-a,. , (9b) these fields is the electric polarization expressed in Eq.
H, ( O l d -M H (OJ. (07d (10?. The coefficients a.. 2 and b. 2 can be solved for by ex-

d, 0 . (9c) panding the electric polarization in terms of the vector
harmonics of generating function Uif. Since the electric
polarization is composed of vector harmonics of generat-

C. The fluoraceut medium ing function u,,t,, we can start by expanding the internal
electric field vector harmonics in terms of the electric

The absorption of light in the fluorescent medium is field vector harmonics oscillating at o fe:

proportional to the magnitude of the electromagnetic

field. We agree with the assumption of Chew, Cooke,
and Kerker that the transmitted electric field within the M"), A 4,h113 +BM. ,Q 2a)
cylinder induces a polarization within the medium oscil- 1"

lating at a shifted frequency, o2; i.e., the distribution of C ' 3 ,+D.N', 3 12b)
excited fluorescent molecules emitting a particular wave- ,'M , +D P .P 2
length A2 is given as follows:

P(r,9p, z,t) =ak (r, cp,z)e - 1&#21 (10) As outlined in Stratton,' 2 we first develop orthogonal re-
lationships for the vector harmonics by introducing two

where a is an excitation characteristic of the fluorescent new sets of vector harmonics:

(M"' ) (k2 -h 2)1 /2  in a -Z,"(p re e- i  1 13a)
j I - "(or- }Z((.

(N' ) (k 2 -h 1)1 /k ihZ' "'(p, e, - P+) 13bi

The generating functions for these vectors are of the form u,. = J. (p')e'e The orthogonal relationships are

Jo M,'>.(f ~)d9-6j.i~rPiz --h- )'/2(k'22- h )''2 J - (p',V, -,(p') +J. i(pi)J+(pj) I 4a)

Jo 2~ 1r p 2rkk(kihi)'- 2 )1ZZh)Z

(', -h) /2( k -h ) /2, (p' )J,(p') 1 ,4b

2 M12) "(N, ) d f N),' d, ,

=8..., ;k ' I)is. -( ,( -_ ( p,-JS, . ,(pj)H (i ll
2IIri
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By scalar multiplying (12a) and (12b) by (M, ,, )* and integrating both equations over the fluorescing cylinder, then re-

pealing the process with (N')). we can solve for the following coefficients:n..P

f aMII),.-(M(t),,)*rdr fN 12),.(N'",)*rdr- N ~ l  t2),,jrd . ), ) Or
- " 0 '.Oi '~2 "0 ,"~2 ".0 " l 0 o 0.: 0 . p

- = fMr,2),1.M),)*rdr fN,'2), N ,, rdr - N, , 2', )rdrfaM',.z)(N , )rdrIo "p: M. 2  fo "0 P2 "'.P. o P'ipz 1-P2  o "I'2 ".p2

,15a)

wf a ).' M' ,)' rdr faMl "(N' ,)srdr- faNI .'(M l 0 dr f M' 2 .(N'), )r dr

. p, . 0 n'P : 0 n'P .P: 0 I'P2 n-p

B fM'22(.M'1,)'rdr faN 21,.( N''' )r dr- faN I'' (M1), ) r dr IM2), .(N'1.j*rdr"o .p' ".P2 n, o M.P '.-'I "o .P 2 f. o ". P2 n.p,

, 15b)

f'o°N 11)..(M'', )Ordr f N(2)..( N (').)*r dr -  " ), .(M( ),)*r drf0lN t), (N ), )*rdr
'p2 (.1c)P2 n. p --p 0 R'Pt n'P2

C.o =8h2 I *~ flo R-P PP fa 12).. (M 1) ) (

2'if~2,("jrrfN2,("Xd-f6N~ .(~))*r dr f'tZ,(N (l) )*r dr '(1)

D 
8 hh 0 2 P"2 , M"02 0 2 n2'd

fo°M'2),.(M(), )r dr N('),(It). )*r dr- '" ,.-(Ml 1),)*r dr *2 ,.Nt) ' dr
D, 8,'h .2 N-102 f"tO .0 M'P 2 f'P " .nPl f 'P "1, og 0 I.P 2 Q 5d)
D.=8:,,f.aM(Z .(M"')*)rdr W)N.2 .(N1 1),)*r dr- fN'2),.-(M X,)r dr f Mi 2), .(N'1) )*rdr ld

XPo . Mo .P2 "oa M.P2 M.P2 f" I "of o 0. "o ".2 *-.2

The result that h,=h 2  has some interesting consequences. For plane-wave illumination, the result
h =h = k cos 0  /c2 CosO2 means that the scattered light of wavelength X2 will not travel along the path of the light
of wavelength 41 unless the light is normally incident on the cylinder. As shown in Fig. 2, a cylinder illuminated by a
plane wave scatters light elastically into a cone at angle 0 with respect to the z axis. The inelastically scattered light
travels along a cone at angle 62 with respect to the z axis.

When h , =0, which is the case of a plane wave at normal incidence, the coefficients are greatly reduced, since the
orthogonality condition forces 114c) to zero:

f*'"1),;(M"),)'rdr k f - ,r) . -,(k r) +. ,U r).... ,kr)]rdr
A,, =81,2., I fMt),.(Mit),l*r dr  k' [H,,_t(k r)j._t(kzr)+H,,+I(kir)$,+t(kzr)]rdp 16a)

J0 "-P.0; n0p
ON'1),'(N(),l"rdr ' k " f

" ~I.0) ,,0 ' , ,,( k lr ),( k 2r)r dr= 0 1 6b)

)rdr kfH,,(kr)J.(k,r)rdr

B =C=0. 016c)

The integrals in Eq&. (16a) and (16b) are Lommel's integrals and have the following solutions:'0

a k'xJ. (k , UR(kJx , - 4 [kJ.(k a)J,(ka)-k.J.(k.a)JA(ka)I

o(k; )I -(k )

f xjkx)H,(kjx)dx-- .. k ),,k ) a .. . - .H(k V, kza- -IL'b
foXl kz 2 rk2'

The coefficients of the emitted electromagnetic fields may b.,2 = - -d., , ,

be written as Ej

aa(a) where ez is the cylinder permittivity at the emited re-
quency. An induced field within the cylinder is needed to
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satisfy the boundary conditions. This field corresponds
to the field created by fluorescence reflecting off the inner
surface of the cylinder. Using functions of the form
Uafd2 -J,(p',)e"9e'k , the induced field may be ex-
pressed as

E -ldz= C e 2 Mi' ). +d N 'l ) .19a)

-ik' -
.....- = . caN ,d., (19b)

Finally, the scattered fields may be expressed as

'=-
Es -- 2 en2 Mt 3), +f 2N3), 2a€' a'2- a = . 2 , R J.. ar,p '(2a

-ik 2

Hsz =. = e, 2N .,+fA, M(3),. (20b)
WJA .2  " 'P " 'P2

The generating functions of the scattered fields are of the
form u...2 = H.1 )(P2)e'fte' i/.

FIG. 2. The scattered radiation from a cylinder illuminated
D. Boudary coaditlone as the wavelength of flurecee by a plane wave traveling in the x-z plane at an angle 00 with

2 2) respect to the z axis. Elastically scattered light travels in a cone
Setting Psz=/.t//.t, 4T'x 2 sinG2, YZx 2 (mS2 Co 2) at angle 0o with respect to the z axis. Inelastically scattered

and x 2 = k 2a, four boundary conditions on E and H must light travels in a cone at angle 82 with respect to the z axis deter-
be satisfied: mined by k1 coS 0 -k2 cos 2 .

an.2 1 H' ( )' +c ,. 2172J.(7 2  + b..2 h 2n /(m 2 k2 )H,' '( 1/2 ) + d,. 2h 2n /(m 2 k ).I ( '72)

=e,.292[H.")(92)]'+f,,.2hznH'( 2)/k , ,2I1a)

b,7'Hn(1)/M+dn 2'7i (7/ )/n2=-n,2 H, .(g2) , 121b)

b,.m,12[,"(77)]/A,+d,.2272J.(72)/,.+a.2hnH.I'772/(2,).Z[H e.hzn H (( )/k 2 . 2tc

21c)2 H.ir1g2,I Z
a,.2yl2H,(h/t. +c. s~)lz=sz2HZ( .2 1 d)

For the case of a normally incident plane wave e.4a=(-)'e 2 ,)

(8 0 =r/2), many o the terms in Eqs. (21a)-(21d) are
zero, and the scattwing amplitude coefficients are simple f-.2 b( )"f'.a )
expressions. For th TE case,

With analytical expressions for these coefficients, the
2=b, ), (22a) solution to the scattered field from a coherently fluoresc-

M zH4, ( qz 2/) -J. ( )H. (9Z) ing cylinder is complete. Analytical expressions may be
derived for any illuminating radiation expressed by the

e,. 2=0. (22b) coefficients a.., and b., by solving the simultaneous
For the TM case, equations (Sa)-(Sd) and (21a)-(21d).

For large arguments, the first-order Hankel function is
V )( - m j, ( /2 )Ha (3) given asymptotically by the following:

e. -- .2 (23a)
e,.2=a .2H e lsZlJ .l 1) - M J .(712)H.l(9) H pai)1'lp . 2 1 2e '( - fle -" / , pi > q

f". = 0 • 123b) IT"

It can be shown that the following relationship holds for At large distances from the cylinder I kr sin0. I . the
these coefficients: scattered electric field may be expressed as follo%
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2(k_2_-_ h h, (k -h 2)

0 e ' " ke __

E. Scattered liht for bormally incident T 3 1T 0. 28c)
The four independent, nonzero Mueller matrix elements

We now look at the specific case of light scattered in may be expressed by
the far field from a fluorescing cylinder illuminated by a = r(
normally incident plane wave. We examine the light in = - T 2 ,
two separate polarization states: the TE state corresponds _,
with light polarized along the vector -: and the TM state Tj-WT,;-:T 2' )/T .29b)
corresponds with light polarized along the vector -^. T33 = Re(T, T' )IT, I ,29c)
The amplitude scattering matrix is given in the far field
by T34 '=Im(TjT2 )/Tj . Z9d)

ETM E 01 1 ekz IL RESULTS

The numerical results presented here are for plane-
T 'JfEEinc wave incident radiation with the waves traveling along

) I T 2  ETMi ., (27) the negative x axis. The detector plane is the x-y plane.
The scattering angle 8=r-qp, so that &0=0 is the

where forward-scattered light and 8 180" is the backscattered
light. We study in detail a few specific, but arbitrary,

T,= .2-( _i) ef. cases. Since photons of wavelength X, are absorbed to
0 -- create photons of wavelength X2, it is unrealistic to con-

k2 1 1sider the cylinder to be composed of a dielectric medium.
T E fo 2 +2 (-i)f,.2cos(nqp) , (28a) The imaginary part of the complex refractive indexI I (which corresponds to the Einstein B coefficient) for the

k2 cylinders we calculated is set at the arbitrary value of
rZ -. iT( -i)'e"Ve,.2  Im(m, )=lm(mZ)=0.00l.

The program used to calculate the inelastically scat-
k 2 I I tered electromagnetic fields requires the calculation of

ea, +2 (-0i)"e, 2.cos(n 9) , (28b) the cylindrical Bessel and Hankel functions of complexE0  . arguments. Some of the subroutines used to calculate

-4 100

C

it00 too....

-tOCL ... ..... O

0sc,,|,,.' Ano* (dog.) 18o0 ascattrn Anoe (dog) tooFf

FI.3 hSlsi ule cten arxto ml ie:a=.lk '! +.0i
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[00

0i Sctern Anl de• S cttrn ni dg S

o ic _1

S i

C9

-100 tool
0Scattering Angie (degj) IS0 0 Scattering Angle (deg) ISO

O N

-1o -10o
0 Scattering Angie (deg) 18 0 Scatltring Anle (deg) 180

FIG. 4. The inelastic M ueller scattering matrix for a small fiber: a=:0.015.kl, 2:1.2;L i, m,:m z= .50 +0.001i.

these functions are modifications of those provided in necessarily apply for the inelastically scattering case. In
Ref. 14. and all of them were checked using relaltionships most cases exaiuned, these criteria were adequate.
and values gliven in Reft. 15. Furthermore, the subrou-
tines were first used to calculate the elastically scattered A. A smilll cylinder
radiation. which was compared with the matrix elements
calculated using the program iiited in Ref. 11I. This pro- It is instructive to consider the scattering from a
gram was then modified to calculate the inelastically scat- cylinder of small k I a (one whose fields do not change ap-
tered radiation. preciably throughout its cross section) since the number

Calculations of the scattered electromagnetic fields are of cylindrical harmonics needed to describe the fields are
quite involved. The exact solution [Eqs. (20at) and (20b))] greatly reduced. Figure 3 shows the elastic light-
requires the summation of an infinite number of terms. scattering Mueller matrix for an a = 0. 0 1. ..
Criteria for terminating the series are discussed in Ref. I1 I m= !.50+0.001i cylinder. We note that the Mueller ma-
for the elastically scattering case, but these criteria do not trix of this small cylinder is only slightly different than

100

S 0 Sttig nltde 2 8

C C

0Sca fteln Angle (deog) 1130 0 Scatet , Angle (de*9) ISO

to 00

0 Scattering Ange (dog) 180 0 scteigAge(dg) too

FIG. . The inelastic Mueller scattering matrix o a smactil fbter n ng forS~, three, m = 1. 5O0. 00 1

and 11(*, -lues given in d Ref 3.0rhem, (.The subrouthL- 12.
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lat of a small, Rayleigh particle. For a Rayleigh parti- phenomenon is present in the scatter from all three
le, matrix element SIZ is zero at the end points, and ele- cylinders of Fig. 5.

aent S33 starts at + 100% and ends at - 100% polariza- Of more interest, perhaps, are the absolute magnitudes
ion. These elements are useful references of comparison of the total intensity of the fluorescent light. For elastic

or the inelastically scattered Mueller matrix elements. scattering, intensity increases as cylinder radius increases,

A specific, but arbitrary, case of inelastic light scat- but for coherent, inelastic scattering, the intensity does

tered from a small fluorescing cylinder is shown in Fig. 4. not increase, even though the size parameter has been in-

For this case. a=0.015 ,, X2 =1.211, and m 1 =m 2  creased by an order of magnitude. This is a result of the

=1.50+0.001i. What is most apparent in this set of ma- coupling that occurs between the wavelengths. As the

trix elements is that they are almost constant, with the cylinder radius approaches infinity, Eq. (17a) approaches

pt .irization matrix elements S, 2 100%, S33 = 0%, and zero, and A, and D, approach zero. This is analogous to

S34, 0%. Matrix element S 2 being nearly 100% means taking the Fourier transform of a portion of a sine wave.
that nearly all the light is polarized parallel to the For a very small portion (consider a 8 function), all fre-
cylinder axis (TE). For the elastic scattering of Fig. 3, quencies are represented approximately equally, but as
the light from this polarization is also constant as a func- the portion increases, we see more of the fundamental

tion of scattering angle. If we were to examine just the and less of the other frequencies, until only the funda-

TM-polarized light, we would see a dip in intensity near mental frequency remains as the wave trafin extends to

90 similar to Rayleigh scattering (it is actually shifted to- infinity.
ward the forward scatter slightly in the inelastic case),
but the TE mode is so much more dominant in the inelas-
tic case that we are unable to see any effects of the TM C. Flmeat waVeleugd,

mode in the Mueller matrix of Fig. 4. Another parameter which may be directly measured is

B. Cyllsda ala r , the wavelength X2, which is just one of the wavelengths in

the fluorescent continuum. Figure 6 shows the light-

Figure 5 shows the light-scattering Mueller matrix of scattering Mueller matrix of the m = m 2 = 1.5 +0.001i,
the m, = m -= 1.5 +0.001i cylinder having three different a =41 cylinder emitting at three different wavelengths:
radii: a =0.3XI, a= L.0k,, and a=3. A. The fluores- 2 -l.2AL, '2 ., and 12=2.4k,. It should be noted
cent wavelength is constant at X. - 1. 211. As the size of that the frequency of oscillations in the matrix elements
the cylinder increases, the frequency of oscillations in the decreases as the wavelength increases. This is similar to
matrix elements increases. This is similar to what occurs what occurs in elastic scattering. We compare these ma-
for elastic scattering. The most significant difference be- trix elements with those of Fig. 7, for the same cylinder
tween the elastic and inelastic scattering matrix elements illuminated by a X, =a /2 plane wave. We note that the
occurs in the total intensity: it does not necessarily reach shapes of the matrix elements, that is, the position and
the maximum value in the forward scatter (8=0). This amplitudes of the maxima or minima, are very similar to

C

-2" -100 , -.-. J .. . .

0seatnrvm AngMle g) IO 0 Seanennno Angle (dleg) 190

SScatterng Angle (do9) isa 0 Saetmg Anle (dog) to0

FIG. 6. The inelastic Mueller scattering matrix as a function of scattering angle from an mi m- -1.5 +O.OOl. a - X, radius rer
is measured at wavelength X2 -, .2, (e ),). 2- I.- Ski (0 ), and X., -2.4 , (X),

ta
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Si

aa

1- 0

O Scattering Angle (deg) ISO 0 Scattering Angie (deg) 180

2 2
4 4

4

o10 Scattering Angle (deg) ISO 0o Scattering Angle (dog) IS0

FIG. 7. The inelastic Mueller scattering matrix as a function of scattering angle from an m I =m,-1.5+.001i, a 2k, radius
fiber is measured at wavelength X2 = .2a (0, X2 = t.8Ba (0 ), and kz -2.4a ( X ).

those of Fig. 6. From this we conclude that the shapes of The horizontal axis is now a wavelength scale. The fre-
the matrix elements are much more dependent on param- quency of oscillations in these matrix elements is greatest
eters other than the incident wavelength, when the difference between X, and X2 is small. We com-

We can also study the scattered light as a function of pure these elements to those of Fig. 9 for the same
the wavelength A2 by fixing the scattering angle and cal- cylinder system of Fig. 8 illuaminated, by X j = a / 2 light.
culating the Mueller matrices as a function of wavelength The locations and amplitudes of maxima or minima in
,k2. Figure 8 shows the light-scattering Mueller matrix the matrix elements are very similar to those of Fig. 8
elements for an m =1.5 +O.O0li, a= A1 cylinder as a even though the frequency of the incident light has
function of 42 at three scattering angles: 0t, 90', and 1817. changed greatly.

C

SS

12Wavelength W. 2evelenio

F10. S. TheineatcMelrwteigmti safnto fwvlnt 1 h ih ctee ,mi
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C

.2.

-2 0
1.2 WNavelength 24 1.2 Wavelength 24

10 10
o 0

2a

L.2 Wavelengt 2A 12 Wavelength 24

FIG. 9. The inelastic Mueller scattering matrix as a function of wavelength X1. The light scattered from an
mn, -m, = .5+.001i, a-2A1j radius fiber is detected at angles 60( (*), 99 (0), and t9 l0( Xl as wavelength increases from
1.2 to 2.4 times the fiber radius a.

IV. CONCLUSION tensity of radiation because the total intensity does not

Thes thoreicalresltsdemnstrte hatthe increae with cylinder radius as does the intensity of the

coherent, inelastically scattered light is a complicated elastically scattered light.

function of many variables. In addition to the parame-
ters involved in elastic scattering, we also have to take ACKNOWLEDGMENTS
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Coherent fluorescent emission and scattering from a uniform sphere
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The coherent light inelastically scattered from an ideal fluorescent sphere illuminated by an elec-
tromagnetic wave is analyzed using an extension of Mie theory. Scattenng coefficients are solved
specifically for plane-wave illumination. The resulting inelastically scattered radiation is similar to that
of elastically scattered radiation from a sphere. These results are illustrated by numerical calculations
for several specific, but arbitrary, cases.

I. INTRODUCTION pect the main qualitative features of the scatter generated
with this simplified model to remain Jnchanged.

Inelastically scattered light is subject to the morpholo- Knowledge of the interaction of the incident electric
gy and optical properties of the particle that interacts fields and the fluorescing medium that produces the emit-
with the incident electromagnetic radiation. Experimen- ted fields is necessary to accurately determine the inelasti-
tally, fluorescent emission from uniform spherical parti- cally scattered radiation. We assume that the polariza-
cles was examined by Biswas et al. [I] and Benner et al. tion within the fluorescing medium is proportional to the
(2]. Theoretically, Raman and fluorescent emission by a internal electric fields due to the incident electromagnetic
molecule embedded in a dielectric sphere has been de- field. We also assume all media are isotropic and homo-
rived and examined [3-51. For a uniform distribution of geneous. With these assumptions, the derivation is
molecules within a sphere, the coherent process can be straightforward.
treated by adding the resulting amplitudes, molecule by
molecule, over the cross section of the sphere. In another IL THEORY
paper, we analyzed plane-wave illumination of a uniform
fluorescent cylinder by examining the polarization in- The starting point is to derive the internal fields within
duced at the new frequency within the cylinder [6]. This the uniform, fluorescing sphere having the same frequen-
is the method used in this paper. cy of the incident radiation. This is done by applying the

In this paper, we derive and examine the effects of boundary conditions of the sphere on the electromagnetic
coherent, inelastic scattering due to the geometry im- field following the same procedure used to derive the
posed by a uniform sphere composed of fluorescing rm- scattered field.
terial. The approach taken in this paper is an extension
of Mie's solution to the elastically scattering light from a A. The fields foer the Incidot wavelength
uniform sphere (7]. The derivation closely follows the Figure I shows the scattering geometry of the system.
derivation of Bohren and Hufman (8], and we represent A sphere of radius a is centered on the origin. For wave-
the final scatit:ed and radiated fields in terms of the length 41, the complex refractive index of the sphere is
Mueller matix eiements (9]. n 1. The first step is to derive the internal electric fields of

Inelastic scatteri:Lg occurring in particles is a process the sphere. The illuminating fields of the incident radia-
that may be solved in three parts. First, the boundary
conditions of the particle are used to determine the inter-
nal electromaguped fields within the particle. Second,
these internal Ils M used to determine the fields pro- Z
duced by the 280ucifg medium. And third, the bound-
ary conditioas of d particle are used to determine the Sphere
inelastic fields ealttuL

The fluorescence process outlined here is very similar
to coherent Raman processes. For incoherent Raman
processes, the internal fields are not intense enough to
stimulate the individual molecules to emit as they are for
coherent Raman processes, where more intense internal
fields are generated, often by employing a second laser.
Although our theory is limited as a model for Raman
scatter because it incorporates only an incident field of
one frequency, an extension of it to multifield interactions FIG. 1. The scattering geometry showing the 7.. es ing
would follow the same basic procedure. However, we ex- sphere of radius a centered on the origin.

44 1358 V1991 The American Physical Society
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may be expanded as follows (see, for instance, Ref. kM.

a ufl +b. IW.jAI ! 'im- N .bi

. q *. ... (l P a) where kj =kn, is the wave number inside the sphere
S0" . =-medium for wavelength 41, and A is the permeability of

I the sphere medium at wavelength X. The functions

kH -' 1  +a N"' representing the internal fields are of the ferm

HlC. 1W/ 1  o,,, b -. a ,m. imp 1  , uN.j.,l=j,(k'r)P ,"(cosO)e ' ' p. The scattered fields are

(lb) E .ca.. +.,.p ,.l".P ' .; a)
'I =0O~ =~ -.R

ere k, =2-r/. is the wave number, wt is the angular and
quency, and A,1 is the permeability of the incident
.dium at X. The vectors M"' . ,# e given k.M"' nd "' r H - I m.p +e, ,,, 2, "

t I J. . Zl(kr)P(cosO)e'mI 5b4
si'P 6 s " - The functions representing the scattered fields are of the

form 18,09 -ch.- (k Ir)P 'n(cosO)e".
1 ) P Four boundary conditions on E and H must be

- J CI ks) [# (O sO] € . (a satisfied:

ad kt 10(. Xa )ecN'. I k' 10.(k aa ,.I + k' e,' (k 1a)e... I

(6c)
i"' = ? l--z'(k~rin ( + I)P '(cosG)e'""

+9 Iil__~t~ ')(k/r,]I.(p 7(cosG,]e'. *,,(k',a~d...m fM,.(kab..i+.', .(kta~fim . 16c)

and
+" l._i p a ) i- (cos)eim"n

+ jkjr ar ' sinO #  k #(k'a4d m.,,k (k ta)b ... +k; (kaf. ,

(2b) w :d)
where

The superscript identifies the Bessel functions used to
represent the fields. For example, i- I corresponds with 0.(p)-pj.(p) and >.(p)-ph(')(p) . (7)

he use of the functions z( , (p),J. (p), i-2 corresponds
with the use of the functions z'2 (p) -. y,(p), and 1i-3 cor- a. PhNWwGV iflunimasm
responds with the use of the functions z .'(p)
=h.i(p)nj,(p)+iy.(p). The functioks P7(co.6) are When the coefficients a,, and b.,j are known, the
the normalized associated Lqeendm polynomials defined other field components of Eq. (6) can be solved. For the
by case of plane-wave illumination along the positive z axis.

polarized along the x axis, the coefficients can be deri% ed
1/2. as

P (€°s)inP, cos) | 2M.+ma (3) +1
ax + M R E o) -1 2 n + 1 1/ 2 t + 8 t2nn +I )

The functions representing the incident radiation are of and
the form u. j,, 4kr)P (cosO)E"". The internal 1/
fields are also generated: I 2nNbl (8 +

Elm 1 0 M NI, o, d,,,,,. .n; The elastic-scattering coefficients and the internal ,-d
-o -- coefficients may be solved in terms of the coefficient, f

and the incident field:

k..Ia ,Wk a*, ka)-,(k,a- 'k.k (ka)4.(k ,a)

| I I.
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-a,,,, 1  '9c)

and

k',;j 10', (k 10,,k Ca) - k lp', i,k a) , k a9d
k I l !" k,, a),, kXa - k I j'l, ,, (k,a),k a)

C. The fluoresent medium and

The absorption of light in the fluorescent medium is k, " bN
proportional to the magnitude of the electromagnetic HY,= Y b-Mn 3 ) +anm2 N"'b

field. We agree with the assumption of Ref. [3], which m ,-oM --

states that the transmitted electric field within the sphere In order for the fields to behave as expanding spherical
induces a polarization within the medium oscillating at a waves, the functions of the fields created by fluorescence
shifted frequency, w,; i.e., the distribution of excited are of the form u.,-h,'(kr).P-(cos9)e"". The
fluorescent molecules emitting a particular wavelength k 2  source of these fields is the electric polarization expressed
is given as follows: in Eq. (10). The coefficients a,,,. z and bw,, 2 can be deter-

mined by expanding the electric polarization in terms of
P(r,, O,t-aE.I(r,O, )e "'2', (10) the vector harmonics of generating function u',,S.. Since

where a is an excitation characteristic of the fluorescent the electric polarization is composed of vector harmonics
medium (in the case of Raman scatter, a corresponds to a of the generating function u,,,, we can start by expand-
gain term). We consider the coherent field produced hay- ing the internal electric-field vector harmonics in terms of
ing the specific characteristic wavelength, angular fre- the electric-field vector harmonics oscillating at wz:
quency, permeability, and wave number in the incident Mi t l= A 3) .+B. X 3 )1
medium of .2, w2, p2, and k2, respectively. The refractive "".PI,,,.,,,, "' '.P2  -""'" ' 1a)
index, wave number, and permeability of the sphere at X2  and
are n 2 , k, and IA, respectively. We first expand the field
oscillating at a2 into its components: N,', , '-. ,+ ',,' .+"N . 12b)

Ef 2= i i a,. M~': +b,,,, 2N 1. (I la) The following orthogonal relationships exist for the vec-2= n 1 -, ' ". 'e a, Rtor harmonics [l0:

M .. f, 'M.)'sinO dO dp,= ,8,2f-n (n +V1 ('(p')z4'(p;) , I 3a)

z ,Nil) -.(O,', ,)*sinid~dq;p ,,6 ,,2r-  z+D p) 'p'~~ ) ' ..+ ,

PtP' P'

,13b)

and

If N . ,)'sinOldd~ = r f 2 (..", ,.)sindd . I3c

By scalar multiplying (12a) and (12b) by (M 1) and integrating both equat'ns over the fluorescing sphere, then re-'Np 2

peating the process with (N) .), we can solve for the following coefficients:

f M '") . w') )dT f 'jr)j.(k,r)r -dA p h -a =.aSIj

A f., = " -.(M ' .)'dr hf (k k r)j, (k 'r)r dr

'ph nm. 'i ANMPd fa
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Dn f, N 3.9 dr f ((n +1)j. tI(kir). _i ( k' r)+nhja. Ik' r)j . I(k'r)]r dr

B, =C =0 I 4c)

The integrals in equations (14&) and (14b) are Lommel's integrals and have the following solutions (I Q:

f£a'jonk [ r)y, k lr rzdr= k; 2  (k j) ,(k a)j,,(k'a)- k'lj,(k 'a)j,,(k a) (15a)

and

fo~n ( j~h, (kjrr 2r a J~ )a j.(k a)h.(k a) + k aj. (ka)h.(k~a)fa j(k'2rh.rr dr a i~

2(k )1

+[(k )2a 2 -n(n +1) j,(ka)h.(ka)I - i(n + 1)
2(kj)

3

The coefficients of the emitted electromagnetic fields may and

be written as k
- I I fn..LM(RR'.2 ©enm,2Nlnmp2

alU.2- 7cm,,. 1A,,I (16a) i1, 2P2=- -o R - M.
C2

U18b)
and

The generatintg functions of the scattered fields are of the

b 2  - a.,,, D,, .(16b) form u.,,,.2h (kzr)P .(cos0)e-P.

where e' is the cylinder permittivity at the emitted fre- D. Domuar condftw

quency. An induced field within the sphere is needed to at th Wavoleno of 11

satisfy the houndary conditions. This field corresponds Four boundary conditions on R and H must be
to the fiesd created by fluorescence refiecting off the linear satisfied:
surface of the sphere. Using functions of the form
UPIM . j. (k' r)Pf(cosO)e' , the induced field may be 2

expre 'I 19a)
C. M(1)I,, +d ", (17a) i;&2',,(kiza)C,,2~~.',kz~n,.,lz(z~.,,

Eind. 2 --'-- FIM.Z 11nM.Pi R 2"MA #1 r.ka~.,

(19b)
and

a ft ,i*( k 'af,, 2+p,di(k 'a)b,. 12 , ;~kzaf ..
Hnd'l--- nkW d W1)

(17b) and

Finally, the scattered A" may be expressed as k2t.(ka)d.-,l+kzi(kia)b..-k2,a(k 2 a)f-.. 2

119d)

,a -o n m - -R, The scattering amplitude coefficients are

kj e20(k'a)r,(k'a ) -k2z0."(k ja)e(k a) 20a
e".z='a".zkzpj*.b(k ai$' (k~a )-k'ilU2#Yk'za)4.(kza)

and

k200.4kag'(4za -k ! zj'(k ja) .(k ja)
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With analytical expressions for these coefficients. the The four independent, nonzero Mueller matrix elements
solution to the scattered field from a coherently fluoresc- may be expressed by
ing sphere is complete.S1 iS!2S ' - I !~2+S 2 12) ,4a)

E. Scattsi dlt fOriIA0wave illumination ~ I- S 2 _1-Sli 2)/S11 , 4bl

We now look at the specific case of light scattered into 3=eS 2'/l
the far field by a fluorescing sphere illuminated by a plane S 3 =R( 1  / 4
wave. For large arguments, the first-order Hankel func- and
tion is given asymptotically by the following: S34 =1m(S 2Si )/l 2d

( -i)8 e'P 2d
h""'()'- p , pi >I (2) 11. RESULTS

We examine the light in two separate polarization states: Thnueiarsltpeetdhrerefrln-
the TE state corresponds with light polarized perpendicu- Thnuecareltpestdhrereorln-
lar to the scattcring plane and the TM state corresponds wave incident radiation. We study in detail a few
with light polarized parallel to the scattering plane. The specific, but arbitrary, cases. Sincg photons ot wav.e-
amplitude scattering matrix is given in the far field by length X, are absorbed to create photons of wavelength.

X2, it is unrealistic to consider the sphere to be composed
akTr fS S4 1 m (22 of a dielectric medium. The imaginary part of the comn-

tEM~. -ik~r S3 S2  E (22) plex refractive index (which corresponds to the EinsteinI I -i L I: 11B coefficient) for the spheres is set at the arbitrary value
where of Im(n1 I lm(n 2 )0.00OI.

~ -2(-a) I ~--f,,z+P 'cos6e IA. A Emai sheire
Nj i ( (sin +_L1 (CSee ~ 1 2 jsinO W 11It is instructive to consider the scattering from a

(23a) sphere of small k a (one whose fields do not change ap-
preciably throughout its cross section) since the number

SZ= 21 -2(- -4 e 1 2+ -L 13(cosa)f. 1. of spherical harmonics needed to describe the fields isJin ' greatly reduced. Figure 2 shows the elastic light-
scattering Mueller matrix is an a =0.O00lrm

(23b) n = 1.50 +0.O0li sphere. For such a small sphere a Ray-

and leigh particle), matrix element S11 is proportional to
1 +COS 20, matrix element S12 is equal to

S 3 =S4=0 ( 23c) - sin28/(l + cos28), element S33  is equal to

00

* C

a scatteing £ngia(8eq) IS0 0 scattering &"gI* (dog) too

C

0 scattering hnqie(deg( 180 0 scattering &ngle(d*g) ISO

FIG. 2. The elastic Mueller scatterng matrix for asmall sphere: a -0.001A, nt -1.50+90.011. 1,. represents total inien~ii
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-23 100
sit

-24

0scaterieng knelt (dog) ISO 0 Scttering Angle (049g) ISO
00

em

CC-

CLm

-t0 , , -1001
0 Scatterin Angle (deg) 180 0 scattering Aigle (de) 10

FIG. . The inelastic Mueller scanerintl matrix for a smlli sphere: a =O.00141,, kz= 1.2;Ll, n, nz = .5O+0.001i. 1,,represents
total intensity.

2 cos/( I + cos 0), and element S4 is zero everywhere. only difference between these two sets of curves is the

These elements are useful references of comparison for magnitude of matrix element S11 (note the total scatter-
the inelastically scattered Mueller matrix elements. ing has decreased by nine orders of magnitude).

A specific, but arbitrary, case of inelastic light scat-
fted from a small fluorescing sphere is shown in Fig. 3. B ,es¢
For this case, a =0.00141, X2z- 1. 211,  and

n I = n, = 1. 50 +0. 001 i. The shapes of the matrix ele. Figure 4 shows the light-scattering Mueller matrix of
ments of Fig. 3 are identical to the shapes of the matrix three different n 1 -n2 - 1.5S+0.00|i spheres having radii
elements for the small, inelastic sphere of Fig. 2. The a =0.3k, , 1.041, and 3.041. The fluorescent wavelength

2 ~ ~sit, ,

-10 - - 1-100[T. .

0 scatteg "Is (4a) to a clteq "414 (dog) to

0. 0.

CC

-- 100
0 scatterixng Afle (deg) Igo 0 Scattering Wngle(d) 180

FIG. 4. The inelautic Mueller scattering matrix a a function of sphere radius. Curve a, shown for three x,+l I1. 5 -o
sphere radii: a - 0. 3 ,( *-0), a " 1.0 ( -O 1and a 3.0 1 (x - x ). The wavelenglth X.zm 1.2XI. 1,, regpresents total intensi.
ty.

A pcc u aritray cas of ilatIc Igh scat-
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FIG. ~ 1 S.TeieatcMelrSatrn arxa ucino(aeegh1.Telih ctee rmann , 5o o1
a X aiu pi= smaurda avlnt )112t -) ndJ224k X X. ,,ereet h

tefeunyo osilto scthmixn enlemet n talg 1 nenit 0a derae aS catt ering angles.o) 8

crG.es. Thes ineilat o ulerhattccrin fatr eastic(unctiot fwe lngr-.Telih ctee fo n 1 =, .-. Oi
ing One radisophre differed betwelength lsi X~.ad inelas- C1 .X (0-0)," aWavelengt(hX ereens h
tot am ins ilsrte nmtixey.t 1.Frelsi *

iscseteatng,"the2totaAsithensie of the sahered inreases, theosher radiu is mrase fron di0rectoy me0asurted to-
thecreqe inyifcll aos ine spher marius eleses.n tae ntesity ha dires al scateringelangthsles e

Such an increase does not necessarily occur for the case from the 6 O@Mc continuum. Figure 5 shows the
for coherent, inelastic scattering. Figure 4 shows that as light-scatteriq-.- ueller matrix of the
the sphere radius is increased from 0.3 1, to 1.011, the to- ial" 2 - 1.5 1t a- K, sphere emitting at three
tal intensity has increased at all scattering angles, but as difierent srgpoig K1.K, X-I 8, and

2

5 Uv~~fltf i 1.2 mveifeh 2A

-100 IO

12 weeagn24 12 2.iiA~

FIG. 6. The inelastic Mueller Scattering matuix as a function of wavelength X2. The light swatered from an R, = n 0011,
a-)L, radius sphere isdetected at anone9W(* -0') 8-9g(r(0-.0 ), an~d 0- 81r(X.-.X) aswavlength ;L, tnn..ri -) 1.2
to 2.4 times the sphere radius a.
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100

0 Scatter-,ng Angie (dog) ISO 0 Scatterng Angie (deog) ISO

0 t.o

* 33

HA A

0 Scattering An91e (dog) 180 0 scattering "ls (dog) 180

FIG. 7. The Mueller matrix for elastically (*o-*,)and inelastically (o---o) scattered fight from an nj -n = 1.3+0.001i, a--,radius0sphere. The inlasticaIy scattered light is detected at A. = 10011, 1,, represent the tota intensity.

42z=2.0.1. It should be noted that the frequency of oscil- talist, this is equivalent to illuminating the sphere at 400
lations in the matrix elements decreases as the wave- nm and comparing the scatter at 400 am (which is almost
length increases. This is similar to what occurs in elastic completely elastic) with the scatterer at 400.4 nm (which
scattering. is completely inelastic). We note that the shapes of the

We can also study the scattered light as a function of two sets of elements are very similar, with the main
the wavelength X-2 by fixing the scattering angle and cal. difference being the amplitudes of the peaks. This
culaing the Mueller matrices as a function of wavelength difference is due to the diference between elastic- and
k.: Figure 6 shows the fight-scattering Mueller matrix inelastic-scattered light, not the small wavelength
elements for an n I = n2 = 1. 5 + 0.001 i, a -X I. sphere as a diflerece.
function of X.2 at three scattering angles: 0', 90, and 18W. These theoretical results demonstrate that the
The horizontal axis is now a wavelength scale varying coherent, inelastically scattered light is a complicated
from 1.2 to 2.4 times the sphere radius. Some featurs function of many variables. In addition to the parame-
occur in these curves that occur in elastic scattering., ters involved in elastic scattering, the wavelengths emit-
Matrix elements S12 and S34 are zero at (r and 18W, ted and the wavelength-dependent optical properties of
while matrix element S33 is 100% at V' and - 100% at the fluorecins material must be cosdee. Direct ex-

1".perimental ve cto of these conclusions will need
.-- " . -- carefu measrements of the low intensity of inelastic ra-

diation because the total intensity does not increase with
IV. CONrL : sphere radius as does the intensity of the elastically scat-

To conclude, we show bow wV4 p'Ait ra- eelgt

diation differs fm din atia radiation. ACKNOWLIEDMENTS
Figure 7 comparis ft Me rml bl ly and
inelstically scattawW Hojlt from an nt-nz=-l.5 This research was supported in part by the U.S. Air
+0.001i, a -- 41 radfius sphere. The ielastically scat. Force Office of Scientific Research (AFSO) and the ITEK
ted light is detected at 1.2- 1.001A.. To the experimen- Corploration.
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Light-scattering Mueller matrix from a fiber as a
function of MgO contamination

Gordon Vidoen and William S. Bickel

The light-scattering Mue*Urmatnz for anr 0.345-am.radiuuquaru fiber. illuminated at A 0.4416 um. is

ezamined a(unctionofcontamination with MOcrystals. When the Mo contaminstxol is low. the rnt .
elements resemble those of a fiber of slightly larger radius. The MgO contamination creates higher.
frequency. smaller.ampitude oscillations in the matri elements that mask the lower-frequency oscillstions r
indicative of& perfect cylinder. The contmination also causes scatter outside the plane of incidence.

Key words: Mfueler matrix. light scattering, fiber. contaminatin.

1. k*OiWvdf etc.) change the system and their resulting sctter.
The problem of light scattering from an infinitely long Contamination monitoring is an especially difficult
circu!.r cylinder was solved independently by Lord problem when the experimenter is not able to separate
Rayleigh' and by von Ignatowsky. 2 Theory was ex- the sample to be monitored from other scatterers that
perimentally verified by Bell and Bickel,3 who mea- might be present. For example, scattering signals
sured the light-scattering Mueller matrix from a from asbestos impurities could be dependent on the .
quartz fiber whose radius was approximately equal to dust present or on humidity levels. The monitor can-
the wavelength of the illuminating radiation. Certain not remove or ignore theus other factors and so must
modifications to the basic cylindrical system, such as deal with their contributions to the scattering signals,
cladding with another index material or giving the In the laboratory, greater control over the scattering
system an elliptical cross section, can be treated theo- system can be achieved.
retically. These solutions have been discussed in sev. The light-scattering Mueller matrix for a circular-
eral texts.4-  When the scattering system geometry cross-section, quartz (n - 1.466 - O.Oi at A - 0.4416
becomes irregular, that is, when structures or surfaces gm) fiber of known optical and geometrical parameters
cannot be made to conform to a single orthogonal is predicted exactly by theory. This same fiber, coated
coordinate system, the theoretical solution becomes by cubic MgO crystals (n - 1.74 - O.O atA - 0.4416
extremely difficult, if not impossible, to obtain. Theo- gm), has a different light-scattering Mueller matrix-
retical progress toward solving for the light scattered To am how the contamination affected the scattering,
from such systems needs experimental data so the we studied the light scattering a a function of MgO
theorist can be guie toward the simplications that contamination of the fiber. By studying how a perfect
may ba made wile still yiekling acceptable results. quartz fiber's scatter changes when we contaminate it

In studying lh scatterirg it is important to consid- with particles of known characteristics, we may better
er that no scatt hg system is perfect. Impurities in understand how contaminant. affect other, irregular,
the material and&W in geometry cause experi- systems.
mental measenmm ib d scattered light to deviate
from theory. May systes, by their nature, are im- . -0btU Tedttil
perfect. The addition of contaminants to the scatter- The polar nephelometer used in this study employs the
in& system (dust particles in air, minerals in water, polarization modulation technique developed by Hunt

and Huffmian.. A complete discussion of the nephe-
,0]ometer design and operation is given by them and also

by Perry et al.$ and Bickel et al.' This technique

The a thors as with the Department of Phy Univer of involves periodically modulating the incident beam's
Arizona. Tuwi. Arizona 65721. polarization state at wo a 50 kHz, using a photoelastic

Rapived 29 Octobe 1990. modulator, while observing the signals carried out by
0003.693A .9112738W06SO5.000 the fundamental frequency (4o) and the second har-
091 Optical Society of Amer" monic (2w0) of the scattered light. A lock-in amplifier
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is used to demodulate the signals. The experimental
"SI scattering matrix S,,(#) can be measured with the prop-

/ er choice of exit optics" Normalization of the matrix
J /- "- p- " - elements is performed by servoing the photomultiplier

tube (RCA 1P21) gain by means of a constant-current
/ in servo, which creates a constant dc output signal over

the entire scan of the detector. The normalized out-
Nri 3 put S,09) analog signals are collected and sent to a

computer.

I Figure 1 shows the experimental apparatus used to
measure the S 1(8) ofa fiber. The beam from the laser
passes through the entrance optics and illuminates the
fiber at normal incidence. The light scattered by the

Entr- opIU - OM fiber may then either pas through various exit opticsto a detector or pass directly to a photographic plate.
\A DC A photographic plate can record the out-of-plane scat-2 rering, which does not occur for a perfect, uncontami-

nated fiber and which is usually missed by the polar
nephelometer.

Fig. I. Experimental apparatus used to measure the MueUer scat- *. b Sie-
tering matrix -f a Fber. Laser light passes through the entrance
optics and strikes the fiber at normal incidence. ,T* scattered The quartz fiber was made with the method developed
radiation lses through the exit optics. where it can be interceptsd by Bell and BickeL3 The midsection of a quartz rod
by a detector or a photo raphic plate to make a photograph. was heated by an oxygen-acetylene flame until it was

molten. The rod was stretched slightly and slowly to
make the midsection thinner. Just before the rod
separated into two pieces, the ends were rapidly pulled

-0 -100C
C

0O 9

0 90" 1P0" 0 90" ISO,
Scattering Argle Scattering Angle

S33 S3

a. a.-

to .... 0.

0*, IBO18' 0* 90180
Scattering Angle Scattering Anl

Fig. 2. Four experimentaily measund Mueller scattering matrix elements for the initial fiber Nottd curves) and the theoretical matrtiz
elemonts for an P a 0.34.-m.rdius quarz fiber (solid curm).
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apart This maneuver often produces fibers stretch-%#0Sf
ing from ono or both ends of the, rod. If no fibers are Sis

created, the process can be repeated.
Figure 2 compAre the four unique, nonzero light-

scattering Mueller matrix element. for the experimen-
tal fiber (dotted cloves) with the theoretical matrix
elements of an? a 0.345-Mim-radum quartz fiber (solid
curves). The elements are nearly identical with differ-
ences most likely resulting from a slight nonuniformity ew0Fb

of the fiber cross section. These matrix elements are 42d F~r%"

the scattering signatures of the perfect fiber system.
These elements will change as contaminants are added
to the system.

IV. Co.hwilkiated Systm
Figure 3 shows the apparatus used for contaminating
the iusztz fiber with MgO crystals. The fiber is sus-
pended vertically from a tube. 22 cm long and 8 cm in
diameter, the top of wvhich is blocked off except for a 2
cm >' 2 cm hole on one end cppobite the fiber. The
fiber is coated by burning a 2.3-cm-long strip (-24 mg)
of magnesium ribbon (J. T. Baker Chemical Company)
placed 2 L.n below the lower end of the tube. The
coating occurs as the smoke panaes through the tube
and out through the hole, at the top. The ribbon burn.
for -10.a, and after the smoke has cleared (-2 min), the
contariinated fiber is removed. The fiber is placed
under a microecope and photographed. Then it is
placed in the nephelometer, where its scattering ma- rg3. AppersosMed to caitamaauitheqtum ib.,. ith .Ma

S t2

C tv

01 V

o
-j

0* 90' 180o* 0 90* 180,
Scattering Ange Scatting Angl

Ca0. -0.1

0*90' 1800' 0' 90, 180'
Scattering Angle ScAftbrrig Angle

Fig. 4. Eaperissental Iight-ecattaiag Mue@k, =mf of anr .345-sm-redius quarts fiber as a fumtion of M1O contamienain The
unceted fiber lemoea a.depicedby dos amslidcurves. The other curve we for the fiber costed ows &Wd twceit mgo cr.stai.
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0

-J

C90* 180 0* 90' 180*
Scattering Angle Scattering Angle

9 §76 -

0 P

0' 9O' 180' 0* 9'10
Scattering Angle Scattering Angle

Fig. STheoretical light-scaturini; Mueller Matsi elementa (or a quartz fiber as a function of fiber radiu. The elements for the initial r
0.3.4-ow-radjus quartz fiber wre shown by dots on solid curves. The other curves ane for fiber Padi of 0.350,.0.355. and 0.360 Arn.

trix elemients are measured. A photographic plate is
used to measure the total intensity of the out-of-plane
satter. The process is then repeated. each time with
additional coatings of contaminants added, until the
light scattered is no longer significantly affected by the
additional contaminants.

Figure 4 shows the light-scattering Mueller matrix
of the 'Thber for three different levels of MgO contami-
nation. The light-scattering total intensity matrix
element (S1t) increases with increasing fiber contami-
nation, whi]: the magnitudes of the mam/iiaof
the polarization matrix elements (Sib S33l. and S34)
tend to decrease a the fiber becomes mom contami-
nated. The frequency of the oscillations increases as
the contamination uinraes The matrix elements
also display high-treueinq email-amplitude oscilla-
tions. These small (0.1 a few perent) signal fluctua-

- tons are not nos sdon sh we reproduced exactly by
repetitive mesuref t fiber in exactly the
same orientation Ts cbang, however, if the laser
beam strikes the flw at a slightly diferent location or
orientation.

Figure 5 shows the theoretical matrix elements for a
Squarts fiber ass function of fiber radius. A 0.346-jum-
aradius fiber (dots on solid curves) is shown; additional
1sets of elements are shown for fibers whose radii have

increased by 0.005 jam Figures 4 and 5 show many Fig. 6. Piotm.omh ~~tbhs sgfgstm aftr sz coat-
similarities. The low-frequencyoscillation of the con- inp of mco crytal.
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Fig. 7. Experizaental light-scattering Mueller matins of the initial uncosted fiber (eolW curves and the fiber after s catings of M0o
crystals (dotted cwms).

shows that after ax coatings the MgO crystals extend
- - - many fiber diameters beyond the initial fiber bound.

- - -ary. Figure 7 shows the experimental light-scattering
Mueller matrix of the uncoated fiber and of the fiber

5.-- - - - hAfter six coatings of MgO crystals. The phase infor-
mation that characterizes the initial uncoated fiber is

- - - - ~ no lager present for the coste fiber. Instead, high.
- -- frequency oscillations dominate the matrix elements.

- As the number of contaminants increases, matri ele-
meats S12 and Sm tend toward zero, Matrix element
S33 also tends toward zero, except in the forward.

- scattering region (near G - 0 0), where it is positively

7 The Mueller scattering matrix elements for a single

i sphere or cylinder obey the following relationship:

Fig. &. PheUTpp ofth ecU attascd by th ie ihsiz (note that we are Using a normalized Mueller matrix
catings d*~e crsas representation). This relationship is obeyed by the

uncoated fiber at all scattering angles. However, this
taminated fiber coincides with that of a fiber of slightly relationship does not bold for the contaminated fiber,
larger radius. Not only hae the frequencies increasd which has lost its efiincy in producing polarized
but the amplitudes of the *ai~ minin of the con- light.
taminated fiber matrix elements coincide with the ele. F'gtre 8 is a photograph of the scattering patterns
ments of the larger fibers. Note especially the shapes created by the contaminated fiber shown in Fig. 6. A
of the elements near 9 - 130*. shooet of Kodak Panalure U photographic paper was

Figure 8, a photomicrograph of the fiber system, placed Im away from the fiber. Both the fiber and the

3884 APPUEO OPTICS / Vol 30, No. 27 / 20 Septmber 1991



photographic paper were normal to the incident beam. RoFerng
It is interesting that the pattern is especialy intense in 1. Lord RayLeigh. "On the Electromagnetic Theory of Light." Phi.
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Experimental light-scattering Mueller matrix for a fiber on
a reflecting optical surface as a function of incident angle

Gordon Vidmen. William S. Bickel, Vincent I. lafelice. and David Abromuon

Department of Physics. L'niversiv of Arizona. Tucson. Anzona 85721
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The light-scattering Mueller matrix is experimentally determined fr a 0.26-AMm-radius quartz fiber mounted
on an aluminum surface at five different incident angles. The results are compared with those for the experi-
mental scattering elements of the lane fiber and the lone surface and with theoretical results derived from a
simple fiber-surface model. The expermental matrix elements of the fiber-surface system do nAresemble
the matrix elements from any of these other systemns.

INTRO UCTION Huffnian.' Complet e iscuaio of the nephelometer de.

plest solvable surface defect. % mesue th uelr eta. and Bikleta. Thef 2xpramndtalo by Per
scterineti or ph er n prfect sste wit ea mari man rdele 'ThexemntdsaergMelr by the nephelometer is signified by St~

scaterig mtri fo a ibersuracesysem Pith ar~ These elements are actually combinations of the genead
nephelomneter. This scattering syte inopoae tw cteigmti elements Si,. lafefic. and Bickele din.
separate perfect systems whose scatter can be determined terminedi that five elements are necessary to characteria,
exactly by theory. Fresneol derived the scatter from a per the Mueller matrix for~ a usr-perect surface:
fect plane surface before Maxwell developed his famous
equations. Later in the 1th century, Rayleigh derived Su* - Sit s~z - S3si
the scatter from a perfect cylinder. 1 Althmigh the combi-
nation of a fiber-surface system ia more difficult to solve SU* - (Six + 320011S * S2).
theoretically, we can experimentally, measure the scatter S*- (S3+ SW)fSU + S30).
of the combined system just as easily ws we can measure
the scatter of the individual system. The main expert- SU* - (S14 +' S3.)/(SU + Sn).01
mental problem is to ensure that the surface, the fiber,
and the fiber-surface system ane of suficintly high qul For symmetric scatterers such an spheres and fibers, ,

ity to give -,ata accurate enough to warrant careful theo- 531 = S13 = S14 0 and S12 a S21. For these scatterers.
retical attention. the experimental scattering matrix reduces to the normal-.

ized scattering matrix:

INSTRUMENTATION Su*- 5 u. S13* Si/StI. Sn* 1.

The light-scattering apparatus used to measure the light- SU* - 5S33lII. SM* - S/SII. 2)
scattering Mueller matrix elements is shown schemati-
'-ally in Fig. 1. Light emitted from a He-Cd laser (A = & ~ r~
0.4416 jam) passes through various entrance optics before
striking the sample (either the fiber, the surflace, or the The quartz fiber waj3 made by using the method developed
fiber-surface syvsem) Elements were measured for the by Bell and Bickel' The radius of the fiber was deter-
lone fiber oriented along the z axis, perpendicular to mined by compering the values of the experimentally mew-
the incident beam, and for the lone surface. with the plano sured matrix elements with theoretical values.5-10 A best
of the sur~ce defned by the z axis and a line at angle a fit of the experimental andl theoretical curves occurred for
measured from the incident beam. The angle a is the a fiber radius of 0.260 2 0.006 iMm. The optical con-
complement to the incident angle measured from the sur- stanta of the fiber were held constant (for quartz, the re-
face normal (see Fig. 1). Elements were then measured fi-active index n - 1.466 + 0.Oi and permeability us - A*)-
for the fiber-surface system with the fiber resting on the The experimental matrix elements for the quartz fiber
surface. The fiber is oriented parallel to the z axis, which (dotted curves) and the theoretical matrix elements for
is perpendicular to both the incident beam and the normial a 0.26-iam-radius quartz fiber (solid curvesi are shown
to the surface. Light from the scattering system passs in Fig. 2. Repeated measurements of the fiber matrix
.irough various exit optics before reaching the detector, elements coincide. Deviation occur because the fiber is
which rotates through angle 0 about the a axis, not perfect.

The polar nephelometei used in this stud employs the The surface studied in this experiment is the same sur-
polarization modulation technique developed by Hunt and face as that studied in great detail by lafelice and Bickel.$
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Z Figure 3 shows the light-scatter,,ng Mueller matrix
fP* for the fiber-surface sysem measured at near-grazing

NW incidence )a -11.25'). Superimposed on the figure
-an L -V400are the four scattering matrix elements for the lone

S 1.

LwScan"yi AgeI go CSU#WQ AIW

7 tl . S~hemauc of the idbt-cattering ap~ntuaused to m-amuu the Mueller mti lmns

S.;

* I S. gL.
0C111,1041"sosm M* S

Fig. 4. The four unique Wialler matrix elements for a fiber-
surface system illuminated at a a22.5' from an aluminum
surface.
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2. The four unique eperiatal Mueermti eleommathe quarts fiber (dotted curm)e and the theoretical matrixformi ta 0.2-Am-rd qujt fie j1 u
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irig one of four different paths (Fig. 8). The light may
either (1) strike the fiber and scatter directly to the detec-

~\ ('\tor-, (I) reflect off the surface, strike the fiber. and scat-
4,- ter to the detector: (11l) strike the fiber and scatter to the

surface, where it is reflected to the detector; or ilV) re-
4. flect off the surface, strike the fiber, and scatter to the

to surface, where it is reflected to the detector. This model
Scat ae Ar* Scemg Are includes no interactions between the fiber and the sur-

s; S face, for instance, light scattered by the fiber that reflects
off the surface before interacting with the fiber again.

- The resulting amplitude elements for these four rays cani
* be derived asfolows:

4, T.'(0) - T41O) + R~or/2 - omep itd(a)T,(t9 - 2a)
U + R~f',2 - d afleip i6(d - a)T,id - 2a)

SCItali Ani~s UW ei~ + R.{w/2 - (a a~]Rdiiff2 - aexp 1[6at

Fi;-. 7. The four unique Miueller matrixt elements for a fiber- a
irface system illuminated at ca - 7875' from an aluminum +$ 60t - cii]T.i&). 3)
surface.

Here T.0) is the scattering amnplitude matrix element
0.26-g-'radius quartz fiber: S11, 19,30 Sn* and Sue. Trifi) or T2(0~) (it = 1 is for the TE mode, and nt - 2 is for

Measurements of the other matrix elements show that the the TM mode; see Ref. 8) for the cylinder with no surface
relations expressed by Eqs. (2) are valid for the fiber- presenit. aind
surface system and that only these four measurements are 4ir sin t0
needed to characterize the scatter completely. Figures 4. 60- 4
5, 6. and 7 show tits fiber-surface matrix elements for a uA
22.5'. 450, 67.5'. and 78..r,' respectively. The intensAe isapsedfrncrsutgfomheahshtte
specular peak that occurs wh,,n the scattering angle = lih ay a vel dif efe realtingo the ptescthat The
2a citusas sharp spikes on the polarization matrix ele Fihtmyeree"efr reflcachcoi ing th ae dietetr The
'nents. We note that as the illuminaio angle is varied. Fenlrfetnecefcet .aegvnb
the matrix elementsavarv greatly aniddo not aqee to ap- JAA o ,- ~Ains( - (ftijn2 )j sin 2 

L&]1i2

proach a limiting value. gin,, co ,+-itI- tn'sn'C
The exr)eri mental matrix elements of the fiber-surface sco~ j~sI-(t/fz 2 sn i

system are dissimilar to the elements of both the lone AiA1s Coo &t - JAIAI1 - (n1/nz2)2 sin' 0 1"
fiber and the lone surface. The oscillationi frequency of R2(&) Iint cos &, + 1&iflil - (ft1 /a 2

2 sin' 0,12 16)

the c'aments of the fiber-surface system is much greeter
than that of the lone fiber or the lone surface. This is not where the subscripts on ;&, and n, are the permeability and
surprising since the fiber-surface, system approximates a the complex refractive index for the medium on the inci-
dinuble-fiber system: fiber and an image fiber whose di- dent side of the surface (i - 1) and the transmission side
mensions are twice those of the lone fiber. In general of the surface (i - 2).
increasing the linear dimensions of a scattering system in- Figure 9 shows the experimental Mueller scattering
creases the oscillatory frequency of its scerieng matrix matrix and the theoretical! results for a O.26-Mam*radius
element.s. The large dif'erence among the matrix ule- quarts fiber resting on an aluminum surface in= 0. 5 +
ments of the fiber, the surface, and the fiber-surface sys- 5 .0 0"i calculated from the scattering amplitudes de-
tem re'-sals that the three systemas are fundamentally termined from Eq 13). Although the experimental and
different. Timeftse oae cannot use the matrix elements
of a lone fiber to ve Me the matrix elements of a fiber-
su-face system File 1 4+1

MODEL m 6<4"

The difference in oscillatory frequencies between the two c

system cannot be accounted for simply by treating the
fiber as a perturbation of the surface. A different modela
must he used to predict the scattering. Three models ai
we~re proposed by Nahm, and Wolfe to predict the scatter.
ing from spheres on a conduc:n.g plane." Nahm, and Well
Wolfe concentrated on the total intensity matrix element11
Sil. Our polarization msu-ements contain additional
information that does not play a part in bidirectional re- .£i
fGectanc: distribution function theory. Our treatment of Fig. S.Paths that an incident beami may follow to -e Der and
this system uses a model similar to the double-interaction after inciton before being detected on the inc:ae-t .d if2
model. In this model, light reaches the detector by travel- the surface.
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.ay S.;1. The S~, for a fiber-surface system in no way re-
eay sembles the S, fr the ilte fier Thi means thtthe

at matrix elements measured for a fiber (or sphere) on a Sur-
be face are not useful in determining the properties of the.hei defect without an appropriate theory.

the 2. S~, are strongly dependent on the angle of inci-
del dence a. Studies of complete scattering as a function of

u-Scatiie An ~ Wa0 S AnsqW I so incident angle may be necessary to characterize surface
cts V, - defects.
.in. 3. Polarization elements iother than S11i carry suffi-
,an dient extra information to warrant their measurement for

a complete analysis of the surface.
4. The most stringent test of any theory that predicts

5 scatter is whether it accurately predicts the polarizations.
Ofen surfaces with very similar S 11 will produce very dif-

*SCanrterg A,~e Scanww" AInS ferent polarization curves.
-Fig. a The f'our unique Mueller matrix elements culculatad for a

13) fiber-surface system (quartz fiber of radius 0.28 Iami illuminated ACKNOWLEDGMENTS
st rivar-grazina incidence (a a 11.25*) from an aluminum surface

ant W (di curves) are competed with the experimental Mueller me This research was supported in part by the U.S. Air Force
for Wiz sleU*ent. (dotted cuve) Office of Scientific Research and Itek Corporation.
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Light-scattering resonances in small spheres

Garden Videen and William S. Bickel
Physics Department, Lnjversiiy of Arizona. Tucson. Arizona 85721

(Received 24 October 1991)

Two limiting expressions occur for scattering from very small spheres. One occurs when the refrac-
tive index becomes small (Rayleigh scattenng). and the other occurs when the sphere becomes perfectly
conducting (Thomson scattering). We explore the scatter from small spheres having real refractive in-
dices. For such spheres, resonance conditions occur, and the resulting scattering coefficients are no
longer proportional to the volume of a sphere.

PACS numbers): 42.25.Fx

INTRODUCTION with respect to the illuminating wavelength, the equa.
tions predicting the scatter are greatly simplified, since

Electromagnetic scattering from small spheres was ex- only a few sets of coefficients art necessary to character-
plored by Rayleigh [1] and Thomson [2], who calculated ize the scatter. We take advantage of these simplified ex-
light-scattering expressions for two very different special pressions and derive the resonance conditions directly
cases: where the spheres have small refractive indices, from the a. and 6, coefficients (25-271 rather than from
and where they are perfect conductors, respectively, the A,,, B,, C,. D, coefficients [28], which is the stan-
They did this before Mie [3] and Lorenz [4] derived a for- dard method. We then explore the scattering behavior
malism for the scatter from arbitrary spheres. The rarie and cross sections on and near resonance. Studying reso-
of validity of these special limits has been explored by nances in small spheres gives insight into the resonances
Kerker, Scheiner, and Cooke (5]. They found that as the that occur in larger spheres and even in more complicat-
sphere size becomes smaller, Rayleigh theory is valid ed particles.
over a larger range of refractive index, and Thdmson We note that the resonance conditions in these small
theory is valid over a smaller range of refractive index. spheres are met when the sphere refractive index is large

We might expect the scattering that occurs from small (m > r/x ). Therefore, it would seem that this work
spheres that lie in the region between the Rayleigh and would constitute only a theoretical exercise, which could
the Thomson limits to be composed of some combination only provide insight into other resonance situations.
of the modes present at these two- limits. However, the However, in a recent paper, Scully [291 has shown via
extinction efficiencies of small, dielectric spheres as a quantum coherence that when operating near an atomic
function of refractive index (Fig. I) are not smooth, but resonance between an excited state and a coherently
complicated by sharp resonances. Resonances in the prepared ground-state doublet, a large enhancement of
light scattering from spheres have attracted a great deal the refractive index (by many orders of magnitude) may
of attention recently (6-16]. Resonances appear as be achieved with zero absorption. In this case, the light-
strong, narrow enhancements in the scattering of a parti- scattering resonances that we examine cannot only be
cle. The large internal fields that are built up within such realized, but may prove to be a useful tool in characteriz-
particles can create interesting effects and have been used ing the optical properties of such materials.
to investigate various phenomena such as fluorescent and
Raman scattering (17-241. SCATTERING OEFFICIENTS

It is wAWl known that as the sphere size becomes small

The electromagnetic scattering a large distance from a
sphere of radius P, illuminated by a unit-normalized plane
wave traveling in the positive z direction, and polarized
in the I direction. may be expressed by two scattering
amplitude functions given by

o5

* u Zn+l P.'(Cosuo) a

(1a)

aefrdh 200 Simx 2n+1) b,, + aP"(Cosd a,

-in(n +1) sind P s
FIG. I. Extinction efficiency for a small (r-0.01A) sphere as

a function of real refractive index. f Ib)

45 6008 (1)992 The American Ph'.Sal Society
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where S, is measured in the y-z plane and S, is measured case where the sphere size is small (r <<X). In this limit-

in the x -z plane. The Mie scattering coefficients are given ing case the scatter is determined primarily by the
by lowest-order terms of the series given by Eq. (1). The

Riccati-Bessel functions for the n = I case are given by

a, = M , (X)*p,,(MX)- ik" (MX)g" (x) (2a) 'k,(p) - sirP -cosp , ,(p) =exp(ip)( -ip - '- I) (3)
P

i, rn '(mx (x) -* x )tb6(mx)
. x) = M a(X). ,(X)th x , (2b) For small arguments, these functions are approximately

M 0 " {m x )gf W - L ( X 4 CX ) { x

where m is the complex refractive index of the sphere, sp)- A -  - - ± -
-  (4)3 30' ~,p p 2+ 3

x =21r/, and i,, and , are the Riccati-Bessel func-

tions. For small x, the scattering coefficients given by Eq. (2)
First we examine what happens for the special limiting are approximately

CIM) IxfI1l2m2 _,I-'-4mz sn x I f+ 2m' l±XZ [I+ 14m 2 J
- osm 1x 3m J 30 M' I- Is x 13m2- IJ 30m 2

a -- -I

cost Mx) 1X1 i- i J2L+l +sin( rnx) [~i~2Jx~i~2I

I M1 M 22m

i._ 1+21 "+x. -I 1
cos(MXlxX -x 1/6) +sinlmx) -- /Mr +X; z [ m

k 6mJ

cos(mx)(-i +x)+sin(mx) -Ixim J-Iim-. j'""M I I

Similarly, the second-order coefficients may be written as in Eq. (6).

Two additional limiting conditions exist for small tional to the sphere volume. As a result, the scattering
spheres. One is the Rayleigh limit valid when Imix << 1. efficiencies of, such particles are greatly increased corn-
In this case the scattering coefficients further reduce to paied to particles just of resonance. Figure 3 shows the

2iX3 m z-! first b, resonance (following a previous convention [8];
a -- 3 Z+2 b, -0, this is written as bI). For purposes of illustration, we

(7) chose to examine small spheres with an arbitrary but

a, -b. -o for n > I definite radius r=0.011. The resulting resonances will
necessarily occur only at large values of refractive index

The other limiting condition occurs when the sphere's re- (m = SON) due to the small size of these spheres.
fractive index approaches that of a perfect conductor The second interesting result is that the mode of oscil-
m -i c. In this case the scattering coefficients reduce to

,%- 3 ' -3- 2 8
a 4x , b I- 'X' 2

(8)
a,-b,-O for n> .

Note that in both these limitin cases the scattering
coefficients are proportional to x . Figure 2 shows the 0 .
angular scatteiag4tasity distributions for a Rayleigh 2
and a Thomson.sphft" 3

RFISONANCES

We now examine the b, mode in more detail. When
the refractive index m is increased along the real axis, the
sine terms-in Eq. (5) do not contribute to the scatter when 0

mx -Nir where the index N is an integer. Resonances in 0 AroIeV ISO

the bI coefficients occur at approximately these locations. FIG. 2. Angular scattering-intensity distributions for an
Two interesting results occur that are worth pointing out. r -0.Ol., m -2.0 Rayleigh sphere (0), and an r-O.Ol1 Thorn-
The first is that the scattered fields are no longer propor. son sphere (X).

: i I I I Ip i
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'b0

A 
b,

499 Refacuve inox 50 1

FIG. 3. Extinction eMicency for a small (r =0.01A sphere as
a function of real refractive index near the b 1 resonance. Also
shown are the scattering intensities for the TE and TM modes
on the b 1 resonance (m = 49.980 06).

i . lation for the resonant sphere (bI) is completely different
.3 than that for the Rayleigh sphere (E'O. The resulting field

- r -distributions (also shown in Fig. 3) for the b -resonant
I i E sphere will necessarily be different from the Rayleigh

E : sphere (shown in Fig. 2). The TE and TM Rayleigh-
-4-' sphere intensities are proportional to the TM and TE b

E resonant sphere intensities, respectively. For the b,
-, mode, the incident electromagnetic field induces a dipole

7E moment perpndicular to the incident electric field.
+ S The b, resonances do not account for all the reso-

-".--" - nances shown in Fig. I. Resonances in the at and b,e E -, 7 modes occur when tan(mx) is approximately equal to mx

"" -# E Iq [for large mx, this occurs approximately when
E . '+ + mx-(N+)r]. The a and b resonances are shown in

+ Fig. 4. These resonances are much narrower [half-width
I of the order &(mz)/(mx) lO- ] than the b 11 resonances

( E [half-width of the order A(mx)/(mx)-l0-;]. Reso-
-' nances in the higher-order modes are not as prominent.

E " •since the resonant fields are proportional to x k where
' Atk 3.

+ ' Equations (5) and (6) not only can be used to predict
S E where resonances occur, but can also provide information

-M on the shapes of the resonances. We will now take a
Vi. (A closer look at the b, resonance. If we express the com-+ ., 0 plex refractive index as m ,+im,, where r, and m,

a A .are both real quantities, we can expand the sine and

__ -] cosine function about the resonance locations,

+ +' e e 3 a M
+

+ .8

7q E

FIG. 4. Extinction effciency for&a small (r-O=.0lk,, sphere as

a function of real refractive index am the a I and b', resonances.
• € Also shown ame the scattering intensities for the TE and TM

modes on the all (m-71.=791 and b' resonances
(m - 71.510 15).

sq s 714 R*SS~O~ldm

(m -71.510IIS)
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sinmx)( -sin(mx - N T) Equation (10) may be simplified if we assume the absorp-

-( - Yijsinh(mx)+A cosh(m,x )I tion is small (mix << 1),

V9) l x I Q11)cos(mx)(l), COSA mx -N) TOx+mm, J + X/m)
-(-l-v~csh~~x)-~sin~m~)J i21m i1+

where m,x - N i, and & =m,x - Nr Multiplying Eq. (11) by its complex conjugate yields a

Near' resonance, the scattering coefficient b, can be Lorentziau function centered at A=- -x /m, with a half-

simplified: width of x 2 /m +mix. We note that as the absorption is
)~ .&m 1increased from zero, the amplitude of b, will decrease,

x csh~, x x~ __ sih~mx)and th afwdhwill increase. When mm, >x, ,the
txcos~m~x 3 m rhfl 5 ) amplitude will be proportional to I/rn, and the half-

bl- widh il)b proportional in , Thewe dependencies

-'n~m x ohm were reached empirically for larger spheres havingx moderate refractive indices (9]. This type of analysis may

____ also be performed for the a, and b 2 resonances.
+ ~/i~The dependence of the line shapes on the size and re-

x2-ixkcoshrn,x)+m sinh(m,x) fractive index is shown in Fig. S. In Fi5, 5(a). the
where I -im coshim,x) - . m = 50. 0 sphere passes through the b 1 resonance 'as its

radius is increased. In Figs. 5(b) and 5(c), we can exam-
(10) ine the b 2 resonances as the radius of an m1=I00.O0

sphere and, an m -=50. 0 sphere is increased, respectively.
4 () (b) (C) Going to a higher index by increasing the refractive index

(U) [Fig. 5(b)] results in a narrower resonance. Going to a
higher index by increasing the size parameter [Fig. 5(c)]
results in a broader resonance. The latter result has been

j discussed previously for spheres much larger than the
0 wavelength (7, 10,11]. Figure 5 also shows the shape and

the width of the b 11resonance as the refractive index is
ochanged from m 50.0+0.00li (Fig. 5(b)] to

_Ja

44

in a

o i ,PLI U '

- Ud

Raiu 010*I.

weeN-1 4.; (c fo.nm-5.7peewhr ;()fra

an - 50.00. sphere where N-; () for an m -00.0 sphere. .Aglr cteiginest isrbtos o mi

sphere where N - 1 and (f) for an m -t50.0+0. 1i sphere N -1. (P -0. 011) sphere having refractive indices: (a) m - 43.666 10,
Radius r -0.011.. (b) m -59.226 10, icl m- 7 1. XX44. and (d) m-71.519 92.
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m =50.0+0.Oi (Fig. 5(e)] to m =50.0+0. Ii [Fig. 5if)]. SUMMARY
These figures verify that increasing the imaginary part of For the limiting case when sphere size is much smaller
the refractive index results in a reduction of the height than the incident wavelength, the equations describing
and an increase in the width of the resonant peak. This the scatter are greatly simplified. When two additional
conclusion has also been discussed when examining large limiting conditions on the refractive index are applied,
spheres (7-9,131. these equations are simplified further. When the refrac-

The angular intensity distributions for spheres having tive index is increased along the real axis, resonance con-
refractive indices between resonant values do not neces- ditions develop that complicate the resulting scatter.
sarily resemble the distributions of either a Rayleigh or a Precisely because these resonances occur, no limiting
Thomson sphere. Figure 6 shows that cases exist when condition can be reached as the complex refractive index
the forward scatter (-0') is down severa orders of mag- is increased along the real axis. Resonances have been
nitude (in cases of Figs.6(b) and ft), a +b +5b2 /3 -0] studied extensively for large spheres. Studying the reso-
and when the backscatter (0-1810) is down several or- nances in smaller spheres in which the equations are
ders of magnitude [in cases of Figs... 61a) and 6(d), greatly simplified gives insight to the resonance beha.,ior
ai -bj +5b Z/3- 0 . These are important. ints because occurring in larger spheres.
most scattering studies of spheres wouliad one to be- ACKNOWLEDGMENTS
lieve that the intensity in the frward-sc ering or back-
scattering directions would nt emen4ieral orders of This research was supported in part by the U.S. Air
magnitude below the scattered intensity at other scatter- Force Office at Scientific Research (AFSC). the Petrole-
ing angles. um Research Fund (PRF) and the Itek Corporation.
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Polarized light scattered from rough surfaces
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A facet model is used to predict the polarization states of light scattered from rough surfaces. The states are
compared with experimentally determined elements from various types of rough substrates. The experimental
data are found to be quite similar to what is predicted by the model.

INTRODUCTION z axis in the x-y plane. The incident radiation is a plane
wave traveling in the x-z plane, oriented at angle dj with

Before the development of Maxwell's equations and an respect to the z axis. The wavelength, pve vector, and
electromagnetic theory of light, Fresnel was able to de- refractive index for the plane wave in the nonabsorbing,
duce the reflection and transmission coefficients for light nonmagnetic incident medium above the surface are A, ks,

interacting with a perfectly smooth surface. Since then and n, respetively. The complex wave vector and re-

researchers have been developing theories to obtain sur- fractive index otr a plane wave of the same frequency in

face characteristics (such as the rms roughness) from the the medium below the surface are k and ns, respectively.

light scattered from the surface. These models often de- A detector having area A a ar point P( n , rsp de-

velop along a Fourier-transform approach. The bidirec- tecto hvsarea ino th aoin F(r...,d,
UKOW~ tects light scattered into the solid angle f.(m ..

a tional reflectance distribution function is a standard pm, Am).
measurement of the scattered radiance divided by the in- The facet model used in this study is based on a
cident irradiance on the urface.L: It usually doe not gometric-optics approach in which ray optics are valid.
take the polarization states of the source or of the scat- Light is assumed to travel in straight lines. When a ray
tered light into consideration. Therefore valuable infor- of light intersects a suace, it is Fresnel refleted at that
mation is missing. To characterize the light scattered location in such a way that the incident angle at that loca.
from a system completely, one can measre the Mueller tion in equal to the reflection angle where these angles are
scattering matrix." This 4 X 4 matrix contains all the measured from the normal to a tangent plane (or surface
polarization scattering information, facet) at that location (Fig. 2). Mb further simplify our

Recently there has been considerable interest in light model by considering only the light scattered in the x-z
scattered from rough surfaces0-'  These studies include plane (v. - 0) and ioring rays that reflect off of more
measurementsofthescattered.andp-plarizationstates. than one surface facet. These limitations eliminate the
In only a few iutances have authors characterized the po- ability of the model to predict any cross polarization
larization states more completely by expressing the result-
ing scattered light in the form of a Mueller trmxlt- (a -e p or p --o s) or effects such as enhanced backscatter.
The posof this paper is to take a closer look at the Of course it is possible to develop a physical theory that
The purpose of thight.per is not o inerest te has more basis in reality, but it is always interesting to see
polarization state of the light. It is not our interest to ex- how well a zeroth-order solution predicts experimental re-
amine the intensitises which have been examind in detail suite. And perhaps far soe applications the simplest so-

in the papers cited abovm The simplest model that can lution iA all that is required.

predict the polarization state of light scattered from a From Fig. 2 we see that only the facets oriented at angle

rough surface uses a geometric-optics approach in which Fwig. 2h e eetht ray the fet rented aongle
the light is Fresnel reflected from planar surface facets.' 0 with the incident light rays will reflect rays and contrib-

Although the validity of this model is questionable in to the lit i n tedir ection fac-

nearly all physical situations (it is valid only when the tion, the light in attenuated by a Fresnel refection factor

one dis. that depnds on the state of linear polarization of the inci-
wavelength in s ), the model does have one de. dent light and complex refractive indices of the mediatinct advantage I. tha the eaiulations are easily made. aoeadblwtesrae

In this paperye &. uus and devlop this facet model. We above and below the surface:

then compare to Mueller scattering matrices predicted
by this facet model with experimental matrices for several n, coo 6 - n2[1 - (n1/ns)' sin' @]1I
surfaces having various surface roughns . RrZ() " n * I c + ns[1 - (n1/ns)* sin ' (1)

n, cos# - sill - (ni/ns)' sin' 0 1 1
FACET MODEL -n ce + nIl1 - (nI/ns)' sin' 6P'3

Figure I shows the geometry of the scattering system.
The scattering surface is located perpendicular to the where

0740-3232/92/070001.OSSO6.OO a1992 Optical Society of America
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the amplitude. In terms of the scattering amplitude ma.

t=d Ad" atrix, this may be expressed as

Sc attered 50 E~t[ S, S. E-"
SII S4 S11 LEvu'i

(note that S3 - S4 - 0 for light scattered in the x-z plane
YY for the facet model, since there is no cross polarization).

Of the 16 elements of the Mueller matrix, only 4 are
nonzero or simple multiples of other elements in this case.
We use a normalized Mueller scattering matrix given byMedlin 2 -

si-t, - ( S1I" + IS), (6)
Fig. 1. Geometry of the light scattering at a surface. S"12 - - Y1 ([Sjsd - IS:12)/Su, (7)

S3' - S3/SIi - R(S 1 S,*)/S. , (8)

S' S34 /S11 - Im(S 1S*)/St1 . (9)

When we normalize the polarization matrix elements by o
the total intensity matrix element Su (expressing them as
a percent polarization), the integral in Eq. (4) cancels
from these elements and contributes only to the total in-tensity matrix element (Si). The polarization matrix ele-

inc __.__ 0 ments (which we want to examine) are not affected by
-- -" this function. In our calculations of matrix element Si,

we arbitrarily set this integral to unity. For a perfectly
conducting substrate (Nt -. m), the scatter would then be
independent of the scattering angle. Any deviation in the
scatter from a horizontal line (when plotted as a function
of the scattering angle) is due to the complex refractive
index of the substrate.

Fig. 2. Geometry of the facet reflection of a rough surrace. Fialaly by expresag the matrix elements as a function
of the scattering angle #., which is measured from the
path of the incident radiation, we find that the polarization
state [Eqs. (7)-(9)] is independent of the incident angle

S-( ' - )/2. (3) #em. The lightecattering Mueller matrices predicted by
the facet model for a copper substrate (n, - 1.1 - 2.5i at

The subscripts TZ and TM correspond to the incident A - 0.4416 ,m)W' and an aluminum substrate (n, - 0.5 -
electric- and magnetic-fleld vectors being transverse to 5.i at A - 0.4416 jsm),i both illuminated at #w. - 90"
the scattering plane (paralld to thw Y axis), respectively. are shown as a function of scattering angle 0.,' in Fig. 3.
We can calculate the electric-far-field amplitude by sum- We chose this incident angle (grazing incidence) because it
ming the contributions of the faets reflecting light in the provides the maximum amount of information in the
direction #,..' [a time dependence of exp(it) is assumed]: graphs. Choosing a nongring incident angle would re-

move only the leftmost portions of the graphs (the forward
scatter) owing to vignetting by the substrate. The differ-

Er. 'Rv.()) (k 1 - 4(r) ences between thes two sets of matrix elements is due
Alm . h, mainly to the differences in the absorption coefficients.

X ad(h( - kt)" r]- (en.4.da, (4) These sets of matrix elements are compared with the
experimentally measured matrix elements for the rough
surfaces.

where the T is used to repesent the TE or the TM mode
of the scattered and the Incident electric fields (E,." and
Er.'", respectively), Alm is the cross -sectional area of the LIGHT-SCATTERING MEASUREMENT
incident beam upon the substrate, and 0(r) in the unit nor- The polar nephelometer used in this study employs the pa-
mel at position r on the surface. The dot product is a larization moduation technique developed by Hunt and
geometric size factor, the exponential function accounts Huffman." A complete discussion of the nephelometer
for the phase differences from rays reflecting at different design and operation is given in Ref. 20 and also by Perry
locations on the surface, and the Kronecker delta function et at.," Bickel et al.," Be l and Iafel e.1 The measure-
ensures that only rays obeying Sneil's law contribute to ment requires modulating the incident beam's polarization
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Fig. 4. Experimental light-scatterng Mueller matrix elements or a rough copper substrata illuminated at A. - 0% 15%, 30', 45', 60'. and
75* (A -0.44 16 *ai).
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Fig. & Experimental lightescattering Muelle matrix elements of a rough aluminum substrate illuminated at 11. V G, 15, 30*, 4W. 60*.
and 75* (A - 0.4418 gam).

state at we, - 50 kHz with a photoelastic modulator while SCATFERING FROM RANDOMLY
observing the signals carried by the fundamental modula- SCRATCHED SUBSTrRATES
tion frequency (me) and second harmonic (2..) of the scat- The first sets of experimental data are from randomly
tered light (A - 0.4416 jum). A lock-in amplifier is used scahemtlsutre.Fire4hoshefrin
to demodulate the signals. The experimental scattering scrtedetlsbtrwates. Fuelre 4ari elemnthe for in
matrix S,,(l&) can be measured with the proper choice of dpnetlgtsatrn ule arxeeet o
entrance and exit optics. Normalization of the matrix ele-
ments is performed by servoing the pbotomultipiler tube
(RCA IP21) gain via a constant-current ses.o requiring
a constant-dc output signal from the detector. This is
performed over the entire scan of the detector. The
normalized-output Sv,'(#) analog signals are collected and
sent to a computer. The ezperlmesital matrix elements
measured are actually cominations of the Mueller matrix:

Sue-ils, (10)

S33*- Swts.(11)
S.e -(so + Sue)/(Sul + SK), (12)

-34 (Si. + S3O/(SU + SU). (13)

Since there is no mixing of the s- and the p-polarization
states in the facet model (S3 - S4 - 0). the matrix ele-
ment Sit - StJ - S14 - 0. The normalized matrix ele-
ments predicted by the model are equivalent to the -. . *. -

measured combinations of matrix elements (Sy' - Sr*). Fig. 6. Micrograph of randomly eanded aluminum substrate.
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We note that the experimental matrix elements of the
aluminum substrate resemble the theoretical matrix ele.

,..* menta of the copper substrat3 of Fig. 3 better than they do
the theoretical elements of the aluminum substrate. One
possible reason for this is that our experimental substrate
is not pure aluminum. When exposed to air, the sample
is coated by a layer of aluminum oxide (this occurs much
more rapidly for aluminum than for copper). One effect
of this is a decrease in the absorption (the imaginary part
of the complex refractive index). The effective complex

3anlcasted fog' 0 s refractive index of the oxidized aluminum substrate is
closer to that of copper than pure aluminum.

SCATTERING AS A FUNCTION OF SURFACE
ROUGHNESS

The last set of matrix elements is from aluminum sub-
strates that were roughened to different amounts by sand-
blasting. Eleven nominally smooth i rror substrates
were polished to high reflectivity. Substrate 0 remained

Sandblated for 4~ sa mirror and served as a reference, while the other 10 mir-
rors were sandblasted to increasing roughness (substrate I
was blasted for 1 a, substrate 2 was blasted for 2 a, etc.).

This created a family of related surfaces in which the
roughness ranged from zero (a mirror) to saturation (when
additional sandblasting did not change Lh, surface). Mi-
crographs of three of thesg sarfaces ase shown in Fig. 7.

Figure 8 shows the four independent light-scattering
Mueller matrix elements for the reference (mirror) sub-
strate as a function of scattering angle #..' at five differ-
ent incident angles (#. - 16"' 30', 41', 60", and 75'). St

1ois characterized by a strong specular peak at the angle of
Sandblasted for 10 3 Iowa rflection and a steep falloff in intensity away from the

Fig. 7. Micrographs of three different substrates roughened by specular peak. The polarization matrix elements of this
sandblasting. subatrate only slightly resemble those predicted by the

facet model shown in Fig. 3. Note that there is a strong
dependence on incident angle in all three sets of polariza-
tion matrix elements in Fig. 8. not just Su as was the case

randomly scratched copper substrate as a function of scat- for the scratched substrate.
tering angle #.' at six different incident angles (&. - 0', Figure 9 shows the four independent light-scattering
150, 30, 45, 60'. and 78'). Not that when i0.1 < 90' Mueller matrix elements for substrate 4 (sandblasted for
(when there is no vignetting), the polarization elements 4 a) as a function of scattering angle #.' at five different
shown in Fig. 4 are very similar to the polarization ele- incident angles ( ,. - 15'. 30', 45", 60', and 75). This
ments shown in Fig. 3 predicted by the facet model, set of matrix elements resembles those of the facet model
Figure 5 shows the four independent light-scattering more closely (especially matrix element S34). In the
Mueller matrix elements for a randomly scratched alu- backwcatter region, elements 8t and S. still show a strong
minum substrate as a function of scattering angle @,,' dependence on incident angle, becoming more positive as
illuminated at the same incident angles as those of Fig. 4. A,. is increased. Element Su. however, is almost con-
Note that the peaks (in slsest S,), valleys (in element stant in the beekacatter region as Ob. is increased.
8S,.), and te arom eng points (in element Sn) for the alu- Figure 10 shows the four independent light.scattering
minum substrate are shifted slightly toward smaller Mueller matrix elements for substrate 10 (sandblasted for
angles, as can be seen in the theoretical elements pre- 10 s, almost to saturation) as a function of scattering
dicted in Fig. & Met notable in the experimental set of angle .' at friv different incident angles (0hi - 15;, 30",
matrix elsments is that element 38 shows more depen- 45*; 60", and 75"). The scattering elements of this sub-
dence on incident angle for the aluminum substrate than strate are very similar to those predicted by the facet
for the copper substrate. Note also that, as the incident model. Again, however, a definite dependence on incident
angle is increased (toward grazing incidence), the percent angle in the backscatter region of S., which is not pre-
polarization of element Ss rises toward zero in the dicted by the facet model, occurs. As seen in the matrix
backscatter (#. - 180"). A micrograph of the aluminum elements for the other aluminum samples element S33 be-
substrate used in this study is shown in Fig. 6. comes more positive as #w is increased.
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Abstract

We examine four different theories which predict the scattered

radiation from a system composed of a small sphere and a plane and show

that in the far field the scattering amplitude components predicted by these

theories are essentially the same. We express the scattering Intensities in

Mueller matrix representation and examine the far-field Mueller matrix as a

ftacU. of various parameters.
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In3troductilon

Electromagnetic scattering from isolated systems has become well-

established in the past century."3 Lord Rayleigh did much to initiate this re-

search when he solved for the scattered electromagnetic field from a small

sphere or dipole to explain the color of skylight.' The scattered electromag-

netic fields surrounding an isolated cylinder were solved by Rayleigh, in 1881

and by Yon Ignatowskyo in 1905. The scattering from a sphere has been derived

numerous times and Its complex history has been analyzed extensively!' "

More recently, researchers have concentrated on scattering from

more complex systems. Scattering by multiple cylinders by Twersky,' using an

order-of-scattering approach; Row,* using a Green's function approach; and

Olaofe;" and Yousif and Kiihler ' by satisfying the boundary conditions at the

cylinder surfaces. The two-sphere system has been examined by Liang and Lo'

and Bruning and Lo* by satisfying boundary conditions at the surfaces of both

spheres. The order-of-scattering approach has been examined by Fuller and

Kattawar." Scattering systems composed of a cylinder, sphere or dipole rest-

ing on or near a plane surface have been explored by Rao and Barakat," Bob-

bert and Vlleger,* Wind, VlIeger and Bedeaux,' Nahm and Wolfe," VideenU

Videen, Wolfe and Bickel,"' Undell et &1,2' and Mulnonen et a."

This last class of problems is closely related to the Sommerfeld"O

half-space problem In which a radiating dipole is located near an Interface. In

the Sommerfeld problem, a dipole is oscillating vertically or horizontally to

the interface, and Is the source of the electromagnetic waves. In the scattering
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problems, the source is typically at infinity producing plane waves at the

interface. These interact with the surface interface and the object placed near

it. This scattering system has been discussed extensiveiy by Ba-nos, n Wait,'

and Rahmat-Samil, Mittra, and Parhami."

In this manuscript we investigate four different theories that predict

the scattered far-field radiation from a small sphere placed near a surface and

show that they all yield essentially the same results. Error analysis of the re-

sults are considered using an order-of-scattering approach. We then examine

these results in the form of the Mueller matrix.'

The Solutions

We will be discussing four different solutions from different refe-

rence sources that have not used the same mathematical and physical conven-

tions. We therefore adopted the following description and used It for this

paper. Differences that arise in other manuscripts will be stated. Figure I

shows the geometry of the system. A small sphere of refractive Index m.0 and

radius a Is suspended a distance d above a surface separating two medla: free

space where z > 0 and a medium of complex refractive index m.W where z < 0.

The incident plane wave of amplitude E" travels in the x-z plane and is elec-

tricaily polarized either parallel to the y axis (TE) or parallel to the vector e

(TAG SWm by

a- cosa -5 sina (1)



where a is the angle of incidence of the plane wave measured from the z axis.

To make the dipole approximation, it is necessary that Im.,,Ia << 1. The time

dependence used in this paper is exp(-iktt). The results will be in the form of

the scattering amplitude matrix given by

kE ~S& S1 j ETC(2

where E"' and E are the scattered electric field components in the 0 and c

directions, respectively, and k is the wave vector for the medium above the

surface.

1. Sommerfeld-Rayleieh System

The first theoretical treatment we examine is a modification of the

Sommerfeld half-space problem. Sommerfeld was able to solve for the electric

fields from a radiating dipole located above an interface. In our scattering

problem, the dipole is driven by the incident plane wave. Rayleigh was able to

show that a plane wave induces a dipole moment in the direction of the inci-

dent electric field. We consider the radiation from a dipole in the x-z plane

oriented at angle 5 from the z axis. The dipole moment is

p a p(& sin+ * tcoso) 8(x) 8(y) 8(z-d). (1.1)

Sommerfeld's far-field vector potential has the following form

II = fi.* + it (1.2)



where

[ I. = "- P -- s in [ R ,, (a ) - -e4TtE. r r

1"[, "'-- cos3[-'- - Rr() "- ] • " e(.3I . [o r,.OS 2sinO cosqpsincosO Rvx(O) e (1.3)

and r' is measured from a source point located a distance d below the surface

r' = r 2dcos8 (1.4)

Rre(A&O) cos% - [m' - six2]' (I.S)coso [m , - sin2a],

%M (0) - m,.fcosal - [rm.. - sinZ&]V2  (1.6)
m., 2cos& + C ... - sin2&] y 2

cos& - [m" - s(1.7)
mW, coso + (m m - sin&]Y "

The electric fields can be calculated from

B = ieis, V (V ) (1.8)

which yield the following electric far-field components
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Er = 0 (1.9)

E,=_-k
'' E4 , 
3 ''e"

Tire, kr f[t - R-(&) exp(2ikdcos4)] sin~cos0

-Et* Rr(O)exp(2ikdcosO) cosOcosqsino3 (1.10)

E= _k EI= R.r exp(2ikdcosO)] sincpsino. (1.11)

A dipole moment p is induced in the direction of the incident electric field

with a magnitude

p = 4,. m1n 2- 1 a3E(1.12)
M..'2 + 2

The field incident on the small sphere has two sources. One source is the in-

cident plane wave (including the plane wave which reflects off the surface).

The second source is the scattered field of the sphere-surface system. This

scattered field is proportional to the Induced dipole moment which is propor-

tional to the sphere radius cubed, and at the sphere center is also proportio-

nal to 1/2kd. This term is very small compared with the contribution of the

incident plane wave source. We therefore neglect this scattered term and

assume the dipole modes of the sphere are driven by the incident plane wave

(including the plane wave which reflects off the surface). In sections 4 and S

we consider this assumption in more detail. We consider two incident polarization

states. A TE plane wave will induce a dipole moment in the sphere given by
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P"= p It R~u(1c-a)exp(-2ikdcosc)] 9. (1.13)

A TM plane wave will induce a dipole moment in the sphere given by

P,= pE + RTu(l-)exp(-2ikdcosa)] 2cosa

p [i - RA(ir-a)exp(-2ikdcosx)]!Isina. (1.14)

The scattering amplitude matrix can now be calculated from 1.10 - 1.14:

Si= Aill RrT(7t-ce)exp(-2ikdcosa)] It * R()exp(2ikdcosO)]cosg (1.15)

=a Ai{[1 - Rru(7r-ct)exp(-2ikdcoscz)][I u-SM)exp(2ikdc034)]sin~xsin-0

I1 + Rn,(x-c)exp(-21kdcoscd)] El + Rmd(O)exp(2ikdcos)]cosazcos~cosq4 (1.16)

S3 Ai{1 + %z(7c-)exp(-21kdcosax)1 [i + Rm(O)exp(2lkdcosO)]cos~siny; (1.17)

=-Ai[1 + Ru,4it-exp(-2ikdcos)] It + Rn(O)exp(2ikdcose5)lsintp cosax (1.18)

where

AmexP(lkr) m.oi2 - tlk) -

Az kr mipis' 2 (a 3 ".(.9

These four components represent the solution to the scattering problem and

will be compared with solutions derived from the other theories.
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2 Rayleigh limit of sphere-surface scattering

The second method we examine is a limiting approach of the light

scattered from a sphere-surface system as the sphere becomes optically small.

One of us (Videen) has derived an analytical solution for the scattered far

fields from a sphere-surface system (ref. 22). The orientation of the scattering

system is slightly different than the one used in section A. Figure T shows

the scattering system used to predict the scatter from a sphere-surface sy-

stem. A sphere of radius a is suspended a distance d below a surface separat-

ing two media: free space where z < 0 and a medium of complex refractive

index m. where z > 0. The results may be expressed as

S1 = (-i)"exp(imq;)I * I.R(7r-4)(-I)"' exp(-2ikdcosD)] L2:M .(c03 )
sinO

[i [-ii(i -O)(-l)"'exp(-2ikdcos ))] e -- Pcos9)} E" exP( ikr) (2.1)
-ikr

[I - J1t-.) (-I)'exp(-2ikdcos0)] e~" .P.(cos) e -, ikro (221)

Sa-i (-i)"exp(limq)I1 I- lru(c-8)(-l)"'exp-2kdcos0)] P.(cs)

inO

*F. (f cos8) E ikr (2.2)

SL-i (-i)'exp(imxp)l- l,- )m Pcosk )

- [1 R,.(7c-0)(-D)""exp(-2ikdcos6)] f ,,,a P.(Cos,)} E e x p (Ik r )  (2.3)

-ikr



Sd=~ (-i)'exp~nq))jl1 +rL-)(-)'exp(-2ikdcos.&)j .'m -Cs&

~ F ~T%4 exp(ikr) (24

where

I [ - RT(e)(-l)"-exp(2ikdcosa) ]~

e.. -1 Itm~)(-Dexp(2ikdcosc]an,

* eC"''iiQ (2.6)

r.e E + R(a)(-l"'exp(2ikdcosti)1bm'

+ Rrc(O)5 -)7 "f2c~ en.D? J (2.7)

f=2 ECl + P,.)(-)'exp(2kdcosm)] bT.'

+ Rv()l (-1)"-- [f::~c' - eft ']Q. (2.8)



to

and the Lorenz-Mie coefficients are represented by

k~ef(I4dk.ha)4~dk) -k~.'ka)k.,~a)(2.9)

Q"k.,*..~(ka) AS.,#,a) - kgi~oq'(k..a) (ka) (2.10)
= k.Pg(ka -(k,.a) - kg.. 4A(k.,ia) (ka)

a:. 2 i'* JP(costi(211
n(n.1) a

TI Z.I" m P. cosod (2.12)
n-n+1 sina

a;. i b M' (2.13)

b T- iaZ. (2.14)

(..) (,M) 2k n + m~ 1 I m 2kd n - m ~(.5
-. 2n +3 n l c"*I 2n - n '

D.2lkd1 mC (2.16)

2 1/~T h."'(2kd) (2.17)

c.'' -1/2nW h."'(2kd) (2.18)
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n-mt)(n*+m)(2n+l) c("'.) /(n-m+1)(n~m)(2nel) c

2kd (n-m 2)(n-m+1) ,,- kd (n* m)(n+m-l) , (2-,9- 2 d v (2n ) c., 2 kd V c (2.19)

(,(n i ,Qn-D'°m

c. = c. (2.20)

F -.,,0 2nl .) .1.-, 2n -
2n 2.-1 2n' 3

(n 1) c:'' (2.21)
2n+3 2n-I

where 4(r), and t.(r) are the Riccati-Bessel functions of the first and third

kinds, respectively, and the primes denote their derivatives with respect to the

argument. The functions P.'(cos$) are the normalized associated Legendre poly-

nomials. These results may be simplified when the radius of the sphere be-

comes small in comparison to the incident wavelength. This can be taken care

of by expanding the Bessel functions for small arguments:

I

J.(O) - " (2.22)
1-3-S... (2n.I)

h.('(p) -i'" 1 3" 5... (2n-t). (2.23)

With the sphere much smaller than ), we now can consider some specific ran-

ges for the sphere-surface separation distance d. First we consider the case
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when the separation distance d >> X. In this case the fields scattered by the

small sphere (which decay as 1/2kd) are negligible when compared with the

fields of the incident plane-wave. The interaction which occurs between the,

sphere and image sphere are analytically represented by the summation terms

of equations 2.5-2.8. We now consider these terms in detail. The translation

coefficients c."" are proportional to the spherical Hankel functions which

decay as l/(2kd). This dependence can be inferred from the addition theorem

for spherical scalar wave functions."' As a result, for large values of d the

summation terms in equations 2.5-2.8 are negligible. This is confirmed numeri-

cally for several cases. Equations 2.S-2.8 may be expressed as

el.= [l - RtS()(-l)""exp(2ikdcosx)]aZ Q, (2.24)

e.= [ - Rr()(-D)"exp(2ikdcosa)]aZ Q (2.25)

[t + Rt(a)(-l)"'exp(2ikdcoscd]b". Qf (2.26)

[ + R,()(-l)""exp(21kdcosz)] b' Q", (2.27)

For small sphere radius a, the coefficients Q7 and Q; are proportional to

%..V~"" or greater powers in k, a. Because of the dependence of the coeffi-

cients on sphere radius, only the first term (n = 1) is significant. This is equi-

valent to making an electric dipole approximation:

Q" 0 (2.28)

2 3 Fm.Pb- l
QT ~ - (ka)L r +J2 (2.29)
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From 2.28 and 2.29, equations 2.1-2.4 reduce to

S, Ai[I * RE(6)exp(2ikdcosc)] El. RT(-5)exp(-2ikdcosJ)]cos, (2.30)

Si = Ai{[D - RT%(,1)exp(2ikdcosx)1 El- RTm(dr-)exp(-2ikdcos )jsinsin +

El+ Rtu(c)exp(2ikdcosx)] El + RT4(7-O)exp(-2ikdcosJ5)Jcosaczospos,4..(2.31)

S = AEIt, RT,(a)exp(2ikdcosct)] El + RTw.t-O)exp(-2ikdcosO)]cosfsin, (2.32)

S =-AiEt + l,.(a)exp(2ikdcostx)] [I - Ri(it-O)exp(-2ikdcos.) sin, cosa. (2.33)

Except for the system orientation, these results would be identical to those

given in section 1 for the Sommerfeld-Rayleigh system. Recall that equations

2.30-2.33 were derived assuming a large sphere-surface. separation, an assump-

tion not actually necessary. For example, the coefficients eZ and f(Z are pro-

portional to Q. and Q;, respectively, which are themselves proportional to

(k.,ha)2"*'. For equations 2.30-2.33 to be valid, the summation terms of equations

2.5-2.8 must be small compared with the plane wave expansion coefficients a".

and b2 (given by 2.11-2.14) which are independent of the sphere radius. All

that is required for this to occur is for the translation coefficients to be

well-bhaved. The translation coefficients are a function of the spherical Han-

kel functions h1"(2kd) which become large only when 47cd << X. Therefore.

equations 2.30-2.33 are valid except when the sphere-surface separation d

becomes much smaller than the wavelength.
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3. EIT formulation

The third method we examine is the exact-image theory (EIT) deve-

loped by Lindell et al and Muinonen et a). The time-dependence used in these

manuscripts is exp(iwt), so some minor adjustments will be needed. Some

minor adjustments were made to their equations to account for a slightly dif-

ferent system orientation. Their results for a small sphere near a surface may

be expressed as

exp(-ikr) { '..6. + S.-.,.B'"exp(2ikdCo3a )E' " = 6z 41tr d

+ S.,0,- o- exp(-2ikdcosO) * S-I.-O...-exp(-2ikd(cos-cosa))} (3.1)

= . exp(-ikr) r - exp(2ikdcosz)

+ 0- e.--exp(-2ikdcosO) + -t.-Q-*e,--exp(-2ikd(cos$-cosc))} (3.2)

The bold-faced cursive characters are dyadic functions given by

= R, + ) 99Rn(r-a) " X y (3.3)

E x +2 YY ] Q(2d) + Ha Q.(2d) (3.5)
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where

Q,(2d) = ogB~dd (3.6)

Q.(2d) = 1 37

B =4s. -M.2Ia (3.8)

M%2 1 ex (-kr)t + ikr + (ikr) 2  8O
K. (r) + (k) +---- f exp(-ik(z - ip/CI)

x~ ( m. 2 +.1 + ik(z - i/ m'-z-.- 1 ( (3.9)X p -T [ik(z -ipC)" JrkT*j + I p d

M~w- 1 exp(-ikr)r I ikr 8Ms. 00K(r) -2 1- _M.7,+ 47cr (ir-r + -.--- I f" exp(-ik(z - ip/C))

t + ikz-i /0C) M2}i ~ -j( + i2(P)dp (3.10)

C Mv -1)/2.(311

Evaluating the dyadic functions yields the following far-field solutions

8 It~~d [+ *t(ic-)exp(2kdcosaz)] [t Rr(O)exp(-2IkdcosO)]cosp (3.12)

B. HI~ [ m(~dxep2kcs)[ - Rrm()exp(-2kdcosO)]QI(2d)sinCxsina

It4 lka(7c-m)exp(2kdcosa)1 Dt+ Rr4(O)exp(-2ikdcosO)] Q.2d)cosicoskcosq) } (3.13)
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S 2B [+ Ri(7t-a)exp(2ikdcosa)3 [-] R!u()exp(-2ikdcosO)]cos~sin9 (3.14)

B = 1IR m( z.c)exp(2ikdcosa)l D Rit(O)exp(-2ikdcos&)asing cosa (3.15)

A' exp(-ikr) mo 2 - 1 (ka)3 E,. (3.16)
ikr m,..2 + 2

Except for the time dependence and factors of Q,(2d)/B and Q.(2d)/B, these

solutions would be identical to those given in the previous sections. So let us

examine these factors a little more closely. These factors depend on the func-

tions K, and K. (given by equation 3.9 and 3.10) which are a result of the

scattered fields interacting with the small sphere. Recall that in the previous

sections we assumed that this contribution was negligible so that Q,(2d) -

Q1(2d) - B. We now examine this approximation in more detail. The contri-

butions of K, and L. will be greatest when the permittivity of the medium be-

low the surface approaches infinity. In this case, 3.9 and 3.10 simplify to /

exp(-ikr) I +1cr + (ikr)2 ,

4r1- cr (ikr)(

K(r) 2 2 exp-I+ [iL-kr 3" (3.18)

Equations 3.6 and 3.7 may now be expressed as

(242d) = B I - exp(-21kd) LI + 2ikd + (2ikd), m[,.' + 2 QV] (3.19)

• • mmm I I
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Qd(2d) = B L - 2exp(-2ikd) L+ 2ikd M '. . 2  (3.20)

The derivation following from 3.8 has two requirements: the sphere radius is

much smaller than the incident wavelength (a << X) and the sphere radius is

much smaller than the wavelength inside the sphere (m.,.a << )). For sphere-

surface separations on the order of X or greater, we have Q,(2d) - Q.(;d) - B.

This is a direct result of the first requirement, in which, a << d. We now con-

sider a worst case scenario for our approximation. We note that if the

sphere-surface separation is equal to the sphere radius these equations further

simplify to

Q(2d) = B [ 1- (3.21)

B I E M.0 ] 1 (3.22)

The second requirement, that m.pa << X, helps ensure that we can assume

Q(2d) - Q.(2d) - B, saying that the sphere refractive index cannot be large.

For a numerical example, this assumption is good to within 1OX for a lossless

dielectric sphere of refractive index mo a 1.6. Although this accuracy does not

seem outstanding we should remember that this Is the worst case In which

the medium below the surface is a perfect conductor and the sphere-surface

sepantlon Is much smaller than the wavelength.

• I II
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4. Projection model

The three theoretical methods thus far discussed all yield the same

results. We now discuss one more approach which is particularly insightful.

The method is based on the double interaction model of Nahm and Wolfe and.

dipole scattering discussed by van de Hulst. In the double interaction model,

the scattered light from a sphere near a surface can reach a detector'by one

of four paths. It may 1.) strike the sphere directly and scatter directly to the

detector; 2.) strike the sphere directly, scatter to the surface which reflects

light to the detector; 3.) reflect off the surface, strike the sphere and scatter

to the detector; or 4.) reflect off the surface, strike the sphere, scatter to the

surface which reflects light to the detector (see Fig. 3). The light scattered by

the sphere, reflecting off the surface and striking the dipole is assumed to be

very small compared with the incident fields and contribute only negligibly to

the scattered fields. Assuming the small sphere is a dipole, the magnitude of

the scattered electric field is proportional to the dipole moment projected

onto a plane perpendicular to the radius vector. Although it is not necessary,

for the purpose of this discussion, we restrict our detector to the x-z plane

(c= - 0). We sum the four components of the TE mode that make up matrix

element St as

S, AI[ + R -a)exp(-21kdcosa) + R(8)exp(21kdcos)

+ Rn(O-x)P.(Oexp(21kd(cos8-co z))]

- Ai[l + Rt(x-aexp(-21kdcosa)] I+ Rn()exp(2kdcosO)] (4.1)

. . .. . = s sl I HI I I '



19

Similarly, we sum the four components of the TM mode that make up element

Sa as

Sa = Ai[cos(-a) - RTr(7-a)cos(it-o-i)exp(-2ikdcosa) - RT(O)cos(i--(x)exp(2ikdcosO)

+ cos( -x) l (ir-a)Rtu()exp(2ikd(cos&-cosal))I

Ai{lI - Ru(7c-a)exp(-2ikdcosa)] i - R m O)exp(2ikdcos-))lsinxsin +

1 + Rr(x-c)exp(-2ikdcosz)1 It + R m()exp(2ikdcosO)]cosacosO}. (4.2)

Since ( = W, elements S3 = S = 0. Although this solution is derived using a

very simple model, the results are identical to equations .I5 - 1.19 ((P = 0),

S. Multiple scatterinf interactions

We derived the first-order terms in the scattering amplitude matrix

in the first section in equations 1.15-1.19 where order refers to the number of

interactions that a beam of light undergoes with the small sphere before being

scattered to the far field. The order-of-scattering approach can be used to

add correcting terms to these results. Using this approach, the scattered field

from one portion of the system is considered to be an incident field on an-

other portion of the system. Then the scattered field from this portion of the

system is calculated and the process is repeated until the desired accuracy is

achieved. To perform a rigorous order-of-scattering analysis requires perform-
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ing translations of the scattered fields and the resulting equations are similar

to those in section 2, containing the same translation coefficients. Such a

derivation is not our intent. Insight into the problem can be gained by consi-

dering the interaction which occurs between the scattered dipole radiation

terms which are spherical waves reflecting off the plane surface and interact-

ing with the dipole. Since the sphere is much smaller than the wavelength, we

can assume the field to be approximately constant over the volume of the

sphere and avoid the cumbersome translation. It is relatively straightforward

to calculate the effect of the second order terms. This case includes the

fields scattered from the small sphere, striking the plane surface and inducing

a dipole moment in the small sphere. From equations 1.12-1.19 we get

pu= 47". Lm.03* 2 I k3 ex(1d) It + Rn7-a)exp(-2ikdcosa) R.'(0) E-t
(5.1)

for the TE case and

p = 47e,. moo a :" I ] ' k ' " exp(2kd C 1 Rm(7*-a)exp(-21kdcos.)]RI-(O)ECos
2 mTb3 2k

(5.2)

for the TM case. Since the scattered fields are proportional to the dipole mo-

ment induced In the small sphere, it Is apparent that the second order dipole

moment will have only a negligible effect since it Is proportional to k3a3/d

times the first order dipole moment.
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We can include the effects of all the higher order scattering inter-

action terms since the induced dipole moment is due to the incident field and

the scattered field from the small sphere (from equations 1.12-1.19):

in,,. - + k'a exp(21kd) Ri(O) (5.3)
~'m.o.2 + 2 2kd

Pn = p I Rm( -()exp(-2ikdcosa)]ICOsa - p [l - 2-)exp(-Zlkdcoscz)]tsina

+ mS,.. - I k3a3 exp(2ikd) R,(O) (5.4)
l m8*6 + 2 2kd

where I"Kx is the x component of p.. These two equations yield dipole mo-

ments of the form

pm= [I -062: - 1 k 3a3 exp(2ikd) RMO]
+ 2 2kd EO +, Rnbc-cdexp(-2ikdcosa)l9

(5.5)

S i... 2 - k a, exp(21kd)R(O) p (- oms.. . 2 2kd I + Rnd-a)exp(-2lkdcosa)j 2osa

- p E- Rnd(x-aeexp(-2kdcosa)]fsina (5.6)

Note that the first terms in the expansions of equations 5.5 and 5.6 are the

second order correction terms of equations 5.1 and 5.2. The scattering coeffi-

cients can be expressed as



S, =IAC[t + Rt(iC-)exp(2ikdcosa)] [I - R.(i)exp(-2kdcosO)] cosp (5.7) 2

Sa iA{C[1 - RTM(x-a)exp(2kdcosa)] [I - Rr(O)exp(-2ikdcosO)] sinxsinO+

[I R~m~it-)exp(2ikdcosax)]1 + Rrid)exp(-2ikdcos)]cosacosocos7I (S.8)

S3 iAC11 + Rt(t-x)exp(2ikdcosct)][1 *Rrm()exp(-2kdcos)]cosOsinyp (S.9)

S,2 -iAC11 + Rna(xi-)exp(2Ikdcosax)] [1i Rr(8)exp(-2ikdcos8)] sin(Pcoact (S.10)

C: I i- M... 2 - I k'ay exp(2ikd) R,,(O) iI(SAll)
L m.o2 + 2 2kd

since Rn(O) = Pju(O). Note that the correction term C varies only slightly from

1 since k2 a'/d (< I .This appears to contradict the analysis of section 3 where

the scattered fields could vary by as much as 10X. It should be noted that the

analysis in section 3 was for a very small separation distance d; whereas the

analysis in this section was derived from the radiation terms of the dipole

scatter and Is Invalid for small separations d. In the near-field scatter from a

small sphere, there are scattering terms proportional to (kr)"' which become

significant along with a radial component. These terms were not considered in

this analysis.
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Results

Up to this point we have derived the far-field electric fields for a

small sphere near an *interface using four different formal solutions. We now

examine the results of these derivations which are expressed by equations

1.IS-1.19. Rather than examine just the intensities of the TE and TM compo-

nents, we will put the results in Mueller matrix form, since the 16-e|ement

Mueller matrix contains the phase information of the scattered fields. We will

also restrict ourselves to the plane of incidence (y = 0). The particular Muel-

ler matrix formulation we use is given by

2~ 1

S, -iSL C iS ae ]/,.

S3 = Re(SaS)/Sn, and

SN 2 -Im(SR, *)/S.. (S.1)

With the detector In the plane of incidence ((p = 0"), the other scattering S( ) are

either zero or simple multiples of these elements. It should be noted that the

results derilved do not Include the specular component of the scattered field.

The first set of scattering So(M) we conside- are shown in Figure 4.

The system Is illuminated at normal incidence (at 180) and optical constants
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of the medium below the plane are chosen to correspond with an aluminum

surface (m. = 0.5 + 5.Oi at X = 0.4416jim). Scattering S,,(5) are shown for four

different sphere-surface distances d. Note that when the system is illuminated

at normal incidence, equations 4.1 and 4.2 reduce to two periodic functions in

d. One of the functions is independent of 0 and determines the maximum

amplitude of the signal. This amplitude cycles through maximum and minimum

values with a period of d = X/2. If the medium below the surface is a lossless

dielectric, then R.(z) is real and amplitude minima occur when d = nX/2 and

amplitude maxima occur when d = X/4 + nX/2. If the medium below the sur-

face is lossy, then Rr.(t) is complex and a phase difference will be introduced.

The parameters chosen in Fig. 4 introduce only a slight phase difference.

Matrix element S,,(O) shows that the highest signal intensities (of the four

curves shown) occur when d = X/4 and the lowest signal intensities occur

when d = X/2.

The oscillatory structure in the matrix elements of Fig. 4 is also

periodic in d and Is very nearly periodic in 8. From equations 4.1 and 4.2, we

would expect the total intensity, S,(8), to be at minima values approximately

when 2dcosO = n)X (where n is an integer) for a dielectric medium below the

surface. For the d = X/2 curves of Fig. 4, we would expect a minimum to

occut at 0 = 0'. The minima have been displaced slightly because the medium

below the substrate is slightly conducting. Note that spikes and inflection

points occur in the polarization matrix elements at the angular locations where

the intensity signals are at minima.

• • ,1 m e m !
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Another set of matrix elements is shown in Figure 5 for the same

systems as Fig. 4, but illuminated at near-grazing a = 101*. In Fig. 4, where

the illumination was at normal incidence, the sets of matrix elements were

very similar. Changing the incident angle away from normal incidence breaks

the symmetry and increases the complexity of the matrix elements.

Conclusion

Four theoretical models were examined and found to predict the

same scattering signals from a small sphere suspended above a plane surface

interface. The approximation breaks down when the sphere-surface separation

also becomes much smaller than the wavelength. In this case the maximum

error in the approximation is on the order of lOX of the theoretical value.
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Figure Captions

Fig. I. The geometry of the scattering system. A sphere of radius a is located

a distance d above a surface. A plane wave travels in the x-z plane at

angle c with respect to the z axis.

Fig. 2. The geometry of the scattering system. A sphere of radius a is located

a distance d below a surface. A plane wave rave's in the x-z plane at

angle a with respect to the z axis.

Fig. 3. The geometry of the scattering system showing the four paths light

may travel to reach the detector in the double interaction model.

Fig. 4. The Mueller matrix elements from a small sphere at four separations

from a surface of index n = O.S 5.01 illuminated at normal incidence

(a = 180, A = 1). - d = X/16. 0- d = )8. X- X d = X/4.

d = X/2.

Fig. 5. The Mueller matrix elements from a small sphere at four separations

from a surface of index n = 0.5 + 5.01 illuminated, at ct = 101". 1A = 1).

- d = X /16. 0-O d = X/8. X-X d = X/4. +- d = X/2.
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Stokes vectors, Mueller matrices and polarized scattered light: experimental
applications to optical surfaces and all other scatterers

William S. Bickel and Gorden Videen

University of Arizona, Department of Physics
Tucson, Arizona 85721

ABSTRACT

We discuss scattering in the context of the Stokes vectors and
Mueller matrices that characterize the interaction. In order to study surface
structures using light-scattering techniques it is useful to examine the nature
of light scattered from perfect and perturbed mirror surfaces.

1. INTRODUCTION

A highly motivated, systematic, and fundamental approach to surface
scattering requires that the initial surfaces be fundamental and that the con-
tamination to produce the surface scattering be known and controlled. With
this in mind any rough surface can be considered to be a perturbed perfect
surface that has reached its final condition through some continuum contami-
nation process.

The powerful Stokes vector, Mueller matrix light-scattering tech-
niques can be applied directly to study surfaces. Scattering from perfect sur-
faces can be theoretically predicted and experimentally measured. Experimen-
talists have an advantage in that they can measure what theorists cannot cal-
culate. If the data are to be used to check theory, the experimentalist must
relate the light scattering signal to the exact structure and orientation of the
surface that scattered the light.

Consider how a perfect optical surface (lens) is treated by taking
into account its geometrical and diffraction-limited properties. Geometrical
optics is used to predict where a point on the object will be focused to a
point on the image. Diffraction theory will predict how the image point is
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actually a diffraction pattern; i. e., not all light from the object point ends up
at the image point. Nevertheless, the diffraction-Iimited image is exactly pre-
dicted by theory and its intensity distribution is related to fundamenta! con-
stants. The problem arises when the perfect diffraction-limited optic and its
image is perturbed by a defect in or on the optic. This defect scatters light
into all directions - out of the paths so well defined by geometrical and
diffraction optics.

The question is where does this scattered light go and what does it
do to the image (information). There will be a loss of image intensity, but
more troublesome is the light initially intended for one part of the image that
is scattered to another part of the image causing loss of contrast and image
definition. We can write that the object (point A) is transformed into a diffuse
diffraction-limited geometrical image (point A:) by a transformation matrix CL,
D, S1 where L Is the geometrical function of the lens, D is the diffraction
function and S is the scattering function which contains all of the scattering
parameters of the defect.

2.. POLARIZD LIGHT SATTERING

What is S? If the defect were a perfect sphere the scatter from it
is nothing more than the diffraction by a spherical object - a problem solved
by Gustav Mle in 1908.' As the sphere becomes more irregular in shape and in-
homogeneous in optical constants, exactly solveable sphere diffraction goes
over to the statistical aspects of irregular particle scatter." A scatterer is said
to be characterized by its scattering properties when we know how it will
rearrange the properties of light incident on it. For example, consider perfect
sphere scattering. A sphere with radius r, refractive index n and aborption V
has a scattering matrix [SI. When it is illuminated with light of intensity I..
wavelength X. polarization ML, at angle 0., it creates a scattered field of I., X.,
fl., and 8.. We can write (I., X., rL, .5,) = (S](h, )., IM, 8). where IS] is exactly
known for spheres. The matrix CS] can be calculated only for certain highly
symmetric cases. It can be approximated for slightly distorted systems, but
can only be measured for truly irregular particles. Therefore, in order to learn
how a defect on or in a surface (an irregular, imperfect surface) will affect all
aspects of the Incident light, it is better to measure what happens exactly in-
stead of relying on approximation and theoretical models. Generally two things
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are required of scattering experiments: . produce a defect and measure its

scatter; or 2. measure the scatter and predict the defect - the inversion pro-

cess. Before we extract information from light-scattering data it is important

to be sure that we have all the information available.

3. POLARIZED SCATTERING NEPHELOMETER

The experimental set-up that can measure the polarized intensities

scattered by the scatterer CS] into the angles 0 and p is shown in Fig. 1. The

input optics can be selected to be an open hole Co], or horizontal ifear po-

larizer [hJ, or 4S linear polarizer [+1 or a right-handed circular polarizer Cr.

The exit optics choices are the same and can be chosen independently of the
input optics and can swing with the detector through the scattering angle 4

from O" to 180".'

DETECTOR~l

OP CS 0PTIC
SCA-lUlI MILE

Fig. 1. Arrangement of entrance-exit polarizers to measure the matrix elements

of a scatterer.

Th. following example shows how to determine . ,.at scattering ma-
trix elementsg S are involved when a particular set of input-output polarizers
are used to prepare and analyze the scattered light.' For our first choice we

assume that the arbitrary scatterer (defect) is illuminated with horizontally-
polarized light ChJ. The scattered Stokes vector wall be (V,] ( S].(h] or

(S, S.- SaSa .) =|'

S,,S. S3 S, \S* Sn,
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We see that the scatterer IS] mixes the initial pure polarization state (h] to

produce a scattered Stokes vector w'th mixed polarizations. The first compo-

nent (St, + Sa) is the total intensity and is a sum of two matrix elements. If

this scattered light is now passed through a *45" linear polarizer [-J we get

IV,] (+]IV.]. Specifically we have

Sit + S,2 - S3, SU 1 0 1 0 Si + Si

0 0 0 00 Sa, Sn
S,, S12 + S3, SU, 1 0 1 0 S3, #So

0 ) o oo KS, S.c

The first component of the final Stokes vector is now a mixture of four ma-

trix elements. The element sum (S,, - So - S3, + Sx) is the total intensity that

will be measured by the detector. We put the result of all such calculations

from all 16 Stokes vector combinations into a final array shown in Fig. 2. The

main point of Fig. 2 is that there are 4 X 4 = 16 measurements to be made to

completely characterize the polarized light scattered from the defect. These

measurements can be routinely made by nephelometers that incorporate the

various polarizers in their entrance-exit optics. The 16 matrix elements are

needed to completely characterize the scattered light or to use in the inversion

process to determine the properties of the scatterer.

Si S. 5 I :. Q

*t* .~ ,, ',, \ I ,, ,, 0 * '',.

-- ~ *.+ ", "- \ 46, Q"4 ....- ...

.... ... .... ... . . .... ... ... ..... ......... I
Fig. 2. Matrix aa s',,h,,wi, 0 1e'"'i'" a msew

. .... ' + . .. ' . .. .. .. . . , . * '. . . .

___________"_""__" 8( :2:,.
*0, , . .. ,,-'. 0,'..., O
00 ... • ... 0 8..8.,. 00 ',.."

Fig. 2. Matrix array showing matrix element combinations measured with bar-

ious arrangements of input and output polarizers.
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4. SURFACE ORIENTATION

The geometrical orientation of the rough surface with respect to the

entrance-exit beams must be addressed early because there are an infinite

number of possible orientations, all of which might give a different S, for the

same surface. Figure 3 shows some of the geometrical parameters involved in

surface scattering studies. The laser beam, after preparation into a definite
polarization state, strikes the surface at angle m and is scattered into all 4n.
The light scattered into angle 8 is analyzed with the polarization exit optics
and detected by the photomultiplier. The angle - is a surface tilt measured in
the surface plane. Our work has shown that geometry is important and that
no universal scaling factor exists and that no best orientation exists for all
cases.

SiR .,. ,-__-., - \_-

, z
"-"

Fig. 3. Optical and sample arrangement for surface scattering measurements.

s. SURFACE SCATTERING

WO now show some general results of scattering from some sur-

faces to show how light-scattering nephelometry and BRDF are related." Fi-
gure 4 shows four matrix elements for a reflective aluminum surface. The 4
order of magnitude angular decrease of the total intensity matrix element S,,
is an indication of the quality of the reflecting surface. Note that even though
the total scattered intensity is down by over 5 orders of magnitude near I =
ISO (back-scatter) the polarization of the scattered light is significant as de-
monstrated by matrix SS and Su.
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o_ SCalt:n Anie W. "O0-t W ISO-

10 0 S , & 
s-o• •

0* .Scatn Angie W., tIN)" 0" Scatnig Angie 0,. 180

Fig. 4. Four Mueller matrix elements for a reflecting aluminum surface.

Figure S shows the matrix elements for the same surface but now
roughened to saturation. Further roughening will not change the surface cha-
racter. Alt hints of the location of the specular peak are gone. S as well as

S,, are independent of surface orientation; and polarizations, as indicated by all

matrix elements, remain large.
0 sii, i""

w S,

S caSWing Angle i'. iW 0" Scanmflng Angle Ir. too,

Fig. 5. Four Mueller matrix elements for a saturated rough aluminum surface.
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Now we show how dramatically the S,j from surface defects depend

on the angle at which the surface (and its defect) is illuminated. Figure 6
shows the matrix element S33 for a rectangular line (h = 0.46ijm, w = 1.101m)

on a smooth aluminum surface illuminated at near-grazing incidence and at
normal incidence. Normal incidence not only restricts the angular range over
which the data is received but it also wipes out all the phase information
needed to characterize the defect.

SCtrKIIUUSA

to

Fig. 6. Matrix element S, for a rectangular line on a mirror surface measured
at two different angles of incidence.

8. CONCLUSIONS

One general goal of light scattering is to develop an algorithm to

put into a computer which will predict either the scattered field (from particle
properties) or particle properties (from the scattered field). The data (particle
proportes or scattered field) must be determined experimentally. We must de-
termine how much. scattering data is needed, how good it must be and how
well It describes the scatterer In a practical way. We also must determine the
amount of information contained in the various matrix elements and whether
signal changes can be related to changes in the optical or geometrical proper-
ties. We see that polar nephelometry gives sixteen matrix element signals. The
record shows that polar nephelometry, ellipsometry, BRDF, and other optical
techniques can all complement each other and yield important information
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about surface scattering when used with care, keeping in mind their limitations

and range of validity.
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The light-scattering Mueller matrix for a surface contaminated by

a single particle in the Rayleigh limit

Gorden Videen, William L. Wolfe, and William S. Bickel

Optical Sciences Center
University of Arizona

Tucson. Arizona. 88721

Abstract

A ray-tracing model was used to derive the light-scattering Mueller

matrix element curves for a dipole near a perfect surface as a function of

angle of incidence, scattering angle and surface index of refraction. This sy-

stem represents a fusdamental system composed of a perfect plane surface

and the perfect (Rayleigh). scatterer.

Subject tlms dipole, contamination, light-scattering, Mueller matrix, surface.
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Mle theory,' which can be used to predict exactly the scattering

from spheres of all types, has recently been the subject of a great deal of

modification. The modification is brought about by examining the simple

sphere when it comes into contact with the perfect surface. The impetus has

come from contamination studies, often centered around wafer-producing tech-

nology in the electronic and computer sciences, but the applications are nume-

rous, ranging from degradation of optical modulation transfer functions to

energy losses In laser systems.

The modification to Me theory investigates how the scattering sy-

stem, composed of a single sphere, is changed whet the system is composed

of a sphere and a surface. Since each system taken independently has been

solved exactly, the sphere by Mle and the surface by Fresuel, a logical first

order solution would be to combine these two systems into something similar

to what Nmhm and Wolfe' refer to as the double-interaction model. This model

ignores the interaction term between the sphere and the surface. For Rayleigh

scattering, the scattering intensity is proportional to (r/X)', and the effect of

the interaction term when compared to the other terms is negligible. There-

fore, when the sphere is driven to the Rayleigh limit, r (( X, this model

should be able to predict the scattering exactly.

THEORY

Theoretically, we treat the system as a dipole illuminated by two

plano wan* one incident and one reflected off the surface. The scattered ra-

diatlom Is aim in two parts, one directly from the dipole and one reflected off

the rawfm. F Igue 1 shows the various paths by which light cas be scattered

into the detector and the convention used for measuring angles. All angles are

measured from the normal to the surface. Figure 2 shows the four paths that

a beam may travel for scattering on the incident side of the detector. Path I
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is the direct path and is what comes from Mie theory. The beam whose angle

of incidence with the surface normal is O. excites the dipole, which scatters

radiation through angle 0 to the detector. Path II shows the beam reflecting

off the surface before striking the dipole. Radiation is then scattered directly

to the detector. Path Ill shows the beam striking the dipole directly, with the

scattered radiation striking the surface before reaching the detector. Path IV

shows the beam reflecting off the surface before striking the dipole whose

scattered radiation also reflects off the mirror before reaching the detector.

Before looking at the polarizations, we will complete this analysis

by looking at the scattering that penetrates the surface, where coso ) 90".

Although most of the interest seems to be in the case where the surface is

highly reflecting, the transmission case Is such a simple exteuslon that It

should not be neglected. Figure 3 shows the two paths that a beam may travel

in reaching a detector. Path V shows the beam striking the dipole directly

with the scattered radiation being refracted by the surface to the detector.

Path VI shows the beam reflecting off the surface before striking the dipole,

with the scattered radiation being refracted by the surface before propagating

to the detector. For a high Index surface, all refracted beams lie very near the

normal. To facilitate viewing the information, the transmitted portion of the

graphs are plotted as a function of the beam angle incident on the surface.

This is equivalent to making the reflecting medium a thin slab of material

with air on either side, and putting an anti-reflection costing ou the exiting

surface. The beam angle incident on the frost surface is equal to the beam

angle levi g the rar surface. Since we are going to calculate the Mueller

matrix elemests, we need to consider the TE and TM polarizations indepen-

Tn calculate the Mueller matrix, we first calculate the scattering

amplitude matrix which Is explained by Bobren and Huffman' and others.' For
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our purpomSO we define the scattering amplitude matrix by the following equa-

tion:

Ese S" S, 5 7 l

where the vectors represent the Incident and scattered electric fields for the

TE and TM polarizations. If we place our detector in the plane of incidence

(defined by the incident beam and the normal to the surface), it can be shown

that the matrix elements So and S, are identically zero. We can nowoexamine

the TE mode and calculate the element S.

MODE

The vibration of the dipole for the TE mode is perpendicular to the

plane of Incidence. As a result, the radiation from a dipole In this mode has

no angular dependence In this plane and is therefore slightly easier to under-

stand than the TM mode. Since all the beams have the same temporal depen-

dence, we can normalize the beam from path I, and represent all other beams

in terms of this beam's amplitude and phase. A beam following path II will be

out of phase with the normalized beam when it reaches the dipole by an

amount S(&.,d), where

M - 1-2dcosb. (2)

d is the distance between the dipole and the mirror, and X Is the wavelength

of the light. Fntbumore the amplitude and the phase are affected by the

Preane ,Iletmm factor'. Ra(#J, where

Zos - Z,[I - (un/)'sln' and (3)
Zaos& + Z,(I - (n./uasl-,*1" , and(

Z, _ iu (4)
7-- Iian,

The subscripts, I and 2, correspond to different sides of the surface. In our

case, the plane wave Is traveling from material I and striking material 2. For
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most cases, the light initially travels through air or vacuum with n, - I and g,

- V.. Path Ui1 Is similar to path 1, but the phase difference and reflectance

factor are a function of %-a. Finally, for path IV we have to consider the

phases and reflectance factors of both the previous paths. The net result of

the four beams at the detector is the following:

S,(O) z I * Rn(O.)eS( "' + - R-(8.)Rr7t-&)es( 'd)+Si-# 'd))

where cose < 0.

We now consider the transmission of the TE mode. Path V, like

path I undergoes no phase lags. However, one must consider the effect of the

Fresnel transmission factor on the scattered beam which is given by

2 Zacos(Tyu(O) z (6)
Zcoso + Z,[l - (n,/na)2sin*1#"

The beam following path VI undergoes the same phase lag on the incident

beam as that of path 11. The scattering amplitude matrix element for the

transmitted beam can be expressed as follows:

S,(M) - I I + Rtn(,)e 18S .' d) ]TM(O), 7

where cos* ) 0. With the scattering amplitude matrix element for the TE

mode solved, we now examine the TM mode.

ll 1i AM

The terms used to calculate the satteriag matrix for the TM mode

an almret Identical to those of the TE mode. The Fresnel coefficients of

reflecton and transmission of the surface an slightly different and may be

written as follows:

RimM a Zicos - Z4I - (2nnasiaIn . an(
ZIcosO + ZICI - (n d nsia'] , ,n (8)
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2 Zcos9
Z,cosO Z aI - (ndna)'sin01,'

The major difference Is the angular-dependent dipole scattering that occurs for

this mode. Bickel and Bailey' provide an inciteful discussion of the reason why

the scattering of this mode is proportional to the cosine of the angle between

the incident and the scattered beam. As the detector scans in the plane of in-

cidence, the amount of dipole vibration that the detector sees corresponds to

the projection of the dipole In the detector plane. This causes the cosine de-

pendence. With a bit of trigonometry, we can derive the following equations

for the scattering amplitude matrix element Sa(O):

SAO) a cos(,-48J * cos(x-8-,%)R (,)e 1&(O'd ) +o

+ o for cosO ( 0 and, (10)

S() a cos(8-0o) + cos(--O-o)Rmi(o)e11'1T-A ] Td ), for cog, > 0. (11)

With both polarizations taken into account, we now direct our attention to the

scattering Mueller matrix elements.

From the relations siven by Bohren and Huffman, we can use the scattering

amplitude matrix elements to calculate the Mueller scattering matrix elements.

In the pls= of Incidence, only four of the sixteen elements of the Mueller

matrix are o interest. These are

a 4g : lSd' lSs' ],s~

Sn 2 Re(S"O)/S, and

SX lm(S1°)/S-. (12)
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When we coslder only the scatter in the plane of incidence, the other scat-

tering elements are either zero or simple multiples of these elements.

Using these expressions, the four Mueller matrix elements were cal-

culated for a dipole with no surface. The surface can be removed by setting

the surface index equal to I. These elements are shown In Figure 4. It is

noted that the scattering angle & goes from 00 to 360 °. As expected, symme-

tries occur about & x 180 °. This is a fundamental case discussed in many of

the references, especially Bickel and Bailey. These scattering elements are

useful references and will be compared with those generated when a surface is

placed near the dipole.

E M A FUNCT OQ E PAR TCLE-SURFACE SCUUTI

Figure S shows the four scattering Mueller matrix elements as a

function of dipole-surface separation for a beam incident at- normal incidence

and a surface of index n a 10.0 - 0.01. Such a surface could be made with a

series of 1/4-wave dielectric layers on a glass substrate. It Is more instructive

to look at the effects of a high Index dielectric surface Intitially (rather than

a simple glass plate or a metallic surface) because a high index Interface gives

interfering beams that are of nearly equal amplitude. Also, a metal interface

creates phase shifts upon reflection. Before examining Figure S In detail, It is

Instructive to examine the scattering amplitude matrix elements. To provide

some Insight for the TB case, we rewrite the scattering amplitude matrix ele-

ment (equtlon S) Ia the following form:

[1 +. +u#e5 4  114 Rn(:48)eI(wd)]. (13)

The ftat term which is Independent of 9 controls the amplitude of the overall

pasms. As the dipole-surface separation is Incresed, a stationary detector at

0 will witness the intensity element S"(8) fluctuating sinusoldally with distance

due to the first term. For a beam incident along a normal to a dielectric

surface Illuminating a particle next to the surface (d % 0), the intensity mea-
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sured by a fixed detector will be in a trough (minima) since there is a phase

change at the surface. As the particle moves away from the surface, the signal

increases until it is 1/4 wave from the surface, at which point the signal has

cycled into a peak (maxima) since 8(8.,d) = -i. At 1/2 wave from the surface,

the signal has returned to the trough. The intensity difference between a peak

and a trough can be calculated using

A logICi + R(0)1121 -og(Ic, - R(0)]1' 1l4)

For n a 10.0 - 0.01, this yields A = 2 or a two order of magnitude cfange in

the scattering by moving the particle 1/4 wave. This is most easily seen in the

transmission region (8 x 0) of the S" curves of figure S.

The second term in the S(0) equatiou.,cout l*. tlp,.shape of the

pattern If the first order approximation assumes R(M) to be constant, then the

pattern behaves sinsusoldally with 8(8,d). At 8 x 180", we not only see the

pattern fluctuating two orders of magnitude with the amplitude envelope, but

also varying another two orders of magnitude due to the scattering (second)

term of equation 13, for a total fluctuation of four orders of magnitude. For

other scattering angles, the fluctuation of the amplitude envelope and the

fluctuation at a particular scattering angle will be out of phae and will tend

to cancel each other. For a dipole-surface separation of 3X/4 and the detector

placed at 8 x 18W, 9(8,d) a 3w. At this location, there is a peak In the scat-

tering Intensity. A trough will appear at any scatterfn and g where the phase,

8(,) x 2mx, whuM.is a positive integer not-spater than SUlB0 d)/2 (3/2

in this cseu. Keeping d constant with m x 1, we can solve our phase equation,

(8.) a 2z, for scattering angle 8, yielding 13r and 221r. At about these lo-

catons is Pigne S we see troughs whose value hun't changed much from the

amplitude envelope of the half wave separation. These nodes move in to the

center of the pattern (toward 1800) as the dipole-surface distance increases.

Another set of troughs (for m a 0) is just beginning to form for 8(8,d) = 0

which corresponds to 8 z 90" and 270", but they ar not as apparent at this
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point becamuse the Fresnel reflection term dominates.

The response of the polarization matrix elements (Sit, Su, and S34) is

not as dramatic as the total intensity matrix element, S" . Spikes tend to

appear on these elements where there are troughs In the total intensity ele-

ment. These spikes seem similar to those that appear in the Rayleigh-Gans I-

mit of single sphere scattering. Sit has an interesting feature: for very small

dipole-surface separations (d - X/1000), the polarization has switched sign.

This appears to be a function of the refractive index of the surface %hich we

now consider.

Figure 6 shows the S. scattering as a function of dipole separation

from a surface of Index n - 28.0 - 9S.0t, an index roughly corresponding to

aluminum at 10gm wavelength. First note that the transmission portons of the

polarization elements carry very little Information; I.e., they are either zero or

100X over the entire range. This is not too. disturbing since the skin depth of

this metal would effectively prevent most transmission measurements. This

informatio lo also occurs for high index dielectric surfaces, but is more

apparent t= figure 6 because the reflectance of aluminum is greater than the

dielectric of figure S. An Interesting feature has cropped up In matrix element

S"(8) at normal Incidence when d a X/2. At 6 2 180: where a node occurred

for the dielectric surface of figure S. a small maximum exists. Reflections

from a metaAc surface change the state of the,. incident bean from linear

polarization to elliptiW polarization. As a result of these reflections, the

shape ad poetiom of the nodes are different than the nodes for a dielectric

surface. Tle nodes and spikes for aluminum are sharper than fo' the

d1eIw b e, t this is a function of the reflectance: the aluminum Is more

refleslig. so the spikes ar sharper. Other than the small displacements of

the maxia/minima and the loss of information in matrix element So. for large

dipole-surface separations, it is hard to distinguish the scattering from the

metal surface of figure 6 from the high-index dielectric surface of figure S.
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Fgu 7 shows the So scattering as a function of dipole distance

from a surface of index n x 1.5 - 0.0t, which roughly corresponds with glass

in the visible spectrum. For a low-index surface, the matrix element curves are

much smoother, and very closely resemble the curves for a dipole without a

surface shown in Figure 4. As the dipole-surface distance is increased, the

elements change, while retaining this general shape.

SCATTERING A, E1LNflJi 2E INCIDE ANGLE

We now consider the final remaining parameter for dipole-surface

scattering, the incident angle of the Incoming radiation. We examine the spe-

cific, but arbitrary, case for the particle near the surface at d x X/10. This

case could represent a 2gm diameter dust particle on a surface illuminated

with 10.6 gm light. Although a radius of )/10 borders on the Rayleigh limit, it

has practical applications.

Figure 8 shows the So scattering as a function of incident illumina-

tion angle for a dipole located X/10 from a surface of index n z 10.0 - 0.01.

First we note the lack of symmetry in the elements. Prior to this study, all

the elements have been symmetric about 8 z 180 . As & is increased first to

30" and then to 60, the elements vary significantly from those of the isolated

dipole of figure 4. Specular peaks occur in those directions where the beam

takes a direct path and does not interact with the particle. These occur at 0 a

,% on the translmlsson side of the surface and 8 a - ,. on the reflection

side of the surface. It may seem surprising to find that the peak of the scat-

tered radlatiom Is not necesarily at the specular beam on the reflecting side

of the Sofin.

Established patterns In the polarization matrix elements for scatter-

ing from a single, Isolated sphere no longer hold when the Incident beam is

no longer normal to the surface. Element Sw which, for an isolated sphere, is

equal to zero both at specular and at 180" from specular, no longer obeys this
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rule. For a high-indox surface the signal does tend to -100% for scattering

along the surface (0: xt901. Element S", which for an isolated sphere is equal

to 1001 at specular and -100X in the backacatter (180- from specular) no lon-

ger obeys these rules either. For a highly reflecting surface it does tend to

zero along the surface (&: t90). Element S2., which for a lone sphere is equal

to zero at specular and 180" from specular, now tends to zero only along the

surface (Oz t901). These tendencies can be derived from the scattering ampli-

tude matrix elements. When 8 = t90', RON) -l- and S(O.d) = 0. the elements

reduce to zero. For surfaces of high index of refraction. the Fresnel rflection

coefficient Rnwd0) approaches -1 more rapidly than Rnu40), which goes to zero at

Brewster's angle. As a result of this dissimilarity, the beam Is almost entirely

TM polarized, and the Mueller matrix element Sa will go to 1001. The other

polarization elements must go to zero at this point. Sinae S, and So go to zero

along the surface, element S" goes to zero along the surface.

Figure 9 shows the scattering as a function of incident angle for a

dipole X/10 from a surface of index n a 28.0 - 95.01. These curves are similar

to the curves of Figure 8 where a z 10.0 - 0.01. The only differences are the

magnitudes in some locations and the loss of information in the reflected por-

tion of Lbs So, matrix element. The change to a higher. complex index has had

very little effect on the elements.

Figure 10 shows the scattering as a function of incident angle for a

dipole A~/10 from a surface of index a a l.S - 0.01. The matrix elements for a

low-ladex surface awe expected to retain the shape of the elements for the

isolated dook showna nFigure 4. The peaks in the elements are very near the

sawme gdw locations that they would be with no surface present. The maxi-

ma/hm of matrix elements So and S.. reveal the Incident angle of the

acidma radiation. The trough located 90 from specular in the S.* curve is still

close to W0 firom specular. The maxima/minima of the Sm. curves also become

shifted toward the specular and backacatter locations as the Incident angle is

chianged.
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Determining the nature of systems by studying the light scattered

from them demands an understanding of how basic properties of the systems

affect the scattering. Reducing the size of the particle to the Rayleigh i mit

eliminates the effects of the particle's geometry and refractive index from the

problem. This effectively reduces the number of parameters to three: the

complex index of refraction of the surface, the particle-surface separation, and

the incident Illumination angle. Understanding the trends in a simpet system

consisting of only three parameters leads to a better understanding of what

happens in more complex systems. If we are unable to comprehend how a

simple system scatters light, we cannot hope to understand the scattering

from a system that Is more complex.

Finally, it may be asked If any of our conclusions are valid for a

particle of finite size. Figure 11 compares two sets of curves. One Is the set

of Mueller matrix elements for a dipole separated d 2 X/10 from an aluminum

mirror Illuminated at an angle of Incidence of 30. The other is a set of theo-

retical Mueller matrix elements for the same system with the dipole replaced

by a X/10 radius sphere of index 1.S resting on the surface. The theoretical

system has been derived by solving the boundary conditions at both the sphere

and the surface. Its solution is the subject of another paper.' The two curves

am quaite similar, with differences arising from the geometry and refractive

index of the finite-size sphere. The scattering from such a system can be

meesured Weber and Hlrleman made scattering measurements from a single

sphee .d radiI --A/2 using a He-Ne laser for Illuminatlom.* A higher power

law is the Infrawl region would facilitate the measurements. On a more

pm ial mote, this model could be used to measm sub-wavelengtl contaml-

naft sizes and/or densities by placing detectors at appropriate scattering

locations and monitoring signal changes in the matrix elements as the surface

is scanned.
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Figur Captions

Fig. I. The geometry of a dipole-surface scattering system: the dipole, repre-

sented by a circle, rests a distance, d. from a surface of index n. The

incident angle 0. and the scattering angle -9 are measured from the sur-

face normal.

Fig. 2. The Paths that an incident beam may follow to the dipole and after

Interaction before being detected on the incident side of the surface.

Fig. 3. Th. paths that a beam may follow before being detected on the tran-

smitted side of the surface.

Fig. 4. The Mueller matrix elements for an isolated dipole.

Fig. S. The Mueller matrix elements as a function of dipole distance from a

surface of Index a - 10.0 - 0.01 Illuminated at normal incidence. -

Distance a X/1000. 0-O Distance a X/4- X-X Distance a X /2.

- Distance s /4

Fig. 6. The Mueller matrix elements as a function of dipole distance from a

surface of Index a a 28.0 - 9S.01 Illuinated at normal incidence. -

Distance = A/1000. 0-O Distance a X/4. X-X Distance a X /2.

+--+ Distance a U/J4.

Fig. 7. The Mueller mastrix elements as a function of dipole distance from a

surfae of index a a 15- 0.00 illuminated at nimal Indene -- 1.

Dlsk a )/1000. 0-O Distance a X/4. X-X Distance z X/2.

.- * Distance a U/~4.

R&g S. The Muteller matrix elements as a function of Incident angle of illumi-

nation for a dipole a distance X/10 from a sueace of index a x 10.0 -

0.0..-.b P0.-0-O 3W. X-X 09a 6W.
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Fig. 9. The Mmeler matrix elements as a function of incident angle of illumi-

uaton for a dipole a distance X,/10 from a surface of Index a = 28.0 -

95.01. - . z 0". 0-0 3. = 30". X- X 0. a 60".

Fig. 10. The Mueller matrix elements as a function of incident angle of illumi-

nation for a dipole a distance X/10 from a surface of Index a 1.S -
0.01. 0 . a 0". 0-00 = 30". X-X 8. = 60".-

Fig. 11. The Mueller matrix elements as a function of Incident angle of illumi-

nation for a particle 1/10 from a surface of Index n = 28.0 - 96.01 and

Incident angle of 30.e A dipole. O-O A sphere of index n

1.55 - 0.01 and radius X/10.
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Electromagnetic scattering from a sphere: the near-field region
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Abstract

Although the general case of electromagnetic waves scattered from

a sphere when illuminated by a plane wave was formulated by ile more than

half a century ago, almost all measurements and calculations of the total

scatter have concentrated on the far-field region. We examine the electric and

magnetic field topographies as well as the scattering Mueller matrices in the

near-field region of a Me sphere.
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I. Introduction

In the nineteenth and early twentieth centuries, one of the most

important problems in the application of Maxwell's theory to phenomenon tak-

ing place in nature was the interaction of electromagnetic waves with matter.

An important example is the work of Rayleigh' in explaining the blue color of

the sky in terms of scattering from particles small in comparison with the

optical wavelengths. An analysis of electromagnetic waves scattered from a

sphere was published by Clebsch in 1863, and like Fresnels reflection equa-

tions, his solutions appeared before the development of Maxwell's equations.

Although the radiation scattered by a sphere was solved by Mle in 1908, 3 and

refined by Debye in 1909' when he investigated the incident electromagnetic

wave pressure on particles, the result was also obtained by Lorenz in 1898.

The geometry of spherical systems is especially appealing because spheres

possess high symmetry and they occur naturally, being a condition of minimum

potential energy. Extensive applications to atmospheric sciences occur where

rainbows, planetary atmospheres and other systems are explored in books by

van de Hulst,' Kerker,' and Bohren and Huffman.'

The relations of Mie's general theory are relatively simple when the

distance kR to the sphere lay in the electromagnetic far-field region where

only scattered fields decaying as 1/kR are significant. Fifty years after Mie

presented his theory, King and Wu lamented the fact that "sufficient data do

not seem to be available to construct a complete representation about a con-

ducting sphere" as that shown for an infinitely-long, conducting cylinder (in

referring to figures in the text showing the near-field region of the cylinder).
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In the same text, they devoted an appendix to plots of surface currents on

perfectly-conducting spheres of increasing size illuminated by incident plane

waves which were obtained from a large, state-of-the-art military computer

program directed by Nelson Logan for USAF Cambridge Research Center.

Most theoretical work and scattering applications consider only the

far field, optically represented as the Fraunhofer region. For instance, all three

scattering programs in the book by Bohern and Huffman (ref. 8) calculate the

far fields. One notable exception is the work of Aden who ingeneously mea-

sured the near-zone fields of metal and water spheres along the back-scatter

direction in the microwave region of the spectrum. With the advent of better

computers, the entire electromagnetic fields can now be calculated easily. It is

instructive to see what happens as the detectors move into the near-field

region, optically represented as the Fresnel region. We want to know the error

involved In assuming a far-field solution when we know our detector is not at

infinity. We also want to know just how the near-field region differs from the

far-field region.

In experiments where scattering systems are illuminated with visible

wavelengths (. a 0.63280m, for instance), a detector mechanism only one

meter distant, would certainly seem to be operating in the far-field region.

At this distance, changing the scatterer-detector distance by a factor of two

would not change the relative shape of a scattering signal, therefore the de-



tector is considered to be in the far field for all practical considerations.

Indeed, Beirs" measurements of the light-scattering Mueller matrix for a

fiber, seemed to verify this (although his optical system was typical, it cer-

tainly was not universal).

In this paper we explore the near-field region of a Mie scatterer.

First we will calculate the entire field. We will then calculate the scatter that

would be measured in the far-field region, and compare the results with what

would be measured in the near-field region.

1L Mle Theory

Figure 1 shows the arrangement of the scattering system. A sphere

of radius a, and complex refractive index n' is centered on the origin. A plane

wave, electrically polarized In the x direction, propagates in the positive z

direction. We detect the electric and magnetic fields at position R. 0, tp from

the center of the sphere (R is the sphere-detector distance).

We report only the primary results of Mie theory since formal deri-

vations exist in many of the cited texts. The electric and magnetic components

of the fields incident upon the sphere are

a. b.W", and (1a)
..o meo

M
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where k a 27 /X is the wavenumber, w is the angular frequency, and g is the

permeability of the incident medium at X. The vectors WIL" and N- ' are given

by

KX 'im zP' (kr) P:cos$) nq

$[z, (kr)-( Pcos)ei eiM and (2a)

For example, j * l corresponds with the use of the functions z-"'(p) = J-(0), j =

2 corresponds with the u+ of the functon z.t"(p) * y.(p), and j = 3 corre-

sponds with the use of the functions z.'(p) * h."'(p) - j.(p) * ly.(p). The func-

tions P.(cos3) are the normalized asociated Legendre polynomidal defined by

' - ro.k))m ./(2n.)(n'm)'

For an Incident eiectomagnetic plane wave traveling along the positve z axis

and polarized alongd the x axis, the coefficients are

2- s wit t u*of (t fi.,. &..,), and (cr

2nI + d)
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b. = E.i"' 2 ' (S...,- . (b)

where E. is the maximum amplitude of the electric field. Internal fields

are also generated when k' c:

, - c .. '" + d .. ', and (Sa)

H1.4 CA.(Sa)

..t a k_ d..M.." • c..M.", (sb)
i .' .,o....

where k' = kn' is the wavenumber of the sphere medium for incident wave-

length ), n' is the sphere refractive index and IL' is the permeability of the

sphere medium at wavelength X. The scattered fields are

3... = e. ,,'" + f -W,.', and (6a)

H... = k ,, ,I. ' + e,.,,", (6b)

By applying boundary conditions, the scattering coefficients may be solved

in terms of the coefficients of the incident field:

e. -a- k'gLII'(k'a).(ka)- kp'4'(ka)4;(k'a) (7a)
k'p.'(k'a).(ka) kIA'o(ka)4.(k'a)' and(

f. -b- k'W.'(ka)*.(k'a) - k '*,'(k'a).(ka) (7b)
k'.9.'(ka4-.(k'a) - kg' (ka).(ka)
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where 4(p) a pj.(p), and (p) =ph.'"(p). These coefficients can be reduced to

much simpler expressions when the refractive index of the sphere approaches

large values, in which case

.(ka)
0.= -a.- {k and (8a)

f. = -b- 4'(ka) (8b)
U.(ka)

We will detect the fields in two different planes, one in the y-z

plane ((p = 90) which lies perpendicular to the incident electric field (the TE

plane, or H-plane), and the other in the x-z plane (p 0") which lies per-

pendicular to the incident magnetic field (the TM plane, or E-plane). We can

represent the fields in the form of matrices:

Cl E,' , S3 (E'* HV .S3 y
Eo 2 ke , He S' Hu) ,where (9)
Er s eHr so,'&

ta a X21[ IUk)P' f. - h;'(kR)I '(COSO).~, (10a)

S. = 2 e.k * -P. (cos#)f., (10b)sinO kR 6.
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I 2n(n.1)-kR P.'(cos#)f., (10c)

S3 = 2nk n F (kRJ.(cos$) C) (10d)

,--- Y2[ +--'A~, ](osM
p.. kRsin ,

S.= 2 [ih'(k)P.'(cos$)f., + '(coso)ed], (10e)

S.. -. s(in) kR (cosse.e,, and (10f)

S z S 2 S -SI' X Se' So' 0. (log)

These expressions hold for the fields everywhere. To get to the far-field re-

gion we let kR -) o, where these expressions are further reduced by taking

advantage of the asymptotic behavior of the spherical Hankel function:

h. III(-) H (-)e, and F.'() * (-i)*e'4, for i1pi >> I yield (11)
ip

2"e1kR s#

So *: V--1-- C *(o e., *-.(cos$) f.,] (12b)kR 'si, O
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Z- CO + ikR

S. - 2n(n,1)(-i) L . P ' cos , (12c)
i(kR) f

S; = k Sa, (12d)

V, = . ..k Si, and (12e)

1kR
S.'= -" 2n(n+l)(-i)ei-- Pa (cos8)e.,. (12f)

As the sphere-detector distance is increased, matrix element S. and S.' (which

vary as l/e) approach zero more rapidly than do the other matrix elements

(which vary as 1/R). We see here another significance of the far field. The

E and H field vectors are not only orthogonal to one another and to propaga-

tion direction , but are also in time and spatial phase so as to compose a

wave front moving at the speed of light In the wave medium (equations 12c,d).

nL How fK I& f W

Equations 9-12 can be used to determine whether the radiation from

a scattering system is In the near or far field. As an example we start by

examining the scattered fields from a dielectric (quartz) sphere of refractive

index n' .I.SS + 0.01 in the optical region of the spectrum G a 0.6328gm

HeNe laser radiation). We arbitrarily choose the radius of the sphere to be
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a a O.S2SIm, a size large enough to provide some oscillatory structure on the

scattering curves.

A. The Electric &i

Figure 2 shows the intensity of the electric fields as a function of

scattering angle at four different observation distances. The TE curves corre-

spond to measurements when the incident electric field is transverse to the

scattering plane (a measurement of S,*S,). The TM curves correspond to mea-

surements of the non-radial component of the electric field when the incident

magnetic field is transverse to the scattering plane (a measurement of Sa*S).

The RD curves correspond to measurements of the radial component of the

electric field when the magnetic field is transverse to the scattering plane (a

measure of SS). Four sets of curves are shown respectively for sphere-de-

tector distances of R a 1)., R u 3. R = 9,. and R a w. To facilitate compari-

son, the elements have all been normalized for sphere-detector distance [mul-

tiplied by (kR) for TE and TM and (kR)' for RD]. Note that at the endpoints

(0 a 0 and 8 a 180) the TE elements are equal to the TM elements and the

RD elements are zero.

These curves show that at optical wavelengths, the far field is not

very far away from the scatterers. This is shown by the fact that three curves

(R u 3X, R a 9), and R - cc) in each set of four have very similar shape and

almost coincide, while the fourth curve (R z D.) is quite different. When the

sphere-detector distance is only R a 3, the matrix elements are already simi-
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lar to those for R = w. When R = 9X (less than 6Im at optical wavelengths!)

the elements are almost indistinguishable from far-field elements. This shows

that near-field phenomena occurs only very close to the particle, and that it is

very difficult to measure near-field signals in scattering experiments at optical

wavelengths. An infinitely-small, non-interfering detector would have to probe

the field at R - X.

B. e Mgueic Fields

We next look at the magnetic fields and compare them with the

electric fields for the same system. Figure 3 shows the intensities of the mag-

netic fields as a function of scattering angle at four different observation dis-

tances (note that TE corresponds to SS,', TM to SOSs, and RD to Ss"S,).

Four sets of curves are shown respectively for the same sphere-detector dis-

tances of R - D., R a 3X, R z 9)., and R a cc used to calculated the electric

field Intensities of Fig. 2. To facilitate comparison, the elements have all been

normalized for sphere-detector distance and for field strength (multiplied by

wa./k). As with the electric field curves, three curves (R z 3), R a 9)., and R =

w)) in each set of four have very similar shape and almost coincide, while the

fourth curve (R a WX) is quite different. Only in the far field when R = co does

the magnetic field behavior approach that of the electric field, the ratio bet-

ween them being uL/k. The TE and TM electric and magnetic field intensity

curves are identical in the far field. Since the radial component approaches

zero much more rapidly (as i1') than the other components (which decay as

1/1M), it does not contribute to the intensity in the far fields.
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C. The Matrix Elements

Finally, we generate the Mueller matrix elements" from the above

expressions for the fields and examine their behavior as a function of sphere-

detector distance 1t The Mueller matrix, which Is defined In terms of the

electric field components S, and Sa, is especially attractive experimentally

because it completely quantifies the polarization state of the system. The

matrix does not, however, include the radial component of the system. This

component which decays as 1/f contributes only to the total field and not to

radiation from the system since the radiation term decays as 1/ft An ideal

(infinitely-small, perfectly-impedence-matched) detector placed in the near-

field region cannot distinguish between the radiation terms and the total

electric field. Only four elements of the 16-element matrix are non-zero and

unique. Only these are necessary to characterize a symmetric scatterer like a

sphere. These four Mueller matrix elements for the a x O.S2S m radius quartz

sphere calculated from the data shown in Figs. 2 and 3 are presented in Figure

4.

The Mueller matrix is an especially useful diagnostic tool for expe-

rimentallst because It is self-calibrating. The polarizations are independent of

intensity. It Is Important to emphasize the value of the matrix elements as

discriminators of small differences. The electric fields measured at R a 1). in

Fig. 2 can easily be distinguished from the others measured at R a 3), R a 9X,

and R a c. However they are proportional to the source Intensity and detector

efficiency. If these parameters are unknown, the absolute Intensities are un-
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known and the similarity in shapes will prevent discrimination of these four

curves. The situation is entirely different with the Mueller matrix elements of

Fig. 4. Although the curves are similar, they are distinguishable. A detector

measuring element S33 near 135" can easily distinguish all the elements at the

four different sphere-detector distances, and the signal is completely indepen-

dent of the source intensity.

V. What about conductivity?

Earlier in the paper we simplified the equations representing the

scattering amplitude coefficients by letting the sphere refractive index

approach infinity. Making the sphere a perfect conductor provides an interest-

ing example because it provides one limit to which the refractive index of the

sphere may approach. Another interesting example, known as the Rayleigh-Gans

region, occurs when the refractive index of the sphere approaches the refrac-

tive index of the encompassing medium. In this limit, where the refractive

index of the sphere Is Identical to the refractive index of the encompassing

medium, the sphere disappears. It is optically invisible and no scatter can

occur. The Intensities of the electric fields as a function of scattering angle at

different sphere-detector distances for a perfectly-conducting, a = O.S2Stan ra-

dlus sphwe illuminated at X a 0.6328"m are shown in Figure S and the corre-

sponding intensities of the magnetic fields are shown in Figure 6. The curves

for the conducting sphere are much smoother than those for the dielectric

sphere (shown in figures 2 and 3) because the fields are unable to penetrate

the conducting sphere. The scatter from a perfectly-conducting sphere and a
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dielectric sphere can be compared to the reflection of a light source from a

metal mirror (with one boundary) and a sheet of glass having two boundaries.

The metal mirror provides a well-defined reflection, but the intensity of the

light reflecting from the sheet of glass will oscillate through maxima/minima

due to interference occuring between the fields which reflect off the front and

rear boundaries of the glass. These oscillations are perhaps more pronounced

in the Mueller scattering matrix shown in Fig. 7.

Finally we should see if the approximation of large refractive index

has any physical significance. To do this we examine the scatter from an a s

O.52S~m radius partially-conducting sphere of aluminum (n a 1.1 * 6.01) illumi-

nated at X = 0.6328km as a function of scattering angle at four different

sphere-detector distances R. The matrix elements for this system are shown in

Figure 8. They are very similar to the elements of Figure 7 for perfectly con-

ducting spheres. Therefore, even though the refractive index of aluminum is

finite, its scattering properties can be estimated by considering scattering in

the limiting case of a perfect conductor.

The near field can be distinguished from the far field by placing a

-perfect" detector within a few wavelengths of a sphere whose size is compar-

able with the wavelength of the illuminating radiation. Unfortunately the de-

tector will measure a mixture of the scattered fields and the incident fields

since there is no way to filter out the incident fields from the scattered



fields. Therefore the incident fields must be included in measurements taken

in the near field.

This does not occur experimentally for most scattering measure-

ments since they are made in the far-field region. The laser illumination.

though not an infinite plane wave, is very nearly constant over the scatter-
4.

ing system (sphere). Also, because the laser beam has a small diameter (~

1OOOa), the angular subtense of the incident field is very narrow, occuring

mostly in the forward scatter (8 - 0). Therefore it is not collected by the de-

tector system at large angles. Even though such systems are not illuminated

by an infinite plane wave (the laser beam intensity cross-section is approx-

imately Gaussian), the resulting scatter is very nearly what is predicted with

plane-wave illumination (ref. 13).

In order to study the interference of the scattered radiation with

the incident plane wave we investigate a system with a simple scattered radia-

tion pattern: an a a 0.2S), radius, perfectly-conducting sphere. Now we can

distinguish between the effects due to the fields scattering from the sphere

and the effects due to the fields Interfering with the plane wave. Figure 9

shows the Intensities of the electric fields for this system as a function of

scattering angle at four different sphere-detector distances. Reducing the size

of the sphere relative to the incident wavelength reduces the oscillatory fre-

quencies in the scattering as a function of scattering angle and the total

amount of scattered radiation. The interference effects are best seen when the

scattered intensities are comparable to the incident plane wave intensities
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where the measurements are made. We keep in mind that the plane wave in-

tensity does not dipend on detector position; whereas. the total scattered ra-

diation decays as I/R'. The curves of Figure 9 are for a sphere whose scat-

tered fields have only a small angular dependence.

Figure 10 shows the interference of the scattered electric fields with

the incident plane wave from an a = 0.2S)X radius, perfectly-conducting sphere

as a function of scattering angle at four different sphere-detector distances.

The intensity on these graphs is not normalized for distance. At a sphere-de-

tector distance of infinity, the fields give the well-known "Rayleigh curves-

and are due entirely to the plane wave (IT a 1, Ir. a coAS=, and Ino = sin)). As

the sphere-detector distance is reduced, oscillations about these values appear

in the interference patterns.

VI. Tooographical Plots

It is apparent that the near-field interference is very complex and

rich with structure. In order to view this complexity from a different vantage

point, we generated the topography of the electric and magnetic field intensi-

ties in figures It and 12, respectively. These plots show the intricacies of the

new-field and elucidate certain features which are not apparent on the other

flSgwV Intensity is shown In the vertical axis. The sphere lies on the z axis

and the scatter is. shown only to the left of the z axis (in the x-z or y-z

plane).

l l l l i
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There are several points to make from these plots. First, the inter-

nal fields within the perfectly-conducting sphere are zero. Second, boundary

conditions force the electric fields parallel to the surface (TE and TM of

Figure t) and the magnetic fields perpendicular to the surface (RD of Figure

12) to zero. In these three plots, the fields outside the sphere approach zero

as the sphere-detector distance approaches the sphere radius (R -I a). In the

other three plots (RD of Figure It and TE and TM of Figure 12), there are

discontinuities in the field intensities at the boundary of the sphere. To satisfy

the boundary condition at the sphere surface, a surface current is induced on

the sphere equivalent to the magnetic field at the surface of the sphere. Third,

all radial fields along the z axis are zero. Fourth, the TE fields are identical

to the TM fields along the z axis. Fifth, the TE and TM field intensities decay

as I + I/Ra. And sixth, standing waves appear in the intensity distribution.

The standing waves that appear in figures It and 12 are the result

of the scattered spherical waves interfering with the incident plane waves. To

gain insight into the origin and implication of these standing waves, we exa-

mine the scalar components along the z axis. The amplitude of the unit-nor-

malized incident plane wave is of the form e". The scattered spherical waves

are of the form A'*' for negative values of z and Be" for positive values of z

where A and B contain additional phase and amplitude information (the spheri-

cal amplitudes must decay as I/f for instance). In the negative z direction,

the sum of these exponentials (e"' + Ae") indicates a decaying standing wave

and a traveling wave, while in the positive z direction the sum (e" + Be*a) in-

dicate only a traveling wave. Figure 13 shows the electric and magnetic fields
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along the z axis for a perfectly-conducting, a 0.2SX radius sphere. The

standing waves appear in the back-scatter region (negative z). Note that the

electric field standing waves, which have a node (1 0) at the sphere surface.

are 180" out of phase with the magnetic field standing waves which have an

antinode (1 - 3.7S) at the sphere surface. The spatial frequency of the standing

waves is twice the frequency of the incident radiation.

We now consider the shapes of the nodal and antinodal regions in

the scattering plane. These regions are produced by the interference effects of

the incident plane wave and the scattered spherical waves. Antinodal regions

occur in regions where these two sets of waves meet in phase, and nodal re-

gions occur in regions where they meet out of phase. We are looking, in

effect, at contours In space where the distance from some reference plane

wave is equal to the distance from the center of the spherical plane waves.

This is precisely the definition of a paraboloid. Figure 14 shows contour maps

of the TE electric field Intensities and the TM magnetic field intensities for a

perfectly-conducting, a a 0.2S), radius sphere interfering with the incident

plane wave is shown in Figure 14. The parabolically-shaped standing-wave

patterns are clearly seen.

viL scmso

We have examined electromagnetic waves scattered from spheres in

the near-field and found that the field distributions quickly approach those of

the far-field (within about 10 wavelengths for spheres whose radius is approx-
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imately the wavelength of the incident radiation). We examine the near-field

region where the scattered fields cannot be separated from the incident fields.

The most striking feature of the near-field region is the parabolically-shaped

standing waves that form in the backscatter region.
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Figure Captions

Fig. 1. The scattering geometry showing the sphere of radius a centered on the

origin.

Fig. 2. The normalized scattering electric field intensities for an a = O.S2Sgm

radius quartz sphere illuminated by X = 0.63280m light for sphere-detector

distances of R = IX (.-), R - 3). (O-O), R - 9). (X-X), and R = (co .).

Fig. 3. The normalized scattering magnetic field intensities for an a = O.S2Spm

radius quartz sphere illuminated by X - 0.6328pm light for sphere-detector

distances of R 2 t% (o'e) R - 3). (O--O), R - 9), (X-X), and R = o(

Fig. 4. The scattering Mueller matrix for an a a O.S2Sp&m radius quartz sphere

illuminated by X = 0.6328pm light for sphere-detector distances of R = 1X

(-), R = 3) (0-0), R z 9) (X-X), and R z os (--.

Fig. S. The normalized scattering electric field Intensities for an a - O.S2Sigm

radius, perfectly-coanducting sphere illuminated by ), - 0.6328pm light for

sphere-detector distances of R a IX (*-), R - 3X (O-O), R 9X (X-X).

and R a co

FRg. 6. The normalized scattering magnetic field intensities for an a a O.S2Sgm

radius, perfectly-conducting sphere illuminated by ). a 0.6328Im light for

sphere-detector distances of R u IX ( -), R - 3X (0O- ), R - 9X (X-X).

and R 2 co
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Fig. 7. The scattering Mueller matrix for an a = 0.S25Lm radius, perfectly-con-

ducting sphere illuminated by ) = 0.6328gm light for sphere-detector distances

of R = IX (,-*), R = 3X (O-O), R = 9) (X-X), and R = co (- ).

Fig. 8. The scattering Mueller matrix for an a z 0.S2SIm radius aluminum

sphere illuminated by X = O.6328(im light for sphere-detector distances of R =

IX ( -), R = 3) (O--O), R = 9X (X-X), and R co (---). "

Fig. 9. The normalized scattering electric field intensities for an a = 0.25)

radius, perfectly-conducting sphere at sphere-detector distances of R z O.S).

(*--), R = 0.75X (O-O), R = 1.O). (X-X). and R a w (- ).

Fig. 10. The normalized scattering electric field Intensities for an a = 0.25X

radius, perfectly-conducting sphere interfering with the incident plane wave at

sphere-detector distances of R a 0.S), (o-), R = 0.7S), (0-O), R = L.OX

(X-X), and R a o (4-o ).

Fig. 11. The normalized topography of near-zone electric field Intensities for an

a = 0.2SX radius, perfectly-conducting sphere interfering with the incident

plane wave

Fig. 12. The normalized topography of near-zone magnetic field intensities for

an a a 0.25X radius, perfectly-conducting sphere interfering with the incident

plane wave.
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Fig. 13. The normalized scattering electric and magnetic field intensities for an

a = 0.2S), radius, perfectly-conducting sphere interfering with the incident

plane wave measured on the z axis.

Fig. 14. Contour maps of the normalized scattering electric (TE) and magnetic

(TM) field intensities for an a - 0.25X radius, perfectly-conducting sphere

interfering with the incident plane wave.
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