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ABSTRACT

Atmospheric turbulence introduces random phase distortions in optical

imaging systems. The development of new laser and imaging systems requires

information on the spatial and temporal distribution of this atmospheric

turbulence. Measurements of the image spread and the jitter induced by the

atmosphere on an optical system provide two techniques to quantify these

phenomena. This thesis evaluates a Spectra Sources Lynxx PC Plus charge

coupled device (CCD) array as an atmospheric turbulence sensor. Data

acquisition and processing programs were written to measure the image spread

of a point source and centroid jitter of a point source imaged through the

atmosphere. Since atmospheric jitter measurements require high image frame

rates on the order of 200 images per second, a large portion of this thesis

involved measurements of the times for the CCD detector, interface board and

IBM compatible computer to perform their tasks. Recommendations for higher

performance are presented.
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I INTRODUCTION

This thesis considers a method used to measure atmospheric turbulence

using a silicon charge coupled device (CCD) camera. Light from a distant star

consists of almost perfect plane waves before entering the earth's atmosphere.

When the waves traverse the atmosphere, local variations in the index of

refraction induce warping of the wave fronts. Therefore, a telescope pointed at

a star will produce a distorted image, whose spatial and temporal characteristics

depend upon the properties of the atmospheric path followed by the starlight.

Typically, the atmosphere introduces both image spread and temporal jitter, so

that a CCD array placed at the telescope's focal plane will reveal a highly

unstable and complex irradiance pattern. It has been found that both a high

frame rate (> 200 per second) and correspondingly short exposure time (< 5

ms) are necessary to avoid under-sampling the dynamic variations of typical

images.

The goal of this thesis was to find a way to measure atmospheric turbulence

with a CCD camera by optimizing the speed and efficiency of the camera

system's software and hardware. The software was written in the C language.

Software components that can affect system speed include both the various

algorithms used and the overall efficiency of the compiled program code. Three

compilers' outputs were compared for executable code speed and utility:



Microsoft Quick C 2.5, Borland C++ 2.0 and Borland Turbo C++ 1.0. Fixed

hardware components included a Texas Instruments TC211 CCD image sensor

in a Spectra Source PC Lynxx Plus camera attached to an 8 bit IBM PC

compatible interface card. The camera system was installed in two IBM

compatible personal computers, one using an Intel 80386 and the other a 80486

processor, and the overall speeds were compared. Finally, the camera-computer

interface and the CCD image sensor were analyzed to determine whether such

a low-cost commercial system would be suitable for turbulence measurements,

or whether a customized device would have to be fabricated.
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II BACKGROUND

A. ATMOSPHERIC TURBULENCE

Turbulence in the atmosphere causes many problems. In astronomy, it

introduces distortion that obscures image detail. Since exoatmospheric use is

not practical for most telescopes, knowing the spatial and temporal distribution

of turbulence is essential in the planning stages of a new facility or in diagnostic

evaluation of test systems. Figure 1 sketches a wave front incident on a turbulent

region [Ref. 1]. Random phase fluctuations in the index of refraction field

produce scintillations and image blurring. Twinkling or scintillation arises from

the interference of starlight that traverses multiple paths through the atmosphere.

Image blurring arises from the reduction in spatial coherence of the wave front.

B. PARAMETERS FOR THE MEASUREMENT OF TURBULENCE

The atmospheric index of refraction depends on both temperature and

pressure. Since pressure fluctuations disperse rapidly, at the speed of sound,

temperature fluctuations are the main contributor to atmospheric optical

turbulence. Structure functions provide a way to quantify the statistics of

atmospheric turbulence. For propagation through the atmosphere, optical

parameters will involve an integral of the refractive structure function along the

3
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Figure 1. Optical atmospheric turbulence distorts a coherent phase front.

optical path. The primary optical parameter is the spatial coherence length, ro.

It represents the transverse autocorrelation length of the electromagnetic field.

A related parameter is the isoplanatic angle, 0o. It represents the angle between

two different paths where the Strehl ratio of an ideal adaptive optics system is

within e- of perfect correction [Ref. 2]. Another parameter, the Greenwood

frequency, fg, represents the electrical bandwidth needed to remove atmospheric

phase distortions with an adaptive optical system.
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1. Structure Function

Atmospheric turbulence produces localized variations in the index of

refraction along an optical path. Tatarski [Ref. 3] defines the structure function

by

D~- 1) 2) 1(()() ]2), (1

where < > represents an ensemble spatial average, r and r represent the

location of two points in space, and x represents an atmospheric parameter of

interest, such as temperature or index of refraction. Assuming the turbulence is

isotropic, homogeneous and incompressible [Ref. 4] the Kolmogorov theory of

turbulence [Ref. 5] shows that

D, = C2.r2 3 , (2)

where Cx2 is a structure parameter and r12 is the distance between the two points

in space. By combining equations (1) and (2), the thermal structure parameter,

C0T2, which characterizes the mean squared temperature difference between two

points in space is [Ref. 3],

c 2 - ( - TI) 2)
2/3 (3)

r 1 2

where T2-T1 is the temperature difference and r12 is the distance between the two

points in space. There is a similar expression for the index of refraction structure

parameter, C' 2. Taking the partial derivatives of the atmospheric index of

refraction [Ref. 3],

5



n1=79x10-6p (4
T

where P is the atmospheric pressure in mbar and T is the Kelvin temperature,

and assuming isobaric turbulence allows us to write Cn' in terms of CT2 [Ref. 6],

c,2 = 9X06) 2 2 s
T2  C7 (5)

The pressure is assumed to be constant, since small random pressure

differences disperse rapidly.

2. Spatial Coherence Length

The spatial coherence length, ro, as stated above, measures the

transverse autocorrelation length of a wave front. It represents the effective

aperture diameter of a diffraction-limited optical system with a similar angular

resolution as the system under study. Typical values of ro range from two or

three centimeters for high turbulence to as much as thirty centimeters for low

turbulence, when measured from the earth's surface upward. When observing

a star from the ground with an optical device, the Cn2 component of ro is

cumulative along the optical path, even though most of the degradation of the

wave front occurs close to the ground. Integrating the optical turbulence Cn2(z)

along the path [Ref. 6],

ro k [ 2 9 k2ef (z) W(z) dz]35 (6)2

where k is the wave number(2rr/;.), 0 is the zenith angle, L is the vertical path
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length and W(z) is a weighting function. Typically W(z) has one of three forms:

for a plane wave, W= 1; for a spherical diverging wave, W= (z/L)513; and for a

converging wave, W=(1-z/L)13. The factor of sec 0 compensates for the slant

path through a horizontally stratified atmosphere.

Temperature fluctuations along a vertical path have been measured by

two means: by microthermal probes carded by a meteorological balloon and by

an echo sounder [Ref. 7 and 8]. Both of these methods provide credible values

of ro. However, there is a more direct method for calculating the coherence

length at the earth's surface using an optical point source irradiance distribution

[Ref. 9]. The discrete irradiance values from a two dimensional irradiance

distribution represent the point spread function, P(x,y). The line spread function

for x, L(x), is the summation of all of the y irradiance values from P(x,y) for each

x. L(y) is a similar summation of the x values for each y. Then take the Fourier

transform of L(x) or L(y) to get the optical transfer function (OTF). Assuming the

turbulence is isotropic, that is symmetric with respect to rotation about the path,

and that it is laterally stationary, the absolute value of the OTF equals the

modulation transfer function (MTF). For an optical system imaging a star the

observed quantity, MTFo, is a product of the MTF's of the source or star, the

atmosphere and the instrument [Ref. 9],

MTFo = MTF 'MTFa "MTF.. (7)

MTF, for a star corresponds to a point source at infinity and is unity. MTFj is a

7



measured instrumental transfer function. To determine the atmospheric

component, MTF,, from the observed quantity, MTF, we divide MTF0 by the

measured instrumental transfer function, MTF i.

Fried shows that atmospheric MTF, is a function of the atmospheric

wave structure function, which is an integral of the index of refraction structure

parameter along the path [Ref 2]. MTF, reduces to a form [Ref. 9],

-3.44 ( LRV ) 5/

MTFa = e o, (8)

where R is the effective focal length, ; is the wavelength of light and v is the

spatial frequency. To determine the atmospheric parameter r., we took a one

dimensional fast Fourier transform of a line spread function of a star image.

Dividing this by the known instrument function gives the spatial spectrum similar

to Equation (8). The next step was to determine the e" frequency for this

experimental spatial spectrum from which [Ref. 9],

r o = 2.1 X R v , (9)

where v. was the e' frequency of the MTF.

Yet another way to calculate r, uses image centroid jitter, also called

beam wander, by calculating the x and y centroid standard deviation from a

sequence of point source images. It is equal to aF, where a is the atmospheric

angle of arrival fluctuations and F is the optical system's effective focal length.

The angle of arrival is sketched in Figure 2. Mathematically, angle of arrival

8
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Figure 2. The angle of arrival is the least-squares plane that fits the electric field
vector.

fluctuations are equivalent to least-squares planes that fit the electric field across

an aperture. In terms of the index of refraction structure parameter [Ref. 5 and

10],

a2 = 1.026 fL2 d (10)D1/3 C0 ()d, (0

where D is the diameter of the aperture and L is the optical path. Combining

equation (10) with equation (6) for a plane wave,

r, = (1.418k 2 sec4 D1 / 342] - 31 5 . (1)

To calculate r. from the centroid motion requires a very high image frame rate to

"freeze" the atmosphere. Characteristically at least 200 frames per second are

required in order to avoid aliasing that would otherwise underestimate the true

centroid variance.

9



3. Isoplanatic Angle

The isoplanatic angle measures the angular coherence in the vicinity

of an object. It defines a cone that constrains the angles over which an adaptive

optical system will provide valid correction. In terms of C,2 [Ref. 1],

00 = [2 . 9 1k foLc(z) z5 / 3 dz] 3 /5, (12)

where the parameters are the same as those of r.. Simple instruments exist to

measure e, [Ref. 11]. For this reason, only the coherence length is addressed

in this thesis.

4. Greenwood Frequency

The Greenwood frequency was introduced in an earlier paper by Darryl

Greenwood [Ref. 12 and 13]. It is a mean temporal frequency of an adaptive

optics system and depends on the wind velocity, V, and C,2 along the path. For

a Kolmogorov turbulence spectrum, the Greenwood frequency is [Ref. 13],

f = 2.31 "61 5 [f C.(Z) V5/ 3 (Z) dz]31 5  (13)

where , is the wavelength of light, z is the distance along the propagation path,

V(z) is the wind speed and L is the distance from the source to the receiving

optical device.

10



C. CHARGE COUPLED DEVICE (CCD)

An atmospheric coherence length sensor needs an imaging detector to

measure the point spread function. The speed, reliability and availability of

charge coupled devices (CCD's) makes them worthy of consideration. The basis

of a CCD is a metal-oxide-semiconductor (MOS) capacitor forming potential wells

and channels that comprise light-sensitive pixels and read-out registers. Figure

3 is a sketch of the MOS capacitor structure [Ref. 14]. Electrons excited by the

photoconductive effect are trapped in potential wells formed under the positively

Metal (transparent) layer (Pte)

p-type silicon

0

Figure 3. The metal-oxide-semiconductor (MOS) capacitor structure,the basis of

the charge coupled device (CCD).

charged metal gate contact. The number of electrons trapped is proportional to

the integrated irradiance during an exposure.

11



There are several methods to read-out the device. Voltages with different

phases placed on the gates transfer charge from pixel to pixel or potential well

to potential well. A set of electrodes connected together is called a phase.

Figure 4 shows an example of a three phase device with three pairs of gates (G)

and three lines (L) connecting the electrodes (Ref. 14]. A positive electrical pulse

Figure 4. Three pairs of gates (G) are connected with the
lines (L) to form three different phases.

from a clock forces a transfer of charge from one phase of pixels to the next.

Clocking a phase of cells reduces the barrier between pixel columns allowing

charge transfer. A bucket of water running down several steps with boards or

barriers on each step is a visual representation of this process. The water flows

down to a lower potential each time the board is lifted up. The number of

phases used to transfer out charge packets represents the number of steps.

There are two methods used to insure that efficient charge transfer occurs

in one direction. The first uses multiple phases to separate the charge packets.

The Texas Instruments TC21 i [Ref. 15] uses the second method which is to force

12



an asymmetry in each well using an ion implantation zone between each pixel.

The clocking method is the monophase mode, also referred to as a 1 + 1/phase

mode, sketched in Figure 5 [Ref. 16]. One phase has an intermediate voltage
a I

level while the voltages applied to the other phase vary on both sides of this

level.

The charge packets transfer down channels. There are two types of

channels, surface and buried. The water analogy also works here. In a buried

channel, there is less loss of charges, similar to a pipe. A surface channel,

however, has a higher capacity, like a canal, but this CCD has higher noise from

surface imperfections.

I I

Ve

02
202

Figure 5. The monophase clocking method holds a phase at an intermediate
level while the voltages are applied on either side.
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During the read-out of a CCD, image smear will occur since light will still

produce charge in the moving CCD rows, unless a shutter is incorporated.

Different techniques exist to reduce image smear during read-out. Frame transfer

devices overcome this disadvantage by effectively having two arrays, one for

image exposure and a second for storage. Moving charges from the image area

to an opaque, masked set of pixels quickly allows another exposure to

commence while reading the storage area. Figure 6 shows two examples [Ref.

14].

14
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Figure 6. Two schemes for CCD read-out. Top, the interline method; bottom,
frame transfer method.
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III DISCUSSION

A. EQUIPMENT

This thesis investigated a Spectra Source Lynxx PC Plus CCD Imaging

System [Ref. 17 and 18]. The original intent was to use this CCD camera with

a telescope and personal computer to develop software to measure the

atmospheric coherence length, r.. During this process it became clear that the

off-the-shelf CCD system could not provide sufficient frame rates to achieve the

intended goal. Consequently, the task shifted to determine the causes of the

sluggish acquisition rates. The CCD detector array, computer interface card and

the IBM compatible PC were investigated.

1. CCD Camera

The camera contains a 192 X 165 pixel Texas Instruments TC211 CCD

image sensor. Its specifications are in Appendix A [Ref. 19]. Figure 7 is a

photograph of the sensor centered inside the camera. The other components

inside the camera head translate the clock signals from the interface board and

amplify the CCD output.

Figure 8 shows a functional block diagram of a TC211 CCD image

sensor [Ref. 19]. Key components include the silicon matrix of pixels and a set

of gates to shift the charge. The image area gate (lAG) performs a parallel shift

of all rows for each clock pulse. As a row enters the output serial register the

16



Figure 7. Photograph of inside the CCD camera head of the Spectra Sources

Lynxx PC+ system.

serial register gate (SRG) shifts the row to the charge detection amplifier. The

TC211 includes an antiblooming gate (ABG) that should not be used since it

introduces a severe nonlinear photo response.

The method used to acquire and to read-out an exposure determines

the CCD sensor's read-out rate. The electrons collect in potential wells, or pixels

17
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Figure 8. Lynxx PC+ image sensor CCD, Texas Instruments TC211 block
diagram.

after exposing the image area to light. The charges then shift down to the output

register as rows, through 165 timing cycles. The output register then shifts the

charges 210 times for each row. This cycle of 210 shifts includes 12 dark pixels

for a dark reference and 6 dummy pixels used to transfer the charges out of the

register. Figure 9 shows the charge transfer process [Ref. 19]. Another factor

to consider for an image sensor chip is the noise. The noise equivalent signal

for the TC211 is 150 electrons. It depends on (kTC)" 2 /q, where C is the

capacitance of the read-out charge collector, k is the Boltzmann constant, T is

the absolute temperature and q is the charge of an electron.

The integration time needed to achieve a particular signal-to-noise ratio

depends on both the telescope optics and the object's radiance. It will be a

18
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Figure 9. TC21 1 image area transfer process, uses a virtual phase.

constant time added to the read-out time regardless of the number of pixels used

or transfer times. The image area gate (lAG) and serial register gate (SRG)

maximum pulse rates determine the sensor read-out rate.
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The maximum rate for the lAG parallel row transfer gate is 1.5 MHz.

This corresponds to 0.667 microseconds (ps) per row. Clocking the lAG shifts

the whole array down by one row. This can be used to clear the CCD. To clear

all 165 rows requires only 110 is. Since an lAG clock pulse clears the serial

register, the lAG should not be clocked any faster than the SRG can read-out a

row of pixels.

The maximum rate for the SRG single row shift gate is 10 MHz. This

corresponds to 0.1 V.S per pixel. Figure 8 shows the pixel read-out order. Six

dummy pixels will appear before any valid data and the twelve trailing dark pixels

can be ignored. At the maximum clock rates, the ideal minimum time required

to read an entire row of pixels is 210 pixels X 0.1 ps = 21 i~s. The minimum time

needed for all 165 rows is 165 rows X 21 ips = 3465 iLs.

The total read-out time must include the serial shift time and two

parallel array shifts. One set of lAG parallel shifts are needed to move each row

into the output shift register and a second set must clear the CCD before the next

exposure. Since the output register cannot be read during a row transfer (lAG

clocking), using all the pixels, the ideal minimum read-out time is 3.685 ms.

Placing the image in the lower left portion of the array can increase the frame rate

since only a portion of the array needs to be read-out. After shifting the rows

with information to the output register, the lAG clocking can increase to its

maximum rate to clear the CCD and to commence another integration. The six

leading dummy pixels will always add some time to each serial read-out time, but

20



the twelve trailing dark pixels could be chopped off. As an example, a 60 X 60

image would take 2 X 60 rows X 0.667 pis + 66 pixels X .1 is X 60 rows for the

serial read-out for a total of 476 ps. There are 66 pixels per row because of the

six dummy pixels.

As mentioned earlier, the integration or exposure time adds to the read-

out time to produce the total measurement time. The total time could be reduced

to only the integration time if the CCD were read-out while integrating the next

set of data. This reduces the minimum total time to the longer of these two

processes. Frame transfer devices as shown in Figure 6 have a complete extra

set of pixels to hold the data for read-out. The interline method is not practical

for a star image because the gaps at the transfer pixel rows reduce the exposed

area by a factor of two. Each pixel would lose half of its photons. This is

unacceptable for this application. Masking off half of the array is a possible

solution. It would not work with the TC211 chip. Clocking the lAG parallel row

shift register would produce streaking in the upper half exposed pixels while

reading the masked pixels.

2. Interface Card

The Spectra Source computer interface card contains the circuitry

needed to transfer information from the CCD array to the computer bus. It does

an eight bit parallel transfer to an IBM compatible computer. Figure 10 is a block

diagram of the components of this card. The CCD sensor was discussed in

Section 1. The sample-and-hold (S&H) amplifier chip converts video voltage from

21
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Figure 10. Spectra Sources Lynxx PC+ interface card block diagram.

Section 1. The sample-and-hold (S&H) amplifier chip converts video voltage

from one pixel into a voltage pulse. It is a NEC SE/NE5537 [Ref. 201. The

minimum acquisition time is less than 4 pIs. It is controlled by pulses from the

chip below it, a 74LS123P [Ref. 21], which is a dual retdggerable one-shot. Its

pulse switching characteristics are in the nanosecond (ns) range. A 1200 pF

capacitor and 12 k resistor determine the present pulse length of 5180 ns. The

control chip characteristics did not limit the speed of the S&H chip.

The analog digital converter (ADC) chip converts the voltage to a

positive 12 bit integer, which has a maximum value of 4095. This system has a

Maxim MX7572 ADC chip [Ref. 22]. Its minimum conversion time is 5 ps. It, as

22



and-hold and digital conversion time is 9 lis for each pixel. For a 60 X 60 pixel

image, the total S&H and ADC time is 32.4 ms.

3. Computers

Two different computers were used to investigate the dependence of

the frame rate on computer characteristics. The first was a Compaq 386, 20

megahertz machine. It had a 16 megabyte RAM and a 60 megabyte hard disk.

The second was a Dell 486, 33 megahertz machine. It had a 16 megabyte RAM

with a 350 megabyte hard disk.

B. SOFTWARE

The Lynxx system came with software programs designed for amateur

astronomical observations [Ref. 17]. This thesis used a separate set of data

acquisition program modules written for NPS by Spectra Sources [Ref. 18]. It

was necessary to modify these modules during this thesis research. The

software was written in the C language. Microsoft Quick C 2.5, Borland Turbo

C+ + 1.0 and Borland C++ 2.0 compilers produced executable code that were

tested to compare their relative speeds while collecting and processing data.
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IV RESULTS

The first task involved writing the modulation transfer function, centroid jitter

and display programs. After it become clear that the Lynxx PC + CCD system

was too slow for effective centroid measurements, the second task developed

programs to analyze the Lynxx image acquisitions times. The data acquisition

functions were timed using different computers and code from different

compilers. The manufacturer's maximum speed specifications for both the CCD

camera and the interface card were compared to the actual measured times.

After analyzing these results, replacements were recommended.

A. PROGRAMS

A modulation transfer function program and a jitter program were written to

compute the atmospheric coherence length, r,. An artificial star program was

developed to test the MTF program. The following sections describe these

programs.

1. Modulation Transfer Function

This program calculated the coherence length, ro, from a stellar image

intensity distribution. It subtracted the background from the star image,

calculated the line spread function, found the centroid and calculated the fast

Fourier transform. It then calculated ro using equation (9). The calculations were
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done in the x and y dimensions separately, giving a quality check, since actual

image turbulence is nearly always isotropic. With the image centroid data the

telescope could operate in an auto track mode, a feature that comes with the

Lynxx software package. The program plotted the modulation transfer function

as a visual check. The program separates into modules for ease of future

revisions. This program is in Appendix B.

2. Artificial Star Program

This program created a perfect exponential star image for the MTF

program. This provided a convenient test of the MTF program, since the FFT of

an exponential is also an exponential. This program is in Appendix C.

3. Jitter

This program calculated r. from the centroid jitter. It first removed the

background by subtraction. After this, it computed the image centroid jitter using

the standard deviation of the image, according to equation (11). This program

also calculated the line spread functions and plotted them on the screen so that

proper telescope tracking was verified. Appendix D contains this jitter program.

B. TIME MEASUREMENTS

Programs were written or modified to compare frame rates attainable for

different subframe sizes. The computer clock measured the time differences.

Since the MS-DOS system clock had a 55 ms resolution, many of the times were

done for 100 cycles of the function of interest. All the times used were at least
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one second long, resulting in an accuracy within 1%. An array of 5 or more trials

ensured consistency. Appendix E is an example of the code used for measuring

the times.

1. Computer

We found that the type and speed of the computer did not contribute

significantly to the camera frame rate. Measurement time included the clearing

of the CCD, the integration, and digitization times. With an image size of 60 X

60, there was less than 1h of a frame per second difference between 386 and

486-based computers. Figure 11 shows a comparison of frame rates verses

subframe size for the two machines. Including calculations for the line spread

functions and backgrounds, the frame rate improvement was about 31/ frames

per second for a 60 X 60 image with a 486 computer over that achievable with

a 386 machine. This is shown in Figure 12. The mathematical calculations were

timed to determine their contributions to the total frame rate. These calculations

could have been done separately if they had slowed the frame rate, but they

were actually performed in real time.

2. Compiler

It was found that the choice of compiler did not significantly influence

the speed of the measurements. Figure 13 shows there was no difference in the

frame rate for the code produced by three different compilers to acquire data.

Figure 14 shows that after adding the mathematical calculations to the acquisition
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COMPARISON OF PROCESSORS WITHOUT CALCULATIONS

50 Compaq 386, 20 MHz -x--Del 486, 33 MHz
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Sub frame size in pixels, (square)

Figure 11. Spectra Sources Lynxx PC+ frame rates using IBM PC
386 and 486 computers. Times include clear, integration and
digitization, using code compiled under Turbo C++.
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COMPARISON OF PROCESSORS WITH CALCULATIONS
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Figure 12. Spectra Sources Lynxx PC+ frame rates using IBM PC
386 and 486 computers. Times include clear, integration,
digitization and mathematical calculations, using code
compiled under Quick C.
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COMPARISON OF COMPILERS WITHOUT CALCULATIONS

50 Turbo C++ ---Borland C++ -v- Quick C
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Subframe size in pixels, (square)

Figure 13. Spectra Sources Lynxx PC+ frame rates using Turbo
C++, Borland C++ and Quick C compilers. Includes clear,
integration and digitization times, using a Dell 486, 33 MHz
PC.
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COMPARISON OF COMPILERS WITH CALCULATIONS

50 S-o-Turbo C++ --x-Borland C++ -v- Quick C
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Figure 14. Spectra Sources Lynxx PC+ frame rates using Turbo
C++, Borland C++ and Quick C compilers. Includes clear,
integration, digitization and mathematical calculation times,
using a Dell 486, 33 MHz PC.
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time, the code produced by Quick C was about 3/4 of a frame/second slower than

the code from Borland C++ or Turbo C++ for a 60 X 60 image size.

3. Functions

The times for each measurement were divided into four steps. Table

1 shows these steps.

TABLE 1

Step Image size Time

Clear CCD Must clear entire array constant 6.45 ms

Integration Independent of size used 5.0 ms

Digitization 60 X 60 86.1 ms

Calculations 60 X 60 40.2 ms

Total 60 X 60 137.75 ms

The digitization and calculation times depended on the size of the image, while

the clear and integration times were constant for each measurement. This is

shown in Figure 15. Clear and digitization times depended on the image sensor

and interface card.

C. HARDWARE RATE COMPARISONS

This section compared the maximum design speeds of the

chips in both the camera head and interface card to those actually measured.

A general time reference was 200 frames/second which corresponded to 5 ms

per frame.
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TIME VS FRAME SIZE
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---Calculations -- Total,,
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Figure 15. Spectra Sources Lynxx PC+ function times for a
Dell 486, 33 MHz PC. Clear and integration times were
constant at 6.45 and 5.0 ms respectively. Digitization and
calculation times depended on the subframe size.
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1. CCD Camera

The measured time for the clear function was 6.45 ms. The present

sensor, TC21 1, is capable of clearing the entire array in 110 Ps. All rows need

to be cleared even when reading a sub array such as a 60 X 60 image. This

function was much slower than the sensor capability. It is not known why the

clear times are so slow.

The present sensor could read a 60 X 60 image in 436 ps at maximum

design speeds. The measured digitization time, which included the read-out

time, sample-and-hold (S&H) and the digital conversion (ADC) times was 86.1

ms. Since this was much larger than 436 ps, the acquisition time depended

primarily on the S&H and ADC processes.

2. Interface Card

The interface card controls the S&H and ADC times. Their maximum

speed specifications would result in processing a 60 X 60 image in 32.4 ms. This

is a significant portion of the observed 86.1 ms digitization time. We therefore

concluded that these two chips were the primary contributors to the frame rate

and were not operating at their maximum speed specifications. The sensor itself

can hypothetically operate at significantly higher speeds.
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D. RECOMMENDATIONS

1. CCD Camera

To increase the frame rate requires an image sensor that uses a frame

transfer method with separate image and storage arrays. The Texas Instruments

TC277, a 735 X 580 pixel CCD image sensor is a proposed replacement sensor

[Ref.19). Figure 16 shows its set-up. The image area is 699 X 288 which is more

| ) . I . U "

2 1R cm imges nC [ea IuT b

n b uiaonsgi-S.esng AreaLiLines

Li a
Lines

IIDnu1-4 i 233 - 4f It

Figure 16. Recommended image sensor COD, Texas Instruments TC277 block

diagram.

than big enough for our applications. The image sensing area and image

storage area have different gates. The image area gate (lAG) shifts the rows from

the sensing area to the storage area one row per clock pulse. The storage area
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gate (SAG) shifts the rows down to the serial register at one row per clock pulse.

The three serial register gates (SRG) shift out the pixels in each row.

The storage area gate (SAG) maximum clock rate is 3.34 MHz, which

corresponds to 0.299 is per row. The serial registers gates (SRG) maximum

clock rates are 4.46 MHz, which corresponds to 0.224 ps per pixel. For a 60 X

60 image, noting that there are eleven dummy pixels per row, the read-out time

is 60 rows X 0.299 Vs + 71 pixels X 0.224 jps X 60 rows for a total of 972 is.

This is done in parallel with the integration. Since this is much less than any

expected integration time, the integration time and transfer time of data from the

sensing area to the storage area become the limiting factors for frame rates.

The image area gate (lAG) maximum clock rate is 3.34 MHz, which

corresponds to 0.299 ps per row. The clear time would then be 288 rows X

0.299 Vs or 86 ps. This clear time plus the number of rows X 0.299 Ls plus the

integration time will be the measurement time for each set of data. For an image

with 60 rows, the measurement time would be only 86 + 17.9 = 104 Is, plus the

integration time. For the TC21 1, the minimum clear and 60 X 60 image read-out

time is 110 + 436 = 546 ips. The TC277 is over 5 times faster.

It should also be noted that the number of pixels in each row of the

TC277 can be the maximum available (735) without affecting the speed, due to

the parallel read-out and integration times. The noise equivalent signal is only

25 electrons, a 6-fold improvement from the TC21 l's 150 electrons. Replacing

the image sensor would require modifications to the interface board.
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Using such an improved sensor, the bulk of the data could be

transferred while collecting the next data set. What remains is to get the

sampling and digital conversion times fast enough to be completed during the

integration time.

2. Interface Card

The first step in the digital conversion is the sample-and-hold (S&H).

A proposed replacement chip for this is Analog Devices AD781 [Ref. 23]. It

provides a 700 ns conversion time. This is over 5 times faster than the present

SE/NE5537 S&H chip's 4 is. For a 60 X 60 image, the AD781 S&H time reduces

to 2.52 ms from 14.4 ms for the present chip. The present control chip,

DM74LS123P, for the S&H chip does not need replacement. Changing its

capacitor to 55 pF and resistor to 25 k would adjust its pulse width to 700 ns

[Ref. 21]. This is the only revision necessary to replace the S&H chip.

A proposed replacement chip for the ADC is a Maxim Maxl62 [Ref. 22].

This chip is almost identical to the present one, except that its conversion time

is 3 is instead of 5 is. For a 60 X 60 image, the improved ADC time would be

10.8 ms. The Max162 could replace the Mx7552 with little revision to the rest of

the circuit.

There are some faster S&H and ADC chips available if the board were

rebuilt. Datel has a S&H chip with a time of only 25 ns and a ADC chip with a

conversion time of 350 ns [Ref. 24]. A better option is to have the S&H and ADC

processes combined in one chip. Of those available, the Datel ADS1 18 [Ref. 24]
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has a throughput rate of 5.0 Mhz, which corresponds to only 200 ns per pixel.

The DM74LS123P control chip will still work by using a 60 pF capacitor with a 5

k resistor [Ref. 21]. Besides providing fast timing, combining these two chips

would also simplify the surrounding circuit. For a 60 X 60 image, the S&H and

ADC time would be 720 is for the ADS1 18.

E. SUMMARY

Table 2 summarizes all of the relevant times. The components are replaced

going from left to right across the table. They are in order of the complexity of

replacement. Replacing the CCD sensor would be the significant step requiring

major modifications to the interface board. There are also parallel times after the

CCD sensor is replaced. The processes of clearing, integration and image area

gate (lAG) transfer occur parallel to the read-out and digital conversion. The

slowest of these times will limit the frame rate. The S&H and ADC times are the

limiting factors. For this reason and the necessity to modify the board after

replacing the CCD sensor, it is best to build a new system.
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V CONCLUSIONS AND RECOMMENDATIONS

A CCD camera can measure atmospheric turbulence by measuring the

image spread of a point source and by measuring the centroid jitter induced by

turbulence. The Spectra Sources Lynxx PC+ system evaluated in this thesis can

measure the coherence length using the point source image spread technique,

but it is much too slow for jitter measurements. Centroid motion and Greenwood

frequency measurements need a sample rate of 200 Hz or more to avoid

undersampling the atmospheric dynamics. Achievement of these rates requires

a frame transfer CCD, so that parallel image exposure and frame read-out are

possible. Data processing can be performed during an exposure if the time

needed is sufficiently short, or after digitizing a series of exposures. The Lynxx

PC+ system, which provides 12 frames/second, is much too slow for this. Since

both the CCD sensor and digital conversion components need replacement, it

is best to design and build a new system. The recommended CCD image sensor

is a Texas Instruments TC277 [Ref. 19]. The recommended replacement for the

sample-and-hold, and analog digital converter chips is a combined sampling

analog-to-digital converter chip, Datel ADS1 18 [Ref. 24]. The atmospheric

coherence length programs developed in this thesis should work with a new

system.
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APPENDIX A TEXAS INSTRUMENTS TC21 1 CCD IMAGE SENSOR
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TC2I
192 x 165-PIXEL CCD IMAGE SENSOR
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TC211I
192 x 165-PIXEL CCD WMAGE SENSOR
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TC211
192 x 165-PIXEL CCD IMAGE SENSOR
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TC2 11
192 x 165-PIXEL CCD IMAGE SENSOR
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TC2J 1
192 x 155-PIXEL CCD IMAGE SENSOR
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192 x 165-PIXEL CCD IMAGE SENSOR
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192 x 165-PIXEL CCD IMAGE SENSOR
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102 x 165-PIXEL CCD IMAGE SENSOR

MECHIANICAL DATA
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APPENDIX B MTF PROGRAM

/*MTF.c find ro and f from the 1sf using FFT to the MTF*******/
#define TITLE "Measure ro, plot the MTF"

#define AUTHOR "By W. J. Rail"

/*#include <alloch> *
#include <lynxx.h>

#define True 1
#define False 0
#define false 0

#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
#include <math.h>

#include <sys\types.h>

I*int frame ptr[FRAME_-BYTES/21;*/
int size=60, xstart=0, ystart=0;
float lsfx[1 65],lsfmax=0.0,sfy[1 92];

int sign=1, m=8, rnr=2, mm2;/*mm is # of points in FFT, mm2=mm/2***/
float mtfx[1 024].mtfmax=0.0,mty[1 024], re[1 024],im[1 024],px[51 2],py[51 2];
float rocal = 1 .0,rox,roy;

void inito;
void subexpose(long tm,int shutter);

void expose(long tin);
void long delay(long tin)
void calc -lsf(unsigned mnt far *sub-frame);
void backgroundo;
void fft(int m, int sign, float re[], float im[]);
void calc -roo;
void init mtfo;
void plot mtf 0;
/*to see lsf's, use these two functions instead of mtf ones*/
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void initgrapho;
void plot,_graph 0;

-- an routine -----------
void main()

for (i=O; ikm-i; i++) mm = 2*mm;
initi- ynxxo;

inito;
cooler off 0;
setvideomode( _TEXTOBO);

1*.........-------Initialize input info---------------*
void inito

mnt cool = O,shutter=O;
long tin;
printf ("Expose time in ins.:');
scanf("%Id",&tm);
printf ("Cooler O=OFF 1 = ON:");
scanf ("%d", &cool);
if (cool)

cooler -Ono;
printf ("Use shutter ? (1 =YesIO= No)");
scanf("%d", &shutter);

printf("Subframe size?")
scanf("%d", &size);

/* printf("\nl-it any key to quit:");*/

subexpose (tm, shutter);

1*----------------- subExpose COD -----------
void subexpose(long tm,int shutter)

unsigned mnt *sub-frame;
mnt sub-frame-bytes;

float pxO,pyO;
int i,j,x,y;
for (i=O; ikm-i; i++) mm = 2*mm;
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mm2= (int) ((float) (mm)/2.0);

sub frame bytes = size*size * sizeof(unsigned int);
sub-frame = (unsigned int*)mailoc (sub frame bytes);

if (!shutter) open_shuttero;

while ( !kbhito)

if (shutter)

expose(tin);

else

clrccdo; /* if not using shutter *********

long delay(tm);

}~aa usge hr sat
xparam = (unsigned char) xstart;

size param =(unsigned char) size;
ptr-param = sub-frame;
digitize sub-frame 0;
calc -sf (sub -frame);
background 0;

for (x=xstart+ size-i; x> =xstart; x--) re[x]I lsfx[x];
ftt(m, sign, re, im);
for (x=0; x<mm; x++) mtfx[x] = re[x];

/*find the x power spectrumn***************/
pxO = re[0]*re[0] + im[O]*im[0];
for 0=0; j<mm2; j++)

if(mtfxu] != 0.0 ) if(px0 != 0.0)
pxU] =sqrt((reo]*reo] +im W*im [j)/pxo)/mttxoj1;

/*reinitialize the FFT arguements before finding the Y FFT*/
for (i=0; i<1024; i++)
f
re[i] =0.0;

im[i] =0.0;
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for (y=ystart+size-1; y> =ystart; y--) re[y] = Isfy[y];
fft(m, sign, re, im);
for (y=O; y<mm; y++) mtfy[y] = re[y];

/*find the y power spectrum***************/

pyO = re[O]*re[O] + im[O]*im[O];
for (j=O; j<mm2; j++)
{

if(mtfyu] != 0.0) if(pyO != 0.0)
py[j] =sqrt((re [j]*re[j] + im[j]*im [j])/pyo)/mtfyj];

}
calc roO;
init mtfO;
plot mtfO;
/*inFt graphO;
plot-grapho; use these to see Isf's

}
free(sub frame);
close_shutterO;
I
/* -------...... -----.-.. Expose CCD ----------- -*
void expose(long tin)
{

clrccdo;
open shuttero;
long delay(tm);
closeshutterO;

}
/* ----...---------- long delay --------------- *
void longdelay(long tin)
{

delay-param = 1000;
while (tm > 1000)
{

delay ms(;
tm = tm -1000;

}
delayparam = (unsigned short)tm;
delay_mso;

}
/* ------------ calculate the line spread functions------- */

void calc_lsf(unsigned int far *subframe)
{
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unsigned int pixel;
int x,y;
float lsfxmax=0.O,lsfymax=0.0;
for (x=O; x<165; x++) Isfx[x]=0.0;
for (y=0; y<16 5; y++) lsfy[y]=0.0;
for (x=size-1 +xstart; x> =xstart; x-)

for (y=size-1 +ystart; y> =ystart; y--)

pixel=*(sub frame+ +);
lsfx[x] = lsfx[x] + (float)pixel;
Isfy[y] = lsfy[y] + (float)pixel;
if(Isfx[x] > lsfxmax) lsfxmax =lsfx[x];
if(Isfy[y] > Isfymax) Istymax=lsfy[y];

Isfmax=lsfxmax;
if(lsfxmax < Isfymax) lsfmax =Isfymax;

/*--------- Subtract off the background ------ -
void background 0

int x,y~edge;
float sumx=0.0,sumy=0.O,ave -xl ave x2,ave_yl ,ave_y2,aveback;
edge= (int)(sizello.0); /*this uses 20%7 to find background*/
/*--Find the average background ---------- */

for (x=xstart; x<xstart+ edge; x+ +) sumx=sumx+sfx[x];
ave_xl =sumx/edge; sumx= 0.0;
for (x=xstart+ size-edge-i; x<xstart+ size; x+ +) sumx=sumx+ lsfx[x];
ave-x2=sumx/edge;
for (y=ystart; y<ystart+edge; y++) sumy=sumy+lsfy[y];
aveyl =sumy/edge; sumy= 0.0;
for (y=ystart+size-edge-1; y<ystart+size; y+ +) sumy=sumy+sfy[y];
avey2 =sumy/edge;
aveback = ((ave-xl +ave x2) +(ave yl +avey2))/4.0;

/* ---subtract off the bakrud--*
lsfmax = Isfmax - aveback;
for (x=xstart+size-1; x>=xstart; x-)

lsfx [x] =Isfx[x] -((x-xstart) *(ave -x2-ave xl )/(size-edge) + ave-xl);
for (y=ystart+size-1; y>=ystart; y--)

Isfy [y] =Isfy [y] -((y-ystart) *(ave y2-ave yl1)/(size-edge) +ave-yl);
/* printf(' \nThe average background is %/f\n",aveback);*/
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/********************Find the FT***************
void ftt(int m, mnt sign, float re[], float im[])

int n, j, j1, ndiv2, n1, n2, k, i, ip, npts;
int le, leO, lel, 1;
float pts, t, ure, uim, wre, wim, tre, tim;
double ang, pi;

pi =4.O*atan(1.O);

n =(int)(pow(2.O, (double)m)+1.Oe-1O);
j =1;
i = 0;
n1 n - 1;
n2= n - 2;
ndiv2 = n/(int)2;

for(i=0; k=n2; i++)

if(i < ji)

t = re~jl]; 1* you might do better here with pointer operations

refjl] = re[i];
re[i] = t
t = imujl];
imujll im[i];
imli] = t

k = ndiv2;
while(k < j)

j= k;
k 1=2;

+ = k;
jl =j-1 ;

le =1;

for(I=1; 1<=m; 1++)
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ure =(float)1;

uim =(float)O;

ang =pi/(double)Ie;

wre =(float) cos (ang);
wim =(float)sin(ang);

IeO=Ie;
lel =le-1;
le + =le;

for6j=O; j<=Iel; j++)

for(i=j; i<=nl; i+=Ie)

ip =i + leO;
tre =refip]*ure - im[ip]*uim;
tim =re[ip]*uim + im[ip]*ure;
re[ip] =re[i] - tre;
im[ip] =imlil - tim;
re[iJ += tre;
im[iI += tim;

t = ure*wre - uim*wim;
uim =ure*wim + uim*wre;
ure t

if(sign<O)

pts =1/(float)n;

for(i=O; i<n; i++)
f

/*******************calculatero***************/
void caic_roo

int j;
float z,zold, pj, slope;

if (px[1] > 1.0) if (px[l] <= 0.0) printf("\n DATA POINT BAD");
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else

z = log (-log(px[1]));
for 0=2; j<mm2; j++)

pi= pX0jJ;
zold = z
if (pj<1.0)

z = Iog(-log(pj));
slope = (z-zol d)il og ((float) 0)I/(float) -1))
if (z > 0.0) goto, ro;

ro: rox =rocaI*exp(-zold/slope + logo-i));

if (py[lI > 1.0) if (py[1] <= 0.0) printf("\nY DATA POINT BAD");
else

z = log (-log(py[1]));
for 0j=2; j<mm2; j++)

pi = py0W;
zold = z;
if (pj<1.0)

z = log(-log(pj));
slope = (z-zold)/log ((float)(j)/(float) 0-1 ));
if (z > 0.0) goto ro2;

ro2: roy =rocal*exp(-zold/slope + logo-i));

/* ------------ initialize for plotting--MTF's ------------
void mnit-mtf()

mnt TRUE= 1;

m t x, y;
for (x=0; x<mm; x++)
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if(mtfx[x] > mtfmax) mtfmax=mtfx[x];
for (y=O; y<mm; y++)

if(mtfy[y] > mtfmax) mtfmax=mtfy[y];

-setvideomode(_VRES1 600LQR);
_setviewport(0,39,639,439);

-setwindow(TRUE,0,0,mm +mm, mtfmax);
_Setcolor(1 5);

moveto-w(O.,0.);

/* ------------ plot modulation transfer functions--------*
void plot mtf()

int x,y;
for (x=mm2; x<mm; x±+)

_Iineto-w((double) (x-mm2), (double) mtfx[x]);

for (x=0; x<mm2; x++)

_Iineto -w((double) (x + mm2), (double) mtfx[x]);

for (y=mm2; y<mm; y++)

_Iinetow((double) (mrn2+ y), (double) mtfy[yJ);

for (y=0; y<mm2; y++)

_Iinetow((double) (mm+ mm2 + y), (double) mtfy [y]);

_settextposition(1 ,1);
printf("%s\n %s",TITLE,__DATE..9;

_settextposition (4, 1);
printf("rox = %f",rox);
_settextposition (4,38);
printf("roy = %/f",roy);

_settextposition (40,30);
_outtext("Hit any key to exit:");
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/* getcho; there is also a getch in subexpose, only use one*/

I

/* ----------- initialize for plotting-lsf's ------------- *
void init-grapho

int TRUE=1;
_setvideomode( _VRES 1 6COLOR);
-setviewport(0,39,639,439);

-setwindow(TRUE,0,0,size + size, Isfmax);
_setcolor(1 5);
_moveto-w(0.,0.);

/* -------------- plot line spread functions------------
void plot-grapho

mnt x,y;

for (x=xstart; x<xstart+size; x++)

_lineto-w((double) (x-xstart), (double)lsfx[xI);

for (y=ystart; y<ystart+size; y++)

_lineto-w((double) (size + y-ystart), (double)lIsty [y]);

settextposition(1 ,1);
printf("%s\n %s\n\n", TITLE,__DATEj;

-settextposition (40,30);
outtext("Hit any key to exit:");
1*getcho; there is also a getch in subexpose, only use one*/
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APPENDIX C ARTIFICIAL STAR PROGRAM

/*Uses an artificial star to test the MVTF.c program*has 1sf plot also**/
#define TITLE "Plot an artificial star MTF"

#define AUTHOR "By W. J. Rail"
/********Quick

#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
#include <math.h>

#include <sys\types.h>

int xsize= 165, ysize =192, xstart= 0, ystart=0;
float lsfx[1 65],lsfmax=O.0,lsfy[1 92];

int sign=1, m=8, mm=2, mm2;
float mtfx[1 024],mtfmax=O.O,mtfy[1 024], re[1 024],im[1 024],px[51 21,py[Sl 2];
float rocal = 1 .0,rox,roy;

void make_starO;
void background 0;
void fft(int m, mnt sign, float re[], float im[]);
void calc_roo;
void init mtfo;
void plo~t mtfo;
/*to see Isf's use these two functions instead of mtf ones*/
void initgrapho;
void plot grapho;

/* ---------------- main routine ---------------
void maino

float px0,pyO;
mnt i,j,x,y;
for (i=0; ikm-i; i++) mm =2*mm;

mm2= (int) ((float) (mm)/2.0);
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make -staro;
background 0;

for (x=xstart+xsize-1; x>=xstart; x--) re[x] = Isfx[x];
fft(m, sign, re, im);
for (x=0; x<mm; x++) mtfx[x] = re[xI;

/*find the x power spectrum***************/
px0 = re[0]*re[0] + im[0]*im[0];
for 0=0; j<mm2; j++)

if(mtfxU] != 0.0 ) if(pxo != 0.0)
pxUj] =sqrt((re U] *re [i+ im W*im [l)/pxO)/mttxj];

/*reinitialize the FFT arguements before finding the Y FFT*/
for (i=0; i<1024; i++)

re[i] =0.0;

im[i] =0.0;

for (y=ystart+ysize-1; y> =ystart; y--) re[y] = lsfy[y];
fft(m, sign, re, im);
for (y=0; y<mm; y++) mtfy[y] = re[y];

M*ind the y power spectrum***************/
pyO = re[0I*re[0] + im[0]*im[0I;
for 0=0; j<mm2; j++)

if(mtfyb] != 0.0) if(py0 != 0.0)
pyU] =sqrt((reUj]*rej] + jrnU]*imnU])/pyQ)/ntyU~];

caic -ro0;
init-mtf0;
plot -mtf 0);

1*initgrapho;
plot_grapho; *

_setvideomode( _TEXTOBO);

/*--------------- make star------------------------
void make staro

64



int x,y;
float pixel, lsfxmax= 0. 0, lsfymax= 0. 0;

for (x=xstart+xsize-1; x>=xstart; x--)

for (y=ystart+ysize-1; y> =ystart; y--)

pixel = 4095*exp (-0.1 *(float) (((x-82) *(x-82) + (y-96) *y-6);
lsfxjlx] = lsfx[x] + pixel;
Isfylly] = lsfy[y] + pixel;
if(Isfx[x] > Isfxmax) lsfxmax=lsfx[x];
if(lsfy[y] > Isfymax) lsfymax=lsfy[y];

lsfmax= lsfxmax;
if(Isfxmax < Isfymax) Isfmax = Isfymax;

/*--------- Subtract off the background --------------
void background 0

mnt x,y,edge;
float sumx=0.0,sumy=0.0,ave -xl ave-x2,ave_yl ,ave_y2,aveback;

edge= (int)(ysize/10.0); /*this uses 20% to find background*/
---------Find the average background ---------- *1
for (x=xstart; x<xstart+ edge; x+ +) sumx=sumx~lsfx[xJ;
ave-xl =sumx/edge; sumx= 0.0;

for (x=xstart+xsize-edge-1; x<xstart+xsize; x+ +) sumx=sumx+sfx[x];
ave x2=sumx/edge;
for (y=ystart; y<ystart+edge; y++) sumy=sumy+lsfy[y];
ave_yl =sumyledge; sumy=0.0;

for (y=ystart+ysize-edge-l y<ystart+ysize; y+ +)
sumy=sumy+sfy[y];

ave_y2=sumy/edge;
aveback = ((ave-xl +ave x2) +(ave yl +avey2))14.0;

/* ---subtract off the background ---
lsfmax = lsfmax - aveback;

for (x=xstart+xsize-l; x>=xstart; x--)
Isfx [x] = sfx[x] -((x-xstart) *(ave-x2-ave xl )/(xsize-edge) +ave_xl);

( for (y=ystart+ysize-1; y> =ystart; y--)
Isfy [y] = stfyj]- ((y-ystart) *(ave y2-ave yl1)/(ysize-edge) +ave-y1);

/* printf("\nThe average background is %/f\n",aveback);*/

65



/********************Find the FT***************
void fft(int m, int sign, float re[], float im[])

nt n, j, j1, ndiv2, n1, n2, k, i, ip, npts;
mnt le, leO, lel, 1;
float pts, t, ure, uim, wre, wim, tre, tim;
double ang, pi;

pi =4.O*atan(1.O);

n =(int)(pow(2.O, (double) m) +1.0e-1O0);
j =1;
ji 0;
n1 n f-i1;
n2= n - 2;
ndiv2 = nI(int)2;

for(i=O; i<=n2; i++)

if(i < ji)

t = reo1]; 1* you might do better here with pointer operations

reol] = re[i];
re[i] = t
t = imiji];
imul] = im[i];
im[i] = t

k = ndiv2;
while(k < j)

k 1=2;

j +-= k;
jl =j-1;

le 1;V
for(I=1; 1<=m; I++)

ure =(float)1;

uim =(float)O;

66



ang = pi/(double)le;
wre = (float) cos (ang);
wim = (float) sin (ang);
leO=Ie;
lel =Ie-1;
le +=le;

for6=O; j<=Iel; j++)
so{

for(i=j; i<=nl; i+=le)

ip =i + leO;
tre =re[ip]*ure - im[ip]*uim;
tim =re[ip]*uim + im[ip]*ure;
re[ip] =re[i] - tre;
im[ip] =im[i] - tim;
re[iI += tre;
im[i] += tim;

t = ure*wre - uim*wim;
uim =ure*wim + uim*wre;
ure t;

if(sign<O)

pts =1/(float)n;

for(i=O; i<n; i++)

re[i] *=pts;

/*******************calculater****************I
void caic_roo

int j;
float z,zold, pj, slope;

if (ox [1] > 1 0) if (px[1] <= 0.0) printf(Wn DATA POINT BAD");
else
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z = log (-Iog(px[1J));
for 6=2; j<mm2; j++)

pj = px0];
zold = z;
if (pj<1.0)

z = log(-log(pj));
slope = (z-zol d)/Iog ((float) 0)/(fl oat) a0-1))
if (z > 0.0) goto ro;

ro: rox =rocaI*exp(-zold/slope + Iogo-1));

if (py[1] > 1.0) if (py[1] <= 0.0) printf('\nY DATA POINT BAD");
else

Z = log (-log(py[1]));
for 0=2; j<mm2; j++)

pi = pu
zold = z;
if (pj<1.0)

z = Iog(-log(pj));
slope = (z-zold)Iog ((float) 0)/(flbat) 0-1 ));
if (z > 0.0) goto ro2;

ro2: roy =rocaI*exp(-zold/slope + Iogo-1));

1* ----------- initialize for plotting--MTF's ---------
void init-mtt()

int TRUE= 1;

int x~y
for (x=0; x<mm; x++)

if(mtfx[xJ > mtfmax) mtfmax=mtfx[x];
for (y=0; y<mm; y++)
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if(mtfy[y] > mttmax) mtfmax=mtfy[yl;

-setvideomode( _VRES 1 6COLOR);
_setviewport(0,39,639,439);

setwindow(TRUE,O,0,mm +mm,mtfmax);
setcolor(1l 5);
_moveto-w(0.,0.);

/* ------------ plot moduiation transfer functions ------- *
void plot mtf()

mnt x,y;
for (x=mm2; x<mm; x++)

li neto-W((double) (x-mm2), (double) mtfx[x]);

for (x=0; x<mm2; x++)

lineto -w((double) (x + mm2), (double) mtfx[x]);

for (y=mm2; y<mm; y++)

_lineto-w((double) (mm2+ y), (double) mtfy [y]);

for (y=O; y<mm2; y++)
f

_lineto-w((double) (mm+ mm2 + y), (double) mtfy [y]);

_settextposition(1 ,1);
printf("%s\n %s",TITLE,__DATEj;

_settextposition (4,1);
printf("rox = %/f",rox);
_settextposition (4,38);
printf("roy = %/f",roy);

_settextposition (4Q,30);
_outtext("Hit any key to exit:");

getcho;
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-*---- ----- initialize for plfig -S ' - --
void init-graph()

int TRUE=1;
-setvideomode( _VRES 1 6COLOR);
-setviewport(O,39,639,439);

-setwindow(TRUE,O,0,xsize+ysize,Isfmax);
_setcolor(1 5);

moveto-w(0.,0.);

/*-------------- plot line spread functions -------- ---
void plot-grapho

int x,y;

for (x=xstart; x<xstart+xsize; x+ +)

in eto w((double) (x-xstart), (double) Isfx[x]);

for (y=ystart; y<ystart+ysize; y+ +)

1in eto-w ((double) (xsize + y-ystart), (double) Isfy [y]);

_settextposition(1 ,1);
printf("%s\n %s\n\n", TITLE,__DATE9);

_settextposition (40,30);
_outtext("Hit any key to exit:");

getcho;
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APPENDIX D JITTER PROGRAM

/*jitter. c**********f inds the cetroid,jitter, ro and f, plots lsf******/
#define TITLE "Jitter calculations for ro and f, plots lsf's"

#define AUTHOR "By W. J. Rail"

/*#include <alloch> *
#include <lynxx.h>

#define True 1
#define False 0
#define false 0

#include <stdio.h>
#include <stdlib.h>
#include <graph.h>
#include <math.h>
#include <time.h>

#include <sys\types.h>

/*int frame ptr[FRAME_-BYTES/21;*
mnt size=160, xstart=0, ystart=0;
float lsfx[165],lsfmax=0.O,lsfy[1 92];
float xcsum=O.O, xc2sum=0.0, ycsum=O.0, yc2sum=0.0; /*for jitter calcs*/

mnt n= 1; /*number of centroids between each jitter calc*/
float dia= 1.0, focal= 1000.0, k=12.57E±6;/*wave number, 500nm*/
float xjit,yjit, rocal = 1.0, rox,roy,fx,fy;

void inito;
void subexpose~long tm,int shutter);

void expose(long tin);
void long delay(long tin)
void calc lsf (unsigned int far *sub-frame);

( void backgroundo;
void centroido;

void jito;
void jit-rofo;
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void init-grapho;
void plot grapho;

/*----------------- main routine ----------------
void maino

init -lynxxo;
init();

cool er-oftO
_setvideomode( _TEXTC8O);

1*...........-------Initialize program info----------
void init()

mnt cool = 0,shutter=0;
long tin;

printf ("Expose time in ins.:");
scanf("%Id", &tm);

printf ("Cooler 0= OFF 1 = ON:");
scanf ("%d", &cool);

if (cool) cooler-onO;

printf ("Use shutter ? (1 =YesIO= No)");
scanf("%d", &shutter);

printf ("Enter size of subframe in pixels:");
scanf ("%d", &size);

priritf('\nl-it any key to quit:");

sub expose (tm, shutter);

/*----------------- subExpose CCID----------.*----
void subexpose(long tin,int shutter)

unsigned mnt *sub-frame;
int sub -frame -bytes, i;
double deltime,timel ,time2;
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sub -frame-bytes = size*size * sizeof(unsigned int);
sub-frame = (unsigned int*) mall oc (sub frame bytes);

if (!shutter) open-shuttero;

while (!kbhito)

for(i=O; i<n; i++)

if (shutter) expose(tm);
else

clrccdo; IMf not using shutter*/
long delay(tin);
I

xparam = (unsigned char) xstart;
yparam = (unsigned char) ystart;
size param = (unsigned char) size;
ptr-param = sub-frame;
digitize_sub-frameO;

calclsf(sub -frame);
background 0;
cipntroid 0;

jitO;
jit -rof 0
initgrapho;
plot grapho;

free (sub-frame);
close_shuterO;

1* ---------------- Expose COD----------------
void expose(long tin)

clrccdo;
( open_shuttero;

long delay(tm);
close_shutterO;
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/* ---------------- long delay ----------------
void long-delay(long tin)

delay-paramn = 1000;
while (tin> 1000)

delay-msO;
tin = tin -1000;

delay-parain = (unsigned short)tm;
delay_msO;

1* ----------- calculate the line spread functions -------
void calc lsf (unsigned mnt far *sub-frame)

unsigned mnt pixel;
i t x, y;
float lsfxmax=0.0,lstymax=0.0;
for (x=0; x<165; x++) lsfx[x]=0.0;
for (y=O; y<165; y++) lsfy[yl=0.0;
for (x =size-1I + xstart; x > = xstart; x--)

for (y= size-i ±ystart; y> =ystart; y--)

pixel=*(sub -fraine± +);
Isfx[x] =lsfx[x] + (float)pixel;
Isfylly] =lsfy[y] + (float)pixel;
if(lsfx[x] > lsfxmax) Isfxmax=lsfxlx];,
if(lsfy[y] > Isfymax) Isfymax=Isfy[y];

Isfm ax = Isfxm ax;
if(sfxmax < Isfymax) lsfmax = Istymax;

/* -------- Subtract off the background---------------
void background()

int x,y,edge;
float sumx=0.0,suiny =Oave x1 ave-x2,ave-yl ,ave_y2,aveback;
edge= (int)(size/1 0.0); /*this uses 20% to find background*/

-*---Find the average background ---------
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for (x=xstart; x<xstart+ edge; x+ +) sumx=sumx+sfx[x];
ave-xl =sumx/edge; sumx=0.0;
for (x=xstart+ size-edge-i; x<xstart+ size; x+ +) sumx=sumx+ lsfx[x];
ave-x2=sumx/edge;
for (y=ystart; y<ystart+edge; y++) sumy=sumy+lsfy[y];
aveyl =sumy/edge; sumy=0.0;
for (y=ystart+size-edge-1; y<ystart+size; y+ +) sumy=sumy+sfy[y];
avey2 =sumy/edge;
aveback = ((ave xl +ave x2) +(avey1+ ave y2))14. 0;

/* ---subtract off th background----*
Isfmax = Isfmax - aveback;
for (x=xstart+size-1; x>=xstart; x--)

lsfx[x] = sfxIfxI-((x-xstart) *(ave -x2-ave xl )/(size-edge) + ave xl);
for (y=ystart+size-1; y>=ystart; y--)

Isfy [y] = lsfy[yI- ((y-ystart) *(ave y2-ave yl )/(size-edge) + aveyl);
1* printf('\nThe average background is %Aofn"aveback);*/
I

1*--------- Find the centroids------------------------
void centroido

int x,y;
float xcent,ycent, sumlx= 0.0,sumly = 0. sumxlx= 0. O,sumyly =0.0;

for (x=xstart+size-1; x>=xstart; x--)
f
for (y=ystart+size-1; y>=ystart; y--)
f
surnxlx =sumxlx + lsfx[x] *(float) (x);
SUMIX =sumix + lsfx[x];
sumnyly = sumyly+ lsfy [y] *(float) (y);
sumly =sumly + lsfy[y];

xcent =sumxlx/sumlx; ycent =sum ylylsumly;
/*printf(I n Centroid is xcent=%/f \n ycent=%/f",xcent,ycent);*/

1*sum centroids for jitter calcs****************/
xcsum = xcsum + xcent; xc2sum = xc2sum + xcent*xcent;
ycsum = ycsum + ycent; yc2sum = yc2sum + ycent*ycent;

& ~/******************calculate thejie*************I
void jitO
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{ jt=sr(x~u-cu)(lot n)
xjit = sqrt((xc2sum-xcsum)/(fl oat) (n));

xcsum =0.0; xc2sum =0.0; ycsum= 0.0; yc2sum =0.0;
pnintf('\n Jitter is xjiter=%/f yjiter=%/f,xjit,yjit);

/***************clcuatero and f *from the jitter****************/
void jit -rof()0

float a, b;

a = xjit * k /focal;
b = 1.418 *pow(dia,0.333) * pow(a,2);
rox = rocal /pow(b,0.6);

a = yjit * k/focal;
b = 1.418 *pow(dia,0.333) * pow(a,2);
roy = rocal /pow(b,0.6);

fx = xj it;
fy = yjit*roy;

/*------------ initialize for plotting--------------
void init-graph()

mnt TRUE=1;
-setvideomode( _VRES 1 600LOR);
_setviewport(0, 39, 639, 439);
_setwindow(TRUE,0,0,size + size, lsfmax);
_setcolor(1 5);
_moveto-w(0.,0.);

--------------- plot line spread functions-----------
void plot-grapho

mnt x,y;

for (x=xstart; x<xstart+size; x++)

linetow((double) (x-xstart), (double)lIsfx [x]);
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for (y=ystart; y<ystart+size; y++)
f

lineto -w((double) (size + y-ystart), (double) Isfy [y]);

_settextposition(1 ,1);
pnntf("0/os\n /s\n\n",TITLE,__DATE..J;

-settextposition (4, 1 );
printf("rox = %g\nfx = %g",rox,fx);
_settextposition(4,38);
printf("roy = %g",roy);
_settextpositi on (5,38);
printf("ty = %"f)

_settextpositi on (40,30);
_outtext("Hit any key to exit:");

I~getchO; subexpose also has one, only use one*/
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APPENDIX E FRAME RATE MEASUREMENT CODE

/*time. c****times digitize, caiclsf and background, cetroid,jitter*/
#define TITLE "Time calculations"~

#define AUTHOR "By W. J. Rail" -

/** Quick C ******Sample of time code********************/
#include <time.h>

while ( !kbhito)

timel = clocko; I* start clock *
for(i=O; i<128; i++)

digitize -sub -frameO;
calc-lsf(sub-frame);
background 0;
centroid 0;

jit(i);

time2=clock0; 1* stop clock *

deltime = (time2-timel)/CLK -TCK;
printf('\nTime for 128 frames =%/f sec", deltime);
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