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The work done the past two years with Air force support has been
very productive with regard to research done, papers published
and students trained.

I am proud to say that two students working in my laboratory
on these light scattering problems have received advanced
degrees.

Gorden Videen defended his PhD Dissertation in March getting his
doctorate from the University of Arizona Optical Sciences Center.
Please note that he is a co-author on all of the above papers. He
was totally responsible for the theoretical work and took full
responsibility for their publication. He now rates among the
very best small particle light scattering (electromagne%ic)
theorists in the country. He now has a Post-Doctorate position in
the Physics Department at Dalhouise University in Halifax Nova
Scotia.

Jiunn (June) Yann Shu will defend his MS thesis in few days.
Jiunn has done most of the experimental work for the program. He
is a very careful and clever experimentalist. His careful work in
preparing samples and making the measurements stands as a great
credit and something he can be proud of. He is one of the few
good small particle experimentalist around.

A number of High school students, undergraduates, graduates and
other personnel have gained valuable experience helping with the
work. The research group consisted of the following:

William S. Bickel Principal Investigator

Gorden Videen Graduate student in Optical Sciences
James Dugan Graduate student in Atmospheric Physics
Joseph M. Boyer Visiting Senior Scientist

Jim Gilmore Honors undergraduate in Physics

June Yann Shu Graduate student in Physics

John Pattison Graduate student technician (physics)
Steve Robinson Graduate student in Physics

John Petti High School Professional Intern
Daniel High School Professional Intern

Jon Haas Undergraduate in Physics

Eric Fest Undergraduate in Engineering-Physics

also 8 Independent Studies Students

We are thankful to William L. Wolfe of the Optical Sciences
Center for many helpful discussions.

The Air Force Support for this two-year project was $49,000.

I do not have a big laboratory or a big program. Consequently I
don’t need much money. However I am fortunate to attract good
students who are interested in this area of physics and are
willing to work hard. There is a growing need to train students
in the basics of experimental science. This modest AF program has
contributed to the education of many potential scientists.
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Light scattering from a sphere on or near a surface

Gorden Videen

Optical Sciences Center, University of Arizona. Tucson. Arizona 85721

Received April 27, 1990; accepted October 20. 1990

The light-scattering problem of a sphere on or near a plane surface is solved by using an extension of the Mie theory.
The approach taken s to solve the boundary conditions at the sphere and at the surface simuitaneousiv and to
develop the scattering amplitude and Mueller scattering matrices. This is performed by projecting the fields in the
haif-space region not including the sphere muitiplied by an appropriate Fresnel reflection coefficient onto the half-
space region including the sphere. An assumption is that the scattered fields from the sphere. reflecting off the
surface and interacting with the sphere. are incident upon the surface at near-normal incidence. The exact solut®on
is asymptotically approached when either the sphere is o large distance from the surface or the refractive index of

the surface approaches infinity.

INTRODUCTION

Light scattering from a cylinder was solved independently
by Lord Rayleigh! in 1881 and by von Ignatowsky? in 1905.
A few years later, Mie’ solved the scattering from a sphere.
Liang and Lo* extended this theory for two spheres.
Kattawar and Dean’ confirmed the existence of resonances
discovered by Wang e¢ al..* who measured microwave scat-
tering from two dislectric spheres. Bobbert and Vlieger’
used operators to solve for the scattering of a small sphere
near a surface. Yousif® solved for the scattering from two
parallel cylinders and recently solved for the scattering from
a cylinder on a surface. Yousif's results have been verified
experimentally by comparing his theory to the light-scatter-
_ ing Mueller matrix elements measured for a cylinder on a

surface.’ His approach to the problem of a cylinder on a
surface has been adopted to solve the scattering of a sphere
on ot near a surface. The approech is similar to that taken
by Rao and Barakat,!? who calculated the scatter by a coa-
ducting cylinder partiaily buried in a conducting medium.

The method used to caiculate the electromagnetic radia-
tion scattered by the systam is to address bow the radiation
may interact with the sphere. The incident plane wave
strikes the aphere either directly or after interacting with the
medium at the surface, in which case it is an image plane
wave. Fer-flald redistion is a resuilt of & superposition of
fields sither directly frem the sphere or from the image
sphers. The fislds emaneting from the sphere may
reflect off the surfoss and interact with the sphere
The magnitude and phase of the flelds about the i
sphere are altered by the reflections that take place st the
surface by the Fresnel coefficients. One sssumption is that
the scattered fisids from the sphere, reflecting off the sur-
face and interacting with the sphere, are incident on the
surface at near-normal incidence. The ezact solution is
asymptoticaily approached when either the sphere is a large
distance from the surface or the refractive index of the sur-
face approaches infinity.

Figure 1 shows the geometry of :he scattering system. A
sphere of radius a is located on the z axis a distance d below s
plane surface bounding two medie of different refractive
indices oriented perpendiculer to the 2 axis. The incident

il
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radiation is a plane wave tra~eling in the x-z plane, oriented
at angle a with respect to the 2z axis. The wavelength and
wave vector for the plane wave in the nonabeorbing, non-
magnetic incident medium below the substrate are A and k,
respectively. The complex wave vectors for a plane wave of
the same frequency in the sphere and the medium above the
surface are kg, and ko, respectively.

SOLUTION

The solution to the light scattering from a sphere on or ncar
a surface is treated here in ssveral subsections. In Subsec-
tion 1 the scalar wave equation 13 solved, and the vector wave
functions and Debye potentials aic developed. In Subsec-
tion 2 the scattering coefficients are solved tor a general case
In Subsection 3 the specific case of a sphere-surface system
illuminated with plane-wave incident radiation is solved.
Finally, in Subsection 4 the Muelier matrix elements are
derived from the scattering coefficients.

1. Wave Equations

The starting point for this scattering problem is the vector
wave equation, which is derived in almost any text on eler-
tromagnetic theory!!:

’B JE
-2 e e S m,
VB -~ ue ek
*H ) |
v‘n-m;;-.u}—-o. (L

whaere K and H are the electric and magnetic field vectors.
respectively. With the assumption of a time dependence of
the form exp(—iwt) thess equations can be "1sed for derrving
the scalar wave equation, which in spherical polar coori-
nates may be expressed ss

@Myl

1
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Fig. 1. Geometry of scatterin system. A spbers of radius o is
located a distance d from a surface. A plane wave travels in the z-z
plane st angls a with respect to the z axis.

A separable solution of the following form is assumed:
u(r, 9, ¢) = R(r)o(9)e(y). 1.3)
The particular functions satisfying Eqs. (1.2) and (1.3) are

$(p) = expl(ime),

8(9) = Pricos 9) = [Q_"_tl_)"ﬂ)_' 2

30 + ) ] PT(cos ¥),

2
R(r) = 2,(kr) = (.;;)” Z,, k), (1.4)

where P™(cos J) are associated Legendre polynomials and
2.(kr) are either spherical Bessel functions of the first kind,

“ jalkr), or spherical Hankel functions of the first kind,
h'''(kr). The electric and magnetic fields may be expanded
in terms of the vector wave functions M, and N, (i = 1
corresponds to j,(kr)’s being used and { = 3 corresponds to
h.!'(kr)'s being used):

E=Y p.aMin + dual¥i,
nm,

H=— V PamNith + QM. (1.5)
wu

The vector wave functions M', and N, assume the follow-
ing form:

MY, =g [S:T"'a. 2,(kr) P (con O)up(imo)]

-9 {2 (k) 2 [P"‘(co. v))]oxp(uno)}

Gorden Videen

N = ¢ [f; z,,(kr)n(n + 1)P7(cos O)e:p(im)]

-
ot s

Rather than expanding the electric and magnetic fields in
terms of the vector wave functions as in Eq. (1.2), it is often
convenient to expand the fields in terms of the Debye poten-
tials:

— [rz, (lu')] [P"(ooo 0)]exp(¢m)}

3 raahn] == im == Pl(cos a)exp(inw)}. (18)

E-va(rpm uh) + 1 £ VX VX (equmtiin),

am
k @ )
H'.’w;vx‘"”‘"‘“ W)+ = VXVX(rpmu ).

(L7

The Debye potentials are pants ) and qumis il The coef. -
cients D, and gam are common to both potentials and vector
wave functions, making it convenient to consider the scatter-
ing problem from either perspective.

2. Scattering Coefficients

The general case for scattering from a sphere on or near &

surface can be treated by representing the incident field on

the sphere as a superposition of terms in the expansion given

by Eq. (1.5):
E"‘-Z Z a

neQ ma=n

1.+ b,uNE2

. R - o
H*®s —
o .2,
The coefficients anm and b, will be solved for the special
case of an incident plane wave in Subsection 3. The radial
functions used in expanding the vector functions for the
incident radistion are the spherical Bessel functions /.(kr).
In this saction the scattering coefficients will be solved in
terms of thess cosfficients. The scattered field is also ex-
panded:
=53

) me=n

b M + g, N, D

E"'-—Z Z [ M + ¢, N2, (2.2)

neQ me=n

The radial functions are the spherical Hanksl functions of
the first kind A "(Akr). The fields inside the sphere are alsy

expanded:
eSS MO +d N,
2 2,

A S S

wibvoh 130 memn

d MY +c, N (2.3

™
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The radial functions for the internal fields are the spherical
Bessel functions ja(ksa?). To this point, the aralysis is
identical to those given by Rafs. 11-14 for the case of a single
sphere (Mie theory), except that here the coefficients a,»
and b will include a reflection from the surface. In addi-
tion to the three fieids described by Equ. (2.1)-(2,3), a fourth
field is incident upon the sphere. The field is a result of
the scattered field of the sphere’s reflecting off the surface
and striking the sphere. This interacting field is also ex-
panded:

Emt‘v T gan‘“ +h NL‘,:,,

n-O 'nl—n

H™ 2 — ? ? h “m +gnle-|ln)|' 12.4)

ame

The radial functions used for the interacting field are the
spherical Bessel functions j.(kr).

The nest step is to apply the boundary conditions at the
surface of the sphere. The coefficients for the internal
fields, ¢am and da., can be eliminated, and the scattering
coefficients can be solved:

o ™ =G + Bpm)
Rt (Ripu0)¥a(h) = Ritga¥n(R9)Yxkrga)
Rypuis¥ (Rygn8)Ea(RG) = Ritso£0(ROIW, (R i)

(3,0t £

Fom ™ =0 + Arm)
N Ry bV a (RO, (R 58) = Rityou¥a(RogaC )W (R0)
Roonsfn (RO (Ro0a8) = Ribpu¥n(Regya)Eqika)
* (bom + B Q) (2.5)

where ¢{r) and {(r) are the Riccati-Bessel functions defined
by .

;..(r) = rialr),

Ea(r) = rhiM(P), (2.6)

and the primes denote derivatives with respect to the argu-
ment.

The interaction cosfficients can be solved by using the
relationship betwesn the scattered field and the intaraction
field. The interaction Seld is due to the scattered ficld's
reflecting off the wurfies and striking the sphers. The inter-
action field is the image of the scattered fleld. Identically,
the interaction potemtial is the image of the scattered poten-
ﬁ‘l- .

Figure 2 shows the two coordinste systems, ous centered
sbout the real sphere and one at an image location of the
coordinate system, a distance of 2d along the positive 2 axis.
It is easiest to consider potentials when solving for the inter-
action coefficients. The interaction potentials are the scat.
tering potentials centered about the image coordinate. The
intersction coefficients, however, are inverted and undergoa
reflection at the surface. The inversion can be explained by
taking advantage of the nature of the associated Legend-e
polynomials that make up the potentials; i.e.,

Pr{cos(x — 9)] = (=1)**"P7(cos(¥)]. @7
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Fig. 2. I[mage coordinate surface is located a distance 2d from the
sphere coordinate system aloag the positive 2 axis. Fields in the
image coordi=zte system are inverted; o.g., the image of the incident
plane wave travels in the -z plane at angle r — o with respect to the
z axis.

An approzimation is made in order to account for the inter-
action. The interacting radiation is assumed to strike the
surface at normal incidence. A Fresnel reflection at normal
incidence is then used to account for the reflection loas at the
surface. This same approzimation was used by Yousif to
solve for the scattering from s cylinder on a surface that has
been verified by experiment. Justification for this approxi-
mation can be seen by tracing rays from the image coordi-
nate system to the edges of the sphere, as in Fig. 3. The
maximum angle at which s ray emanating from the center of
the imag- coordinate system strikes the surface is 30°, and
the Fresnel coefficients are fairly constant from normal inci-
dence out to this angle for most optical materials. For
highly conducting optical surfaces, such as mirrors, the Fres-
nel coefficients are nearly constant from 0° to 90°, and, as
the refractive index approaches =, the Fresnel coefficients
are constants and thers is no approximation. The Freanel
reflection and transmission coefficients for this system can
be written as follows:

Regl0) = 2,c08 9, = 2,1 =~ (ny/n,)? sin? 9 }'2
Y Zycon 9, + Z,[1 = (n,/ny)? sin? 0 |2’
2Z, cos 9,
Z,con 9, + Zy[1 = (ny/ny)* sin? Ik
Z, con 9; = Z,(1 ~ (n,/ny)* sin? 0 }'
Z, cou 9, + 2,1 ~ (n,/ny)* sin? 9 | ¥
227, cas ¥;

Ten0,) = -, 29
™) Z, co8 9; + Zy{1 - (my/ny)* sin® 0}

Trg(¥) =

Rey(9) = ~

where
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. Mazimum angle of incidence on the surfacs v for an inter-
[ ray occurs for a ray traced from the image coordinats system
ad at the center of the image sphere) to the edge of the sphere
} greatest when the image sphers wuches the real sphere (the
'# touches the surface). This angie can be no greatar than 30°.
Fresnel equations are fairly constant near normai incidences.

v kg

--— 2.9
2 ke @9
TE and TM subscripts pertain to the transverse electric
. transverse magnetic cases, and the subscripts 1 and 2
it to the optical parameters of the media below and above
surface, respectively. The interaction terms can be ex-
ssed in the image coordinate system as

famts D) = R(0°)(=1)"*"e, t 0,
bamti D) = RO°H=1)"""" s mlhnmy (2.10)

ere the primes denote quantities in the image coordinate
tem. Note that Rtg(0°) = Rrm(0®) = R(0°).
\t this point the scattering coefficients are essentially
ved, but they are coefficients of functions in a different
rdinate system. The next step is to find a representation
the functions in the unprimed coordinate system. Each
the primed functions can be expanded in terms of func-
ns in the unprimed system; i.e.,
Lamitais = ROON(=1)"""ep, ) i ™ully,
A’
Lomlis) = RO®)(=1)*""f clamylh (2.11)
o
|e interaction coefficients can be solved by extending sum-
itions over n and m. Collecting like terms yields
'm‘l - R(oo) (_un'onlen ﬂcf‘n‘.mb'
A eim|

Bon ® RO®) S (=1)"*"f, pelt ™. (2.12)
At

nwimj

ibetituting these expressions into Eqs. (2.5) yields

Gorden Videen

eun = [a..,,. + R(0°)
A =im)

(_ 1 )n:om.nl.cr"u]q:'

L U}

fom ® [b,‘m +-R(0%) E (‘l)n’%mfn mcf‘ﬂ'n)]qz,* (2.13)

The only unknowns are the translation coefficients ¢ * =

These were soived by Bobbert and Vlieger by way of recur.
sion relations. In this paper the translation is along the
positive z axis rather than the negative z axis. This creates
some minor differences. The coefficients can be deter-
mined by using the following equationa:

99 = (21 + 1)13hV(2hd), (2.14)
while
9 = —(2n + 1)PRI(2kd), (2.15)

(7" = m+ 1)(n’ + m)(2n + 1)]V2cN™
= [(n = m + 1)(n + m)(2n + 1))V -0

_ de[(" -m ‘(’.2:)?3-). m+ 1)]"2 cm-n
- m[(" tontn s ”]‘" WP, (216)
i 217
el =10 (z%}%)m - (0 # el (2%%)”’
-+ vei? (B2 - neo (2 1)"

(2.18)

With the use of these equations, the translation coefficients
can be determined, and the only remaining unknowns in
Eqs. (2.12) are the coefficients for the incident field. In
Subsection 3 these cosfficients will be solved for the particu-
lar case of an arbitrarily incident plane wave.

3. The Case of Plane-Wave Incident Radistion

The incident radistion on the sphere can be separated into
two parts. One part strikes the sphere directly, and the
other part reflects off the surface before striking the sphere.
The part that reflects off the surface will undergo a Fresnel
reflection on striking the surface, and it will also be out of
phase by an amount exp(i2kd cos a). The Fresnel reflection
term depends on whether the plane wave is TE or TM with
respect to the plane of incidence (the z-z plane). Both cases
must be considered seperately. Equations (2.1) must be
separated into two parts: one {or the TE case and one for
the TM case. The fields can be expressed by including both
parts of the incident radiation as follows:

Ef§ = (1 + Rrg(a)exp(2ikd cos a)(=1)**"]
x> Y alRMU + 61N

Ae) ma-=n

;——d-
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g - ﬁ (1 + Rre(a)exp(2ikd cos a)(~1)"""]

XY 3 oML +aEND,

na mea~n

mg‘ = [1 + Rm(a)exp(ﬁkd ma)(-l)""‘]
xS S alée + BTN,

ne) ma-n

Biy = l—:—“ {1 + Rry{alexp(2kd cos a)(~1}"*"]

x $ S pTHM + TN (3.1)
na0 ma=r

'he factor of (=1)**™ is & result of Eq. (2.7), since the
pflected plane wave is traveling in the x-z plane at an angle
f x — a with respect to the z azis. Coefficientaa’%,a™™ 572,
nd bT¥ are now the coefficients for a plane wave traveling in
he -z plane at an angle a with respact to the z axis. The
«ath to the solution is outlined by Stratton!® (the case for a
: 0° is solved). The result. after much algebrs, is

e "
= n{n +1)

= [(n=m + 1)(n + m)]2P7"(cos a)}

{[(n = m)(n + m + 1)]2P*(cos a)

_ P (cos a)
n{n +1) da

"*2(2n + 1 -
B ity

y[(n-m+Din-meu2 o,
2n+1)2n+3) | e

[(n+m+l)(n+m+2) }
23+ 1{2n + 3)

u 2**1  mPcos a)
nin+1) sina

at™ = (HTE, (3.4)
bIM = jgTE, (3.5)

From these expressioms, Bas. (2.5) take on the following

form:

) 3.2)

(cos a)

] 3.3)

eta {[1 + Reg(al(=1"*" axp(2iAd cos a)ja®
+ Rpg(0*) i (-l)“'"‘cﬁc}."’-""}?,‘.
a - nl

Me {(1 + Ry (a)(=1)"*" exp(2ikd cos a)laTM

+ Rr(0®) i.; (-l)“""'c}‘:cf,"""}q.‘.

Vol. 3. No. 3'March {991, J. Opt. Soc. Am A 12"
fTE = {[1 + Ryg(a)(=1)""" exp(2ikd cos a)]b1E

+Ryg(0®) Y (-1 ’“ff'f.c;"'"‘}Q?v

n almy

¥ { [1+ Rrw(a)(=1)"*" exp(2ikd cos a)]6 ]

+RTM(0') ? (-1)""""/{:{(':‘ 'M'}Q;'. (3.6)

nem

In practice the infinite number of terms in these equations
are not needed. Experimental precision determines the
number of terms needed. In any case the scattering coetfi-
cients may be solved, since there always remains an equiva-
lent number of equations and unknowns. The next step in
this analysis is to develop the Mueller scattering matrix.

4. The Mueller Scattering Matrix

Two axes are used for determining the Mueller scattering
matrix, one perpendicular to the plane of incidence (#) and
one parallel to the plane of incidence (¢). The matrix will
also be derived for the far-field solution, where &7 » ni. [n
this limit the spherical Hankel functions reduce to spherical
waves:

AV (kr) ~ (—;'rt L ol 4.1)

The field below the surface is composed of two parts. One
part resuits from the sphere directly. The other part results
from the field reflecting off the surface. This part is cen-
tered about the image coordinate system and is, in fact, the
interaction term. In the far field the contributions of spher-
ical waves can be added without translating the image coor-
dinate system. This image field will contain a Fresnel re-
flection term, a phase term equivalent to exp(—2ikd cos 0),
and an inversion term equivalent to (—=1)"*”. The field
above the surface results only from the scattering directly
from the sphere that is reduced by the Fresnel transmission
factor when pessing through the surface.

Tha starting point for calculating the Mueller scattering
matrixg is the amplitude scattering matrix, which is defined
by

EP - &[S, S\|[Em (4.2)
Ee| -ikr|S, S\j| PR} '
The scattering amplitude matrix elements are solved by
expanding the scattered electric fields in terms of the vector
wave fu.ctions and then expanding the vector wave func-
tions in terms of the polarization directions by using Eqs.
(1.8). Thescattering amplitude matrix elements for {9 > =/

2 assume the following form: ’

523 S (-ivem
PP

X {1 4 Reg(x = ON(=1)"*" exp (=2ikd cos v))

x[%ﬂ'(ca 9+ eI,‘a%P:'(cos m}.
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- -ii i ('i)”l‘“

ne) me=n

X [1 + Ryw(r = 9}(=1)""" exp(~2hd cos )|

™
Cun M
x| =
[smo
- n
l-_'-? v (=)"e™

—t
neyY me~n

X (1 + Ryy(x = 9)}(~=1)""" exp(~2ikd cos 9]

3
+ M pm
™ {cos &) f,.‘,,." 3 ~(cos 0)].

elEm 2
X [ P (cos 9) + fTE — PT(coe 0)]
sin ¥ ad

2SS =irem
o bt
Aw) ms=~n
X [1 4 Rl = 9N=1)""" exp(~2ikd cos 9]

M
™
X [m P(cos 9) + TN — » P"(co. o)} 4.3)

The elements kohind the surface (19| < x/2) take on the form

S"Z:.o Z (=)™ Trg(®)

fm 2 9
x[mﬂ(mo\i-emb—‘,—ﬂ'(ead) s

S, = =i S N (-i)e™ Try(¥)

ay  amet
neQ mm-n

(S5
x . vy 0
sin J av
S;==iS N (=) e™Tru(®)
neQ ma=n
eﬁm 3
x [m—ﬁ':(eu o)+ /IE = 35 P Pr(cos o)]
=y }“_ (=iY'¢™*Trg(®)
A mew
/""m ™ 9
[ ) cos ) + eT¥ — 2 — PMcos 9) | (4.4)

For the transmission case, ¥ is the angle incident upon the
surface. The actuui field inside ‘e surface is determined
from Snell's law. Most measurements are taaen by placing
a detector 1n &' on the opposite side of a thin slab of the bulk
material. If the rear surface of the bulk material is antire-
flection coated, these are the elements that would resuit.
The Musller scattering matrix can be determined directly
from these elementa by using relations given by Bohern and
Huffman.

A few symmetries that egist simplify the caiculations. A
careful examination of Eqs. (3.6) reveals that
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el = (~Derm,
efMa (-.l)"'"em

amt
f -( 1,m¢lfn
[Tl (=1, (4.5)

where m = —m. [f the Mueller scattering matrix is mea-
sured in the plane of incidence (¢ = 0°), then from thess
symmetries and Eqs. (4.3) and (4.4), Syand S, reduce to zero,
since for the normalized associated Legendre polynomials

Mz = (PR, (4.6)

Of the Mueller scattering matrix elements, only four remain
that are not zero or simple multiples of another element.
These may be determined with the followingrelations:

8, = RS, 2 + 18,1,
12 ® (IS, = 18,,
Sy; = Re(S,S,"),
Sy, = Im(5,S,°). 4.7

In the plane of incidence these four matrix elements are
sufficient to catagorize the light scattering from a sphere on
or near a plane surface.

CONCLUSION

Relations for calculating the light-scattering Mueller matrix
for a sphere of arbitrary size and optical parameters on ot
near a surface of arbitrary complex refractive index, illumi-
nated by light of arbitrary wavelength and incident angle,
are provided. When the matrix is determined in the plane
of incidencs, the Musller matrix can be characterized by four
elements.

The particular functions used in the derivation facilitate
the calculation of the matriz elements. Incorporating Eqs.
(2.7), (4.5), and (4.6) into a scattering program will signifi-
cantly reduce the number of calculations and the run time.
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ERRATA

Light scattering from a sphere on or near a surface:

Gorden Videen

Optical Sciences Center, University of Arizona. Tucson. Arizona 85721

A few errors in the far-field expressions for the light scat-
tered from a sphere on or near a surface' are corrected in
these errata. The equations for the interference coefTfi-
cients are

gimiban = = ROV (=1 "epnlinn

Rimd 3 = RO (=1 famidim' . 12,10

The interference coefficients must be translated by
means of the vector wave functions.’® This interference
field may be expressed as

EMn=3 3 enl=1r"""ROM.Y

A w) mem-g

+ fum(=D*""RON%

=3 Z {e.-,.(~1)""""R(O°)

A=) me~n
[ 2 Cu mMm + D‘I'AMJNLL)']
+ fial~1""R0Y

[ z Dln M’Mll) + C:'nmN:‘l‘)‘]}

Ammy

= Z Z Z( -1 "R(0%)

AS) moa-y aem|

X {[fuan ~o_ e‘.CII M)]Md)

+ [f;. r n - e‘“DUn nr]N'l) (2~118)
where
: ; 2kd n+m+1
ALm amo n.m
cs € 2n+3 n+l o
2kd Rn-m ..
zn - 1 n L4 W
~2ik . .
D:«,nr - 2‘ d mC"n,ul (211b)
nn +

are given in Refs. 2 and 3. Equations (2.11) lead to

gam = 2 RO (-1

A -y

Uam D™ = €an O,

han - z R(o’)("l)..-[fuuc‘:'-ﬂ' - e.'”D;,.""),

" o,

2.12)

errata
Cam = {a,... - }: RiQ®y (-1~
X [famD™ = €,aCA ""]}Q:,
ffm« - {bnm ha Z R(Oo)(“l)n-"
X (famC™ ~ eanr:m}}QP 213

The expressions for the incident fields are

Ef=3 5

ASQ me=a

aI%(1 - Regla)

x exp(2ikd cos @) (-1)"" "ML
+ bn[l + Rrg(alexp(2ikd cos a) (-1)" "IN,

Aff = — 2 }: bIE(1 + Rygla)

Wik ned m=-a

x exp(2xkd cos a) (-1 "M},
+ alE1 -~ Rre(alexp(2ikd cos &) (~1)""" N,

E =3 3 a1~ Rnla

A=) mu-ny
X exp(2ikd cos a) (-1 "M,
+ b.’,-’.‘n + Rm(a)exp(2ihd cos @) i -1 NG

-— Z Z 8T¥(1 + Rrula)

Wi a0 mo=n
X exp(2:kd cos a)(~ )""]M
+ a1 ~ Rrylalexp(2ikd cos a)(~1""" N,
3.
The scattering coefficients are

el = {[1 ~ Rygla) (=1)*"™ exp(2ikd cos a)la 'k

+ R:g(0% 5_‘ (=1 " fIEDr™ - eIEC "}Q.‘.

o =™y}

elN = {[l = Reul@) (=1)""" exp(2ikd cos a’la !

+ Rey09 3 (=1 (fIND > ™ - eI3C) j'Q:'

LAl ]

L {[1 + Rrgl@)~1)""™ exp(2ikd cos a'ib %

+ Regl0 3 (m1rmfIECH ™

n =y

~elfD; " QM.
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Errata
™ . {[1 + Rewt@) (=1)*"™ expi2ikd cos a)}b T

- Ren(09 3 (= m{fI¥Cm - ef;‘.'D;"""]}Q,‘,
13.6)

The scattering amplitude matrix elements below the sur-
face (& > n/2) are

- L}
Si=35 I (i) explime)

A=) m=-n

x {[l + Rygin = O {~1""" exp(-2ikd cos 9]

TEm
x ==—P7cos 3 + {1 — Reglmw -~ D (~1""
sin ¢ _ :

3 =
X exp(-2ikd cos $)elx ;’P?(cos 0)}-

S;=-iY 3 (=) explimg)

A®) me-n

x {(1 ~ Reu(mr = 9)(=1""" exp(-2ikd cos 9]

e™m

22 P™Mcos 3) + [1 + Rrylw - (=1*""
sin 9

X

X exp(—2ikd cos 91T %ﬁ:‘(co. o>}.
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Sy=~i2 S (=) explimeg)

Ae) me-a
X {[1 = Rruim = 9)(=1)""" exp(~2ikd cos 0]

ernm = .
X ——Prcos §) + {1 + Reylw = Hi=-1"""
sin &

X expl-2ikd cos Oilff,'f%ﬁ:‘lcos ,9)},

Se=3 T (-i)explime)
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Coherent fluorescent emission and scattering from 2 uniform cylinder
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The coherent light inelastically scattered from an ideal fluorescent cylinder illuminated by an ar-
bitrary electromagnetic wave is analyzed using an extension of Rayleigh's theory. Scattering
coefficients are solved specifically for a plane wave illumtnating the cylinder normal to the axis of
the cylinder. The resulting inelastically scattered radiation is not entirely unlike that of elastically
scattered radiation from a perfect cylinder. These results are tllustrated by numerical calculations

for several specific, but arbitrary, cases.

[. INTRODUCTION

Inelastically scattered light is subject to the morpholo-
gy and optical properties of the particle that interacts
with the incident electromagnetic radiation. Experimen-
tally, morphology-dependent resonances have been ob-
served in the elastically scattered light emitted from glass
fibers coated with fluorescent dyes by Owen et al.!
Fluorescence enhancement by a uniform cylinder was
studied by Sekerak? and Abromson.’ Uniform spherical
particles were examined by Biswas ef al.* and Benner
et al.®> Theoretically, Raman and fluorescent emission by
a molecule embedded in a dielectric cylinder has been de-
rived by Chew, Cooke, and Kerker.® Kerker and
Druger’ theoretically studied fluorescent molecules em-
bedded in spheres. Das and Metiu® took a quantum-
mechanical approach in examining fluorescence enhance-
ment. Ching, Lai, and Young examined microspheres as
optical cavities.” For a uniform distribution of molecules
within a cylinder, the coherent process can be treated by
adding the resulting amplitudes, molecule by molecule,
over the cross section of the cylinder. A shortcut to this
summation may be achieved by examining the polariza-
tion induced at the new frequency within the cylinder.
This is the method used in this paper.

In this paper we derive and examine the effects of
coherent, inelastic scattering due to the geometry im-
posed by an infinitely-long, circular cylinder composed of
fluorescing material. The approach taken in this paper is
an extension of Rayleigh’s solution to the elastically scat-
tered light from am infinitely-long, circular cylinder.'
The derivation closely follows Bohren and Huffman's
derivation, and we represent the final scattered and radi-
ated fields in terms of Mueller matrix elements.'!

Inelastic scattering occurring in particles is a process
which may be solved in three parts. First, the boundary
conditions of the particie are used to determine the inter-
nal electromagnetic fields within the particle. Second,
these internal fields are used to determine the fields pro-
duced by the fluorescing medium. And third, the bound-
ary conditions of the particle are used to determine the
inelastic fields emitted.

The fluorescence process outlined here is very similar
to coherent, Raman processes. For incoherent Raman
processes, the internal fieids are not intense enough to

4

stimulate the individual molecules to emit as they are for
coherent Raman processes where more intense internal
fields are generated, often by employimg a second laser.
Although our theory is limited as a model for Raman
scatter because it incorporates only an incident field of
one frequency, an extension of it to multiple-field interac-
tions would follow the same basic procedure. However,
we expect the main qualitative features of the scatter gen-
erated with this simplified model to remain unchanged.

Knowledge of the interaction of the incident electric
fields and the fluorescing medium which produces the
emitted fields is necessary to accurately determine the
inelastically scattered radiation. We assume that the po-
larization within the fluorescing medium is proportional
to the internal electric fields due to the incident elec-
tromagnetic field. We also assume all media are isotro-
pic, homogeneous. With these assumptions, the deriva-
tion is straightforward.

II. THEORY

The starting point is to derive the internal fields within
the uniform, fluorescing cylinder having the same fre-

ﬂsz

B

P

FI1G. 1. The scattering geometry showing the fuorasiing
cylinder of radius a, centered on the origin, oriented puri.iel 19
the z axis.
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quency of the incident radiation. This is done by apply-
ing the boundary conditions of the cylinder on the elec-
tromagnetic field and follows the same procedure used to
derive the scattered field.

A. The fields for the incident wavelength

Figure 1 shows the scattering geometry of the system.
A cylinder of radius a, centered on the origin is parailel
to the z axis. The first step is to derive the internal elec-
tric fields of the cylinder. For wavelength A,, the com-
plex refractive index of the cylinder is m;. The illuminat-
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ing fields of the incident radiation may be expanded as
follows (see Bohren and Huffman, for instances:

Emc.l= 2 an.lM‘n!;‘+bn.lN‘n!;‘ 4 Ha
n=—x
_ikl - ¥ 1)
= " '
H!ﬂC.l ﬂ)l“‘ naz_”a"'lN"'Pl+b"'lM"'p| N flb)

where k, =27 /A, is the wave number, w, is the angular
frequency, and p, is the permeability of the incident
medium at A,. The vectors M., and N‘,,‘.’p/ are given by

/

_J
ZMp) .
M‘n‘.)p,=(k/2_h2)l/z in—:;fl-e,‘z;"'(pl réw PURT A , :daj
/
Z(ll‘p ) s
N(n'.)plz(k/z—hz)llz/kj ihZ,'."'(p,)’é,—hn n ] 3,*'(",2""2’”22»"”(%)’5: ea(nq-v-llz) i 13b)
J

The superscript identifies the Bessel functions used to
represent the fields. For example, i =1 corresponds with
the use of the functions Z.\"(p) =J,(p), i =2 corre-
sponds with the use of the functions Z.*(p)=Y,(p), and
i =3 corresponds with the use of the functions Z.*(p)
=H\"(p)=J,(p)+i¥,(p). The functions representing
the incident radiation are of the form u,
=J (p,)e n2™1* The internal fields are also generated:

Eim.l‘_” ”-z_’cn.lu‘,l';""'du,lN:;; ' (3a)
Hoy=—al e N +d, M (3b)
nt.{ wl“'l = (X n.p) 1% 00

where ki =k,m is the wave number inside the cylinder
J

. representing

—

medium for wavelength A, and u; is the permeability of
the cylinder medium at wavelength A,. The functions
the " internal fields are of the form
Uy i =Jalp1)e ne"\" The scattered fields are

E ]

Eeut= 3 e M+ N sa)
n= -0
- _fk' » N(“ . .
lllc&l Wby 2 €n np, fn'|M".p‘. . 4b)
AR —n

The functions representinq‘ the scattered fields are of the
form u, ., =H."(p,)e"%e" "',

Setting p, ; =u} /1y, §,=x, sinfy, 7, =x,(m] —cos*6,".
and x, =k,a, four boundary conditions on E and H must
be satisfied:

@n 1§ a8 0, T (517K, +e, ELHNMVENY+ S, B nH &)k =c, () +d, hynd (0 /m K Sa

b, W60+ o E1H, (§)=dy i, () /m

bai§i a1t a, A &)k + [ S (HENY +e, hnH\ (8 /K

and

a, &0, &) +e, (EHN L ) =e, M () /i,

B. Plane-wave illumination

When the coefficients a, , and b, , are known, then the
other field components of Eq. (5) can be solved. For the
case of plane-wave illumination, h, =—k, cosf,,
p=k,rsind, and p,=k\rim}—cos’8,)'’* where 0, is
the angle of incidence measured from the z axis. We con-
sider first _035 expansion of a plane wave of the form
E=8,Ese """ traveling along the negative x axis.
The expansion coefficients for the TE case are

Sy
=d, mnJy (@, el () ki, o S
S

l
a,,=0, b, ,=Eqf—i)"/k, sinb, , .

where E, is the magnitude of the electric field. Next we
consider tl:ekexgnnsion of a plane wave of the r 'm
E=¢,Epe Hhix T traveling along the negative x ..
The expansion coefficients for the TM case are

b,,=0, a,,=—iEo(—i)"/k, sinb, .

For the case of s normally incident plane -+ ..:
{6p=m/2), many of the terms in Eqs. {($a)-15d" ar:
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tsince &, =0). The internal and scattered field coefficients
are simple expressions. For the TE case (incident electric
field parallel to the z axis),

11(51)3;@1"";(51)Hn(gl)

d, =b ; T, (8a)
U L H )~ mid (n H (8
JAEM ) =T (&, ()

foi=—by, m, %I ': ! :52. M ’ (8b)
’ mlH,,(5|)J,,(m)"‘H,,(,‘)J,,(m)

Ci1=e, =0 (8¢)

For the TM case (incident magnetic field parailel to the
2 axis),

Jn(gl)H;(Shl)-'l:.(gl)”n(gl)
C'l.l= n N ' A (93)
mi"n(nl}HH(gl)-ml',n(nl)Hn(gl)
J & () =m J (5], ()
€,1= Tan, P , (9k)
HN(SI)Jn(ﬂl)—mlﬂn(gl)‘ln(”l)
d, =f.,,1=0. {9c)

C. The fluorescent medium

The absorption of light in the fluorescent medium is
proportional to the magnitude of the electromagnetic
field. We agree with the assumption of Chew, Cooke,
and Kerker that the transmitted electric field within the
cylinder induces a polarization within the medium oscil-
lating at a shifted frequency, w,; i.e., the distribution of
excited fluorescent molecules emitting a particular wave-
length A, is given as follows:
=aB, (r¢,2e 7,
where a is an excitation characteristic of the fluorescent
)

P(r,p,2,1) (109
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medium (in the case of Raman scatter. a corresponds 10 4
gain term). We consider the coherent field produced hav-
ing the specific characteristic wavelength. angular fre-
quency, permeability, and wave number in the incident
medium, of A;, w,, u,, and k;, respectively. The refrac-
tive index, wave number, and permeability of the cylinder
at A, are m,, k), and u;, respectively. We first expand
the field oscillating at w, into its components,

‘1la;

x
= ' H t3)
Ep.= X an.ZM,'p‘1+bn.2N,_p'z ’

n=~=

— ik}
2 a,» ,N"' +b,,.;M'n’;. )

“')J"Z A= —-x e
In order for the fields to behave as expanding cylindrical
waves, the functions of the fields created by fluorescence
are of the form u,,=H,."p}le" % *&. The source of
these fields is the electric polarization expressed in Eq.
(10!. The coeflicients a, , and b, , can be solved for by ex-
panding the electric polarization in terms of the vector
harmonics of generating function u, 4. Since the electric
polanization is composed of vector harmonics of generat-
ing function u, ,,, We can start by expanding the internal
electric field vector harmonics in terms of the electric
field vector harmonics oscillating at w,:

H,,= 11b)

(= MM 3
M, .2 AMD BN (12a)
N‘“ }:C M2, . +D, N‘” 112b)

As outlined in Stratton,'? we first develop orthogonal re-
lationships for the vector harmonics by introducing two
new sets of vector harmonics:

4:)
(ML{},I)‘=(k,’-h‘)"2[ ——-l-e -Z™p, R, |einetn '13a)
Zm(p
(N, )=k} ~h%)' "2k, l-.l.z""(p,ré —hn——— ’e,+(k2—h1)“’z"’(pr‘ eiinehe) 13b)
i
The generating functions for these vectors are of the form u, , =J,(p})e "% " The orthogonal relationships are
f“M'"'.Ln(M‘.',"’.l)'d'-b,',rﬂ(k',z—h})“z(k'zz—h%)”zll,_,(p'|)J,,_|(p'z)+J,.,,(p'l).l,,.(p'z)] ' 14a)
fo Nu) Nqn ).d,-a"'kzkz(k'z hf)"’(k'}—hi)"z
h' 1 ’ ’ ’ ’
X -T[Jn-l(pl)ln—l(p2)+‘,n+I(pl)',n+l(p2)]
+k =AU =R DV (P, (pY) 14b)
o N e TN L agt)) e
JML N o= [ TN (M) 0 de
=$, T(k"-—h W= 1(p)H, - (p) =T+ (pDH, 4 (pD] - 14¢)
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By scalar multiplying (12a) and (12b) by (M‘qf;: )* and integrating both equations over the fluorescing cylinder, then re-
peating the process with (N‘n’.;.z)' we can solve for the following coefficients:

1) (1) e At Nt e — %) Nt ” N2 gl e
SoM) M dr [N Nt dr = [OM) N rdr [ND (M1 )* dr

An=5‘v.. 2) [REERY ] I e gt 2 e M2 tll e ’
: fo Mu.p:_'(Mn.p’z) rdrfo N"-P'z'(N"vP'z) rdr-—f0 Nn’pé-le;) rdrfo Mn.p'z'(Nn.pQ) rdr
15a)
MM dr [N dr— [ ML O “rdr ['M2 (N, 17 dr
Bn h .
) ll) 12y, (1} e — 20 (REEAY | 2, e
f an‘ (M ) rdrf Nm'z Nn.p'z) rdr fo Nn-p§ Mmp;) rdrfo Mu’; (Nw-pi) rdr
'15b)
.
JIND M r dr [OND Nt dr— [N MLt dr [N N dr
C,=8 - ' . (15¢)
T e M‘”,(M‘” “rde [N AN ordr— [N M0 dr [T (N )% dr
SIME )t dr [ON NGt rdr— [N ML o dr [OMED (N e dr
2 0 1 2 1 2 0 2 2 (15d)

" ohy (2 (4 agtd) (Nt — [N . patl? a g2 Nt )
SR (Mn_p.z)‘rdr [INBAND o rdr— [N (M % dr [ M2 AN dr

The result that h,=h, has some interesting consequences. For plane-wave illumination, the result
hy=h, =k, cos8,=k, cosf, means that the scattered light of wavelength A, will not travel along the path of the light
of wavelength A, unless the light is normally incident on the cylinder. As shown in Fig. 2, a cylinder illuminated by a
plane wave scatters light elasticaily into a cone at angle 6, with respect to the z axis. The inelastically scattered light
travels along a cone at angle 6, with respect to the z axis.

When 4, =0, which is the case of a plane wave at normal incidence, the coefficients are greatly reduced, since the
orthogonality condition forces {14¢) to zero:

f M., (M(!.)*r dr k;f‘:[l,,_l(k'lr)l,_|(k'2r)+J,H(k',r).l”,(k}r)]rdr

=§ = R {16a)
Pk J‘ M"’. (M) dr k’zf‘[H,,-,(k'zr).l,,_,(k'er-H,,ﬁ(k’zr)J,,H(k'zr)]rdr
I; N‘.'.,’,;"N‘.f,’,;"'d' ki [0, e dr
Dn=Brn TN NV o dr Ky | B,k ke dr 160
fo .";'( ..’;) rar f ( o’ ( z’)’ r
B,=C,=0. 116¢)
The integrals in Eqe. (16a) and (16b) are Lommel’s integrais and have the following solutions:"*
f"xJ,(k',x ).I,(k',x)dx-wa—(-k——);[kzl,(kzau (kia)—kJi(kia W, (k3a)], 17a)
f xJ,\kyx)H, (kzx)dx=? alJ(kya)H,(kya)— |a ———I Lkya W, (kya)~ 32"‘ “17b
n
The coefficients of the emitted electromagnetic fields may b .=—24 D N, U
be written as "2 pomt
g, ~c, 4, (18a)  Where € is the cylinder permittivity at the emitted ‘re-
€ quency. An induced field within the cylinder 1s necded 10




satisfy the boundary conditions. This field corresponds
to the field created by fluorescence reflecting off the inner
surface of the cylinder. Using functions of the form

3

u,_md_z=J,,(p'z)e""e'h", the induced field may be ex-
pressed as

— i) (1)
Epa:™ . E”CR,ZM,'p;.Fdn,ZN,LP'Z ) (19a)
—_ —ik; od Nil) +d M(“
Hlnd.l - &):}J; _2_ Cn2 ,,_p': a2 n.p; . (19b)
Finally, the scattered fields may be expressed as
— < (3 3
E'uca.Z = . =2— . en,ZM,_p;+fn,2N‘,"p; ’ (20a)
Hoy=—ol 3 e N 4 f, MY (20b)
sca.2 Wty ":2_2 €n.2 n.p; "2 ,,.p; .

The generating functions of the scattered fields are of the
form u, ., ;=H. (p,le"%e ¥,

D. Boundary coaditions at the waveleagth of luorescence

Setting .., =ps5/py, §,=x, 5inby, N =x,(m3 —cos’6,),
and x, =k,a, four boundary conditions on E and H must
be satisfied:
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Incident Radiation

FIG. 2. The scattered radiation from a cylinder illuminated
by a plane wave traveling in the x-z plane at an angle 8, with
respect to the z axis. Elastically scattered light travels in a cone
at angle 8§, with respect to the z axis. Inelastically scattered
light travels in a cone at angle 8, with respect 10 the z axis deter-
mined by k, cos8, =k, cosb,.

a,"zﬂz[H:,l)(7'2)]'+Cn.z7'2];(nz)+b"‘zhzn /(m:kz )H,"“(ﬂl)"'d"_zhz’l /(mlkz )J,,('Ih)

b, ,3H, (my)/my +d, nid () /my=f, EH"(E)

by amy [ HL V()Y /i, 2+ dy amampda () /s, 3+, 1Ry nHL () Sk s, )+ gk ynd (1)) /Ko,

8p 2 BH () /1,y 0 30 (M) s, = e, (63 V()

For the case of a normally incident plane wave
(8p=1m/2), many of the terms in Eqs. (21a)-(21d) are
zero, and the scattering amplitude coefficients are simple
expressions. For the TE case,

miUam)H, (m)—mY, (n)H,(7;)

1 =b - , (22a)
e myH (&N, (1) =T, (m)H L (§))
e,;=0. (22b)
For the TM case, .

m i, (n)H,(n;)=mY, (n)H, (1)
€, 1=d,, - - , {23a)

H»(é'z’-’u(ﬂz)""z-’n('h’”n(fz)

fa2=0. 123b)

it can be shown that the following relationship holds for
these coefficients:

=ep 5ol Ha M6 + foahynH, (§y17ky . 2l
21b)
= a5l H (£ e, honH, (51 7k, o 210)
t21d)

-
e_,1=(~1)Ve,,, 24a)
fa2=(=1Vf,,. (24

With analytical expressions for these coefficients, the
solution to the scattered field from a coherently Auoresc-
ing cylinder is complete. Analytical expressions may be
derived for any illuminating radiation expressed by the
coeflicients a,, and b,, by solving the simuitancous
equations (5a)-(5d) and (212)-(21d).

For large arguments, the first-order Hankel fun:tion 1s
given asymptotically by the following:
172
o elp( _”le —"/‘,

H'(p)~ pl>>n- . 28

At large distances from the cylinder tk,r sind. -~ 1 the
scattered electric field may be expressed as foliows

e
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172
2(k§—h%) tipyrhig~w/d N " (ks-hililz
B R B ) e ~iV" | ~ie, €+ T a8, T — C 26
s, 0y % i le, €, x, fni8, X fn2€; )
E. Scattered light for sormally incident r,=T,=0. 128¢)

plane-wave illumination

We now look at the specific case of light scattered in
the far field from a fluorescing cylinder illuminated by a
normally incident plane wave. We examine the light in
two separate polarization states: the TE state corresponds
with light polarized along the vector €, and the TM state
corresponds with light polarized along the vector —¢€_.
The amplitude scattering matrix is given in the far field

The four independent, nonzero Mueller matrix elements
may be expressed by

T,W=LGT 3+ T4, (29a)
T,=1T =T, /T, , 129b)
T,,=Re(T,T3)/T,, , 129¢)
Ty =Im(T,T$)/T,, . :29d)

ETE. 1,2 _ -
Ks ~Eo _3__ ttkyr=m/4) L. RESULTS
Etw, wkyr
The numerical results presented here are for plane-
T, T, Etgin wave incident radiation with the waves traveling along
1Ty Ty | | Evmine {27)  the negative x axis. The detector plane is the x-y plane.
’ The scattering angle §=w—¢, so that 8=0" is the
where forward-scattered light and 8=180" is the backscattered
- light. We study in detail a few specific, but arbitrary,
=3 L(=iyeres, , cases. Since photons of wavelength A, are absorbed to
ne-w Eo ’ create photons of wavelength A,, it is unrealistic to con-
» ) sider the cylinder to be composed of a dielectric medium.
=1 fo2+2 S (=i)foqcosing) |, (28a) The imaginary part of the complex refractive index
E, n=\ {which corresponds to the Einstein B coefficient) for the
. k cylinders we caiculated is set at the arbitrary value of
T,= 3 i=-(—ile"%,, Im(m,)=1Im(m,)=0.00l.
na-xs Eo The program used to calculate the inelastically scat-
k » tered electromagnetic fields requires the calculation of
=i—==leg,+2 I (~ile,,coslng@) |, (28b)  the cylindrical Bessel and Hankel functions of compiex
n=1 arguments. Some of the subroutines used to calculate
-4 100
3 Si / S:J
3 :
< &
¢ <
-y ~100
0 Scattering Angle (deq) 180 0 Scattening Angle (deg) 180
100 100
533] S:a
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] s
g g
100l -100
o Scattenng Angle (deg) 180 0 Scattening Angle (deg) 180

F1G. 3. The elastic Mueller scattering matrix for a small fiber: @ =0.015A, m = 1.50+0.001/.
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FIG. 4. The inelastic Mueller scattering matrix for a small fiber: a =0.015A,, A,=1.24;,, m, =m, =1.50+0.001i.

these functions are modifications of those provided in
Ref. 14, and all of them were checked using relationships
and values given in Ref. 15. Furthermore, the subrou-
tines were first used to calculate the elasticaily scattered
radiation, which was compared with the matrix elements
calculated using the program listed in Ref. 11. This pro-
gram was then modified to calculate the inelastically scat-
tered radiation.

Calculations of the scattered electromagnetic fields are
quite involved. The exact solution [Egs. (20a) and (20b)}
requires the summation of an infinite number of terms.
Criteria for terminating the series are discussed in Ref. 11
for the elastically scattering case, but these criteria do not

necessarily apply for the inelastically scattering case. In
most cases examined, these criteria were adequate.

A. A small cylinder

It is instructive to consider the scattering from a
cylinder of small k,a (one whose fields do not change ap-
preciably throughout its cross section) since the number
of cylindrical harmonics needed to describe the fields are
greatly reduced. Figure 3 shows the elastic light-
scattering Mueller matrix for an a=0.013x,
m=1.50+0.001i cylinder. We note that the Mueller ma-
trix of this small cylinder is only slightly different than

2 100
> Sy Sia
F -
s 2
I~
3 §|
2 g
hed o
g y-1
o
-1 ~100
° Scattering Angle (deg) 180 o Scattering Angle (deg) 180
won 100
S13 S1a
2 ®
] 4
&
: 2
-100 -100
¢ Scattenng Angle (deq} 180 0 Scattering Angle (deg) 180

FIG. 5. The inelastic Mueller scattering matrix as a function of scattering angle for three m, =m,=1.5+0.001.

ROTI N

a=0.31,(#),a =104, (0) and a=13.0A; ( X). The wavelength A, =1.2),.
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aat of a small, Rayleigh particle. For a Rayleigh parti-
le, matrix clement S, is zero at the end points, and ele-
nent §,, starts at +100% and ends at — 100% polariza-
ion. These elements are useful references of comparison
‘or the inelastically scattered Mueller matrix elements.

A specific, but arbitrary, case of inelastic light scat-
tered from a small fluorescing cylinder is shown in Fig. 4.
For this case, a=0.015A;, A,=12X,, and m,=m,
=1.50+0.001i. What is most apparent in this set of ma-
trix elements is that they are almost constant, with the
pc arization matrix elements S, = 100%, §;;<0%, and
S34=0%. Matrix element S|, being nearly 100% means
that nearly all the light is polarized parallel to the
cylinder axis (TE). For the elastic scattering of Fig. 3,
the light from this polarization is also constant as a func-
tion of scattering angle. If we were to examine just the
TM-polarized light, we would see a dip in intensity near
90" similar 10 Rayleigh scattering (it is actuaily shifted to-
ward the forward scatter slightly in the inelastic case),
but the TE mode is so much more dominant in the inelas-
tic case that we are unable to see any effects of the TM
mode in the Mueller matrix of Fig. 4.

B. Cylinder size parameter

Figure 5 shows the light-scattering Mueller matrix of
the m, =m,=1.5+0.001i cylinder having three different
radii: ¢ =0.3A;,, a=1.0A,, and a=3.0,. The fluores-
cent wavelength is constant at A;=1.2A;. As the size of
the cylinder increases, the frequency of oscillations in the
matrix elements increases. This is similar to what occurs
for elastic scattering. The most significant difference be-
tween the elastic and inelastic scattering matrix elements
occurs in the total intensity: it does not necessarily reach
the maximum value in the forward scatter (§=0"). This

GORDEN VIDEEN, WILLIAM §. BICKEL, AND JOSEPH M. BOYER 4

phenomenon is present in the scatter from all three
cylinders of Fig. 5.

Of more interest, perhaps, are the absofute magnitudes
of the total intensity of the fluorescent light. For elastic
scattering, intensity increases as cylinder radius increases,
but for coherent, inelastic scattering, the intensity does
not increase, even though the size parameter has been in-
creased by an order of magnitude. This is a result of the
coupling that occurs between the wavelengths. As the
cylinder radius approaches infinity, Eq. (17a) approaches
zero, and 4, and D, approach zero. This is analogous to
taking the Fourier transform of a portion of a sine wave.
For a very small portion (consider a & function), all fre-
quencies are represented approximately equally, but as
the portion increases, we see more of the fundamental
and less of the other frequencies, until only the funda-
mental frequency remains as the wave traff\ extends to
infimity.

C. Flworescest waveleagth

Another parameter which may be directly measured is
the wavelength A,, which is just one of the wavelengths in
the Auorescent continuum. Figure 6 shows the light-
scattering Mueller matrix of the m,=m,=1.5+0.001i,
a =A, cylinder emitting at three different wavelengths:
A;=1.24,, A,=1.84, and A,=2.4A,. It should be noted
that the frequency of oscillstions in the matrix elements
decreases as the wavelength increases. This is similar to
what occurs in elastic scattering. We compare these ma-
trix elements with those of Fig. 7, for the same cylinder
illuminated by a A;=a /2 plane wave. We note that the
shapes of the matrix elements, that is, the position and
amplitudes of the maxima or minima, are very similar to

2 100
3 s s,,f
H -
§ .
£
3 g
= -
3 3
K] (%
-2 -100
0 Scattenng Angle (deg) 180 o Scattenng Angle (deg) 180
100, 100{
snl S,.!
] .
g | §
b =
3 3
a a
-100 -100
0 Scattenng Angle (deg) 180 o Scattering Angle (deg) 180

F1G. 6. The inelastic Mueller scattering matrix as a function of scattering angle from an m, =m, =1.5+0.001i, @ = A, radwus nher
is measured at wavelength A, = 1.2, (#), A, = 1,84, (O),and A, = 2. 44, ( X),
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S!!l 531
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® -
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s s
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FI1G. 7. The inelastic Mueller scattering matrix as a function of scattering angle from an m, =m,;=1.5+0.001i, ¢ =24, radius
fiber is measured at wavelength A, =1.2a(#), A;,=1.8a(0), and A,=2.4a ( X).

those of Fig. 6. From this we conclude that the shapes of  The horizontal axis is now a wavelength scale. The fre-
the matrix elements are much more dependent on param-  quency of oscillations in these matrix elements is greatest
eters other than the incident wavelengti. when the difference between A, and A, is small. We com-

We can also study the scattered light as a function of  pure these elements to those of Fig. 9 for the same
the wavelength A, by fixing the scactering angle and cal-  cylinder system of Fig. 8 illuminated by A,=a /2 light.
culating the Mueller matrices as a function of wavelength  The locations and amplitudes of maxima or minima in
A,. Figure 8 shows the light-scattering Mueller matrix  the matrix elements are very similar to those of Fig. 8
elements for an m =1.5+0.001i, a=A, cylinder as a  even though the frequency of the incident light has
function of A, at three scattering angles: 0%, 90°, and 180°.  changed greatly.
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FIG. 8. The inelastic Mueller scattering matrix as a function of wavelength A,. The light scattered 'rom an
m, =m,=15+0.001i, a =), radius fiber is detected at angies 6=0" (#), §=90° (O ), and §= 180" { X ) as wavelength increaves irom
1.2 to 2.4 times the fiber radius a.
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FIG. 9. The inelastic Muyeller scattering matrix as a
m,=m,=1.5+0.00V/, a =2\ radius fiber is detected at angles
1.2 to 2.4 times the fiber radius a.

IV. CONCLUSION

These theoretical results demonstrate that the
coherent, inelasticaily scattered light is a complicated
function of many variables. In addition to the parame-
ters involved in elastic scattering, we also have to take
into account the wavelengths emitted and the
wavelength-dependent optical properties of the fluoresc-
ing material. Direct experimental verification of these
conclusions will need careful measurements of the low in-

function of wavelength A,. The light scattered from an
=0"(#), §=90° (0 ), and =180 ( X ) as wavelength increases from

tensity of radiation because the total intensity does not
increase with cylinder radius as does the intensity of the
elastically scattered light.
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The coherent light inelastically scattered from an ideal fluorescent sphere illuminated by an elec-
tromagnetic wave is analyzed using an extension of Mie theory. Scattering coefficients are solved
specifically for plane-wave illumination. The resulting inelastically scattered radiation is similar to that
of elastically scattered radiation from a sphere. These results are illustrated by numerical calculations

for several specific, but arbitrary, cases.

1. INTRODUCTION

Inelastically scattered light is subject to the morpholo-
gy and optical properties of the particle that interacts
with the incident electromagnetic radiation. Experimen-
tally, fluorescent emission from uniform spherical parti-
cles was examined by Biswas et al. {1] and Benner er al.
{2]. Theoretically, Raman and fluorescent emission by a
molecule embedded in a dielectric sphere has been de-
rived and examined {3-5). For a uniform distribution of
molecules within a sphere, the coherent process can be
treated by adding the resulting amplitudes, molecule by
molecule, over the cross section of the sphere. In another
paper, we analyzed plane-wave illumination of a uniform
fluorescent cylinder by examining the polarization in-
duced at the new frequency within the cylinder [6]. This
is the method used in this paper.

In this paper, we derive and examine the effects of
coherent, inelastic scattering due to the geometry im-
posed by a uniform sphere composed of fluorescing ma-
terial. The approach taken in this paper is an extension
of Mie's solution to the elastically scattering light from a
uniform sphere [7]. The derivation closely follows the
derivation of Bohren and Huffman (8], and we represent
the final scattcced and radiated fields in terms of the
Moueller mat’ix eicments {9].

Inelastic scatteri:g occurring in particles is a process
that may be solved in three parts. First, the boundary
conditions of the particle are used to determine the inter-
nal electromagnetic flelds within the particle. Second,
these internal fields are used to determine the fields pro-
duced by the Suorescing medium. And third, the bound-
ary conditions of the particle are used to determine the
inelastic fields emitted.

The fluorescence process outlmed here is very similar
to coherent Raman processes. For incoherent Raman
processes, the internal fields are not intense enough to
stimulate the individual molecules to emit as they are for
coherent Raman processes, where more intense internal
fields are generated, often by employing a second laser.
Although our theory is limited as a model for Raman
scatter because it incorporates only an incident field of
one frequency, an extension of it to multifield interactions
would follow the same basic procedure. However, we ex-

“

pect the main qualitative features of the scatter generated
with this simplified model to remain yanchanged.

Knowledge of the interaction of the incident electric
fields and the fluorescing medium that produces the emit-
ted fields is necessary to accurately determine the inelasti-
cally scattered radiation. We asswne that the polariza-
tion within the fluorescing medium is proportional to the
internal electric fields due to the incident electromagnetic
field. We also assume all media are isotropic and homo-
geneous. With these assumptions, the derivation is
straightforward.

IL THEORY

The starting point is to derive the internal fields within
the uniform, fluorescing sphere having the same frequen-
cy of the incident radiation. This is done by applying the
boundary conditions of the sphere on the electromagnetic
field following the same procedure used to derive the
scattered field.

A. The fields for the incident waveiength

Figure | shows the scattering geometry of the system.
A sphere of radius g is centered on the ongin. For wave-
length A,, the complex refractive index of the sphere is
n,. The first step is to derive the internal electric fields of
the sphere. The illuminating fields of the incident radia-

FIG. 1. The scattering geometry showing the .. rescing
sphere of radius a centered on the origin.
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may be expanded as follows (see, for instance, Ref.

» L] i
.Emc.] = 2 2 Qnm, lwﬂ:.pl +b,|,,,_|N(,"")"p‘ (la)

n30m=-n

i

k ©
- ! (Y] (1)
Hmc.l" U 2 2 bnm.anm.pl+anm.anm.p‘ 4
B y=om n

(1b)

tere k, =2 /A, is the wave number, o is the angular
:quency, and u, is the permeability of the incident
rdium at A, The vectors M, , and Nimp, are given

W =3 dm m
mp, = e [ ind 2" (klr)F ,(cos@)e‘”‘"]

i 9 m im
-9 z,‘.’(k,r)s-o;[ﬁ,(cosﬂ)]e *l, (2a)
nd
‘("i‘)'""/ =t (;i‘;zf.”( kirin(n +1)P J(cosfle'™®
r'] _‘_i i _Q_ L] imeg
+0 k7 a"[rz,, (k,r)]aa[P,,(cosG)]e
+@ —l--a—[rz“’(k-r)]—iﬁ-P"'(cosO)e""'
kjrdr- " 1 sing” "

(2b)

The superscript identifies the Bessel functions used to

represent the fields. For example, i=1 corresponds with

the use of the functions z{!'(p)=j, (p), i=2 corresponds

with the use of the functions z{2'(p)=y,(p), and i=3 cor-

responds with the use of the functions z/’'(p)

=h.(p)=j,(p)+iy,(p). The functions P 7(cosd) are
associated

the normalized Legendre polynomials defined
by
2% +ixn~mi |'*
m =pm 2ntiXa—m)
B ™(cosh) P,(cow)( TP l . (3

The functions representing the incident radiation are of
the fOCM Uypm o = jatk 7 )P T(cosO)e'™®. The internal
fields are also generated:

Eni= 2 2 Com MV +d, . NV, (4a)

nm, '
AneOm=™—-n P e

and
-

k\u\W,lka)¢, (ka)—k\ui¥,(k,a), (k a)
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ki = n
H = —— d Mun ,+ It
nt, { i) ‘EOM:Z_" Am A Com N
4b)

where k) =k n, is the wave number inside the sphere
medium for wavelength A,, and u; is the permeability of
the sphere medium at wavelength A,. The functions
representing the internal fields are of the form
=j (k\r)P 7(cos@)e'™®. The scattered fields are

Ham.int
0 n 3
= 3 (34
Bsc:.l 2 2 enm.anm.p|+fnm.lN1m.pl ’ ‘Sa)
A=0m=-~n
and

1l & -

N cemmoms (3 1}

Hsu.l . 2 2 fnm.anm,p‘ +enm, thM.o. '
IO fagm=—n »’ '

15b)
The functions representing the scattered fields are of the
form u,, o =h.""(k, )P T(cos@le ™",
Four boundary conditions on E and H must be
satisfied:

kl‘bn(k'la)cnm.l= k'lwn(k!a)anm.l+k'!§‘n“(kla)enm.l ’
(6a)
Bi¥alk\a)C, =i Galk @) +1t 16 K D),y (6D)

I"'l*ll(k‘la)dnm.l= #'lwn(kla)bnm.l+“'l§n(kla)fnm.l' (6¢c)

and

k\¥plkialdy, =k ¥ lk @)y, (ki Ek 0V 0
. -6d)
where

¢, (0)=pj.p) and &,(p)=ph'V(p) . )

B. Plane-wave illumination

When the coefficients a,,, , and b,, , are known. the
other field components of Eq. (6) can be solved. For the
case of plane-wave illumination along the positive z axis,
polarized along the x axis, the coefficients can be derived
as
1n

2n +1 (8 <1 +8a ) L

= L Rk W LI S
m.1=Eof nin+1)

and
11

J.L‘.".L. (5m,~|+5~.‘x’ “h

TR
bam 1 =Eol™ "N AT D)

The elastic-scattering coefficients and the internal rid
coeflicients may be solved in terms of the coefficien:.
the incident field:

Cam A= dam Wk @)k a) =K E (ka0 (k@)




S,

proportional to the magnitude of the electromagnetic

nm.p,
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d kipi§atkiai,(kia)=kiu\p,(k,a)E, ka) 9
’ [
’"".l "Mlklylgn(kla)w lk,a) ly',w'n(k'la)gn(k,a)
kypWp(kia)d,(k a)—k uiy (k,aiv,(k\a) .
-a ) * o]
Eam = T B G k@, (k@) — k& k@), ka)
and
kipyik @, kia) =k u v, (kian,ka) o)
= - . !
Sam kSt @i, k) =k Uk @€, (k@)
[
C. The Ruorescent medium and
. . . . . k’ ©
The absorption of light in the fluorescent medium is H,,= 2 > 2 b MY '+anm.2N;3,,l,p; b
* -

field. We agree with the assumption of Ref. [3], which
states that the transmitted electric field within the sphere
induces a polarization within the medium oscillating at a
shifted frequency, w,; i.e., the distribution of excited
fluorescent molecules emitting a particular wavelength A,
is given as follows:

P(r,0,9,00=aE,, (r0,@lk 7, (10)
where a is an excitation characteristic of the fluorescent
medium (in the case of Raman scatter, a corresponds to a
gain term). We consider the coherent field produced hav-
ing the specific characteristic wavelength, angular fre-
quency, permeability, and wave number in the incident
medium of A,, w,, u,, and k,, respectively. The refractive
index, wave number, and permeability of the sphere at A,
are n,, k3, and u;, respectively. We first expand the field
oscillating at w, into its components:

(11a)

E\; =3 3 4

MUI

J‘z”f" i
o Jo mp

1 i =
[ [N N, L 1%6in0d0d@ =5, 3,
and

nmp

[ L™ N esinedede= [T [N

By scalar multiplying (12a) and (12b) by (M, )
- . l)
peating the process with (N‘MPQ

b (R} .
f MM v
A = P

.)‘sin9d0d¢=6,,',,,'8,,‘,'21rn(n +1' ez Npy) ,

f Jatk )i, Uk s irtdr

I“’Zf‘l A=0m=—n

In order for the fields to behave as expanding spherical
waves, the functions of the fields created by fluorescence
are of the form u,, a=h."(k;r)P T(cosfle'™®. The
source of these ficlds is the electric polarization expressed
in Eq. (10). The coefficients a,,, ; and b,,, , can be deter-
mined by expanding the electric polarization in terms of
the vector harmonics of generating function u,,, 4. Since
the electric polarization is composed of vector harmonics
of the generating function u,,, i, We can start by expand-
ing the internal electric-field vector harmonics in terms of
the electric-field vector harmonics oscillating at w,:

(ll = 3) (3

M. 2 A MO B ND 12a)
and

(l) - (31 €3}

Nom.s! 2 ComM it DN '12b)

The following orthogonal relationships exist for the vec-
tor harmonics [10):

13a)
2ip 1z M pIn (n +1) 28 pizy et !

2enin+1 |2 P1)Z, 'Pz' +[pl n Py ]'[F,’- p:'! .
PP PP i

113b)

(M‘,'/;’,",'p;)‘sinOdad¢=0 . L3¢

* and integrating both equat ons over the fluorescing sphere. then re-
)*, we can solve for the following coefficients:

dar

nm 3 [R1] )*
I“Mnmp Mnmp dT

|

fh“’tk,m,(k,m-dr '
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] (1 [} ' . ] .
L,,,N(M,' 9}.(N"""9 ’dr _f[:[(" F Uy <k P g o (KPR (KGP iy (ki yr) ) idr
D, = ] , 14b}
" fspb (n‘: A (Nm )‘dr fo[(" +l’h»‘yl—ll(kz”ln-l(kZ’)+"hn (k2P 4yl kyr) Jrdr
B,=C,=0. 114¢)
The integrals in equations (14a) and (14b) are Lommel's integrals and have the following solutions [11]:
2
_f“jn(k’,r)j,(k;mzdr-—-—,—T‘E—T—Z[ky;(k:a)j,(k;a) ki jikia)j,(kia)) (15a)
0 - (k‘ ).~(k2) *
and
fo"j,(k;nh,(k;nrzdra 2(:, 1k a?j:(ksadhs (ksa)+kjaj,(kadh, (k)a)
2
Ltk Rat=ntn + 1)}, (kjadh,(kja)] = SAEL 155
2k}) .
—
The coefficients of the emitted electromagnetic fields may and
be written as k. =
Howr™5, - amaML e N,
anm.la—%cnm,lAnm (16a) : T ] n§0m-2—nf Ty T e #
2
{18b)
and .
The generating functions of the scattered fields are of the
bom2=="dom Do » (16b)  form u,, oo 2 =h{""(k,r)P T(cosdle ™.

€

where ¢ is the cylinder permittivity at the emitted fre-
quency. An induced field within the sphere is needed to
satisfy the houndary conditions. This field corresponds
1o the fie'd created by fluorescence refleciing off the linear
surface of the sphere. Using functions of the form

U v, =Jnlk3r)P T(cos@le™?, the induced field may be
expre -3
Eing2= Eo”_z_nc... M)+ o dum, N " (17a)
and
__k b
Ho2= Tw—;; .2-.'0 _ .z..,d”' IM‘ , +c,,,,, IN‘“ 5
{1To)
Finally, the scattered flslds may be expressed as
E..= néo . -i , 'mn.l“‘m’:.p, +fnm.1~3:.p1 (18a)
_

kathr®a (k3000 (K3a) = kpy¥y (k3008 K 3)

e =g
T ek e (kaa )~

and

kopsa¥, k308, (kia) =k, (kia)t, (kia)

kyua¥,(kia)§,(k,a)

A -b L.} N
Soma=bs ks, ke )k, (kg ) —k

D. Bousdsry conditicns
at the waveleagth of fluorescesce

Four boundary conditions on B and H must be
satisfied:

kz"n(k'za)‘m.z+k2§n(k'z"’4m.2=k§§u‘kz")em.z ’
119a)

#2";(,‘,Za)cnm.2+“2§:l(k‘2a)anm.2=#'2§:|(kza)enm.z ’
119b)

“2*0(k'25)dnn.1+“2§n(k’za)bnm.lzﬂ'lgn(kla Wfam2
(19¢)

and

k'Zg;(kla)fnm.l .
119d)

klw;(k'Za)dum.2+k25(k'la)bnm.2=

The scattering amplitude coeficients are

20a)

wba(ka)E,(kya)
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With analytical expressions for these coefficients, the
solution to the scattered fieid from a coherently fluoresc-
ing sphere is complete.

E. Scattered light for plane-wave illumination

We now look at the specific case of light scattered into
the far field by a fluorescing sphere illuminated by a plane
wave. For large arguments, the first-order Hankel func-
tion is given asymptoticaily by the following:

b (__l)n p
h(py~ o

i >>1 . 21
We examine the light in two separate polarization states:
the TE state corresponds with light polarized perpendicu-
lar to the scattering plane and the TM state corresponds
with light polarized parallel to the scattering plane. The
amplitude scattering matrix is given in the far field by

Ere.ml Ll [31 5¢] Etg inc 22
Etm sea —ikyr Sy 83| (Etmine
where

» P‘

$,= 3 =2i(—iy

n=|

Slnof"|2+ aeP (COSG)C,,]Z ’

(23a)

»

143 3
Siﬂo €nt, 2+ aBP:(COSO)f!IIZ 4

e e —
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pad
The four independent, nonzero Mueller matrix clements
may be expressed by
Su=38,12+!8,1, lda
S]2=E,"( S‘zi‘z_'s'il)/sn , 24b
S”=Re($ls; )/S“ y ‘:4C7
and
SJ‘.—'Im(SzSI' )/S” . 24d)

II1. RESULTS

The numerical results presented here are for plane-
wave incident radiation. We study in detail a few
specific, but arbitrary, cases. Sincg photons of wave-
length A, are absorbed to crzate photons of wavelength.
A,, it is unrealistic to consider the sphere to be composed
of a dielectric medium. The imaginary part of the com-
plex refractive index (which corresnonds to the Einstein
B coefficient) for the spheres is set at the arbitrary value
of Im(n,)=Im(n,)=0.001.

A. A small sphere

It is instructive to consider the scattering from a
sphere of small k;a (one whose fields do not change ap-
preciably throughout its cross section) since the number
of spherical harmonics needed to describe the fields is
greatly reduced. Figure 2 shows the elastic light-

=1 . . . .
" scattering Mueller matrix is an =0.001Am
(235) 4 =1.50+0.001i sphere. For such a small sphere 1a Ray-
leigh particle), matrix element §,, is proportional to
and 2 . ;
1+cos‘6, matrix element S,;,; is equal to
$,=5,=0. 23c)  —sin’0/(1+cos’9), element S,; is equal to
-14 100 =
Suy § 212
~ s
: 2
] -\/ :
2 &
g ;
g
L 4
-19 -100
] Scattering Angle(deg) 180 0 Scattering Angle (deg) 180
100 100
] | 533] 8 Sy
3 :
5 3
& &
H H
g ¢
4 g
-100 -100
0 Scattering angle(deq) 180 [ Scattering angle{deg) 180

FIG. 2. The elastic Mueller scattering matrix for a smali sphere: a =0.001A, n =1.504+-0.001i. [, represents total :ntensity




4“ COHERENT FLUORESCENT EMISSION AND SCATTERING . . . 1363
-23 100
S| s Si2
-~ °
2 =
o v %
“ =
> [- Y
Q -
- [
[}
-
o
&
-24 ~100
0 Scattering Angle (deg) 180 0 Scattering angle (Geg) 180
100 100
H Say § 53]
: g
I c
L] -
S e
o a
g ] -
] -
2 e
e g
-100 ~-100
4] Scattering Angle (deg) 180 0 Scattering Angle (deg) 180

F1G. 3. The inelastic Mueller scattering matrix for a small sphere: @ =0.0014,, 4,=1.23,, n, =

total intensity.

2¢c0s@/(1+cos’), and element S,, is zero everywhere.
These clements are useful references of comparison for
the inelastically scattered Mueller matrix elements.

A specific, but arbitrary, case of inelastic light scat-
tered from a small fluorescing sphere is shown in Fig. 3.
For this case, a=0.001A,, A,=1.24,, and
n;=n,=1.50+0.001i. The shapes of the matrix ele-
ments of Fig. 3 are identical to the shapes of the matrix

n,=1.50+0.001i. [,, represents

only difference between these two sets of curves is the
magnitude of matrix element S;, (note the total scatter-
ing has decreased by nine orders of magnitude).

B. Sphere-size parameter

Figure 4 shows the light-scattering Mueller matrix of
three different 7, =n,=1.5+0.001i spheres having radii

clements for the small, inelastic sphere of Fig. 2. The a=0.3A,, 1.0A,, and 3.0A,. The fluorescent wavelength
2 100f
Sy § 4
- s
° -
3 3
: -
= g
1S
£
-3 -100
0 Scattering angle (deg) 180 0 Scattering Angle (deg) 180
10 100
5 o §
3 i
3 3
& V £
[ [
& 2
-100 ‘ ~-100
0 Scattering angle (deg) 180 0 Scattering Angle(deg) 180

FI1G. 4. The inelastic Mueller scattering matrix as & function of sphere radius. Curves are shown for three #, =n; =] 5 -0 01
sphere radii: @ =0.3A( (8 —#),a =1.0A, (0—0 ), and @ =3.0A, { X — X ). The wavelength A,=1.21,. [,,, represents total 1ntenss-

ty.
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FIG. 5. The inelastic Mueller scattering matrix as a function of
a =A, radius sphere is measured at wavelength 2, =1.24, (8 —3
total intensity.

is set at A, =1.2A4,. As the size of the sphere increases,
the frequency of oscillations in the matrix elements in-
creases. This is similar to what occurs for elastic scatter-
ing. One major difference between the elastic and inelas-
tic cases is illustrated in matrix element S,,. For elastic
scattering, the total intensity of the scattered radiation
increases significantly as the sphere radius increases.
Such an increase does not necessarily occur for the case
for coherent, inelastic scattering. Figure 4 shows that as
the sphere radius is increased from 0.3, to 1.0A,, the to-
tal intensity has increased at all scattering angles, but as

wavelength A,. The light scattered from an n, =n, =1.5-0.001i,
), Ay=1.84; {0—0), and A, =2.44, (X — X ). [, represents the

the sphere radius is increased from 1.0, to 3.04,, the to-
tal intensity has decreased at all scattering angles.

C. Hwnum

Another ‘ﬁ;hat may be directly measured is
the wavelengthi A,,-Which is a single wavelength selected
from the fl continuum. Figure 5 shows the

light-scattering ueller matrix of the
na=n,=1, 5%“ a =), sphere emitting at three

different wm A;=12A,, A,=1.8\, and

»

2 100
Su § N . E;I
- (\,——/’_—‘——'——-‘-‘ s
o 3
2 €
2 H
“
&
-y -100
L Nevelength 24 12 N nevelength 24
mor 10
5 Sl §
3 8
3 5
4 4
g i
| i
-10 —p ~100
12 Nevelsngtn 24 12 Navelongth 24
F1G. 6. The inelastic Mueller scattering matrix as a function of wavelength A,. The light scattered froman n, = . < -.0011,
@ =A, radius sphere is detected at angles =" (8 — ), §=90° (0~—0 ), and §= 180° ( X — X ) as wavelength A tnrc v~ --om 1.2

to 2.4 times the sphere radius a.
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FIG. 7. The Mueller matrix for elastically (#—#) and inelastically (0 —0 ) scattered light from an n, =n,=1.5+0.001i, a =4},
radius sphere. The inelastically scattered light is detected at A, =1.0014,. /., represents the total intensity.

A;=2.4A,. It should be noted that the frequency of oscil-
lations in the matrix eclements decreases as the wave-
length increases. This is similar to what occurs in elastic
scattering.

We can also study the scattered light as a function of
the wavelength A, by fixing the scattering angle and cal-
culating the Mueller matrices as a function of wavelength
A.. Figure 6 shows the light-scattering Mueller matrix
elements for an n, =n,=1.5+0.001i, a =A, sphere as a
function of A, at three scattering angles: 0°, 90°, and 180°.
The horizontal axis is now a wavelength scale varying
from 1.2 to 2.4 times the sphere radius. Some features
occur in these curves that occur in elastic scattering.
Matrix clements S,; and S;, are zero at 0" and 180",
while matrix element S,, is 100% at 0" and —100% at
180°.

To conclude, we show how .
diation differs from the i ) '
Figure 7 compares the Musiler &'ehucally and
inelastically scattered light from an »n,=n,=135
+0.001i, a =A; radiue sphere. The inelastically scat-
tered light is detected at A,=1.001A,. To the experimen-

talist, this is equivalent to illuminating the sphere at 400
nm and comparing the scatter at 400 nm (which is almost
completely elastic) with the scatterer at 400.4 nm (which
is completely inelastic). We note that the shapes of the
two sets of eclements are very similar, with the main
difference being the amplitudes of the peaks. This
difference is due to the difference between elastic- and
inelastic-scattered light, not the small wavelength
difference.

These theoretical results demonstrate that the
coherent, inelastically scattered light is a complicated
function of many variables. In addition to the parame-
ters involved in elastic scattering, the wavelengths emit-
ted and the wavelength-dependent optical properties of
the fluorescing material must be considered. Direct ex-
perimental verification of these conclusions will need
careful measurements of the low intensity of inelastic ra-
diation because the total intensity does not increase with
sphere radius as does the intensity of the elastically scat-
tered light.
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Light-scattering Mueller matrix from a fiber as a

function of MgO contamination

Gorcon Videen and William S. Bickel

The light-scattering Mueller matrix for an 7 = 0.345-um-radius quartz fiber, illuminated at A = 0.4416 um. ig
examined as & function of contamination with MgO crystals. When the MgO contaminatiofi is low, the matrig
elements resemble those of a fiber of slightly larger radius. The MgQO contamination crestes higher.
frequency. smaller-amplitude oscillations in the matriz elements that mask the lower-frequency oscillations
indicative of a perfect cylinder. The contamination aiso causes scatter outside the plane of incidence.

Key words: Mueller matrix, light scattering, fiber, contamination.

. Introduction

The problem of light scattering from an infinitely long
circu'ar cylinder was solved independently by Lord
Rayleigh! and by von Ignatowsky.? Theory was ex-
perimentally verified by Bell and Bickel,® who mea-
sured the light-scattering Mueller matrix from a
quartz fiber whose radius was approximately equal to
the wavelength of the illuminating radiation. Certain
modifications to the basic cylindrical system, such as
cladding with another index material or giving the
system an elliptical cross section, can be treated theo-
retically. These solutions have been discussed in sev-
eral texts.*¢ When the scattering system geometry
becomes irregular, that is, when structures or surfaces
cannot be made to conform to a single orthogonal
coordinate system, the theoretical solution becomes
extremely difficult, if not impossible, to obtain. Theo-
retical progress toward solving for the light scattered
from such systems needs experimental data so the
theorist can be guided toward the simplications that
may b2 made while still yielding acceptable resuits.

In studying light scattaring it is important to consid-
er that no scattering systam is perfect. Impurities in
the material and distortions in geometry cause experi-
mental measurements of scattered light to deviate
from theory. Many systems, by their nature, are im-
perfect. The addition of contaminants to the scatter-
ing system (dust particles in air, minerals in water,

The suthors are with the Department of Physics, University of
Arizona. Tuc.cn, Arizons 85721,
Recwived 29 October 1990.
0003-6935-91,273880-06805.00/0.
© 1991 Optical Society of Americs.
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etc.) change the systems and their resulting scatter,

Contamination monitoring is an especially difficult

problem when the experimenter is not able to separate
the sample to be monitored from other scatterers that
might be present. For example, scattering signals
from asbestos impurities could be dependent on the
dust present or on humidity levels. The monitor can-
not remave or ignore these other factors and so must
deal with their contributions to the scattering signals.
In the laboratory, greater control over the scattering
system can be achieved.

The light-scattering Mueller matrix for a circular-
cross-section, quartz (n = 1,466 — 0.0 at A\ = 0.4416
um) fiber of known optical and geometrical parameters
is predicted exactly by theory. This same fiber, coated
by cubic MgO crystals (n = 1.74 — 0.0i at A = 0.4416
um), has a different light-scattering Mueller matriz.
To ses how the contamination affected the scattering,
we studied the light scattering as a function of MgO
contamination of the fiber. By studying how a perfect
quartz fiber's scatter changes when we contaminate it
with particles of known characteristics, we may better
understand how contaminants affect other, irregular,
systems.

§. Light-Scattering Technique

The polar nephelometer used in this study employs the
polarization moduiation technique developed by Hunt
and Huffman.’ A complete discussion of the nephe-

. Jometer design and operation is given by them and aiso

by Perry et al? and Bickel et al? This technique
involves periodically modulating the incident beam’s
polarization state at wy = 50 kHz, using a photoelastic
modulator, while obeerving the signals carried out by
the fundamental frequency (wo) and the second har-
monic (2wo) of the scattered light. A lock-in amplifier

RIXPYORI o . . y
CELTERGE YeRlw T .-n.h,m*,”




Fig. 1. Ezperimental spparatus used 10 measure the Mueller scat-
tering matrix ~f & fiber. Laser light passes through the entrance
optics and strikes the fiber at normal incidence. The scattered
radiation pa:ses through the exit optics. where it can be intercepted
by & detector or a photographic plate to make a phorograph.

is used to demodulate the signals. The experimental
scattering matrix S, (4) can be measured with the prop-
er choice of exit optics.'® Normalization of the matrix
elements is performed by servoing the photomultiplier
tube (RCA 1P21) gain by means of a constant-current
servo, which creates a constant dc output signal over
the entire scan of the detector. The normalized out-
put S,(6) analog signals are collected and sent to a
computer.

Figure 1 shows the experimental apparatus used to
measure the S, () of a fiber. The beam from the laser
passes through the entrance optics and illuminates the
fiber at normal incidence. The light scattered by the
fiber may then either pass through various exit optics
to a detector or pass directly to a photographic plate.
A photographic plate can record the out-of-plane scat-
tering, which does not occur for a perfect, uncontami-
nated fiber and which is usually missed by the polar
nephelometer.

M. initial System

The quartz fiber was made with the method developed
by Bell and Bickel.? The midsection of a quartz rod
was heated by an oxygen-acetylene flame until it was
molten. The rod was stretched slightly and slowly to
make the midsection thinner. Just before the rod
separated into two pieces, the ends were rapidly pulled

”
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Fig. 2. Four experimentally messured Mueller scattering matriz elementa for the initial fiber iiotted curves) and the theoretical matrix
elements for an r = 0.345-um-radius quarts fiber (solid curves).
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apart. This maneuver often produces fibers stretch-
ing from one or both ends of the rod. If no fibers are
created, the process can be rcpeated.

Figure 2 compares the four unique, nonzero light.
scattering Mueller matrix elemeats for the experimen-
tal fiber (dotted curves) with the theoretical matrix
elements of an » = 0.345-um-radius quartz fiber (solid
curves). Theelements are nearly identical with differ-
ences most likely resuiting from a slight nonuniformity
of the fiber cross section. These matrix elements are
the scattering signatures of the perfect fiber system.
These elements will change as contaminants are added
to the system.

V. Contaminated System

Figure 3 shows the apparatus used for contaminating
the quartz fiber with MgO crystals. The fiber is sus-
pended vertically from a tube, 22 cm long and 8 cm in
diameter, the top of vhich is blocked off except for a 2
cm ¥ 2 cm hole on one end cpposite the fiber. The
fiber is coated by burning & 2.3-cm-long strip (~24 mg)
of magnesium ribbon (J. T. Baker Chemical Company)
placed 2 .o below the lower end of \he tube. The
coating occurs as the smoke passes through the tube
and out through the hole at the top. The ribbon burns
for ~103, and after the smokz has cleared (~2 min), the
contaminated fiber is removed. The fiber is placed
under a microscope and photographed. Then it is
placed in the nephelometer, where its scattering ma-

Vg0 Smoke

View of Fiber
l and Frber Mover

~—

{

_
=

Fig.3. Apparatus used to contaminate the quares fibers with MgQ
crystals.
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Fig. 4. Ezperimental light-scattaring Musiler matrix of an r = 0.345-um-radius quarts fiber as a function of MgO contamination. The
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triz eloraents are measured. A photographic plate is
used to measure the total intensity of the out-of-plane
scatter. The process is then repeated, each time with
additional coatings of contaminants added, until the
light scattered is no longer significantly affected by the
additional contaminants.

Figure 4 shows the light-scattering Mueller matrix
of the fiber fur three different levels of MgO contami-
nation. The light-scattering total intensity matrix
element (S);) increases with increasing fiber contami-
nation, whil> the magnitudes of the maxima/minima of
the polarization matrix elements (Si2, Sy, and Si)
tend to decrease as the fiber becomes more contami-
nated. The frequency of the cacillations increases as
the contamination increases. The matrix elements
also display high-frequency, small-amplitude oscilla-
tions. These small (only & few percent) signal fluctua-
tions are not noise aines they sre reproduced exactly by
repetitive measurements of the fiber in exactly the
same orisntation. They change, however, if the laser
beam strikes the fibee at a slightly different location or
orientation.

Figure 5 shows the theoretical matrix elements for a
quarts fiber as a function of fiber radius. A 0.345-um-
radius filer (dots on solid curves) is shown; additional
sets of elements are shown for fibers whose radii have
increased by 0.0056 um. Figures 4 and 5 show many
similarities. The low-frequency ocecillation of the con-
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Fig. 8. Photomicrograph of the fiber surface system after six coat-
ings of MgO crystals.
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shows that after six coatings the MgO crystals extend
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Fig. 8. Photograph of the light scattered by the fiber with siz
coatings of g0 crystals.

taminated fiber coincides with that of a riber of slightly
larger radius. Not only have the frequencies increased
but the amplitudes of the maxim:=/minima of the con-
taminated fiber matrix elements coincide with the ele-
ments of the larger fibers. Nots especialiy the shapes
of the elements near ¢ = 130°.

Figure 6, a photomicrograph of the fiber system,

many fiher diameters beyond the initial fiber bound-
ary. Figure 7 shows the experimental light-scattering
Mueller matrixz of the uncoated fiber and of the fiber
after six coatings of MgO crystals. The phase infor-
mation that characterizes the initial uncoated fiber is
no longer present for the coated fiber. Instead, high-
frequency oscillations dominate the matrix elements.
As the number of contaminants increases, matrix ele-
ments Sy; and Sy tend toward zero. Matrix element
S3; also tends toward zero, except in the forward-
scamnn( region (near # = 0°), where it is positively

The Mueller scattering matrix elements for a single
sphere or cylinder obey the following relationship:

Si+ 85+ 8 w1

(note that we are using a normalized Mueller matrix
representation). This relationship is obeyed by the
uncoated fiber at all scattering angies. However, this
relationship does not hold for the contaminated fiber,
which has lost its efficiency in producing polarized
ight.

Figure 8 is a photograph of the scattering patterns
created by the contaminated fiber shown in Fig. 6. A
sheet of Kodak Panalure II photographic paper was
placed 1 m away from the fiber. Both the fiber and the

3884 APPUED OPTICS / Vo'. 30, No. 27 / 20 September 1991




photographic paper were normal to the incident beam.
It is interesting that the pattern is especially intense in
the forward scatter very near specular (¢ = 0°, § = 0°).
Tiber asymmetry along the z axis causes out-of-plane
scatter. This out-of-plane scatter is especially inter-
esting because it is not a random speckle pattern. The
speckles, elongated in the # direction, betray the un-
derlying cylindrical geometry. Although this is not
evident in the matrix elements measured in the scat-
tering plane (Fig. 7), it is evident in out-of-plane scat-

ter.

V. Discussion

Adding contaminants to a perfect fiber changes its
light-scattering Mueller matrix. Small amounts of
contaminants tend to increase fiber size slightly, and
this information appears in the matrix elements. Ad-
ditional contamination drives the polarization ele-
ments (with the exception of Sy; in the forward-scatter
region) toward zero. Only the out-of-plane scatter
contains a hint of a fiber system.

This research was supported in part by the U.S. Air
Force Office of Scientific Research.
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The light-scattering Mueller matrix 1s experimentally determined for a 0.26-um-radius quartz fiber mounted
on an aluminum surface at five different incident angles. The results are compared with those for the exper:-
mental scattering elements of the lone fiber and the lone surface and with theoretical results derived from a
simple fiber-surface model. The experimental matrix eloments of the fiber-surface system do n& resemble
the matrix elemants from any of these other systems.

INTRODUCTION

A perfect fiber (or sphere) on & perfect surface is the sim-
plest solvable surface defect. We measured the Mueller
scattering matrix for a fiber-surface system with a polar
nephelometer. This scattering system incorporates two
separate perfect systems whose scatter can be determined
exactly by theory. Fresnel derived the scatter from a per-
fect plane surface before Maxwell developed his famous
equations. Later in the 19th century, Rayleigh derived
the scatter from a perfect cylinder.! Although the combi-
nation of a fiber~surface system is more difficult to solve
theoretically, we can experimentally measyre the scatter
of the combined system just as easily as we can measure
the scatter of the individual systems. The main experi-
mental problem is to ensure that the surface, the fiber,
and the fiber-surface system are of sufficiently high qual-
ity to give data accurate enough to warrant careful theo-
retical attention.

INSTRUMENTATION

The light-scattering apparatus used to measure the light-
scattering Mueller matrix elements is shown schemati-
~ally in Fig. 1. Light emitted from a He-Cd laser (A =
0.4416 um) passes through various entrance optics before
scriking the sample (either the fiber, the surface, or the
fiber-surface system). Elements were measured for the
lone fiber oriented along the z axis, perpendicular to
the incident beam, and for the lone surface, with the plane
of the surface defined by the z axis and a line at angle a
measured from the incident beam. The angle a is the
complement to the incident angle measured from the sur-
face normal (see Fig. 1). Elements were then measured
for the fiber-surface system with the fiber resting on the
surface. The fiber 13 oriented parallel to the z axis, which
is perpendicular to both the incident beam and the normal
to the surface. Light from the scattering system passes
.arough various exit optics before reaching the detector,
which rotates through angle 9 about the z axis.

The polar nephelometer used in this study employs the
polarization modulation technique developed by Hunt and

0740-3232/92/020312-04308.00
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Huffman.? Complete discussions of the nephelometer de-
sign and operation are given in Ref. 2 and also by Perry
et al.’ and Bickel et al.** The experimental scattering.
matrix measured by the nephelometer is signified by S, .
These elements are actually combinations of the genersl
scattering matrix elements S,. Iafelice and Bickel® de-
termined that five elements are necessary to characterize
the Mueller matrix for a near-perfect surface: .

Su*=Su Su®= Su/Su,
Sn® = (Si3 + Su)/(Su + Sa).
S1® = (Sis + Su)/(Su + Su),

Su® = (Si + $3)/(Su + Sn). (1) 3

For symmetric scatterers such as spheres and fibers, ,'
Sy = S;3= S, =0and Si2 = Sy. For these scatterers, ;
the experimental scattering matrix reduces to the normal-
ized scattering matrix: :
Su*= Sy, Su*=Su/Su, Sn*=1, i

S»n® = Sn/Su,  Su® = Su/S.. (2)

SCATTERING SYSTEMS s

The quartz fiber was made by using the method developed
by Bell and Bickel.” The radius of the fiber was deter-
mined by comparing the values of the experimentally mea-
sured matrix elements with theorstical values.*'® A best
fit of the experimental and theoretical curves occurred for
a fiber radius of 0.260 = 0.008 um. The optical con-
stants of the fiber were held constant (for quartz, the re-
fractive index n = 1.466 + 0.0i and permeability u = u,).
The experimental matrix slements for the quartz fiber
(dotted curves) and the theoretical matrix elements for
a 0.26-um-radius quartz fiber (solid curves) are shown
in Fig. 2. Repeated measuremaents of the fiber matrix
elements coincide. Deviations occur because the fiber 18
not perfect.

The surface studied in this experiment is the same sur-
face as that studied in great detail by lafelice and Bickel.*

© 1992 Optical Socisty of America
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Figure 3 shows the light-scattering Mueller matrix
for the fiber-surface system measured at near- -grazing
incidence 'a = 11.25°). Superimposed on the figure
are the four scattering matrix elements for the ione
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Fig. 7. The four unique Mueller matrix elements for a fiber-
sirface system illuminated a¢ a = 78.75° from an sluminum
surface.

0.26 .~ -radius quartz ficer: S,° Si3°, Su® and Si*.
Measurements of the other matrix elements show that the
relations expressed by Eqs. (2) are valid for the fiber-
surface system and that only these four measurements are
needed to characterize the scatter completely. Figures 4,
5, 8, and 7 show the fiber-surface matrix eiements fora =
22.5°, 45°, 57.5°, and 78.73°, respectively. The intense
specular peak that occurs whon the scattering angle & =
2a causes sharp spikes on the polarization matrix ole-
ments. We note that as the illumination angle is varied,
the matrix elements varv greatly and do not appear to ap-
proach a limiting value. :

The exnerimental matr:x elements of the fiber-surface
system are dissimilar to the elements of both the lone
fiber and the lone surface. The oscillation frequency of
the c!2ments of the fiber-surface system is much grester
than that of the lone fiber or the ione surface. This is not
surprising since the fiber~surface system approximates s
druble-fiber system: fiber and an image fiber whose di-
mensions are twice those of the lone fiber. In general,
increasing the linear dimensions of a scattering system in-
creases the oscilistory frequency of its scattering matrix
elemen.s. The large difference among the matrix ele-
ments of the fiber, the surface, and the {iber-surface sys-
tem re“esls that the three systems are fundamentally
different. Therefore one cannot use the matrix elements
of a lone fiber to predict the matrix elements of a fiber-

surface system.

MODEL

The difference in oscillstory frejuencies between the two
systems cannot be accounted for simply by treating the
fiber as a perturbation of the surface. A different model
must he used to predict the scattering. Three models
were proposed by Nahm and Woife to predict the scatter-
ing from spheres on a conduc:iag plane.! Nahm and
Wolfe concentrated on the total intensity matrix element
Si. Our polarization measu-ements contain additional
information that does not piay a part in bidirectional re-
fiectane: distribution function theory. Our treatment of
this systemn uses a model similar w0 the double-interaction
model. [n this model, light reaches the detector by travei-

Videen et al.

ing one of four different paths (Fig. 8). The light may
either ([) strike the fiber and scatter directiy to the detec-
tor; (II) reflect off the surface, strike the fiber. and scat-
ter to the detector; (III) strike the fiber and scatter to the
surface, where it is reflected to the detector; or (IV) re-
flect off the surface, strike the fiber, and scatter to the
surface, where it is reflected to the detector. This model
includes no interactions between the fiber and the sur.
face, for instance, light scattered by the fiber that reflects
off the surface before interacting with the fiber again.
The resulting amplitude elements for these four rays can
be derived as follows: :

TS4(9) = Ta(d) + R.i7/2 - alexp 18(aiT.(3 - 2a)
+ RJ[m/2 - (9 ~ atlexp i8(¢ - a3 - 2a)
+ R[m/2 - (9 - a))R.(m2 - atexp t[dla
+ 8(0 - )T, (9). ’ 3)

Here T,(0) is the scattering amplitude matrix element
T(9) or Tz(9) (n = 1 is for the TE mode, and n = 2 s for
the TM moda; see Ref. 8) for the cylinder with no surface
present, and

- 4mr sin 9

8(9) A

(4)
is a phase difference resulting from the paths that the
light may travel before reaching the detector. The
Fresnel reflectance coefiicients R, are given by

pan, cos 9, = winyfl ~ (ny/nq)° sin® §,]'?
wan, co8 8, + w agl ~ (Ay/n2)? sin’ 9.}

Rl{"l) = 18)

uinacos d - [Lﬂh[l hd (’!l/ﬂz)z sin® & ]l 1‘
pingcos & + wam[l < (A/ng) sin® 9,)'°

Ra(!’.) - 16)

whaere the subscripts on 4, and 5, are the permeability and
the complex refractive index for the medium on the inci-
dent side of the surface (i = 1) and the transmission side
of the surface (i = 2).

Figure 9 shows the experimental Mueller scattering
matrix and the theoretical results for a 0.26-um-radius
quarts fiber resting on an aluminum surface (n = 0.5 +
5.0i)'? calculated from the scattering amplitudes de-
termined from Eq. (3). Although the experimental and

Fig. 8. Paths that an incident beam may follow to *ne * der and
after interaction before being detected on the inc:ce~t -.de of
the surface.
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 theoretic.| curves do not coincide, it is interesting to note
& number of similarities. Most important is that the
mumbers of minima and mazima in the corresponding ele-
ments of both sets of curves are approximately equal.

ne of the crudest ways to estimate fiber (or sphere) di-
. is to match the number of maxima or minima in a
articular interval with theory (this is similar to deter-
ining slit width in a diffraction experiment). These
fit the fiter on the surface much better than they fit
lone fiber. The theory for total intensity matrix ele-
at S, fits the experimental data quite well. Both show
munmy falloff of approximately 3 orders of magni-
e from the specular peak to ~180°. Although this

weil, it does not accurately predict the polarization
inter of the scattered light, especiaily with regard to po-
rization magnitudes. However, the numbers of maxima
bd minima compare favorably. Comparing polarization
's is important from an experimental point of view
polarization curves from two scatterers that give
i y identical Su can be quite different. It is impor-
Ant from « theoretical point of view because theories that
b predict S\, cannot be taken for granted in predicting
correct polarization. That is the csse here.

LUSIONS

light-s.attering messurements and analysis of the
~surface system lead to the following conclusions:

| may predict the total intensity of the scattered light
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1. The S, for a fiber-surface system in no way re-
sembles the S, for the 1solated fiber. This means that the
matrix elements measured for a fiber (or sphere: on a sur-
face are not useful in determining the properties of the
defect without an appropriate theory.

2. S, are strongly dependent on the angie of inc-
dence a. Studies of complete scattering as a function of
incident angle may be necessary to characterize surface
defects.

3. Polarization elements {other than S,;) carrv suffi-
cient extra information to warrant their measurement for
a complete analysis of the surface.

4. The most stringent test of any theory that predicts
scatter 1s whether it accurately predicts the polarizations.
Often surfaces with very similar S,, will produce very dif-
ferent polarization curves.
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Light-scattering resonances in small spheres
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Two limiting expressions occur for scattering from very small spheres. One occurs when the refrac-
tive index becomes small (Rayleigh scattering), and the other occurs when the sphere becomes perfectly
conducting (Thomson scattering). We explore the scatter from small spheres having real refractive in-
dices. For such spheres, resonance conditions occur, and the resulting scattering coefficients are no

longer proportional to the volume of a sphere.

PACS numberi(s): 42.25.Fx

INTRODUCTION

Electromagnetic scattering from small spheres was ex-
plored by Rayleigh [1] and Thomson (2], who calculated
light-scattering expressions for two very different special
cases: where the spheres have small refractive indices,
and where they are perfect conductors, respectively.
They did this before Mie {3] and Lorenz [4] derived a for-
malism for the scatter from arbitrary spheres. The raiigze
of validity of these special limits has been explored by
Kerker, Scheiner, and Cooke (5]. They found that as the
sphere size becomes smaller, Rayleigh theory is valid
over a larger range of refractive index, and Thomson
theory is valid over a smaller range of refractive index.

We might expect the scattering that occurs from small
spheres that lie in the region between the Rayleigh and
the Thomson limits to be composed of some combination
of the modes present at these two- limits. However, the
extinction efficiencies of small, dielectric spheres as a
function of refractive index (Fig. 1) are not smooth, but
complicated by sharp resonances. Resonances in the
light scattering from spheres have attracted a great deal
of attention recently [6-16]. Resonances appear as
strong, narrow enhancements in the scattering of a parti-
cle. The large internal fields that are built up within such

_ particles can create interesting effects and have been used

to investigate various phenomena such as fluorescent and

Raman scattering (17-24).
It is wéll known that as the sphere size becomes small

Refractive index 200

F1G. |. Extinction eficiency for a smali (r =0.0tA) sphere as
a function of real refractive index.

45

with respect to the illuminating wavelength, the equa-
tions predicting the scatter are greatly simplified, since
only a few sets of coefficients ar® necessary to character-
ize the scatter. We take advantage of these simplified ex-
pressions and derive the resonance conditions directly
from the a, and b, coeflicients (25-27] rather than from
the 4,, B,, C,, D, coeflicients [28], which is the stan.
dard method. We then explore the scattering behavior
and cross sections on and near resonance. Studying reso-
nances in small spheres gives insight into the resonances
that occur in larger spheres and even in more complicat-
ed particles.

We note that the resonance conditions in these small
spheres are met when the sphere refractive index is large
(m>m/x). Therefore, it would seem that this work
would constitute only a theoretical exercise, which could
only provide insight into other resonance situations.
However, in a recent paper, Scully {29] has shown via
quantum coherence that when operating near an atomic
resonance between an excited state and a coherently
prepsred ground-state doublet, a large enhancement of
the refractive index (by many orders of magnitude! may
be achieved with zero absorption. In this case, the light-
scattering resonances that we examine cannot only be
realized, but may prove to be a useful tool in charactenz-
ing the optical properties of such materials.

SCATTERING COEFFICIENTS B

The electromagnetic scattering a large distance from a
sphere of radius 7, illuminated by a unit-normalized plane
wave traveling in the positive z direction, and polarized
in the % direction, may be expressed by two scattering
amplitude functions given by

= I+ | Pllcosd) 3 .,
= +—P,(cos)b, | .
S ,z_,n(n-H) sing " aoP' cosv 0
(1a)
2 I +1 | Plcosd) 3 .,
= + —P,(cosd" .
517 2 iaw ) | “smg Ot aghhieese
(1o
6008 © 1992 The Amencan Physical Society
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where S, is measured in the y-z plane and S, is measured
in the x-z plane. The Mie scattering coefficients are given
by
my,(x),(mx)—¢,(mx)¢,(x)
a = U i
" omE(x)$,Imx)— ¥, (mx)E, (x)
mu, (mx)g,(x)=&,(x)¢,(mx)

" omd,mx)E, (x)=E (x ), (mx)

(2a)

) (2b)

where m is the complex refractive index of the sphere,
x=2mr/A, and ¥, and &, are the Riccati-Bessel func-
rions.

First we examine what happens for the special limiting

i

MY

case where the sphere size is small (r <<A}). In this limit-
ing case the scatter is determined primarily by the
lowest-order terms of the series given by Eq. (1. The
Riccati-Bessel functions for the n =1 case are given by

U (p)= ﬂpﬂ —cosp ., &lp)=explipX—ip~'=1). ()

For small arguments, these functions are approximately

2 4 . . 2
wipr~E £, g.(p)~—ﬁ-5§+% L@

For small x, the scattering coefficients given by Eq. (2
are approximately

. cos(mx) |x 1¥2m” 4 _ 0 1+tdm_ +sin(mx) | — l+2m- sz [1E14m

) ’ ’ im --30m - . Im? 30m?
a,~ i +im? i +im? L - , .

costmx) [x =2 | ——2 {Tim Fsintmx) [x =3 [LZim (i Dim

m 2m mZ zmz
) 2 (5)
cos(mx)(x —x’/6)+sin(mx)L—l/m +x? -——‘:'2"'" ll

b|~ ; - _

costmx)( =i +x)+sin(mx) |x 7' [ = | —1/m —x ‘::: ]]

Similarly, the second-order coefficients may be written as in Eq. (6).

Two additional limiting conditions exist for small
spheres. One is the Rayleigh limit valid when |mlx << 1.
In this case the scattering coefficients further reduce to

_2ix’ mi-1
3 mi+2’

a,~b,~0 forn>1.

a|~ b(~0p.

n

The other limiting condition occurs when the sphere’s re-
fractive index approaches that of a perfect conductor
m —ia. In this case the scattering coefficients reduce to

(8)
a,~b,~0 forn>1.

Note that in both these limitin, cases the scattering
coefficients are proportional to x°. Figure 2 shows the
angular scattering-intensity distributions for a Rayleigh
and a Thomson sphere. .

RESONANCES

We now examine the b, mode in more detail. When
the refractive index m is increased along the real axis, the
sine terms-in Eq. (5) do not contribute to the scatter when
mx = N= where the index N is an integer. Resonances in
the b, coefficients occur at approximately these locations.
Two interesting results occur that are worth pointing out.
The first is that the scattered fields are no longer propor-

tional to the sphere volume. As a result, the scattering
efficiencies of such particles are greatly increased corn-
pared to particies just off resonance. Figure 3 shows the
first b, resonance (following a previous convention [8];
this is written as b}). For purposes of illustration, we
chose to examine small spheres with an arbitrary but
definite radius »=0.01A. The resulting resonances will
necessarily occur only at large values of refractive index
(m = S0ON) due to the small size of these spheres.

The second interesting result is that the mode of oscil-

TE

o WNlenuiy(10'1) p o  Inensty (10 1) o
ry

0 Ange (ceQ) 180

FIG. 2. Angular scattering-intensity distributions for an
r=0.01A, m =2.0 Rayleigh sphere {O), and an 7 =0.01A Thom.
son sphere ( X),

———— ... ]
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FIG. 3. Extinction efficiency for a small (r =0.01A) sphere as

a function of real refractive index near the b| resonance. Also

shown are the scattering intensities for the TE and TM modes

on the b! resonance (m = 49.980 06).

lation for the resonant sphere (b)) is completely different
than that for the Rayleigh sphere {#,). The resulting fieid
distributions (aiso shown in Fig. 3) for the b,-resonant
sphere will necessarily be different from the Ravieigh
sphere (shown in Fig. 2). The TE and TM Rayleigh-
sphere intensities are proportional to the TM and TE 6,-
resonant sphere intensities, respectively. For the b,
mode, the incident electromagnetic field induces a dipole
moment perpendicular to the incident electric field.

The &, resonances do not account for all the reso-
nances shown in Fig. 1. Resonances in the a, and b5,
modes occur when tan(mx) is approximately equal to mx
[for large mx, this occurs approximately when
mx~(N+})x). The a} and b; resonances are shown in
Fig. 4. These resonances are much narrower {half-width
of the order A(mx)/(mx)~10""] than the 5! resonances
{half-width of the order A(mx)/(mx)~10"%]. Reso-
nances in the higher-order modes are not as prominent,
since the resonant fields are proportional to x* where
k23

Equations (5) and (6) not only can be used to predict
where resonances occur, but can also provide information
on the shapes of the resonances. We will now take a
closer look at the b, resonance. If we express the com-
plex refractive index as m =m,+im,, where m, and m,
are both real quantities, we can expand the sine and
cosine function about the resonance locations,

7148 Retracive index 7183

FIG. 4. Extinction efficiency for a small (r =0.014) sphere as
& function of resl refractive index nesr the a! and b! resonances.
Also shown are the scattering intensities for the TE and TM
modes on the o (m=71.5007 and b! resonances
(m=71.5101%).
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sinimx)=(—1)Vsin(mx —¥Yr)

~(=1)V[i sinh{m,x)+ A coshim,x)] ,
. 9)
cos{mx)=(~1)Vcosimx —N~)

~(~11V[coshtm,x)—iAsinh(m x)],
. where m,x ~Nr, and A=m,x -~ N7 .
Near resonance, the scattering coefficient b, can be
simplified:

2

x coshim, x )+ 5 T m sinh(m, x)
bl~ m
Tsinh( m,x)—icoshim,x)
X e |
1+a/8 " - - ]
_  (x=ix)coshim,x)+m sinh(m,x)
where A= - - p
—im cosh{m x)
(10)
4
(a)
g o
&)
vg N
a
-
- L
-2 L1l 1 1.1 |
$§ 3§ 81 8
° -o == ~
Radius (10°72)
3 .
(d) (o) ]
5 | 5
3
Q
2+ - 2
a
Q
-
5 -
~1 bl s
§ 3% s1 s
S - & - o -
Radius (10°%>)

F1G. 5. Eatinction efficiency near the b, resonances: (a) for
an m =50.0 sphere where N=1; (b} for an m =100.0 sphere
where N =2; (c) for an m =50.0 sphere where N =2; (d) for an
m = 30.0+0.01i sphere where N=1; (e) for an m =50.0+0.01(
sphere where N =1; and (f) for an m = 50.0+0. li sphere N =1.
Radius r =0.01A.
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Equation (10) may be simplified if we assume the absorp-
tion is small (m, x << 1),

X i
x +mm; (A+x/m)
ix?/m +imx

(an

b|~

Multiplying Eq. (11) by its complex conjugate yields a
Lorentzian function centered at A=—x/m, with a haif-
width of x?/m +m,x. We note that as the absorption is
increased from zero, the amplitude of b, will decrease,
and the half-width will increase. When mm, >>x, the
amplitude will be proportional to 1/m, and the half-
width will be proportional to m,. These dependencies
were reached empirically for larger spheres having
moderate refractive indices {9]. This type of analysis may
also be performed for the a, and b, resonances.

The dependence of the line shapes on the size and re-
fractive index is shown in Fig. 5. In Fig, S(a), the
m =50.0 sphere passes through the b resonance as its
radius is increased. In Figs. 5(b) and S5(c), we can exam-
ine the b} resonances as the radius of an m =100.0
sphere and an m =50.0 sphere is increased, respectively.
Going to a higher index by increasing the refractive index
[Fig. 5(b)]) results in a narrower resonance. Going to a
higher index by increasing the size parameter [Fig. 5(c))
results in a broader resonance. The latter result has been
discussed previously for spheres much larger than the
wavelength (7,10,11). Figure § also shows the shape and
the width of the b} resonance as the refractive index is
changed from m=50.0+0.001i (Fig. 5M)] to

% ® %
4 -] 4
: | *
.10 -10
.i 0 [ °
: * fe TR '.\ :
5 [ At N
- | .
10 / " v \x !
% w6 ®
P = 7 =
l . , !
L ! .
o 0§ ‘o
Ange (deg)

FIG. 6. Angular scattering-intensity distributions for a small
(r=0.011) sphere having refractive indices: (a) m =43.666 10,
(b) m =59.226 10, ic) m =71.3508 44, and (d) m = T1.51992.
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m =50.0+0.01i [Fig. 5(e)] to m =50.0+0.1; [Fig. 5if)].
These figures verify that increasing the imaginary part of
the refractive index results in a reduction of the height
and an increase in the width of the resonant peak. This
conclusion has also been discussed when examining large
spheres [7-9,13].

The angular intensity distributions for spheres having
refractive indices between resonant values do not neces-
sarily resemble the distributions of either a Rayleigh or a
Thomson sphere. Figure 6 shows that cases exist when
the forward scatter (9~ Q') is down several orders of mag-
nitude {in cases of Figs. 6() and 6ic), g, +b, +5b,/3~0]
and when the backscatter (¢ —~180") is down several or-
ders of magnitude [in cases of Figs.. 6(a) and 6(d),
a,—b,+5b,/3~0]. These are importan{ points because
most scattering studies of spheres would-ﬁd one to be-
lieve that the intensity in the forward-scalering or back-
scattering directions would net extend-syeral orders of
magnitude below the scattered intensity at other scatter-
ing angles.

GORDEN VIDEEN AND WILLIAM S. BICKEL 45

SUMMARY

For the limiting case when sphere size is much smaller
than the incident wavelength, the equations describing
the scatter are greatly simplified. When two additional
limiting conditions on the refractive index are applied,
these equations are simplified further. When the refrac-
tive index is increased along the real axis, resonance con-
ditions develop that complicate the resulting scatter.
Precisely because these resonances occur, no limiting
condition can be reached as the complex refractive index
is increased along the real axis. Resonances have been
studied extensively for large spheres. Studying the reso-
nances in smaller spheres in which the equations are
greatly simplified gives insight 1o the resonance beha.tor
occurring in larger spheres.
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Polarized light scattered from rough surfaces
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A facet model is used to predict the polarization states of light scattered {rom rough surfaces. The states are
compared with experimentally determined elements {from various types of rough substrates. The experimental
data are found to be quite similar to what is predicted by the model.

INTRODUCTION

Before the development of Maxwell's equations and an
electromagnetic theory of light, Fresnel was able to de-
duce the reflection and tranamission coefficients for light
interacting with a perfectly smooth surface. Since then
researchers have been developing theories to obtain sur-
face characteristics (such as the rms roughness) from the
light scattered from the surface. These models often de-
velop along a Fourier-transform spproach. The bidirec-
tional reflectance distribution function is a standard
measurement of the scattered radiance divided by the in-
cident irradiance on the surface.'? It usually does not
take the polarization states of the source or of the scat-
tered light into consideration. Therefore valuable infaor-
mation is missing. To characterize the light scattered
from a system completely, one can measure the Mueller
scattering matrix.>’ This 4 X 4 matrix contains all the
polarization scattering information.

Recently there has been considerable interest in light
scattered from rough surfaces.'* These studies include
measurements of the scattered s- and p-polarization states.
In only a few instances have authors characterized the po-
larization states more completely by expressing the result-
ing scattered light in the form of a Mueller matrix.'""*
The purpose of this paper is to take a closer look at the
polarization state of the light. 1t is not our interest to ex-
amine the intensities, which have been examined in detail
in the papers cited sbove. The simplest model that can
predict the polarization state of light scattered from a
rough surface uses a geometric-optics approsch in which
the light is Fresnel reflected from pianar surface facets.”
Although the validity of this model is questionable in
nearly all physical situations (it is valid only when the
wavelength approsches sero), the model does have one dis-
tinct advantage in thet the calculations are easily made.
In this paper we digcuss and develop this facet model. We
then compare the Musller scattering matrices predicted
by this facet model with experimental matrices for several
surfaces having various surface roughnesses.

FACET MODEL

Figure 1 shows the geometry of the scattering system.
The scattering surface is located perpendicular to the

0740-3232/92/070001-08808.00

z axis in the x-y plane. The incident radiation is a plane
wave traveling in the x~z plane, oriented at angle ., with
respect to the z axis. The wavelength, wave vector, and
refractive index for the plane wave in the nonabsorbing,
nonmagnetic incident medium above the surface are A, k,,
and n,, respectively. The complex wave vector and re-
fractive index for a plane wave of the same frequency in
the medium below the surface are k; and n,, respectively.
A detector having area Ay, at & point P(ru,, % Pua) de-
tects light scattered into the solid angle A0y (rece, Pies,
Poons Aucy).

The facet model used in this study is based on a
geometric-optics approach in which ray optica are valid.
Light is assumed to travel in straight lines. When a ray
of light intersects a surface, it is Freanel reflected at that
location in such a way that the incident angle at that loca-
tion is equal to the reflection angle where these angles are
measured from the normal to a tangent plane (or surface
facet) at that location (Fig. 2). We further simplify our
model by considering only the light scattered in the x-z
plane (9. = 0) and ignoring rays that reflect off of more
than one surface facet. These limitations eliminate the
ability of the model to predict any cross polarization
(3 = p or p = 3) or effects such as enhanced backscatter.
Of course it is possible to develop a physical theory that
has more basis in reality, but it is aiways interesting to see
how well & zeroth-order solution predicts experimental re-
sults. And perhaps for some applications the simplest so-
lution is all that is required.

From Fig. 2 we see that only the facets oriented at angle
9 with the incident light rays will reflect rays and contrib-
ute to the amplitude in the direction 9. Upon reflec-
tion, the light is attenuated by a Fresnel reflection factor **
that depends on the state of linear polarization of the inci-
dent light and complex refractive indices of the media
above and below the surface:

ny cos 9 = nyfl = (n,/ny)? sin? 0]""
n, cos & + nyl - (n,/n,) sin? ]2
nycos & ~ nyl - (n,/ny)? sin? 6]"‘,
nycos & + n,[1 - (ny/ny)? sin® 912

Rrg(0) =

Rru(9) =

where

© 1992 Optical Society of America
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Fig. 2. Geometry of the facet reflection of a rough surface.

0= (04 - 7)/2. &

The subscripts TE and TM correspond to the incident
electric- and magnetic-field vectors being transverse to
the scattering plans (paralisl to the y axis), respectively.
We can calculate the electric-far-field amplitude by sum-
ming the contributions of the facets reflecting light in the
direction 9, (a time dependence of exp(ist) is assumed):

Er™ - Ep"Rp(d) I ky - A(r)
™ Ave A

X axpli(ky - k,) - tP oo -10ds, @

where the 7' is used to represent the TE or the TM mode
of the scattered and the incident electric fields (£ and
Es/™, respectively), A, is the cross-sectional area of the
incident beam upon the substrate, and A(r) is the unit nor-
mal at position r on the surface. The dot product is a
geometric size factor, the exponential function accounts
for the phase differences from rays reflecting at different
locations on the surface, and the Kronecker delta function
ensures that only rays obeying Snell's law contribute to
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the amplitude. In terms of the scattering ampiitude ma-
trix, this may be expressed as

[Eru'“] - [Sz S, [Em"‘ )
Ere™ S¢ S ) En™

(note that S; = S, = 0 for light scattered in the x~z plane
for the facet model, since there is no cross polarization).
Of the 16 elements of the Mueller matrix, only 4 are

nonzero or simple mulitiples of other elements in this case.
We use a normalized Mueller scattering matrix given by

Sy’ = Sy = %(S)|* + (S, (6)
Si' = Su/Su = % (S,|? - |S:19/Su, (N
Sss’ = S33/Su = Re(S,5,*)/Su, @
Sy’ = §34/Sn = Im(S,5,*)/Su. « (9)

When we normalize the polarization matrix elements by
the total intensity matrix element S, (expressing them as
a percent polarization), the integral in Eq. (4) cancels
from these elements and contributes only to the total in-
tensity matrix element (S;;). The polarization matrix ele-
ments (which we want to examine) are not affected by
this function. In our calculations of matrix element Sy;,
we arbitrarily set this integral to unity. For a perfectly
conducting substrate (ny ~ =), the scatter would then be
independent of the scattering angle. Any deviation in the
scatter from a horizontal line (when plotted as a function
of the scattering angle) is due to the complex refractive
index of the substrate.

Finally, by expressing the matrix elements as a function
of the scattering angle 9., which is measured from the
path of the incident radiation, we find that the polarization
state [Eqs. (7)-(9)] is independent of the incident angle
Dine. The light-scattering Mueller matrices predicted by
the facet model for a copper substrate (n; = 1.1 ~ 2.5i at
A = 0.4416 um)” and an aluminum substrate (n; = 0.5 -
5.0i at A = 0.4416 um),” both illuminated at &, = 90°,
are shown as a function of scattering angle 4.’ in Fig. 3.
We chose this incident angle (grazing incidence) because it
provides the maximum amount of information in the
graphs. Choosing a nongrazing incident angle would re.
move only the leftmost portions of the graphs (the forward
scatter) owing to vignetting by the substrate. The differ-
ences between these two sets of matrix elements is due
mainly to the differences in the absorption coefficients.
These sets of matrix elements are compared with the
experimentally measured matrix elements for the rough
surfaces.

LIGHT-SCATTERING MEASUREMENT

The polar nephelometer used in this study employs the po-
larization modulation technique developed by Hunt and
Huffman.®® A complets discussion of the nephelometer
design and operstion is given in Ref. 20 and also by Perry
et al.,* Bickel ot al.,” Bell™ and Iafelice.”® The measure-
ment requires modulating the incident beam'’s polarization

oK
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state at w, = 50 kHz with a photoelastic modulator while
observing the signals carried by the fundamental moduls-
tion frequency (w,) and second harmonic (2w,) of the scat-
tered light (A = 0.4416 um). A lock-in amplifier is used
to demodulate the signals. The experimental scattering
matrix S;*(3) can be measured with the proper choice of
entrance and exit optics. Normalization of the matrix ele-
ments is performed by servoing the photomultiplier tube
(RCA 1P21) gain via a constant-current servo, requiring
a constant-dc cutput signal from the detector. This is
performed over the entire scan of the detector. The
normalized-output S,*(9) analog signals are collected and
sent to a computer. The experimental matrix elements
measured are actually combinations of the Mueller matrix:

Sy® = 8u, (10)
S1s* = 819/8u, (11
Su® = (81 + Sw)/(Su + Sw), 12
Sy® = (Sie + 334)/(Su + Su). 13)

Since there is no mixing of the s- and the p-polarization
states in the facet model (S; = S, = 0), the matrix ele-
ment Sy; = Si3 = S = 0. The normalized matrix ele-

ments predicted by the model are equivalent to the -

measured combinations of matrix elements (S,’ = S,°).

SCATTERING FROM RANDOMLY
SCRATCHED SUBSTRATES

The first sets of experimental data are from randomly
scratched metal substrates. Figure 4 shows the four in-
dependent light-scattering Mueller matrix elements for a

B~ i S S S
Fig. 6. Micrograph of randomly sanded aluminum substrate.
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Sandblasted for 10 s 100um

Fig. 7. Micrographs of thres different substrates roughened by
sandblasting.

randomly scratched copper substrate as s function of scat-
tering angle 9,,’ at six different incident angles (0, = 0°,
15°, 30°, 45° 60° and 759. Note that when |#..| < 90°
(when there is no vignetting), the polarization elements
shown in Fig. 4 are very similar to the polarization ele-
ments shown in Fig. 3 predicted by the facet model.
Figure 5 shows the four independent light-scattering
Mueller matrix eiements for a randomly scratched alu-
minum substrate as a function of scattering angle 9.,
illuminated at the same incident angles as those of Fig. 4.
Note that the peaks (in element Sis), valleys (in element
Sy.), and zero crossing points (in element Sy) for the alu-
minum substrete are shifted slightly toward smaller
angles, as can be seen in the theoretical elements pre-
dicted in Pig. 3. Most notable in the experimental set of
matrix elements is that element Sy shows more depen-
dence on incident angle for the aluminum substrate than
for the copper substrate. Note also that, as the incident
angle is increased (toward grazing incidence), the percent
polarization of element Sy rises toward zero in the
backscatter (9., ~ 180%). A micrograph of the aluminum
subatrate used in this study is shown in Fig. 6.
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We note that the experimental matrix elements of the
aluminum substrate resemble the theoretical matrix ele-
ments of the copper substrat? of Fig. 3 better than they do
the theoretical elements of the aluminum substrate. One
possible reason for this is that our experimental substrate
is not pure aluminum. When exposed to air, the sample
is coated by a layer of aluminum oxide (this occurs much
more rapidly for aluminum than for copper). One effect
of this is a decrease in the absorption (the imaginary part
of the complex refractive index). The effective complex
refractive index of the oxidized aluminum substrate is
closer to that of copper than pure aluminum.

SCATTERING AS A FUNCTION OF SURFACE
ROUGHNESS

The last set of matrix elements is from aluminum sub-
strates that were roughened to different amounts by sand-
blasting. Eleven nominally smooth mlirror substrates
were polished to high reflectivity. Subetrate 0 remained
a mirror and served as a reference, while the other 10 mir-
rors were sandblasted to increasing roughness (substrate 1
was blasted for 1 s, substrate 2 was blasted for 2 s, etc.).
This created a family of related surfaces in which the
roughness ranged from zero (s mirror) to saturation (when
additional sandblasting d:d not change L-e surface). Mi-
crographs of three of these sirfaces are shown in Fig. 7.

Figure 8 shows the four independent light-scattering
Mueller matrix elements for the reference (mirror) sub-
strate as a function of scattering angle 9,..’ at five differ-
ent incident angles (9, = 16°, 30°, 45°, 60°, and 75. S,
is characterized by a strong specular peak at the angle of
reflection and a steep falloff in intensity away from the
specular peak. The polarization matrix elements of this
substrate only slightly resemble those predicted by the
facet model shown in Fig. 3. Note that there is a strong
dependence on incident angle in all three sets of polariza-
tion matrix elements in Fig. 8, not just Sy as was the case
for the scratched substrate.

Figure 9 shows the four independent light-scattering
Mueller matrix elements for substrate 4 (sandbiasted for
4 3) as a function of scattering angie 0. at five different
incident angles (9., = 15° 30°, 45° 60°, and 759. This
set of matrix elements resembles thoee of the facet model
more closely (especially matrix element S,,). In the
backacatter region, elements S,; and Sy, still show a strong
dependence on incident angle, becoming more positive as
Uine is increased. Element S;, however, is almost con-
stant in the backscatter region as 0., is increased.

Figure 10 shows the four independent light-scattering
Mueller matrix elements for substrate 10 (sandblasted for
10 s, almost to saturation) as a function of scattering
angle 9, at five different incident angles (¥, = 15°, 30°,
45°, 60° and 75%). The scattering slements of this sub-
strate are very similar to those predicted by the facet
model. Again, however, a definite dependence on incident
angle in the backscatter region of Sy, which is not pre-
dicted by the facet model, occurs. As seen in the matrix
elements for the other aluminum samples, element S;; be-
comes more positive as O, is increased.
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pend solely on the complex refractive index of the surface
and are entirely independent of the angle of surface illu-

(Dover, New York, 1976).
. M. Kerker, The Scattering of Light and Other Electromag
netic Radiation (Academic, New York, 1969).
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Fig. 10. Experimental light-scattering Mueller matrix clements of roughened substrate 10 illuminated at 8. = 15°, 30°, 45°, 60°, and 75° Ok
(A = 0.4418 um).
CONCLUSION 4. R. Anderson, “Matrix description of radiometric quantities.”
) ) Appl. Opt. 30, 858-867 (1991).
In this study we used a facet model to predict the polariza- 5. C. Bohren and D. Huffman, Absorption and Scattering of
tion states of light scattered from a rough surface. This Light by Small Particles (Wiley, New York, 1983). ‘ .
model predicts that the polarization matrix elements de- 6. H. C. Van de Hulst, Light Scattering by Small Particles ke
7
8

mination. We emphasize that this is a simple model that
can explain only gross scattering features. It is inade-
quate in explaining the cross-polarization effects (s — p
and p — 2) that occur in light scattered from rough sur-
faces. Nevertheless, we {ind that the experimental ma-
trix elements from substrates of two different materials
roughened in different ways agree quite well with this
simple model.
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Abstract

We examine four different theories which predict the scattered
radiation from a system composed of a small sphere and a plane and show
that in the far field the scattering amplitude components predicted by these
theories are essentially the same. We express the scattering intensities in
Mueller matrix representation and examine the far-field Mueller matrix as a

function of various parameters.
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Introduction

Electromagnetic scattering from isolated systems has become well-
established in the past century.”’ Lord Rayleigh did much to initiate this re-
search when he solved for the scattered electromagnetic field from a small
sphere or dipole to explain the color of skylight.’ ‘The scattered electromag-
netic fields surrounding an isolated cylinder were solved by Rayleigh",in 1881
and by von Ignatowsky® in 1905. The scattering from a sphere has been derived

numerous times and its complex history has been analyzed extensively.*”*

More recently, researchers have concentrated on scattering from
more complex systems. Scattering by multiple cylinders by Twersky,’ using an
order-of-scattering approach; Row,” using a Green's function approach; and
Olaofe;" and Yousif and Kohler™” by satisfying the boundary conditions at the
cylinderlsurfaces. The two-sphere system has been examined by Liang and Lo“
and Bruning and Lo® by satisfying boundary conditions at the surfaces of both
spheres. The order-of-scattering approach has been examined by Fuller and
Kattawar.™” Scattering systems composed of a cylinder, sphere or dipole rest-
ing on or near a plane surface have been explored by Rao and Barakat,® Bob-
bert and Vlieger," Wind, Vlieger and Bedeaux,” Nahm and Wolfe,”' Videen”

v

Videen, Wolfe and Bickel,” Lindell et al,* and Muinonen et al.*

This last class of problems is closely related to the Sommerfeld™”
half-space problem'in.whlch a radiating dipole is located near an interface. In
the Sommerfeld probiem, a dipole is oscillating vertically or horizontally to

the interface, and is the source of the electromagnetic waves. In the scattering




3
problems, the source is typically at infinity producing plane waves at the
interface. These interact with the surface interface and the object placed near
it. This scattering system has been discussed extensiveiy by Banos,® Wait,”

and Rahmat-Samii, Mittra, and Parhami.”

In this manuscript we investigate four different theories that predict
the scattered far-field radiation from a small sphere placed near a surf;:e and
show that they all yield essentially the same results. Error analysis of the re-
sults are considered using an order-of-scattering approach. We then examine

these results in the form of the Mueller matrix.”

The Solutions

We will be discussing four different solutions from different refe-
rence sources that have not used the same mathematical and physical conven-
tions. We therefore adopted the following description and used it for this
paper. Differences that arise in other manuscripts will be stated. Figure 1
shows the geometry of the system. A small sphere of refractive index m.. and
radius a is suspended a distance d above a surface separating two media: free
space where z ) 0 and a medium of complex refractive index m.. where z { O.
The incident plane wave of amplitude E™ travels in the x~z plane and is elec-

trically polarized either parallel to the y axis (TE) or parallel to the vector e
(TM) given by

€ = R cosa - £ sina 1)
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where a is the angle of incidence of the plane wave measured from the z axis.
To make the dipole approximation, it is necessary that Im.sla <{ 1. The time
dependence used in this paper is exp(~iwt). The results will be in the form of

-

the scattering amplitude matrix given by

Eg') _ (S S\ (Ew

E; B S« S/ \Eve (2)
where E3' and E' are the scattered electric field components in the $ and ¢

directions, respectively, and k is the wave vector for the medium above the

surface.

1. Sommerfeld-Rayleigh System

The first theoretical treatment we examine is a modification of the
Sommerfeld half-space problem. Sommerfeld was able to solve for the electric
fields from a radiating dipole located above an interface. In our scattering
problem, the dipole is driven by the incident plane wave. Rayleigh wa; able to
show that a plane wave induces a dipole moment in the direction of the inci-

dent electric field. We consider the radiation from a dipole in the x-z plane

oriented at angle f§ from the z axis. The dipole moment is
P = p(R sind + £cosp) 3(x) 3(y) 3(z-d). (.n
Sommerfeld's far-field vector potential has the following form

O=19 -+ 1 (1.2)




where

ke’

. e e
I = —4-%.— sinB [—r_ + Rn(&)-r—.- ]

_ e e , . e
. = T’g: [COSﬁ[T - Rru(e)‘;.— ] + Zschosqasm\‘)cos{‘)Rv:(a)T.- }

(1.3)

and r' is measured from a source point located a distance d below the surface

r =r + 2dcosd 1.4

_cosh - [mu - sin’®]"

Re(8) = cosd + [mu' - sin’&]"? (1.5)
R0 = - e ST
The electric fields can be calculated from

BzKk'H+ V(V-ID (1.8)

which yield the following electric far-field components




E. =0 (1.9)
evkr . .
Eo= k7 = {[1 - Rru(8) exp(2ikdcos9) | sindcosp
-[hRm(s)exp(Zikdcoss)]cos9cos¢sin[3} (1.10)
- 13 _e:: . . . -
Ep= -K'7E= = [1+ Ru(®) exp(2ikdcos9) | singsing. (1.10)

A dipole moment p is induced in the direction of the incident electric field

with a magnitude

p = 4re r—?;:i:-% a’E™. (1.12)

The field incident on the small sphere has two sources. One source is the in-
cident plane wave (including the plane wave which reflects off the surface).
The second source is the scattered field of the sphere-surface system. This
scattered field is proportional to the induced dipole moment which is propor-
tional to the sphere radius cubed, and at the sphere center is also proportio-
nal to 1/2kd. This term is very small compared with the contribution of the
incident plane wave source. We therefore neglect this scattered term and
assume the dipole modes of the sphere are driven by the ir;cident plane wave
(including the plane wave which reflects off the surface). In sections 4 and S
we consider this assumption in more detail. We consider Ewo incident polarization

states. A TE plane wave will induce a dipole moment in the sphere given by

x|




pr = p[l + Rn(n-a)exp(-Zikdcosa)]y. (1.13)
A TM plane wave will induce a dipole moment in the sphere given by
prv = p[l + Rm(rt—a)exp(—_Zikdcosa)]ﬁcosa

-p [1 - Rru(n-a)exp(.-Zikdcosa)]Qsina. '('1.14)
The scattering amplitude matrix can now be calcula_t.ed from 1.10 - 1.14:

S

Ai[l + Rn(n—a)exp(-Zikdcosa)] [1 + Rn(s)exp(Zikdcos&)]cosqa (1.15)
S: = Ai{[l - Rvu(n-a)exp(-Zikdcosa)][l - Rm(«‘))exp(Zikdcos&)]sinasin9 +

[l + Rm(n-a)exp(-Zikdcosa)] [l + Rm(%)exp(ZikdcosS)]cosacos&coscp} (1.16)

Ss= Ai[1 + Ru(n-a)exp(-2ikdcosa) | [1 + Ru(9)exp(2ikdcosd) |cosdsing  (1.17)

S« = -Ai[1 + Ru(r-a)exp(-2ikdcosa) | [1 + Rn(exp(2ikdcosd) |sinpcosa  (1.18)

where

exp(ikr) m.e’ - 1

A
® ke me’ s 2

(ka)’E™. (1.19)

These four components represent the solution to the scattering problem and

will be compared with solutions derived from the other theories.




2. Rayleigh limit of sphere-surface scattering

The second method we examine is a limiting approach of the light
scattered from a sphere-surface system as the sphere becomes optically small.
One of us (Videen) has derived an analytical solution for the scattered far
fields from a sphere-surface system (ref. 22). The orientation of the scattering
system is slightly different than the one used in section A. Figure 3 shows -
the scattering system used to predict the scatter from a sphere-surface sy-
stem. A sphere of radius a is suspended a distance d below a surface separat-
ing two media: free space where z { 0 and a medium of complex refractive

index mw where z > 0. The results may be expressed as

ZZ (-i)" exp(ump){[l + Ree(mt-9)(-1)""exp(- mkdcoss)] P(cosa)

%0 mu-n

+ [l - Ree(me=-8)(-"" exp(-Zikdcos«‘))] e’.ﬁ%?&cos&)} E“e—’fpi—(k%li 2.9

:~-IZZ (-i)° exp(xmv){[ 1 - Rndre-9)(~ l)”""exp(-Z;kdcosG)] enm P (cos9)

na ma-n

» [1 +Rutn-9)(-1)""expl(-2ikdcos) ] f::a—"s-P."(coss)}E‘“e—"Pﬂ—‘ki—“—’)- 2.2

= IKr

s,aqzz (- l)"exp(im(p){[l Rru(t-8)(~1)""exp(~2ikdcos$) i"' Pricos)

780 me-n

+ [1+ Rl (-0 expi-2ikdcoss) ] £ (cos&)}E"‘s}-LLd—‘ﬂ 2.3)
1Kr




Si= ZZ (i) exp(lmcp){[l + Re(m-P(~1)""exp(- "1kdcosS)] fom P {cosd)

ne0 msen

+ [1 = Retm-9)(-1) ""exp(-2ikdcos9) ] e::-ipn(cosa)}E'"‘M (2.4)
09 ~ikr

where

e = [[1 - Ree(a)(~1)""exp(2ikdcosa) ]am

© |
» Rie(09) D (-0 " [f2nDS™ - ednCr ™ 1]Q1 2.5

L]

em = [[1 - Rula)(-D""exp(2ikdcosa)Jarm

8]

+ Rul0) Y (0" [£5aD " - ermC 1] QI (2.6)

o'siod

% = [[1 + Reea)(-1""exp(2ikdcosa) Ib%

D
+ Rel0) D (-0 [fom C - eruDe 1] Q5 2.7)

L]

- = [[1 + Rrv(a)(-1)""exp(2ikdcosa)] bem

@
+ RalODD (-1 [frnC™ - ernD ™ 1]Q0. (2.8)

nalem
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and the Lorenz-Mie coefficients are represented by
Qu - - kuh@; (klpﬁ a) d)«(ka) - k‘.luﬁlp'n(ka) lpw(kuha) ) 2 9)
kuhu q)'n (keona) En(ka) - ku-nhE'ﬂ (ka) \[J-(kma) '
Q: = _ kn’i&glu(ka) ¢n(k|pha) - kulﬂlﬁpu(kuﬁa)lpn(ka) (210)

kuh[J-E'n (ka) ¢u(kuha) - k‘.lun ﬁb'n (kuna) E..(ka)

o _ 207 «)P:(cosa)
aam n(n+1) da (21D
. 2" m ’ﬁ:(cosa)
bem =
nin+1) sina 212
am = ibm (2.13)
™ ial (2.14)
m o tvm 2kd n+m+|i tn',m 2kd n-m wm
Ca = Ca Sas3 nal ot 70 - 1 - Cnet (2.15)
» mi "Zikd LY '
Dy = m mc ™ (2.16)
o 2 2001 h"(2kd) (2.17)
1,00 "
= ~y2n+t h.'"(2kd) (2.18)
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L]

o' -me Din’e m)(2ne1) o= J(n-m+D(n+m)(2n+1) o

- 2kd,/omedinmmel) e o g flormineme)  eeen ) )
(2n+3) (2n-1)
.
{» m) {n,~mi
Ca = Ca (2.20)

' werer f2n+1 (n'+l)cf."""°' 2n+t
c 2n' -1 2n'+3
(nel) cont” -I/ ;::; - nc.(-':'o’-l/ 2’; ’: (2.21)

where {n(r), and E.(r) are the Riccati-Bessel functions of the first and third

- .

kinds, respectively, and the primes denote their derivatives with respect to the

argument. The functions P7(cos9) are the normalized associated Legendre poly-
nomials. These results may be simplified when the radius of the sphere be-
comes small in comparison to the incident wavelength. This can be taken care

of by expanding the Bessel functions for small arguments:

. |
W) ~ 0" T35 GaeD) 2.22)
h"(p) ~ -ip™"1-3-5...(2n-1). (2.23)

With the sphere much smaller than A we now can consider some specific ran-

ges for the sphere-surface separation distance d. First we consider the case
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when the separation distance d » ). In this case the fields scattered by the
small sphere {(which decay as 1/2kd) are negligible when compared with the
fields of the incident plane-wave. The interaction which occurs between the:
sphere and image sphere are analytically represented by the summation terms
of equations 2.5-2.8. We now consider these terms in detail. The translation
coefficients c"™ are proportional to the spherical Hankel functions which
decay as 1/(2kd). This dependence can be inferred from the addition theorem
for spherical scalar wave functions."™ As a result, for large values of d the
summation terms in equations 2.5-2.8 are negligible. This is confirmed numeri-

cally for several cases. Equations 2.5-2.8 may be expressed as

em =[1 - Rre @) (-1)" "exp(2ikdcosa) ] am Q. (2.24)
em = [1 = Rru(a)(-1)""exp(2ikdcosa)lam Q. (2.25)
fo = [1 + Rrela@)(-1)""exp(2ikdcosa)Ibm Q¢ (2.26)
= [1 + Roule)(-1)""exp(2ikdcosa)] bm Q! - (2.27)

For small sphere radius a, the coefficients Q. and Qf are proportional to
(kuna)™' or greater powers in k.sa. Because of the dependence of the coeffi-
cients on sphere radius, only the first term (n = 1) is significant. This is equi-

valent to making an electric dipole approximation:

Q ~0 : (2.28)
" ~ = __2__ 3 [ mlﬂ: - 1 ]
Qr 3 (ka) rwaver (2.29)
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From 2.28 and 2.29, equations 2.1-2.4 reduce to

S

Ai[1 + Ru(@exp(2ikdcosa) | [1 + Rn(r-9)expl-2ikdcos) |cose (2.30

Sa

Ai{[1 - Rulalexp(2ikdcosa) |[1 - Rnu(n-lexp(-2ikdcosd) |sinasind +

[1 + Rm(a)exp(Zikdcosa)] [1 + Rm(n-s)exp(-Zikdcosa)]cosacos&cos:p},,(Zﬁl)
S:= Ai[1 + Rlalexp(2ikdcosa) | [1 + Ru(r-Slexp(-2ikdcosd) |cosdsing  (2.32)
S = —Ai[l + Rm(a)exp(Zikdcosa)] [1 + Rn(n-s)exp(-Zikdcose)] sinpcosa. (2.33)

Except for the system orientation, these resuits would be identical to those
given in section 1 for the Sommerfeld-Rayleigh system. Recall that equations
2.30-2.33 were derived assuming a large sphere-surface separation, an assump;
tion not actually necessary. For example, the coefficients em and fw are pro-
portional to Q. and Q, respectively, which are themselves proportional to
(kera)™"'. For equations 2.30-2.33 to be valid, the summation. terms of equations
2.5-2.8 must be small compared with the plane wave expansion coefficients a.-
and b (given by 2.11-2.14) which are independent of the sphere radius. All
that is required for this to occur is for the translation coefficients to be
well-behaved. The translation coefficients are a function of the spherical Han-
kel functions h."(2kd) which become large only when 4rd & . Therefore,
equations 2.30-2.33 are valid except when the sphere-surface separation d

becomes much smaller than the wavelength.
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3. EIT formulation

The third method we examine is the exact-image theory (EIT) deve-

N—

loped by Lindell et al and Muinonen et al. The time-dependence used in these
manuscripts is expliut), so some minor adjustments will be needed. Some
minor adjustments were made to their equations to account for a slightly dif-
ferent system orientation. Their results for a small sphere near a surface may

be expressed as
By = o't —85427(‘;:&) {3-Q-B"“ + 3-Q-R.-B™exp(2ikdcosa)

+ $-R.-Q-B" exp(-2ikdcosd) + 3-;.-0-3-'E"‘exp(-Zikd(cos&cosa))} (3.1
By = w’u--eég—:?ik—r!- {$'Q°B"‘ + 9 Q-R.-B~ exp(2ikdcosa)

+ $-R.-Q-B"exp(-2ikdcosd) + §-R.-Q-R.-B~exp(-2ikd(cosd-cosa))} (3.2)
The bold-faced cursive characters are dyadic functions given by
R = R Ruln-a) + $F Ru(n-a) - 22 Rru(n-a) (3.3)

R = [88 Ru(®) + §FRa(n-0) |-[ &R + 7§ - 22 ] (3.4)

Q= [ 8% +§§ Joa « 22 Qa (3.5)
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where
B
Qu2d) = I - o'mBK(2d) (3.6)
B
Q.(2d) = T+ o B2 3.7)
2 _ -
B = 4re. &2,——12— a’ (3.8
Msen *
_mu’= 1 expl-ike)rt + ikr + (ikr)? 8mw’ (&
K-(r) = w—'r* 1 Amr (IW + mw‘ -1 oexp(-lk(z-lp/C))

% {1 2ma’ + 1) 1 + ik(z ~ m;_(ll_)_}i n(m.u' = 1)” Jﬂ.‘ﬂ’.dp (3.9)

m.” [ik(z -ip/OF /& M muT+1 p
Kutry= -2 {- Do = L explikoy L s e 7, _Bmer J:oexp(—ik(z - ip/C))
{—C-‘lk‘(l;——(-‘_—u?jgj?—}zo e~ 1 -Jl;P—)dp (3.10)
= Kiwew - D72, (3.1

Evaluating the dyadic functions yields the following far-field solutions

s = A1RQLD [, py(n-alexp(2ikdcosa) [t + Rutdlexp(~2ikdeosd) |cose (3.12)
A'l I

S =5 {[1 - Ru(n-a)exp(2ikdcosa) |[ 1 - Rru(8lexpi-2ikdcosd) | Qu(2d)sinasind

[1 + Rru(n-a)exp(Zlkdcosa)][l + an(s)exp(-ZikdcoSS)]Q.(Zd)cosacos&coaq:} (3.13)




16

5= AIRLD[ o po(r-a)exp(2ikdcosa) ][1 + Ru(dlexp(-2ikdcoss) ] cossing (3.14)

- A xQ.(Zd) [1 . R,..(n-a)exp(ZldeO“)] [1 . Rn(&)exp(-'Z:kdcoss)}sm<pc05a (3.15)

. 1 _
A = e_x.p( lkr) nlu'c2 1 (ka)isnc. (3.16)
ikr M + 2 .-

Except for the time dependence and factors of Qu(2d)/B and Q.(2d)/B, these
solutions would be identical to those given in the previous sections. So let us
examine these factors a little more closely. These factors depend on the func-
tions K. and K. (given by equation 3.9 and 3.10) which are a result of the
scattered fields interacting with the small sphere. Recall that in the previous
sections we assumed that this contribution was negligible so that Q.(2d) ~
Q:.(2d) ~ B. We now examine this approximation in more detail. The contri-
butions of K. and K. will be greatest when the permittivity of the medium be-

low the surface approaches infinity. In this case, 3.9 and 3.10 simplify to .

K = -~ SREKO L e s ) ] (3.47)
Kip) = 2 SRCIO[) 2 Jg 7 (3.18)
Equations 3.6 and 3.7 may now be expressed as

Q2d) = B [ 1 ~ exp(-2ikd) [ 1 + 2ikd + (2ikd)’ ] ::: —] (z‘g,,]-' (3.19)
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Yﬂuﬁz -1 a’ ]—!

Q(2d) = B [ 1 ~ 2exp(~2ikd) [1 + Zikd] Mo + 2 4 (2d)°

(3.20)
The derivation following from 3.8 has two requirements: the sphere radius is
much smaller than the incident wavelength (a & X} and the sphere radius is
much smaller than the wavelength inside the sphere (m.»a < X). For sphere-
surface separations on the order of A or greater, we have Q«(2d) ~ Q:.(3d) ~ B.
This is a direct result of the first requirement, in which, a « d.' We now con-
sider a worst case scenario for our approximation. We note that if the
sphere-surface separation is equal to the sphere radius these equatio-ns further

simplify to

-1
- _1__ mula -1 ]
Q(2d) = B [ 1 3 m (3.21)
-1
- _ _l_ mul: -1 ]
Q:(2d) = B [ 1 % m . (3.22)

The second requirement, that m.sa <« A, helps ensure that we can assume
Q(2d) ~ Q.(2d) ~ B, saying that the sphere refractive .index cannot be large.
For a numerical example, this assumption is good to within 10X for a lossless
dielectric sphere of refractive index m.» = 1.6. Although this accuracy does not
seem outstanding we should remember that this is the worst case in which
the medium below the surface is a perfect conductor and the sphere-surface

separation is much smaller than the wavelength.
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4. Projection model

The three theoretical methods thus far discussed all yield the same
results. We now discuss one more approach which is particularly insightful.
The method is based on the double interaction model of Nahm and Wolfe and.
dipole scattering discussed by van de Hulst. In the double interaction model,
the scattered light from a sphere near a surface can reach a detector*by one
of four paths. It may 1.) strike the sphere directly and scatter directly to the
detector; 2.) strike the sphere directly, scatter to the surface which reflects
light to the detector; 3.) reflect off the surface, strike the sphere and scatter
to the detector; or 4.) reflect off the surface, strike the sphere, scatter to the
surface which reflects light to the detector (see Fig. 3). The light scattered by
the sphere, reflecting off the surface and striking the dipole is assumed to be
very small compared with the incident fields and contribute only negligibly to
the scattered fields. Assuming the small sphere is a dipole, the magnitude of
the scattered electric field is proportional to the dipole moment projected
onto a plane perpendicular to the radius vector. Although it is not necessary,
for the purpose of this discussion, we restrict our detector to the x-z plane
(p = 0°). We sum the four components of the TE mode :hat.make up matrix

element S as
S = M[l + Rn(rn-a)exp(-2ikdcosa) + Rn(8lexp(2ikdcosd)
+ Rn(r-0)Rn(8)exp(2ikd(cosd-cosa)) |

= Ai[i + Rn(n-a)exp(-Zikdcosa)] [l + Rn(e)exp(ZlkdcosB)] (4.0
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Similarly, we sum the four components of the TM mode that make up element

Sa2 as
Sa= Ai[cos(&-a) - Rru(r-a)cos(n-9-a)exp(-2ikdcosa) - Rm(B)cos(rn-3-a)exp(2ikdcosd)

+ cos(a-oz)Rm(n-a)Rm(«‘))exp(Zikd(coss-cosa))]

P

= Ai{[l -~ Rm(n-a)exp(-Zikdcosa)] [l - Rru(a)exp(Zikdcoss)]sinasim‘) +
[1 + Rru(n-a)exp(—Zikdcosa)] [1 + Rm(%)exp(Zikdcos%)]cosacoss} . (4.2)

Since ¢ = 0°, elements S: = S = 0. Although this solution is derived using a

very simple model, the results are identical to equations 1.15 - 1.19 (p = 0°),
5. Multiple scattering interactions

We derived the first-order terms in the scattering amplitude matrix
in the first section in equations 1.15-1.19 where order refers to the number of
interactions that a beam of light undergoes with the small sphere before being
scattered to the far field. The order-of-scattering approach can be used to
add correcting terms to these results. Using this approach, the scattered field
from one portion of the system is considered to be an incident field on an-
other portion of the system. Then the scattered field from this portion of the
system is calculated and the process is repeated until the desired accuracy is

achieved. To perform a rigorous order-of-scattering analysis requires perform-
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ing translations of the scattered fields and the resulting equations are similar
to those in section 2, containing the same translation coefficients. Such a
derivation is not our intent. Insight into the problem can be gained by consi-
dering the interaction which occurs between the scattered dipole radiation
terms which are spherical waves reflecting off the plane surface and interact-
ing with the dipole. Since the sphere is much smaller than the wavelength, we
can assume the field to be approximately constant over the volume of the
sphere and avoid the cumbersome translation. It is relatively straightforward
to calculate the effect of the second order terms. This case ix.icludes the
fields scattered from the small sphere, striking thg plane surface and inducing

a dipole moment in the small sphere. From equations 1.12-1.19 we get

1 _ 2

pu = 47!8-[%'—.—:1?] Kla* =X zf;kd) [l + Rn(u-a)exp(-Zikdcosa)]Rn(O) E™¢
sph

(5.1)

for the TE case and

:_ 2
Prea = 4,“.[%‘::_;-] Ka* == Zf;kd) [l + h(n-a)exp(-ﬁkdcosa)]km(m E™ Rcosa
oph

(5.2

for the TM case. Since the scattered fields are proportional to the dipole mo-
ment induced in the small sphere, it is apparent that the second order dipole
moment will have only a negligible effect since it is proportional to ka’/d

times the first order dipole moment.
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We can include the effects of all the higher order scattering inter-
action terms since the induced dipole moment is due to the incident field and

the scattered field from the small sphere (from equations 1.12-1.19):

M’ - 1 2’ exp(2ikd)
m.,..z + 2 a 2kd

pr = p[1 + Ru(r-aexp(-2ikdcosa) |§ + pre Re(0)  (5.3)

>’

pv = p [l + Rm(n-a)exp(-Zikdcosa)]ﬂcosa -p [l - Rm(n-a)exp(-ZIkdcosa)] £sina

mae =1 55 exp(2ikd)
+ prux DR g SXPTED. Rul0) (5.4)

where prux is the x component of pru. These two equations yield dipole mo-

ments of the form

[1 - "lulnz -1 kaag GXE(Zikd)

-1
ot + 2 kd Rn(O)] p[l + Rn(u-a)exp(-Zikdcosa)]’

(5.5

[l - mu-z ~1 kja; exp(21kd)

-1
mee? + 2 2kd Rnu(0) ] p[l +Rru(1t-a)exp(-21kdcosa)] fcosa

-p [1 - Rru(n—a)exp(-Zikdcosa)Jtsina (5.6)
Note that the first terms in the expansions of equations 5.5 and 5.6 are the

second order correction terms of equations 5.1 and 5.2. The scattering coeffi-

cients can be expressed as
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S = iAC[l + Rn(m-cz)exp(Zikdcosa)] [1 + Rn(&)exp(-Zikdcoss)]cosq: (8.7)
S = iA{C[l - Rnu(x-adexp(2ikdcosa) [ 1 - Ru(9)exp(-2ikdcosd) |sinasind +
[l . Rru(n-a)exp(Zikdcosa)][l + Rm(s‘))exp(-ZikdcosS)]cosacos&cosq;} (5.8)

Ss = IAC[1 + Ru(n-alexp(2ikdcosa) ][ 1 + Rru(d)exp(-2ikdcosd) |cosdsing . * (5.9)

S = -iAC[l + Rru(n-a)exp(Zikdcosa)] [l + Rn(a)exp(-Zikdcoss)] sinpcosa (5.10)

-1

2
_ me -1 5, exp(2ikd)
C - [1 e e S Rn(O)] , (5.10

since Rn(0) = Rn(0). Note that the correction term C varies only slightly from
1 since k’a’/d < 1 . This appears to contradict the analysis of section 3 where
the scattered fields could vary by as much as 10%. ’It. should be noted that the
analysis in section 3 was for a very small separation distance d; whereas the
analysis in this section was derived from the radiation terms of the dipole
scatter and is invalid for small separations d. In the near-field s;:atter from a
small sphere, there are scattering terms proportional to (kr :‘ which become

significant along with a radial component. These terms were not considered in

this analysis.
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Results

Up to this point we have derived the far-field electric fields for a
small sphere near an ‘interface using four different formal solutions. We now
examine the results of these derivations which are expressed by equations
1.15-1.19. Rather than examine just the intensities of the TE and TM compo-
nents, we will put the results in Mueller matrix form, since the 16-éiement
Mueller matrix contains the phase information of the scattered fields. We will
also restrict ourselves to the plane of incidence (p = 0°). The particular Muel-

ler matrix formulation we use is given by
1
o= T[188 + 15 ],

Sa

L8 - 18 ]/5m,

Sus = Re(SS:")/Sn, and

Su = -Im(S:S:")/Sn. (5.0
With the detector in the plane of incidence (¢ = 0°), the other scattering Si(9) are
either zero or simple multiples of these elements. It should be noted that the

results derived do not include the specular component of the scattered field.

The first set of scattering Si(3) we conside- are shown in Figure 4.

The system is illuminated at normal incidence (a = 180" and optical constants
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of the medium below the plane are chosen to correspond with an aluminum
surface (mw = 0.5 + 5.0i at X = 0.4416um). Scattering Si(9) are shown for four
different sphere-surface distances d. Note that when the system is illuminated
at normal incidence, equations 4.1 and 4.2 reduce to two periodic functions in
d. One of the functions is independent of 3 and determines the maximum
amplitude of the signal. This amplitude cycles through maximum and minimum
values with a period of d = X/2. If the medium below the surface is a Tossless
dielectric, then Rr.(a) is real and amplitude minima occur when d = nA/2 and
amplitude maxima occur when d = A/4 + nA/2. If _t.he medium below the sur-
face is lossy, then Rr.(a) is complex and a phase difference will be introduced.
The parameters chosen in Fig. 4 introduce only a slight phase difference.
Matrix element Su(3) shows that the hi;hest signal intensities (of the four
curves shown) occur when d = A/4 and the lowest signal intensities occur

when d = A/2.

The oscillatory structure in the matrix elements of Fig. 4 is also
periodic in d and Is very nearly periodic in 9. From equations 4.1 and 4.2, we
would expect the total intensity, S«(9), to be at minima values approximately
when 2dcos® = n) (where n is an integer) for a dielectric medium below the
surface. For the d = A/2 curves of Fig. 4, we would expect a minimum to
occup at 9 = 0. The minima have been displaced slightly because the medium
below the substrate is slightly conducting. Note that spikes and inflection
points occur in the polarization matrix elements at the angular locations where

the intensity signals are at minima.
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Another set of matrix elements is shown in Figure S for the same

systems as Fig. 4, but illuminated at near-grazing a = 10{*. In Fig. 4, where
the illumination was at normal incidence, the sets of matrix elements were
very similar. Changing the incident angle away from normal incidence breaks

the symmetry and increases the complexity of the matrix elements.

Conclusion

Four theoretical models were examined and found to predict the .
same scattering signals from a small sphere suspended above a plane surface
interface. The approximation breaks down when the sphere-surface separation
also becomes much smaller than the waveleﬁgt.h. In this case the maximum

error in the approximation is on the order of 10X of the theoretiial value.
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Figure Captions

Fig. 1. The geometry of the scattering system. A sphere of radius a is located

Fig.

Fig.

Fig.

Fig.

a distance d above a surface. A plane wave travels in the x-z plane at

angle a with respect to the z axis.

. The geometry of the scattering system. A sphere of radius a is located

a distance d below a surface. A plane wave irave's in the x-z plane at

angle a with respect to the z axis.

. The geometry of the scattering system showing the four paths light

may travel to reach the detector in the double interactiox; model.

. The Mueller matrix elements from a small sphere at four separations

from a surface of index n = 0.5 + 5.0i illuminated at normal incidence

(a = 180", A =1), =——= d = %/16. 0—O d = A/8. X—X d = \/&

— d = A2

——

. The Mueller matrix elements from a small sphere at four separations

from a surface of index n = 0.5 + 5.0i illuminated at a = 101°. (A = 1).

——s d=2%/16. O—O0d = A/8. X—X d = A/4, +——+ d = A/2.



Medium 1

L

Medium 2

v




Medium 2

Surface / T

Sphere

Medium 1
(3] .
d
Y
atl F'“'N
_ > e




AN




.08~ [SWJON woJ4 a[8uy Gutuajizeas .06 .06- [ewJON woJj 3[buy GujJualjeds .06
e v - Q

[=]
-

UOTIRZTJRTIOd JUddJad

S tEg

(=]
o
-

.06- [GwJON wouy a[buy Buguajieas .06 .06-  [8wJoN wouy arbuy Butualleas * g

4 - v

(=

Q

-
[

—

UOIJIRZTJRIOd JU@3J8d

««m

(=]
[=
-

o
-t

UOTIRZTIR[OG IJudIudg

(=]
o
-

'y
|

A3tsuaijul teaoy Bon

y




.08~ [OWJON wougy 3[Buy Buyuajjeas .06 .06~ [eWJON woJu4 3[bBuy Gutuajjeds .06
v ~ 001 - v v 00% -
] v
s 3
“ n
3 3
(ad [ad
3 3
bt L
s s
N N
: 2
r°.. [
3 S
vmmw mmm
00} 0G¢
.06- [GWJON woJd 3[8uy Butrualjeds .06 .06~ [@WJON woud afbuy Gutruajjeas y .06
00%- y - p-
h]
[ [y
2 o
o [ ~]
[ ]
2 —
- (=}
[ad
] o
o —
()
o [
2 2
(%3 ~”
~N o
[ 2
- ("4
[ e -
o o
2 <
:m
- == [ili}

-




Stokes vectors, Mueller matrices and polarized scattered light: experimental
applications to optical surfaces and all other scatterers

William S. Bickei and Gorden Videen

University of Arizona, Department of Physics
Tucson, Arizona 85721

ABSTRACT .

We discuss scattering in the context of the Stokes vectors and
Mueller matrices that characterize the interaction. In order to study surface
structures using light-scattering techniques it is useful to examine the nature
of light scattered from perfect and perturbed mirror surfaces.

1. INTRODUCTION

A highly motivated, systematic, and fundamental approach to surface
scattering requires that the initial surfaces be fundamental and that the con-
tamination to produce the surface scattering be known and controlled. With
this in mind any rough surface can be considered to be a perturbed perfect
surface that has reached its final condition through some continuum contami-
nation process.

The powerful Stokes vector, Mueller matrix light-scattering tech-
niques can be applied directly to study surfaces. Scattering from perfect sur-
faces can be theoretically predicted and experimentally measured. Experimen-
talists have an advantage in that they can measure what theorists cannot cal-
culate. If the data are to be used to check theory, the experimentalist must
relate the light scattering signal to the exact structure and orientation of the
surface that scattered the light.

Consider how a perfect optical surface (lens) is treated by taking
into account its geometrical and diffraction-limited properties. Geometrical
optics is used to predict where a point on the object will be focused to a
point on the image. Diffraction theory will predict how the image point is
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actually a diffraction pattern; i. e., not all light from the object point ends up
at the image point. Nevertheless, the diffraction-limited image is exactly pre-
dicted by theory and its intensity distribution is related to fundamenta! con-
stants. The problem arises when the perfect diffraction-limited optic and its
image is perturbed by a defect in or on the optic. This defect scatters light
into all directions ~— out of the paths so well defined by geometrical and

diffraction optics.

The question is where does this scattered light go and what does it
do to the image (information). There will be a loss of image intensity, but
more troublesome is the light initially intended for one part of the image that
is scattered to another part of the image causing loss of contrast and”image
definition. We can write that the object (point A) is transformed into a diffuse
diffraction-limited geometrical image (point A’) by a transformation matrix (L,
D, S) where L is the geometrical function of the lens, D is the diffraction
function and S is the scattering function which contains all of the scattering
parameters of the defect.

2. POLARIZED LIGHT SCATTERING

What is S? If the defect were a perfect sphere the scatter from it
is nothing more than the diffraction by a spherical object — a problem solved
by Gustav Mie in 1908.' As the sphere becomes more irregular in shape and in-
homogeneous in optical constants, exactly solveable sphere diffraction goes
over to the statistical aspects of irregular particle scatter.’ A scatterer is said
to be characterized by its scattering properties when we know how it will
rearrange the properties of light incident on it. For example, consider perfect
sphere scattering. A sphere with radius r, refractive index n and aborption u
has a scattering matrix [S). When it is illuminated with light of intensity L.
wavelength ., polarization Il., at angle 9., it creates a scattered field of L., \..
., and 8. We can write (I, )., II,, 8) = (SXL, A., M., 9) where (S] is exactly
known for spheres. The matrix (S] can be calculated only for certain highly
symmetric cases. It can be approximated for slightly distorted systems, but
can oniy be measured for truly irregular particles. Therefore, in order to learn
how a defect on or in a surface (an irregular, imperfect surface) will affect all
aspects of the incident light, it is better to measure what happens exactly in-
stead of relying on approximation and theoretical models. Generally two things
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are required of scattering experiments: 1. produce a defect and measure its
scatter; or 2. measure the scatter and predict the defect — the inversion pro-
cess. Before we extract information from light-scattering data it is important
to be sure that we have all the information available.

3. POLARIZED SCATTERING NEPHELOMETER

The experimental set-up that can measure the polarized intensities
scattered by the scatterer (S] into the angles & and ¢ is shown in Fig. 1. The
input optics can be selected to be an open hole {0l], or horizontal liffear po-
larizer (h), or +45° linear polarizer [+] or a right-handed circular polarizer (rl.
The exit optics choices are the same and can be chosen independently of the
input optics and can swing with the detector through the scattering angle 9
from 0° to 180"}

INTENSITY

nPYT
591 1cs ] 30 1%0

SCATTERING ARGLE

Fig. {. Arrangement of entrance-exit polarizers to measure the matrix elements
of a scatterer.

The following example shows how to determine v..at scattering ma-
trix elements Sy are invoived when a particular set of input-output polarizers
are used to prepare and analyze the scattered light.' For our first choice we
assume that the arbitrary scatterer (defect) is illuminated with horizontally-
polarl.zcd light [h). The scattered Stokes vector will be [(V.] = (S)s(h] or

Sw Sa Su Su { Sw + Se
Sa: Sa2 Say Sa 1} _ | Sav + S
S» S» Su Su 0| | Swe+Sa
Ss Sa Sa Su 0 Si ¢+ Sa
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We see that the scatterer [S] mixes the initial pure polarization state (h] to
produce a scattered Stokes vector with mixed polarizations. The first compo-
nent (S« + Sa) is the total intensity and is a sum of two matrix elements. If
this scattered light is now passed through a +45° linear polarizer [+] we get
(v} = (+)(V.]. Specifically we have

S ¢ Sz + S» + Sa 1010 /SnOS‘z
0 _1]0000 S ¢+ Sa
S +Sa+Su+Sa| [LO 10| |Sue+Sa
0 0000 Sa + Sa

The first component of the final Stokes vector is now a mixture of fo'dr ma-~
trix elements. The element sum (Sw + Sa + S» +« Sx) is the total intensity that
will be measured by the detector. We put the result of all such calculations
from all 16 Stokes vector combinations into a final array shown in Fig. 2. The
main point of Fig. 2 is that there are 4 X 4 = 16 measurements to be made to
completely characterize the polarized light scattered from the defect. These
measurements can be routinely made by nephelometers that incorporate the
various polarizers in their entrance-exit optics. The 16 matrix elements are
needed to completely characterize the scattered light or to use in the inversion
process to determine the properties of the scatterer.
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Fig. 2. Matrix array showing matrix element combinations measured with var-
ious arrangements of input and output polarizers.
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4. SURFACE ORIENTATION

The geometrical orientation of the rough surface with respect to the
entrance-exit beams must be addressed early because there are an infinite
number of possible orientations, all of which might give a different S, for the
same surface. Figure 3 shows some of the geometrical parameters involved in
surface scattering studies. The laser beam, after preparation into a definite
polarization state, strikes the surface at angle a and is scattered into all 4=
The light scattered into angle 9 is analyzed with the polarization exit optics
and detected by the photomultiplier. The angle t is a surface tilt measured in
the surface plane. Qur work has shown that geometry is important and that
no universal scaling factor exists and that no best orientation exists for all

cases.

Fig. 3. Optical and sample arrangement for surface scattering measurements.

S. SURFACE SCATTERING

We now show some general results of scattering from some sur-
faces to show how light-scattering nephelometry and BRDF are related.”’ Fi-
gure 4 shows four matrix elements for a reflective aluminum surface. The 4
order of magnitude angular decrease of the total intensity matrix element S.
is an indication of the quality of the reflecting surface. Note that even though
the total scattered intensity is down by over S orders of magnitude near 9 =
150° (back-scatter) the polarization of the scattered light is significant as de-
monstrated by matrix S» and S..
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Fig. 4. Four Mueller matrix elements for a reflecting aluminum surface.

Figure S5 shows the matrix elements for the same surface but now
roughened to saturation. Further roughening wiil not change the surface cha-
racter. All hints of the location of the specular peak are gone. Sa as welil as
Su are independent of surface orientation; and polarizations, as indicated by all
matrix elements, remain large.
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Fig. 5. Four Mueller matrix elements for a saturated rough aluminum surface.
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Now we show how dramatically the S, from surface defects depend
on the angle at which the surface (and its defect) is illuminated. Figure 6
shows the matrix element Su for a rectanguiar line (h = 0.46um, w = 1.10um)
on a smooth aluminum surface illuminated at near-grazing incidence and at
normal incidence. Normal incidence not only restricts the angular range over
which the data is received but it also wipes out all the phase information
needed to characterize the defect.

100
SCATTERIAG (SFICIENCY AS & FURCTION OF NINROA ROTATON Sa
e NONAAL TRCLOENCE
—— GRALING (NCIOENCE -
i e s0i8h
P
s
2
1
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H
¥
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-100 e e P S b St
» « ] 120 190 i

SCATTERING ANGLE ¢

Fig. 6. Matrix element Su for a rectangular line on a mirror surface measured
at two different angles of incidence.

8. CONCLUSION

One general goal of light scattering is to develop an algorithm to
put into a computer which will predict either the scattered field (from particle
properties) or particle properties (from the scattered field). The data (particie
properties or scattered field) must be determined experimentally. We must de-
termine how much. scattering data is needed, how good it must be and how
well it describes the scatterer in a practical way. We also must determine the
amount of information contained in the various matrix elements and whether
signal changes can be related to changes in the optical or geometrical proper-
ties. We see that polar nephelometry gives sixteen matrix element signals. The
record shows that polar nephelometry, eilipsometry, BRDF, and other optical
techniques can all complement each other and yield important information
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about surface scattering when used with care, keeping in mind their limitations

and range of validity.
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The light-scattering Mueller matrix for a surface contaminated by
a single particle in the Rayleigh limit
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Abstract

A ray-tracing model was used to derive the light-scattering Mueller
matrix element curves for a dipole near a perfect surface as a fanction of
angle of incidence, scattering angle and surface index of refraction. This sy-
stem represents a fundamental system composed of a perfect plane surface
and the perfect (Rayleigh) scatterer.

Subject terms: dipole, coutamination, light-scattering, Mueller matrix, surface.




INTRODUCTION

Mie theory,' which can be used to predict exactly the scattering
from spheres of all types, has recently been the subject of a great deal of
modification. The modification is brought about by examining the simple
sphere when it comes into contact with the perfect surface. The impetus has
come from contamination studies, often centered around wafer-producing tech-
nology in the electronic and computer sciences, but the applications are nume-
rous, ranging from degradation of optical modulation transfer funcslons to

energy losses in laser systems.

The modification to Mie theory investigates how the scattering sy-
stem, composed of a single sphere, is changed wheut the system is composed
of a sphere and a surface. Since each system taken independently has been
solved exactly, the sphere by Mie and the surface by Fresmel, a logical first
order solation would be to combine these two systems into something similar
to what Nahm and Wolfe’ refer to as the double-interaction model. This model
ignores the interaction term between the sphere and the surface. For Rayleigh
scattering, the scattering intensity is proportional to (r/)), and the effect of
the interaction term when compared to the other terms is negligible. There-
fore, when the sphere is drivem to the Rayleigh limit, r <{ )\, this modei
should be able to predict the scattering exactly.

THEQRY

Theoretically, we treat the system as a dipole illuminated by two
plane wawves, one incideat and one reflected off the surface. The scattered ra-
distion is also ia two parts, one directly from the dipole and one reflected off
the surface. Figure | shows the various paths by which light can be scattered
into the detector and the convention used for measuring angles. All angles are
measured from the normal to the surface. Figure 2 shows the four paths that
a beam may travel for scattering on the incident side of the detector. Path I
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{s the direct path and is what comes from Mie theory. The beam whose angle
of incidence with the surface normal is 9. excites the dipole, which scatters
radiation throagh angle 3 to the detector. Path Il shows the beam reflecting
off the surface before striking the dipole. Radiation is then scattered directly
to the detector. Path Il shows the beam striking the dipole directly, with the
scattered radiation striking the surface before reaching the detector. Path IV
shows the beam reflecting off the surface before striking the dipole whose
scattered radiation also reflects off the mirror before reaching the detector.

[ 4

Before looking at the polarizations, we will complete this analysis
by looking at the scattering that penetrates the surface, where cosd > 90°.
Although most of the interest seems to be in the case where the surface is
highly reflecting, the transmission case is such a simple extension that it
should not be neglected. Figure 3 shows the two paths that a beam may travel
in reaching a detectos. Path V shows tbe beam striking the dipole directly
with the scattered radiation being refracted by the surface to the detector.
Path VI shows the beam reflecting off the surface before striking the dipole,
with the scattered radiation being refracted by the surface before propagating
to the detector‘. For a high index surface, all refracted beams lie very pear the
normal. To facilitate viewing the information, the transmitted portion of the
graphs are plotted as a function of the beam angle incident om the surface.
This is equivalent to making the reflecting medium a thin slab of material
with air on either side, and putting an anti-reflection coating om the exiting
surface. The beam angle incident om the fromt surface is equal to the beam
angie leaving the rear surface. Since we are going to calculate the Mueller
matrix clements, we need to consider the TE and TM polarizations indepen-
deutly.

To calculate the Mueller matrix, we first calculate the scattering
amplitude matrix which is explained by Bohren and Huffman' and others.”* For
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our purposes we define the scattering amplitude matrix by the following equa-

() - (2 2)(8),

where the vectors represent the incident and scattered electric fields for the

tion:

TE and TM polarizations. If we place our detector in the plane of incidence
(defined by the incident beam and the normal to the surface), it can be shown
that the matrix elements S:» and S are ideuntically zero. We can noweexamine
the TE mode and calculate the element S..

THE IE MODE

The vibration of the dipole for the TE mode is perpeadicular to the
plane of Incidence. As a result, the radiation from a dipole in this mode has
no angular dependence in this plane and is therefore slightly easier to under-
stand than the TM mode. Since all the beams have the same temporal depen-
dence, we can normalize the beam from path [, and represent all other beams

in terms of this beam's amplitude and phase. A beam following path II will be
out of phase with the normalized beam when it reaches the dipole by an

amount 5(9.,d), where
5,d) = - %‘-zdeo.s. (2)

d is the distance between the dipole and the mirror, and )\ is the wavelength
of the light. Furthermore, the amplitade and the phase are affected by the
Fresnel reflectance factor’, Rn(8.), where

Z:c08® - 2.1 - (nv/n)'sin’d ]

Ra(®) = Z:oosd + Z[1 - (nv/m)’sin’®]"* ' and 3
2, um
7 s om (4)

The subscripts, 1 and 2, correspound to different sides of the surface. In our
case, the plane wave is traveling from material 1 and striking material 2. For




5
most cases, the light initially travels through air or vacuum withm ~ | and
% . Path OI is similar to path I, but the phase difference and reflectance
factor are a function of x-3. Finally, for path IV we have to consider the
phases and reflectance factors of both the previous paths. The net resuit of
the four beams at the detector is the following:

S:(8) = 1 + Re(9)et @D , p (x-9)e!¥X-8.d ; pr(3IRnin-)e! 3B D+Ex-3.d) (g,
where cosd <€ 0.

We now consider the transmission of the TE mode. Path’V, like
path [ undergoes no phase lags. However, one must consider the effect of the
Fresnel transmission factor on the scattered beam which is given by

2 Zcosd

Tn(®) = Zcosd + Z({1 - (nv/nd?sin’® ]

6)

The beam following path VI undergoes the same phase lag on the incident
beam as that of path II. The scattering amplitude matrix element for the
transmitted beam can be expressed as follows:

$i8) = [ 1 + Rude'* @9 Irnee), W)

where cosd ) 0. With the scattering amplitude matrix element for the TE
mode solved, we now examine the TM mode.

THE IM MODRE

The terms used to caiculate the scattering matrix for the TM mode
are almost identical to those of the TE mode. The Fresnel coefficients of
reflection and transmission of the surface are slightly different and may be
writtes as follows:

. Zico8d - Z{1 - (nv/m)'sin’d]"

Rl = 2 o + Z{1 - (o/n)’sin’®]”

and (8)




2 Zxcosd

Ta(®) = .
™ Z.cosd *+ 21 - (nv/na)’sin’9]"”?

9)

The major difference Is the angular-dependent dipole scattering that occurs for
this mode. Bickel and Bailey’ provide an Inciteful discussion of the reason why
the scattering of this mode is proportional to the cosine of the angle between
the incident and the scattered beam. As the detector scans in the plane of in-
cidence, the amount of dipole vibration that the detector sees corresponds to
the projection of the dipole in the detector plane. This causes the cosine de-
pendence. With a bit of trigonometry, we can derive the following equations
for the scattering amplitude matrix element S:A3):

SH3) = cO8(3-90) + COB(X~I-T) R(3Je!3 @D 4 cog(x-9-9) Rne( t-)e'3(* )

+ c08(8-9) R (SIRmix-9)e! (. d)+8(x-8d)) ' 50 083 ¢ O and, 10)

$:9 = [ cos(8-3.) + costn-3-3)Rm(3)e*® P Tnis), for cos® > 0. ()

With both polarizations taken into account, we now direct our attention to the
scattering Mueller matrix elements.

THE MUELLER MATRIX

From the relations given by Bohrem and Huffmam, we can use the scattering
amplitude matrix elements to calculate the Mueller scattering matrix elements.
In the plane of incidemce, only four of the sixteen elements of the Mueller
matrix are of interest. These are

Sosi[iss +1s47 ],
Se = L[ 154" - 154" J/5n,
Sn = Re(5:S2")/Sn, and

S = Im(S:8.")/Sn. 12)
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When we consider only the scatter in the plane of incidence, the other scat-

tering elements are either zero or simple multiples of these elements.

Using these expressions, the four Mueller matrix elements were cal-
culated for a dipole with no surface. The surface can be removed by setting
the surface index equal to 1. These elemeunts are shown in Figure 4. It is
noted that the scattering angle S goes from 0° to 360°. As expected, symme-
tries occur about 9 = 180°. This is a fundamental case discussed in many of
the references, especially Bickel and Bailey. These scattering elemepts are
useful references and will be compared with those generated when a s;rface is
placed near the dipole.

SCATTERING AS A FUNCTION OF PARTICLE-SURFACE SEPARATION

Figure 5 shows the four scattering Mueller matrix elements as a
function of dipole-surface separation for a beam incident at normal incidence
and a surface of index n = 10.0 - 0.01. Such a surface could be made with a
series of 1/4-wave dielectric layers on a glass substrate. It is more instructive
to look at the effects of a high index dielectric surface intitially (rather than
a simple glass plate or a metallic surface) because a high index interface gives
interfering beams that are of nearly equal amplitude. Also, a metal interface
creates phase shifts upon reflection. Before examining Figure 5 in detail, it is
instructive to examine the scattering amplitude matrix elements. To provide
some insight for the TE case, we rewrite the scattering amplitude matrix ele-
ment (equation 3) in the following form:

SH9) = [1“+ Ru(80€ 3@ [ + Ru(x-gje!stx-04)], (13)

The first term which is independent of 9 controls the amplitude of the overall
pattarn. As the dipole-surface separation is increased, a stationary detector at
9 will witness the intensity element S«(3) fluctuating sinusoidally with distance
due to the first term. For a beam incident along a normal to a dielectric
surface illaminating a particle next to the surface (d = 0), the intensity mea-
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sured by a fixed detector will be in a trough (minima) since there is a phase
change at the surface. As the particle moves away from the surface, the signal
increases until it is 1/4 wave from the surface, at which point the signal has
cycled into a peak (maxima) since §(8.,d) = -n. At 1/2 wave from the surface,
the signal has returned to the trough. The intensity difference between a peak
and a trough can be calculated asing

al = 1og{|01 + R1|'} - 10g{|01 - RON|'}. u4)

For n = 10.0 - 0.0i, this yields Al = 2 or a two order of magnitude cflange in
the scattering by moving the particle 174 wave. This is most easily seen in the
transmission region (3 = 0°) of the Sw curves of Af—lgnre S.

The second terwm in the S{§) equation controls the, shape of the
pattern. If the first order approximation assumes R(3) to be constaut, then the
pattern behaves sinsusoidally with §(3,d). At & = 180°, we not only see the
pattern fluctuating two orders of magnitude with the amplitude envelope, but
also varying another two orders of magnitude due to the scattering (second)
term of equation 13, for a total fluctuation of four orders of magnitude. For
other scattering angles, the fluctuation of the amplitude envelope and the
fluctuation at a particular scattering angle will be out of phase and will tend
to cancel each other. For a dipole-surface separation of I\/4 and the detector
placed at 8 = 180°, 3(8,d) = 3x. At this location, there is a peak in the scat-
tering intensity. A trough will appear at any scattering angle whare the phase,
$(3.d) = Zmx, where g .is a positive integer not. greater tham 3(180°.d)/2x (3/2
in this case). Keeping d constant with m = 1, we can solve our phase equation,
5(9,d) s 2x, for scattering angle 9, ylelding 132° and 228°. At about these lo-
cations in Figure S we see troughs whose value hasn't changed much from the
amplitude envelope of the half wave separation. These nodes move in to the
center of the pattern (toward 1807 as the dipole-surface distance increases.
Another set of trou.ﬁl (for m = 0) is just beginning to form for §(3,d) = O
which corresponds to 8 = 90° and 270°, but they are not as apparent at this




point because the Frespel reflection term dominates.

The response of the polarization matrix elements (Sw, S», and Ss) is
not as dramatic as the total intensity matrix element, S«. Spikes tend to
appear on these elements where there are troughs in the total intensity ele-
ment. These spikes seem similar to those that appear in the Rayleigh-Gans li-
mit of single sphere scattering.’ Sz has an interesting featuro: for very small
dipole-surface separations (d ~ A/1000), the polarization has switched sign.
This appears to be a function of tile refractive index of the surface which we

now consider.

Figure 6 shows the S, scattering as a function of dipole separation
from a surface of index n = 28.0 - 95.01, an index roughly corresponding to
aluminum at 10um wavelength. First note that the transmission portions of the
polarization elements carry very little information; i.e., they are either zero or
100X over the entire range. This is not too disturbing since the skin depth of
this metal would effectively prevent most transmission measurements. This
information loss also occurs for high index dielectric surfaces, but is more
apparent iz figure 6 because the reflectance of aluminum is greater than the
dielectric of figure S. An inun;un. feature has cropped up in matrix eiement
Sw(9) at normal incidence when d = 2/2. At 9 = 180°% where a node occurred
for the dielectric surface of figure 5, a small maximum exists. Reflections
from a metallic surface change the state of the incident beam from linear
polarization to elliptical polarization. As a resuit of these reflections, the
shape and position of the nodes are different tham the nodes for a dielectric
surface. The podes and spikes for aluminum are sharper than for the
dielestric, but this is a function of the reflectance: the aluminum Is more
reflecting, 8o the spikes are sharper. Other than the small displacements of
the maxima/minima and the loss of information in matrix elemeut S for large
dipole-surface separatious, it is hard to distinguish the scattering from the
metal surface of figare 6 from the high-index dielectric surface of figure S.
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Figure 7 shows the S« scattering as a function of dipole distance

from a surface of Index n = 1.5 - 0.0i, which roughly corresponds with glass

in the visible spectrum. For a low-index surface, the matrix element curves are

much smoother, and very closely resemble the curves for a dipole without a

surface shown in Figure 4. As the dipole-surface distance is increased, the
elements change, while retaining this general shape.

SCATTERING AS A FUNCTION OF INCIDENT ANGLE

We now consider the final remaining parameter for dipole-surface
scattering, the incident angle of the incoming radiation. We examine the spe-
cific, but arbitrary, case for the particle near the surface at d = )/10. This
case could represent a 2um diameter dust particle om a surface illuminated
with 10.6 um light. Although a radius of )\/10 borders on the Rayleigh limit, it
has practical applications.

Figure 8 shows the Sy scattering as a function of incident illamina-
tion angle for a dipole located 2/10 from a surface of index n = 10.0 - 0.01.
First we note the lack of symmetry in the elements. Prior to this stady, all
the elements have been symmetric about 9 = 180°. As 9 Is increased first to
30° and then to 60°, the elements vary significantly from those of the isolated
dipole of figure 4. Specular peaks occur in those directions where the beam
takes a direct path and does not interact with the particle. These occur at 3 =
9. on the transimission side of the surface and & 3 x - 9. on the reflection
side of the surface. It may seem surprising to find that the peak of the scat-
tered radiation is not necessarily at the specular beam on the reflecting side
of the surface.

Established Wl in the polarization matrix elements for scatter-
ing from a single, isolated sphere no longer hold whea the incident beam is
no longer normal to the surface. Element Se which, for an isolated sphere, is
equal to zero both at specular and at 180° from specular, no longer obeys this
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rule. For a high-index surface the signal doeas tend to -100X for scattering
along the surface (3= +907. Element S», which for an isolated sphere is equal
to 100X at specular and -100X In the backscatter (180° from specular) no lon-
ger obeys these rules either. For a highly reflecting surface it does tend to
zero along the surface (3=:90°). Element S, which for a lone sphere is equal
to zero at specular and 180° from specular, now tends to zero only along the
surface (9=t90". These tendencies can be derived from the scattering ampli-
tude matrix elements. When 3 = $90° R(3) = -] and 3(3d) = 0, the elements
reduce to zero. For surfaces of high index of refraction, the Fresnel réflection
coefficient Rn(d) approzches -1 more rapidly than Rn(9), which goes to zero at
Brewster's angle. As a resait of this dissimilarity, the beam is almost antirely
TM polarized, and the Maeller matrix element Se will go to 100X. The other
polarization elements must go to zero at this point. Since S: and S: go to zero
along the surface, element S« goes to zero along the surface.

Figure 9 shows the scattering as a function of incident angle for a
dipole 1/10 from a surface of index n = 28.0 - 95.0i. These curves are similar
to the curves of Figure 8 where n = 10.0 - 0.0i. The only differences are the
magnitudes in some locations and the loss of information in the reflected por-
tion of Lhe S» matrix element. The change to a higher., complex index has had
very little effect on the elements.

Figure 10 shows the scattering as a function of incident angle for a
dipole 1\/10 from a surface of index n = 1.5 - 0.00. The matrix elements for a
low-index surface are expected to retain the shape of the elemeuts for the
isolated dipole shown in Figure 4. The peaks in the elemeuts are very near the
same angular locations that they would be with no surface present. The maxi-
ma/minima of matrix elements Se and Su reveal the incident angle of the
incident radistion. The trough located 90° from specular in the S« curve is still
close to 90° from specular. The maxima/minima of the S» curves also become
shifted toward the specular and backscatter locations as the incident angle is
changed.




CONCLUSION

Determining the nature of systems by studying the light scattered
from them demands an understanding of how basic properties of the systems
affect the scattering. Reducing the size of the particle to the Rayleigh iimit
eliminates the effects of the particle’s geometry and refractive index from the
problem. This effectively reduces the number of parameters to three: the
complex index of refraction of the surface, the particle-surface separation, and
the incident illumination angle. Understanding the trends in a simple system
cousisting of only three parameters leads to a better understanding of what
happens in more complex systems. [f we are unable to comprehend how a
simple system scatters light, we cannot hope to understand the scattering
from a system that is more complex.

Finally, it may be asked iIf any of our conclusions are valid for a
particle of finite size. Figure 11 compares two sets of curves. One is the set
of Mueller matrix elements for a dipole separated d = 2/10 from an aluminum
mirror illuminated at an angle of incidence of 30°. The other is a set of theo-
retical Mueller matrix elements for the same system with the dipole replaced
by a A\/10 radius sphere of index 1.5 resting on the surface. The theoretical
system has been derived by solving the boundary couditions at both the sphere
and the surface. Its solution is the subject of anuther paper.’ The two curves
are quite similar, with differences arising from the geometry and refractive
index of the finite-size sphere. The scattering from such a system can be
measured. Weber and Hirlfeman made scattering measurements from a single
sphere of radius ~)\/2 using a He-Ne laser for illumination.® A higher power
lagser in the infrared regiom would facilitate the measurements. Ou a more
practical note, this model coald be used to messure sab-wavelength contami-
namt sizes and/or densities by placing detectors at appropriate scattering
locations and mouitoring signal changes in the matrix elements as the surface
is scanned.
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Figure Captions

Fig. 1. The geometry of a dipole-surface scattering system: the dipole, repre-

Fig.

Fig.

Rg.

Fig.

Fig.

Fig.

sented by a circle, rests a distance, d, from a surface of index n. The
incident angle 9. and the scattering angle 9 are measured from the sur-

face normal.

. The paths that an incident beam may follow to the dipole and after

interaction before being detected on the incident side of the surface.

*

. The paths that a beam may follow before being detected on the tran-

smitted side of the surface.

. The Maeller matrix elements for an isolated dipole.

. The Mueller matrix elements as a function of dipole distance from a

surface of index n = 10.0 -~ 0.0f illaminated at normal Incidence. »—+
Distance = )\/1000. O——O Distance = A\/4. X——X Distance = )\/2.
+———+ Distance = 37\/4.

. The Mueller matrix elements as a function of dipole distance from a

surface of index n = 28.0 - 95.01 illuminated at normal incidence. +——¢
Distance = )/1000. O——O Distance 3 )/4. X——X Distance = )/2.
+——+ Distance = IN/4.

. The Mueller matrix elements as a function of dipole distance from a

surface of index n 2 1.5 - 0.01 illuminsted at normal incidence. +—
Distamce = )\/1000. O——O Distance = 2/4. X——X Distance = )/2.
4t Distance = IN/4.

Fig. 8. The Musiler matrix elements as a functiom of incident angle of illumi-

nation for a dipole a distance 7\/10 from a surface of index n = 100 -
0.0i. ¥—=¢ 9,2 0. O—O0 9 = 0" X—X 95 = 60°.
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Fig. 9. The Mueller matrix elements as a function of incident angle of illumi-
nation for a dipole a distance \/10 from a surface of index n = 28.0 -
95.00. +—=e §, = 0°. O—O0 3 = W*. X——X 3 = 60°.

Fig. 10. The Mueller matrix elements as a function of incident angle of illumi-

nation for a dipole a distance \/10 from a surface of index n = 1.§ -
00l. —e¢ 9, = 0. O-——O 8 = 30°. X—X 9 = 60°.

Fig. 11. The Maeiler matrix elements as a function of incident angle of illumi-
nation for a particle 2/10 from a surface of index n = 28.0 - %.0i and
incident angle of 30°. s—s A dipole. O——O A sphere of index n =
1.55 - 0.01 and radius )\/10.
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Abstract

Although the general case of electromagnetic waves scattered from
a sphere when illuminated by a plane wave was formulated by Mie more than
half a century ago, almost all measurements and calculations of the total
scatter have concentrated on the far-field region. We examine the electric and
magnetic fleld topographies as well as the scattering Mueller matrices in the

near-field region of a Mie sphere.
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L Introduction

In the nineteenth and early twentieth centuries, one of the most
important problems in the application of Maxwell's theory to phenomenon tak-
ing place in nature was the interaction of electromagnetic waves with matter.
An important example is the work of Rayleigh' in explaining the blue color of
the sky in terms of scattering from particles small in comparison with the
optical waveiengths. An analysis of electromagnetic waves scattered from a
sphere was published by Clebsch in 1863,' and like Fresnel's reflection equa-
tions, his solutions appeared before the development of Maxwell's equations.
Although the radiation scattered by a sphere was solved by Mie in 1908, and
refined by Debye in 1909° when he investigated the incident electromagnetic
wave pressure on particles, the resuit was also obtained by Lorenz in 1898°
The geometry of spherical systems is especially appealing because spheres
possess high symmetry and they occur naturally, being a condition of minimum
potential energy. Extensive applications to atmospheric sciences occur where
rainbows, planetary atmospheres and other systems are explored in books by

van de Hulst,' Kerker, and Bohren and Huffman.’

The relations of Mie's general theory are relatively simple when the
distance kR to the sphere lay in the electromagnetic far-field region where
only scattered fields decaying as 1/kR are significant. Fifty years after Mie
presented his theory, King and Wu' lamented the fact that “sufficient data do
not seem to be available to construct a complete representation about a con-
ducting sphere” as that shown for an infinitely-long, conducting cylinder (in

referring to figures in the text showing the near-fleld region of the cylinder).
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In the same text, they devoted an appendix to plots of surface currents on
perfectly-conducting spheres of increasing size illuminated by incident plane
waves which were obtained from a large, state-of-the-art military computer

program directed by Nelson Logan for USAF Cambridge Research Center.

Most theoretical work and scattering applications consider only the
far field, optically represented as the Fraunhofer region. For instance, all three
scattering programs in the book by Bohern and Huffman (ref. 8) calculate the
far fields. One notable exception is the work of Aden® who ingeneously mea-
sured the near-zone fields of metal and water spheres along the back-scatter
direction in the microwave region of the spectrum. With the advent of better
computers, the entire electromagnetic fields can now be calculated easily. It is
instructive to see what happens as the detectors move into the near-field
region, optically represented as the Fresnel region. We want to know the error
involved in assuming a far-field solution when we know our detector is not at
infinity. We also want to know just how the near-field region differs from the

far-field region.

In experiments where scattering systems are illuminated with visible
wavelengths (A = 0.6328um, for instance), a detector mechanism only one
meter distant, would certainly seem to be operating in the far-field region.
At this distance, changing the scatterer-detector distance by a factor of two

would not change the relative shape of a scattering signal, therefore the de-
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tector is considered to be in the far field for all practical considerations.
Indeed, Bell's” measurements of the light-scattering Mueller matrix for a
fiber, seemed to verify this (although his optical system was typical, it cer-

tainly was not universal).

In this paper we explore the near-field region of a Mie scatterer.
First we will calculate the entire field. We will then calculate the scatter that
would be measured in the far-field region, and compare the results with what

would be measured in the near-field region.
II. Mie Theory

Figure 1 shows the arrangement of the scattering system. A sphere
of radius a, and complex refractive index n' is centered on the origin. A plane
wave, electrically polarized in the x direction, propagates in the positive z
direction. We detect the electric and magnetic fields at position R, 9, ¢ from

the center of the sphere (R is the sphere-detector distance).

We report only the primary results of Mie theory since formal deri-
vations exist in many of the cited texts. The electric and magnetic components

of the flelds incident upon the sphere are

B = iz. e Mn” + D M", and (1a)
H. =—k-fz Dow M ¢ 20 N, (1b)

iwu "0 maen
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where k = 2r/) is the wavenumber, w is the angular frequency, and p is the
permeability of the incident medium at A. The vectors M.." and N.." are given
by

M = 3[% 29 (kr) Pr(cos®) e""’] -

sin

‘[z.f" (kr)die-( P, (coa&))e‘m"J, and (2a)

N = ?[-lk-; z."'(kr)n(ml)P:(coss)e‘“"’] +

3[‘— °—(rz."’(kr))§;( P. (coso)) e""’] .

kr or
s [—'- 2 2 ke 2 Pl costre'™® ] (2b)
kr or sind®

The superscript identifies the Bessel functions used to represent the fields.
For example, j = 1 corresponds with the use of the functions z.'"(p) = j.(p), j =
2 corresponds with the use of the functions z."(p) = y.(p), and j = 3 corre-
sponds with the use of the functions z.*{(p) = h."(p) = je(p) * ly.(p). The func-
tions PT(cosd) are the normalized associated Legendre polynomials defined by

P(cosd) = PI(cosd),/ Zoibinmm)t 3)
2aem)!

For an incident electromagnetic plane wave traveling along the positive z axis

and polarized along the x axis, the coefficients are

g e 2n+1 . ,
aw = E. —Zn(ml) (8—. 4 8-.) and (4a)




et 2n+1
b = Eii ]/Zn(m" (8mer = Ba), (4b)

where E. is the maximum amplitude of the electric field. Internal fields

are also generated when k' % «:

[- -]

B = ZZ Com M + dunM”, and (5a)
AEQ moen

Ho = == 35 del” + conl”, (5b)
'uuv AS0 meen

where k° = kn' is the wavenumber of the sphere medium for incident wave-
length A, n' is the sphere refractive index and ' is the permeability of the

sphere medium at wavelength A. The scattered fields are

B = Si e’ ¢ frla”, and (6a)
Heo = Tk“—zz | I ‘-‘” * eu-.-'." . (6b)

By applying boundary conditions, the scattering coefficients may be solved

in terms of the coefficients of the incident field:

kg (K'a)ga(ka) - ky'dn'(ka)du(k'a)

Kt (Ka)E(ka) - kpE (kalntkw ' 09 (7a)

Cm = ~fam

f 2 -Bem Kudw'(ka)Patk'a) = ki dwik'a)ya(ka)

k'l (ka)ga(k'a) = ki'dn' (k'a)En(ka) (70)
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where (a(p) = pjslp), and E(p) =ph."(p). These coefficients can be reduced to
much simpler expressions when the refractive index of the sphere approaches

large values, in which case

. - $a(ka) (8a)
Com A Eka)’ and 8a

‘(ka)
fm : - L'
Dom £ (ka) (8b)

We will detect the fields in two different planes, one in the y-z
plane (p = 90°) which lies perpendicular to the incident electric field (the TE
plane, or H-plane), and the other in the x-z plane (9 = 0% which lies per-

pendicular to the incident magnetic field (the TM plane, or E-plane). We can

ary
represent the fields in the form of matrices:
Ee S S En He S S Hn
Eo| = | S S| \En/, Ho |2 | S’ S' | \Hra/ , where (9)
Er S Se He S S
nd . ~y a
- s = Yo 1lcRibloond) ¢, -2 (costlen ] (10a)

& st 4 . ~y
S = 2 o[letkRPcosd), , LR 2B (cogpit., ], (10b)

sind EX)




@ n
S = ZZn(nd) .k(:m P. (cos9fm, (10¢)
=K _E(kR)Pl(cosd) Ry S '
= Z o itag0sB e, 4" kR 2Bl (cosdIfu. ], (10d)
D {1}
sk 3o [ IhkRIE cosd) o 2R 2Bl (costlen ] (10e)
e S sind
1]
S s K Zz (nel) 222 "'k‘:m P.(cosd)ew, and (106)
Si x2S =8 =8 =8 =S =0. (10g)

These expressions hold for the fields everywhere. To get to the far-field re-
gion we let kR > ©, where these expressions are further reduced by taking

advantage of the asymptotic behavior of the spherical Hankel function:

o (-i)'e" " lp .
ha'"(p) ~ - , and &'(p) = (~i)'e for ipl ) 1 yield (10
s=3 -.9_“"‘ Bllcos®) 2 3
= 2 -2-rg (Rl . S(costren ], (12a)
P.(cosO) 9 51
So s Zz(-n [ S0V 6w + —Pilcostfu ], (12b)

net




bt N eikR ~y
Se = szmm-n S Pllcosdifa, (12¢)
sy = L s, (12d)
wy
S =-Xs, and (12¢)
wyt

elkl'.
i

e P. (cosB)en. (12f)

Ss Li 2n(ne -1
o

As the sphere-detector distance is increased, m‘trlx elements Ss and Ss' (which

vary as 1/R’) approach zero more rapidly than do the other matrix elements

(which vary as 1/R). We see here another significance of the far field. The

E and H field vectors are not only orthogonal to one another and to propaga-

tion direction R but are also in time and spatial phase so as to compose a

wave front moving at the speed of light in the wave medium (equations 12¢.d).

HL How far is far?

Equations 9-12 can be used to determine whether the radiation from
a scattering system is in the near or far field. As an example we start by
examining the scattered fields from a dielectric (quartz) sphere of refractive
index n° = 1.55 + 0.0i in the optical region of the spectrum (A = 0.6328um

HeNe laser radiation). We arbitrarily choose the radius of the sphere to be
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a = 0.525um, a size large enough to provide some oscillatory structure on the

scattering curves.

A. The Electric Fields

Figure 2 shows the intensity of the electric fields a8 a function of
scattering angle at four different observation distances. The TE curves corre-
spond to measurements when the incident electric field is transverse to the
scattering plane (a measurement of S:"S). The TM curves correspond to mea-
surements of the non-radial component of the electric field when the incident
magnetic field is transverse to the scattering plane (a measurement of S:"S).
The RD curves correspond to measurements of the radial component of the
electric field when the magnetic field is transverse to the scattering plane (a
measure of S:"S:). Four sets of curves are shown respectively for sphere-de-
tector distances of R = 1A, R = 3\, R = 9), and R = ». To facilitate compari-
son, the elements have all been normalized for sphere-detector distance [(mul-
tiplied by (kR for TE and TM and (kR for RD]. Note that at the endpoints
(3 = 0° and 9 = 180" the TE elements are equal to the TM elements and the

RD elements are zero.

These curves show that at optical wavelengths, the far field is not
very far away from the scatterers. This is shown by the fact that three curves
(R=3X, R=9) and R = @) in each set of four have very similar shape and
almost coincide, while the fourth curve (R = 1A) is quite different. When the

sphere-detector distance is only R = 3), the matrix elements are already simi-
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lar to those for R = . When R = 9) (less than 6um at optical wavelengths!)
the elements are aimost indistinguishable from far-field elements. This shows
that near-field phenomena occurs only very close to the particle, and that it is
very difficult to measure near-field signals in scattering experiments at optical
wavelengths. An infinitely~small, non-interfering detector would have to probe

the field at R ~ A.

B. The Magnetic Fields

We next look at the magnetic fields and compare them with the
electric fields for the same system. Figure 3 shows the intensities of the mag-
netic fields as a function of scattering angle at four different observation dis-
tances (note that TE corresponds to S.°Ss, TM to S:'“Sy’, and RD to Ss'°Ss).
Four sets of curves are shown respectively for the same sphere-detector dis-
tances of R = 1A, R = 3, R = 9}, and R = © used to calculated the electric
field intensities of Fig. 2. To facilitate comparison, the elements have all been
normalized for sphere-detector distance and for field strength (multiplied by
wp/k). As with the electric field curves, three curves (R = 32, R = 9, and R =
o) in each set of four have very similar shape and almost coincide, while the
fourth curve (R = 1)) is quite different. Only in the far field when R = » does
the magnetic field behavior approach that of the electric field, the ratio bet-
ween them being wy/k. The TE and TM electric and magnetic field intensity
curves are identical in the far field. Since the radial component approaches
zero much more rapidly (as 1/R') than the other components (which decay as

1/R%, it does not contribute to the intensity in the far fields.
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C. The Matrix Elements

Finally, we generate the Mueller matrix elements” from the above
expressions for the fields and examine their behavior as a function of sphere- .
detector distance R. The Mueller matrix, which is defined in terms of the
electric field components S: and S, is especially attractive experimentally
because it completely quantifies the polarization state of the system. The
matrix does not, however, include the radial component of the system. This
component which decays as 1/R' contributes only to the total field and not to
radiation from the system since the radiation term decays as 1/R. An ideal
(infinitely-small, perfectly-impedence-matched) detector placed in the near-
field region cannot distinguish between the radiation terms and the total
electric field. Only four elements of the i6-element matrix are non-zero and
unique. Only these are necessary to characterize a symmetric scatterer like a
sphere. These four Mueller matrix elements for the a = 0.525um radius quartz
sphere calculated from the data shown in Figs. 2 and 3 are presented in Figure

4.

The Mueller matrix is an especially useful diagnostic tool for expe-
rimentalists because It is seif-calibrating. The polarizations are independent of
intensity. It is important to emphasize the value of the matrix elements as
discriminators of small differences. The electric fields measured at R = 1\ in
Fig. 2 can easily be distinguished from the others measured at R = 33, R = 9},
and R = ©. However they are proportional to the source intensity and detector

efficiency. If these parameters are unknown, the absolute intensities are un-
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known and the similarity in shapes will prevent discrimination of these four
curves. The situation is entirely different with the Mueller matrix elements of
Fig. ¢+ Although the curves are similar, they are distinguishable. A detector
measuring element S. near 135° can easily distinguish all the elements at the
four different sphere-detector distances, and the signal is completely indepen-

dent of the source intensity.

IV. What about conductivity?

Earlier in the paper we simplified the equations representing the
scattering amplitude coefficients by letting the sphere refractive index
approach infinity. Making the sphere a perfect conductor provides an interest-
ing example because it provides one limit to which the refractive index of the
sphere may approach. Another interesting example, known as the Rayleigh-Gans
region, occurs when the refractive index of the sphere approaches the refrac-
tive index of the encompassing medium. In this limit, where the refractive
index of the sphere is identical to the refractive index of the encompassing
medium, the sphere disappears. It is optically invisible and no scatter can
occur. The intensities of the electric fields as a function of scattering angle at
different sphere-detector distances for a perfectly-conducting, a = 0.525um ra-
dius sphere illuminated at A = 0.6328um are shown in Figure 5 and the corre-
sponding intensities of the magnetic fields are shown in Figure 6. The curves
for the conducting sphere are much smoother than those for the dielectric
sphere (shown in figures 2 and 3) because the fields are unable to penetrate

the conducting sphere. The scatter from a perfectly~conducting sphere and a
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dielectric sphere can be compared to the retlection of a light source from a
metal mirror (with one boundary) and a sheet of glass having two boundaries.
The metal mirror provides a well-defined reflection, but the intensity of the
light reflecting from the sheet of glass will oscillate through maxima/minima
due to interference occuring between the fields which reflect off the front and
rear boundaries of the glass. These oscillations are perhaps more pronounced

P

in the Mueller scattering matrix shown in Fig. 7.

Finally we should see if the approximation of large refractive index
has any physical significance. To do this we examine the scatter from an a =
0.525¢m radius partially-conducting sphere of aluminum (n = 1.1 + 6.0i) illumi-
nated at A = 0.6328um as a function of scattering angle at four different
sphere-detector distances R. The matrix elements for this system are shown in
Figure 8. They are very similar to the elements of Figure 7 for perfectly con-
ducting spheres. Therefore, even though the refractive index of aluminum is
finite, its scattering properties can be estimated by considering scattering in

the limiting case of a perfect conductor.

V. The Total Field

The nesr field can be distinguished from the far field by placing a
“perfect” detector within a few wavelengths of a sphere whose size is compar-
able with the wavelength of the illuminating radiation. Unfortunately the de-
tector will measure a mixture of the scattered fields and the incident fields

since there is no way to filter out the incident fields from the scattered
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fields. Therefore the incident fields must be included in measurements taken

in the near field.

This does not occur experimentally for most scattering measure-
ments since they are made in the far-field region. The laser illumination,
though not an infinite plane wave, is very nearly constant over the scatter-
ing system (sphere). Also, because the laser beam has a small dia;eter (~
1000a), the angular subtense of the incident field is very narrow, occuring
mostly in the forward scatter (3 ~ 0°). Therefore it is not collected by the de-
tector system at large angles. Even though such systems are not illuminated
by an infinite plane wave (the laser beam intensity cross-section is approx-

imately Gaussian), the resulting scatter is very nearly what is predicted with

plane-wave illumination (ref. 13).

In order to study the interference of the scattered radiation with
the incident plane wave we investigate a system with a simple scattered radia-
tion pattern: an a = 0.25\ radius, perfectly-conducting sphere. Now we can
distinguish between the effects due to the fields scattering from the sphere
and the effects due to the fields interfering with the plane wave. Figure 9
shows the intensities of the electric fields for this system as a function of
scattering angle at four different sphere-detector distances. Reducing the size
of the sphere relative to the incident wavelength reduces the oscillatory fre-
quencies in the scattering as a function of scattering angle and the total
amount of scattered radiation. The interference effects are best seen when the

scattered intensities are comparable to the incident plane wave intensities
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where the measurements are made. We keep in mind that the plane wave in-
tensity does not dipend on detector position; whereas, the total scattered ra-
diation decays as 1/R?. The curves of Figure 9 are for a sphere whose scat-

tered fields have only a small angular dependence.

Figure 10 shows the interference of the scattered electric fields with
the incident plane wave from an a = 0.25\ radius, perfectly-conducting sphere
as a function of scattering angle at four different sphere-detector distances.
The intensity on these graphs is not normalized for distance. At a sphere-de-
tector distance of infinity, the fields give the well-known “Rayleigh curves”
and are due entirely to the plane wave (I = 1, I = cos’d, and Lo = sin’9). As
the sphere-detector distance is reduced, oscillations about these values appear

in the interference patterns.

V1. Topographica] Plots

It is apparent that the near-field interference is very complex and
rich with structure. In order to view this complexity from a different vantage
point, we generated the topography of the electric and magnetic field intensi-
ties in figures 11 and 12, respectively. These plots show the intricacies of the
near-fleld and elucidate certain features which are not apparent on the other
figures. Intensity is shown in the vertical axis. The sphere lies on the z axis
and the scatter is shown only to the left of the z axis (in the x-z or y-z

plane).
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There are several points to make from these plots. First, the inter-

nal fields within the perfectly-conducting sphere are zero. Second, boundary
conditions force the electric fields parallel to the surface (TE and TM of
Figure 11) and the magnetic fields perpendicular to the surface (RD of Figure
12) to zero. In these three plots, the fields outside the sphere approach zero
as the sphere-detector distance approaches the sphere radjus (R = a). In the
other three plots (RD of Figure 11 and TE and TM of Figure 12), there are
discontinuities in the field intensities at the boundary of the sphere. To satisfy
the boundary condition at the sphere surface, a surface current is induced on
the sphere equivalent to the magnetic field at the surface of the sphere. Third,
all radial fields along the z axis are zero. Fourth, the TE fields are identical
to the TM fields along the z axis. Fifth, the TE and TM field intensities decay

as 1 + I/R'. And sixth, standing waves appear in the intensity distribution.

The standing waves that appear in figures 11 and 12 are the result
of the scattered spherical waves interfering with the incident plane waves. To
gain insight into the origin and implication of these standing waves, we exa-
mine the scalar components along the z axis. The amplitude of the unit-nor-
malized incident plane wave is of the form e**. The scattered spherical waves
are of the form Ae™* for negative values of z and Be*’ for positive values of z
where A and B contain additional phase and amplitude information (the spheri-
cal amplitudes must decay as 1/R, for instance). In the negative z direction,
the sum of these exponentials (e** + Ae™*") indicates a decaying standing wave
and a traveling wave, while in the positive z direction the sum (e* + Be*") in-

dicate only a traveling wave. Figure 13 shows the electric and magnetic fields
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along the z axis for a perfectly-conducting, a = 0.25\ radius sphere. The
standing waves appear in the back-scatter region (negative z). Note that the
electric field standing waves, which have a node (I = 0) at the sphere surface,
are 180° out of phase with the magnetic field standing waves which have an
antinode (I ~ 3.75) at the sphere surface. The spatial frequency of the standing
waves is twice the frequency of the incident radiation.

We now consider the shapes of the nodal and antinodal regions in
the scattering plane. These regions are produced by the interference effects of
the incident plane wave and the scattered spherical waves. Antinodal regions
occur in regions where these two sets of waves meet in phase, and nodal re-
gions occur in regions where they meet out of phase. We are looking, in
effect, at contours in space where the distance from some reference plane
wave is equal to the distance from the center of the spherical plane waves.
This is precisely the definition of a paraboloid. Figure 14 shows contour maps
of the TE electric field intensities and the TM magnetic field intensities for a
perfectly-conducting, a = 0.25A radius sphere interfering with the incident
plane wave is shown in Figure 14. The parabolically-shaped standing-wave

patterns are clearly seen.

VIL Discussion

We have examined electromagnetic waves scattered from spheres in
the near-field and found that the field distributions quickly approach those of

the far-field (within about 10 wavelengths for spheres whose radius is approx-
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imately the wavelength of the incident radiation). We examine the near-field
region where the scattered fields cannot be separated from the incident fields.
The most striking feature of the near-field region is the parabolically-shaped

standing waves that form in the backscatter region.
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Figure Captions

Fig. 1. The scattering geometry showing the sphere of radius a centered on the

origin.

Fig. 2. The normalized scattering electric field intensities for an a = 0.525:m
radius quartz sphere illuminated by A = 0.6328um light for sphere;detector

distances of R = I\ (s——e) R = 3A (0—O), R 2 9% (X—X), and R = o {+—).

Fig. 3. The normalized scattering magnetic field intensities for an a = 0.525um
radius quartz sphere illuminated by A = 0.6328um light for sphere-detector
distances of R = {A (s——s), R 2 3A (O—0O), R = N (X—X), and R = © ().

Fig. 4. The scattering Mueller matrix for an a = 0.525um radius quartz sphere
illuminated by A = 0.6328um light for sphere-detector distances of R = 1)

(s—-e), R = 3\ (O—0), R =2 9\ (X—X), and R = © ().

Fig. 5. The normalized scattering electric field intensities for an a = 0.525um
radius, perfectly-conducting sphere illuminated by A = 0.6328:m light for
sphere-detector distances of R = 1A (==—e), R = 3A (0—0), R = 9 (X—X),

and R = @ (),

Fig. 6. The normalized scattering magnetic field intensities for an a = 0.525um
radius, perfectly-conducting sphere illuminated by X\ = 0.6328um light for
sphere-detector distances of R = {\ (s=—e), R = 3A (0—0), R 2 9\ (X—X).

and R 2 o (+—=),
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Fig. 7. The scattering Mueller matrix for an a = 0.525um radius, perfectly-con-
ducting sphere illuminated by A = 0.6328um light for sphere-detector distances

of R =1\ (s==—=e) R =3\ (0—0O), R =9 (X—X), and R = @ (+—+).

Fig. 8. The scattering Mueller matrix for an a = 0.525:m radius aluminum
sphere illuminated by A = 0.6328um light for sphere-detector distances of R =

P

I\ (s—se), R = 3\ (0—0), R = 9\ (X—X), and R = o (+—),

Fig. 9. The normalized scattering electric field intensities for an a = 0.25)
radius, perfectly-conducting sphere at sphere-detector distances of R = 0.5\

(«—-=e), R = 0.75A (0—O), R = 1.OA (X—X), and R = @ ().

Fig. 10. The normalized scattering electric field intensities for an a = 0.25)
radius, perfectly-conducting sphere interfering with the incident plane wave at
sphere-detector distances of R = 0.5\ (=—e¢), R = 0750 (O—O), R = 1.0A

(X—X), and R 2 o (+=—),

Fig. 1. The normalized topography of near-zone electric fleld intensities for an
a = 0.25\ radius, perfectly-conducting sphere interfering with the incident

plane wave.

Fig. 12. The normalized topography of near-zone magnetic field intensities for
an a = 0.25\ radius, perfectly-conducting sphere interfering with the incident

plane wave.
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Fig. 13. The normalized scattering electric and magnetic field intensities for an

a = 0.25\ radius, perfectly-conducting sphere interfering with the incident

plane wave measured on the z axis.

Fig. 14. Contour maps of the normalized scattering electric (TE) and magnetic
(TM) field intensities for an a = 0.25\ radius, perfectly-conducting sphere

interfering with the incident plane wave. 4
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