

NGTICE

The following commercial products (requiring Trademark®) are mentioned in this report. If it becomes necessary to reproduce any segment of this document containing any of these names, this notice must be included as part of that reproduction.

Eagle One® Lotus® Ziploc®

Ş

XAD⊕ Molylub⊕ Gunnite⊕ **PROMIS®**

Mention of the products listed above does not constitute Air Force or EG&G, Idaho, Inc. endorsement or rejection of this product, and use of information contained herein for advertising purposes without obtaining clearance according to existing contractual agreement is prohibited.

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employnes, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process discload, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not increasily state or reflect those of the United States Government of any agency thereof.

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE		DOCUMENTATIC	ON PAGE			Porm Approved OMB No. 0704-0188
1. REPORT SECURITY CLASSIFICA	TION		16 RESTRICTIVE	MARKINGS		
28. SECURITY CLASSIFICATION AL	THORITY		3. DISTRIBUTION	AVAILABILITY C	OF REPORT	
26. DECLASSIFICATION / DOWNGR	ADING SCHEDU	JLE	Approve Distrib	d for Publi ution Unlim	c Releas ited	se
4. PERFORMING ORGANIZATION	REPORT NUMB	ER(S)	5 MONITORING	ORGANIZATION	REPORT NU	MBER(S)
	•		ESL-	TR-89-39, V	ol III -	Part 3
6a. NAME OF PERFORMING ORGA EG&G Idaho, Inc.	ANIZATION	6b OFFICE SYMBOL (If applicable)	7a, NAME OF M	ONITORING ORGA	ANIZATION	
6c. ADDRESS (City, State, and ZIP	Code)		76 ADDRESS (CI	ly, State, and ZIP	(Code)	
P. O. Box 1625 Idaho Falls, ID 8341	5					
84. NAME OF FUNDING - SPONSOF ORGANIZATION	RING	BD OFFICE SYMBOL (If applicable) RDVW	9 PROCUREMEN	T INSTRUMENT IC	DENTIFICATI	ON NUMBER
BC. ADDRESS (City, State, and ZiP C	lode)	L	10 SOURCE OF F	UNDING NUMBER	٩	
HQ AFESC/RDVW Tyndall AFB FL 3240	3-6001		PROGRAM ELEMENT NO	PROJECT NO.	TASK NO	ACCESSION NO
13. TYPE OF REPORT Final	136 TIME CO	DVERED D. 86_ TO Dec_86	4 DATE OF REPO	RT (Year, Month, July 1991	Day) 5	2468 COUNT
Se TYPE OF REPORT Final 6 SUPPLEMENTARY NOTATION COSATI CODES FIELD GROUP SU	136 TIME CO FROM Se	18 SUBJECT TERVS (Herbicide Ori	Continue on reverse	RT (Year, Month, July 1991 auf necestary and	Day) 5	245E COUNT 25A y block number)
IS TYPE OF REPORT Final 5 SUPPLEMENTARY NOTATION COSATI CODE FIELD GROUP SU	136 TIME CO FROM Se	18 SUBJECT TERVS (Herbicide Ora Dioxin Incineration	Continue on reverse	RT (Year, Month) July 1991 E if necessary and	Day) 5 1 iuentify b	Passe (OUNT 25A y block number)
13e TYPE OF REPORT Final 15 SUPPLEMEN ARY NOTATION 17 COSATE CODES 18 SUPPLEMEN ARY NOTATION 19 ABSTRACT (Continue on revers This technical report Volume II, which is f describes the verific was used to process s 2,4,5-T, 2,4-D, and t Naval Construction Ba specific details conc Project managers and hazardous waste remed	13b TIME CE FROM Se S UB GROUP is divid urther su sation tes soil contain race quan ttalion C erning the field eng ial action	18 SUBJECT TERVS (Herbicide Ori Dioxin Incineration and dentify by block of ed into eight vo bdivided into 5 t burns conducted mination with the tities of dioxir enter in Gulfpor ineers responsibility is should find to	(4 DATE OF REPO Continue on reverse ange (mber) plumes. This parts, inclue of on a 100 t the constituen the constituen the demon t, Mississip ts and data ple for plann the informati	RT (Year, Month July 1991 enf necessary and portion of ding the ap on/day mobi ts of Herbi stration wa pi. This w results fro ing and imp on containe	Day) 5 f usentify by f the re opendixe (le inci (cide Or rolume p om the t blementa id hereis	port comprises s. This volume neistor that ange, namely cted at the rovides est burns. tion of n very useful.
38 TYPE OF REPORT Final 36 SUPPLEMEN TARY NOTATION 37 COSATI CODE 51 COSATI CODE 52 FIELD 3 ABSTRACT (Continue on reverse This technical report Volume II, which is f describes the verific was used to process s 2,4,5-T, 2,4-D, and t Naval Construction Ba specific details conc Project managers and hazardous waste remed 0 DSTRIBUTION (AVAILABILITY OF CONCLASTIFIED DUNLIMITED DUNCLASTIFIED DUNLIMITED DUNCLASTIFIED DUNCLASTIFIED DUNCLASTIFIED DUNCLASTIFIED DUNCLASTIFIED NDIV	13b TIME CO FROM Se S UB GROUP Is if necessary is divid further su vation tes soil contai race quan ttalion C erning thi field eng ial action	18 SUBJECT TERVS (Herbicide Ori Dioxin Incineration and dentify by block of ed into eight vo bdivided into 5 t burns conducter mination with the tities of dioxir enter in Gulfpor enter in Gulfpor ineers responsibility should find to part DTIC USEPS	21 ABSTRACT SEC Unclassifi 225 AESTRACT SEC Unclassifi	RT (Year, Month, July 1991 Ful necessary and portion of ding the ap on/day mobi ts of Herbi stration wa pi. This v results fro ing and imp on containe	Day) 5 d usentify by f the re- ppendixe ile inci- is condu- rolume p m the t blementa- id hereis ATION) 22c Off	port comprises s. This volume netator that ange, namely cted at the rovides est burns. tion of n very useful.

(The reverse of this page is blank.)

PREFACE

This report was prepared by EG&G Idaho, Inc., P. O. Box 1625, Idaho Falls, ID 83415, under Job Order Number (JON) <u>2103 9027</u>, for the Air Force Engineering and Services Center, Engineering and Services Laboratory, Tyndall Air Force Base, Florida 32403-6001.

This report summarizes work done between September 1986 and December 1986. Major Terry Stoddart and Major Michael L. Shelley were the AFESC/RDVS Project Officers.

The information contained in this volume describes the events, the planning efforts, and the data results of a test burn conducted on a 100 ton/day mobile incinerator that was used to process soil contaminated with constituents of herbicide orange. This volume is subdivided into five parts; Part 1 contains the final report on the verification test burns, Parts 2 through 5 contain the appendixes. Volumes I and III through VIII describe the incinerator operations, the soil excavation activities, and the additional testing required by the Environmental Protection Agency.

This report has been reviewed by the Public Affairs Office (PA) and is releasable to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

MICHAEL L SHELLEY, Maj, USAF, BSC Chief, Environmental Actions R&D FRANK P. GALLAGHER III, Col, USAF Director, Engineering and Services Laboratory

NEIL J. LAMB, Lt Col, USAF, BSC Chief, Environics Division

> iii (The reverse of this page is blank.)

LIST OF APPENDIXES Title

Appendix

К	VERSAR'S SAMPLING PLAN FOR MWP-2000 VERIFICATION TEST BURNS AT NCBC	495
L	ANALYSIS RESULTS FOR WATER SAMPLES FROM NCBC WATER SUPPLY WELLS.	601
М	PLOTS OF SIGNIFICANT INCINERATOR OPERATING PARAMETERS DURING DAYS OF TEST BURNS	605
N	ENSCO HEALTH AND SAFETY DATA REPORT FOR THE NCBC VERIFICATION TEST BURN OPERATION	633
0	CONSTRUCTION SITE CERTIFICATION	639
P	MODIFIED METHOD 5 AND VOST STACK SAMPLING FIELD TEST DATA FOR MWP-2000 INCINERATOR SYSTEM VERIFICATION TEST BURNS AT NCBC	645
Q	ITAS STANDARD OPERATING PROCEDURES FOR DIOXIN AND FURAN ANALYSIS	697
R	U.S. EPA CLP REQUIRED DETECTION LIMITS	733
S	NARRATIVE AND SIGNIFICANT DATA SHEETS FROM ITAS DIOXIN/FURAN ANALYTICAL REPORT	737

÷.,

Page

(The reverse of this page is blank.)

APPENDIX K

VERSAR'S SAMPLING PLAN FOR MWP-2000 VERIFICATION TEST BURNS AT NCBC

The document contained in this appendix is the detailed sampling plan used during the verification test burn conducted at NCBC. This document Was reproduced from the best available copy. Due to poor original legibility, the legibility of the microfiche editions is also poor. Persons requiring the information contained in this appendix may write to the technical libraries listed below to obtain photocopied versions of the appendix. A nominal charge will be levied to cover reproduction an archival costs. Please be prepared to provide the following information:

Report Title:Full-Scale Incineration System Demonstration
Verification Test Burns at the Naval Construction
Battalion Center, Gulfport, Mississippi:
Treatability TestsReport Number:ELS-TR-88-61, Volume: II, Part: 3, Appendix: K
Send inquiries to:Send inquiries to:Technical Library
Engineering and Services Laboratory
Tyndall Air Force Base, FL 32403

or

Technical Library Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415-2300

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

495

(The reverse of this page is blank.)

SAMPLING PLAN VERIFICATION BURN SAMPLING OF ENSCO'S MWP-2000 INCINERATOR DURING THE TREATMENT OF SOIL CONTAINING 2.3.7.8-TCDD AT NCBC GULFPORT, MS

140

Prepared For:

EG&G Idaho Inc. 1955 Fremont Avenue Idaho Falls, Idaho 83415

Prepared By:

Versar Inc. 6850 Versar Center Springfield, Virginia 22151

November 7, 1986

TABLE OF CONTENTS

•

	Section	Page
1.	Introduction	1
2.	Facility Description	2
3.	Sampling Approach	5
	 3.1 Sampling Locations 3.2 Sampling Collection Procedures 3.3 Sample Frequency and Schedule 3.4 Sample Containerization, Preservation, and Holding Times 	5 5 9 9
	3.5 Sample Tracking and Management	11
	3.7 Sample Shipment	14
4.	Air Monitoring	15
	<pre>4.1 Introduction</pre>	15 15 16 17
5.	Safety Considerations During Sampling	18
REF	ERENCES	19
ALL	achiment I: Quality Assurance Project Plan	
Att	achment II: EG&G RFP for Analysis of Samples	
Att	achment III: Description of Model PS-1 PUF Sampler	
	LIST OF TABLES	
Tab	le 3-1 Sampling Frequency and Schedule	10
	LIST OF FIGURES	
Fig Fig Fig Fig	ure 2-1 Schematic Fiow Diagram of MNP-2000 ure 3-1 Sampling Locations for ENSCO MMP-2000 Incinerator ure 3-2 Versar Sample Label ure 3-3 Versar Chain of Custody Form	3 6 12 13

1. INTRODUCTION

During the week of November 17, 1986, 2,3,7,8-TCDD contaminated soil will be treated in ENSCD's MWP-2000 incinerator which will be located onsite at the Naval Construction Battalion Center (NCBC) in Gulfport, MS. The verification burn will consist of five separate tests, which will be performed over a period of approximately three days. Test one will be performed at a soil feed rate of three tons per hour during the first day of testing. Tests two and three, which will be performed during the second day of testing, will be performed at a soil feed rate of 4 tons per hour and the final two tests will be performed on day three at a soil feed rate of 5 tons per hour.

The results of ENSCO's verification burn will be characterized through samples obtained by Versar Inc. which will be analyzed by an independent laboratory. This sampling plan describes the samples to be taken, their location, collection method and frequency of collection.

Before sampling is initiated, the incinerator will be operated for a length of time necessary to establish steady state operating conditions. Steady state conditions are presented in the verification burn plan.

The sections that follow describe the incinerator to be sampled, the sampling approach, and the safety precautions to be exercised during sample collection and analysis.

2. FACILITY DESCRIPTION

The incinerator to be sampled is ENSCO's Mobil Waste Processor-2000 unit, which is a transportable rotary kiln incinerator. Figure 2.1 is a schematic flow diagram of the MWP-2000. The unit consists of a soil preparation and handling system, a rotary kiln, a secondary combustion chamber, and an air pollution control system.

After the soil has been excavated, it will is placed in soil handling bins which have a capacity of approximately 20 cubic yards. The soil is then transferred, as required, to the soil feed conveyor which feeds the soil hopper. An in-line weight scale is used to determine the quantity of soil fed to the system.

The soil is then fed to the kiln where it is exposed to temperatures in the near 1700°F range. Combustion of natural gas is used to maintain the temperature in the kiln. The soil and exhaust gases exit from the kiln and the treated soil falls into the ash sump. An ash drag is used to remove the soil from the ash sump and transport it to an ash bin.

As the exhaust gases exit the kiln, they pass through a cyclone for the removal of fine particulate and are then introduced into the secondary combustion chamber where the temperature of the gas is raised to nominally 2200°F. The gas enters a waste heat boiler downstream of the secondary combustion chamber where steam is generated for use in the facility.

2

500 ..

Prior to entering a scrubber, the gas is water quenched to reduce the temperature of the gases so that the fiberglass reinforced plastic (RFP) scrubber is not damaged. The scrubber uses water as a scrubbing media to remove any fine particulate and acid gases that may be present. The gas then exists the process through a demister and on through the stack.

:

A detailed description of the operating parameters for the incinerator is contained in the Verification Burn Plan.

3. SAMPLING APPROACH

3.1 <u>Sampling Locations</u>

۲,

To evaluate the effectiveness of ENSCO's incinerator for treating soil containing 2,3,7,8-TCDD and other chlorinated organics, Versar will collect the following samples:

- Feedstock soil (untreated soil)
- Treated soil
- Stack gas
- Neutralization tank (after carbon adsorption)
- · Boiler water blowdown
- Blanks

Feedstock soil samples will be obtained from the conveyor before the soil is transferred to the hopper. The treated soil sample will be obtained at the exit of the rotary kiln (see Figure 3.1). The treated soil will be sampled before it drops into the ash drag sump. Stack gas samples will be obtained on the stack via two 4 inch flanges which are located 90° apart approximately 6 feet before the top of the stack. The stack is constructed of fiberglass reinforced plastic and is 36 inches in diameter. The boiler blowdown sample will be obtained from a sample will be obtained from a sample tap immediately after the water exits carbon adsorption. The blank water sample will be obtained from a supply water tap.

3.2 Sampling Collection Procedures

3.2.1 Feedstock Soll

Samples of feedstock soil will be collected from the conveyor as the soil is transferred to the hopper. Grab samples will be obtained every

.

30 minutes during the test, starting about 20 to 30 minutes (depending on soil feed rate) prior to initiation of the test (to take into account the residence time of the soil in the hopper). A representative composite sample will prepared by homogenizing equal portions of each grab sample taken. Individual grab samples will also be used for analysis so that variability (i.e., homogeniety of sample) can be established. Collected samples will be placed in clean aluminum trays, composited if necessary, mixed, and put in appropriate sample jars.

and a second second

3.2.2 Treated Soll

「「「「「「「」」」

Grab samples of the treated soil will be obtained using a 1 inch diameter pipe to draw samples of the soil as it exits the kiln, but before it falls into the ash drag sump. Sample collection will begin 30 to 60 minutes (depending on soil feed rate) after the test has began. A representative composite sample will be prepared by homogenizing the grab samples taken after they have been allowed to cool. Individual grab samples will also be used for analysis so that variability (i.e., homogeniety of sample) can be established. Collected samples will be placed in clean aluminum trays, composited if necessary, mixed, and put in appropriate sample jars.

3.2.3 Stack Gas

Stack gas samples will be obtained using an EPA Modified Method 5 and VOST stack gas sampling trains. The standard operating procedures, quality assurance activities, and data reporting elements fc. the MM5 and VOST test are clearly defined in the Quality Assurance Project Plan which is contained in Attachment I.

3.2.4 Botler Blowdown

Boiler blowdown samples will be obtained via a sample port located on the waste heat boiler. Prior to sample collect', i the port will be emptied of any potentially stagnate liquid. Each equil, volume grab sample will be obtained by partially filling a glass beaker in which the samples will be composited. At all times, the beaker will be covered with clean aluminum foil to prevent cross contamination. After the last grab sample has been obtained, the sample bottle will be filled and sealed.

3.2.5 Neutralization Tank

Neutralization tank samples will be collected via a sample port located immediately after carbon adsorption treatment but before the POTW holding tanks. Prior to sample collection the port will be emptied of any potentially stagnate liquid. Equal volumes of each grab sample will be obtained by partially filling a glass beaker in which the samples will be composited. At all times, the beaker will be covered with clean aluminum foil to prevent cross contamination. After the last grab sample has teen obtained, a sample bottle will be filled and sealed.

3.2.6 Blank

A background water sample will be obtained from a water tap used to provide feed water to incinerator operations. The individual sample bottles will be filled directly from the water tap in the field. The protocol for obtaining the blank gas sample is detailed in the QAPP.

506

3.3 <u>Sampling Frequency and Schedule</u>

The frequency of sample collection and the anticipated schedule is summarized in Table 3.1 Feedstock soil samples will be collected from the conveyor before the soil is transferred into the hopper. Grab samples will be obtained every 30 minutes beginning approximately 30 to 50 minutes prior to initiation of the test. The sampling delay will depend on the feed rate of the soil. This will account for the residence time of the soil in the hopper/screw feeder before it enters the kiln. Soil sampling will be performed over a three hour period for each test.

Treated soil sample aliquots will be obtained every 30 minutes so that individual grab samples and a composite sample can be obtained for each test. Depending on the feed rate of the soil, the sampling will be delayed after the beginning of the test.

Boiler blowdown and neutralization tank samples will be taken by collecting equal volume sample aliquots at the beginning, middle (i.e., 90 minutes after the test has started), and end of the test and composited to form a single sample. The blank water sample will be obtained prior to the tests.

3.4 Sample Containerization, Preservation, and Holding Times

All samples collected will be placed in containers and preserved (with ice or "blue ice") and will be analyzed within the time constraints consistent with procedures as summarized in EPA 600/4-79-020 <u>Methods For</u> <u>Chemical Analysis of Water and Wastes</u> (March 1983 Version) or as

9

. · · ·

0244F

、大学が新聞のため、このなどのことをしていたからのないという。

Sample Description	Sample Type	Number of Samples	Frequency
feedstock soil	grab	30	6 per test
	composite grab	\$	1 per test
freated soil	grab	30	6 per test
	composite grab	\$	l per test
itack gas	VOST 1	15	1 for each test
	Madified Method 5 ¹	30	1 for each test
loiler blawdawn	composite grab	\$	1 per test
Neutralization tank	composite grab	\$	I per test
iTank	-	as required	as required

Table 3.1 Sampling Frequency and Schedule

{

¹Each HMS train will produce the following samples: 1) filter, 2) XAO module, 3) probe rinse, 4) back half/coll rinse, 5) condensate, and 6) impinger solution. Each VOST will produce the following samples: 1) Tenax #1, 2) condensate, and 3) Tenax/charcoal #2.

indicated in specific SW-846 Analytical Methods. The specific method and number of blanks are defined in Attachment II which is the request for proposal for the laboratory that will perform all analyses on samples.

3.5 <u>Sample Tracking and Management</u>

All sample containers will be labelled with the upper portion of Versar's standard 3 part label (see Figure 3.2). The duplicate label will be affixed to containers in which the sample jars are packaged. The lower portion of the sample label will be placed into the field log book as a cross check mechanism on sample identification. All samples will be tracked using Versar's standard chain of custody form (see Figure 3.3). Custody of the samples will begin at the time of sample collection and will be maintained by the sampling team supervisor until samples are relinquished for shipment to the laboratory performing the final analysis.

3.6 Field Blank

Selected parameter bottles will be filled with HPLC grade water and preserved in accordance with outlined procedures at a location near the treatment facility where the actual field samples are prepared. These samples will be submitted to the laboratory along with the final batch of field samples for analysis. The field blank samples will serve to document any contamination caused by the site conditions. Blank sample and required sample splits will be performed as is required in Attachment II.

11

VERSAR SAMPLE LABEL

Figure 3.2

VERS	AR INC.
16948	PARAMETER
16948	DUPLICATE
VERS	AR INC.
16948	PARAMETER
77	NSX.
PLANT	
SAMPLE LOCAT	ION
MATRIX	
SAMPLING COM	MENTS

1

510

A CONTRACT

.

3

.۲

ĩ

SAMPLERS: (Signaura) FIELO FIELO AUUABER AUU	ON LOCATION	SUJAN VICE CONTAINERS				T	
FIELD AAMPELG AAMPELG MUMBERA MUMBERA MUMBERA AAMPELG AAMPE	ON LOCATION	40.02 CON	/		$\overline{}$		
				\searrow	\geq		REMARK t
					$\left\{ - \right\}$		
					+		
					<u> </u>		
-							
Relinquithed by: (Signature) Data / Time Received b	by: (Signatura)	lelinquished by: <i>f</i>	ignoture)		Date / T	ime Rece	ired by: (Signature)
(Printed)		Printed				(Print	lbe
Relinquished by: (Synaure) Date / Tima Received f. (Synaure)	ior Laboratory by:	Date / Time	Aemarks	-			
Printed) (Printed)		-					

7

•

é.

÷

.....

Distribution: Original Plus One Accompanies Shipment (white and yellow); Cupy to Countination Field Files (punk).

.

3.7 <u>Sample Shipment</u>

All samples collected at the facility and shipped to the laboratory will be packaged and shipped in accordance with applicable DOT regulations. All shipments to the laboratory will be via Federal Express in order to meet time constraints.

4. AIR MONITORING

4.1 <u>Introduction</u>

Ambient air sampling during all activities associated with ENSCO's test burn will be performed using model PS-1 PUF samplers (see Attachment III for a detailed description of the PS-1 ambient air sampler). These monitors are capable of detecting both fugitive particulate matter and organic vapors. As is described in Attachment III, these samplers are equipped with a dual chamber sampling module which contains both filtering systems. The upper chamber supports the airborne particulate filter media in a 4 inch circular filter holder. The lower chamber encapsulates a glass cartridge which contains PolyUrethane Foam (PUF) for vapor entrapment. During sampling, a flow rate of 6-10 cfm will be maintained.

4.2 Soil Excavation Activities

Ambient air monitoring will be performed during all soil excavation activities. Three particulate samples will be taken with monitors at the following locations:

- One monitor located directly upwind, offsite from excavation activities.
- One monitor located onsite, approximately 75 feet downwind from excavation activities.
- One monitor located offsite, directly downwind from excavation activities.

Samples will be obtained daily using all three monitors. As a background sample, the onsite monitor will be ran for a length of time equal to the sampling time during the activity (i.e., at the end of each day, the onsite monitor will be reloaded and begin running for a length of time equal to the length of that day's operation). Therefore, for each day of excavation, a total of four particulate samples will be obtained. The placement of each monitor will be reviewed before each day's activities by checking wind direction and verifying soil excavation location. Wind direction will be checked at least every two hours to ensure that the monitors are properly located. If the monitor's location is not within $\pm 30^{\circ}$ of the wind direction, the monitor will be relocated.

During one day's activity during soil excavation, a personnel monitor will be attached to one of the personnel most likely to experience exposure to airborne particulate resulting from excavation activities.

4.3 Incinerator Operation

Ă

The placement and operation of ambient air monitors during incineration activities will be much the same as during soil excavation activities. The primary difference will be that the ambient air monitor will be equipped to collect both particulate and organic vapors. Three samples will be taken with monitors at the following locations:

- One monitor located directly upwind, offsite from incineration operations.
- One monitor located onsite, approximately 75 feet from incinerator operations.
- One monitor located offsite, directly downwind from incineration operations.

-16

Samples will be obtained during each test using all three monitors. As a background sample, the onsite monitor will be ran for a length of time equal to the sampling time during each test. Therefore, for each test, a total of four particulate and organic vapor samples will be obtained. The placement of each monitor will be reviewed before each day's tests by checking wind direction with respect to the location of the incinerator.

During one day's activity during incineration, a personnel monitor will be attached to one of the personnel most likely to experience exposure to airborne particulate or vapor.

4.4 <u>Analysis</u>

Analysis of both particulate and vapor samples collected by ambient air monitors and personnel samplers will be performed using the appropriate method as is described in Attachment II.

5. SAFETY CONSIDERATIONS DURING SAFPLING ACTIVITIES

Versar personnel will strictly follow all of the safety procedures in effect at NCBC. All Versar field personnel will be equipped with hard hats, safety shoes, safety glasses, chemical goggles, long sleeve coveralls, and gloves. While sampling activities are being performed in exclusion areas, all personnel will be equipped with Level "C" personnel protection. Field team personnel will not smoke, consume food or carry any ignition sources while onsite except in areas designated suitable for such purposes. Field personnel will not operate any valves or switches, unless under the direct supervision of ENSCO or EG&G personnel or with clearly stated permission. All field team personnel will wear identification badges and carry identification cards at all times.

REFERENCES

 U.S. EPA. 1982. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. <u>Test Methods for Evaluating</u> <u>Solid Waste: Physical/Chemical Methods. SW-846</u>, Washington, D.C.

.

Attachment I

QUALITY ASSURANCE PROJECT PLAN (QAPP) VERIFICATION BURN SAMPLING OF ENSCO'S MHP-2000 INCINERATOR DURING THE TREATMENT OF SOIL CONTAINING 2, 3, 7, 8-TCDD AT NCBC GULFPORT, MS

۰.

. ;

:

Prepared For:

EG&G Idaho Inc. 1955 Fremont Ave. Idaho Falls, Idaho 83415

Prepared By: Versar, Inc. 6850 Versar Center Springfield, Virginia 22151

November 7, 1986

This Quality Assurance Project Plan for conducting an emission test of ENSCO's MMP-2000 incinerator at NCBC in Gulfport, MS has been reviewed and approved by:

Darrell B. Derrington, Jr., P.E. Versar Program Manager

Art Jung Versar Quality Assurance Officer

Captain Terry Stoddart USAF Program Officer

Harry Hilliams EG2G Program Manager

This QAPP has been prepared based on the guidelines contained in <u>Interim Guidelines And Specifications For Preparing Quality Assurance</u> <u>Project Plans</u>, PB83-170514, and as such, contains all sixteen elements which should be included in an EPA approved QAPP.

TABLE OF CONTENTS

	Section	Page
1.0	Project Description	1-1
2.0	Project Organization and Responsibility	2-1
3.0	Quality Assurance Objectives	3-1
	<pre>3.1 Precision</pre>	3-1 3-1 3-1 3-3
	3.4.1 Feedstock Soil and Treated Soil Samples 3.4.2 Neutralization Tank Water and Boiler Blowdown	3-3
	Samples 3.4.3 Stack Emissions	3-4 3-4
	3.5 Comparability	3-5
4.0	Sampling Procedures	4-1
	 4.1 Incinerator Operating Parameters	4_1 4_1 4_1 4_1
	4.4.1 Continuous Monitoring	4-1
	Sampling Train	4-2 4-5
5.0	Sample Custody	5-1
6.0	Calibration Procedures and Frequency	5-1
	6.1 Sampling Equipment	5-;
	6.1.1 Modified Method 5 Equipment 5.1.2 VOST Equipment 6.1.3 Continuous Monitors	6-1 6-1 5-1
7.0	Analytical Procedures	7-1

TABLE OF CONTENTS (continued)

.

يرز

	Section	Page
8.0	Data Reduction, Validation and Reporting	8-1
	<pre>8.1 Data Reduction</pre>	8-1 8-1 8-2
9.0	Internal Quality Control	9-1
	9.1 Reagent Blanks	9-1 9-1 9-1 9-3
10.0	Performance and Systems Audits	10-1
	10.1 Field Programs System Audit	10-1 10-1
11.0	Preventive Maintenance	11-1
12.0	Specific Assessment Procedures	12-1
	12.1 Precision	12-1
	 12.1.1 Dioxin in Stack Emissions 12.1.2 Dioxin in Treated Soil 12.1.3 Dioxin in Stack Emissions 12.1.4 Gaseous Emissions (CO, CO₂, O₂, SO, No_x, THC) 	12-1 12-2 12-3 12-3
	12.2 Accuracy	12-3
	 12.2.1 Method for Dioxin 12.2.2 Dioxin in Feedstock Soil 12.2.3 Dioxin in Treated Soil 12.2.4 Dioxin in Stack Emissions 12.2.5 Particulate, C1- in Stack Emissions 12.2.6 Gaseous Emissions (CD, CD₂, O₂, SO₂, NO_x, THC) 	12-3 12-4 12-4 12-4 12-4 12-4
13.0	Corrective Action	13-1
14.0	Quality Assurance Reports to Management	14-1
15.0	References	15-1

TABLE OF CONTENTS (contined)

List to Tables

Table 1-1	Sampling of ENSCO's MMP-2000 Incinerator	1-3
Table 3-1	Summary of Quality Assurance Objectives	3-2
Table 6-1	Calibration of Sampling Apparatus	6-2
Table 9-1	Summary of Internal Quality Control Checks	9-1

List of Figures

Figure 2-1	Corporate Organization Chart	2-2
Figure 2-2	Project Organization Chart	2-3

Section No.: 1.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 5

1.0 PROJECT DESCRIPTION

This Quality Assurance Project Plan (QAPP) presents, in specific terms, the policies, organization, objectives, functional activities and specific quality assurance (QA) and quality control (QC) activities which will be used to achieve data quality for this sampling project. The objective of this project is to collect samples during the operation of ENSCO's MWP-2000 incinerator while it is processing soil which contains 2,3,7,G-TCDD, and other chlorinated organics as well, at the Naval Construction Battalion Center (NCBC) in Gulfport, MS. The samples, which will be obtained by Versar, Inc., will be sent to an independent laboratory for final analysis. The QA/QC activities associated with the analytical portion of this program are contained in the Verification Burn Plan and are not addressed in this QAPP.

The United States Air Force (USAF) intends to restore the site at NCBC, which was previously used to store Herbicide Orange, to beneficial use through the research and test evaluation of a thermal technology. As a result of storing Herbicide Orange on the site, the soil has become contaminated with 2,3,7,8-TCDD, and other chlorinated organics, which were contained in the Herbicide Orange. The site clean up focuses on the use of a mobile rotary kiln which will thermally destroy all organics in the soil during treatment. Before the Air Force can perform the R&D permitted activity, the rotary kiln must be tested and sampled during actual operation. The sampling during this test, which is referred to as the Verification Burn, is the primary focus of this QAPP.

Section No.: 1.0 Revision Mo.: 0 Date: 11/7/86 Page: 2 of 5

The technology to be sampled is ENSCO's MWP-2000 (Mobile Waste Processor) incinerator which has been set-up onsite at NCBC. This activity is under a RD&D permit from Region IV EPA. Because this incinerator has previously demonstrated an ability to destroy similar wastes (i.e., heavily chlorinated organic compounds in soil), the Verification Burn is not intended to establish a Destruction and Removal Efficiency (DRE), but to verify that the unit is properly operating. In addition, the NCBC soil has a relatively low concentration of TCDD (i.e., the highest onsite value of TCDD is 948 ppb) which would make DRE testing very difficult. The DRE test burn was performed at 75 percent of designed capacity (3 tons per hour). As part of the RD&D activity, a total of five different tests will be performed on the incinerator to establish the most efficient operation. During each test the samples summarized in Table 1-1 will be obtained. The Verification Burn will consist of five separate tests which will be performed during the week of November 17, 1986. The first test will be conducted at a soil feed rate of 3 tons per hour. Tests two and three will be conducted at a soil feed rate of 4 tons per hour and the final two tests will be conducted at a soil feed rate of 5 tons per hour. Approximately three to five days will be required to complete all tests.

To insure that the incinerator is not experiencing any transient operation, sampling during the Verification Burn will not begin until steady state operation has been established which is defined in the Verification Burn Plan. It is anticipated that approximately five hours

Section No.: 1.0 Revision No.: 0 Date: 11/7/86 Page: 3 of 5

Table 1-1. Sampling of ENSCO's HMP-2000 Incinerator

	Samp1e	Sampling method	Analysis parameters	No. af runs	Total no. samples for analysis
A.	Operating parameters	Record plant instrument readings as per Verification Burn Plan	Feedrate: incinerator temperature: incinerator pressure	5	-
8.	Feedstack sail	Grab samples taken every 3/2 hr over a 3-hr period. Each sample split to obtain individual grab and composite	Oloxin, etc. as per Verification Burn Plan	5	35
c.	Treated soil	Grab samples takan every 1/2 hr over a 3-hr period. Each sample split to obtain individual grab and composite	Dioxin, etc. as per Verification Burn Plan	5	35
0.	Stack gas	Continuous monitoring over 3-hr period (ORSAT verification at least 3 times for each test)	CO _Z . CO. O _Z . total HC	5	15
		Modified Method 5	Dioxin, etc. as per Verification Burn Plan	5	20 I
		Volátile Organic Sampling Train (VOST)	Dioxin, etc. as per Verification Burn Plan	5	152
٤.	Bailer blowdown	Grab samples taken 1 times during 1-hr test period and composited into one sample	As per Verification Burn Plan	5	5

82477

-
Section No.: 1.0 Revision No.: 0 Date: 11/7/86 Page: 4 of 5

- 14

Table 1-1. (Continued)

	Samole	Sampling method	Analysis parameters	No. of runs	Total no. samples for analysis
F.	Neutralization tank	Grab samples taken 3 times during 3-hr test period and composited into one sample	As per Verification Burn Plan	5	S
6.	81ank	Grab sample from water tap	As per Verification Burn Plan	-	1
		Reagent blanks (reagents used in stack gas testing)	Not to be analyzed unless required	-	9

¹For each mmS train, the following samples will be obtained: 1) Filter, 2) XAO Module, 3) Proberinse, 4) Back half/coil rinse, 5) Condensate and 6) Impinger Solution.

²For each VOST, the following samples will be obtained: 1) Tenax #1, 2) Condensate and 3) Tenax/Charcoal #2.

. .

Section No.: 1.0 Revision No.: 0 Date: 11/7/86 Page: 5 of 5

of operation will be required to reach steady state operation at a soil feed rate of three tons per hour. Less time may be needed at higher soil feed rates since the incinerator will not have to be brought up to temperature from a cold start condition.

1.

¥. T

The sections that follow contain all of the information required in a QAPP as dictated by Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans. As noted previously, this QAPP addresses the elements associated with sampling of ENSCO's incinerator. The detail for the QAPP with regard to analysis is contained in the Verification Burn Plan.

Section No.: 2.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 4

2.0 PROJECT ORGANIZATION AND RESPONSIBILITY

¥

This project will be performed by the Environmental Operations and Technical Operations Groups of Versar Inc. Versar will provide overall sampling project management, sampling, and various site support services. Program management will originate within Versar's Environmental Operations, sampling support will come from Versar's Technical Operations. A corporate organization chart is shown in Figure 2-1.

The project organization chart is shown in Figure 2-2. Mrs. Gayaneh Contos, Vice-President of Environmental Operations, will have overall corporate responsibility for the project. She will have the authority to delegate resources needed for quick-response tasks and will also monitor the financial status of the project. Mr. Arthur Jung, Versar's Corporate Quality Assurance Officer, will provide QA/QC guidance for work performed under this project.

The Versar Project Manager is Mr. Darrell B. Derrington, Jr., a Senior Environmental Engineer with experience in program management, and direct experience in dioxin-related work. Mr. Derrington reports directly to Mrs. Contos. He will have day-to-day project responsibility and will interact directly with EG&G.

As Quality Assurance Officer, Mr. Jung's responsibilities will include:

 Assure management that the facilities, equipment, personnel, methods, records, and controls are consistent with project objectives/requirements.

Section No.: 2.0 Revision No.: 0 Date: 11/7/86 Page: 3 of 4

.

FIGURE 2-2. PROJECT ORGANIZATION CHART

.

530

an han an the second and a second second second and the second second second second second second second second

Section No.: 2.0 Revision No.: 0 Date: 11/7/86 Page: 4 of 4

W. T. C. B. W. W. W. Mary & S. Haller

- Assure that all QA policies and procedures are available and understood.
- Conduct or supervise audits.
- Summarize audit results.
- Request corrective action by way of reports to management.

Mr. Eric Juergens will be the Field Sampling Quality Control

Coordinator and will be responsible for:

- Examining data books, calibration and field records, forms, and any other hard copy information.
- Document deviations from all sampling protocols (dioxin, particulate/HCl, gaseous monitoring, ash).
- Report audit findings to the QAM.

Mr. Dave Basko will serve as the Field Sampling Task Leader and

perform the following functions:

- Be responsible for staff training and documentation.
- Enforce equipment calibration and maintenance procedures.
- Take corrective action for any problems and communicate action in writing to the QAM, and QCC, the Project Leader, and department management.
- Be responsible for sample traceability.
- Be responsible for document control.

New The later of the second and the second second to the second of the second of the second of the second second

- Be responsible for sample data traceability.
- Ensure that all deviations from protocol are documented and reported to the Project Leader.
- Ensure that all data transferred to the Project Leader is complete and in the proper format.

Section No.: 3.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 5

3.0 QUALITY ASSURANCE OBJECTIVES

The quality assurance objectives for this project will be to provide reliable sample data for documenting 2, 3, 7, 8-TCDD (hereafter referred to as dioxin), and other chlorinated organic compounds as specified in the Verification Burn Plan, in the feedstock soil, treated soil, boiler water blowdown, neutralization tank water and stack gases for ENSCO's incinerator while processing soil at NCBC. Specific objectives for precision, accuracy and completeness, as only applicable to sampling activities, are presented in Table 3-1. Quality assurance objectives applicable to the analysis of samples collected at NCBC will be presented in the Verification Burn Plan. The overall goal for the sample acquisition process is that 90 percent of all quality assurance measurements for precision and accuracy meet the QA objectives.

3.1 Precision

Precision will be assessed according to the specific procedures established in Section 12. Precision will be measured as range percents for small ($\underline{n} \leq 8$) sample sets and as a percent relative standard deviation for large (n > 8) sample sets.

3.2 Accuracy

Accuracy will be assessed according to the specific procedures established in Section 12.

.3.3 <u>Completeness</u>

As indicated in Table 3-1, all sample data collected will be recoverable and verifiable from the data records. As each test is being

Section No.: 3.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 5

Pr Heasurement (rang parameter per	recision ² le percent; rcent RDS)	Accurany ³ (percent)	Completeness (percent)
. Gas meter volume ⁴	-	± \$	100
. Stack temperature sensor ⁴	-	± 1.5	100
. HC15	-	•	100
. co. co ₂ . o ₂ ⁵	10	10	90
. Total hydrocarbons ⁵	10	10	90

Table 3-1. Summary of Quality Assurance Objectives

¹Specific quality assurance objectives are contained in the Verification Burn Plan. ²Procedures for assessing precision are presented in Section 12.1. ³Procedures for assessing accuracy are presented in Section 12.2. ⁴Quality Assurance Handbook for Air Pollution Measurement Systems; Volume III.

Stationary Source Specific Methods, US EPA ORD. Janary 1984.

Sprotocol as per Section 6.

and the state of the second second

1. N. M.

Section No.: 3.0 Revision No.: 0 Date: 11/7/86 Page: 3 of 5

performed, sampling activities will be monitored to insure that all essential data is collected. If necessary, test runs will be repeated to collect required data that may have not been collected in normal sampling routines.

3.4 <u>Representiveness</u>

3.4.1 Feedstock Soil and Treated Soil Samples

It is estimated that approximately three hours will be required to complete each verification burn test. To obtain representative samples of the feedstock and treated soil during this time period, each will be sampled at one-half hour intervals. Sampling of feedstock soil will begin 25, 20 and 15 minutes before the test when the soil feed flow rate is 3, 4, and 5 tons per hour, respectively. Sampling will continue for three hours. Each one-half hour increment samples of feedstock and treated soil will be split into two aliquots, one retained as a discrete incremental sample and the other combined to prepare a separate composite of the feedstock and treated soil. Starting feedstock soil sampling before the actual test begins is intended to take into the account the residence time of the soil in the feed hopper system (which is a function of soil feed rate).

Because the residence time of the soil in the rotary kiln is 60, 50 and 40 minutes at soil feed rates of 3, 4, and 5 tons per hour respectively, sampling of treated soil will be delayed a similar amount of time after initiation of each test.

Section No.: 3.0 Revision No.: 0 Date: 11/7/86 Page: 4 of 5

Residence times for soil in the feed hopper and kiln will be verified in clean soil tests prior to the Verification Burn. If adjustments are needed, they will be made accordingly.

3.4.2 Neutralization Tank Water and Boiler Blowdown Samples

1.1

Equal volume grab samples of neutralization tank and boiler blowdown water will be obtained and composited for each test. Each will be sampled three times during the three hour test period at equal time intervals. Each grab sample will be taken directly from a sample tap located on the respective tanks. Before obtaining each sample, the sample tap will be flushed of any potentially stagnate liquid. 3.4.3 Stack Emissions

To obtain a representative sample, the particulate and gaseous stack emissions will be collected using a sampling probe (attached to a modified method 5 sampling train) which will traverse the stack according to procedures established in Reference Method 2. Isokinetic sampling will be established by sampling at flow rates equal to the stack gas velocity along specific points inside the stack in two dimensions, 90° apart. The total stack sampling time will be 60 minutes which will require about three hours to perform.

Gases or vapor phase constituents in the flue gas are assumed to be homogeneously distributed in the stack and not stratified and therefore may be representatively collected from a single point in the stack. Gases (CD, CD₂, O₂) will be monitored continuously during each test

Section No.: 3.0 Revision No.: 0 Date: 11/7/86 Page: 5 of 5

run and samples for the analysis of vapor phase constituents (VOST) will be collected alongside each modified method 5 run.

3.5 Comparability

All sample data will be presented in comparable units as follows:

Measurement

<u>Units</u>

Gas volumes Gaseous constituents Total hydrocarbons Stack temperature Stack velocity Stack flow dry standard cubic meter (dscm)
weight percent
ppm as propane
average *F
average ft/sec at stack exit
average dscm/minute

Section No.: 4.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 5

4.0 SAMPLING PROCEDURES

4.1 Incinerator Operating Parameters

All pertinent incinerator operating parameters will be recorded by ENSCO and EG&G as is outlined in the Verification Burn Plan.

4.2 Feedstock Soil

Grab samples of feedstock soil will be obtained from the soil conveyer using clean sample spoons. Each grab sample will be placed in a clean aluminum tray, homogenized and split to make 2 aliquots. One aliquot will be bottled as an individual grab sample. The other aliquot will be mixed with other equal-volume grab aliquots to form a composite aliquots for each test.

4.3 <u>Treated Soil</u>

Grab samples of treated soil will be obtained by inserting a clean one inch diameter pipe into the soil stream at the end of the kiln. A partial vacuum from a small pump will be used to fill the pipe with soil which will then be placed in a clean metal tray for cooling. After the soil has cooled, samples will be split and maintained in the same manner as the feedstock soil.

4.4 <u>Stack Gas</u>

4.4.1 Continuous Monitoring

Stack effluent gases (CD, CD_2 , and O_2) will be continuously monitored during each 3-hour test period using ENSCD's on-line instrumentation as is described in the Verification Burn Plan. To verify proper operation of ENSCO's gas monitoring equipment, Versar will perform

537

.......

Section No.: 4.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 5

discrete tests at the stack using an ORSAT-type apparatus to determine CO, CO_2 and O_2 flue gas concentrations. These data points will then be correlated to ENSCO's continuous readings. During each 3 hour test period, a total of 3 discrete analyses will be performed. Continuous monitoring for total hydrocarbons will also be performed over the three hour test period.

4.4.2 Modified Method 5 and VOST

During each test a MMS and VOST sampling train will be used to sample for potential Principal Organic Hazardous Constituents (POHC's) and Products of Incomplete Combustion (PIC's). The MMS and VOST sampling trains will be identical for each test and their configurations are shown in Figures 4-1 and 4-2 for MMS and VOST respectively.

The MMS sampling trains and their operation will be in accordance with MMA's procedures (reference 5). An alkaline solution (KOH) will be used in the second impinger to trap acid vapors and to quantify for HCL. One of the requirements of the method is that no grease be used for sealing joints in the train. Viton[®] O-rings will be used to seal all joints prior to and including the first impinger.

The sampling location and the number of traverse points for MMS sampling will be determined after the presurvey according to procedures established in EPA Reference Method I (40 CFR 60, Appendix A). Assuming that the stack diameter is 36 inches and the sampling ports are less than eight stack diameters downstream of any flow disturbance; eight sampling point locations will be established on two perpendicular stack cross sections. Stack gas moisture and velocity will be determined concurrent

Section 1	ю.: 4.	.0
Revision	No.:	0
Date:	11/7/8	36
Page:	3 of	5

central mening when

4

1. 1. 1.

Ser Section

÷

¥

Section No.: 4.0 Revision No.: 0 Date: 11/7/86 Page: 5 of 5

with the MMS sampling using the procedures established in EPA reference Method 4 (40 CRF 60, Appendix A). Stack gas molecular weight will be determined concurrently with the MMS sampling using procedures established in Reference Method 3 (40 CFR 60, Appendix A).

The VOST sampling train basically consists of a system designed to draw sample gas at a flow rate of 1 liter/minute through two traps in series for a period of one hour. The first trap will contain Tenax and is preceeded by a gas cooler/condenser which is followed by an impinger for condensate collection. The second trap contains a section of Tenax and a section of charcoal just downsteam of the impinger. The purpose of the second trap is to collect very volatile POHC's (e.g., vinyl chloride) which will break through a Tenax trap.

4.4.3 Sample Preservation and Transport

Feedstock and treated soil samples will be bottled in appropriate containers and packaged in DOT approved containers for shipment. All aqueous samples and samples from MMS sampling will be properly bottled and packed in ice inside of coolers for shipment. Samples from VCST activities will be properly bottled and placed in coolers with dry ice for shipment. All shipping will strictly adhere to DOT approved procedures.

Section No.: 5.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 5

5.0 SAMPLE CUSTODY

Labelling and identification of all samples collected will be done using Versar's three part label which is shown in Figure 5-1. Both upper portions and the single lower portion have pre-printed numbers that become the field sample number. The upper portions will be completed and affixed to the sample bottle; the lower portion will be entered into the field notebook with pertinent information entered along side. All duplicate samples (or any number of replicates) will have the same field sample numbers assigned to corresponding parameters. In some case, this may require use of handwritten labels in addition to the pre-printed labels. The exception to replicate label numbering will be in the case of "blind" duplicates for QA/QC purposes; each sample will then be labeled and documented separately.

Sample custody will begin, <u>in all cases</u>, at the time of sample collection by placing the sample into an iced cooler, or appropriate container, in the possession of the designated field sample custodian. A line item on the field chain of custody form (Figure 5-2) will immediately be filled out and initialed by the field sample custodian. The following procedures will be followed when completing the chain of custody form:

PROJECT NO.

Enter the complete project number; enter the analytical subtask number (usually an odd number) <u>not</u> the sampling . subtask number.

PROJECT NAME

Enter the project name as it is listed on the Contract Status Summary Sheets distributed periodically throughout Versar.

Section	No.:	5.0
Revision	No.:	0
Date:	11/	7/86
Page:	2 (of S

WEDED TO SAMPLE CONTAINER 13050 ALAMETTER 13050 DUPLICATE AFFIDED TO DUPLICATE SAMPLE (E.G., VOA SAMPLES) 13050 TACK ENTERED IN FIELD NOTEBOOK AS RANT PERMANENT SAMPLE IDENTIFICATION SAMPLE LOCATION MATRIX SUMPLING COMMENTS SIGNA FLIME TIMEGATE

CT 22

Caller walk and the second

Figure 5-1. Versar's Turee Part Sample Label.

> 2 HYGIENE SALFLE AEMARKS Received by: [Summer 1 1 I I. 1 90 990 0.95 Toront A FILLER Poren FRAGE 40 Dute / 11111 2 Face L PARAMÉ LERS 69 5 1 ē į 3 8 1 Hamste Returnation by . 15. manual 65 2 ļ ł 10 10 89 ł 1 į CUAIN OF CUSTODY RECORD Daw / Tune **د: ء** ļ 147au 1 ł BO: CR. CONIN 1 24 P.u.e.k ł i ł 1 1 1 i ÷ Ì اف JI 191 ł 1 İ + Thomas Point (Bay 12) ב ב היון איניא (ב היו 23) Leve Paint (Bay 14) Juneily merry Jac n Tourson Accessed for Laboratory by STATION LUCATION 1 Ja & Ja bue 3775 -15 درور P. 1 B. Received by . 15-8... P.minit W. Vinited. i - FI **U**I 1361 Date / Ime Date / Faus 1000 - Aates EVVO | ł × 31 ł **A** 1 , Guasamake /... 1 ŝ ī ano:0 Ŧ 21 1 1 PHOJECT NAME ż - 338+ Å. 35 341 1 l 1 1 SAWPI ENS, ISwing ... DAIA - • • 20 ÷17. 1 Ţ i معدما ترارته ما موار i (become 7.81. Var Nille . lim . lower Relationships by Day q -- quee Relationshind by PRUJECT NO .J. . .J. 123.4.5 11110 11110 11110 B. ł 15 544

> Figure 5-2. Chain of Custody Form

Section No.: 5.0 **Revision No.:** 0 11/7/86 3 of 5 Date: Page:

1

The part of the second

1 m. s. 4 . . 1

Section No.: 5.0 Revision No.: 0 Date: 11/7/86 Page: 4 of 5

SAMPLERS	Enter signature and print name of person or person(s) who participated in the collection of the samples listed, and who should be contacted should questions arise during sample log-in. If the field sample custodian <u>is not</u> listed as a sampler, receipt documentation should be indicated.
FIELD SAMPLE NUMBER	This box does not generally apply to MAD procedures and should be left blank.
DATE	Enter date of sample collection. If sample is a composite indicate both start and finish date.
TIME	Enter time of actual sample collection. If sample is a composite indicate both start and finish time.
COMP. /GRAB	Indicate by a check the type of sample.
STATION LOCATION	Enter a description of location as well as any location code that had been assigned.
NUMBER OF CONTAINERS	Enter the actual number of sample bottles to be submitted to the laboratory.
PARAMETERS	List parameters to be analyzed; if abbreviations or parameter categories (e.g., ICP metals) are used further details must be given when logging in samples.
	For each line entry indicate the last two digits in the sample number. Enter first three sample number digits in remarks section as shown in Figure 5-2.
INDUSTRIAL HYGIENE	Circle the appropriate box to indicate type of sample.

Upon completion of all line items, or upon sample pick-up, the custodian will sign, date and list time, and will confirm completeness of all descriptive information contained on the form. Each individual who subsequently assumes responsibility for the sample will sign the chain of custody form and the reason for assuming custody. The field chain of

545

Section No.: 5.0 Revision No.: 0 Date: 11/7/86 Page: 5 of 5

custody form terminates upon laboratory receipt of samples. The field sample custodian should obtain the pink copy of the chain of custody form for program files.

•

Section No.: 6.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 2

SECTION 6.0

CALIBRATION PROCEDURES AND FREQUENCY

6.1 Sampling Equipment

6.1.1 Modified Method 5 Equipment

Table 6-1 summarizes the sampling apparatus to be calibrated, the acceptance criteria, the method, and the frequency of calibration.

Prior to the test the gas metering device is calibrated against a positive displacement wet test meter. The calibration factor is rechecked after the test.

Temperature sensors are calibrated against an ASTM mercury-in-glass thermometer, and/or are calibrated in an ice bath and a boiling water bath.

The aneroid barometer is checked against a mercury column barometer.

The pitot tubes are constructed according to the design criteria of Reference Method 2. In addition, the S-type pitot tubes are calibrated against a standard pitot tube in a wind tunnel, if the specified design criteria are not met.

6.1.2 VOST Equipment

Prior to the test the gas metering device is calibrated against a positive displacement wet test meter. The calibration factor is rechecked after the test.

6.1.3 Continuous Monitors

The calibration criteria for ENSCO's continuous gas monitoring equipment is contained in the Verification Burn Plan.

Section No.: 6.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 2

	Parámelar	Calibration technique	Kelerence standard	Acceptance limit	Calibration frequency	Reference
	Probe nozzle	Hessure diameter to nearest 0.001 in.	Nicrumeter	Mean of three measure- ments; difference between high and low £ 0.1	Prior to test	RH5 ^a
~	Gas meter volume	Compare to wel test	Wet test meter	Record calibration factor	Prive to test	
÷	Gas meler lempera- lure	Compare to mercury-in- glass thermometer	ASIN Thermometer	15°f	Prior to test	949
4	Stach temperature sensor	Europare to mercury-in- ylass thermometer	ASIN thermometer	± 1.5%	Prior to test	RMS
si.	final impinger tem- perature sensor	Compare to mercury-in- glass thermometer	ASIH Thermometer	15°F	Prior to test	!
é.	filter temperature sensor	Compare to mercury-in- glass thermometer	ASIM Theraometer	± 5°f	Prior to lest	242
~	Aneroid barometer	Compare to mercury barometer	Mercury column barometer	± 2.5 .	Prior to test	RMS
æ.	S-type pitol tube	Design/wind tunnel	Design/slandard pitot	Meets RM2 criteria	Prior to test	RM2
1	uality Assurance Hand	tar Air Pallution P	the assure such as the	Values 111 - Stattant	Source Soachfle	Mathade

lable 6-1. Calibration of Sampling Apparatus

the second state of the second sec

I

548

N. T. G. S. P. Martin Street, 18

Section No.: 7.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 1

SECTION 7.0

ANALYTICAL PROCEDURES

Analysis of all samples collected will be as specified in EG&G's RFP (see Attachment II) for analytical services.

549

With the construction of the second second

Section No.: 8.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 2

SECTION 8.0

DATA REDUCTION, VALIDATION AND REPORTING

8.1 Data Reduction

Versar will summarize all intermediate calculations and values used in obtaining all samples in a report which will be given to EG&G. EG&G will be responsible for all data reduction, validation and reporting of analytical results as is described in the Verification Burn Plan.

All continuous monitoring data, including calibrations, will be recorded on ENSCO's strip chart recorders. The data will also be logged directly into ENSCO's on-line computer. The computer records the readings on a hard disk as well as with a diskette backup.

8.2 Data Validation

The criteria used to validate the integrity of the analytical results is contained in the Verification Burn Plan.

The principal criteria that will be used to validate the integrity of the gaseous data emissions measured by the continuous monitors will be discrete analyses using ORSAT-type measurements which will be taken directly at the stack. These values will be correlated with the gaseous emissions readings and any discrepencies will be recorded.

The principal criteria that will be used to validate the integrity of the stack field data which is essential to calculate emission levels (dioxin, particulate, HCI) will be the following:

⁽¹⁾ Examination of all field data forms by the Quality Assurance Officer.

(2) Verification of calculations for one test run by an independent, second reviewer.

Kevision No .:

Date:

Page:

0

11/7/86

2 of 2

(3) Reporting of all associated blank, standards and calibration data along with reported results.

8.3 Data Reporting

•

•••

Versar will submit all required sampling data to EG&G as is required for development of analytical results. The following data, as needed, will be provided:

- (a) MMS and VOST field data forms:
- (b) MMS and VOST equipment calibration data
- (c) Calibration data of ENSCO's continuous gas monitoring system along with correlations at stack using ORSAT-type tests

(d) QA summary report.

ta de jone la general de la construction de la participation de la construction de la construction de la constr

Section No.: 9.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 3

9.0 INTERNAL QUALITY CONTROL

Table 9-1 summarizes the internal quality control checks which will be used during this study; the frequency of each control check is presented. The following paragraphs briefly explain the control checks.

9.1 Reagent Blanks

Reagent blanks of acetone and hexane representing the probe rinsing media tested will be tested for solids. At least one method blank of benzene used for extraction of ash samples will be tested for dioxin. Since a field blank is used, reagent blanks of acetone, hexane, KOH XAD-2, TENAX, and filters will be retained and analyzed for dioxin only if a problem with a particular sample occurs. However, one filter from each lot and aliquot of XAD from each extracted batch will each be screened for contamination prior to use.

9.2 Field Blanks

At least one field blank for the MM5 train and VOST will be provided for analysis.

9.3 Zero/Span Gases

Certified (by manufacturer, <u>+</u>2% accuracy) cylinder gases will be utilized to zero and span all continuous emissions monitors prior to the verification burn as is described in the Verification Burn Plan.

9.4 Calibration Standards

The Orsat-type analyzer will be checked by measuring the oxygen content of ambient air.

Section No.: 9.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 3

Quality Control Check	Otoxin in feed water	Digxin in stack	Particulate	Orsat	Stack gaseo CT emissions
1. Reagent blanks					
Acetone		19	1		
Hexane		19	1		
Senzene (method blank)		19			
XA0-2		2 ^C		•	
Tenay					
Filter		۲ ^C			
KCH					
2. Field blanks		:			
H915					
- Probable wash			1		
- Particulate filter		1			
- XA0-2		1			
- Condenser		1			
- Impinger					1
VOST -					
- Probable wash		1			
- Tenay		1			
- Condenser		Ŧ			
- Tenax/Charcoal		1			
3. Background Sample	1		1		
4. Zero/span gases					Before tests
5. Calibration standard				3 per jun	l per compaund
6. Replicate(duplicate runs)		2ª			
6. Spikes ^e		as reguir	ed	_	

Table 9-1. Summary of Internal Quality Control Checks

 1 CO. CO₂, o₂. THC by continuous monitor.

and a state of the second second

DRetained for analysis, if necessary.

Cone blank screened prior to test; one blank taken in field and retained for analysis, if necessary, dReplicates obtained during soil feed rates of 4 and 5 tons per hour. EAnalytical requirement specified in the Verification Burn Plan.

...

Section No.: 9.0 Revision No.: 0 Date: 11/7/86 Page: 3 of 3

For the continuous gas monitor, instrument calibration will be checked using the ORSAT-type analyzer at the stack.

9.5 <u>Replicates</u>

Replicate stack gas emission samples will be obtained when the incinerator is operating at soil field rates of four and five tons per hour (i.e., tests 2 and 3 at 4tph; and 4 and 5 at 5tph).

Section No.: 10.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 1

10.0 QUALITY ASSURANCE AUDITS

10.1 Field Programs System Audit

After sampling is completed, the Field Programs QCC will inspect calibration and maintenance records, field data forms and records, and the calculation of results. EG&G will review actual laboratory practices during sample analysis. Deviations from protocol and all results of the audit will be reported to the QAM. Note that a systems audit during actual field sampling will not be conducted.

10.2 QAM Audits

The QAM will verify that all applicable QA/QC procedures are followed, including (1) calibration and maintenance of equipment, (2) staff credentials and/or supervision, (3) documentation practices, (4) data traceability, and (5) sample and document controls. The QAM will also review QC data and QCC inspections and audits. The results of all inspections and audits will be summarized and reported, along with any corrective action requests, to project and EG&G management.

Section No.: 11.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 1

.11.0 PREVENTIVE MAINTENANCE

Maintenance of the equipment for soil and water is limited to, inspection and cleaning prior to each use. Other sampling equipment is checked prior to each use with appropriate check standards; equipment which is found to be defective is repaired or replaced immediately.

To minimize any potential sampling delays associated with stack gas testing. Versar will use five separate sets of MMS and VOST glassware. plus a redundant train for each which can be used to replace broken parts. In addition, two monorails will be used to expedite changing the probe from one side of the stack to the other.

Section	No.:	12.0
Revision	No.:	: 0
Date:	11	/7/86
Page:	1	of 4

12. SPECIFIC ASSESSMENT PROCEDURES

١.

12.1 Precision

For data sets with a small number of points $(2 \le n \le 8)$, the estimate of precision will be expressed as range percent (R%):

$$RZ = \frac{C_1 - C_2}{C} \times 100 \qquad (12-1)$$

where: C_1 = highest value determined

C₂ = lowest value determined

 \overline{C} = mean value of the set

and

$$\overline{C} = \sum_{i=1}^{n} \frac{C_i}{n}$$
(12-2)

where: $C_1 = ith determination$

n = number of determinations

For one or two values below the detection limit (BDL):

BDL = DL/2; where DL = detection limit.

For large data sets (n > 8), the estimate of precision will be expressed as percent relative standard deviation (IRSD):

$$SD = \frac{1}{n-1}$$
(12-3)

$$SD = \frac{1007 \times SD}{2}$$
(12-4)

Section No.: 12.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 4

The following paragraphs briefly describe how precision will be determined for each measurement parameter.

12.1.1 Dioxin in Feedstock Soil

For each feedstock soil sample set analyzed in duplicate or triplicate, the precision (R%) for each analyte will be calculated using EQ. 12-1. Then, for each analyte, the arithmetic mean of all the precision values of the individual sample sets will be calculated and reported as the overall precision. Three sample sets should be available for calculating precision. Since this assessment involves the use of chemical analysis data and not exclusively field sampling measurements. details will be provided in the Verification Burn Plan.

12.1.2 Dioxin in Treated Soil

Same as 12.1.1

12.1.3 Dioxin in Stack Emissions

The actual MMS and VOST field samples will not be analyzed in replicate. However, during this study corbent media (XAD and Tenax) blanks and filter blanks will be spiked with dioxin and internal standards (surrogate) and then analyzed. The results from the dioxin analysis of these spiked samples will be used to estimate precision for the determination of dioxin in stack emissions. The precision estimate will be calculated using Eqs. 12-1 and 12-2. Two spiked filter measurements and two spiked sorbent measurements will be available to calculate precision.

558

Section No.: 12.0 Revision No.: 0 Date: 11/7/86 Page: 3 of 4

12.1.4 Gaseous Emissions (CO, CO_2 , O_2 , SO, NO_x , THC)

For each instrument, an estimate of precision will be calculated from the high span measurements. All values of the span gas measured before, during, and after each run over the entire period will be used to calculate precision. Equations 12-3 and 12-4 will be used for calculating the precision; a minimum of 12 measurement values for each monitor are expected.

12.2 Accuracy

Accuracy will be determined from the performance samples (i.e., standards supplied as blind audits by the QCC and the independent laboratory) as percent accuracy (AZ). Accuracy will be determined as percent recovery (RZ) of nutive analytes from samples spiked with native analytes prior to sample preparation. The formulas are given below. For performance samples

$$AZ = \sum_{i=1}^{n} \frac{Amount found}{True value 1} \frac{100}{n} x \qquad (12-5)$$

For samples spiked with native analyte

$$RZ = \sum_{i=1}^{n} \frac{Amount found - native amount prior to spiking x 100}{Amount spiked}$$

12.2.1 Hethod for Dioxin

The accuracy of the instrumental procedure will be estimated from the performance samples supplied by EG2G. Accuracy will be calculated according to Eq. 12-5. At least one performance sample will be analyzed. Since this control measure involves chemical analysis data and

Section No.: 12.0 Revision No.: 0 Date: 11/7/86 Page: 4 of 4

not the field sampling procedures, additional detail may be found in the Verification Burn Plan.

12.2.2 Dioxin in Feedstock Soil

Overall accuracy of the contractor's analytical procedures for determining dioxin in ash samples will be assessed by performance on a feedstock soil audit sample provided by an independent laboratory. The performance sample will be analyzed at least once and accuracy will be calculated using Eq. 12-5.

12.2.3 Dioxin in Treated Soil

Same as 12.2.2.

12.2.4 Dioxin in Stack Emissions

Accuracy will be assessed as percent recovery of native analyte spiked onto the sorbent media (XAD, Tenax) and filters. The estimate of accuracy will be calculated according to Eq. 12-6. At least two sorbent resin modules and at least two filters will be spiked in this manner.

12.2.5 Particulate, Cl⁻ in Stack Emissions

Accuracy will not be assessed.

and the second second states and the second s

12.2.6 Gaseous Emissions (CO, CO_2 , O_2 , SO_2 , NO_3 , THC)

For each instrument, accuracy will be determined from measurement of the zero, mid, and high span cylinder gases. All measured values of the zero, mid-level, and high-level span gas will be used to calculate instrument accuracy according to Eq. 12-5. A minimum of 24 measurement values for each monitor are expected.

Section No.: 13.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 2

13.0 CCRRECTIVE ACTION

Whoever observes sampling data problems will immediately notify the Task Leader. If the Task Leader discovers or is notified of sampling data problems, he will decide on the severity of the problem and take the appropriate action:

- <u>Minimal data loss</u>: The problem/corrective action taken will be documented; no further action is necessary.
- <u>Moderate data loss</u>: A problem memo will be prepared and sent to the QCC, and QAM, the Project Leader; a collective decision on the appropriate action will then be made.
- <u>Severe data loss</u>: A problem memo shall be prepared and sent to the QCC, the Project Leader, EG&G, and the QAM. The USAF Project Manager will be consulted before a collective decision on the appropriate action is-made..

The Task Leader implements the corrective action, documents the problem and action taken, then prepares and sends a problem/action-taken memo to the QCC, and QAM, the Project Leader, and EG&G.

If, in any case, sampling data is last, the Task Leader will investigate the problem, then perform one or more of the following actions:

- If the problem is limited in scope, the problem/action-taken is documented, the Task Leader then prepares and send a problem/ action-taken memo to the QAM, the Project Leader, and EG&G.
- If a large quantity of data are affected, the problem/actiontaken memo to the QAM, the Project Leader, EGZG, and the USAF Project Officer.

In general, if QA problems are encountered, The Task Leader shall identify technical problems and:
Section No.: 13.0 Revision No.: 0 Date: 11/7/86 Page: 2 of 2

 Prepare and send a problem memo to the QAM, the Project Leader, and EG&G; if the problems are significant, the action is determined collectively.

The action taken is documented.

ere des Nores de level de la constance de la co

and the service should be

Revision No.: 0 Date: 11/7/86 Page: 1 of 1

14.0 QUALITY ASSURANCE REPORTS TO MANAGEMENT

The QAM, in cooperation with the Project Leader. Analytical Task Leader, and Field Sampling Task Leader will identify critical areas of the project which will be subject to inspection; the inspection will include a review, where applicable, of:

- Staff qualifications
- Sampling equipment calibration and maintenance records
- Performance audits
- Systems audits
- Sample control
- Document-control
- Sampling data entry, including error handling, corrections, and additions
- Sampling data traceability and completeness
- Sampling data calculation and validation
- Internal QC data
- External QA data

 Assessment of sampling data accuracy, precision, and completeness. The results of inspections/audits will be reported by the QAM to the Project Leader and EG&G management; summaries will be included in the final report.

563

Section No.: 15.0 Revision No.: 0 Date: 11/7/86 Page: 1 of 1

15.0 REFERENCES

- 1. Quality Assurance Handbook for Air Pollution Measurement Systems. Volume III Stationary Source Specific Methods. EPA-600/4-77-0276.
- 2. Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans. PB83-170514, Feb. 1983, QAMS-005/80.
- 3. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, Revised March 1983.
- 4. Test Methods For Evaluating Solid Waste, SW-846, Third Edition, September 1986.
- 5. Sampling and Analysis Methods for Hazardous Waste Combustion. EPA-600/8-84-002.

Attachment II

REQUEST FOR PROPOSAL NO. C86-131150 FOR CHEMICAL ANALYSIS OF VERIFICATION SAMPLES FROM SOIL INCINERATION

1. Shingstoner

October 15, 1986

To: Attached List

REQUEST FOR PROPOSAL NO. C86-131150 FOR CHEMICAL ANALYSES OF VERIFICATION SAMPLES FROM SOIL INCINERATION - RS-116-86

This is a Request for Proposal for analyses of soil, gas, and water samples involved with the incineration of 2.3.7.8-tetrachlorodibenzo-para-dioxin (TCDD) contaminated soil. A detailed description of the work to be provided is contained in Attachment 1, Scope of Work.

Samples are tentatively scheduled to be available for analyses November 19, 1986, through November 24, 1986.

The following mandatory requirements must be met by a proposer to be considered responsive to this Request for Proposal. If a proposer cannot meet the mandatory requirements or does not address each mandatory requirement, the proposal will be considered unacceptable and will not be evaluated further. You are requested to submit adequate information demonstrating that you meet these mandatory requirements.

- The response must include a summary of the proposer's past experience in analyses (as identified in Attachment A to the Scope of Work) of soil, gas, and water samples resulting from thermal treatment of soil. Demonstrate past experience to show rapid turnaround of at least four weeks (receipt of final results).
- At least one reference of a previous similar project must be provided. The reference should include the name of the project officer, telephone number, and a general statement of analyses performed.
- 3. The response must include the resumes of personnel who are experienced in analyses as cited in Item 1, above.

EGEG Idano Inc P.O. Box 1625 Idaho Falls, ID 83415

Request for Proposal October 15, 1986 RS-116-86 Page 2

- 4. The response should indicate that the proposer is experienced in analyses utilizing high resolution GC/MS equipment and that such equipment is available for performance of the dioxin/furan analyses.
- 5. The response must describe the facilities and instrumentation that will be used for the required analyses. The response must include a contingency plan to be utilized if instrumentation failure occurs.
- 6. The response must indicate that the proposer has the capability to start analyses of samples November 19, 1986, meet the turnaround time of analyses as required, and complete the final report by December 24, 1986, as delineated in the attached Scope of Work. The anticipated period of performance will be from November 7, 1986, through December 24, 1986.

This procurement will be awarded to the most responsive, responsible proposer who meets the mandatory requirements noted above and submits the lowest price on the enclosed pricing schedule (Attachment 2).

It is anticipated that the work will be performed under a fixed-price-per-unit subcontract. A blank copy of a standard fixed-price subcontract used by EG&G Idaho is attached for your review (Attachment 3). The terms and conditions found in STC-EG&G-183, "Standard Terms and Conditions for Purchase Orders and Subcontracts," Rev. 5-82, shall apply except for the following clauses and those which are self-deleting:

Part IClause 5ChangesClause 6ExtrasClause 7Variation in QuantityClause 13WarrantiesClause 14DeliveryClause 15Consignment and Marking InstructionsClause 16InspectionClause 18PaymentsClause 20Engineering ard Operations Data RequirementsClause 37Required Source for Jewel BearingsClause 41Termination for Convenience

<u>Part II</u>

Clause 1 Progress Payments Clause 3 Warranty Clause 4 Manufacturing Schedules

Request for Proposal October 15, 1986 RS-116-86 Page 3

> Clause 7 Basis of Award Clause 8 Supplier Data Instructions and Documentation Submittals Clause 16 Patent Indemnity

Article 10, Patent Rights, contained in the subcontract, will also be deleted.

The following articles will be included in the resultant subcontract:

Review and Approval of Procedures

The action of Contractor in reviewing and/or approving Subcontractor's analysis procedures and/or safety procedures shall not affect or relieve Subcontractor from such responsibility as Subcontractor otherwise has with respect to the adequacy or correctness of such analysis and/or safety procedures used by the Subcontractor in the performance of work under this subcontract.

Key Personnel

The Subcontractor agrees that personnel performing this Scope of Work will be those personnel for whom resumes were provided in the Subcontractor's proposal. Any changes to key personnel must be approved in advance by the Contractor.

Incentive

For delivery of the final report within three weeks after Subcontractor's receipt of the last set of samples, the Subcontractor will be paid an incentive of an additional ten percent of the cost of validated samples which are included in the final report. If a sample cannot be validated, there will be no incentive paid for that sample.

Liquidated Damages

The parties mutually agree that the expected actual damages to EG&G Idaho for failure to make delivery within 30 days after Subcontractor's receipt of the last set of samples will be \$2,792.00 per day. Therefore, liquidated damages of \$2,792.00 per day will be deducted from the subcontract price, up to a maximum amount of 50 percent of the total subcontract price, for failure to deliver the final report within 30 days after Subcontractor's receipt of the last set of samples.

Your proposal should include a statement that such a subcontract would be acceptable, or specify any exceptions.

In addition to your technical proposal, the following information must be provided:

ſ

Request for Proposal October 15, 1986 RS-116-86 Page 4

1. A disclosure statement regarding Organizational Conflicts of Interest (see Standard Terms and Conditions, Part II, Clause 26).

Failure to provide a disclosure statement may result in disqualification of your proposal.

2. A completed Representations and Certifications form (see Attachment 4).

Your proposal must be submitted to EG&G Idaho by October 30, 1986, addressed as follows:

R. Simmons Subcontract Administrator EG&G Idaho, Inc. 1955 Fremont Avenue P. O. Box 1625 Idaho Falls, ID 83415

Proposals shall be submitted as follows:

- 1. Five copies of the mandatory requirements shall be submitted with all required data excluding price.
- 2. Five copies of the price proposal shall be submitted on the enclosed pricing schedule in a sealed envelope plainly marked:

"PRICE PROPOSAL - C86-131150"

EG&G Idaho, Inc., reserves the right to reject a proposal that is not considered responsive to the Request for Proposal and to reject any and all proposals as the best interest of the Government may require.

Proposers are advised that, although negotiations may follow receipt of proposals, award may be made without discussion on proposals received. Therefore, proposals should be submitted initially on the most favorable terms of price and completeness.

Please advise EG&G Idaho if you do not intend to submit a proposal.

If you have any questions pertaining to this Request for Proposal, contact me at (208) 526-1661.

Very truly yours,

的复数形式 医外外部 网络小的第三人称单数 医白头骨 化二硫基酚的过去式和过去分词 化合成分子 化合成分子 人名法法 人名法法法 化合成分子 化合成分子 化合成分子 化合成分子 化合成分子

R. Simmons Subcontract Administrator

km

Attachments: As Stated

Attachment 1

SCOPE OF WORK

:

FOR CHEMICAL ANALYSIS OF VERIFICATION

SAMPLES FROM SOIL INCINERATION

1.0 OBJECTIVE

The objective of this work is:

<u>Analysis</u>: The subcontractor shall analyze samples of soil, gas, and water involved with the incineration of 2,3,7,8-tetrachlorodibenzopara-dioxin (TCDD) contaminated soil. The samples will involve treated/untreated soil, stack gas, scrubber water, and boiler blowdown water. The analyses involved are presented in Attachment A. The compounds listed are under EPA review, but assessment is that changes to the list will be minimal.

2.0 BACKGROUND

From approximately 1965 to 1977, containers of Herbicide Orange were stored on an open-air site at the Naval Construction Battalion Center (NCBC) in Gulfport, Mississippi. During this time some of the herbicide leaked on the ground leaving TCDD, 2,4-D, & 2,4,5-T as contaminants in the soil. The soil is cement-stabilized sandy loam, established in the 1940's. Over the years, small amounts of asphalt, road tar, and road mix (gravel soil) have been placed on the site. These placements are spotty (less than 10 percent surface area); however, the asphalt could potentially be an analytical interference. Therefore, extended cleanup procedures should be utilized. Some oyster shell and pea gravel are also present.

High volume air samples will be taken during the course of the incineration program to determine if the operation is releasing dioxin-contaminated particulates into the air.

3.0 REQUIREMENTS

3.1 Analytical Procedures

The subcontractor shall perform analyses for all components listed in Attachment A according to the stated protocols. The intent of this task is to address not only regulatory requirements but also to provide data at the lowest detection level achievable while using recognized procedures.

For diexir/furan analysis, the subcontractor shall utilize SW846-8200 and the U.S. EPA Contract Laboratory Program (CLP) IFB dioxin procedure to the extent possible. It is anticipated that modifications to the CLP procedure will be necessary, primarily in the extraction portion of the procedury. It is also anticipated that the concentrations of the spiking solutions and calibration solutions specified in the CLP procedure may have to be modified to more accurately reflect the analytical concentration range of interest. All quality assurance/quality control (QA/QC) measures specified in SW346 or the CLP procedure will be adhered to for all all analyses. Nodifications to the procedures made to perform the requested analyses will be submitted to EG&G Idaho for comment and/or approval prior to implementation.

3.2 Sample Types

The following samples types will be submitted to the subcontractor for analysis. These samples will be obtained by a secarate subcontractor.

<u>3.2.1 Soil Samples</u> The subcontractor shall determine the amount of Attachment A compounds (if any) present in soil samples obtained by the field sampling team. These soil samples will consist of composite aliquots from soil handling equipment as obtained using EPA sampling protocol. The subcontractor will receive a minimum of ten (10) samples and a maximum of twenty (20) samples total which will include both treated and untreated soils. A detection limit of 0.01 ppb 2.0.7.8-TCCO is required, or as stated in Attachment A. It should be noted that a number of the untreated soil samples may contain small quantities of asphalt, which may necessitate extra cleanup. Also, these analyses will require high resolution GC/high resolution MS equipment for the CLP procedure. Method SW846-8280 is to also be performed.

<u>3.2.2 Aqueous Samples</u> The subcontractor shall determine the amount of Attachment A compounds present (if any) in aqueous samples (scrubber, neutralization and boiler blowdown) obtained by the field sampling team. Each sample will consist of a minimum of two (2) liters. The subcontractor will receive a minimum of ten (10) and a maximum of twenty (20) aqueous samples. A detection limit of 0.01 ppb is required for 2.3,7.8-TCDD, or as stated in Attachment A. In addition, pH, TOC, BOD, COD, dissolved solids, and ammonia are to be determined.

3.2.3 High Volume Air Samples The subcontractor shall determine the amount of dioxin/furan present (if any) in particulate acquired on filters collected using high volume air samples. The subcontractor will receive a minimum of five (5) and a maximum of ten (10) samples. A detection limit of 1.0 nanograms per filter is required. It is anticipated that soxhlet extraction using toluene or benzene will be required for the filters.

<u>3.2.4 Stack Gas Samples</u> The subcontractor shall provide analysis of Attachment A compounds in stack gas samples collected by the field sampling team. Samples will be obtained by standard M5, MM5, and VOST trains. Three trial burns will be performed resulting in five (5) complete sets of gas samples.

3.3 Analytical Standards

The subcontractor will supply all necessary analytical standards for this program. For example, with TCDD, these standards include ${}^{13}C_{12} = 2.3.7.8$ -TCDD, ${}^{37}C_{14} = 2.3.7.8$ -TCDD, 2.3.7.8-TCDD, and the performance check solution used to demonstrate the isomer specificity of

the gas chromotography column. All standards may be obtained from commercial sources. All standards will be verified for concentration using U.S. EPA and National Bureau of Standards reference standards. A list of all standards to be utilized and the results of the verification will be provided to EG&G Idaho.

3.4 Turnaround Time

Samples will be delivered to the subcontractor either by overnight express service or by EG&G Idaho personnel or their designees. It will be necessary to have rapid turnaround of analytical results. The samples will arrive over approximately seven days. In addition to meeting protocol requirements, the subcontractor will perform analyses and provide EG&G Idaho immediate results to facilitate review and validation. A final report, including a complete compilation of all data, will be provided to EG&G Idaho within 30 days of receiving the last sample.

3.5 EG&G Idaho Representation in Laboratory

Due to the rapid turnaround time required, the subcontractor will be required to allow an EG&G Idaho representative to review data in the subcontractor's laboratory. The data review procedure will not interfere with the analysis of the samples.

3.6 Disposal of Samples

Upon direction from EG&G Idaho and following submission of the final report, it will be the subcontractor's responsibility to dispose of any unused portions of samples. The disposal must conform to the appropriate Government regulations.

3.7 Public Relations

Neither the subcontractor nor any personnel in the employ of the subcontractor shall release any information concerning this project to the public or the media. All requests for information are to be directed to the on-site EG&G Idaho representative. That representative will refer all requests to Mr. Peter Mygatt, Director, Office of External Affairs, DOE-ID. Mr. Mygatt will coordinate all releases with the USAF.

4.0 QUALITY ASSURANCE/OUALITY CONTROL PLAN

The subcontractor shall submit a Quality Assurance/Quality Control Plan which covers all the activities of this Scope of Work. The procedures to be followed for the chain of custody of all samples shall be clearly presented. The procedures in this QA/QC Plan, once approved by EG&G Idaho, shall be followed in the execution of this work.

5.0 DELIVERABLES

5.1 Final Report

The subcontractor shall provide to EG&G a final report summarizing the results of all the analyses including QA/QC samples. This final report will follow the CLP reporting format where possible and shall include the CLP required deliverables. The remaining data summation will be provided in tabular form. The final report will be due 30 days after receiving the last set of samples. Data summaries should be provided in hard copy and also on floppy discs in dBASE III format. The hard copy should be unbound and suitable for reproduction.

5.2 Interim Reports

The subcontractor will not be required to prepare interim reports; however, as data is available it is to be presented to the EG&G Idaho representative, who will provide daily reports via personal computer to EG&G Idaho project management.

5.3 Laboratory Notebooks

The subcontractor shall include, as an appendix to the final report, copies of the laboratory notebook pages pertaining to all aspects of this program.

5.4 Presentation of Results

The subcontractor will be present for presentation and discussion of the results to the U.S. Air Force, State officials, EPA Regional officials, and EPA-HQ. The subcontractor should assume a one-week effort for personnel to travel from Gulfport to Jackson, Mississippi; to Atlanta, Georgia; and to Washington, D. C. The subcontractor must include personnel knowledgeable in organics, metals, and dioxins/furans.

Attachment 1 Modification No. 5 Subcontract No. C88-131150

DIOXINS/FURANS BY LOW RESOLUTION GC/MS

·. •

.....

.**.** .

Constituent	Analytical Method	Reference	Detection Limit ug/kg (ppb)
Antimony	CLP	1	600
Arsenic	CLP	1	200
Barium	CLP	1	400
<pre>Benzidine([1,1'-biphenyl]-4,4' diamine)</pre>	SW 846/CLP	4	2,600
Benzo[a]anthracene (1,2 benzanthracene)	8310	3	2.0
Benzo[b]fluoranthene (2,3-benzofluoranthene)	8310	3	2.0
BenzoLajpyrene (3,4-benzopyrene)	8310	- 3	2.0
Beryllium	CLP	1	200
Bis(2-chloroethoxy)methane (ethane, [methylenebis			
(oxy)Jbis[2-chlorn-])	CLP	2	330
Bis(2-chloroisopropyl) ether (propane,2,2'-			
oxybis[2-chloro-])	CLP	2	330
Cadmium	CLP	1	1,000
Chlorinated benzenes, N.O.S.			
1,2,4,5-Tetrachlorobenzene	SW 846/CLP	4	330
1,2,3,5-letrachlorobenzene /			
chlorinated phenol, N.U.S.	a : a	•	
2,4-Dichlorophenol		2	330
2,6-UICHIOFOPHENOI	SW 845/CLP	4	330
(,5-U)chlorophenol	SW 846/ULP	4	330
2.2.4. Trichlenscharol	SW 846/CLP	4	330
2,3,4-irichlorophenol	SW 840/CLP	4	330
2,4,5-michiorophenol		2	1,000
2,4,6-HICHIOTOPHENOT	SU OAE/CID	2	330
· 2,3,4,5-Tetrachiorophenol	SW 840/CEP	4	330
Chromium (Tetal)	C1 D	•	2 000
Chromium (Hoxavalent)	STI OAS	2	2,000
Chrysona (1.2 benzohansetbrane)	34 040 0210	3	400
Connon	0310	3	2 000
	Analyzad an m	l attul stanola	2,000
Creasate (creasate wood)	DANIE (CID/22	ernyi phenois	and
(resole (cresulic acid) (phenol methyla)	CLD	20)	220
Gibenz(a blarthracene (1 2 5 6-dibenzanthracene)	6210	2	330
3 3'-Dichlorobenzidine ([1 1'-binbenvl]-4 4'-	0110	5	1.0
diamine 3 3'-dichloro-)	CLD	2	660
2.4-Dichlorophenoxyacetic acid (2.4-D) salts	ULF	2	000
and esters (acetic acid 2 4-dichlorophenoxy-			
salts and esters)	8150	3	20
4.6-Dinitro-o-cresol and salts (phenol.	0100	-	20.
2.4-dinitro-6-methyl-, and salts)	CL P	2	1.600
2,4-Dinitrophenol (phenol.2.4-dinitro)	CL P	2	1,600
2,4-Dinitrotoluene (benzene.1-methyl-2.4-		-	* ,
dinitro-)	CLP	2	330

577

1 of 3

DIOXINS/FURANS BY LOW RESOLUTION GC/MS (continued)

Constituent	Analytical Method	Reference	Detection Limit ug/kg (pob)
2,6-Dinitrotoluene (benzene,1-methyl-2,6- dinitro-) Fluoranthene (benzo[j,k]fluorene)	CLP 8310	2	330 2.0
Hexachlorodibenzo-p-dioxins	8280	3	0.1-0.3
Hexachlorodibenzofurans	8280	3	0.1-0.3
Hydroxydimethylarsine oxide (cacodylic acid) Indeno(1,2,3-cd)pyrene(1,10-1,2-phenylene)		(As Arsenic)	
pyrene	8310	3	3.0
Lead	CLP	1	200
Mercury	CLP	1	20
NICKEL A Nitzanhozol (abozol A zitza)	CLP	1	4,000
<pre>4-N)trophenol (phenol, 4-n)tro-) N.Nitropodipothylamino (dimothylnitrocamino)</pre>		2	1,600
Pentachlorodibenzo-o-dioxins	SW 846/ULP	4	330
Pentachlorodibenzofurans	. 0200	3	0.1-0.3
Pentachlorophenol	0200 CI D	2	0.1-0.3
nol (benzene.hydroxy)	CLP	2	1,000
ychlorinated biphenyl, N.O.S.	CLP	2	100-210
Selenium	CLP	1	200
Silver	CLP	ī	1.000
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (Dibenzo-p-dioxin,2,3,7,8-tetrachloro-			-,
furan)	8280	3	0.1-0.3
Tetrachlorodibenzo-p-dioxins	8280	3	0.1-0.3
letrach'orodibenzofurans	8280	3	0.1-0.3
Trailium	CLP	1	200
2 A E Trichlandhandwingetig poid (2 A E T)	CLP	2	210
(Acetic acid 2 4 5 trichlorophonoxy)	0150		• •
Vanadium	815U CL D	3	2.0
Zinc		1	2,000
DH	9040	3	L,UUU Standard Unit:
Cyanide	9010	3	Scandard Unit:
Sulfide	9030	2	200
EP Toxicity Extraction	1310	3	200
Corrosivity (as pH)	9040	3	Standard Unit:
Total Cyanides	9010	3	10

578

ge 2

REFERENCES

- (1) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Metals and Inorganics", Statement of Work 7/87, WA-87-K026, U.S. EPA, Washington, D.C.
- (2) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Organics, GC/MS Techniques", Statement of Work, 7/87, <u>WA-87-K236</u>, U.S. EPA, Washington, D.C.
- (3) U.S. Environmental Protection Agency (EPA), April 1984, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Revised Second Edition.
- (4) These compounds are not a part of the CLP list. The method will include Reference 2 protocol with modifications from Reference 3.

and a second
ny an ann an Alberta an Ann Ann Ann Ann Ann ann an thair ann an an Chuinn ann an Ann an Ann Ann an Ann Ann Ann

Attachment 2 Modification No. 5 Subcontract No. C86-131150

× ,

Constituent	Analytical Method	Reference	Detection Limit ug/kg (ppb)
Antimony	CLP	1	600
Arsenic	CLP	1	200
Barium	CLP	1	400
Benzidine([1,1'-biphenyl]-4,4' diamine)	SW 846/CLP	4	2,600
Benzolajanthracene (1,2 benzanthracene)	8310	3	2.0
Benzolbjriuoranthene (2,3-benzoriuoranthene)	8310	3	2.0
Benzolajpyrene (3,4-benzopyrene) Romullium	8310	3	2.0
Beryllium Bis(2 shlanothaw)mathana (athana Emathylanahis	LLP	1	200
prs(2-chloroechoxy)mechane (echane, [mechylenebis	C1 0	•	220
(0XY) JD1S[2-CHIOPU-J) Pic(2, b) are concerved, at her (propose 2, 2)	LLP	2	330
provide a second property ether (propane,2,2 -		2	220
Cadmium		2	330
Chlorinated benzenes NAS	LLP	1	1,000
1.2 A 5-Tetrachlorobenzene N	SW QAE/CLD	1	220
1 2 3 5-Tetrachlorobenzene	54 640/CLF	÷.	330
Chlorinated nhenol N.O.S.			
2 4-Dichlorophenol	CLP	2	330 .
2,6-Dichloropnenol	SW 846/CLP	2	330
2.5-Dichlorophenól	SW 846/CLP	Ž	320
J.4-Dichlorophenol	SW 846/CLP	4	330
2.3.4-Trichlorophenol	SW 846/CLP	4	330
2.4.5-Trichlorophenol	CLP	2	1 600
2.4.6-Trichlorophenol	CLP	2	330
2.3.4.5-Tetrachlorophenol	SW 846/CLP	4	330
2.3.4.6-Tetrachlorophenol			000
Chromium (Total)	CLP	1	2.000
Chromium (Hexavalent)	SW 846	3	400
Chrysene (1,2-benzphenanthrene)	8310	3	1.0
Copper	CLP	1	2.000
Coal tars	Analyzed as m	ethyl phenols	and
Creosote (creosote, wood)/	PAH's (CLP/83	10)	
Cresols (cresylic acid) (phenol, methyl-)	CLP	2	330
Dibenz[a,h]anthracene (1,2,5,6-dibenzanthracene)	8310	3	1.0
3,3'-Dichlorobenzidine ([1,1'-biphenyl]-4,4'-			
diamine,3,3'-dichloro-)	CLP	2	660
2,4-Dichlorophenoxyacetic acid (2,4-D), salts			
and esters (acetic acid,2,4-dichlorophenoxy-,			
salts and esters)	8150	3	20.
4,6-Dinitro-o-cresol and salts (phenol,			
2,4-dinitro-6-methyl-, and salts)	CLP	2	1,600
2,4-Dinitrophenol (phenol,2,4-dinitro)	CLP	2	1,600
2,4-Dinitrotoluene (benzene,1-methy1-2,4-			
dinitro-)	CLP	2	330

DIOXINS/FURANS BY HIGH RESOLUTION GC/MS

• •

580

DIOXINS/FURANS BY HIGH RESOLUTION GC/MS (continued)

ż

÷ . .

an a fried and a free

astarta Well three She many Provident

Constituent	Analytical Method	Reference	Detection Limit ug/kg (ppb)
2,6-Dinitrotoluene (benzene,1-methyl-2,6-			
dinitro-)	CLP	2	330
Fluoranthene (benzo[j,k]fluorene)	8310	3	2.0
Hexachlorodibenzo-p-dioxins	- 8280	3	5-30 ppt
Hexachlorodibenzofurans	8280	3	5-30 pot
Hydroxydimethylarsine oxide (cacodylic acid)		(As Arsenic)	
<pre>Indeno(1,2,3-cd)pyrene(1,10-1,2-phenylene)</pre>		•	
pyrene	8310	3	3.0
Lead	CLP	1	200
Mercury	CLP	1	20
Nickel	CLP	1	4,000
<pre>Nitrophenol (phenol,4-nitro-)</pre>	CLP	2	1,600
N-Nitrosodimethylamine (dimethylnitrosamine)	SW 845/CLP	4	330
Pentachlorodibenzo-p-dioxins	8280	3	5-30 ppt
Pentachlorodibenzofurans	8280	3	5-30 ppt
Pentachlorophenol	CLP	2	1,600
enol (benzene,hydroxy)	CLP	2	330
ychlorinated biphenyl, N.O.S.	CLP	2	100-210
elenium	CLP	1	200
Silver	CLP	1	1.000
2 3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)			
(Dibenzo-p-dioxin,2,3,7,8-tetrachloro-			
u an)	8280	3	5-20 pp.
T urachlorodibenzo-p-dioxins	8280	2	5-30 p t
T unuchlorodibenzofurans	8280	3	5 30 ppt
T llium	P		0
x phene (camphene,octachlor)	P	2	210
,4,5-Trichlorophenoxyacetic ac'd (2,4, -T,			
(Acetic acid,2,4,5-trichlorophenoxy-)	8150	3	2.
'aradium	, P	1	2,00
nc	CL	1	1 000
ch de	9040		ta dard nits
Cyanide	010	3	500
ulfide	9030	3	200
P Toxicity Extriction	. 10	3	-
Corrosivity (as pH)	9.140	3	Standard U it
Total Cyanides	S 01 0	3	10

ge 2

23

· 论书: 第二位

1.

REFERENCES

t

- (1) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Metals and Inorganics", Statement of Work 7/87, WA-87-K026, U.S. EPA, Washington, D.C.
- (2) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Organics, GC/MS Techniques", Statement of Work, 7/E WA-87-K236, U.S. EPA, Washington, D.C.
- (3) U.S. Environmental Protection Agency (EPA), April 1984, "Test Methods for Evaluatir Solid Waste, Physical/Chemical Methods", SW-846, Revised Second Edition.
- (4) These compounds are not a part of the CLP list. The method will include Reference protocol with modifications from Reference 3.

Attachment 1 Modification No. 5 Subcontract No. C88-131150

Constituent	Analytical Method	Reference	Limit ug/kg (ppb)
Antimony		1	600
Arsenic		1	200
Barium	CLP	1	400
Benzidine([1,1'-biphenyl]-4,4' diamine)	SW 846/CLP	• 4	2,600
Benzolalanthracene (1.2 benzanthracene)	8310	3	2.0
Benzo[b]f]uoranthene (2.3-benzof]uoranthene)	8310	3	2.0
Benzo[a]pyrene (3.4-benzopyrene)	8310	3	2.0
Bervllium	CLP	1	200
Bis(2-chloroethoxy)methane (ethane.[methy]enebis			
(oxy)]bis[2-chloro-])	CLP	2	330
Bis(2-chloroisopropyl) ether (propane,2,2'-			
oxybis[2-chloro-])	CLP	2	330
Cadmıum	CLP	1	1,000
Chlorinated benzenes, N.O.S.			
1,2,4,5-Tetrachlorobenzene 🔨	SW 846/CLP	4	330
1,2,3,5-Tetrachlorobenzene 🖊			
Chlorinated phenol, N.O.S.			
2,4-Dichlorophenol	CLP	2	330
2,5-Dichlorophenol	SW 846/CLP	4	330
2,5-Dichlorophenol	SW 846/CLP	4	330
3,4-Dichlorophenol	SW 845/CLP	4	330
2,3,4-Trichlorophenol	SW 846/CLP	4	330
2,-,5-frichlorophenol	CLP	2	1,600
2.4.6-Irichiorophenol	CLP	2	330
2.3 4,5-letrachlorophenol	SW 846/CLP	4	330
2,3.4.6-letrachiorophenol /	C1 D		0.000
Chromium (lotal) Chromium (Hovavalort)		1 7	2,000
Chronium (Hexavalent)	SW 840	3	400
Conce (1.2-benzphenanchiene)	0310	5	2 000
Coal + re	Analyzod as m	tothyl n onols	2,000
C_{ensore} (crease e wood)	PAH's (CIP/83	10)	anu
Cresols (cresvl) acid) (phenol, methyl-)		2	230
ben [a,h]arthracene (1.2.5.6-dibenzanthracene)	8310	2	1.0
.3'-D hlorobenzidine ([1.1'-biphenyl]-4.4'-	0010	5	
diam ne.3.3'-di h oro-)	CLP	2	660
2,4ithlorophonoxyacetic acid (2,4-D), salts		-	
and esters (aceti acid,2,4-dichlorophenoxy-,			
sa := and est rs)	8150	3	20.
1,6-D tro-o-cresol and salts (phenel,			
2 "nitro-6- ethyl-, and salts)	CLP	2	1,600
2.4 D it ophe 1 (phenol,2,4-dinitro)	CLP	2	1,600
2.4-D trotoluene (benzene,1-methyl-2,4-			
dinitro-)	CLP	2	330

.1

-1

DIOXINS/FURANS BY LOW RESOLUTION GC/MS

583

and a standard and the standard standard and the standard and a standard and the standard states and a standard

к 11 a part to the second second to the second provides to a

DIOXINS/FURANS BY LOW RESOLUTION GC/MS (continued)

Constituent	Analytical Method	Reference	Detection Limit <u>ug/kg (ppb)</u>
<pre>2,6-Dinitrotoluene (benzene,1-methyl-2,6- dinitro-) Fluoranthene (benzo[j,k]fluorene) Hexachlorodibenzo-p-dioxins Hexachlorodibenzofurans Hydroxydimethylarsine oxide (cacodylic acid) Index(1,2,2,4)</pre>	CLP 8310 8280 8280	2 3 3 (As Arsenic)	330 2.0 0.1-0.3 0.1-0.3
<pre>Indeno(1,2,3-cd)pyrene(1,10-1,2-phenylene) pyrene Lead Mercury Nickel 4-Nitrophenol (phenol,4-nitro-) N-Nitrosodimethylamine (dimethylnitrosamine) Pentachlorodibenzo-p-dioxins Pentachlorodibenzofurans Pentachlorophenol Thenol (benzene,hydroxy) ychlorinated biphenyl, N.C.S.</pre>	8310 CLP CLP CLP SW 846/CLP 8280 8280 CLP CLP CLP	3 1 1 2 4 3 2 2 2	3.0 200 20 4,000 1,600 330 0.1-0.3 0.1-0.3 1,600 330 100-210
<pre>'Llenium Silver 2,3,7,8-Tetrachiorodibenzo-p-dioxin (TCDD) (Dibenzo-p-dioxin,2,3,7,8-tetrachloro- furan)</pre>	CLP CLP 8280	1 1	200 1,000 0.1-0.3
Tetrachlorodibenzo-p-dioxins Tetrachlorodibenzofurans Thallium Toxaphene (camphene,octachloro-) 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	8280 8280 CLP CLP	3 3 1 2	0.1-0.3 0.1-0.3 200 210
(Acetic acid,2,4,5-trichlorophenoxy-) Vanadium Zinc pH Cyanide Sulfide EP Toxicity Extraction Corrosivity (as pH) Total Cyanides	8150 CLP 9040 9010 9030 1310 9040 9010	3 1 3 3 3 3 3 3 3 3	2.0 2,000 1,000 Standard Unit 500 200 Standard Unit 10

584

ge 2

-1-

~

in the start of the

ç.

1.4.5

The fact of the second state of

REFERENCES

- (1) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Metals and Inorganics", Statement of Work 7/87, <u>WA-87-K026</u>, U.S. EPA, Washington, D.C.
- (2) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Organics, GC/MS Techniques", Statement of Work, 7/87, WA-87-K236, U.S. EPA, Washington, D.C.
- (3) U.S. Environmental Protection Agency (EPA), April 1984, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Revised Second Edition.
- (4) These compounds are not a part of the CLP list. The method will include Reference 2 protocol with modifications from Reference 3.

STALL STATE AND A WEATH ADDRESS OF BUILDAY

Attachment 2 Hodification No. 5 Subcuntract No. C86-131150

.

DIOXINS/FURANS BY HIGH RESOLUTION GC/MS

· · · · · · · · · · · · · · · · · · ·			Detection
Constituent	Analytical Method	Reference	Limit ug/kg (ppb)
Antimony	CI P	1	600
Arsenic	CLP	î	200
Barium	CLP	ī	400
Benzidine([1.1'-bichenv]]-4.4' diamine)	SW 846/CLP	4	2.600
Benzo[a]anthracene (1.2 benzanthracene)	8310	3	2.0
Benzo[b]fluoranthene (2.3-benzofluoranthene)	8310	3	2.0
Benzo[a]ovrene (3.4-benzoovrene)	8310	3	2.0
Bervllium	CLP	ī	200
Bis(2-chloroethoxy)methane (athane.[methylenebis		-	
(oxy)]bis[2-ch]oro-])	CLP	2	330
Bis(2-chloroisopropyl) ether (propane.2.2'-		-	••••
oxybis[2-chloro-])	CLP	2	330
Cadmium	CLP	ī	1.000
Chlorinated benzenes. N.O.S.		-	-,
1.2.4.5-Tetrachlorobenzene \	SW 846/CLP	4	330
1.2.3.5-Tetrachlorobenzene			••••
Chlorinated phenol. N.O.S.			
2.4-Dichlorophenol	CLP	2	330
2.6-Dichlorophenol	SW 846/CLP	4	330
2.5-Dichlorophenol	SW 846/CLP	4	330
3,4-Dichlorophenol	SW 846/CLP	4	330
2,3,4-Trichlorophenol	SW 846/CLP	4	330
2,4,5-Trichlorophenol	CLP	2	1.600
2,4,6-Trichlorophenol	CLP	2	330
2,3,4,5-Tetrachlorophenol	SW 846/CLP	4	330
2,3,4,6-Tetrachlorophenol			
Chromium (Total)	CLP	1	2,000
Chromium (Hexavalent)	SW 846	3	400
Chrysene (1,2-benzphenanthrene)	8310	3	1.0
Copper	CLP	1	2,000
Coal tars	Analyzed as r	methyl phenols	s and
Creosote (creosote, wood)	PAH's (CLP/83	310)	
Cresols (cresylic acid) (phenol, methyl-)	CLP	2	330
Dibenz[a,h]anthracene (1,2,5,6-dibenzanthracene)	8310	3	1.0
3,3'-Dichlorobenzidine ([1,1'-biphenyl]-4,4'-			
diamine,3,3'-dichloro-)	CLP	2	660
2,4-Dichlorophenoxyacetic acid (2,4-D), salts			
and esters (acetic acid,2,4-dichlorophenoxy-,			
salts and esters)	8150	3	20.
4,6-Dinitro-o-cresol and salts (phenol,			
2,4-dinitro-6-methyl-, and salts)	CLP	2	1,600
2,4-Dinitrophenol (phenol,2,4-dinitro)	CLP	2	1,600
2,4-Dinitrotoluene (benzene,1-methy1-2,4-			-
dinitro-)	CLP	2	330

ge 2

DIOXINS/FURANS BY HIGH RESOLUTION GC/MS (continued)

i

Constituent	Analytical Method	Reference	Detection Limit µg/kg (ppb)
2,6-Dinitrotoluene (benzene,1-methyl-2,6-			
dinitro-)	CLP	2	330
Fluoranthene (benzo[j,k]fluorene)	8310	3	2.0
Hexachlorodibenzo-p-dioxins	8280	3	5-30 ppt
Hexachlorodibenzofurans	8280	3	5-30 ppt
Hydroxydimethylarsine oxide (cacodylic acid) Indeno(1,2,3-cd)pyrene(1,10-1,2-phenylene)		(As Arsenic)	ł
Dyrene	8310	3	3.0
Lead	CLP	1	200
Mercury	CLP	ī	20
Nickel	CLP	ī	4,000
4-Nitrophenol (phenol_4-nitro-)	CLP	2	1,600
N-Nitrosodimethylamine (dimethylnitrosamine)	SW 846/CLP	4	330
Pentachlorodibenzo-p-dioxins	8280	3	5-30 ppt
Pentachlorodibenzofurans	8280	3	5-30 ppt
Pentachlorophenol	CLP	2	1.600
enol (benzene,hydroxy)	CLP	2	330
ychlorinated biphenyl, N.O.S.	CLP	2	100-210
Jelenium	CLP	1	200
Silver	CLP	1	1,000
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) (Dibenzo-p-dioxin.2.3.7.8-tetrachloro-			
<pre>furan)</pre>	8280	3	5-20 ppt
Tetrachĺorodibenzo-p-dioxins	8280	3	5-30 ppt
Tetrachlorodibenzofurans	8280	3	5-30 ppt
Thallium	CLP	1	200
Toxaphene (camphene,octachloro-)	CLP	2	210
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)			
(Acetic acid,2,4,5-trichlorophenoxy-)	8150	3	2.0
Vanadium	CLP	1	2,000
Zinc	CLP	1	1,000
рН	9040	3	Standard Units
Cyanide	9010	3	500
Sulfide	9030	3	200
EP Toxicity Extraction	1310	3	-
Corrosivity (as pH)	9040	3	Standard Units
Total Cyanides	9010	3	10

REFERENCES

به المتر المسالح المحرف سالمحال ما المحاصية ألم المحمد المحمول معالمها

- (1) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Metals and Inorganics", Statement of Work 7/87, WA-87-K026, U.S. EPA, Washington, D.C.
- (2) U.S. Environmental Protection Agency (EPA), 1987, "Chemical Analytical Services for Multi-Media Multi-Concentration Organics, GC/MS Techniques", Statement of Work, 7/87, WA-87-K236, U.S. EPA, Washington, D.C.
- (3) U.S. Environmental Protection Agency (EPA), April 1984, "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Revised Second Edition.
- (4) These compounds are not a part of the CLP list. The method will include Reference 2 protocol with modifications from Reference 3.

1 Sauce

Attachment III

OPERATING INSTRUCTIONS AND DESCRIPTION OF MODEL PS-1 PUF SAMPLER

OPERATING INSTRUCTIONS

MODEL PS-1

A. UNIT PREPARATION.

- 1. Remove the PS-1 Puf Sampler from the shipping carton.
- 2. Locate the shelter lid and install on the aluminum shelter as follows:
 - a. Align the hinges of the lid to the rear of the shelter and fasten with four (4) 10-24 x 1/2" pan head screws.
 - b. Secure the front catch, (see figure A), to the shelter front using two (2) $10-24 \times 1/2^{*}$ flat head screws.

i.

- c. Secure the rear catch to the shelter back panel using one (1) 10-24 x 1/2" pan head screw.
- d. Secure the rear lid hasp to the shelter lid using two (2) 10-24 x 1/2" pan head screws. (note: These three catches may need readjustment to operate the shelter lid properly.)
- e. Adjust the front and rear catches to be sure that the lid slot lowers over the front catch when closing the lid and aligns with the rear catch when the lid is in the open position.
- 'f. The lid can now be secured in an open or closed position with the aluminum strip or a padlock.
- 3. Find one (1) sampling module in the packing container and install on the inlet port. The inlet port has a 1/2" threaded male fitting. Place the module over the male fitting and screw it on until snug.
- 4. Pull the exhaust hose from out of the shelter bottom and extend it away from the shelter on the ground.
- 5. Open the shelter door and timer.
- 6. Prepare the timer for the desired start and stop times.

B. Unit Calibration.

- 1. Calibration of the Puf Sampler is performed without a foam slug or filter paper in the sampling module. However the empty glass cartridge must remain in the module to insure a good seal through the module.
- 2. Install the GMN-40 Calibrator on top of the 4" filterholder.

590

٠.

Operating Instructions Model PS-1 Page 2

3. Connect an 8" water manometer to the Calibrator.

Sel.

- 4. Open the ball valve fully.
- 5. Turn the system on by tripping the manual switch on the timer. Allow a few minutes for warm-up.
- 6. Adjust the voltage control screw to obtain a reading of 70 inches on the dial gage, (Magnehelic Gage).
- 7. With 70 inches on the dial gage as your first calibration point, record it and the manometer reading on the data sheet.
- 8. Close the ball valve slightly to readjust the dial gage down to 60 inches. Record this figure and manometer reading on the data sheet.
- 9. Using the above procedure, adjust the ball valve for readings at 50, 40, and 30 inches and record on the data sheet.
- 10. Using these two sets of readings, plot a cuvre on the data sheet. This curve will be used for determining the actual flow rate in the field.
- 11. Readjust the voltage control fully clockwise to it's maximum setting. Open ball valve fully.
- C. Unit Operation.
 - The Puf Sampler may be operated at ground level or on roof tops. In urban or congested areas, it is recommended that the sampler be placed on the roof of a single story building. The sampler should be located in an unobstructed area, at least two meters from any obstacle to air flow. The exhaust hose should be stretched out in a down wind direction if possible.
 - 2. The sampler should be operated for 24 hours in order to obtain average daily levels of airborne pesticides.
 - 3. On and off times and weather conditions during sampling periods should be recorded. Air concentrations may fluctuate with time of day, temperature, humidity, wind direction and velocity and other climatological conditions.
 - 4. Air flow readings should be taken (dial gage) at the beginning and end of each sampling period. Differences between the beginning and ending flow rates should be averaged out to obtain an overall flow rate. (The Puf Sampler can be fitted with a gas meter which would give a direct reading of the total flow.)
 - 5. Blower motor brushes should be inspected frequently and replaced before expending.

Operating Instructions Model PS-1 Page 3

6. An electrical source of 110 volts, 15 amps is required.

- D. Descriptions of Sampling Media (Sorbents)
 - 1. Two types of sampling media are recommended for use with the Puf Sampler: polyurethane foams and granular solid sorbents. Foams may be used separately or in combination with granular solids. The sorbent may be extracted and reused (after drying) without unloading the cartridge.
 - 2. Polyurethane Foam (PUF):
 - a. Use polyether-type polyurethane foam (density No. 3014, 0.0225 grams/cm³, or equivalent). This is the type of foam generally used for furniture upholstery, pillows, and mattresses.(General Metal Works' part number PS1-16 is recommended. It is a 3" PUF plug. Also available are two and one inch pieces.) This type of foam is white and yellows on exposure to light.
 - 3. Granular Solids:
 - a. Porous (macroreticular) chromatography sorbents recommended. Pore sizes and mesh sizes must be selected to permit air flow rates of at least 200 liters/minute. Approximately 25 cm³ of sorbent is recommended. The granular solids may be sandwiched between two layers of foam to prevent loss during sampling and extraction.
- E. Sampling Module.
 - 1. Release the three (3) swing bolts on the 4" filter holder (FH-2104) and remove the hold down ring.
 - Install a clean 102mm dia. glass fiber filter (GMW-0212) on the support screen and secure it with the hold down ring and swing bolts.
 - Unscrew together the 4" filter holder and the sampling module cap leaving the module tube in place with the glass cartridge exposed.
 - 4. Load the glass cartridge with foam and or foam/granular solids and replace in the module tube. Fasten the glass cartridge with the module cap and 4" filter holder assembly while making sure that the module assembly, 4" filter holder and all fittings are snug and not overtighten.

Operating Instructions Model PS-1 Page 4

- 5. The glass cartridge and glass fiber filter should be removed from the sampler with forceps and clean gloved hands and immediately placed in a sealed container for transport to the laboratory. Similar care should be taken to prevent contamination of the filter paper and vapor trap (foam) when loading the sampler.
- 6. It is recommended to have two (2) sampling modules for each sampling system so that filter and foam exchange can take place in the laboratory.

perating Instructions odel PS-1 age 5

111

t

DUAL SORBENT VAPOR TRAP

Operating Instructions Kodel PS-1 Page 6

42

MODEL PS-1 PUF SAMPLER

.....

. .

· • • •

effective Feb 84

replacement parts

PS1-1 Dual sampling module with FH-2104 4" filter holder, less glass cartridge.
PS1-2 4" round Filter Holder (FH-2104)
PS1-3 Silicone gasket (top module)
PS1-4 Glass Cartrigde w/ support screens
PS1-5 Silicone gasket (bottom module)
PS1-6 Voltage Variator/Elasped Timer
PS1-7 Seven Day Skip Timer (GMW-70)
PS1-8 Magnehelic Gage 0-100"
PS1-9 Flow Venturi
PS1-10 Flow Valve
PS1-11 Blower Motor Assembly
PS1-12 Motor Cushion
PS1-13 Replacement Motor only
PS1-14 Replacement Motor Brushes (B-1)
PS1-15 Exhaust Hose , 10ft.length
PS1-16 PUF (polyurethane foam) plug 3*
PS1-17 PUF (polyurethane foam) plug 2"
PS1-18 PUF (polyurethane foam) plug 1*
PS1-19 Aluminum Outdoor Shelter Complete
PS1-20 Male Adapter for bottom of module
PS1-21 Flanged coupler for Male Adapter

A Sumition of Anderran Sumilar Inc. 595

596

.

MOTOR BRUSH SEATING PROCEDURE

On reassembly and handling, the lead wires must be kept away from rotating parts and motor frame.

To achieve best performance, the new brushes should be seated on the commutator before full voltage is applied.

After brush change apply approximately 50% voltage for thirty minutes to accomplish this seating. The motor will return to full performance after thirty to forty-five minutes running at full voltage.

(Caution) - Direct application of full voltage after changing brush will cause arcing, commutator pitting, and reduce overall life.

Use of the Model GMW-900 Voltage Variator provides the reduced voltage needed for brush seating.

If reduced voltage is unavailable, connect two motors of similar rating in series for thirty minutes to accomplish the brush seating.

WARNING -THE BRUSHES SHOULD BE CHANGED BEFORE THE BRUSH SHUNT TOUCHES THE COMMUTATOR.

SPECIAL NOTE:

When ordering GMW Replacement Motor Brushes, compare brush configuration carefully!

8-1 Brush Sets used on 115750 motors furnished after January 1978

8-3 Brush Sets used on 115250 motors furnished prior to January 1973 only,

Motor Brush "U" dip connectors used with 8-3 brush sets only,

100 1 AVI Carter Vice to Mit and

Ganaral Matal Works' PUF (PolyUrethane Fox. n) Sampler is a complete air sampling system designed to simultaneously collect suspended airbome particulates as well as trap airborne pesticide vapors at flow rates up to 280 liters per minute. Based on early SURC sampler collection concepts, the Model PS-1 features the latest in technological advances for accurately measur-

ing airborne particulates and vapors.

The GMW PUF Sampler is equipped with a by-pass blower motor arranged with an independent cooling fan. This feature permits the motor to operate at low sampling flow rates for periods of long duration without motor failure from overheating,

1.1.1

that permits their continual use. Polyurethane loam or wet/dry granular solid media can be used individually. or in combination. The dual chambured sampling module is designed

tracatient.

for easy access to both upper and lower media. Swingaway boils simplify changing the 4" diameter particulate filter media. The threaded lower canister is removed with the cartridge intact for immediate exchange. Filter support screens and module components are equipped with gaskets providing a leak proof seal during the samplung process.

Air flow rates are infinitely variable up to 280 liters per minute. The voltage variator adjusting screw alters the blower motor speed to achieve the flow rate desired. Exhaust The air flow rate is measured through the flow venturi. Hose utilizing a 0-100" Magnenetic Gage. Periodic calibration is necessary to maintain on-site sampling accuracy.

A 7-day skip limer is included as standard and permits weekly scheduling with individual settings for each day and 14 troppers to turn the sampler on and off as desired. Any day or days may be omitted. Day and night periods are distinctly marked. Other timers and timer/programmers are available optionally to suit any sampling resurement.

Priced separately, the callbration kit includes a manometer, calibrator and calibration curve nested in a carrying case. The calibrator attaches directly to the too of the filter holder stiminating the need to disassemble the sampling unit. It affords precise calibration of the sempler and is especisily recommended for calibrating the Model PS-1 PUF Samoler.

The GMW Model PS-1 PUF Sampler is shoped completely wired and assembled, ready for operation. All components are housed within the anonized aluminum sheller for maximum protection.

SPECIFICATIONS: Arrowage - 60 Wastage - 960 Max. Flow Asie - 250 iders per minate Power Source - 115V, 1 phase, 93 Hercz (other mectrical char-acteristics available on request) Net Weight - 55 lbs. Shipping Weight - 75 ibs.

ister of 99.999.9 minutes.

GENERAL METAL WORKS INC.

A Subsidiary of Anderson Samplers, Inc. 145 South Miami Ave. / Village of Cleves, Chio 45002 / Tel. 513-941-2229

Outside Ohio call toll free 1-800-543-7412

Sullatin No. PS 1

4M-LC 1083 600

Printed in USA

APPENDIX L

ANALYSIS RESULTS FOR WATER SAMPLES FROM NCBC WATER SUPPLY WELLS

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

601

(The reverse of this page is blank.)

REPORT

WELL WATER ANALYSIS FOR SILICA

POTABLE WATER SUPPLY WELL, NCBC, GULFPORT, MS

08 NOVEMBER, 1986

The ENSCO mobile incinerator, currently located at NCBC, requires low silica water to facilitate waste heat boiler operation. To determine if suitable well water was available at NCBC samples were collected from all five potable water supply wells. Samples were collected after purging each well for at least 3 minutes. The samples were collected in clean plastic sample bottles with plastic lids. Additionally, a sample was collected from the water distribution system located at the incinerator site. Samples were stored at ambient temperature and shipped to Tyndall AFB, FL for silica analysis.

Samples were analyzed by the colorimetric procedure listed in Standard Methods. Results of the lab analyses are listed below:

	DATE OF ANALYSIS	Si mg/l
	7 Nov 86	34.44
	7 Nov 86	30.17
	7 Nov 86	22.65
a.	7 Nov 86	39.08
	7 Nov 86	48.06
	7 Nov 86	41.07
	7 Nov 86 7 Nov 86 7 Nov 86 7 Nov 86 7 Nov 86 7 Nov 86	34.44 30.17 22.65 39.08 48.06 41.07

These data indicate that the silica levels in the potable water are unacceptable high for use in the waste heat boiler. Other water sources or treatment methods must be considered.

Terry L. Stoddart, Capt, USAF, BSC Project Officer

APPENDIX M

PLOTS OF SIGNIFICANT INCINERATOR OPERATING PARAMETERS DURING DAYS OF TEST BURNS

The graphs contained in this appendix are operational data collected from the incinerator data acquisition system.

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

(The reverse of this page is blank.)

SOIL FEED RATE (TONS/HR)

ł

٠.

SOIL FEED RATE (TONS / HR)

•

SOIL FEED RATE (TONS / HR)

10:48 61.Öl SOIL FEED RATE TEST #5 THREE POINT AVERAGE TIME OF DAY 12/15/86 03:50 09:21 сı С 08:52 0 2 g ŝ c ~

j

SOIL FEED RATE (TONS / HR)

SOIL FEED RATE (TONS / HR)

COMBUSTION EFFICIENCY 12/6/86

COMBUSTION EFFICIENCY 12/7/86

13 00 00

12 00

11:00

10:00

00:60

08:00

99.85 -99.84 - TIME OF DAY

and the state of the 15:00 KILN DRAFT 12/7/86 13:00 TIME OF DAY 00:11 00:60 - 0ç ဟု φ θοŗ 2 4-0 2 7 **BRESSURE (INCHES OF WATER)**

616

and the second second

£1

TEMPERATURE (DEGREES F) (Thousands)

618

¢

TEMPERATURE (DEGREES F) (Thousands)

TEMPERATURE (DEGREES FI

TEMPERATURE (DEGREES F)

15:00 SCC TEMPERATURE 12/7/86 13:00 TIME OF DAY 11:00 00:60 2 2.28 -2.26 -2.08 -2.04 -2.06 -23 2.12 2.02 2.2 2.1 2.24 2.22 2.18 2.16 2.14

TEMPERATURE (DEGREES F) (Thousands)

TEMPERATURE (DEGREES F) (Thousands)

STACK OXYGEN CONCENTRATION 12/6/86

PERCENT BY VOLUME

STACK OXYGEN CONCENTRATION 12/7/86

PERCENT BY VOLUME

13 00 STACK OXYGEN CONCENTRATION 12/15/86 12⁰⁰ 11:00 TIME OF DAY 10:00 00:60 00:30 0 26 -28 -22 g 20 24 2 2 2 19 4 g 8 ഉ 4 PERCENT BY VOLUME

100 F

629

and the first start of the

いたたき

PRESSURE (INCHES OF WATER)

PRESSURE (INCHES OF WATER)

SCC DRAFT 12/15/86

BRESSURE (INCHES OF WATER)

APPENDIX N ENSCO HEALTH AND SAFETY DATA REPORT FOR THE NCBC VERIFICATION TEST BURN OPERATION

The document contained in this appendix is the health and safety data report submitted by the Ensco safety officer. This appendix includes only the summary information, the enclosures referenced in this appendix are unavailable.

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

633

(The reverse of this page is blank.)

June 12, 1987

EG&G Idaho, Inc. P.C. Box 1625 Idaho Falls, Id. 83415

Att: Dan Haley

Re: Summary of collected health and safety data for the December test burn. Code Orange Project

Dear Dan,

Please find the enclosed data I generated during the period of the first test burn from 11-16-86 to 12-30-86, along with my field data sheets, daily and weekly reports.

Sincerely

Steve Saunders Health and Safety Officer Ensco Environmental Services

۰.

attachments:

Data

Enclosure	1	Weekly safety reports for weeks ending November 16 through December 21, 1986
Enclosure	2	Daily safety log sheets for November 16-25, 1986, and December 2-16, 1986
Enclosure	3	Field sampling data sheets for November 15-20 and 22-24, 1986, and December 2-7, 9, 11, and 12, 1986
Enclosure	4	Air sampling data sheets for December 4-7, 1986
Enclosure	5	Chain-of-custody record

Comments

On November 15, 1986, I began to collect background data for dust migration on a regular basis. Up to the first day of soil disturbance in the contaminated area, dust levels showed 0-0.05 mg/m^3 . 0.02 mg/m^3 is commonly found in areas with no activity and will be held as the typical background dust concentration.

On December 4, 1986, excavation of contaminated grids commenced. I used a preweighed filter cassette and air sample pump to monitor the breathing zone of the excavator operator as well as the direct reading monitor, all around the excavation area. Results of the direct reading monitor showed 0.01 mg/m^3 to 0.016 mg/m, 3 indicating 0.006 mg/m^3 above background readings for that day. Results on filter cassette received on December 27 showed 0.0325 µg/L of dust in the vehicle cab.

On December 5, a filter cassette was run in the same manner as previous day with similar low results.

On December 6, the first day of the contaminated soil test burn, I did area monitoring in a downwind area of the weigh hopper. I used a preweighed cassette and an XAD tube in the same location. Complete site monitoring was also performed with the direct reading instrument. Direct readings showed 0.01 mg/m³ downwind of active weight hopper. The filter cassette showed less than 0.007 μ g/L and the XAD tube showed <5.3 ng/m³ dioxin. Sample results for December 7 showed to be consistent with this day's readings.

In consideration of these test results it does look like a lesser level of protection would provide an adequate safety factor for future site work. But I feel that there are other variables that must be taken into consideration for future protection requirements. For example, the winter months on the Gulf Coast are relatively wet months, and when protecting for a dust hazard, soil moisture is of high concern. Active site work in the dryer summer months could result in higher dust readings. Soil conditions may also vary in different areas of the contaminated site providing for higher dust concentration. For these reasons, I feel it is premature to consider revising levels of protection standards for the future, considering only the data collected to this point and prefer to evaluate protection levels on a task performance and daily basis.

With this in mind, I would like to recommend that the level of protection in the plant area be reduced to level "D" during normal burning activities. This would be only on a daily basis. Continuous monitoring would be mandatory to evaluate weather and dust conditions for the work period and to evaluate potential exposure risk for each task performed. In this manner we could reduce potential for heat stress, and increase work performance without increasing employee exposure risk. All work in current contaminated areas will continue as level "C" PAPR.
I would like the opportunity to discuss this with you when you return to the plant. Please call if you have any questions.

APPENDIX O

CONSTRUCTION SITE CERTIFICATION

This appendix contains the report issued by a professional engineer certifying that the incinerator was built as specified in the EPA permit conditions. Only the letter is included because the material contained in the attachment referenced in the letter is the same as the information contained in Part 2, Appendix F.

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

639

(The reverse of this page is blank.)

December 2, 1986

Mr. Dan Haley EG&G Idaho Inc. 1955 Fremont Avenue Idaho Falls, Idaho 83415

Dear Mr. Haley;

One of the requirements for the USEPA RD&D Permit (Permit No. MS2 170 022 626), which allows the United States Air Force to test incineration of dioxin contaminated soils at the Naval Construction Battalion Center in Gulfport, MS, is that a registered professional engineer certify that the test equipment to be used has been erected in accordance with permit conditions. I have reviewed the system as is described in the referenced permit and examined the equipment erected : NCBC. The results of my review are summarized in the following.

Attachment I is a portion of the RD&D permit which describes ENSCO's mobile incinerator as is proposed for testing at NCBC. Based on my examination of the equipment erected by ENSCO at NCBC, I have prepared a schematic flow diagram of the system as it was configured on December 2, 1986 which is shown in Figure No. 1. A comparison of the system described in Attachment I and the system I have described in Figure No. 1 reveals the following minor differences:

- o The Effluent Reservoir and Effluent Concentrator are not used in the current NCBC configuration.
- o As salt loading in the Effluent Neutralization Tank increases, the supernatant is discharged through carbon beds and held in holding tanks prior to discharge to the POTW.
- o Solids accumulating in the Effluent Neutralization Tank will be discharged to a settling tank and the supernatant from the settling tank will be routed back to the Effluent Neutralization Tank. As of December 2, 1986, the line to return the supernatant from the settling tank had not been installed.
- o To control particulate fouling in the boiler, a water spray was installed in the flue gas stream, just prior to the waste heat boiler.
- o Other minor differences are shown in Figure No. 1.

Apart from the above minor changes, I certify that ENSCO has erected their MWP-2000 mobile incinerator in accordance with the permit conditions which are contained in Attachment I of this letter.

Sincerely, 11211 Darrell B. Jr. Derrington,

Professional Engineer, Texas Certificate Number 55152

cc: Major Terry Stoddart, USAF/ESC Harry Williams, EG&G

Attachment 1

Attachment 1 to this appendix described the MWP-2000 incineration process. The description is the same as that given in Part 2, Appendix F, and therefore has been omitted from Appendix 0.

2

States and the second

一下、「「二」」、「二、二、二、二、二、二、一、一、

APPENDIX P

MODIFIED METHOD 5 AND VOST STACK SAMPLING FIELD TEST DATA FOR MWP-2000 INCINERATOR SYSTEM VERIFICATION TEST BURNS AT NCBC

The document contained in this appendix is the detailed data obtained from the stack sampling crew during the verification test burn at NCBC. This document was reproduced from the best available copy. Due to very poor original legibility, the legibility of the microfiche editions is also poor. Persons requiring the information contained in this appendix may write to the technical libraries listed below to obtain photocopied versions of the appendix. A nominal charge will be levied to cover reproduction and archival costs. Please be prepared to provide the following information:

Report Title:	Full-Scale Incineration System Demonstration
	Verification Test Burns at the Naval Construction
	battalion Center, Gulfport, Mississippi:

Report Number: ELS-TR-88-61, Volume: II, Part: 3, Appendix: P

Send inquiries to:

Technical Library Engineering and Services Laboratory Tyndall Air Force Base, FL 32403

or

Technical Library Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415-2300

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

(The reverse of this page is blank.)

TABLE 5.1 FIELD DATA FOR TEST 1

HODIFIED WETHOD 5 AND VOST TEST DATA SUMMARY

1. NCBC - GULFPORT

1. 1. 1. A.

2. TEST RUN DESIGNATION - TEST 1

3. TEST DATE - 36-Dec-36

				€77-00 S	VOST	•
	DRTA DESCRIPTION	10	Value	Units	Value	Units
4.	Time					
**	Start	Time(s)	1339	n=s	1348	hr-s
	Finish	Time(f)	1455	tes	1529	(1 1 -5
	Duration	T	68	61 7	60	617
5.	Total Museer of Euroling Points	NP	12		2	
6.	Heter Calibration Factor	۲	L 294		NG	
7.	Grifice Calibration Factor	Ha	1.613		NA	
3.	Nozzle Specifications					
	Diameter	Ün	a. 375	in	5	
	Arrea	An	7.57E- 14	ft2	N A	
9.	Pitot Jube Coefficient	Cp	l. 291		NR	
18.	Average Inifice Pressure Drop	Havg	2.229	17 120	NA	
11.	Volume of Ory Sas Samples	Væ	51.976	ft3	54.819	liter
12.	Average Gas Meter Tencerature	Ĩ∎	559.5	8	32.:	ĸ
12	Barcostruc Pressure	25	32.46	ın Hg	773.7	🛲 lig
14.	Staric Starx Pressure	2 g	-1.42	17 120	-19.7	 723
15	Absoluce Stack Pressure	Ps	38. +3	ta Hg	772.9	🗰 hg
:5.	Volume of Gas Sampled (Standard)	Veetd	49.365	ат.	58.225	lit er
17.	Volume of Water Collected in					
	Impingers and Silica Gel	Y1c	663	ei.	NG	
18.	Volume of Water Collected					
	Benad on Saturated Conditions.	Vic'	1922	21	HA	
9	Volume Water Vacor Concensed					
	in Impingers	¥•c	29.75	Ŧ	NFR	
31.	Voiume Hater Vacor Concensed					
	in Silica Sel	Aned	1. 47	<u>م</u> لا	NĤ	
	and the second second		617		1	Daat
			047		Į	DESL

Best Available Copy

દ્ય.	Percent Moisture by Volume	3ms	32.595		145	
2	Percent Moisture by Saturation	Bes*	49,113			
2	Noie Fraction of Dry Gas	Fed	4, 5989		NA	
24.	Gas Analysis					
	Average CD2 by Volume	C12	9. 33	1	NA	
	Average 02 by Volume	82	6.13	X	NA	
	Average CD by Volume	8	8, 80	X	NA	
	Average N2 by Volume	N2	84.59	2	NG	
2.	Dry Molecular Weight of Stack Gas	10	29.73	lb/lb-wie	N A	
26.	Molecular Weight at Stack Conditions	Hs	23. 98	lb/lb-wole	NG	
27.	Average Stack Temperature	Ts	5 44	8	337. 1	K
38.	Average Stack Gas Velocity	Vs.	3 .9	ft/sec	17.29	a/ 58C
29.	Stacx Area	As	786.3	sq-in	2. 455	5 9~1
33.	Actual Stack Gas Flowmate	Qs	???, 381	acth	29, 319	ACH
31.	Dry Stack Sas Flowrate (Standard)	üsstd	424,753	SOFH	12, 329	SCYH
2	Iso - Kinetic Rate		75.6	z	NA	
П.	Weight of Filteraple Particulates	Mn	24.1	••	NA	÷
34 4.	Particulate Concentration	Cs	1. 375-39	1b/CSLF	NA	
	(at standard conditions)		L -d	sg/DSCF	NA	
			a. 387	gr/DSCF	NA	
			17.265	mj/DSCN	NA	
346.	Particulate Concentration	Cs6402	1. J7E-→9	1b/CSCF	549	
	(corrected to 5\$ oxygen)		2 49	sq /0507	NR	
	-), 296	gr/DSCF	NA	
			17.219	sg/DSCN	NA	
Sic.	Particulate Concentration	Cs124022	:	15/0SCF	NA	
	(corrected to 124 carbon dioxide)		8,62	mg/OSCF	NA	
			ə. J19	gr/DSCF	9 4	
			21.344	ug/0527	X9	
33.	Poilutant Mass Rate	PHR	₩ .52 -34	lbs/h r	NA	
			285.3	g/hr	NA	
			3168	gr/hr	NA	

Best Available Copy

Best Ancientic Copy

2577/579

HETER BOX CR.IBRATION

31.21

-Jac -36

Used for:TEST 1

Orifice			{	Texpera	ture					
Nerso.	Ses V	olume		Dr-	y Gas Note	F				
Secting (HD (in H20)	Reference (Ve) (ft3)	Samoler (Vd) (ft3)	Reference (tsu) (F)	Inist (tdi) (F)	Outlet (too) (F)	Avg (ts) (F)	Time (B) (min)	(Ym)	(Ha) (in :120)	
a. 5	4.310	5. 375	79	82	71	76.5	11. 53	a. 978162	1. 4886-1	
1	5,265	5_237	78	88	74	81	A. 63	1. 973166	1.619855	
2	10.910	1929	77	192	78	38	12.25	1.792374	1.605399	
•	19.398	19.357	78	187	82	94.5	8.75	1. 219999	1.529942	
6	19. 267	19.212	71	110	84	84	7.17	9. 989465	1.675253	
8	18, 218	19, 144	79	119	36	98	6.27	1. 819979	1.537394	

		CALIBR	ATION OF "S	TIR PRY *	UT TUBE	843ec36
		Used f	or: TEST 1			
			Sta	"5"-Type		Pitot Tuom ID.
			Pitor	Pitor		X & Y
		Pito	c Tube	Tupe		
		โนตะ	(9)	(P)	(تم)	
						Sta Pitot (Ca)
iest	1	X	Q. 55	a, 79	8.834	1,99
lest	2	1	9.57	2. 38	2.737	
Test	3	X	9.53	8. 32	4,736	Bar. Pressure
Test	+	X	8.5 8	12	8, 786	216
		Avg (Co	ui f or Probe	, I)	2, 301	Sas Teso (F) 175
Test	:	Y	NOT	NUT	538	
Test	2	Y	IN	DN	ERR	
Tesz	3	٧	USE	USE	ERR	
Test	\$	¥			ERR	
		Avg (Ca	for Proce	Y	231	
			•		•	

Best Available Conv

		DNETTAL STACK TES	t data	Report Date:
		(fill-in data marked !	77 APT 0	iti−jan-i7 wu
1	-)	Facility		NCEC
3		Location		Gulfport, Hississippi
3		Operator		Sung
		ê Tent		Juergens, Grasso
		Personnel		Bucia
٠	;	Test Data		66-345-36
5	-)	Ren Number		TEST 1
5		Stack Dia (in.)		38
		Stack Area (in2)	(£)	786. 35834786
7	—;	Sample Box Mancer		01
ð	-)	Hersen Box Nuscen		. #1
,	9	Orifice Calibration	(Haj	1.5125529758
11)	Gas Meter Cal. Factor	(Y)	6. 9936583475
1	1	Pitot Constant (Proce X) Pitot Constant (Proce ?)	(Ca) (Ca)	2. 89059 11727 ERR
12	-;	Air Temperature (F)		50
13	 ;	Heter Testerature (Fatrennest)	(Te)	55
14	-)	Prelim. Stack Temp. (Fairrenheit)	\Tsi	175
15	-)	Barometric Pressure (in. of Hg)	(ዖъ)	3.4
i	i	Hoisture, Assumed	(Bers)	6. 491123915
17	1	Mai. Weight, Dry	(143)	23. 53
18		Hoi. Weight, Stack	(1991)	21. 3435.2592
19	}	Heter Pressure (in. of H28)	(242)	38. +6
a)		Stact Pressures, Static (in: of-528)	. 190 -	4.2

DITTAL STACK TEST DATA

Best AVE 15 C ...

HOISTURE AND MOLSTILLAR VEISHT DETERMINATION

(fill-in data at each arrow)										
Test Jates Report Dates		₩ ~0ec~35 ₩5-Jan-37								
Stack Temp., Dry Buib (F))	179								
Stack Temp., Het Bulb (F)	}	179								
Sarometric Pressure (in of Hg)		38. %								
Saturated H29 Vapor Pressure at Het Buib Temperature (From Vapor Pressure Chart)	——-;	14. 36								
Vapor Pressure of H28 at Stack Consitions		14.35								
Moisture Concent in Stack, (Bus)		9. 4911359 49. 113								
CO2 in # (Orset of Fryste))	9								
02 in \$ (Orsat of Fryste)		6								
H2 in 1 (Orsat of Fryster		85								
CD in X (Orsat of Fryite)		9								
Dry foiecular Weight. (Md)		3.8								
Het Molecular Height, Obs		23.34								

Best Avrilatio Capy

	21	Stack Pressure, Absolut	te (Ps)	
		(in. of Hg)		31.45
i	22	X Factor (H = K x P)	00	4. 5899622599
23		Reference P	(Pavg)	
		(in. of 928)		8. 3557
i	24	Nozzie Dia (Calculateo)		8. 3789929195
25	->	Noccia Dia (Actual)	(Ch)	L 375
i	ă	Nozzie Area (ft2)	(An)	8. 2007553994
रा		Nozzie Numper		#1
25)	Lask Rate (015in Vacuum		
		Initial (ft2/min)		8. 391
		Final (ft2/mn)		1. 386
294		Filter Wesente	No.	e. 7
		(grami)	Finai	1.6255
		· J ··	Initial	9. 6014
			Diff.	2.9241
2%	;		No	Not Used
			Final _	
			Initiai_	
			Diff.	ERR
31a)	VOST Sproent	Тепах	17939
			1/Char	17946
396)	VOST Sorcent	Tenax	17241
			T/Char	17942
Эk		VOST Sproens	Tenax	17243
			*/Char	17944
31.a)	Noisture-impinger #1	#i	316
315		St reprise factors	ni	15
Jic	+	Moisture-Excinger 43	at	ð
31 d	 ;	Moisture-Silica Gel	Finai	242, 3455
			instaal	219. ?
			Diff.	31, 1833
31#	 ;	Musture-Total	(mi)	863, 1833
		(encluding NaIH)	(mi)	553. 1833
		Hoisture-Saturation	(mi)	1922
31	- , ,	Santie Containeris) Mn.		

Best Availatio

2 --) Amarica

2.

، •;

184 ml of HalH carryover to impinger #1.

Liquid was lost due to overflow in impinger #1. Since flue gas stream was saturated, actual of moisture collected should have been 1022 pl.

STREK TEST DATA TEST 1 05-Dec-35

Report Date: #5-jan-37

				645 Neter	Pitot	Orific Pres	e Heter sure,	Tuno	erature			•	Stack			
	Traverse		Clock	Reading	Pressure	(H	5	Dry 6	as Nese	r -	0vm	Isoing	Teno,			
	Point	lize	Time	(Vhu)	(P)	(in of	1281		(F)	Vacuus	Teno.	T-no.	ตรม	3	82	
	Number*	(#13)	(24 hr)	(ft3-)	(in H29)	Desire	Actual	Iniet	Outist	(in Hg)	(F)	w.	(F)	(\$)	(\$)	
1	7.	Start	1239	244.195	8.55	Z 83	14	83	71	13		59	182			1
2	8	5	1344	23.4	8. 57	3.28	2.35	198	74				183			2
3	9	19	وبنتا	21.9	8.77	15	23	189	79	2			183	18	6	3
Ą.	18	15	124	259. 3	9. 68	4.34	2.7	115	82	2.5			183			4
5	11	33	1259	24.3	8. 31	4.18	25	123	36	23	222	31	183		6	5
6	12	25	1425	259.8	9. 88	4. 34	245	125	9	23	248	85	183	9.5		6
7	1	38	1425	272,945	2.58	2.55	1.5	98	99	24	248	78	184			7
3	2	3	1431	275.3	1.5	2.71	1.73	119	92	24	2	73	164			8
3	3	48	قتة ا	288.7	8.7	3.21	1.7	114	55	24	240	74	184			9
8	4	45	1441	284.5	9, 35	131	1.7	123	94	. 24	243	41	184		25	19
11	5	59	1446	298. 4	4 02	4.22	1.55	122	%	24	278	88	184	9		11
12	6	5	1451	292. š	8.37	2.99	1.5	124	133	24			183			12
13	5	60	1455	25. :61		1. X							183	9	7	13

Samoling Duration

(sint - 62

Gas Sample Vol (ft3) (Ver -) 51.376

	Pitot Pressure (in H28) (P)	Unifice Seter Pressure, (in of HEB) (HD)	Dry Gas Jete Teso, (F) (Tes	r Vacuum (in Hg)	Gven Texc. (F)	(acing Teno. (F)	Stacx Teno. (Ts) (F)	99 19	्य (प्र
Average	 2, 774	2, 229	99. 3	22.53	244.2	72.3	183. J	9.4	5. 1
Ninisus	9, 559	1, 539	71. a	13.20	322.3	41.3	183. J	3.9	5. 3
Naxigus	8, 729	3, 4 99	125. a	24.20	278.3	91.3	184. J	1 2. 3	7. 3

Best Available GGJ

NONFEED NETHER 5 CALCULATED SATA TEST 1 Test Date: X-3-0-35 Report Gate: 65-jan-37 Average Voium of Sea Average Stacx Over and Average Val. Vol. Aver-age Pitor Stack Orifice Neter 545 Sugales Flowrate Flowate Pressure Tenc. Pressure Texa. Velocity at STP at Stack at STP Iso-(7.82) (05) (Pavg) (TS) (Havg) (vs) (Veista)) (Csta) Kinet:c (in H28) (R) (ft/sec) (dscf) (ACTH) (in (29) (R)(SCFH) (%) 57.3 8,560 6:23 3,48 .44 MA 10 54 NA 1.565 642.3 3.:3 542.0 52.+13 1.345-45 6.153 9. 35E+18 128.33 6-2.7 122 546. a 51.72 19.334 9.536-85 191.54 1.78 4, 345-35 5+2.3 2.94 549.3 55. -37 15, 334 9. 81E-85 4.172-05 77.33 2,745 6-2.3 2.37 <u>52</u> j 5.78 19.590 1.205-36 1.35-85 31.75 2.778 6+2.3 2.38 **25**4.7 57.22 A. JIE-05 0.795 24.623 1. 115+36 91.33 **24.**6 255 27.354 643.3 55.212 4.25-25 85. H 2.754 5.-18 22 -----31.545 2.743 541.1 4.15EHKS ت. ته 2.43 25.2 52.233 25.25 2,758 643.2 9.752-05 4:5-8 31.5% 1.79 643.3 2.35 57.3 5.37 38.342 9.946+35 4. 19E-105 79.31 **28.** • 2.29 55.279 12.512 2.755 643.4 9.945-35 4.25-25 78.49 **5**9. S 2.23 2.774 643.3 55.338 46, 449 1.205-36 4.25-65 77.41 4.25-05 2.774 643.3 2.23 **559.** 5 55. 337 49.005 1.200-06 75.-6

Best Available Lepy

VUST TEST SATA TEST 1 86-Gec-35

Report Date: 25-Jan-37

	Samiin	Clock	6as Necer	Ant 2-		Heter Teen	Probe Tean	Heter Terr	Proces Texas
	Time	Time	Reading		Vacuum	15	#1	ال	#1
	(ann)	(24 02)	(liter)	Setting	(in Hg)	(C)	(C)	(F)	(F)
1	Start	1348	3970.5	75	22	2	21	127.+	337.4
2	5	1753	8975.5	76	22	51	155	127.3	311
3	18	123	8979. 9	78	21	49	155	129.2	312.3
4	15	1483	8994. 4	75	23	59	159	122	318-2
5	29	1417	8988.53	77	17	51	128	123.3	256
6	z	1422	8993.7	59	7	51	12	127.3	27
7	31	1427	8999.5	5 8	7	5	159	127.4	322
8	3	1432	7, 5982	62	15	5	155	127.4	311
ģ		1596	1926, 1 1	83	6	54	159	129.2	218.2
13	45	1525	9911.7	88	11	ទ	155	127.4	211
:1		1519	7915.2	73	13	5	155	127.4	311
12	5	1515	7829. 3	88	14	54	155	129.3	312,3
13	63	:29	1325. LL						

as Samore Volume

(liter) ------ 54.31

Sampiing Duration

teant -	68	Rota-		Reter	Proce	Heter	Grooe
			Vacuum	Tens.	Tesc.	Tena.	ieno.
		Secting	(in Hg)	(C)	(C)	(F)	(F)
	Aver 1de	78.5	14.3	2.:	:51.7	125.8	32.3
	Ninimum	52	6	49	12	128.2	27
	Aaxisum	28	33	54	159	129.2	318.2

Best Available Copy

a start a start of the start of

TABLE 5.2 FIELD DATA FOR TEST 2

HODEFTED ARTHOD 5 AND YOST TEST DATA SUMMARY

- 1. NEBC GALFFORT
- 2. TEST ALM SESIONATION TEST 2
- 3. TEST DATE 17-34C-56

			HODIFIED	15. (D. 15	VQS	14
	NUTHING DESCRIPTION	10	Value	Units	Value	Units
			20 million and 10 million	and the second sec	a company	
	1 . The second se					
	9. 11200 05	_				
	25277	Timetsi	945	hrs.		hrs
	Finish	Time(f)	1199	hrs.	1963	itr's
	Duration	រី	69	31 0	60	#17
:	5 Total Number of Sampling Points	NP	12		2	
i	E Meter Calibration Factor	Y	8. 394		NG	
7	7. Orifice Calibration Factor	Ha	1.513		14	
â	L Mozzie Specifications					
	31ameter	Dn	12	· •	:	_
	Area	÷n.	1.41E-44	H2	90 AMA	-
	•					
9	L Pitot Tube Coefficient	Ca	8. 391		86	
19	L Average Orifice Pressure Jrop	Havg	6. 372	in 183	NA	
:1	. Volume of Dry Sas Sampled	ų,	II. 197	ft2	59.279	liter
12	, Average Gas Heter Tesperature	₹∎.	225. 3	R	338. 7	x
13	. Sarcuetric Pressure	Pb	34.25	in dg	762. ÷	m 14
14.	Static Stack Pressure	Pg	-1.3	in HED	-7.7	
15	Absolute Stack Pressure	Ps	34.22	18 dg	7 67. s	🗰 Hg
15.	Volume of Gas Sampled (Standard)	Vestd	31.743	æ	59, 399	liter
17.	Volume of Mater Collected in Exerngers and Silica Gei	Vic	692	ni	NG	
18.	Volume of Veter Collected Beset on Saturated Conditions.	Viet	647	e l		
		* • ••	6 A T	21		
19.	Volume Hater Vacor Concenses					
	in improgra	Viet	22.15	1	NR	
а.	Volume Hater Vacor Conservan					
	in Silica Gel	Viela	8. +5	977	NBC3	
		•			1997	

657

Best Availatie Gapy

and the second state of the second states and the second states an

	•					
य	. Percent Hoisture by Volume	Bes	49. :2	5	NA	
32	Percent Moisture by Saturation	Bes f	47. <i>2</i> 7	4		
22	. Mole Fraction of Dry 🖅	Fed	1.273		NR	
24	Gas Analysis					
	Average CC2 by Volume	m 2	9.348	×		
	Average 02 by Volume	2	5.47			
	Average CI by Volume		8.30	2		
	Average 12 by Volume	NR	81.53	ĩ	1944 1947	
25	. Dry Molecular Weight of Stack Gas	м	29.55	1b/1b-moie	NA	
ئ .	Molecular Weight at Stack Conditions	Hs	24.15	lb/lb-mie	N A	
27.	Average Stack Tesperature	ĩs	646.3	R	329. J	ĸ
:a.	. Average Stack Gas Velocity	٧s	61.24	ft/sec	18.71	3/ 58
29.	Stacx Area	As	776. 3	59-10	e. 455	50
19.	Actual Stack Gas Flowrate	Gs	1,882,239	ACTH	32, 623	AC15
31.	Dry Stack Gas Flowrate (Standard)	(astd	472, 561	SCFH	13, 386	5 7 1
2	iso - Kimetic Race		187.8	x	NA	
	leight of Filteraple Particulates	Яn	+ 3. 3	зġ	NA	
34 4 .	Particulate Concentration	Cs	2.572-39	15/DSCF	NA	
	(at standard conditions)		1.21	ag/0507	89	
			0.019	gr/05Cr	NA	
			42, 534	31/DSC1	249	
346.	Particulate Concentration	C55402	2572-39	16/0507	34	
	icorrected to an axygen:		1.17	Ser OSL	NG	
			2.013	gr/032	NG	
			41.219	39/05C1	NA	
3 4c.	Particulate Concentration	61202	1.55-09	16/05CF	NA	
	(commented to 125 carbon dioxide)		1.51	29/ 0557	44	
			8.425	37/05LF	N4	
			55. 325	m/ /JSD1	NA	
a.	Pollutant Mass Rate	PHR	:.25E-33	las/hr	ж.	
			\$71.5	s/hr	22	
	•		461.3			

658

Best Aveilelle Copy

NETER BOX CRLIBRATION

Baro. Pressure 32.21 Metar Box No. 257/679

Used forsital 2

Orifice			(Tencera	ture	 }			
Xano.	Gas V	Gas Volume		De	Dry Gas Meter				
Setting (40 (in ~23)	Reference (Ver (ft3)	Samoiar (Vd) (ft3)	Reference (bu) (F)	Iniet (tai) (F)	Outist (tao) (F)	Avg (ta) (F)	Time (Q) (mint	(Yau)	(Ha) (in H20)
45	4.319	5.875	73	82	71	75.S	11.43	8. 978162	1, 488541
:	5. 285	5.227	77	66	74	81	8.63	9. 973165	1.619855
2	19, 319	18. +29	71	182	78	39	12.3	9.992974	1.625399
•	12.388	755. 18	77	187	82	94.5	A. 76	1. 319639	1.529942
5	19.297	18.212	71	119	84	34	7.17	2. 989465	1.675253
9	18.319	18, 144	79	119	56	98	5.27	1. 219079	1.657994

		CALIBRAT	ION OF "S"	TYPE PIT	UT TUBE	04-3ec-35
		Used for	: 1237 2			
			Sta	*5* -7ype		Pitot Tupe 10.
			Pitor	Pitor		151
		Pitor	Tuce	Tube		
		Tuge	(P)	(P)	(Ca)	
						Std Pitat (Ca.
ies:	: :	X	8.55	2.73	8.334	a. 29
Test	3	1	1.57	83.5	d. 797	
Test	3	I	1.53	8.02	9. 786	Bar. Pressure
Test	٠	X	9. 53	1.72	8, 785	31, +6
		Avg (Ca)	for Probe	r >	1. 881	645 (cao (F)
						115
Test	1	۲	NOT	HOT	ERR	
Test	2	Y	IN	IN	ERR	
Test	3	¥	55	USE	ERR	
Test	٠	Y			ERR	
		Chen (Ca)	fre Janea	۲ ۱	528	

Bost Available Gopy

659

HOISTURE AND MOLECULAR VEISHT GETERNINATION

(fill-in data at sach arrow)

١

Test Date: Recort Date:		87-300-35 85-32 0-6 7
Stack Temp., Dry Buib (F)	•	177
Stack Temo., Het Bulb (F))	177
Barometric Pressure (in of Hg)		38.33
Saturated H28 Vapor Pressure at Het Buib Temoerature (From Vapor Pressure Chart)	,	14. 2
Vacor Pressure of H29 at Stack Conditions		14.2
Hoistume Content in Stack, (Bus)		8. 4727272 47. 27%
CC2 in % (Orsat of Fryite)	 ,	3
02 in X (Orsat of Fryite)	 .	53
N2 in \$ (Orsat of Fryite)	 ;	85.3
CD in X (Great of Fryite)		э
Gry Solecular Weight, (Md)		29.26
Her Bolecular Height, (Ms)		24. 15

		Recort Date:	
	(fill-in data sarwed	ver i anni 7 vel	
1 -	-) Facility		NCBC
2 -) Location		Gulfport, Mississiopi
3 —) Operator		Jung
	2		Juargens
	iest Gersonei		Basko Busio
•) Test Jaca		¥7-3ec-36
5) Run Newcar		ग्डा २
6 —	Stack Dia (in.)		38
	Stack Area (in2)	(A)	786, 3593+786
7 —	Sample Box Number		#1
8 —	Meter Box Nuscer		Ø1
9	Grifice Calibration	(Ha)	1.5125639753
19	Gas Neter Cal. Factor	(1)	8. 7936393473
11	Pitot Constant (Proce I	(تع) (8. 2006311727
	Pitot Constant (Proce Y	(62) (ERR
12	Air Testerature (F)		63
13	Meter Tesoerature (Fairennest)	(Tau	: 90
14	Preiss. Stack Teed. (Fanrennest)	(Ts)	178
15	3	(81.)	
14 - /	(in. of Hg)	(P8)	34.25
16	Moisture, Assumed	(Berg.)	a. 47 <u>27272727</u>
17	Mol. Height, Dry	()(d)	2 .66
18	Hol. Weignt, Stack	(145.)	24.148
19	Mater Pressure (in. of Hg)	(Per	3.2
28 —)	Stack Pressure, Static (in. of H28)	(Pg)	- L .3

.

tost Anteria Gay

661

21	L	Stack Pressure, Absolute (in. of Hg)	(Ps)	3.2
2	2	K Factor (H = K x P)	(K)	1.3237721994
23		Reference P	(Pavg)	
		(in. of H29)		€_77 4
24	•	Nozzie Dia (Calculateo)		a. 2955438825
3		Nozzie Dia (Actual)	נהם)	1.2
a	5	Nozzie Area (ft2)	(Ant)	8.0083488846
27		Nozzie Husper		R .
23)	Leak Race (015in Vacuum	•	
		Initial (ft2/min)		L 383
		Final (ft3/min)		486 _Q
222		Filter Weights	No.	5-5
		(graes)	Final	L 6427
			inisial	8.0419
			U117.	8. 3405
295			No.	Not Used
			Final	
		•	Initial	
			Diff.	ER
384		VOST Tenax	Tenax	14793
			T/Char	14755
395		VOST Tenax	Tenax	14794
			T/Ciar	14797
3 ðe		VOST Tenax	Tenax	14795
			T/Char	14799
31 a) Koisture-Caoinger #1	ni	726
315		Moisture-Isoinger 42	3i	47
lic		7 Moisture-Exainger 43	зi	9
214) Moisture-Silica Gel	Final	213.1485
			Initial	283, 5655
			ðiff.	9, 4789
31#	_) Noisture-Total	(mi)	992 4789
		(excluding NaCH)	(mì)	652. 1789
		Moisture-Caturation	(mi)	643
31		Samoie Container(s) No.		

Bast Antikila Gopj

ы т_{ас} Дай

1775

ť

ヨー

• ','

Reservs

Impinger #1 includes carryover of 25 pl from impinger #2 (NaCH).

663 .

STACK TEST DATA TEST 2 07-Dec-36

Report Date: 85-Jan-37

	Traverse Point Nuider	Ti sa (1117)	Clock Time (24 h r) :	Sas Meter Reading (Vas (ft3)	Pitor Pressure (P) (in H20)	Grific Pres (H (in of Desire	z Neter sure,)) H29) Hctual	Tence Dry Ga Iniet	rature s Heter (F) Outlet	Vacuum (in Hg)	Oven Testo. (F)	Imaing Tena. (F)	Stacx Temp. (Ts) (F)	£ 8	62 (X)
1		Start	945	295.365	2.71	a. 73	 9.75	73	78	ــــــــــــــــــــــــــــــــــــ	219	63	183.2	8.5	 4.5
2	ŝ	5	959	29	8,33	1.35	a. 39	36	71	5	219	53	183.3		
3	3	19	955	تة. الآ	9.38	8, 99	8.94	3	74	5.2	248	53	183.2		
	19	15	1999	385	8, 38	2,99	8, 94	125	85	6.2	258	53	193.2	13	4.3
5	11	29	1996	328. 5	3. 32	8.34	0.29	119	64	6.2	278	3	186.3		
5	12	3	1819	318.5	a. 37	a. 89	8. 33	112	86	6.3	25	69	185		
7	1	39	1923	313.49	8.73	8.75	9. 78	- 35	99	53	257	52	183.2		7
3	2	3	1837	317.3	a. 35	a. 38	1, 32	119	93	6	ಟಾ	58	:83-2		
3	3	÷8	1940	319	8.34	1.5	1.2	112	94	5.5	213	63	183.2		
8	÷.	45	1945		1.2	1.23	1.3	117	·	7.7	210	69	183.2		
11	5	59	1259	325.3		1.13	1.15	129	79	7.2	278	68	, 182.2	3.5	
.2	6	5	1955	323. 3	a. 37	8, 99	1.25	122	199	5.5	228	59	:83.3	8	
	5	ca 🛛	1 1 9 9	771. 172		2.39							125.3		

ting Jurasion

as Sample Voi (ft3) (Ver -) 35.387

		Pitot P ressure (in ri20) (P)	Orifice Meter Pressure, (in of 520) (H)	Dry Gas Seter Temo. (F) (Tau	Vacuum (in Hg)	Ove n Te no . (F)	laoing Tesc. (F)	Cena. (Ts) (F)	сэ Сё	62 (X)
Average	·,	a. 738	1.373	95.3	5.18	242.1	59.3 F3)	133.3	e.9	5.3
Maximum Maximum	·;	1.220	1.238	122. 3	7.78	279.9	52. J	.53.2 195.3	18.3	7.3

• •

Dest Available Guy

:	wified her	HOD 5 CALCIL	ATED DATA		TEST 2	Test Date: Report Date:	87-5ec36 85-jan-37		
	Average Pitot Pressure (Pavg) (in H29)	Average Stacx Tenc. (Ts) (R)	Average Orifice Pressure (Havg) (in H28)	Average Heter Temp. (Tm) (R)	Average Stack Sas Velocity (vs) (ft/sec)	Volume of Gas Sameled at STP (Vm(std)) (dscr)	Voi. Flowrate at Stack (Qs) (ACFH)	Voi. Flowrate at STP (Esta) (SEFH)	Iso- Kinetic (X)
:	8.719	643.2	2.75	54.8	NA	NA	NG	NA	NA
2	a. 773	643.2	2.53	556.3	56. JBJ	2.511	9.952-05	4.302-00	187. 52
3	9.397	643.2	ð. 36	539. J	57.718	5.37	1.325-46	4.462-85	185.57
à	8.225	643.2	9, 38	542.4	53, 352	8, 463	1. JJE+96	4.51E-05	189.78
5	3. 344	643.3	8. 9	545.3	59.263	11.723	1.345-36	4.565-05	115.38
5	2.546	54 4. 1	4. 91	547.5	59.223	13, 314	1.255-06	4.57E+85	126. +8
7	0.331	544.0	9 . 39	548.+	58.624	16.535	1.345+36	4.525-85	196. +3
3	تتذله	643. 9	8.89	5.3	58, 745	38. <u>335</u>	1.345-35	4.500-25	111. 23
3	a. 347	643.3	9. 31	51.÷	59.151	21.312	!	4.575-05	194.55
3	a. 382	643.7	e, 35	SS. J	68.378	24. 538	1.07E++6	4. 002-03	184.59
:	8. 782	643. 7	8.37	Si+. +	61.342	27.542	1.000-06	4.715+85	195.15
2	J. 798	643. 7	d. 37	555.3	51.272	31.015	1. 385-36	4.73E++C	186.33
5	9. 388	643.3	8.97	555. j	61.243	33. 743	1.365-36	4.73E+85	136. 39

Det Aridia GG.

VOST TEST DATA TEST 2 87-Jec-36

Record

2	Date:	in in	-17
•		NO 1811	

	Samoling Time (min/	Clocx Time (24 ar)	Gas Meter Reading (liter)	Rota- seter Setting	Vacuum (in Hg)	Heter Text. 45 (C)	97:000 Testo. 81 (C)	Stacx Tenc. 82 (C)	Heser Temp. 45 (F)	Proce Tenc. #1 (F)	Stack Teso. #2 (F)	
l	Start	529	3125.33	50	7	62	137	34	143.5	378.5	183.2	•
2	5	938	91 38, 3 3	65	19	63	148	84	145. 4	298. ÷	183.2	
5	:0	343	9124.3	88	11	64	147	34	147.2	255.5	183.3	
•	15	948	9138. +1	89	18	56	• 148	84	1 59. a	228. 4	183.2	
1	29	1983	3144.25	88	12	57	147	56	152.5	25.5	186.3	
5	2	1986	9149.11	88	32	57	157	85	152.5	314.5	185	
7	31	1913	3154.53	Sə	24	68	173	84	154.4	378	185.2	
3	2	1829	9153. II	38	29	63	iS	84	155.2	337. +	183.3	
2		1849	9163.34	ĉð	19	68	137	64	154.4	278.5	183.2	
3	-5	1845	9168. 🛎	ĉ۵	14	68	137	84	154. +	278.5	183.2	
	59	1959	9172.35	85	12	69	137	34	155.2	278.3	182.2	
2	5	1955	9178.73	35	14	69	137	84	155-2	278 . á	182.2	
5	5 9	1363	9183. iz	చ్		54	145	âĥ	129.2	293	185.3	

Sas Samole Volume

(#1U)

53.27 (1::27) •)

iing Jurat min/	1011 50	Rota- meter Søtting	Rota- meter Vacuum Setting (in Ag)		Prope Tesa. (C)	Stack Tend. (C)	Meter Tesa. (F)	Proce Tema. (F)	Stacx Teso. (F)
	Average Miniau	e 81.5 80	13.3	55.7 54	146.2 137	84. 4 84 ac	159.2	278.5	183. 3 183. 2

TABLE 5.3 FIELD DATA FOR TEST 3

NUDIFIED NETHED 5 AND VOST TEST DATA SUMMARY

NEAC - GULFPORT

. ...

: TEST RIN JESIGNATION - TEST 3

" TEST DATE - 87-Jec-36

		- Call - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 1923 - 192	D METTED 5 VOST			
DATA DESCRIPTION	ID	Value	Units	Value	Units	
	-					
Time						
Chrune	Time (a)	14.55	b			
		1453	m=s	1201	nrs.	
P17150	1100(7)	1645	hr-s	1785	hr-s	
Juration	T	59	21 11	63	B1 D	
. Total Number of Samoling Points	NP	12		2		
. Meter Calibration Factor	Y	8 , 994		NA		
. Unifice Calibration Factor	На	1.513		NA		
. Nozzie Specifications						
Diameter	Ûn	13	in	6		
Area	Se	3. 41E34	řt2	NA	_	
Pitot Tube Coefficient	Ca	9. 391	•	NR		
. Average Unifice Pressure Grop	Havg	Q. 752	in H20	N A		
. Volume of Dry Gas Samoled	Vie		ft3	55. št9	liter	
. Average Gas Meter Tesperature	ĩa	53. ?	R	331. 9	ĸ	
. Sancaestic Pressure	Pb	• 9.2	in Hg	768. 4	aan Hig	
. Staric Stack Pressure	Pg	-1.33	1n H20	- <u>-</u> 7	= 123	
Absolute Stack Pressure	Ps	34.22	in Hg	767.6	m rit	
			•		•	
Volume of Sam Sampled (Standard)	Vesto	34.141	57	59.733	liter	
Volume of Warse Collement in						
Intinent and Silice Cal	ut e					
THE REAL PROPERTY OF L	VIC VIC	0/2		/64		
Volume of Vistme Collected						
Rand on Saturated Conditions	ill at	C 78	-1	in		
	AIC.	9/0	-	NEA	-	
Malum Ustan Usaan Component						
VOLUME WALT VALUER LORDERISHES		•• •				
ru tuntudata	YNC	44 ولد	25	, NA		
Had and Hadren Hadren Company in						
Auther Mater Adda Cougensed	14					
IN SIICE OFI	Vweg	al 54	37	34		

Best Avcilcula Copy

TABLE 5.3

· į

21. Parcent Moisture by Volume	Энь	44.37	z		
Percent Moisture by Saturation	3ws*	48.33	z		
23. Mole Fraction of Dry Gas	Fac	L.5167		24	
24. Gas Instrum					
Remane IT - Walling	~~~ ,				
Remains (P) he Volume		7.29	X	3 6 3	
Average Cit by Volume	<u>u</u> z	4, 28	X	NA	
Generade 12 the University	ш ха	9. JU	X	NA	
	. K	36, Ji	X	XA	
25. Dry Molecular Weight of Stack Sas	Net	29.63	lh/lb-sole	NA	
25. Molecular Weight at Stack Condition	s Hs	34.82	lb/1b-soie	NA	
27. Average Stack Temperature	Ts	644	R	357. •	ĸ
28. Average Stack Gas Velocity	٧s	59.78	ft/sec	18.54	W/ 58C
29. Stack Area	As	706. 3	59~17	a. 455	599
39. Actual Stack Gas Flowrate	Qs	1, 272, 648	aceh	38.577	ach
31. Dry Stack Gas Flowrate (Standard)	Gsstd	462,749	SEFA	13, 348	SCH
79. Iso - Kineric Race		197.7	*	- NA	•
Weight of Filterable Particulates	in.		ng	NA	
344. Particulate Concentration	Cs	2,295-09	15/0SCF	.149	
(at standard conditions)		1.34	39/ DSCF		
		9.015	gr/050-	344	
		35.612	#g/05C1	344	
346. Particulate Concentration	Con 107	2 105-10	15/05-5		
icorrectes to 5% prygens		2.74		04 .101	
		9.215	12/0555		
		33,254	30/0573	vidi -	
Ide. Particulase Concentration	CSI2VCZ	2,755-79	1b/0Sur	349	
(corrected to 12% carcon dioxide)		1.33	TT / DSLF	.49	
		8. 321	TT/DSLF	VA VA	
		47.755	mg/05Cm	NA	
I. Pollutant Mass Race	2007	1 355-37	l he cha		
	PT IN	1. 		NE	
		7777	y/m ⁻	NH	
		1416	94.2.016		

Bast Avenue Corry

1000

668·

NETER SUX CALIBRATICS

38.21

H-]ec-36

... Pressu

.....

Masar Box No. 2577/579

Used for:TEST 3

Omfice			<	Tencera	ture	 }			
Nano.	6as V	oiume		0m	y Gas Meter	r			
Setting	Reference	Samoler	Reference	Inlet	Outlet	Avg	Time		
(H)	(Vhu	(Vd)	(tu)	(tdi)	(1:0)	(ta)	(2)		· (Ha)
(in 129)	(ft3)	(ft3)	(F)	(F)	(F)	(F)	(m171)	(Ym)	(in H20)
e. 5	4.318	5, 975	78	82	71	76.3	11.43	2.978162	1. 486641
1	5.085	5.237	79	88	74	81	£.63	973166	1.619455
2	19. 319	1928	73	182	78	99	12.3	8.992974	1.625299
4	19. 398	19,357	79	197	82	94.5	8, 75	1. 119999	1.629842
5	19. 387	19,212	71	119	84	84	7.17	2.989466	1.575253
8	19. 319	18, 144	79	110	86	98	6.27	1.819979	1.657994

Avg ------ 0. 993653 1.512563

	CALIERA	ION OF "S"	שפטה דנ	34-Jec-36				
	Used for	: TEST 3						
		Std	*S*-Type		Pitot Tube ID.			
		Pitos	Pitor		X # 7			
	Pitcs	โนยะ	เ ีย วะ					
	Tupe	(P)	(P)	(Ca)				
					Std Pitot (Ca)			
Test 1	I	1.55	8,73	8.334	9.29			
Test 2	X	a. 57	8. 28	9, 797				
Test 3	X	8.53	a. 92	8. 786	Bar. Pressure			
Test 4	x	e. 58	1 .92	4. 786	32. 46			
	Avg (Ca)	for Proce	I	9.391	6as Taso (F) 175			
Test 1	Y	NOT	NOT	ERR				
Test 2	Y	IN	IN	ERR				
lest 3	Y	USE	USE	ER				
iest +	¥			ERR				
	Avg (Co)	for Proce	Y	ERR				

Bast Avenin Gry

۱

and the second

HOISTURE AND MILETILAR WIGHT DETEMINATION

(fill-in data at sach arrow)									
Test Date: Report Sate:		97-3ec-35 85-3an-37							
Stack Temo., Dry Bulb (F))	178							
Stack Teso., Her Buib (F)	;	178							
Barcaetric Pressure (in of Hg)		3 8. 25							
Saturated H29 Vacor Pressure at Het Buib Temperature (From Vacor Pressure Chart)		14,52							
Vacor Pressure of H28									
		14.52							
bisture Content in Stack, (Ews)		14.52 9.4833857 48.331							
CC2 in % Comman of Fryster		14.52 9.4833857 48.333 9.2							
CC2 in % (Orsat of Fryitz) CC2 in % (Orsat of Fryitz)		14.52 2.4833857 48.33x 9.2 4.5							
<pre>de state Conditions bisture Content in State, (Ews) CC2 in % (Ormat of Fryitz) C2 in % (Ormat of Fryitz) N2 in % (Ormat of Fryitz)</pre>		14.52 9.4833857 48.33x 9.2 4.5 36.3							
<pre>ac stack Conditions bisture Content in Stack, (Ews) CC2 in % (Ormat of Fryitz) C2 in % (Ormat of Fryitz) N2 in % (Ormat of Fryitz) C3 in % (Ormat of Fryitz) C4 in % (Ormat of Fryitz) C5 in % (Orm</pre>		14.52 9.4833857 48.33x 9.2 4.5 36.3 8							
<pre>de Statex Conditions boisture Content in Statx, (Ews) CC2 in % (Ormat of Fryitz) C2 in % (Ormat of Fryitz) N2 in % (Ormat of Fryitz) C3 in % (Ormat of Fryitz) G7 Molecular Height, (No)</pre>		14.52 9.4833857 48.333 9.2 4.5 36.3 8 29.63							

		INITIAL STACK TE	et data	TABLE 5.3 (continued) Recort Date:
		(fill-in data marked	бу алт	67-141-57 205)
i)	Facility		NCSC
2	-)	Location		Gulfport, Mississicpi
3)	Coerator & Test Personnel		Ju ng Ju ergens .Grasso Basko Buela
ł		Test Date		87-Jec-36
5		Ran Humoer		TEST 3
5	-)	Stack Dia (in.) Stack Area (in2)	କ୍ଷ	3 9 7 06. 85834736

7 -) Sample Box Number #1 Neter Box Number #1 9 Orifice Calibration (Ha) 1.6125629753 :9 Gas Meter Cal. Factor (Y) 8. 7936533475 Pitot Constant (Proce I) (Ca) :: 8. 2006211727 Pitor Constant (Prope ?) (Cpr ERR 12 ---- Air Temperature (F) 67 13 -> Heter Tencerature (โฮ (Fahrenness) 128 Preiim. Stack Temp. (Ts) (Fannenett) 178 Barometric Pressure (Pb) (in. of Hg) 31.25

5

6

16 Moisture, Assumed (Gurs) 8. 4833257851 17 Nol. Weimit, Dry (HH) 23.522 Mol. Weight, Stack 18 (Hs) 24. 329539992 Meser Pressure 19 -> (Per (in. of Hg) 31.2 29 ---) Stack Pressure, Static (Pg) (in. of H29) **-1.38** 671

1 11-ATT

	21	Stack Pressure, Absolution	ute (Ps)	
				38. CZ
	2	K Factor (H = K \times P)	00	2. 3888533637
2	:	Reference P	(Pavg)	,
		(in. of H29)	-	8.998
	24	Nozzie Dia (Calculated)	Q. 2978445531
2	;)	Nozzie Dia (Actual)	(Dn)	1.25
	ය	Nozzie Area (ft2)	(An)	1. 2083488846
27	')	Nozzie Number		#2
ى	,	Leas Rate (815in Vacuu	m)	
		Initial (ft3/min)		8, 382
		Final (ft3/min)		2.384
292	-)	Filter Heights	No.	ç- i
		(grams)	Finai	9.5373
			Initia	1 9.6019
			Diff.	4. 234
295			No.	Not Used
			Final	
			Initia	
			Diff.	ERR
374		VOST Tenax	Tenax	14729
			T/Char	14685
336	;	VOST Tenax	Tenax	14688
			T/Char	14683
32c		VOST Tenax	Tenax	14691
			T/Ctar	14604
lla	 ,	doisture-lapinger #1	3i	666
315	 ,	Moisture-Gaoinger 42	Ji	398
lle	_,	Moistur e (soinger 1 3	тi	9
31d)	Musture-Silica Sel	Final	231.238
			Initiai	219.7664
			Dirf.	11. +715
31.		Hoisture-Total	(mi)	979. 4716
		(excluding NaCH)	(m1)	679. +715
		ADISTURE SACURATION	(mi)	678
21	-, 5	anoie Containerts) No.		
			-	······································

672

STREX TEST DATA TEST 3 - WT-Sec-56

Report Bate: 25-Jan-37

	Traverse Point Nuiscer	Time (sin)	Clocx Tian (24 hr)	Gas Neter Reading (Vm) (ft3)	Pitot Pressure (P) (in HEB)	Orific Pres (H (in of Desire	e Heter Sure,) Actual	Tenor Dry Gas Iniet	rature s Neter (F) Cutlet	Vacuum (in Hg)	Qven Teso. (F)	Imoing Teno. (F)	Stacx Tem. (Ts) (F)	(X)	2 (1)
:	7	Start	1455	334.354	8.72	ə. 71	3.77	82	89	6.7	258	55	131		
2	3	5	1591	337.3	e. 76	a. 75	d. 81	94	a 1	6.3	273	5	181		
3	à	19	1585	339.5	S 22	a. 34	1.2	<u>99</u>	83	8.5	23	54	191	8	4. J
٠	19	15	1519	342.3	a. 3	a. 39	2 H	137	35	8.2	23	59	181		
5	11	33	1515	3452.5	a .9	8. 39	8.35	118	38	8.2	259	- 62	181		
5	12	2	1529	348. +	e. 33	a. 32	:	115	9 9	8.3	250	68	181	9.5	
7	1	33	1535	<u>3</u> 1.315	S 13	3.73	ə. 25	191	85	7.1	250	62	181	9.5	
3	2	3	1548	3 4.3	a. 79	J 13	1. 35	189	94	7.2	279	54	181		
7	3	43	1545	327.7	d. 37	e. 36	9. 33	114	95	7.3	253	5	181		
: ð	۵	+5	1533	35 6. +	1.28	1.37	1.15	117	%	9	358	53	181	9.5	
::	5	58		۵۵۵. ۳	1.25	1.34	1.12	129	95	9.3	205	63	184		
:2	5	5	1639	357.2	8, 34	a. 33	1	i22	199	3.5	225	68	183	9.5	
13	ó	63	:625	378,219		9. 3 9		119	199				183		

= moling Junation 21m - 68

Sas Eannie Vol (ft3) (Ver -r 35, 355

		Pitot P ressure (1n d 29) (P)	Orifice Meter Pressure. (in of HEB) (H)	Orr Bas Acter Tesc. (F) (Tex	Vacuum (in Hg)	Oven Teac. (F)	laoing Tezo. (F)	Stacx Tenc. (Ts) (F)	(12) (12)	2 (x)
Average		a. 399	a. 752	78, 7	6.22	253. 3	53	181.5	9.2	4. E
Ainisus	 ,	a, 729	9. 78	29.3	5.73	<u>2</u> 2. J	5.0	181.3	3.3	4.3
Nax 1 DUR		1.289	1.153	:22. 3	3. 38	225.0	5 5. J	134.0	3. S	4.5

.

.-

ļ		HOD 5 CALCLU	ATED DATA		TEST 3	Test Date: Report Date:	47-Jec-35 Ko-Jan-37		
	Average Pitot Pressure (Pavg) (in H29)	Average Stacx Tenc. (Ts) (R)	Average Ortfice Pressure (Havg) (in #29)	Rverage Neter Text. (Ta) (R)	Kverage Stacx Sas Velocity (vs) (ft/sec)	Volume of Cas Sampled at STP (Vm(std)) (dscf)	Vol. Flowrate at Stack (Cs) (ACFH)	Vol. Flowrate at STP (Osta) (SEFH)	Iso- Kineric (%)
:	1.729	541.3	2.77	541. a	NA	NA	NA		NA
2	9.749	641. a	2. 73	544.3	55, 325	3, 452	9.78E→65	4.23E-05	141.38
3	9. 819	541. J	2.37	5+6.5	57.283	5, 188	1.025-36	4. +8E85	184.33
	1.133	641.Ø	e. 39	548.9	58. 661	8,254	1.245-36	4.+62-05	185.+2
5	3. 346	64 L. J	a, 39	550. 3	59.155	18, 935	1.25	4. +9525	197.71
5	9. 367	541.3	1.22	52.3	59. 643	13, 586	1.225-66	4.555-25	196.57
7	2, 353	541. J	8. 91	553. ÷	59.295	15, 348	1.25-6	4.525-05	118.21
3	0.343	641.3	2.39	5 54.4	59.333	19.682	1.245-26	4. 48E++85	199.52
ş	9. 846	541. J	8, 91	55. j	59.148	22. +17	1.25-+6	4.49E-05	198.39
а	4. 367	541.0	a. 33	55.7	59.954	24.352	1.365-36	•	107.53
1	2.365	5+1.J	8. 35	557.3	62.52	27. 955	1. JTE+ 36	4.525-25	197.75
2	8. 398	6+1.+	a. 35	53.3	69.694	31.329	1.37E-06	4.512-25	199.35
•	2.359	541.E	a. 35	559.7	62,639	34, 141	1. 27E-36	4. 51E-05	129.53
VOST	TEST	SATA	TEST 3	- 17-3ec-3 6					
------	------	------	--------	-------------------------					
------	------	------	--------	-------------------------					

Report Date: - 45-Jan-37

	Sampling Time (min)	Clock Time (24 m²)	6as Mecer Reading (liter)	Rota- neter Sesting	Varuum (in Hg)	Heser Teso. 35 (C)	Prcor Text, \$1 (C)	Stack Tenc. 42 (C)	Neter Teno. 85 (F)	Prope Tena. \$1 (F)	Stacx Teso. 42 (F)
1	Start	:51	9298.53	25	12	55	154	84	149	399.2	183.2
2	5	1555	XX. I	85	15	5	155	85	131	312.3	185
3	19	1691	\$218.45	55	15	55	155	35	122.3	312.3	:85
	15	1636	9215.45	85	- 15	5	157	85	12.3	314.5	125
5	39	1516	9229.45	55	19	57	157	84	134.6	314. ś	:83.2
ś	z	:625	SEL 33	64	21	58	155	84	136.4	312.3	183.2
7	31	:633	9229.53	58	21	53	155	84	135. ÷	312.3	183.2
3	3	:533	224.X	39	23	59	154	85	128.2	389.2	185
Э	48	1544	9233.54	د ة	22	53	143	84	14-3	299. +	193.2
8	+5	:559	3245.5	85	22	54	244	85	149	291.2	185
1	59	1655	9249.53	84	23	60	145	85	148	293	185
2	5	1739	9254.51	78	3	2	149	85	12.5	339.2	:26.3
3	63	1785	9257.0					86	2	Z	156.3
5	Sancie Ve (liter)		55.53								
	iing Dura	10107									
	(sin)	- 53		Rota-		Peter	Prope	Stacx	Meter	Proce	Stacx
				46251	Vacuum	ieao.	ieno.	1580.	iena.	Teso.	Testo.
				Secting	(in dg)	(C)	(C)	(2)	(F)	(F)	(F)
			Average	5 .	:3.5	53. J	:52.3	84.3	123	: <u>25</u> . J	:84.5
			tinisus	78	12	52	143	84	32	32	:83. 2
			Maxisus	5	27	ii	157	36	149	314.6	!35. 3

TABLE 5.5 FIELD DATA FOR TEST 5

HODIFIED METHOD 5 AND VOST TEST DATA SUMMARY

.. NEEC - GLEFPORT

•

2. TEST RIN DESIGNATION - TEST 5

3. TEST DATE - 15-Dec-55

		MODIFIED	NETHOD 5	5 VOST			
	ID	Value	Units	Value	Units		
			Ximmer				
4. Time							
Start	Time						
Finish	1122(5)	228	n-s	<u>82</u>	hrs		
Duration	11002(17)	1959	11-2	1953	hrs		
	1	946	#17	58	81 D		
5. Total Number of Sampling Points	NP	12		2			
6. Meter Calibration Factor	Y	1.394		NA			
7. Unifice Calibration Factor	На	1.613		NA			
& Nozzle Specifications							
Diameter	0e	4.75	:-				
Area	ân	منت من هادستگارد .2	42	Č.			
			1 7 -	194			
, Pitot Tuce Coefficient	Ca	8. 891		NA			
18. Average Orifice Pressure Groo	Have	3 279	in 1777				
		00 GCL)		MSI			
II. Volume of Dry Gas Samoled	Yes	31.725	# 3	48.319	liter		
12. Average Eas deter Texcerature	Ta -	·	G				
			a	د مذلک	к		
12. Jarometric Pressure	20	34.35	in Hg	758.3	🛥 Hg		
14. Static Stack Pressure	Э л	g =c	-		-		
	. 3		الشكار الد	14.2			
15. Absolute Stark Pressure	Ps	31.3	in Hg	753.6	aa Ha		
15. Volume of Gas Sampled (Standard)	Laterat	79 457		14 497	•		
			342	48.355	litzr		
17. Volume of Mater Collected in							
impingers and Silica Gel	VIC	839	ai.	MO			
12. Volume of Natur Collected							
danks on Saturated Consitions.	Vlc'	837	#1	NA			
19. Volume Hater Vacor Consument							
In Inginoers	i Ann						
•		33. 81	Sur	NA			
follow Hater Vacor Contenses							
in Silica Gel	Wwwsg	1.43	517	NO			
	-						
•		6	//				
and the first of the second							

21.	Percent Noisture by Volume	Bert	55. +62		NA	
	Percent Moisture by Saturation	āws?	55. 415			
27.	Mole Fraction of Dry Gas	Fea	8. +339		NA	
24.	Gas Analysis					
	Average CD2 by Volume	<u></u>	7.53	x	ы с .	
	Average 02 by Volume	22	5.54	- 5	NC	
	Average CD by Volume		3. 39	4		
	Average 12 by Volume	R	65.39	×	NA	
2.	Dry Molecular Weight of Stack Gas	Nd	29.48	lb/15-moie	NA	
<u> 25</u> .	Molecular Weight at Stack Conditions	# 5	22, 30	15/15-sole	NA	
Ξ.	Average Stack Texperature	īs	648. 5	R	369. 3	ĸ
<u>:</u>	Average Stack Gas Velocity	٧s	68. 78	ft/sec	29. 29	1/sec
29.	Stacx A re a	As	786. 3	59-10	a. +55	50-1
3 8.	Actual Stack Gas Flowmate	ŵs.	1,214,117	HCTH	- 34,384	RCM
21.	Dry Stack Gas Flowrate (Standard)	GSSTJ	437,146	SIFH	12, 388	SCH
Ţ.	lso - Kinetic Rate		191. J	1	NA	
•	Height of Filteraple Particulates	50	41.2	ng	NA	
34a.	Particulate Concentration	Ca	2,395-39	15/0SEF	NA	
	(at standard conditions)		1. 25	30/0SCF	NA	
			1. JZ1	gr/CSLF	NA	
			47.773	39/ISEN	244	
346.	Particulate Concentration	Cs6XC2	2.115-39	16/0527	NO.	
	(corrected to SX oxygen)		1. +1	M / DEEF	NA	
			3.822	or/DSCF	NG	
			49.778	mg/0501	.149	
JAC.	Particulate Concentration	C512 VCC2	4.71E89	12/1977	.99	
	(corrected to 12% caroon dioxide)		2,14	mg/CSCF	NA	
			8. 233	pr/DSCF	NR	
			75, 431	ni/DSC1	NA	
z	Pollutant Mass Rate	PHR	1.325-33	lbs/br	Ma	
			591.4	3/h=	140	
			0176	3		

HETER :	sor ca	TERATI	
---------	--------	--------	--

04-300-36

. Pr	essure	39.22	Neter	Эaх	No.	3577/673
------	--------	-------	-------	-----	-----	----------

used for:TEST 5

.

Grifice			<	Tencera	ture				
Nano.	Gas V	olume		0r-	y Gas inte	r			
Setting (H)	Ref erence (Vx)	Sanoier (Vd)	Reference (tw	Inlet (tdi)	Outlet (tdo)	Avg (ta)	Ti 38 (9)		(Ha)
1n H29)	(#3)	(#3)	(F 7	(F)	(F)	(F)	(a1n)	(Yau)	(1n ri20)
e. 3	4.918	5. 275	78	32	71	76.5	11.43	8. 378162	1. +885+1
1	5.395	5.237	78	88	74	81	تذر	2 373165	1.519855
2	18, 318	10.420	78	182	78	39	12.33	2.992974	1.635299
	19. 388	19.357	78	197	82	94.5	8. 75	1. 210000	1. 629842
6	18.087	19.212	71	119	84	84	7.17	1. 389466	1.575353
a	19. 010	18, 144	79	119	66	98	5.27	1. 219879	1.557994

Avg ----- 8. 393538 1.612663

		CALIBRAT	IDN OF IS	הזק שיירו י	OT TUDE	34-Jec-3 6		
		Used for	17257 5					
			Sta	"S" - Type		Pitot Tube 10		
			Pitor	Pitot		X & Y		
		Pitot	Tuce	Tupe				
		ໂແລະ	(P)	(P)	(Ca)			
						Sta Pitor (Ca		
Test	t	X	1.55	9. 73	2.334	a. 39		
Test	2	X	2.57	9.38	8.797			
Test	3	I	8.53	8.22	8. 756	Bar. Pressure		
ies:	Ŵ	I	8. 55	a. 92	9. 735	3 . 46		
		Avg (Car	far Proce	ĭ →	L 691	Sads Teano (F) 175		
ខែនាវ	t	Ŷ	NOT	NIT	ERR			
isst.	2	Y	[N	IH	ERR			
Test	3	Y	USE	LSE	EFR			
ខែទា	4	Y			ERR			
		Avg (Ca)	for Probe	+ <u> </u>	ETR			

679

والمعار المراجع

MUISTURE AND MOLECULAR WEIGHT DETERMINATION

(fill-in data at each am		
Test Date: Report Date:		15-0ec-35 85-3an-87
Stacx Temo., Dry Suib (F)	 ;	185
Stack Temp., Het Bulb (F)	}	125
Barometric Pressure (in of Hg)	;	39 . 35
Easurated H29 Vapor Pressure at Het Bulb Femberature (From Vapor Pressure Chart)	<u> </u>	17.37
Vapor Pressure of HEB at Stack Conditions		17.87
loisture Content in Stacx. (8 4 5)		8.5541119 55.413
CC2 in 4 (Orsat of Fryitz)		8
2 in ≭ (Orsat of Fryite)	 ,	6
N2 in ≰ (Orsat of Fryite)	,	66
CD in # (Orsat of Fryite)		3
Dry Molecular Weight, (He)		33.52
Het Molecular Height, (Ms)		27.12

		DUITIAL STREET	orta	A Report Date:						
INITIAL STACK TEST DATA (fill-in data sarked by arrows) Report Date: (5-72 1) Facility NCSC 2) Location Gulfport, Mississi 3) Commation Gulfport, Mississi 3) Commation Gulfport, Mississi 3) Commation Gulfport, Mississi 4) Test Juergens, Basso Bueia Bueia Bueia 4) Test Date 15-De 5) Run Number TEST 5 6) Stack Area (in2) (A) 7) Sample Box Muscer 81 3) Meter Box Muscer 81 3) Meter Box Muscer 81 3 Orifice Calibration (Ha) 1. S12562 14 Gas Meter Cal. Factor (Y) Q. 293553 15) Air Temperature (F) 12) 12) Air Temperature (F) 13) 14)										
1		Facility		NCSC						
2		Location		Gulfport, Mississippi						
3	-)	Comator 4		Jung Ju arguns, Basko						
		Test		Basko						
		Personnei		Sueia						
4	->	Test Date		15-36						
5		Run Nuscom		ाट्या ५						
6	_)	Stark Dia (in.) Stary Gena (in2)	(3)	33 786 153736						
-				1.						
'	,	299016 20x Willday		¥L						
ð	-)	Heter Box Number		91						
•	9	Orifice Calibration	(14)	1. 5125659753						
1	9	Gas Meter Cal. Factor	ŝ	0. 3936532475						
1	1	Pitot Constant (Proce I)	(Ca) (Ca)	8.8986 311727						
		Piede Conseane (Prode 1)	التيها (CIX						
12	_)	Air Tesperature (F)		62						
13	}	Never Tessoerature	เรือม							
		(Fanreneit)		34						
14		Preiim. Staux Temm. (Fabrenneit)	(Tsi	184						
15		Sarosetric Pressure (in. of Hg)	ምን	38.25						
1	6	Moisture, Assumed	(Bes)	9,5541119377						
r	7	Noi. Seight, Dey	(962)	2. X						
14	9	Nol. Geight, Stack	(Hs)	23.22144846						
19	-)	Heter Pressure (in. of Hg)	(Pau)	33, 25						
29	-)	Stack Pressure, Static (in. of H28)	(Pg)	1.5						

2	1	Stack Pressure, Absoluti	e (Ps)	
		(in. of Hy)		3.3
		-		
2	2	X Factor (H = X x P)	00	3. 717598955
23		Reference P	(Pavg)	
		(in. of n28)		1.2167
2	4	Nozzie Dia (Calculated)		8.2993315536
ð		Nozzie Gia (Actual)	(Dn)	8.3
2	5	Nozzie Area (ft2)	(An)	9. 2993488846
37		Nozzle Husom		2
39	;	Leak Rate (015in Vacuum)	
		Initial (ft3/min)		£. 362
		Final (ft3/min/		4. 391
29a		Filter Weignts	No.	s - a
		(grans)	Final	8.5+65
		•	Initial	E266 29
			Diff.	8.3412
295	—)		No.	NG
			Final	
			Initial	
		•	Diff.	ER
384	;	VOST Tenax	Tenax	
			7/Char	
			•	
386		VOST Tenax	Tenax	
	•	÷	T/Char	······································
			-	
32c		VOST Tenax	Tenax	
			T/Ciar	
			-	
31a		Moisture-impinger #1	mž	833
315	}	Soisture-lauinger 42	лi	333
		•		
ЗIс)	Moisture Laoinger 13	=i	3
		-		
31d		Moisture-Silica Gel	Final	238.3
			Initial	199.44
			Diff.	9. 26
31#	 ;	Moisturg-Total	(m1)	1153.86
		(excluding MaCH)	(mi)	837. 35
		Moisture-Caturation	(m1)	837
				•
31		Samie Container(s) Ho.		

22 --) R

STACK TEST SATA TEST 5 15-Jec-36

Report Date: 85-Jan-37

	Traverse Point	Time	Clock Tipe	Gas Meter Reading (Va)	Pitot P ressure (P)	Orific P res (H (in of	isure, ISUre, I) I 1629)	Tenor Dry Ga	rature s Heter (F)	Vacuum	Oven Teso.	Leoing Teac.	Stack Teno. (Ts)	EX	œ
	Number	(a1n)	(23 in r)	(ft3)	(in H29)	Desire	Actual	Iniet	Gutlet	(in Hg)	(F)	(F)	(F)	(%)	(\$)
1	7	Start	929	48.324	2.34	ə. 57	8.72	78	77 77	7.7	219	<u>44</u>	187	8.8	5.3
2	9	5	2 2	497. 9	1.1	8.79	a. 34	24	71	9	296	42	185	7.3	5.3
3	3	18	238	410	1.15	8.33	8.38	<i>.</i> 22	. 74	9.5	248	44	189	7.5	6.J
4	19	15	935	413.1	1.2	8.35	8. 31	199	77	3, 3	229	44	187		
5	11	3	949	415.3	1.2	2, 99	8.35	197	81	18.5	223	46	189		
6	12	25	945	418.7	1.2	a . 36	e 91	119	÷ 64	18.2	223	48	189		
7	1	33	1008	421.5	9.92	9. 55	3.7		89	8	238	59	187		
3	2	3	1985	424.4	6.33	2.57	8, 71	186	- 91	3. +	223	5	189	7.5	7.3
÷	3	48	1013	-25.5	8, 24	2, 57	0, 72	196	<u>55</u>	8.5	253	53	187		
9	4	45	1915	429.1	1.38	2.77	3, 32	113	- 33	9.5	ટમ્ફ	52	187		
1	5	58	1323	431, 3	1.3	8, 33	Q. 39	118	95	11.2	523	13	187	9.3	7.2
2	5	3	1825	434.3	1, 22	a. 73	e. 78	128	?a	3	253	54	197		
•	:	:0	1973	437 CE		2.32							189		

ling Buration

as Samole Vol (ft3) (Ver -- 31.785

		Pitot Pressure (in H28) (P)	Orifice Meser Pressure, (in of H20) (H)	Jry Gas Meter Testo. (F) (Tex	Vacuum (in Hg)	Qven Texa. (F)	faoing Tand. (F)	Stacx Teno. (Ts) (F)	80 10 10 10 10 10 10 10 10 10 10 10 10 10	12 (x)
Averade	,	1, 386	1. 223	93.7	9.23	221.7	¥8.3	187.+	7.ŝ	5. ŝ
Minimum	·)	0.329	9.798	72.3	7.73	298. 3	15.3	195.3	7.8	6.3
Naxigua	;	1,020	a, 358	129, 3	11.29	229.3	52.0	198. j	3. J	7.0

684

ź

1	COLFIED ACT	HOD 5 CALCU	ated data		TEST 5 ·	Test Date: Report Date:	15-0ec-86 45-Jan-87		
	Average Pitot Pressure (Pavg) (in H2S)	Average Stacx Texts (Ts) (R)	Average Orifice Pressure (Havg) (in K29)	Average Neter Temo. (Ts) (R)	Average Stack Gas Velocity (vs) (ft/sec)	Volume of Gas Sampled at STP (Vm(std)) (dscf)	Vol. Flowrate at Stack (2s) (ACFH)	Vol. Flowrate at STP (Qstd) (SCFH)	Iso- Kinetic (X)
1	8. 340	646.3	1.72	54.8	NA	NA	NA	NA	NA
2	1. 928	645.9	8. 78	53.3	66.515	2,859	1.15++6	4.245-45	33. 34
3	1.263	646.8	e. 31	53.2	67.350	4.124	1.298-06	4.332+85	83.25
4	1. 298	646.3	2.34	540.3	69. 344	7.151	1.225+66	4.400-05	954
5	1.128	647.2	9. 86	543. 4	78. 816	9. 835	1.24E+46	4.462+85	97.38
5	1, 149	647.4	9. 87	545.7	78. 488	12.542	1.24E-36	4. +82-05	9 9. 19
7	1, 129	647.3	8.84	546. 3	53. 418	15,235	1.23E+05	4.425-25	188-15
а	1. 385	647.3	8. 33	548.3	68.72	18.285	1.218+86	4. 312-05	101.31
3	1. 373	647.4	8.82	549.5	63, 285	29, 294	1.215+06	4.348+85	99.23
9	1.971	647.3	9.32	558. 3	68.233	22.455	1.215-35	4.34E+85	99.55
1	1.392	647.3	a. 33	SE2 3	68. 991	25, 392	1.225+86	4.38E85	99.18
2	1.285	647.3	8.33	55.7	68.639	27.912	1.215+66	4.375+85	39, 34
3	1, 386	647. +	4. 83	553.7	62. 785	JB. 452	1.21E+06	4.375-05	:98.33

VOST TEET DATA TEET 5

> 25-140-37 Report Date:

	Samiing Tise (gin)	Clock Time (24 hr)	Gas Meter Reading (liter)	Rota- meter Setting	Vacuum (in Hg)	Netar Texa, 45 (C)	Prope Tenc. #1 (C)	Stack Texto, 12 (C)	Neter Teso. 15 (F)	Proce Temo. #1 (F)	Stacx Tesso. 42 (F)
1	Start	Z	a .:	55	15		145	35	2	23	187
2	5	938	4,71	84	28	18	149	35	64	398	:85
3	19	522	3.5	84	21	18	154	87	54	339	139
٨	15	940	14.4	54	21	19	153	86	66	387	187
5	29	1986	19.35	56	12	19	148	87	66	299	189
5	3	1685	24.5	22	12.5	21	152	37	70	386	189
7	31	1919	29.5	చ	13	21	153	86	78	387	187
3	33	1815	33	85	12.5	28	155	37	68	313	189
Э		1929	33.99	45	24	21	151	85	78	384	187
19	+5	1255	-ఒ.చ	*9	24	21	151	85	70	394	167
11	53	1940	ii.:5	48	z	22	152	25	72	336	137
:2	5	1845	-6.2	40	29	22	154	86	72	299	:57
13	50	1953	48 L			32	151	87	7	334	189

Eas Eamoie Joiume 48.31 (1:27)

ling	Suration	7									
10101	 ;	63		Rota-	Vacuus	Heser Tema.	Proce Tesa.	Stacx Teso.	iera.	Prope Temp.	Starx Teso.
				Secting	(in dg)	(C)	(C)	(C)	(F)	(F)	(F)
		Aver	3 5 8	: . .	18.3	a .:	121.3	36.3	÷.3	394.5	187.4
		Hint	343		:2	:8	145	చ	22	293	185
		Махі	343	36	2	2	155	3 7	71.5	312.3	:88.5

TABLE 5.6 FIELD DATA FOR TEST 6

XOIFIE	. E7H20	5	20	VOST	TEST	DATA	SAMORY
--------	---------	---	----	------	------	------	--------

.. NEBC - SLEPORT

2. TEST RUN DESIGNATION - TEST 6

3. TEST DATE - 15-Dec-36

					VUS.	i
	DATA DESCRIPTION	ID	Value	Units	Value	Units
					2 Contract	-
4.	Time					
	Start	Time(s)	1145	hr-s	1159	hrs
	Finish	Time(f)	1255	hrs	1313	
	Duration	T	63	#17		
		-				
5	Total Number of Sampling Points	NP	12		2	
6.	Meter Calibration Factor	Y	il 994		NG	
7.	Grifice Calibration Factor	Ha	1.613		NA	
а.	Nozzle Soccifications					
	Diameter	<u>Cm</u>	13	179	á	
	Area	Я п	3.41E-34	ft2	NA	_
	Pitot Tube Coefficient	Ca	0. 201		549	
12.	Average Orifice Pressure Orco	Havg	1. 393	1n 120	NG	
11.	Volume of Dry 545 1400100	91		ft3	64, 468	liter
13	Annual Statement Terran	T-	er > >			
ميدد	NAGLITIG OFP MERSIL (SUCCUPARTIE	121	4 مدهن	х	22.0	ĸ
17	Parcontro - Onescure	25	13 16	in 14n	763 :	and the
				*** **4	100-0	e ng
14.	Static Stack Pressure	24	8.52	ia H20	13.2	
		•				
15	Acsolute Stack Pressure	25	32.38	in Hg	769.5	me Ha
						•
16.	Volume of Sam Sampled (Standard)	Vestd	35. 375	æ	64.725	liter
17.	Volume of Water Collected in					
	lapingers and Silica Get	Vic	:515		MA	
	Halines of Halines California					
18.	Volume of Witter Lollocias	119 - 1	1017			
	Same of Strathe Contribution	A1C.	1040	81	NG.	
i Q	University Userson Providences					
	The increase	Une	17 31	a		
	are emularigus a	748	▼ 7 • ~ .	-	7974	
	Volume Hater Vacor Contensat					
	in Silica Gel	West	3. 57	57	D	
			6	87		
			-			

and states and day it is a a

Philippedian gerich

. Siles

н.

21. Percent Hoisture by Volume	Bus	56.39	4	NQ	
Percent Moisture by Saturation	Bis!	57.63	£		
22. Hole Fraction of Dry Gas	Feet	e. 4237		NA	
24. Gas Analysis					
Average CD2 by Volume	CT2	8. 38	*	40	
Average 02 by Volume	02	5.39	1	NO	
Average CD by Volume	B	6.38	1	20	
Average X2 by Volume	NZ	65.19	x	NA	
25. Dry Molecular Weight of Stack Bas	Nd	2.2	lb/lb-soie	NA	
25. Molecular Weight at Stack Conditions	Ns.	22.38	ib/lb-moie	NA	
27. Average Stack Temperature	Ts	648. S	R	369. 3	ĸ
28. Wer age Stack Gas Velocity	Vs.	83. 49	ft/sec	2.9	a/sec
29. Stack Area	As	786. 3	5q-:n	8. 455	50-1
18. Actual Stack Gas Flowmate	ûs	1, 175, 253	ACTH	+1,782	ACH
 Dry Stack Gas Flowrate (Standard) 	65520	515, 251	SCEH	14, 592	SCM
12. Iso - Kinetic Rate		191.7	x	NA	
. Weight of Filteraple Partiguiates	Hn.	44.1	zg	NA	
34a. Particulate Concentration	Cs	2.5 % - 19	15/0507	NA	
(at standard conditions)		1.22	m/DSC-	NA	
		F 913	gr/OSCF	NA	
		43, 318	mg/ OSCM	SIA	
146. Particulate Concentration	لادمة	2.572-39	16/0307	NA	
(correct ed to 5% oxyg en)		1.21	ag/DELF	NA	
		a. 219	gr/CSC-	NA	
		42,724	39/ ISC1	NA	
He. Particulate Concentration	Csi2x	4. JZ→9	15/0507	NA	
(corrected to 12% carbon dioxide)		1.33	NO DECE	84	
		9, 925	TT/DSC-	NA	. •
		64.515	mj/0507	NA	
2. Pollutant Mass Rate	PHR	1.385-33	lbs/hr	- 10	
		627.6	a/hr		
3. 		9684	ar/hr	NG	

NR 23	3U	CALL	389	TION
-				

₩-3ac-36

. Pressure 39.21	Heter Box No.	2377/679
------------------	---------------	----------

Used for:TEST 5

1. The State

5

2 - C - C

ないない はない ないない ないない ない ちょうちょう

Omfice			(Теврета	ture)			
Hano.	Gas V	oiume		0 , -	y Gas Mere	.			
Setting (H) (in H28)	Reference (Viu (ft3)	Samoler (Vd) (ft3)	R eference (tw) (F)	Inies (tdi) (F)	Outlet (tdo) (F)	Avg (td) (F)	Time (0) (sin/	(Yas	(141) (in 820)
0.5	4.319	5, 375	79	82	71	76.3	11.43	8, 978162	1, 488541
í	5.285	5.27	79	88	74	81	8.63	1 973155	1.619855
2	19. 219	18, 429	78	182	78	99	12.25	1 992974	1.505709
+	19. 398	18.357	70	197	22	94.5	A. 75	1. 210000	1, 120042
5	19. 997	19.212	71	119	84	84	7.17	8. 289465	1.675253
9	19. 310	18, 144	79	119	66	78	\$ 27	1. 119979	1.657994

Avg ----- 9. 293538 1. 512553

26

.

10

		CRLIBRAT	FICH OF "S"	אשה זוד	84-Jec-36		
		Used for	17257 à				
			Sta *	S"-iype		Pitot Tupe ID.	
			Pitor	Pitor		7 6 9	
		Pitot	Tube	Tuce			
		Tuce	(P)	(P)	(Ca)		
						Std Pitot (Car	
iess	:	1	\$.55	2.79	8.434	4.04	
Test	2	I	£.57	1. 38	1.797	N	
Test	3	1	2.53	1.32	1.73	Rac. Deserves	
Test	٠	I	8.53	6.72	L 736	32.46	
		. Avg (Ca)	for Proce 1		8. 291	5435 Temp (F) 175	
'est	:	Y	HIT	NOT	ERR		
'est	3	Y	IN	DI	ESB		
'est	1	*	USE	USE.	ERR		
lest	٠	۲		-	ERR		
		wg (Ca)	for Proof Y)	ERR		

•

NOISTURE AND MOLECULAR VEIGHT DETERMINATION

(fill-in data at each arrow)

Test Date: Recort Date:	15-Jec-36 85-Jan-37
Stack Temp., Sry Buib (F)	185
Stack Temp., Her Bulb (F)	186
Barometric Pressure (in of Hg)	31.5
Saturated H28 Vacor Pressure at Het Buib Temoerature (From Vacor Pressure Chart)	17. ++
Vacon Pressure of H28 at Stack Conditions	17, 44
Moisture Content in Stack, (Bws)	a, 5763384 57.638
CC2 in % (Orsat of Fryite)	7.5
02 in % (Orsat of Fryite)	5.5
M2 in 1 (Great of Fryite)	85.3
CD in % (Orsat of Fryita)	9
Ory Mosecular Height. (Md)	2
Wet Molecular Weight. (Ms)	<u>32</u> .36

INITIAL STREET CATA

Recort Sate: 95-Jan-37 A Carlos

and a start

(fill-in data marked by arrows)

 $1 \rightarrow$ Facility NCEC 2 -> Location Gulfport, Mississiopi 3 -> Operator Jung \$ Juergens, Basko Test Basko Personnei Buela Test Sate 5 -1 Run Numoer TEST 6 Stack Dia (in.) 5 ----, 3 Stack Area (in2) (A) 786. 25924786 7 --> Samoie Box Humber Ħ 8 --> Meter Box Husber #1 9 Grifice Calibration (Ha) 1.512553773 18 6as Meter Cal. Factor (γ) 9. 7936533475 Pitor Constant (Proce I) (Co) 11 4. 9896911727 Pitor Constant (Proce 7) (Co) ERR 12 --- Air Temperature (F) 64 13 ---Heter Tencerature (Tar (Fanrenness) 198 Preside Stack Test. (Ts) (Fanrenness) 187 :5 ---Barcastric Pressure (Pb) vin_ of Hg) 3.3 15 Moisture, Assumed (Burg) 4.5765334085

(111)

(245)

(94)

• ;

.

29.44

3.3

12

691

22.363333152

17

18

19 ->

Nol. Weight, Dry

Hol. Weight. Stack

Neter Pressure

(in. of Hy)

21	Stack Pressure, Absolu	te (Ps)	
	(in. of Hy)		31.5 3
2	K Factor (H = K x P)	(X)	1. 6856922975
27 -) Berlannan 3	(Base)	
	(in of HCG)	mand.	6.10
			L. 43
24	Nozzie Dia (Calculated))	0.3988821988
2 -) Nozzle Dia (Actual)	(Dn)	12
చ	Nozzle Area (ft2)	(An)	8. 2093488846
27 —) Nozzle Numcer		12
38 —) Leak Rate (815in Vacuu	r)	
	Initial (ft3/min)		8, 381
	Final (ft3/min)		9, 395
291 -) Filter Weignts	No.	5 - 3
	(97285)	Final	الانتقال المحتفظ المحتف
	•	Initial	2 -044
		Diff.	2. 3441
295 —)	•	No.	N A
		Final	
		Initial	
		Biff.	ERR
32a —	-) VOST Tenax	Tenax	
		T/Chan	
135			
	YUDI HETHAR	i enax	
		i/Liar	
38e	-) VOST Tenax	Tenax	
		T/Chan	
31a) No sture laoinger 41	31	1938
316	-) Hoisture-faoinger 42	ai.	83
31e —	> Noisture impinger #3	si	8
21d) Moisture-Silica Gei	Final	199.01
		Initial	185 3621
		Diff.	12.1477
71) Hojer, man Tabal	/mil	· · · · · ·
	i mussure uses	∖≣LJ /mil	1313-14/9
	Material attended on	(=+)	1012+14/7 104C
	· · · · · · · · · · · · · · · · · · ·	1847	1940
31)	Sample Containents) No.		
		•	

.

· · · · 23

22 --- > Remarks

22 She Blanking

100 m 1000 m 100 m 100 m 100 m 100 m 100 m

TABLE 5.5 (continued)

.

STACK TEET OATA TEET 5 15-Dec-36

Alter and the state of the second state of the

Report Date: 25-Jan-37

	Traverse Point Nuecer	Time (ain)	Clocx Time (24 art)	Gas Meter Reading (Ve) (ft3.)	Pitor Pressure (P) (in H29)	Urific Pres (H (in of Desire	e Meter sure,) H28) Actual	Temor Dry Gar Inies	rature s Meter (F) Outlet	Vacuum (in Hg)	Oven Teno. (F)	Iseing Tesc. (F)	Stacx Texto. (Ts) (F)	E E	(1) (1)
:	7	Start	1145	437.387	1.+	2.3	e %		85	6.5	22	58	189	7.5	6. 2
2	8	5	1159	448.5	1.45	1.99	1	97	87	7.1	23	48	189		
2	9	19	1155	443.9	1.5	1.13	1.1	196	89	7.5	273	48	189	s. J	5.0
-	19	15	1298	447	1.52	1.11	1.12	111	9	а	23	53	189		
5	11	29	:222	459. +	تد.1	1.12	1.14	115		8.2	259	59	189	a. 5	5.3
5	12	z	1219	455.5	1.5	1.19	1.1	119	95	8.2	248	53	187		
7	1	52	1225	455.3	1.33	e. 33	8.33	184		5.7	7 2 8	+8	189	3. 3	5.5
3	2	3	1229	462.2	1.5	1. 19	1.1	113	97	7.5	239		189		
ą.	3	40	:235	462.3	1.5	1.19	1.1	116	98	7.3	228	-8	193		
2		45	1248	+66.3	:	1.17	1.15	12	199	a. 1	248	53	189		
	5	59	1245	+63. +	1.73	1.29	1.2	127	191	8. +	23	54	189	3. J	5.3
2	5	5	1229	473	1.73	1.29	1.2	124	122	13	229	50	:89		
1		53	1255	476.215		1.3							189		

Sampling luration

uns Earoie /oi (ft3) (Ver --- 38.228

		Pitot P res sure (1n #28) (P)	Grifice Meter Pressure, (in of H28) (H)	Ury Gas Meter Teso, (F) (Tau	Vacuum (in Hg)	Oven Tesc. (F)	Tabing Tesc. (F)	Stacx Teso. (Ts) (F)		22 (x)
Average	·	1.589	1. 293	183. 3	7.75	237. :	51. J	.58. 5	3.3	5.7
HINIRUM		1. 239	a. 729	56. J	6.58	23. J	ન્સ. ડ	183.5	э. э	5.5
Maximum		1.723	1.298	124. 2	8. 39	Z9. J	5 9. J	188.5	3.5	ŝ. 3

Dast Avening Cong

-					TEST 6	Test Date: Ryport Date:	15-Jec-36 95-Jan-87		
	Average Pitot Pressure (Pavg) (in r28)	Average Stacx Teso, (Ts) (R)	Average Orifice Pressure (Havg) (in H29)	Average Hecar Texes (Ta) (R)	Average Stack Gas Velocity (vs) (ft/sec)	Volume of Gas Sangled ac STP (Vm(std)) (dscf)	Vol. Flowrate at Stack (Os) (ACFR)	Vol. Flowrate at STP (Destd) (SCFH)	Iso- Kinetic (%)
1	1.400	6 4 8.6	L 35	548. J	NA	NA	NA.	NA	NG.
2	1.425	648. ó	8. 38	S9. J	79. 258	2 523	1.400+06	4.38E-45	32.33
3	1. 483	648.5	1.22	552.5	28. SS2	5. 787	1.432+36	4. 96E-165	131.53
٠	1.518	5+8.5	1.35	554.5	ð1.584	8, 739	L. HENG	5 34E-15	1916
5	1.5++	5+8.5	1.26	5 5 5. •	82, 393	11, 959	1.452+66	5. 28F-15	197. 74
ó	1.555	648.5	1.07	558.2	82.541	14.375	1.462+46	5.095-35	192 51
7	1.524	648.5	1.25	558. ÷	81.755	18. 319	1. 445+146	5 355-35	197 11
9	:.5+	548.5	1.36	33 9.3	82, 919	21,215	1.455+36	5.062-15	:04 :39
9	1.541	648.5	1.36	550.1	82,215	27.747	1.45-16	5 275-25	100 .22
19	1.557	648.5	1.37	551.1	82.533	25. 728	1. 465-16	5 195-25	102.57
11	1. 575	648.5	1.28	582. :	3. 183	29, 415	1, 475-755	5.177-05	1002 17
12	1.539	648.5	1. 29	553. 2	83. 488	33_168	1.485-36		107.00
13	1.529	64 a. 5	1. 39	55.3	83. +88	35, 195	1. +8E86	5.155-25	182.39

· · · · · · · · ·

The second and and a strategy with the second s

And Distant State

Ξ

VOST TEET GATA TEET 5 15-7ec-36

•

the looking at

		Recort	Jate:	85-Jan-3 7						•	
	Samoling Tiam (min)	Clocx Time (24 mm)	Gas Meter Reading (liter)	Rota- meter Setting	Vacuum (in Hg)	Neter Teso. 85 (C)	Proce Test. B1 (C)	Stack Tenc. #2 (C)	Heter Tenc. 45 (F)	Probe Temu 81 (Fi	Stacx Tenc. #2 (F)
:	Start	1159	25	ප	12	21	157	87	73	315	189
2	5	115	55.52	35	13	21	160	87	79	23	189
3	13	1298	62, 91	93	13	22	163	87	72	23	189
•	15	1235	675	93	13	22	163	37	72	329	189
5	29	1222	73	93	19	3	151	37	72	Z	189
,	2	1227	78.5	93	19	22	159	87	72	318	189
٠	31	1272	84. J1	E2	19	32	155	87	72	311	189
ł	35	1237	9 9.7	93	18	23	153	87	73	316	189
3	4	1253	95.15	99	11	23	159	87	73	382	189
3	-5	1259	129.5	33	!2	23	155	87	73	313	189
1	53	1283	185.2	35	13	23	154	87	73	389	189
2	5	1398	111.5	93	12	23	155	87	73	311	189
3	68	1313	117			23	155	37	73	311	189

64. -5 (liter) —

nung Suration

aini —---1

52		Roza-		3512F	Proce	Stacx	HEC61	Prope	Stack
		1912	Vacuum	Terc.	iero.	iena.	Temo.	īею.	Teso.
		Setting	(in Hgi	(C)	(C)	(C)	(F)	(F)	(F)
	Average	91.7	:1.5	22.3	:55. 3	57. J	72.2	314.5	189.5
	Minimus	55	19	21	158	87	69.3	32	186.5
	Maximum	35	13	ವ	161	87	73. +	Z1.3	:88.5

.....

- 12 4

APPENDIX Q

ITAS STANDARD OPERATING PROCEDURES FOR DIOXIN AND FURAN ANALYSIS

The documents contained in this appendix are the detailed operating procedures used by the analytical laboratory during their analysis of the samples collected during the Verification Test Burns at NCBC. This document was reproduced from the best available copy. Due to poor legibility, the legibility of the microfiche editions is also poor. Persons requiring the information contained in this appendix may write to the technical libraries listed below to obtain photocopied versions of the appendix. A nominal charge will be levied to cover reproduction and archival costs. Please be prepared to provide the following information:

Report Title:	Full-Scale Incineration System Demonstration
	Verification Test Burns at the Naval Construction
	battalion Center, Gulfport, Mississippi:

Report Number: els-tr-88-61, Volume: II, Part: 3, Appendix: P

Send inquiries to:

Technical Library Engineering and Services Laboratory Tyndall Air Force Base, FL 32403

or

Technical Library Idaho National Engineering Laboratory EG&G Idaho, Inc. P.O. Box 1625 Idaho Falls, ID 83415-2300

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

697

(The reverse of this page is blank.)

APPENDIX Q

Streams

CONTENTS

Exhibit	1	SOP EM.1 Extraction Method for Soils and Sediments	700
Exhibit	2	SOP EM.2 Extraction Method for Soils and Sediments (Soxhlet Method)	704
Exhibit	3	SOP EM.4 Extraction Method for Water	707
Exhibit	4	SOP EM.4 Extraction Method for Industrial Hygiene Samples (to Include Ambient Air, XAD, Florist, Silica Gel, and Resin Traps)	711
Exhibit	5	SOP IP.4 2,3,7,8-TCDD Analysis Procedures by Multiple Ion Detection (MID) High Resolution Gas Chromatography/High Resolution Mass Spectometry (HGGC/HRMS)	714
Exhibit	6	SOP IP.5 Total PCDD and PCDF Congener (Cl ₄ - Cl ₈) Analysis Procedures by Multiple Ion Detection (MID) High Resolution Gas Chromatography (High Resolution Mass Spectrometry (HRGC/HRMS)	721

 Appendix Q, Exhibit 1

 STANDARD

 OPERATING

 PROCEDURE

 SOP No.:

 Date Revised:

 1-15-36

 Revision No.:

 Z

 Title:

 Extraction Method

 for Soils and Sediments

- 1.0 Summary of Method
 - 1.1 Soil and sediment samples are jar extracted with a methanol/hexame mixture after initial spiking with $37G1_4-2,3,7,3-TCDD$ and $13G_{12}-2,3,7,3-TCDD$ Extracts are filtered and concentrated in preparation for selected cleanup steps.
- 2.0 Reagents
 - 2.1 Spiking standard solutions; for isomer specific analysis samples will be spiked with $13C_{12}$ -2,3,7,3-TCDD internal standard at a concentration of 500 ng/ml and $3^{2}Cl_{2}$ -2,3,7,2-TCDD surrogate standard at a concentration of 100 ng/ml, both in the same isocctane solution. For total dioxin/furan analysis the sample will be spiked with the isomer specific spike plus a solution which contains $13C_{12}$ -labeled Penta CDD, Penta CDF, Hexa CDD, Hexa CDF, Hesta CDD, Hexa CDF, and Octa CDF, at a concentration of 500 ng/ml and all in the same isooctane solution.
 - 2.2 Sodium sulfata; ACS, granular, annydrous.
 - 2.3 Acetone; technical grade.
 - 2.4 Methylene chloride; pesticide quality or equivalent.
 - 2.5 Hexane; pesticide quality or equivalent.
 - 2.5 Methanol; pesticide quality or equivalent.
 - 2.7 Toluene; pesticide quality or equivalent.
- 3.0 Cautions
 - 3.1 Samples received for this preparation procedure are of unknown composition but may be potentially carcinogenic, mutagenic, toxic or in other ways hazardous.

Regional Ottop TT Corporation + 312 Directors Only + Knowlide, Tennessee 37922 +0:5-090-321 .

SOP No.: E4.1 Page 2 of 4

- 3.2 It is mandatory that the initial weighing of the samples, addition of isotopically labeled 2,3,7,8-TCDD, and mixing of the sample be performed inside the designated dioxin hood in the high hazard laboratory.
- 3.3 Personnel involved in this sample preparation procedure should be thoroughly familiar with laboratory SOPs on the processing of high hazard samples.

4.0 Glassware

のないのないないないであるというと

いまた

- 4.1 All glassware used in extraction and cleanup procedures is solvent rinsed before use. The solvents used are acetone, toluene, methylene chloride, and hexane (in this order). Allow to air dry in a hood.
- 5.0 Equipment and Materials
 - 5.1 Electrical platform shakers
 - 5.2 240 ml amber-colored glass fars with teflin-lined screw caps
 - 5.3 Three ball macro Snyder column
 - 5.4 500 ml evaporative flask
 - 5.5 10 ml graduated concentrator tube
 - 5.6 N-EVAP concentration device
 - 5.7 Glass funnels, short stam
 - 5.3 Filter paper, Whatman No. 4 or equivalent
 - 5.9 Analytical balance
 - 5.10 Stainless steel spatulas
 - 5.11 Glass helices; 1/16 inch
- 5.0 Sample Extraction
 - 6.1 Prepare designated dioxin hood as instructed in laboratory SOP for processing high hazard samples. This includes obtaining, preparing, and labeling the requisite number of 240 ml amber-colored glass jars.
 - 6.2 Transfer 10 grams of the soil or sediment (wet weight) to a tared 240 ml jar. (\pm 0.5 grams weighed to 3 significant figures).

JUP 194. . _____ E.A. 1

Page 3 of 4

- 6.3 Spike the sample with 100 µl of spiking solution, adding the solution at several sites over the surface of the sample.
- 6.4 Add 20 grams of sodium sulfate. Stir the mixture thoroughly with a stainless steel spatula. <u>Note:</u> Extremely wet samples may require centrifuging to remove water before addition of sodium sulfate. The liquid will be analyzed as a water sample (see water method).
- 6.5 Allow the mixture to stand for 2 hours, mix thoroughly with spatula and allow the mixture to stand for an additional 5 hours. At the end of this time, mix the sample again, ensuring that no lumps are present.
- 6.6 Add 20 ml of methanol, stir and add 150 ml of hexane.
- 6.7 Place the extraction jar in the platform shaker and shake for at least 3 hours.
- 6.8 After the 3 hour shaking period, remove jars and allow the solids to settle before proceeding.
- 6.9 Into the top of a 500 π 1 KD flask fitted with a 10 π 1 graduated concentrator tube, insert a glass funnel containing whatman No. 4 filter paper (or equivalent) rinsed with hexane.
- 6.10 Carefully decant the extract from the jar through the glass funnel.
- 5.11 Rinse the inside of the jar and contents with hexane thoroughly at least 3 times and add these rinsings into the glass funnel.
- 6.12 After completing the 3 rinsings and allowing these to filter through the glass funnel, pour 10-15 ml of hexane into the funnel and allow this to filter through.
- 6.13 Remove glass funnel from top of KD flask and add ½ inch of glass helices. Insert a three ball macro Snyder column in top of KD flask.
- 6.14 Concentrate the extract volume to approximately 3 ml using steam.
- 6.15 Remove the concentration tube from bottom of KD flask. Rinse inside of KD flask with small amounts of hexane and allow this to run into concentrator tube.
- 6.16 Reduce solvent volume to approximately 1 ml with N-EVAP concentration device and proceed to appropriate cleanup procedure.

SOP No.: <u>E4.1</u> Page <u>4</u> of <u>4</u>

7.0 Cleanup of Glassware

a ministration and the

籔

After use, glassware is solvent rinsed with toluene and methylene chloride. Wash with detergent and rinse with copious amounts of tao water and several portions of distilled water. Place glassware in oven and heat to 350° C for 30 s nutes. Remove from oven when cool and store in clean environment.

STANDARD OPERATING PROCEDURE	SOP No.: EM.2 Date Revised: <u>1-15-86</u> Revision No.: 2
Title: Extraction Method for Soil and Sediment (Soxhlet Extraction)	Approval: <u>HAPaciatiku</u> Page 1 of 3

1.0 Summary

1.1 Soil and sediment samples are extracted with benzene using a soxhlet extraction method after first spiking with the appropriate spiking standard solution. Extracts are then concentrated in preparation for selected cleanup staps.

2.0 Reagents

- 2.1 Solving standard solutions; for isomer specific analysis, samples will be spiked with $1^{2}C_{12}+2, 3_{2}7, 3-7CDD$ internal standard at a concentration of 500 ng/ml and $3^{2}Cl_{4}+2, 3, 7, 3-7CDD$ surrogate standard at a concentration of 100 ng/ml, both in the same isooctane solution. For total dioxin/furan analysis the sample will be spiked with the isomer specific spike plus a solution which contains $1^{2}C$ - labeled Penta CDD, Penta CDF, Hexa CDD, Hexa CDF, Hepta CDD, Hepta CDF, Octa CDD and Octa CDF each at a concentration of 500 ng/ml and all in the same isooctane solution.
 - 2.2 Senzene; pesticide quality or equivalent.
 - 2.3 Acetone; technical grade.
 - 2.4 Toluene; pesticide quality or equivalent.
 - 2.5 Methylene chloride; pesticide quality or equivalent.
 - 2.6 Hexane; pesticide quality or equivalent.
 - 2.7 Silica gel; type 60, EM reagent, 70-220 mesh, or equivalent.

3.0 Cautions

3.1 Samples received for this preparation procedure are of woknown composition but may be potentially carcinogenic, mutagenic, toxic or in other ways hazardous.

Regional Citics

IT Corporation + 312 Directors Ontre + Knownile, Termessee 37923 +0.5-690-1011

SOP No.: ______ Page _____ of _____

- 3.2 It is mandatory that the initial weighing of the samples. addition of isotopically labeled 2.3.7.8-TCDD and mixing of the sample, be performed inside the designated dioxin hood in the high hazard laboratory.
- 3.3 Personnel involved in this sample preparation procedure should be thoroughly familiar with laboratory SOPs on the processing of high hazard samples.

4.0 Glassware

4.1 <u>All glassware used in extraction and cleanup proc cures is solvent rinsed before use.</u> The solvents used are aceton, toluene, methylene chloride and hexane (in this order). Allow to air dry in a hood.

5.0 Materials and Equipment

- 5.1 Analytical balance.
- 5.2 Stainless steel spatulas.
- 5.3 Heating mantle with temperature control.
- 5.4 Glass soxhlet system with glass thimble.
- 5.5 Three ball macro Snyder column.
- 5.5 500 ml evaporative flask, round bottom.
- 5.7 Boiling beads; 6 mm glass.
- 5.8 Glass wool.
- 5.9 Teflon sleeves.

5.0 Method

- 6.1 Prepare designated dioxin hood as instructed in laboratory SOP for processing high hazard samples. Obtain, precare and label the requisite number of soxulet systems.
- 6.2 Place H-1 inch silica gei in glass thimble. Add 10 grams of the sample on top of silica gel.
- 6.3 Spike sample with 100 ul of the appropriate standard solution(s) and add a small amount of glass wool to the top of the extraction thimple.
- 6.4 Place extraction thimble in the glass soxulet extractor.

SOP No.: <u>E4.2</u> Page <u>3</u> of <u>3</u>

- 6.5 Pour approximately 350 ml benzene into 500 ml round bottom flask. Place flask in the heating mantle. Add 15-20 boiling beads.
- 6.6 Assemble soxhlet system and use a teflon sleeve on the flask joint. Sacure to lab supports.
- 6.7 Adjust temperature of heating mantle to approximately 80°C. Bring benzene to a rolling boil. There should be a steady drip from the condensers.
- 6.8 Soxhlet extract in the above manner for 16 hours.
- 6.9 Turn off heating mantle and allow to cool.

ARCORN INCOMPANY AND A CONTRACTOR

- 6.10 Remove condensers and allow the soxhlet extractor cnamper to empty, then remove the soxhlet extractor from 500 ml round bottom flask.
- 6.11 Insert 3 ball macro Snyder column into the top of the 500 ml round bottom flask.
- 6.12 Place 500 ml flask back into heating mantle and reduce extract volume of approximately 3 ml.
- 6:13 Transfer extract into 20 ml scintillation vial, rinsing the 500 ml flask three times with small amounts of benzene. Add rinsings to 20 ml scintillation vial.
- 6.14 Place 20 ml vials into the N-EVAP concentration device and reduce volume to approximately 1 ml.
- 6.15 Proceed to appropriate cleanup procedure(s).
- 7.0 Cleanup of Glassware
 - 7.1 After use, glassware is solvent rinsed with toluene and methylene chloride. Wash with detergent and rinse with copious amounts of tap water and several portions of distilled water. Place glassware in oven and heat to 350°C for 30 minutes. Remove from oven when cool and store in clean environment.

706

- *

Appendix Q, Exhibit 3

Title: Extraction Method for Water

Data Revised:	1-15-86
Revision No.:	2
Approval:	APOCIENCY
Pace 1	of 4

- 1.0 Summary of Method
 - 1.1 A one liter water sample (smaller amounts may be used) is extracted with methylene chloride using a separatory funnel technique. After sample is solvent exchanged to hexane and concentrated, selected cleanup steps are performed.
- 2.0 Reagents
 - 2.1 Solking standard solution;; for isomer specific analysis samples will be spiked with $13C_{12}$ -2,3,7,8-TCDD internal standard at a concentration of 500 ng/ml and 3^7CI_4 -2,3,7,8-TCDD surrogate standard at a concentration of 100 ng/ml both in the same isoccane solution. For total dioxin/furan analysis the sample will be spiked with the isomer specific spike plus a solution which contains C-laceled Penta CDD, Penta CDF, Hexa CDD, Hexa CDF, Heota CDD, Hepta CDF, Octa CDD, and Octa CCF, at a concentration of 500 ng/ml and all in the same isooctane solution.
 - 2.2 Acetone; technical grade and pesticide grade or equivalent.
 - 2.3 Toluene; pesticide quality or equivalent.
 - 2.4 Methylene chloride; pesticide quality or equivalent.
 - 2.5 Hexane; pesticide quality or equivalent.
 - 2.5 Sodium sulfate; ACS, granular, anhydrous.
- 3.0 Cautions
 - 3.1 Samples received for this preparation procedure are of unknown composition but may be potentially carcinogenic, mutagenic, toxic or in other ways hazardous.

Regional Othes T Corporation + 312 Directors Ontve + Knownile, Tennessee 27923 + 315-690-0211

SOP No.: E4.4

Page 2 of 4

- 3.2 It is mandatory that the initial preparation of the samples, addition of isotopically labeled 2,3,7,8-TCDD and mixing of the sample, be performed inside the designated dioxin hood in the high hazard laboratory.
- 3.3 Personnel involved in this sample preparation procedure should be thoroughly familiar with laboratory SOPs on the processing of high hazard samples.
- 4.0 Glassware
 - 4.1 <u>All glassware used in extraction and cleanup procedures is solvent</u> rinsed before use. The solvents used are acetone, toluene, methylene chloride and hexane (in this order). Allow to air dry in a hood.
- 5.0 Equipment and Materials
 - 5.1 Separatory funnels, (2000 mI) with taflon stopcocks and glass stoppers.
 - 5.2 500 ml evaporative flask.

- 5.3 10 ml graduated concentrator tube.
- 5.4 Three ball macro Snycer column.
- 5.5 Steam bath, with concentric ring covers.
- 5.5 N-EVAP concentration device.
- E.7 Glass funnels, short stem.
- 5.3 Glass wool.
- 5.9 100 ml graduated cylinders.
- 5.10 Helices; 1/16 incn, glass.

- 6.0 Sample Extraction
 - 6.1 Prepare designated dioxin hood as instructed in laboratory SCP for processing high hazard samples.
 - 6.2 Attach separatory funnels, one for each sample, to lab subports in hood.
 - 6.3 Attach 500 ml evaporation flasks, fitted with 10 ml graduated concentrator tupes, to lab supports in mood directly under the separatory funnel.
 - 6.4 Add & inch of helices to 10 ml concentrator tube.

SOP No.: <u>E4.4</u> Fage <u>3</u> of <u>4</u>

- 6.5 Plug the glass funnels with glass wool and set them in the too of the 500 ml evaporation flask. Pour sodium sulfate into the glass funnels to within 4 to 1 inch from the top. Wet sodium sulfate with methylene chloride.
- 6.6 Measure 1000 ml of water into the graduated clyinders and pour this into the separatory funnel.
- 6.7 Add 100 µl of spiking solution containing appropriate labeled materials.
- 6.8 Rinse graduated cylinder and sample bottle (if emoty) with 60 ml methylene chloride and add to separatory funnel. Extract sample by shaking the funnel for 2 minutes. <u>Caution: Vent separatory funnel frequently during this extraction.</u>
- 6.9 If an emulsion forms, phase separation should be attempted using glass stirring rod.
- 6.10 Allow the methylene chloride extract to filter through sodium sulfate-filled funnels into the KD flask.
- 6.11 Repeat steps 6.8 through 6.10 two more times.
- 6.12 After the third methylene chloride extract has filtered through the sodium sulfate, pour in an additional 15-20 ml methylene chloride and let this filter through into KD flask.
- 6.13 Remove separatory funnels from lab supports and discard water.
- 6.14 Remove funnels from KD flask and insert the three ball macro Snyder columns into the top of KD flask.
- 6.15 Concentrate extract volume to approximately 3 ml using steam bath. Remove KD apparatus from steam bath and allow it to cool for 10 minutes.
- 6.16 Add 50 ml hexane to KD flask and again concentrate extract volume to approximately 3 ml using steam bath.
- 6.17 Remove concentrator tubes from KD flask. Rinse KD flask with small amounts of hexane and allow this to drain into concentrator tube.
- 6.18 Place concentrator tubes in N-EVAP concentration device and reduce volume to approximately 1 ml.
- 6.19 Proceed to required cleanup procedure.

SOP No.: EM.4

A CARLES CONTRACTOR OF A CONTRACT OF A CARLES A CONTRACTOR OF A CONTRACTOR

Page 4 of 4

7.0 Cleanup of Glassware

.ξ

a second branches and the second second second

7.1 After use glassware is colvent rinsed with toluene and methylene chloride. Wash with detergent and rinse with copious amounts of tap water and several portions of distilled water. Place glassware in oven and heat to 350°C for 30 minutes. Remove from oven when cool and store in clean environment.

Appendix Q, Exhibit 4

a state with the survey of the second state and the second state and the second state of the state of the second

STANDARD	SOP No.:
OPERATING	Date Revised:
PROCEDURE	Revision No.:
Title: Extraction Method for Industrial Hygiene Samples (To Include Ambient Air, XAD, Florisil, Silica Gel and Resin Traps)	Approval: <u>Approval</u> Page <u>1</u> of <u>3</u>

- 1.0 Summary
 - 1.1 Industrial hygiene samples are extracted by soxhlat extraction. Samples are spiked according to client request for analysis. After extraction and cleanup, samples are analyzed by GC/MS.

2.0 Reagents

- 2.1 Spiking standard solutions; for isomer specific analysis, samples will be spiked with $13C_{12}-2,3,7,8-TCDD$ internal standard at a concentration of 500 ng/ml and $3^7CI_4-2,3,7,8-TCDD$ surrogate standard at a concentration of 100 ng/ml, both in the same isooctane solution. For total dioxin/furan analysis the sample will be spiked with the isomer specific spike plus a solution which contains 13C - labeled Penta CDD, Penta CDF, Hexa CDD, Hexa CDF, Hepta CDD, Hepta CDF, Octa CDD and Octa CDF each at a concentration of 500 ng/ml and all in the same isooctane solution.
- 2.2 Silica gel, type 60, EM reagent, 70-230 mesh, or equivalent.
- 2.3 Acatone; technical grade.
- 2.4 Toluene; pesticide quality or equivalent.
- 2.5 Methylene chloride; pesticide quality or equivalent.
- 2.5 Hexane; pesticide quality or equivalent.
- 2.7 Benzene; pesticide quality or equivalent.
- 3.0 Cautions
 - 3.1 Samples received for this preparation procedure are of unknown composition but may be potentially carcinogenic, mutagenic, toxic or in other ways hazardous.

Regional Cilce 17 Corporation + 312 Directors Drive • Rådxville, Tennessee 37923 + 615-690-3211

SGP No.: E4.9 Page 2 of 3

3.2 It is mandatory that the initial weighing of the samoles, addition of isotopically labeled 2,3,7,8-TCDD, and mixing of the sample be performed inside the designated dioxin hood in the high hazard laboratory.

Beer States and the state of the second states and

3.3 Personnel involved in this sample preparation procedure should be thoroughly familiar with laboratory SOPs on the processing of high hazard samples.

4.0 Glassware

4.1 <u>All glassware used in extraction and cleanup procedures is</u> solvent rinsed before use. The solvents used are acetone, toluene, methylene chloride and hexane (in this order). Allow to air dry in a hood.

5.0 Materials and Equipment

- 5.1 Glass soxhlet system with glass thimbles.
- 5.2 Heating mantles with temperature control.
- 5.3 Three ball macro Snyder column
- 5.4 500-ml evaporative flask, round bottom.
- 5.5 Glass wool.
- 5.6 Boiling beads; 6 mm glass
- 5.7 20 ml scintillation vial.
- 5.8 N-EVAP; concentration device.
- 5.9 Teflon sleeves.
- 5.0 Method
 - 6.1 Prepare dioxin hood as instructed in laboratory SOP for processing high hazard sample. This includes obtaining, preparing and labeling the requisita number of soxulet systems.
 - 6.2 Place x-1 inch silica gel in a glass extraction thimple (one per sample).
 - 6.3 Carefully transfer each puf or front section of resin into an extraction thimple. The backup section of the resin traps are to be held until after analysis. If there is no dioxin found in the front section, the backup section can be discarded. However, if dioxin is found, the backup section must be analyzed to check for breakthrougn.
SOP No.: E4.9 Page 3 of 3

- 6.4 Spike sample with 100 µl of the appropriate standard solution(s). Add a small amount of glass wool to the top of the extraction thimble.
- 6.5 Pour approximately 350 ml benzene into 500 ml round bottom flask. Place flask in the heating mantle. Add 15-20 boiling beads.
- 6.6 Place extraction thimble in the glass soxhlet extractor.
- 6.7 Assemble soxhlet system and use a terlon sleeve on the flask joint. Secure to lab supports.
- 6.8 Adjust temperature of heating mantle to approximately 80°C. Bring benzene to a rolling boil. There should be a steady drip from the condenser.
- 6.9 Soxhlet extract in the above manner for 16 hours.
- 6.10 Turn off heating mantle and allow to cool.
- 6.11 Remove condensers and allow the soxhlet extractor chamber to empty, then remove the soxnlet extractor from 500 ml round bottom flask.
- 6.12 Insert three ball macro Snyder column into the top of 500 ml round bottom flask.
- 6.13 Prewet the Snyder column with methylene chloride. Place 500 ml flask back into heating mantle and reduce extract volume to approximately 3 ml.
- 6.14 Transfer extract into 20 ml scintillation vial, rinsing the 500 ml flask three times with small amounts of benzene. Add rinsing to 20 ml scintillation vial.
- 6.15 Place 20 ml vials into the N-EVAP concentration device and reduce volume to approximately 1 ml.
- 6.15 Proceed to appropriate cleanup procedure(s).

7.0 Cleanup of Glassware

7.1 After use, glassware is solvent rinted with toluene and mothylene chloride. Wash with detargent and rinted with copious amounts of tap water and several portions of distilled water. Place glassware in oven and heat to 350°C for 30 minutes. Remove from oven when cool and store in clean environment. Appendix Q, Exhibit 5

Echilit

INTERNATIONAL TECHNOLOGY CORPORATION STANDARD OPERATING PROCEDURE	SOP No.: <u>IP.4</u> Date Revised: <u>11-12-36</u> Revision No.: <u>0</u>
Title: 2,3,7,8-TCDD Analysis Procedures by Multiple Ion Detection (MID) High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)	Approval: <u>Approval: Approval:</u> Page <u>1</u> of <u>7</u>

1.0 Introduction

1.1: This is a qualitative and quantitative (high resolution) GC/(high resolution) MS analysis specific for the 2.3.7.8 isomer of tetrachlorodibenzo-p-dioxin using selected ion monitoring. A sample is spiked with isotopically labeled ${}^{13}C_{12}$ -2.3.7.8-TCDD as internal standard and with ${}^{37}C_{14}$ -2.3.7.8-TCDD as surrogate. Quantitation is based on the response of native TCDD relative to the internal standard. Performance is based on surrogate standard results. Percent recovery of the IS/SURR mixture is based on the GC/MS internal standard.

2.0 Safety

2.1 Samples are sent to IT Corporation from suspected or known hazardo.: waste sites. Samples are to be handled from receipt to storage by qualified personnel only. Analysts must have a working knowledge of safety protocols and be adept at safety procedures. GC/MS instruments must be equipped with vapor contamination traps on the capillary split and sweep vents and on the rough pump effluent lines prior to use (see Safety SOP).

3.6 Set-Up and Installation

- 3.1 Install a 60 meter, 0.25 mm ID, fused silica SP2331, 0.20 micron film thickness capillary column. Set the head pressure to approximately 20 to 25 psi and the split and sweep flows to 30 ml/min and 3 ml/min respectively.
- 3.2 Create a reasonable 10,000 resolution tune, for m/z 331 for PFK. Adjust the zero according to the instrument manufacturers suggested settings. Set the preamo sensitivity to 10^{-6} amps/volts. Calibrate the instrument before every sample.
- 3.3 Establish the following MID descriptors:

Regional Other 112 Directors Drive - Knownule, Ténnetsee 17923 - 115-200-1211

i	Į		D(ms)										ł	Į				
			S (ms)														·	
	10000 2032	1 645	(1118) H															
-		Hode E11	(sa)	. –	-	_			-	_	_						•	
SECTOR)	t IAV	: 30:00	ns) D(01 0	01 0		01	01 0	0	0 10	0 10							
1 KVE](volts màss a	0 00:00	s (0	9	9 49 N A		9	6	, o	9							
0111ù [GI	Haxtmum Haxtmum	fiave 0:1	H(amu) 256,9321	315.941	012.910	118 970 BIL	019.8970	121.8940	327.884	131.936	stre.ttr							
RECOR	I HI	GTM	CIN															
LECTIVE 100	PEK	1://~2505	8000 0001	1				50	*	*	2.0	0.02 Y						
as for su	~		100				2	((supp	läths)	ext					•
ARAME TEI	ane filenam	rcomt	ng volt	3	15		1 (s) (s)	ance (pi	nation	nation	(peak w	(peak w on	ample I					
đ	filen	Lrument	eleration	and les	nject for	roups		toler	examl:	i exami	k span	t step	11: 5					
	Det	Sel Sul	Acce		-	30			E	Peal	Loci	Fasi	Sample					• .
	DAT REF	ACN	ACV	Sup	FNI	155		5	CEX	PEX	SHI	101	Ξ					

2

のと対応に見た

A CALLER LY MENT CRIME CALLER

19757

1.00

1. 1. 3.

SOP	No.	:	IP.	11
Page		3	of	7

and the second second second second

3.4 Set the GC conditions as follows:

Injection Port Temp	250°C
Separator Temp	260°C
Initial Temp	70°C
Initial Time	4 min
Ramp Rate 1	20°C/min
Temp 2	200°C
Hold Time 2	0 min
Ramp Rate 2	4°C/min
Temp 3	250°C
Hold Time 3	5 min*
Solit/Sweep	85 sec

Thold for at least 2 min beyond the retention time of the last isomer of TCDD in the performance mixture.

4.0 Analysis

- 4.1 General Description
 - 4.1.1 A five point calibration consisting of a 5 pg/ul, a 10 pg/ul, a 50 pg/ul, a 100 pg/ul, and a 500 pg/ul standard must be run in triplicate and a linear response curve generated before samples are analyzed. The 10 pg/ul standard is analyzed at the beginning of each eight hour shift to verify system performance and conformity to the multipoint calibration. Samples are received in 50 ul volumes and require no further preparation by the GC/MS laboratory.

Concentration of 2.3.7.3-TCDD/TCDF

4.1.2 COMPOSITION OF CONCENTRATION CALIBRATION SOLUTIONS

Solution No.

1234

5

Tentonically Labelad

	30100108110 01		1 - 1
13c12	37 _{C14}	130-700F	2,3,7,3-700
10 pg/ul	10 pg/ul	10 pg/ul	5 pg/ut
10 pg/ul 10 pg/ul	10 pg/ul 10 pg/ul	10 pg/ul 10 pg/ul	50 pg/ul
10 pā/ul 10 pā/ul	10 pq/ul 10 pq/ul	10 pg/ul 10 pg/ul	100 pg/ul 500 pg/ul

4.2 Procedures for GC/MS Analysis Initial Calibration

- 4.2.1 The GC conditions for all standards, samples, and the column performance mixture are as stated in Section 3.4.
- 4.2.2 Tune and calibrate the instrument as in step 3.2.

4.2.3 Acquire the seven isomer EPA test mix. If no isomers are coeluting with 2.3.7.3-TCDD, proceed with 4.2.4. If co-elution does occur, the conditions must be modified or the column must be changed. 716

IP.4 SEP No .: Page 4 of 7

- 4.2.3.1 Determine and document acceptable system performance with the following criteria:
 - A. Five data points for each GC peak are acquired.
 - 8. GC column performance -- The valley between 2,3,7,8-TCDD and the peaks representing all other TCDD isomers must be resolved with a valley <25%. Valley % = $x/y \times 100$ when y is peak height of 2,3,7,8-TCDD and x is baseline to valley height.
 - C. Ratio of integrated ion current for m/z 320 to m/z 322 for 2,3,7,8-TCCD must be ≥ 0.67 and ≤ 0.87 .
 - D. Ratio of integrated ion current for m/z 322 to m/z 334 for $1^{3}C_{12}$ -2,3,7,3-TCDD must be \geq 0.67 and \leq 0.87.
 - E. Response factor for $37C1_4-2,3.7,8-TCDD$ relative to $13C_{12}-2,3.7,8-TCDD$ must be within + 10% of the mean value established by triplicate analyses of the concentration collibration solutions (section 4.1.2).
- 4.2.3.2 Remedial action must be taken if all of the criteria are not met.
- 4.2.4 Using the same GC conditions that produced acceptable results with the performance solution, analyze 2 µl of tach of the five concentration calibration solutions in section 4.1.2.
 - 4.2.4.1 Repeat section 4.2.4 two times to produce triplicate data sets for each solution.
- 4.2.5 Calculate the response factor for $37C1_4-2,3,7,8-TCDD$ and for unlabeled 2,3,7,8-TCDD relative to $12C_{12}-2,3,7,8-TCDD$:

$$RF = \frac{A_{x} \circ Q_{1s}}{A_{1s} \circ Q_{x}}$$

- where A_{χ} = integrated ion abundance (corrected for native contribution) of π/z 323 for 3^7 Cl₄-2.3.7.3-TCDO or the sum of integrated ion abundances of π/z 320 and π/z 322 for unlabeled 2.3.7.8-TCDD.
 - Ats = the sum of integrated abundances of π/z 322 and π/z 334 for $^{13}C_{12}$ -2.3.7.3-TCDD,
 - $Q_{15} = quantity of 13C_{12}-2,3,7,3-7CDD.$
 - Q_{χ} = quantity of unlabeled 2,3.7,8-TCDD or $37C1_4-2,3.7,8-TCDD$ injected.

SOP No.: IP.4 Page 5 of 7

RF is a unitless number; units used to express quantities must be equivalent.

4.2.6 For both $37C1_{4-2}$,3,7,8-TCDD and unlabeled 2,3,7,8-TCDD, calculate the mean RF and its relative standard deviation (RSD) from triplicate analyses of each of the five concentration calibration solutions. Variation of the RF calculated for each compound at each concentration level must not exceed 10% RSD. If the five mean RFs for each compound do not differ by more than \pm 10%, the RF can be considered to be independent of analyte quantity for the calibration concentration range, and the mean of the five mean RFs shall be used for concentration calculations.

- 4.2.7 Fill out all necessary paperwork for the standard calibration QA/QC (see Data and Records Management section for paperwork).
- 4.2.8 Plot the response factor vs concentration for the five point calibration curve for QA/QC reporting.
- 4.3 Calibration before the start of each eight hour shift.

- 4.3.1 Inject 2 µl of the concentration calibration solution No. 3 (10 pg/µl) to determine and document acceptable performance for:
 - 4.3.2.1 MS sensitivity signal-to-noise (S/N) ratio of \geq 2.5 for m/z 257 and \geq 10 for m/z 322 for unlabeled 2.3.7.3-TCDD. The ratio of integrated ion current for m/z 257 to m/z 322 should be \geq 0.20 and \leq 0.45. The ratio of integrated ion current for m/z 320 to m/z 322 must be >0.57 and <0.87.
 - 4.3.2.2 Measured response factor for unlabeled 2.3.7.8-TCDD relative to $^{12}C_{12}$ -2.3.7.3-TCDD is within \pm 10% of the mean values established (Section 4.2) by triplicate analyses of the concentration calibration solutions.
 - 4.3.2.3 If both these criteria are met, fill out the bottom portion of the daily shift standard form. If the RF ratios are within 10% of the calibration average, samples may then be analyzed. OO NOT UPDATE the shift standard to the reponse list. Use R:S;T only. If the 10% criteria are not met, reanalyze the shift standard. If still out of bounds, a new multicoint must be run. Multicoints may continue to be used for as long as the shift standards conform to this criteria. Xerox a copy of the daily shift standard form for inclusion with the shift standard packages and an extra copy to be placed in the instrument logoook so that subsequent shift standard entries may be made on the same form. 718

SOP No.: _____IP.4 Page ______ of _____

4.3.2.4 Acquire sumple analyses. Samples may be analyzed following a successful shift standard analysis. Performance standards must be rerun within every eight hours. The injection procedure must be carefully adhered to avoid cross contamination. If the background of a sample analysis remains high towards the end of an acquisition, the column should be baked out for an extra period of time to avoid possible chromatcgraphic carryover into the next sample injection. Septa should be changed after approximately 40 injections. Capillary injection port liners should be cleaned or exchanged with every other septum change. Good sense and experience prevail.

4.4 For all injections, a hot needle injection technique is used.

- 4.4.1 Injection Technique (Hot Needle) The syringe must be thoroughly cleaned between injections to avoid cross-contamination. Remove the plunger between injections and wipe it thoroughly with a Kimwipe. Rinse the syringe with ten to fifteen full syringe volumes of hexane solvent wash. Replace the solvent wash with pesticide quality hexane daily. Work the plunger up and down in the syringe barrel to reduce excess hexane wash. There should be approximately 0.5 µl of solvent left in the syringe barrel following this final rinse.
- 4.4.2 Draw back the plunger so that there are about 2 μ l of air in the barrel. Draw 2.0 μ l of sample into the needle. Usually to get a total of 2 μ l of sample, it is necessary to pull the plunger back approximately 1.2 μ l. The sample should be drawn up into the barrel and the amount confirmed to be 2 μ l. If it is not, the sample should be expelled and process repeated.
- 4.4.3 After getting 2.0 µl of sample into the barrel, insert the needle into the injector port and wait 6 seconds. Rapidly make the injection.
- 4.4.4 After making the injection, remove the needle as quickly as possible. As soon as the injection is made, start the GC.
- 4.5 Identification criteria for native 2,3,7,8-TCDD.
 - 4.5.1 Retention time (at maximum peak height) of the sample component must be within 3 seconds of the retention time of the ${}^{12}C_{12}$ -2.3.7.8-TCDD. Retention times are required for all chromatograms, but scan numbers are optional. These parameters should be printed next to the appropriate reak.

SOP No.: IP.4 Page 7 of 7 2

- 4.5.2 The integrated ion currents detected for m/z 257, 320, and 322 must maximize simultaneously. If there are peaks that will affect the maximization of quantitation of peaks of interest, attempts should be made to narrow the scan window to eliminate the interfering peaks. This should be reported on a separate chromatogram.
- 4.5.3 Relative abundance of m/z 257 to m/z 322 should be \geq 20% and \leq 45%.
- 4.5.4 Abundance f integrated ion counts detected for π/z 320 must be ≥ -3.2 and ≤ 87.2 of integrated ion counts detected for π/z 321.

5.0 Deliverables

5.1. Each sample "package" must include the following:

- a) RIC
- b) Complete quantitation report. (Input area and scan no. manually if missed)
- c) EICP of m/e 332; m/e 334; m/e 328
- d) EICP of 320; 322; and 257
- e) Quan (320; 322; 257; 5 scans) The center of the 5 scan window is the retention time of $^{13}{\rm C}_{12}{-}2,3,7,3{-}7{\rm CDD}$
- f) EICP of m/e 316; m/e 318
- g) A standard package including all of (a) through (g) plus an attached copy of the TCDD calibration summary
- 5.1.1 See Data and Records Management section for batch report deliverables.

Appendix	Q, Ehibit 6 Frank f 10
INTERNATIONAL TECHNOLOGY CORPORATION STANDARD OPERATING PROCEDURE	SOP No.: Date Revised: Revision No.:
Title: Total PCDD and PCDF Congener (Cl ₄ -Cl ₈) Analysis Procedures by Multiple Ion Detection (MID) High Resolution Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)	Approval: <u>KAPO-CLACKY:</u> J Page 1 of 12
1.0 Introduction 1.1 Based on the request for hig different congeners of diaxi a modification of the proceed be employed to include analy - Total tetrachlorodibenzof - Total pentachlorodibenzofu - Total hexachlorodibenzofu - Total hexachlorodibenzofu - Total octachlorodibenzod - Total tetrachlorodibenzod - Total pentachlorodibenzod - Total hexachlorodibenzod - Total octachlorodibenzod - Total octachlorodibenzod - Total dioxin and dibenzof due to the lack of availabil isomers. The standard analy <u>0foxins</u> 13c-1.2.3.7.8-TCDD 13c-1.2.3.4.5.7.8-HpCDD 13c-1.2.3.4.5.7.8-HpCDD 1.2.3.4.6.7.8-HpCDD 0.200	h resolution mass spectrometry of n and furan from tetra through octachloro, ures for the RCRA method 8280 must sis for the following: uran (TCDF) uran (PeCDF) ran (PeCDF) uran (M ₂ CDD) ioxin (TCDD) ioxin (M ₂ CDD) ioxin (M ₂ CDD) oxin (M ₂ CDD) oyed by ITAS for the determination uran is considered semi-quantitative ity of all dioxin and dibenzofuran zet each shift will consist of:

~ 1

Regional Cilca 312 Directors Drive - Knazville, Tennessee 37923 - 615-690-3211

SOP No.: IP.5 Page 2 of 12

- 1.2 In order to effectively scan for all of the required masses and maintain adequate sensitivity, four groups within each run must be monitored. Group #1 will consist of all the tetra dioxin and furan isomers, including their ¹³C-labeled congeners, as well as penta dioxin and furan isomers, and their ¹³C-labeled congeners. Group #2 consists of penta native and ¹²C-labeled furan and dioxin. In addition to the penta isomers, the hexa isomers are monitored for both dioxin and furan (native and ¹²C-labeled). Group #3, in the same manner, monitors the hexa and hepta compounds as does Group #4, monitoring for hepta and octa isomers. Groups monitor for those isomers which overlap; for example, some tatra isomers elute after the earlier penta isomers.
- 1.3 Performance of the system is based on surrogate standard results for every sample.
- 2.0 Safety
 - 2.1 Samples are sent to IT Corporation from suspected or known hazardous waste sites. Samples are to be handled from receipt to storage by qualified personnel only. Analysts must have a working knowledge of safety protocols and be adept at safety procedures. GC/MS instruments must be equipped with vapor contamination tracs on the capillary split and sweep vents and on the rough pump effluent lines prior to use.

3.0 Set-Up and Installation

- 3.1 Install a fused silica OB-5 column (film thickness, 0.25 um; column dimensions, 30 metar x 0.253 mm). Set the head pressure to approximately 20 psi and the split and sweep flows to 30 ml/min and 0.02 ml/min respectively.
- 3.2 Greate a reasonable tune with PFK for demonstrating 10,000 resolving power or better for mass 331. Adjust the zero according to the instrument manufacturers suggested settings. The sensitivity of the preamp is set at 10-6 amos/volts. Calibration of the instrument is performed before each run. Hard copies of calibrations will be included as deliverables.
- 3.3 Establish group descriptors using the following parameters:

Total Scan Time: 1.03 seconds per Group Cali Mass Range: Depends on Group range. GROUP AT (TETRA/PENTA WINDOW)

	PARAMETERS FOR	t SELECTIVE 10N	I RECORI	1110 [GI KV	E](SECTOR)			
DAT	Data filename		IAV	Max1mum vo	lts		10000	
REF	Reference filename	PFK	IMG	Hax Imum ma	ss at IAV		2032	
SNI	lnstrument	1:70-2505	UIN	11ma 0.01	00.00.00	Mada Clal	1	1
ACN	Customer account	11	;				C D M	
ACV	Accelerating volts	8000	CIIN	H(amu)	S(ms))(ms)	(ила) М	S(ms)D(m	(S
KES	Instrument resolution	10000		303.9016	12 B	337.8625	35 6	·
SHP	/ Samples			305.8987	35 8	339.8967	35 8	_
CHI	/ Injections			307.8957	35 8	341.8568	35 8	_
GRP	/ Groups			315.9419	35 8	349.9029	35 B	_
CLS	# Calibration scans	~~~		9860.71E	35 B	351.9000	35 8	_
CST	Cal. scan time(s)	10		319.8965	35 8	353.0576	35 8	_
CIL	Cal. tolerance (ppm)	50		321.8935	35 B	355.8546	35 8	_
CEX	Cal. examination			323.8906	35 8	357.8517	35 8	_
PEX	Peak examination	~~		327.8847	35 8	367.8949	35 8	_
CHIS	Lock span (peak widths)	2.0		330.9792	35 B	369.8919	35 8	_
LST	Lock step (neak whiths)	0.02		330.9792	35 B	373.8400	35 8	_
FLO	Fast lock on	~		331.9368	35 B	407.8010	35 B	_
		•		ALEG.ELE	35 A			
TXT Sa	nmole 11: Samole Text							

SOP No.: IP.5 Page <u>3</u> of <u>12</u>

GROUP #2 (PENTA/NEXA SINDON)

PARAMETERS FOR SELECTIVE TON RECORDING [GJ2 KVE] (SECTOR)

DAT REF	Data filename Reference filename	PFK	I AV I MR	Maxfmum ve Maxfmum ve	olts		10000	1
INS	Instrument	1:70-2505	1144		143 BL 174		2602	
ACN	Customer account	11	MIN	1100 0:20	:10 0:24:00	Hode El+I	Gas	
ACV	Accelerating volts	0000	CIIN	H(amu)	S(ms D(ms)	(ann) M	Stas Dias 1	
KES	Instrument resolution	10000		337.8625	35 8	300.9760	35 8	
SHP	I Samples	-		7020.0EE	35 B	300.9760	35 A	
CH I	Injections	_		341.8568	35 0	305.8610	35 A	
GRP	J Groups	4		349.9029	35 8	387.8186	35 A	
ci s	I Calibration scans	2		351.9000	35 8	307.8580	35 A	
153	Cal. scan time(s)	10		353.0576	35 8	309.0156	35 B	
CIL 2	Cal. talerance (ppm)	50		355.8546	35 8	391.8127	35 <u>8</u>	
CEX	Cal. examination	7		357.0517	35 B	401.8559	35 B	
PEX	Peak examination	X		367.8949	35 0	403.8529	35 B	
I HS	Lock span (peak widths)	2.0		369.8919	35 8	407.8010	35 8	
	Lock step (peak widths)	0.02		7628.176	35 8	443.7590	35 A	
FI 0	Fast lock on	7		373.8207	35 8		1	
				375.0178	35 8			
IXI	Sample N1: Sample Text							1

..

SOP No.: IP.5 Page 4 of 12

GROUP A3 (HEXA/HEPTA NINDON)

PARAHETERS FOR SELECTIVE ION RECORDING [GN3 KVE](SECTOR)

• •

DAT	Data filename		IAV	Maximum vo	115		0001	
REF	Reference filename	PFK	IHR	Maximum ma	iss at IAV		2012	,
INS	Instrument	1:70-2505	013	Yimo 0.31	00.10.0.01	11-1- 6111		
ACN	Customer account	11		11MM2 0 2411	nc://:n nt	HODE EITI	201	
ACV	Accelerating volts	8000	CIIN	M(amu)	S(ms) D(ms)	H(amu)	S(ms D	(sa)
RES	Instrument resolution	10000		7628.176	35 8	407.7818	35	8
SHP	/ Samples	_		373.8207	35 8	409.7788	35	
CNI	/ Injections			375.8178	35 8	419.8220	35	8
GILP	B Groups			380.9760	35 B	421.7796	35	8
CLS	d Calibration scans	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		380.9760	35 8	421.8191	35	8
CST	Cal. scan time(s)	10		385.8610	35 8	423.7767	35	8
CIL	Cal. tolerance (ppm)	50		387.8186	35 8	425.7737	35	8
CEX	Cal. examination	7		387.8580	35 8	435.8169	35	8
PEX	Peak examination	7		389.8156	35 8	437.8140	35	8
SH1	Lock span (peak widths)	2.0		391.8127	35 8	443.7590	35	8
LST	Lock step (peak widths)	0.02		401.8559	35 8	4/7.7200	35	8
FL0	Fast lock on	~	•	403.0529	35 8			
				405.7047	35 8			
TXT S	Samole 11: Samole Text							

SOP No.: IP.5 Page 5 of 12 ١.

GRIMIP JA (HEPTA/OCTA WINNOW)

1

PARAMETERS FOR SELECTIVE ION RECORDING [GAA KVE]/SECTOR

IN I	Data filename		IAV	Maximum vi	olte				
REF	Reference filename	PFK	IHR	Maximum m	ass at 1	ÅV		1001	2,
INS	lnstrument	1:20-2505	ML V					ing	
ACN	Customer account		61M	1110 0:27	:40 0:42	W 00:	ode EI+I G.	a S	
ACV	Accelerating volts	8000	CIN	H(amu)	S(ms) D	(m s)	H(amu)	S as T	(se)
RES	Instrument resolution	10000		392.9760	35	8	441.7428	35	
SHP	A Sample's	_		392.9760	35	8	443.7398	35	
CNI	/ Injections	-		405.7047	35	8	453.7830	35	
GNP	A Groups	-		407.7818	35	8	455.7406	35	2
CLS	# Calibration scans	2		409.7708	35	8	455.7801	35	e
cst	Cal. scan time(s)	10		419.8220	35	8	1157.731	35	
CIL	Cal. tolerance (ppm)	50		421.7796	35	8	459.7348	35	2
CEX	Cal. examination	~		421.8191	35	0	469.7779	35	9 8
PEX	Peak examination	¥		423.7767	36	8	471.7750	35	8
LHS	lock span (peak widths)	2.0		425.7137	36	8	477.7200	35	8
LST	Lock step (peak widths)	0.02		435.0169	35	8	511.6010	35	æ
FL.0	Fast lock on	>		437.0140	35	8		1)
			ļ	439.7457	35	8			

SOP No.: IP.5 Page <u>6</u> of 12 ļ

SOP No.: IP.5 Page 7 of 12

3.4 Set the GC conditions as follows:

Injector Port Temp Separator Temp Initial Temperature I (deg.C) Time 1 (mins) Rate 1 (deg. C/min) Temperature 2 (deg.C) Time 2 (mins) Rate 2 (deg.C/min) Temperature 3 (deg.C) Time 3 (mins) Capillary split/sweep Solvent Delay

70 1.00 15.0 200 0.00 3.0 280 8.00 90 sec. 3.5 min.

300°C

300°C

4.0 Analysis

- 4.1 General Description
 - 4.1.1 A five point calibration consisting of a 1 pg/µl, 5 pg/µl, 10 pg/µl, 50 pg/µl, and 100 pg/µl standard must be run in triplicate and a linear response curve generated before samples are analyzed. The 10 pg/µl standard is analyzed at the beginning of each eight hour shift to verify system performance and conformity to the multipoint calibration. Samples are received in 50 µl volumes and require no further preparation by the GC/MS laboratory.
 - 4.1.2 The concentrations of all components of the total standard are as follows:

>	10.0 pg/µ1	10.0 pg/n1	10.0 pg/h1	10.0 pg/hl	10.0 pg/nl	10.0 pg/n1	10.0 pg/ml	10.0 pg/n1	14/0d 0.01	10.0 pg/n1	500.0 pg/µl	500.0 pg/µl	500.0 pg/nl	500.0 pg/nJ	500.0 pg/µl	500.0 pg/nl	500.0 pg/µl	500.0 pg/µl	500.0 pg/n1	500.0 pg/µl
17	10.0 pg/h	10.0 pg/n	10.0 pg/n	10.0 pg/h	10.0 pg/µl	10.0 pg/µ1	10.0 pg/µ1	10.0 pg/n	10.0 pg/µ1	10.0 pg/n	1n/04 0.001	100.0 pg/lu	100.0 pg/li	100.0 pg/h	110.0 pg/lul	100.0 pg/bd	14/64 0.001	100.0 pg/lul	100.0 pg/h	100.0 pg/lu
Ш	10.0 pg/bl	10.0 pg/µ1	10.0 pg/µl	10.0 pg/µ1	10.0 py/n	10.0 pg/µ1	10.0 pg/h	10.0 pg/µ1	10.0 pg/h	10.0 pg/h	50.0 pg/µl	50.0 pg/µl	50.0 pg/nl	50.0 pg/nl	50.0 pg/µl	50.0 pg/µl	50.0 pg/µl	50.0 pg/µl	50.0 pg/µl	50.0 py/m
=	10.0 pg/nl	10.0 pg/n1	10.0 pg/h	10.0 pg/n1	10.0 pg/µ1	10.0 pg/n1	10.0 pg/n	10.0 pg/n	10.0 09/10	10.0 pg/n1	10.0 pg/n	0.0 pg/pg	10.0 pg/n	10.0 pg/m	10.0 pg/11	10.0 pg/n1	10.0 pg/nJ	10.0 pg/µl	10.0 pg/n	10.0 pg/n
-	14/24 10.01	10.0 pg/n]	10.0 pg/n1	10.0 pg/µ1	10.0 pg/n	10.0 pg/nl	10.0 pg/nl	10.0 pg/n	10.0 pg/n1	10.0 pg/µ1	5.0 pg/nl	5.0 py/µ1	5.0 pg/pl	5.0 pg/µl	5.0 րց/րվ	5.0 pg/nl	5.0 pg/nJ	5.0 pg/n1	5.0 pg/n1	6.0 pg/pl
CONGENER	¹³ ¢-2,3,7,8-7000	37c1-2,3,7,8-7c00	1 ³ C-2,3,7,8-TCDF	¹³ C-1,2,3,4,7-PeCOD	¹³ C-1,2,3,7,8-PeCDF	¹³ C-1,2,3,4,7,8-fixCDD	¹³ C-1,2,3,4,7,8-iixCDF	1 ⁻¹ C-1,2,3,4,6,7,8-HpC0D	¹³ C-1,2,3,4,6,7,8-11pCDF	1 ³ c-ocon	2,3,7,8-TCDD	2,3,7,8-TCDF	1,2,3,4,7-PeCDD	1,2,3,7,8-PeCNF	1,2,3,4,7,8-HxChF	1.2.3.4.7.8-HxCDD	1.2.3.4.6.7.8-HpCDF	1.2.3,4.6.7.8-HpCDD	0000	OCDF

Transfer and the

Page _ 8 of 12

SOP No.: IP.5

÷ŧ

SOP No.: IP.5 Page 9 of 12

4.2 Procedures for GC/MS Analysis Initial Calibration

4.2.1 The GC conditions for all standards, samples and the column performance mixture are as stated in Section 3.4.

4.2.2 Tune and calibrate the instrument as in step 3.2.

4.2.3 Analyze 2 µl of each of the five concentration calibration solutions in section 4.1.2 for dioxins and furans.

4.2.3.1 Repeat section 4.2.3 two times to produce triplicate data sets for each solution.

4.2.4 Calculate response factors for each compound in the standard relative to its respective ¹³C congener.

Calculate all of the labeled materials versus 13C-TCDD.

$$RF = \frac{A_x \circ Q_{is}}{A_{is} \circ Q_x}$$

Where A_X = integrated ion abundance (corrected for native contribution) of m/e 328 for 3^7 Cl₄-2,3,7,8-TCDD <u>or</u> the sum of integrated ion abundances of characteristic ions for the unlabeled congeners.

Ais = the sum of integrated ion abundances of characteristic ions for the labeled congeners,

Qis = quantity of labeled congeners.

 q_x = quantity of the unlabeled dioxin or furan congener or ${}^{37}\text{Cl}_4-2,3,7,3-T\text{CDD}$ injected.

RF is a unitless number; units used to express quantities must be equivalent.

4.2.5 For both ³⁷Cl₄-2.3.7,8-TCDD and unlabeled dioxin or furan congeners, calculate the mean RF and its relative standard deviation (RSD) from triplicate analyses of each of the five concentration calibration solutions. Variation of the RF calculated for each compound at each concentration level must meet the following criteria:

SOP No.: <u>IP.5</u> Page <u>10</u> of <u>12</u>

37C14-2,3,7,8-TCDDnot to exceed 101 RSDTCDD and TCDFnot to exceed 101 RSDPeCDD through 0CDDnot to exceed 301 RSDPeCDF through 0CDFnot to exceed 301 RSD

If the three mean RFs for each compound do not differ by more than the amount specified above, the RF can be considered to be independent of analyte quantity for the calibration concentration range, and the mean of the three mean RFs shall be used for concentration calculations.

- 4.2.6 Fill out all necessary paperwork for the standard for the standard calibration Q⁴/QC (see Data and Records Management section for paperwork).
- 4.2.7 Plot the response factor vs. concentration for the five point calibration curve for QA/QC reporting.

4.3 Calibration before the start of each eight hour shift

- 4.3.1 Inject 2 µl of the concentration calibration solution #2 (10 pg/1)) to determine and document acceptable performance.
 - 4.3.1.1 MS sensitivity signal-to-noise (S/N) ratio of > 10 for all characteristic force
 - 4.3.1.2 Measured response factor for unlabeled dioxin and furan congeners relative to the appropriately labeled 1-C-compound is within prescribed limits of the mean values established (Section 4.2) by triplicate analyses of the concentration calibration solutions.
 - 4.3.1.3 If both these criteria are met, samples may then be analyzed. <u>DO MOT UPDATE</u> the shift standard to the response list. If the criteria are not met, reanalyze the shift standard. If still out of bounds, a new multipoint must be run. Multipoints may continue to be used for as long as the shift standards conform to this criteria.

730

SOP No.: IP.5 Page 11 of 12

4.3.1.4 Acquire sample analyses. Samples may be analyzed following a successful shift standard analysis. Standards must be rerun within every eight hours. The injection procedure must be carefully achered in order to avoid cross contamination. If the background of a sample analysis remains high towards the end of an acquisition, the column should be baked out for an extra period of time to avoid possible chromatographic carryover into the next sample injection.

- 4.3.1.5 Septa should be changed after approximately 40 injections. Capillary injection port liners should be cleaned or exchanged with every other septum change. Good sense and experience prevail.
- 4.3.2 At eight hours from the injection of the standard (4.3.1), the tune is over.

4.4 For all injections, a hot needle injection technique is used.

- 4.4.1 Injection Technique (Hot Needle) The syringe must be thoroughly cleaned between injections to avoid cross contamination. Remove the plunger between injections and wipe it thoroughly with a Kimwipe. Rinse the syringe with ten to fifteen full syringe volumes of hexane solvent wash. Replace the solvent wash with pesticide quality hexane daily. Work the plunger up and down in the syringe barrel to reduce excess hexane wash. There should be approximately 0.5 ul of solvent left in the syringe barrel following this final rinse.
- 4.4.2 Oraw back the plunger so that there are about 2 μ of air in the barrel. Draw 2.0 μ of sample into the needle. Usually to get a total of 2 μ of sample, it is necessary to pull the plunger back approximately 1.2 μ . The sample should be drawn up into the barrel and the amount confirmed to be 2 μ . If it is not, the sample should be expelled and process repeated.
- 4.4.3 After drawing 2.0 ull of sample into the barrel press start on GC (shuts off burge for 90 seconds and begins GC/MS program). Insert the needle into the injection port, wait 10 seconds, and rapidly make the injection.
- 4.4.4 After making the injection, remove the needle as quickly as possible (2 seconds).

4.5 Identification Criteria

- 4.5.1 Integrated ion currents detected for all three characteristic tons for each class of compounds must maximize simultaneously.
- 4.5.2 The integrated ion current for all ions of interest must be at least 2.5 times signal to noise of background.
- 4.5.3 The integrated ion ratios of the three characteristic ions of each analyte group must be within ± 20% of the theoretical ratio of the compound.
- 5.0 SEE DATA AND RECORDS MANAGEMENT SECTION FOR EXAMPLES OF ALL PAPERWORK NECESSARY FOR COMPLETE REPORTING OF GC/MS DATA

APPENDIX R

U.S. EPA CLP REQUIRED DETECTION LIMITS

The document contained in this appendix was published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

733

(The reverse of this page is blank.)

USEPA CLP REQUIRED DETECTION LIMITS

1

1

in the state of the

CONSTITUENT	DETECTION LIMIT	CONST
METALS	• • • • • • • • • • • • • • • •	
ARSENIC	10 mb	POLTN
BARIUM	200 cmb	
CADHEUN	5 mb	
CHRONIUM	10 ppb	
LEAD	10 ppb 5 mb	
MERCURY	0.20 mb	
NICKEL	40 mpb	
SELENIUM	s and	
SILVER	10 ppb	PESTIC
BASE NEUTRAL/ACIDS		
BENZIDINE	44 mb	
BIS(2-CHLOROETHOXY)METHANE	10 mb	
BIS(2-CHLOROISOPROPYL)ETHES	70 ppb	
3,3'-DICHLOROBENZIDINE	· 20 ppg	
2,4-DICHLOROPHENCL	io ppo	
2,5-DICHLOROPHENOL	ppo mb	
2,6-DICHLOROPHENOL	рро рро	
3,4-DICHLOROPHENOL	ppo pot	
4,6-DINITRO-O-CRESOL	pop	
2,4-DINITROPHENOL	50 ppb	
2,4-DINTROTOLUENE	10 ppb	VOCATIL
2-METHYLPHENOL	10 ppb	
3-METHYLPHENOL	och	
4-METHYLPHENOL	10 pob	
4-NITROPHENOL	50 ppb	
N-NITROSCOIMETHYLAMINE	10 pob	
PHENOL	2.2 000	
1,2,3,5-TETRACHLOROBENZINE	ppb	
1,2,4,5-TETRACHLORCBENZINE	ppb	
2,3,4,5-TETRACHLOROPHENOL	ppb	
2,3,4,6-TETRACHLOROPHENOL	ppb	
2,3,4-TRICHLOROPHENOL	ppb	
2,4,5-TRICHLOROPHENOL	50 ppb	
2,4,6-TRICHLOROPHENOL	10 ppb	
DIOXINS/FURANS		
2378 TCD0	0.076 ppt (1)	CHLOSIDE
2378 TCDF	0.120 ppt	
TCOD	0.056 ppt	SULFIDES
PeCDD	0.059 ppt	
H×CDD	0.040 ppt	800
NpCDD	0.016 ppt	
OCDD	0.068 ppt	cœ
I COF	0.120 ppt	
PecDF	0.140 ppt	
HACDF	0.025 ppt	
HPCDF	0.026 ppt	
OCD F	0.007 ppt	

	DETECTION
CONSTITUENT	LIMIT
POLYNUCLEAR ARONATIC HYDROCARB	••••••
BENZO(a)ANTHRACENE	10 pob
BENZO(a)PYRENE	10 ppb
BENZO(b)FLUORANTHENE	10 podo
CHRYSENE	10 pob
DIBENZO(a,h)ANTHRACENE	10 pob
FLUORANTHENE	2.2 ppb
INDENO(1,2,3-cd)PYRENE	10 ppb
PESTICIDE/PCB/HERBICIDE	
TOXAPHENE	1 oob
PC8 1016	0.5 mb
PCB 1221	0.5 mb
PCB 1232	0.5 ppb
PCB 1242	0.5 ppb
PCB 1248	0.5 ppb
PCB 1254	1.0 ppb
PCB 1260	1.0 oob
2,4-0	1 ppb
2,4,5-1	0.1 ppb
DEATILE ORGANIC SAMPLING TRAIN	(2)
METHYLENE CHLORIDE	5 pob
ACETONE	10 ppb
CARBON DISULFIDE	5 ppb
CHLOROFORM	5 pob
2-BUTANCHE	10 ppb
1,1,1 + TRICHLOROETHAN	5 ppb
CARBON TETRACHLORIDE	5 ppb
BROMODICHLOROMETHANE	5 ppb
DIBROMODICHLOROMETHANE	5 ppb
BENZENE	5 pob
TETRACHLORCETHANE	5 ppb
TOLUENE	5 ppb
EINTLBENZENE	5 ppb
SITKENE TOTAL MALENE	5 ppb
IUTAL ATLENE	5 ppb
ORIDES).2 ppb
FIDES 1	.0 ppm
	1 ppb
	1 pob

(1) Actual Max. Lab Detection Limits

(2) In Extract

APPENDIX S

NARRATIVE AND SIGNIFICANT DATA SHEETS FROM ITAS DIOXIN/FURAN ANALYTICAL REPORT

The documents contained in this appendix were published according to their own internal style, which deviates from the Air Force Engineering Services Center format. They have, therefore, been published without editing.

737

(The reverse of this page is blank.)

APPENDIX S

t A Barris

1.000

CONTENTS

Exhibits 1	Summary of Methods and Results	740
Exhibits 2	Sample of Cross Reference Index	746
Exhibits 3	Calibration Summary Tables for LRMS Analysis	747
Exhibits 4	Calibration Summary Tables for HRMS Analysis	750
Exhibits 5	Isomer Specific Data	755
Exhibits 6	Congener Totals Data	763
Exhibits 7	QA/QC Summary	769

٠,

Appendix S, Exhibit 1

EG&G

1 0001

Summary of Method

One (1) XAD blank, eight (8) water samples, eleven (11) soil samples, and five (5) MM5 composites were received 12/10/86 for the analysis of both isomer specific 2,3,7,8-TCDD/TCDF and total dioxin and total dibenzofuran congeners from C1₄-Cl₈. The samples and a blank were spiked with an internal standard/surrogate mixture containing either 50 ng 13C-2,3,7,8-TCDD, 10 ng 37Cl-2,3,7,8-TCDD, 50 ng 13C-PeCDD, 13C-PeCDF, 13C-HpCDD and 13C-OCDD (LRMS) or 0.50 ng 13C-2,3,7,8-TCDD, 37Cl-2,3,7,8-TCDD, 13C-TCDF, 13C-PeCDD, 13C-PeCDF, 13C-HxCDD, 13C-HxCDF, 13C-HpCDD, 13C-HCDF and 13C-OCDD (HRMS). The samples were extracted and cleaned up using the EPA reference method described in "RCRA Method SW 8280," revised September 1986. Extracts were analyzed by either HRGC/LRMS or HRGC/HRMS operating in the selected ion monitoring mode for enhanced sensitivity. Table 1 (Appendix A) is a cross reference list of all samples in this project.

Sample Preparation

Soil, Soxhlet - An aliquot of each soil and a sodium sulfate blank (10g for LRMS or 25g for HRMS) were weighed into separate soxhlet thimbles. The samples and blanks were spiked with the internal standard/surrogate mixture and allowed to stand overnight for equilibration followed by a soxhlet extraction with benzene for sixteen hours. The resulting extracts were filtered into a KD flask and the volume reduced to approximately 10 ml.

Water - Approximately 1000 ml of each sample and 1000 ml distilled water (the blank) were transferred into individual separatory funnels. The samples were spiked with the internal standard/surrogate mixture, and then triple-extracted with CH_2Cl_2 . The resulting extracts were filtered into a KD flask and the volume reduced to approximately 10 ml.

MM5 - Train Samples -

a) XAD-Tubes + Particulate Filters Each sample (the XAD tubes and the corresponding particulate filters) and a blank (10 g silica gel) were transferred into separate glass soxhlet thimbles.

EG&G Page 2

The samples and blank were spiked with the internal standard/surrogate mixture and allowed to stand overnight for equilibration, followed by a 16 hour soxhlet extraction with benzene. The resulting extracts were combined with the other components of the train (b) prior to cleanup.

b) MM5-Condensate + Water Impingers + Probe Rinse

The entire combined volume from each sample and 1000 ml distilled water (the blank) were transferred into individual separatory funnels, and tripleextracted with CH₂Cl₂. The resulting extracts along with the corresponding acetone and hexane probe rinse samples were filtered into a KD flask and the volume reduced to approximately 10 ml. These extracts were combined with the corresponding XAD extracts from above. Table 1, Appendix A lists the samples combined for each MM5 train sample.

Sample Cleanup

To aid in the removal of chemical interferences, the samples and blank were cleaned up using dual column chromatography consisting of an acid-modified silica gel column followed by a neutral alumina column. Detailed descriptions of these cleanup techniques can be found in the EPA reference stated in the summary section. Final extracts were concentrated to near dryness and raised to 50 μ l with either isooctane for HRMS or 11 ng 13C-2,3,7,8-TCDF for LRMS.

GC/MS Analysis (LRMS)

Isomer Specific TCDD/TCDF - The sample extracts were analyzed using HRGC/LRMS scanning in the selected ion monitoring mode for enhanced sensitivity. The column used for this isomer specific analysis was a 60 m SP 2331 fused silica column. Before acquisition of the samples, a seven isomer performance mixture containing the six most closely eluting TCDD isomers was run. In addition, a five-point calibration plot was run in triplicate. The mean response factors obtained from the fifteen point calibrations were used for all subsequent calculations (Table 2, Appendix B). The shift standard, analyzed on the same day as the samples, produced a response factor within 10% of the fifteen point calibration (Table 3, Appendix C).

Isomer specific 2,3,7,8-TCDF cannot be demonstrated because there is no similar

EG&G Page 3

column performance mixture for the furans; however, Rappe has shown that the SP 2331 column is an isomer specific column for 2,3,7,8-TCDF. The reported value for 2,3,7,8-TCDF is considered the highest amount of 2,3,7,8-TCDF present. While this column may not provide complete separation of 2,3,7,8-TCDF from the other 37 TCDF isomers, the level of confidence is far greater than with the DB-5 column and is considered to be state of the art.

Total Dioxin and Furan - The samples and blank were analyzed for total dioxin and furan congeners from Cl_4 - Cl_8 . The analytical approach employed by ITAS for the determination of total dioxins and furans is considered semiquantitative due to the lack of availability of all dioxin and furan isomer standards. The standard analyzed each shift consisted of:

> Dioxins 13C-2,3,7,8-TCDD 37C1-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 2,3,7,8-TCDD 1,2,3,4-TCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD

<u>Dibenzofurans</u> 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 0CDF

Response factors were calculated for each compound in the standard relative to 13C-TCDD; the same response was assumed applicable to all isomers in each congener group. A three point calibration plot was run in triplicate. The mean response factors obtained from the nine point calibration were used for all subsequent calculations (Table 4, Appendix D). The shift standard analyzed on the same day as the samples produced a response factor within 30% of the multipoint. 37CI-TCDD, 13C-PeCDD, 13C-PeCDF, 13C-HpCDD and 13C-OCDD were used to calculate the accuracy of the method.

The extracts were analyzed using HRGC/LRMS, scanning in the selected ion monitoring mode for enhanced sensitivity. The column used for the analysis

742

EG&G Page 4

was a 30 m DB-5 fused silica column. In order to achieve adequate sensitivity, the samples were analyzed twice each: the first time for dioxins and the second time for furans.

GC/MS Analysis (HRMS)

Isomer Specific TCDD/TCDF - The sample extracts were analyzed using HRGC/HRMS scanning in the selected ion monitoring mode for enhanced sensitivity. The column used for this isomer specific analysis was a 60 m SP 2331 fused silica column. Before acquisition of the samples, a seven isomer performance mixture containing the six most closely eluting TCDD isomers was run. In addition, a five-point calibration plot was run in triplicate. The mean response factors obtained from the fifteen point calibrations were used for all subsequent calculations (Table 5, Appendix E). The shift standard, analyzed on the same day as the samples, produced a response factor within 10% of the fifteen point calibration (Tables 6,7,8; Appendix F).

Isomer specific 2,3,7,8-TCDF cannot be demonstrated because there is no similar column performance mixture for the furans; however, Rappe has shown that the SP 2331 column is an isomer specific column for 2,3,7,8-TCDF. The reported value for 2,3,7,8-TCDF is considered the highest amount of 2,3,7,8-TCDF present. While this column may not provide complete separation of 2,3,7,8-TCDF from the other 37 TCDF isomers, the level of confidence is far greater than with the DB-5 column and is considered state of the art.

Total Dioxin and Furan – The samples and blank were analyzed for total dioxin and furan congeners from Cl_4 - Cl_8 . The analytical approach employed by ITAS for the determination of total dioxins and furans is considered semiquantitative due to the lack of availability of all dioxin and furan isomer standards. The standard analyzed each shift consisted of:

EG&G Page 5

2,3,7,8-TCDD
2,3,7,8-TCDF
1,2,3,7,8-PeCDD
1,2,3,7,8-PeCDF
1,2,3,4,7,8-HxCDD
1,2,3,4,7,8-HxCDF
1,2,3,4,6,7,8-HpCDF
1,2,3,4,6,7,8-HpCDD
OCDD
OCDF

22

13C-2,3,7,8-TCDD 37C1-2,3,7,8-TCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDD 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDD

Response factors were calculated for each compound in the standard relative to the corresponding 13 C isomer from each congener group; the same response was assumed applicable to all isomers in each congener group. A five point calibration plot was run in triplicate. The mean response factors obtained from the fifteen point calibration were used for all subsequent calculations (Table 9, Appendix G). The shift standard analyzed on the same day as the samples produced a response factor within 30% of the multipoint. 37 Cl-TCDD was used to calculate the accuracy of the method.

The extracts were analyzed using HRGC/HRMS scanning in the selected ion monitoring mode for enhanced sensitivity. The column used for the analysis was a 30 m DB-5 fused silica column.

GC/MS Results

Isomer Specific TCDD/TCDF - The results of the isomer specific analyses, shown in Tables 10-13, Appendix H, are reported in either ppb, ppt or ng/sample. A detection limit is calculated from 2.5 times the signal in the area of the elution of 1^{3} C-TCDD (1^{3} C-TCDF) whenever a sample contains no detectable TCDD (TCDF).

Totals - The results of the totals, shown in Tables 14 and 15, Appendix I, are reported in either ppb, ppt or ng/sample, with the total amount of each congener calculated. When more than one isomer of a congener of dioxin or furan is found, all of the isomers are added together to produce a total congener result. Detection limits are calculated from 2.5 times signal to

Page 6

1 0006

noise when a "not detected" (ND) is reported. The detection limits are listed in parentheses.

QA/QC

EG&G

Tables 16 and 17, Appendix J, list the results of the QA/QC samples. Samples which do not meet the IT QA/QC specifications are noted on the tables.

Appendix 5, EXHIBIT 2 TABLE 1 CROSS REFERENCE LIST

Ernieit 2.

1 0007

EG&G

IT SAMPLE #	CLIENT SAMPLE #	MATRIX
AA5825	ENT-B	HRMS - Water
AA5826	ENT-1	HRMS - Water
AA5827	ENT-2	HRMS - Water
6450 مد	ENT-5	HRMS - Water
АА6456	ENT-6	HRMS - Water
aa6459	Potw	HRMS - Water
AA6463	CW	HRMS - Water
ААб4б9	WB-1	HRMS - Water
AA5880	FS-1	LPMS - Soils
AA5881	FS-2	LRMS - Soi's
AA5882	FS-3	LRMS - Soils
804944	FS-6	LRMS - Soils
126410	FS-5	LRMS - Soils
AA5883	AD-1	HRMS - Soils
AA5884	AD-2	HRMS - Soils
A# 5885	AD-3	HRMS - Soils
AA6409	AD-6	HRMS - Soils
6411 مربر	AD-5	HRMS - Soils
Абаа	SB-1	HRMS - Soils
M35844	VB-1-Filter ^a	HPMS-MV5 Composites
A#5845	VB-2-Filter ^b	HRMS-MV5 Composites
AA5846	VB-3-Filter ^C	HRMS-My5 Composites
AA6512	VB-5-Filter ^d	HRMS-MV5 Composites
AA6513	VB-6-Filter [®]	HPMS-MV5 Composites
AA6487	XAD Blank	HRMS XAD Blank

^aComposite of these samples VB-1-F; VE-1-XAD; VE-1-PW; VE-1-C. ^bComposite of these samples VE-2-F; VE-2-XAD; VE-2-FW; VE-2-C. ^cComposite of these samples VE-3-3F; VE-3-XAD; VE-3-FW; VE-3-C. ^dComposite of these samples VE-5-F; VE-5-XAD; VE-5-FW; VE-5-C. ^cComposite of these samples VE-6-F; VE-6-XAD; VE-6-PW; VE-6-C.

¢,	
TABLE	

La the Marth

INITIAL CALIMIATION MADUNY (LRMS)

TCID/TCDF

Surrogute 37c1-7cDD 1.65 . S 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 3.50 1.65 1.65 1.65 1.65 1.65 Mean RP Used Nutive TCDF 2.18 2.18 2.18 2.18 2.18 2.18 2.10 2.18 2.18 2.18 2.18 2.18 2.10 2.18 2.10 2.18 4.10 Mative TUDD 1.08 1.08 .08 .08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 ..08 1.08 1.00 1.08 1.00 4.25 Surroguto 37c1-7CDD 1 1.60 1.58 1.5.1 . 69 1.74 1.69 1.68 1.68 1.66 Suco . 1 1 ł 1 ; ł Measured RF Nulive TCOF 2.29 2.13 2.12 2.09 2.13 2.15 2.14 2.36 2.17 ł 1 1 ł ! 1 Kative CCl - Concentration culibration solution #1 1001 (6.0 1.02 0.93 1.13 1.13 ..12 ..10 1.10 0.1 1.01 00.1 1.08 .00 0.1 1.07 Sol. <u>(</u>)) 3 CC I 200 200 333 600 CCI4 Saa 53 10 CCI-10 ŝ 53 CC rubbiletrel TUB61122PE2 TP361122PE2 TE461122PE2 TCB61122PEJ TU861122PE3 TEUGI122PE3 THU61122FE5 TNUGIIZIPEN 191122113041 **TEUGI1221ES** 100611221 E4 าเปิย์11221161 108611221165 TFGII24FEL Instr. 10 Solution ID Caleu: 11-24-00 11-24-86 11-24-16 11-22-16 11-22-86 11-22-86 11-22-06 11-22-110 11-22-86 11-22-11 11-22-80 11-22-80 11-22-06 11-22-06 11-22-06 Unte

747

Appendix S, Exhibit 3

1, 0000

0.2 ng/m 1.0 ng/m 5.0 ng/m

1 1

- Concentration culturation solution $fh = 20.0 ng/\mu$

* Concentration culturation solution 15

CC3 = Concentration calibration solution /} =

້າວວ

CC2 = Concentration cullination wohntion /2

- hu.0 ni/i

CONTINUING CALIBRATION SUMMARY (LRMS) TABLE 3

NC & C

TCDD Isomer Resolution Pct Valley	(Applies For PC Only)	71.4		Р.	2 0	• • •	10%
·	Surrogate 37C1-TCDD		1 65	•		1 65	
ean RF Used	Native TCDF		2.18			2.18	
ž	Native TCDD		1.08			1.08	
ĩa.	Surrogate 37c1-TCDD		1.55			1.60	
Measured R	Native TCDF		1.88			2.07	
	Native TCDD		1.00			1.08	
	Sol. 1D	ာ၊	002	PC	ЪС	222	ગ્ન
	Instr.	4500	4500	4500	4500	4500	4500
		12/20/00	12/20/86	12/20/66	12/24/80	12/24/80	12/24/80

Solution 1D Codes:

= Performance check solution 3

UC1 = Concentration calibration solution $II = 0.2 \text{ mg/}\mu l$ UC2 = Concentration culibration solution $I2 = 1.0 \text{ mg/}\mu l$ UC3 = Concentration calibration solution $I3 = 5.0 \text{ mg/}\mu l$ UC3 = Concentration calibration solution $I3 = 20.0 \text{ mg/}\mu l$ UC4 = Concentration calibration solution $Ih = 20.0 \text{ mg/}\mu l$ UC5 = Concentration calibration solution $Ih = 20.0 \text{ mg/}\mu l$

0008 1

J

	SUPPAARY	
	CALIMUTION	
•	INITIML	
	\$	
	TABLE	

the second second

BIGH RESOLUTION **D707**

TCUD/TCDP

,

					Measured RF	~	Me	Hn RF Used	
	Dute	Instr. JD	Sol. ID	Native TCDD	Native TCDF	Surrogute 37c1-TCDD	Native TCDD	Nutive TCDF	Surrogate 37c1-TCDD
	1/13/81	70-250S	100	1.16	0.877	1.64	1.18	0.833	1.84
	1/13/87	70-2505	CCI	1.12	0.783	1.60	1.18	0.833	1.84
	1/14/87	70-250S	CCI	1.14	0.882	1.75	1.18	0.833	1.84
	1/13/87	70-2505	CC2	1.27	1.01	1.81	1.18	0.833	1.84
	1/11/87	70-2505	CC2	1.18	0.835	1.89	1.18	0.833	1.84
7	1/13/87	70-2505	CC2	1.17	0.827	1.79	1.18	0.833	1.84
50	1/13/87	70-2505	£ 00	1.18	0.738	1.78	1.18	0.833	1 . Bh
	1/13/87	70-2505	င်သ	1.22	0.796	1.81	1.18	0.833	1.84
	1/13/87	70-2505	CC3	1.10	0.780	1.70	1.18	CC0.0	de c
	1/13/87	70-250S	cch	1.19	0.801	1.82			
	1/13/87	70-250S	t))	1.16	0.801	1.82	01.1		40.T
	1/13/87	10-2505	400	1.30	0.814	1.95	81 L		4.04
	1/13/87	70-250S	cc5	41.(0.832	0 to	81 1	(().V	т. 04 1 р1
	1/13/87	70-2505	600	1.24	0.871	2.06	01.1	cco;0	1•04
	1/13/87	10-250S	605	1.26	0.853	2.07	1.18	0.833	1.84
							I		

Solution ID Codes:

14/84 14/84 14/84 pg/µl 100 20 ŝ 2 1 1 1 II. ŝ Concentration calibration solution #3 Concentration calibration solution is Concentration calibration solution is concentration. Concentration calibration solution 18 1 Ħ CC1 ect CCP

Appendix S, Exhibit 4

Erzibit 4 1 001

:-:::.

•	
0	
eg i	
Ħ	
2	
F -	

j.

়ু

.....

"

cross sectore states there a

CONTINUING CALLERATION SUMMARY

SOILS

5750

TCDD Isomer Resolution Pct. Valley (Applies For	PC Only .	3.09%		3.65		3.9%
Surrogate	JICI-TCDD		1.84		1.84	
ean RF Used Native	TCDF		0.833		0.833	
Native Mative	1400		1.18		1.18	
Surrogate 37C1-TCDD		-	1.93		1.81	
Measured RI Native TCDF		0.788	001.0	0 881	100.5	
Native TCDD		1.20		1.10		
Sol. ID	PC	CC2	PC	CC2	PC	
Instr. ID	70-250S	70-250S	70-250S	70-250S	70-2505	
Date	1/14/87	18/41/1	18/41/1	18/41/1	18/11/1 751	

••

Bolution ID Codes : PC = Performance check solution CCI = Concentration calibration solution // = CC2 = Concentration Calibration solution // = 1 CC3 = Concentration calibration solution // = 1 CC4 = Concentration calibration solution // = 1 CC5 = Concentration calibration solution // = 5

5 Pg/ul 10 pg/ul 50 pg/ul 100 pg/ul 500 pg/ul

1 0012
	TCDD Isomer Resolution Pct. Valley (Applies For PC Only)	5.78	6.85	2.15
	Surrogate 37C1-TCDD		1. RL	
	ean RF Used Native TCDF	0.833	0.833	
	Mative TCDD	1.18	1.18	
rtis G	Surrogate 37cl-TCDD	1.80	1.99	
UATE BCB	Measured RF Native TCDF	0.813	0.860	-
	Native TCDD	1.23	1.20	
	Sol. ID	cc2 PC	CC2 PC	
	Instr. ID 70-250S	70-250S 70-250S	70-250S 70-250S	
	Date 1/15/87	1/15/87 1/15/87	1/15/8/	

CONTINUING CALIDRATION SUMMARY (HRMS)

TABLE 7.

Solution ID CodeB

•1	chec
	ылсе
10	• •
1 1 1	ہ ہے (
۵,	ċ

- ck solution
- CC1 = Concentration calibration solution //1 = CC2 = Concentration Calibration solution //2 = CC3 = Concentration Calibration solution //3 = CC4 = Concentration calibration solution //3 = CC5 = Concentration calibration solution //6 =

- 5 P8/ul 10 P8/ul 50 P8/ul 100 P8/ul 500 P8/ul

1 0013

. . . .

ł

-U 011111

· Second Second

÷ • .

CONTINUING CALIERATION SUMMARY (HRMS)

MM 5

.070a

TCDD Isomer Resolution Pct. Valley (Applies For PC Only)	3.15	3.6%	3.9%
Surrogate 37C1-TCDD	1.84	1.84	
an RF Used Native TCDF	0.833	0.833	
Mative TCDD	1.18	1.18	
Surrogate 31cl-TcDD	1.93	1.81	
Measured RF Native TCDF	0.788	0.881	
Native TCDD	1.20	1.10	
Sol. ID PC	CC2 PC	CC2 PC	
Instr. ID 70-250S	70-250S	70-2505	
Date 1/14/87 1/14/87	1/14/87 1/14/87	1/14/87	
			753

÷.,

Bolution ID Codes : PC = Performance check solution CC1 = Concentration calibration solution N1 = CC2 = Concentration Calibration solution N2 = 1 CC3 = Concentration calibration solution N3 = 5 CC4 = Concentration calibration solution N5 = 5C

5 Pg/ul 10 pg/ul 50 pg/ul 100 pg/ul 500 pg/ul

0014 1

•••• -1, Table 9

BHGC/BIDES

SUMMARY
CALIWATION
INITIAL
I'CUU/ICUV

CONCEREN

Constant and the second

٠.

CENEN	CAL SOLIT	TON AT														
İ			3	C SOLUTIO	N 12	CM	SOLUTION	5			[.					
	1.1 11.1	2 1.6	9 1.75	1 80					3	NOLINIOS	=	CAL	SCLUTTION	*5	×	RSD
	1.11					1.91	80.7	1.71	1.66	1.64	1.72	1.64	1.69	1.76	1.72	105
			1.03	1.10	1.06	1.09	1.11	1.07	0.96	0.83						
$\frac{1}{1}$	<u>0.46</u> 0.7	6 0.8	10.01	0.79	0.64	0.81	0 81				Ì		5	1.03	1.03	6.75
_	1.45 24.1		70 .				10.2	8	0.10	0.72	0.80	0.80	0.84	0.80	0.774	12.55
	2.24			1.31		1.32	1.34	1. JT	1.30	1.09	1.22	1.32	1.30	1.30	92	7 85
]		1.2	2.16	2.06	2.07	2,08	2.23	2.10	31.6				Ť		
$\frac{1}{1}$	1.98 2.1	5 1.87	2.14	2.04				Ť				2.10	2.10	2.28	2.14	4.15
_	0.66 0.7						Q1.2	10.1	1.11	1.47	1.96	1.59	1.63	1.62	1 Ro	1
				0.62	0.61	0.63	0.63	0.9	0.0			†	Ì			
-	0.66	0.66	0.67	0 67					50.0	0.61	0.60	0.65	0.65	رئ.0	0.636	4.55
					(0.5)	0.04	0.67	0.66	69.0	0.64	0.64	0.77	0.75	0.77	0 FTO	1.4
			1.21	1.23	1.17	1.17	1.19	02.1								
	1.54	1.41	1.50	1 61.			Ť			5		1.28	1.28	1.23	1.21	3.95
				5		1.58	1.58	1.67	1.47	1.37	1.52	1.65	19			
	0.00	L 1.09	1.80	8.25	8.07	8.89	9.87	1 18	- En	1	+-	Ť			۲. · ۲	5.81
						j			60.0	8.4	1.33	1.22	7.16	1.60	1.59	15.91
ł												!			-	

1

CC1 = Concettration calibration molution /1 = 5 Pg/u1 CC2 = Concentration calibration solution /1 = 5 Pg/u1 CC3 = Concentration calibration solution /2 = 10 Pg/u1 CC4 = Concentration calibration solution /4 = 100 Pg/u1 CC5 = Concentration calibration solution /4 = 100 Pg/u1

1 0015

ų,

Appendix S, Exhibit 5

A. T. S. S. G. M. M. M. MARKEN

Table 10 2,3,7,8-TCDD

. 4

> No. 790, 794 Lab: ITAS-KNOKVIIIe Case No.: EUL

		(15 3 Rec.)		191 2 :	1278 2
e:		F	484704	463084 446032 445032	512640 596787 530432
port Dat olumn:		F	788161	1691691 909551 027061	414400483040
		Abundance	206115	2/494 2692 26952	202273 20266 202522
		1 at 1 ve 100	1029500	1053670	1463740
		322	3368530	3487750 5284650	0(21) IS
		R	2659010	2743290	- -
		Toute The second	8 <u>8</u>	8 8 8	83
			196 200	823	195 168
		i i i	0.80		0.61
	tel. lo	121/021	6	0.78	, ,
	Ŧ	<u>=</u>	65:01 11:55	11:02	0):21
	C/MS Analy	Dite	12/20/84	12/24/86 12/24/86	12/24/06
	Tatt.		205 202 202	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4500
	20	s .	• •	- - 0.030	0.086
		22.0	0.97 0.97	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2
51	Allquat Vet Ut. (a)	2:	222	949	2
	Extra Cleanup			1	
	Name Press	5-2 1-51	333	8 2 2 2 2 5 55	

⁸ Corrected for contribution by native ICOD; 0.95 of m/z 322 subtracted

	fi - fleid Blank No - Not Detected	CL - Detection Limits BS - Blank Spile	atract - lûng spike ûn lûg soil er i pûk spike)
RB - Reserve black	P - Partial Scan/Confirmatory Analysis M - Mative TCDD Solia	U - Duplicate/Fortified field Blank	⁹ 99/41 final axtract (200 pg/41 k 50 41 a

1 0016

< 200 AND

• TABLE 10 (continued)

2,3,7,8-TCDF

Ż

a alteria forma a stategy

Leo: <u>11A5-Knoaville</u> Case No.: <u>CGG</u> Batch/Shipment No. 790, 794

·	(11) (11) (11) (11) (11) (11) (11) (11)
111245	111 111 111 111 1111 1111 1111 1111 1111
	332 369184 369184 355606 355606 355606 355606 130720 414400 41400 41100 4100000000
Repart	Abundance 3284115 219946 219946 266994 266973 266573 266573 266512 266512
	3456 3456 3776 3776 2528
	106 Re1. 31660 31660 30648 26090
	NOL
	100 100 100 100 100 100 100 100 100 100
	PPB* Su Heas. 198 208 208 178 178 178 178 178 178 168
·	Abund. 7117711 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.
	704/7105 0.79 0.71 0.71 0.71 0.75
	11 m 10:20 10:29 11:55 69:36 69:36 10:31 00:21
	<u>C /ms Analy</u> Date 12/20/86 12/20/86 12/20/86 12/24/86 12/24/86 12/24/86
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	100 0.20 0.16
	F F C C C C C C C C C C C C C C C C C C
	Alguet Mr. (9) 10 10 10 10 10 10 10 10
rat No. 190, 19	
etca/Shipe	

* Carrected for contribution by nutive 1000; 0.9% of m/2 225 ubtracted

	f8 - fleld Blank	MD - Not Detected	ut - Vetection Limits 85 - Bianh Suite	
20 - 9eanaar 21	P - Partial Scanforences	H - Native 1000 Spike	u - Ouplicate/fortified field Blank	

*pg/w] final extract (200 pg/w] X 50 wl extract = 10ng spike on 10g soil or 1 ppb spike)

d,

TABLE 11

2,3,7,8-TCDD

Lab: 11AS-Knozville Case No.: ECUS Batch/Shipment No. 802

Report Date: Calum: Any TYPE		r. Date Time Rei, ion Ahund, P198+ Surrogate Date Time 3730/327 3327/334 Reas, Kocky, Tyn yn Relatiwe Ion Ahundance		25 01/14/80 16:16 0.87 9.61 84 - 122.54 36.72 42.34			5 01/14/81 18:51 0.70 8.47 85 5 01/14/81 21:01 0.70 8.47 85		3 UI/14/8/ 14:06 - 0.76 9.78 98 120.68 146.09 171.55 139.59 34.07 43.40 98 170.68 145.09 131.59 34.07 43.40		of mut 32? subtracted
	C/NS Analysis	Instr. 10 Date Time	20-2505 01/14/87 15:36	70-2505 01/14/87 16:16 70-2505 01/14/87 16:16	0-2502 01/14/8/ 18: 15	70-2505 01/14/87 17:34	70-2505 01/14/8/ 18:51 70-2505 01/14/8/ 21:01	10-2505 01/14/87 21:37	90:41 /14/8/ 114:00		U.9% of m/z 32? subtracted
	faunt But Your	M. (9) Heas. 01	29		9		2	- nc.cc		miriburian be account 1000	
Alpment No. 802	Eatra Ali	Cleanup Vec	1a 23	Tes 25	res Tes 25	745 25	ter 25 Ter 25	Yes 25		⁴ Carrected for co	
	Sample	AU-1	40-2 70 4	40-6 AD-6	40-5	40-5-0V	A0-5-N	709-9X	757	,	

Dellane the second of the	FB - Field Blank MD - Not Detected DL - Detection Limits BS - Blank color	ande mere
	P - Prevent Blank - Prevent Blank - Mative TCOB Spike Duplicate/Fortified Fleid Blank	

°Pg/w¹ final extract (10 pg/w1 X 50 w1 extract = 0.50ng spite on 25g soll or 0.02 ppb spite)

TABLE 11 (continued)

٠

ł

2,3,7,8-fCDF

Leb: <u>1145-knowv111e</u> Case No.: <u>16.06</u> Betch/Snipeent No. 802

		266			2.4	00,11		10.08	10.01		[1-0]	10 01	R	29 41		(n) 84	92.11	
	Abundance	•BZK			x	5		145.69			140.54	A D D D	107.01	124 15		1.46.23	132.07	
	ative ion	241			•	80.80		21.5	14.74		5.85			4.21		140.46	•	
	lel	306			•	14.50			10 44		10.6					CB. BO	•	
		101		1	,	14.42		5.5	14 65			¢ BK	3	6.32		CB. CO1	•	
	094te	ACC Y .		2	5	96		ŗ	102		2	A F		101		74	86	
		Ne 45 .		A 18		9.61			10.24		a. 0	R 47		10.09	A 74		9.78	
	bund.	811/01		0 87		0.88	(0 V		0.80		0,8/	0.85		0.83	0 8 V		0.19	
	Rel. Ion	2016/2010				0.89	0 87		0.)5	0, 0		0.76		28.0	0.00		•	
11		2		15:36		10:10	16.5A		1A-15	17.24		19: 21		10:13	21:12		8.1	
MS Analys				01/14/8/		10/11/10	01/14/87		11/14/8/	01/14/87		UI/14/8/	10.41.10	10/11/10	01/14/87		14/11/10	
3	10110			2062-01	30 36.06	COC3-07	20-2505		SOC2-01	20-2505		Soc2-0/	10.3406		70-2505	10.2606	for 3-04	
		\$	•			•	•		•			•	,	,	•			
			5	5	•		~			~			4		2.92	9	}	
	Vet Mr. (a)		*];	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		C	×	::	c	36		\$		5	25	•	
f ur ca	Cleanup		Ĭ		165			Y.e.			1		-	T as	,	161		
Scaule	Number		1-0r	AD.2		A0-3		•	AD-5		1-58	AD 5D		N-5-N	88 - 913			

F

Keport Date: Column: 604 57331 12.24

4.14

⁴ Corrected for contribution by nucles ICDO; 0.91 of m/z 322 subtracted

758

f8 - field klant	NO - Not Detected	Di - Detertion Linte	BS = Black Solve
KB - Reagent Blank	P - Partial Scan/Confirmatory Analysis	N - Native ICOD Spike	0 - Duplicate/Fortified Field Blank

°pg/wl finai extract (10 pg/wl X 50 wl extract = 0.50ng spike om 25g soil or 0 02 pph spike)

1 0019

an and the second second second

TABLE 12. 2,3,7,8-TCDD RESULTS

ينې مربخ

. . . .

DYDE

Lab: <u>ITAS-Knouville</u> Case No.: <u>TUDU</u> Batch/Shipeent No. <u>708</u>, 796

		1			ł															
				F							X. X	3.2	106.24	15.41	8		42.20	11.11	03.06	69.84
				Ē		6.1	17.42				5	15.60	1.4	26.95	16.31	07.54	3.5	28.12	1.14	59.44
126. 3			Adance	3780		23.1	1.57	1.01				1.1		.05	1.44		3.	-0	.8.	. 96
Ja K	ł		Ion Abu			2	2	2	1	2	5:		ñ	12	22	?	2	521 4	36	512
			lative	5		•	٠	•	•	•	•	•	•	•	•	221.4	•	142.91	•	•
				ž		•	•	•	•	•	•		•	•	•	K. 11	•	104.13	•	•
						•	•	•	•	•	ġ		•	•	•	09.40	.;		•	•
			•ŀ			2		2	~		-				•	~ ~			• ~	
					U					~	9							2	50	6
					94.0				2°,	2	9.45	10.45	11.05		8 × 8			10	50.9	
		Thursd.	161/26		0.63	0.79					00	8.0	0.80	0.85	0.78	0.86	0.60	0.85	0.86	
		el. lon .				,		,				,					.85			
		ei I	4		~	•	_	_					_		•		•	•	·	
			Ĩ		12:0	12:4	01:30	15:16	20:35	21.11			51:52	10:55	10:20	2 8	8:8	11:30	23:06	
	LAS Las		DALe	10, 21, 10	19/61/10	19/61/10	01/15/87	01/15/87	01/15/87	01/15/87	01/11/0		19/01/10	18/51/10	19/51/10	01/16/07	01/16/87	18/51/10	18/51/10	
	ſ	Intr.	2	10.26.00			5007-01	2052-01	70-2505	70-2505	20-2505	10.2505	2026.01			2052-01		2022-01	(nc)-n/	
			\$	0.020	1000			070'n	0.050	0.076	0.026	0.035	0.054			11		2000		
				ž	2	1	25	29	53	2	£	2	9	1.2.1	Ģ	2	CA	2	!	
2		Vet W. (a)		1m 006	1 0 066	850 ml	1000	1000	1000			1 000 m	815 ml	870 ml	1000 ml	1000	1000	1000 ml		
ment No. 768	f ut ca	Cleanup	,	Ξ,	5	les	Yes	Yes	Tes	Yes		; ;	ĩ,	Tes	Yes	Yes	Tes	Yes		
uatca/Ship	Sample	Number	Sut.a	Full 1					2016	2		ENT-2.0	F MT_2_N				201-04 201-04	BC/- 44		

Corrected for contribution by nutive ICDD; 0.91 of m/r 325 subtracted

°Fg/wi final extract (10 pg/wi X 50 wi extract = 0.50mg spike on 25g soil or 0.02 ppb spike)

1 0020

1.

ł

TABLE 12. 2.3.7.8-TCDF RESULTS (Continued) EGAG

> Lob: ITAS-KAOLVIILe Cose Ma.: Euclide Batch/Salpment No. 188 194

Clarker Clarker Fried Fried <thfried< th=""> Fried Fried</thfried<>			Samte	Estra	Altowat	Pet tere		12 m5 2m2)	1										
			UNITA'	61020	Ket Me. [3]	Heat.		Dace	1		TIE/TIE	PM - Sur	route		lei.	ative lon	Abundance		
				Tes	1= 00 4	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22	1						R	8	112	2 82E	Ē	ř
				1.1					12:07	•	0.83	9.60	3	1					
				Tes -	194			18/51/10	12:45	•	0.42		23	•	•	•	29.92	E .1	61.19
(41.4) (41.4)			[#1 - \$	1.1		3	2052-02	01/15/87	01:30	•	0 10	1	K 8	•	•	•	12.150	27.28	£1.50
Pola 1000			(w] - 6				20-2502	01/15/41	15:10	,			5:	•	•	•	10.150	78.28	2.3
C4 C4 <td< td=""><td></td><td></td><td>P01a</td><td></td><td>3</td><td>80°0°08</td><td>20.2-01</td><td>01/15/8/</td><td>20: 10</td><td>•</td><td></td><td></td><td>2</td><td>•</td><td>•</td><td>•</td><td>196.54</td><td>1</td><td></td></td<>			P01a		3	80°0°08	20.2-01	01/15/8/	20: 10	•			2	•	•	•	196.54	1	
				÷.		V. 0.12	20-25.05	01/15:51		•			•	•	•		100.22	1	
		Interest Interes Interest Interest Intere		5		N 0.021	10-2515			•	0.1	9.45	I	•	•				
				121	1000	0.059	N. 1. N			•	0.8	10.45	5	•	•				8.73
Ref-2. In				1-1	dis el	0.04		/0/01/10	47:17	•	G. 78	1.2	110			,			
WE-1-0 Iri 1.00 1.01 0.00 0.15 0.00 0.10 0.15 0.11 00.19 WE-1-0 Iri 1.00 0.01 0.10 0.10 0.10 0.10 0.11	we-1-0 I <td>we-1-0 Ir 1.00 1.01 0-2505 01/15/81 10.10 0.10 0.10 0.10 0.10 0.15 0.10 0.16 0.16 0.16 0.16 0.16 0.15 0.11 0.15 0.15 0.11 0.15 0.11 0.15 0.15 0.11 0.15 0.15 0.16 0.16 0.16 0.15 0.15 0.11 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15<td>R-2-1+3</td><td>1.41</td><td></td><td></td><td>SC7-11</td><td>01/15/4/</td><td>10:55</td><td>•</td><td>O. NA</td><td></td><td>1</td><td>•</td><td>•</td><td>•</td><td>53.05</td><td>26.95</td><td>15.50</td></td>	we-1-0 Ir 1.00 1.01 0-2505 01/15/81 10.10 0.10 0.10 0.10 0.10 0.15 0.10 0.16 0.16 0.16 0.16 0.16 0.15 0.11 0.15 0.15 0.11 0.15 0.11 0.15 0.15 0.11 0.15 0.15 0.16 0.16 0.16 0.15 0.15 0.11 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.15 <td>R-2-1+3</td> <td>1.41</td> <td></td> <td></td> <td>SC7-11</td> <td>01/15/4/</td> <td>10:55</td> <td>•</td> <td>O. NA</td> <td></td> <td>1</td> <td>•</td> <td>•</td> <td>•</td> <td>53.05</td> <td>26.95</td> <td>15.50</td>	R-2-1+3	1.41			SC7-11	01/15/4/	10:55	•	O. NA		1	•	•	•	53.05	26.95	15.50
Weiler Fri 1000 and 100 70-7555 01/16/10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 00/17 10 H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wa-1-4 Free 100 0.01 10-2505 01/14.18 00.17 10 112.19 227.96 217.41 10/156 112.11 Ha-1-4 Free 100 11	Weiler In 0.01 70-2505 0.116, 81 0.11 11.19 112.19 112.19 112.19 112.16 112.10 Weiler Tri 1000 1 11 11.16 111.16 111.16 112.16 112.16 112.12 Weiler Tri 1000 1 10 10.16 111.06 112.16 112.16 112.16 Weiler Tri 1000 1 10.16 111.06 112.16 112.16 112.16 112.16 112.16 Weiler Tri 1000 10.11 111.06 111.06 101.06 112.11 112.16 113.16 Weiler Weiler 10.16 10.16 10.16 10.16 10.16 101.16 Weiler Weiler 10.2505 01/15/27 115.06 0.16 10.01 100 Weiler Weiler 10.06 10.01 10.06 10.01 100 101.16 Weiler Weiler 10.2505 01/15/27 215.06 0.06 9.05 90 101.16 Weiler Weiler 10.06 10.01 10.06 10.01 100 101.06 Weiler 10.01 10.01	5-1-0	: <u>I</u>			10-255	01/15/10	14.20	0 20			21	•	•	•	328.44	10.08	100.98
18-764 1.1 - 10-7505 0.14/181 0.0154 0.74 0.74 1.15 114 160.01 126.60 36.10 42.74 18-764 18.17 11.16 11.05 11.16 11.05 119.10 126.60 36.10 42.74 18-754 19.05 10.15/18 111.30 - 0.544 111.30 - 126.60 36.10 42.74 18-754 10.05 10.15/18 111.30 - 0.544 111.30 - 36.41 111.10 18-754 10.05 - 0.644 10-7553 01/15/27 213.06 - 0.644 10.10 100.10 18-754 10.05 - 0.644 10-7553 01/15/27 213.06 - 0.646 90.14 90.10	11-74 11 1.0 </td <td>18-74 Tri 1000 al 1.17 10-2555 01/14/81 00.54 1.18 1.14 1.10 1.14</td> <td>4-1-EA</td> <td></td> <td></td> <td>0.01</td> <td>10-2505</td> <td>CI/14,87</td> <td>8</td> <td></td> <td></td> <td></td> <td>2:</td> <td>412.99</td> <td>\$29.99</td> <td>227.96</td> <td>437.47</td> <td>101.56</td> <td>10 10</td>	18-74 Tri 1000 al 1.17 10-2555 01/14/81 00.54 1.18 1.14 1.10 1.14	4-1-EA			0.01	10-2505	CI/14,87	8				2:	412.99	\$29.99	227.96	437.47	101.56	10 10
Re-194 Ten		He-FW Tr. Low H NO 0.053 10.1053 11.50 <th< td=""><td>ES.)24</td><td></td><td></td><td></td><td>20-25</td><td>G1/14/87</td><td>3</td><td></td><td></td><td></td><td>2</td><td>•</td><td>•</td><td>•</td><td>126.60</td><td>2</td><td>12</td></th<>	ES.)24				20-25	G1/14/87	3				2	•	•	•	126.60	2	12
		Controlled for contribution and and 20.25.00 01/15/27 21:06 - 0.40 10.41 104	28-144			NO 0.033	10-25:05	C1 / 15 / 87				() II	114	160.43	2.12	129.79	129.04	1	
				5		(3'0 Q	10-25-00	01/11/10		•		10.41	104	•	•	•			
213.38 39.84 69.44		Corrected for contribution and and and and and and and and and an								•	3.0	\$0°	Ş			,			80.FD
		⁴ Certected for contribution in account of the second seco											2		•	•	215.96	59° 84	49.44

Få - Fleid Blank MD - Rut Detected	bi - Blan Site
flimtory welysis	led field Blanc
FB - Reagent Bland P - Partial Scan/Can P - Battve 1600 Sate	2 - Wellcole/Fortif

"pg/ul final carract (13 pg/ul E %0 ul extract = 0.%2ng spile on 25g sail or 0.02 ppt spile)

1 0021

TABLE 13. 2,3,7,8-TCDD RESULTS

of headings

۴.

D¶D3

Report Date: Column: 601 573311 Column: 601 573311 10 127 251 101 101 101 101 101 101 101 101 101 1	
Pm • Surros Pm • Surros P	11.00 10.00 101.9 9.11 9.11 9.11 9.11 9.
Rel . Lon Abund. <u>1770/1771</u> 0.81 0.81	
C / 15 6.3 / 115 0.1 / 15 / 15 / 14 / 14 / 15 / 14 / 15 / 15	01/15/87 01:13 of m/2 122 subtracted m/2 122 subtracted H-1-N1; N-1-C H-2-Pu; N-2-C H-2-Pu; N-2-C H-2-C H-2-Pu; N-2-C H-2-C H-2-Pu; N-2-C H-2-
Meril 00 Tailo Meril 00 Tailo Meril 00 10 2020 Me 0.11 10-250 Me 0.22 10-250	MD 024 702533 PY nettive 16024 PY nettive 1602533 VB-1-61 NB-1-1.000 91 VB-1-61 NB-1.000 91 VB-1-61 NB-1.000 91 VB-1-61 NB-1.000 91 VB-1-61 NB-1.000 91 VB-101 NB-1.000 91 VB-101 NB-1.000 91
	Lun transfor contribution oute of these supples: oute for these supples: true for other supples: oute for other supples: outer fo
THE PART OF THE PA	

. '-

ladi extract (10 pg/w) X 50 wi extract = 0.50ng spike om 25g soli or 0.02 ppm spike)

TANLE 13. 2,3,7,8-TCDF RESULTS (Continued)

BC&G

Leb: 1145. Cose No.: Batch/Shipa	tourille tourille meat ha. 741												æ G	iport Date Numi: <u>6</u>	111242 150		
Samte Runker	Eatra Cleanup	Allquot Vet Vr. (g)	14.05.	ع ق	10111	E/MS Analy Date	= =	101/102	Atund.	3 . H	route		Reli	tive lon	Abundance		
42-1-6 8-2-6 7-7-6 7-7-6 7-7-1 8-1-9-1 7-7-1 8-1	<u></u>	3333333	9 ⁷ 99 ⁷ 99	0. 12 0. 69 0. 14 0. 60	70-2505 70-2505 70-2505 70-2505 70-2505 70-2505 70-2505	(8/51/10 (8/51/10 (8/51/10 (8/51/10 (8/51/10 (8/51/10	22:26 23:26 23:26 23:26 23:26 25:27 25:26 26:27 26:25 26:25 26:25 26:25 26:25 26:25 26:25 26:25 26:25 26:25 26:25 26:25 27:26 26:25 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27 27:26 27:27	, , , , , , , , , , , , , , , , , , ,	0.00 0.82 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.6	9.17 9.10 9.10 9.10 9.17		13.51 19.01			161.01 161.01 118.25 121.55 101.66 154.72	201	11. 12. 12. 12. 12. 12. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14
	Composite of Composite of Composite of Composite of Composite of Composite of Composite of	Contribution b there samples: these samples: these samples: these samples: these samples: these tamples:		TCD0: (M-1-L/ M-2-L/ M-3-K/ M-5-L/	2,95 of a/ 05 We-1-PY 05 We-2-PY 05 We-2-PY 05 We-2-PY 06 We-2-PY 06 We-2-PY 06 We-2-PY 06 We-2-PY	225 mpt	acted										
	 4 - Reagent B1 7 - Partial Sc 8 - Native 100 9 - Duplicate/10 	lant Lan/Confirmtory 0 Spike Fortified Field	Analysis Blank	_	FB - Field MO - Not (DL - Defect MS - Blank	s Blank Detected itton Limit	•										

;•

"pg/w] final extract (10 pg/w] E 50 w] extract = 0.50ng spite on 25g suil or 0.02 ppb spite)

TAIMLE 14 PCDD/PCDP DATA SUMMARY 1.04 RESOLATION 16340

ND(0.022) ND(0.024) (ET0.0)dN ND(0.072) ND(0.026) ND(0.036) ND(0.020) Blk794⁸ ND(0.10) ND(0.12) (0.19) 116% 935 **2**69 106 130% 112% RB VD(0.005) XD(0.050) VD(0.066) (720.0)dk ND(0.28) VD(0.10) ND(0.96) aa6408⁸ 60.6 202 1217 883 191 1335 166% L.2 1.2 FS6 VD(0.050) AA6410⁸ (ht.0)dN VD(0.12) VD(0.22) ND(0.21) (16.0)dN VD(0.16) 0.80 0.66 45.8 120% 89% 645 1001 2111 **1**65 FS5 (Eč0.0)dM ND(0.044) (hE0.0)dN (140.0)dN ND(0.082) VD(0.072) VD(0.10) VD(0.16) VD(0.11) ND(0.22) Blk790^{ti} 216 1042 715 1223 160% 110% RB ND(0.067) ND(0.052) (610.0)dV ND(0.28) (ht.0)a aa5082^a (81.0)dM ND(0.25) 38.0 0.58 0.72 87\$ 845 116% 1001 1425 803 FS3 4D(0.000) ID(0.066) ND(0.28) ND(0.15) ND(0.10) **AA**5881⁸ (01.0)dN ND(0.14) 0.49 54.2 0.64 683 102% **1**66 55\$ 100% 58% FS2 ND(0.081) ND(0.070) ND(0.060) ND(0.058) ND(0.15) ND(0.10) ND(0.23) AA5880⁸ 32.1 0.45 52% 615 0.70 1145 \$16 931 54\$ FSI 37C1-TUDD (\$ acc) 13c-HpCDD (f acc) 13c-PeCDF (\$ 4cc) 13c-ocdd (\$ acc) 13c-TCDD (% rec) 13PeCDD (% acc) CONCENER Pecuu HxCDD HpCDD PerDP HXCDF HpCDF TCDD ocpp TCDF OCDP 763

1 0024

^aReported in ppb - analyzed by HRGC/LLMMS.

TARLE 15. PCDD/PCDP DATA SUMMARY HEGH RESOLIFION ENGG

Carl Street in State and the State

CORNERIEM	ЕПТ-13 ААЪВ23- ⁴	ERT-1 AA5826 ^u	ent-2 Aa5827 ⁸	ЕНТ-20ир АА58270 ⁴	ENT-25pk AA58275 ⁴	RB B1k780 ^a	ент-5 Аабі50 ^в
37c1-tenn (g acc)	\$ 16	101	126%	2 06	3 66	240	320
delta b	ND(0.056)	ND(0.013)	(1£0*0)aN	(1/10.0)uN	1.35	ND(0.0051)	UBUU UJUN
PechD	up(0*0)4t)	up(0.0036)	nb(0.0h1)	ND(0.0024)	0.017	ND(0.0067)	ND(0,026)
lixeDD	nb(0.040)	Mb(0,023)	110(0.0032)	- ND(0,00064)	0.99	ND(0.015)	ND(0,0080
HpCDD	up(0.011)	(4900-0)0H	6,0053	ND(0.0052)	L10.0	ND(0.0018)	0.018
(dd:)()	0.81	(190°0)(11	0.060	0.044	0.75	ND(0.05h)	0.075
.4(t,),L	ND(0.12)	10.012) 10.012)	(10.0)dh	ND(0.02h)	1.1	ND(0,0090)	ND/O OIB)
Pechk	('tt'0)an	np(6.0034)	nb(0.0011)	ND(0.0022)	ND(0.0052)	(AFOO. O) UN	ND(O 0005
HACDF	m(0.0053)	(6000 - 0)au	ND(0,0028)	(1100.0)au	1.1	(100.0)(N	
HpCDF	(1500.0)dN	(6400.0)du	ND(0.0016)	(0°0,0)0N	(010.0)dN	ND(0.0063)	
()CDF	ND(0.0024)	6100.0	10(0.000hg)	ND(0.0022)	0.66	ND(0,0021,)	ELOO.O)UN

bReported in ng/sample - analyzed by HKAX/HHARI.

TABLE 15. PCDD/PCDP DATA SUMMARY (Continued) HIGH RESOLATION BAAG

CONCEMER	ENT-6 AA64,56 ^ª	PO'IN A61,59 ⁸	cw Aa6463 ^a	WB-1 AA61,69 ^a	WB-1 Dup AA61ıó90 ⁸	WB-1 Spike AA64695 ^a	RB B1k796
37c1-Tebb (\$ acc)	¥ 6L	101	95%	95%	3E0	ohđ	PEAL
TCDD	(610.0)an	ND(0.026)	ND(0.0066)	(110.0)dM			ACUL ACUL
PeCDD	ND(0.0056)	(£10.0)UN	ND(0.059)	ND(0.052)	(STO.D)UN		
HxCOD	ND(0.042)	(050.0)dM	ND(0.023)	ND(0.020)	(er o)th		120.014M
ИрСОВ	0.087	0.079	0.14	(910,0)dM	0.014		
ochn	0.78	0.52	0.092	0.071	0.078	0.85	
TCDF	ND(0.045)	(570.0)dM	(010.0)0N	(210.0)UN			0.000 White April
PeCDF	ND(0.0035)	ND(0.0068)	(5400.0)dN	(610.0)dN		ND/O OIE)	(000 0)dM
HxCDF	0.013	(420.0)(IN	ND(0.0088)	ND(0,0064)			
црече	ND(0.0080)	ND(0.024)	ND(0.0061)	ND(0.0062)	(TTO-0)0W	ND(0.026)	
ACO	0.012	010.0	0.036	ND(0.0018)	ND(0.0070)	0.76	ND(0,0026

bReported in ng/sample - unalyzed by HKCC/HRMS.

.

TARKE 15. PCDD/PCDF DATA SUMMARY (Continued) HIGH RESOLATION HIGH RESOLATION

Solitter detroit.

CONCLEMEN	АЮ-Т Ал5883 ^а	АD-2 АЛ588 ¹ ⁴	AD-3 AA5885 ^a	AD-5 AA6411ª	AD-6 AA6lıo9 ^a	BS-1 AA6Iılıla	AD-5 Dup AA6411D ^A
3701-48100 (X acc)	89%	96%	216	\$LOL	105%	8 8%	3 9%
UCDD D	ND(0.48)	ND(1.5)	(68.0)0N	ND(2.2)	ND(2.5)	ND(0.59)	ND(2.5)
PectuD	ND(1.8)	ND(2.9)	ND(0.28)	ND(0.35)	ND(1.5)	ND(0.62)	ND(0.26)
lixCDD	up(5.4)	(4,1)dN	ND(2.2)	(1/1.0)UN	ND(0.76)	ND(1.6)	ND(1.4)
lipcon	(64.0)an	0.39	(7.1)an	0.58	0.92	0.70	0.68
0000	2.4	1. 37	19.3	22.7	11.6	6.6	5.5
ACDF	ND(0.85)	12.9	16.0	6.7	10.8	ND(0.97)	7.6
Pechy	ND(0.18)	ND(0.69)	(62.1)(IN	ND(0.48)	ND(0.89)	ND(0.042)	ND(1.6)
HXCDP	ND(0.31)	ND(0.57)	ND(0.68)	ND(0.65)	ND(0.53)	ND(0.50)	ND(0.62)
Recur	(T.T)au	ND(0.62)	ND(0.50)	0.65	ND(1.9)	ND(0.37)	ND(0.53)
OCDF	ND(0.24)	ND(0.12)	ND(0.27)	ND(0.28)	ND(0.23)	ND(0.12)	ND(0.3%)
^A ksported in ppt -	ana tyzed by II	uge/mas.					

b_{Reported in ng/sample - analyzed by HNGC/HNMS.}

1 0027

ł

TARGE 15. PCDB/PCDF DATA SUMMARY (Continued) HIGH RESOLATION

1

DA1M

CONGENER	AI)-5 Spk AA6IJ15 ⁴	RB BIR802 ^a	VB-1 Comp. AA5844 ^b	VB-2 Comp. AA5845 ^b	VB-3 Comp. AA5046 ^b	VB-5 Comp. AA6512 ^b	VB-6 comp AA6513 ^b
37c1-TCDD (X acc)	103\$	84,8	100%	113%	\$16	\$16	101
TCDD	51.6	ND(0.82)	ND(0.21)	(E1.0)dN	(E0.0)UN	ND(0.020)	ND(0.22)
PeCuD	ND(1.2)	(9.1/)(IN	ND(0.22)	ND(0.051)	· ND(0*10)	ND(0.25)	(T1.0)dN
HxCDD	91.9	ND(0.035)	(91.0)dN	ND(0.033)	ND(0.10)	ND(0.028)	ND(0.020)
ирсвв	0.55	(35.0)aN	0.11	(E1.0)CN	ND(0.095)	0.17	0.12
OCDD	29.2	3.0	0.85	0.82	· ND(0.81)	0.66	1.1
TCDF	16.8	(£6.0)dN	ND(0.24)	ND(0.13)	1.5	ND(0.48)	5.4
PeCDF	ND(2.2)	(21.0)an	ND(0.027)	ND(0.039)	ND(0.0060)	(11,0)dN	ND(0.15)
IIXCDF	38.9	ND(0.20)	ND(0.050)	(1160.0)dN	ND(0.36)	ND(0.080)	ND(0,069)
npcDF	ND(0.52)	ND(0.32)	(160.0)dN	(11.0)dN	ND(0.26)	(J1.0)UN	(11.0)dN
OCDF	27.9	(130.0)dN	0.027	ND(0.01/7)	(12.0)dN	ND(0.054)	0.39

767

Reported in ppt - analyzed by HROC/HRMS.

b Reported in ng/sample - anvlyzed by HKC/HRMS.

TABLE 15. FCDD/PCDF DATA SUMMARY (Continued) HIGH RESOLATION BAAG

the second second second second second second second second second second second second second second second s

		RB
CONGENER	AA6487 ¹⁹	BIK791 ^D
37c1-TCDD (% acc)	X 66	98%
TCDD	(9t.0)un	ND(6.27)
PecDD	(6t.0)un	(0.1)dN
lixCDD	ND(0.13)	ND(0.13)
црсвв	()(0,16)	ND(0.075)
0000	0.89	0.61
TCDF	1,1,0	ND(0.018)
PecDP	ND(0.050)	ND(0.064)
lixCDF	ND(0.10)	NB(0.025)
lipcny	ND(0.060)	(1¢0.0)UN
AGOC	ND(0.029)	0.060
AReported in ppt -	anulyzed by II	IRGC/IHRNS .

²keported in ng/sample - analyzed by HHGC/HHMG.

TABLE ID. QA/QC REPORT

DADS BG&G

c nn $13n_{-0.00}$	170-0-1	Ac LT	#001-19 F		
13c-11n		93.7%	5li-130	udr-nd	
13C - PCDF	L	125%	93-106%	he-160%	
¹³ c-PCDD	1	96.3%	52-133%	h0-160%	
37_{C1} -TCDE	L	100.8%	88-116%	60-1 hcz	
Surrogate Percent Accuracy	Number of Data Points =	Mean Percent Accurucy =	Range =	EPA kange =	

^aOne Sample (F5-6) was outside the 17 QA/QC limit. These limits are estublished by IT and are not EFA runges.

	TABLE	17. QA/QC BG40	REPORT (HEN ;	S)	1	0031
Surrogate Percept Accuracy Mumber of Data Points = Mean Percent Accuracy = Range = EPA Range = 60-140%	37 _{C1-} 30 97.8 % 79-126	TCDD				
Sample ID [ETT 2] Precision of Duplicates Original Value (b) = Duplicate Value (a) = Precision = <u>a-b</u> x 100% = <u>a+b</u> <u>2</u> EPA Range = + 50%	<u>HDCDD</u> 0.0053 0.0052 1.9 %	0.060 0.044 30.8%				
Accuracy of Spike - Original Value (a) = Spike Value (b) = Spike Level (c) = Accuracy = b x 100% = EFA Range = 60-140%	TCDD ND 1.35 1.0 135%	<u>HxCDD</u> ND 0.99 1.0 99 %	OCDD 0.060 0.75 1.0 70.8%	<u>TCDF</u> ND 1.40 1.0 140%	HxCDF ND 1.1 1.0 110%	<u>OCDF</u> ND 0.66 1.0 65%
Sample ID [WH1] ^a Precision of Duplicates Original Value (b) = Duplicate Value (a) = Precision a-b x 100% = a+b 2 EPA Range = ± 50%	0.071 0.071 0.078 9.3%					
Accuracy of Spike Original Value (a) = Spike Value (b) = Spike Level (c) = Accuracy = <u>b</u> x 100% EPA Range, 60-140%	TCDD ND 1.3 1.0 130\$	HxCDD ND 0.90 1.0 90%	0.071 0.85 1.0 79%	TCDF ND 1.4 1.0 140%	HxCDF ND 1.0 1.0 100\$	0CDF ND C.76 1.0 76%

and determinants for

.

Sample ID [AD-5] ^b						
Precision of Duplicates	HpCDD	OCDD	TCDF			
Original Value (b) =	0.58	22.7	6.7			
Duplicate Value (a) =	0.68	5.5	7.6			
$\frac{a-b}{a+b} \times 100\% =$	15.9%	122 * C	12.6%			
2 EPA Range = ± 50%						
curacy of Spike	TCDD	HxCDD	OCDD	TCDF	HxCDF	002
Original Value (a) =	ND	ND	22.7	6.7	ND	ND
Spike Value (b) =	51.6	31.9	29.2	46.8	38.9	7.
Spike Level (c) =	40.0	40.0	40.0	40.0	40.0	LO.
Accuracy = $\frac{b-c}{a} \times 100\% =$	129%	80%	472	100\$	97#	697
EPA Range = 60-1403						

TABLE 17. QA/QC REPORT (HEMS) (Continued) BG4G

xCDD found in duplicate and spike below the "ND" level found in original.

Section 1

:CDF found in original at a level near the "ND" levels found in the duplicate and spike.

10D was found in some of our laboratory blanks. This contamination may be the cause of the low level of precision on this sample.

(The reverse of this page is blank.)