
AD-A252 692
I I~l~iil I~i lI " D T I C

ghELECTE

A COGNITIVE APPROACH
TO THE DESIGN

OF
INFORMATION GRAPHICS
Technical Report AlP - 143

Stephen Casner

University of Pittsburgh
Pittsburgh, PA 15260

May, 1989

This research was supported by the Computer Sciences Division, Office of Naval Research,
under Contract Number N00014-86-K-0678. Reproduction in whole or in part is permitted
for purposes of the United States Government. Approved for public release; distribution
unlimited.

/

92-18095

92 IIIIIIIIIIIIIII

unclassifiled
SICUMTY CU055FIGTOWN rp rS, PAGE

REPORT DOCUMENTATION PAGE

IS. REPORT "SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

Unclassified
12a. SECURITY CLASSIFICATION AUT"ORItTY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

___________________________________ Approved for public release;

2b. DECLASSiFIC.ATIONI DOWNGRADING SCHEDULE Di1st ribu tion unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AIP-143
6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Carege-Mlln nivrsty (If apolicable) Computer Sciences Division
CarngieMelln UiverityOffice of Naval Research

6L ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Department of' Psychology 800 N. Quincy Street
Pittsburgh, Pennsylvania 15213 Arlington, Virginia 22217-5000

So. NAME OF FUNDING /SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Ifapplicable)

Same as Monitoring Organizatic N00014-86-K-0678
SL. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS v4000ub201 7-4-86

PROGRAM PROJECT TASK W VORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO

11. TITLE (include Security Classi fication)N/NANANA

A Cognitive Approach to the Design of Information Graphics

12. PERSONAL AUTHOR(S)
Casner, Stephen

13a. TYPE OF REPORT 1 3b. TIME COVERED 14. DATE OF REPORT (YearMonth Sa) . PAGE COUNT
Technical IFROM 86Septi.STO9lSeptl1 1989, May 7 I7 62

16. SUPPLEMENTARY NOTATION

submitted manuscript
17 COSATI CODES 18. SUBJECT TERMS (Continue on rovers* of ReCessary and identify by block number)

FIELD GROUP SUB-GROUP
Design, Human Factors, Algorithms, Theory, Graphics Design,
Task Analysis, Perception, Visual Languages, User Interface

19. ABSTRACT (Continue on reverse of neCessary and identify by block number)

SEE REVERSE SIDE

20, DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEIUNLIMITED IM SAME AS R PT E3 OTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 2c. OFFICE SYMBOL
Dr. Alan L. Meyrovitz (202) 696-4302 i N00014

DO FORM 1473,84 MAR 83 APR edition may beused until exnausted. SECURITY CLASSIFICATION OF THIS PAGE
All otIer edition% art obsolete. Uclsi e

Abstract

Graphical representations popularly thought to be useful for communicating and processing
information yield mixed results when tested with real users. Cognitive research suggests that current
design methodologies fall to exploit the potentials of graphics for expediting human performance of
information-processing tasks: (1) allowing users to substitute less effortful visual procedures in place
of more demanding non-visual procedures; and (2) streamlining users' search for information by
supporting visual search heuristics. BOZ Is a design algorithm that constructively applies cognitive
principles of the efficiencies that graphical displays can offer to the problem of discovering novel
displays to support specific user tasks. BOZ analyzes formal task descriptions and proposes visual
displays and procedures that can help streamline performance of a task. BOZ is used to generate
graphical alternatives to a standard tabular display of airline schedule information to support a set of
common airline reservation tasks. Reaction time studies done with real users are reported that show
that the BOZ-designed displays significantly reduce users' performance time to the task. Regression
analyses link the observed efficiency savings to visual procedure substitutions and pruning of
research. BOZ is also shown to be useful for analyzing existing displays to discover clever design
features that can then be subsequently incorporated into BOZ's design algorithm.

Ae .qiloa For

. Distrtbultier/

,;bAPRil ad/or

i-Dist S lpecial

A Cognitive Approach to the
Design of Information Graphics

Stephen Casner
Learning Research & Development Center

University of Pittsburgh
Pittsburgh, PA 15260

May 1989

This work Is supported by the Office of Naval Research, University Research Initiative, Contract
Number N00014-86-K-0678, and in part by Virtual Machine Corporation, Pittsburgh, PA.
Reproduction in whole or in part is permitted for any purpose of the United States Government.
Approved for public release; distribution unlimited.

Thanks to Stellan Ohlsson, Jill Larkin, Jeffrey Bonar, and Alan Lesgold for helpful comments and
criticisms.

A Cognitive Approach to the Design of Information
Graphics

STEPHEN CASNER

University of Pittsburgh

Graphical representations popularly thought to be useful for communicating and processing
information yield mixed results when tested with real users. Cognitive research suggests that current
design methodologies fail to exploit the potentials of graphics for expediting human performance of
information-processing tasks: (1) allowing users to substitute less effortful visual procedures in place
of more demanding non-visual procedures; and (2) streamlining users' search for information by
supporting visual search heuristics. BOZ is a design algorithm that constructively applies cognitive
principles of the efficiencies that graphical displays can offer to the problem of discovering novel
displays to support specific user tasks. BOZ analyzes formal task descriptions and proposes visual
displays and procedures that can help streamline performance of a task. BOZ is used to generate
graphical alternatives to a standard tabular display of airline schedule information to support a set of
common airline reservation tasks. Reaction time studies done with real users are reported that show
that the BOZ-designed displays significantly reduce users' performance time to the task. Regression
analyses link the observed efficiency savings to visual procedure substitutions and pruning of search.
BOZ is also shown to be useful for analyzing existing displays to discover clever design features that
can then be subsequently incorporated into BOZ's design algorithm.

Categories and Subject Descriptors: D.2.2 [Software Engineering: Tools and Techniques-user
interfaces; H.1.2 (Models and Principles]: User/Machine Systems--human information processing;
1.2.1 [Artificial Intelligence]: Applications and Expert Systems; 1.3.6 [Computer Graphicsl:
Methodology and Techniques-ergonomics.

General Terms: Design, Human Factors, Algorithms, Theory.

Additional Key Words and Phrases: graphics design, task analysis, perception, visual languages, user
interface.

1. THE COGNITIVE FUNCTION OF GRAPHICAL DISPLAYS

A striking conclusion of recent studies concerned with understanding how and why

graphical representations are useful is that it is a false assumption that graphical

displays are inherently better than other representations, or that perceptual

2

inferences are in general made more efficiently or accurately than non-perceptual

inferences (13, 19, 201. Rather, these studies suggest that the usefulness of a

graphical display is a function of the task that the user is performing. Twenty-nine

independent empirical studies surveyed in Jarvenpaa and Dickson [161 found

graphical displays superior to tabular displays for a restricted set of

information-processing tasks, and observed no benefits or poorer performance for

other tasks. The implication is that effective graphic design should begin with the

task that a to-be-designed graphic is intended to support, and be focused on finding

those parts of a task, if any, that might be performed more efficiently within the

context of a graphical display.

Larkin and Simon's (20] theoretical analysis points out two ways in which graphical

displays can facilitate human performance of information-processing tasks:

* Substituting visual operators for logical operators: Graphical displays often

allow users to substitute quick and easy perceptual judgements or graphical

manipulations (visual operators) in place of more effortful non-visual reasoning

steps (logical operators) that comprise a particular task. Visual operators such as

distance and size determinations, spatial coincidence judgements, and color

comparisons, sometimes give users the same information as more demanding

logical operators such as mental arithmetic, logical reasoning steps, or feature

comparisons.

" Reducing search: Good graphics often reduce the time that the user must spend

searching for information they need. This is accomplished either by grouping

together information required to draw a particular inference into one spatial

locality, or by employing techniques such as shading and spatial arrangement that

help guide the eye toward relevant information and away from irrelevant

information.

3

To illustrate the two ways that graphical displays can help users, Figure 1 shows a

graphic used for train schedules in France in the late 1800's [22].

Figure 1 here

Marey's train schedule can be viewed as a 2-dimensional visual data structure that

indexes time and place information along the horizontal and vertical axes,

respectively. To retrieve departure and arrival times for a train, the user must

perform coincidence judgements along the horizontal axis. Note that for this simple

task in isolation, the train schedule does not result in any savings for the user.

Searching for departure and arrival times in a tabular presentation such as Figure 2

would seem to progress as quickly and perhaps more accurately. Consequently, with

respect to the task of retrieving departure and arrival times, allowing users to

substitute spatial coincidence judgements for table lookup seems to be of no use in

that it may be both inefficient to use and prone to errors due to the imprecise

representation of times. The empirical studies generalize this to show that in most

cases tabular representations are best for "information extraction" tasks (16], and

thus there seem to be no inherent advantages of representing information

graphically.

Figure 2 here

When used for other tasks, the visual train schedule offers several advantages by

allowing the user to substitute visual operators in place of more difficult logical

operators that would ordinarily require logical reasoning and mental arithmetic, and

reducing the time the user must spend searching for information. For example, to

S 3 IS I 1 I a 3 4 5 4m 0 0 to 1% 12

Dijon -

Lyan -a

Figure1

OrigividDetiatiefl Departs Arrilles

?ans-Maftfeauz 8:00 9:15

=ijon-Lyofl 9:00 11:15

Moantrtaux- MacOnl 9:45 11:30

Pans-Dijofl 11:30 1:30

Macan-Lyon 11:.45 12:45

Fins-Lyon 12:30 4:30

Dtjon-Lyon 2:30 415S

Montrtau-Dijofl 3:30 4.30

Pans-tnjwfl 4:30 '515

Bijon-L::on S:30 i 3

?aris-Lyoil 6:00 10-LS

men rrltu X Mcon 8!30 11-30

Pans-Monwrtauxi 9:30 ' 1: 30

Macon-Lyon 10:4S I1:'5

Figure 2

4

find a route between Paris and Lyon we can search for a single line that runs directly

from Paris to Lyon, or find a series of lines such that each successive line lies to the

right of the previous line. The savings in search time is achieved because of the way

the graphical display indexes the trains by city and time. Notice that accomplishing

this same task with the tabular display requires that we continually search the

entire list of trains since they are not indexed by city. We can also determine the

speed of a train by judging the slope of the line between cities. Rather than dividing

the total number of miles traveled (not represented in either display) by the

difference of the departure and arrival times, we can compare the speeds of trains by

performing simple slope judgements. We can determine the layover between two

trains in an intermediate city by estimating the distance between the end of the line

depicting the first train and the beginning of the line that depicts the second train.

This convention allows the user to substitute a simple distance judgement in place of

subtracting the departure and arrival times.

Note that a different user who wishes to understand the route structure of French

trains would find both of the displays shown in Figures 1 and 2 cumbersome and

would benefit most from the graphic shown in Figure 3. This structuring of the data

trades away the departure/arrival time capabilities to allow users to find a city

quickly (indexed by geographical location), and to determine routes by performing

tonnectivityjudgements between the city names.

eSg ease....

Figure 3 here

In summary, the three alternative ways of presenting the same information show

that effective graphical displays are not likely to follow from a design methodology

concerned primarily with the information to be displayed but rather from a careful

analysis of the tasks that manipulate the information. That is, it is unlikely that we

paris .

/Dijon

Macon -, .

Figure 3

5

can design graphical displays to support tasks without explicitly considering the

nature of those tasks.

The research described in this paper explores a cognitive approach to the design of

interactive graphical displays based on an analysis of the tasks for which they are

intended to support. Section 2 reviews previous work related to the problem of

designing graphical displays. Section 3 states the task-based design problem for

interactive graphical displays. In Section 4, a formalism is described that allows

designers to characterize the set of logical operators that comprise a user task.

Section 5 presents a catalog of visual operators describing information-processing

activities that occur within the context of a graphical display. Section 6 describes a

design algorithm called BOZ that analyzes a task description and searches the visual

operator catalog for ways to substitute visual for logical operators and take

advantage of visual search heuristics. BOZ proposes specifications (but not

implementations or renditions) of interactive graphical displays that suppurt human

performance of the visual operators and search heuristics it finds. In Section 7, BOZ

is used to design alternative graphical displays to support a set of airline reservation

tasks. Section 8 discusses an experiment in which participants used the

BOZ-designed airline reservation graphics. Results show significant decreases in

users' performance times when using the BOZ-designed airline reservation displays,

and suggest that users obtained the efficiency savings through visual operator

substitutions and heuristic visual search.

2. PREVIOUS WORK

The following surveys theoretical and empirical work concerned with the problem of

designing effective graphics.

2.1 Designing by intuition

6

Tufte [27], Bertin [2], Cleveland [91, and Schmid (251 describe design principles

concerned with designing graphical displays for the purpose of storage,

communication, and manipulation of information. An important limitation of these

principles is that they are limited to recognizing and correcting bad practices used in

existing graphics. That is, given that the designer has set out to create a graphic

using his or her own design intuitions, these principles help the designer to avoid

practices that are known to make graphics ambiguous, confusing, or generally less

usable. The consequence of this limitation is that they do not help the novice

designers how to begin designing a display from scratch. A second limitation of the

intuitionalist approaches is that they focus entirely on the information to be

presented in a graphic and do not include a concern for the tasks for which the

graphics are designed to support.

2.2 Mackinlay's APT

Mackinlay [21] describes APT, a tool that designs static presentations of relational

information. A significant contribution of Mackinlay's work is to formally

characterize something that many of the intuitionalists informally alluded to: that

graphical presentations can be expressed as sentences in a formal graphical language

that have the same precise syntax and semantics as propositional formalisms. The

advantage of having a formalism for graphical presentations is that it provides a set

of criteria for deciding the role of each visible sign or symbol placed in a graphic. A

second contribution of APT is that, unlike intuitionalist proposals, APT designs

graphics with a minimum amount of intervention on the part of the designer. That

is, AYT embodies a genuinely prescriptive theory of how to design a graphic.

Limitations of APT include the following. First, APT''s analysis of formal graphical

languages does not extend to actions that allow users to manipulate the graphical

objects in a display. For instance, graphical interfaces such as those used in

intelligent tutoring systems and visual programming languages [4] require that user

7

be able to graphically manipulate the objects in a display, and that these

manipulations have meanings of their own independent of the meanings of the

graphical symbols themselves. Second, APT's design algorithm is based on an

analysis of the information to be presented and doesnot consider the tasks that the

user is to perform. This prevents APT from directly addressing the issue of

task-related advantages of graphical representations. Third, when deciding which of

a set of alternatives representations to choose, APT generalizes an experimental

result that shows that some designs allow users to more accurately extract

information from a graphic [10]. More recent experimental work [16] shows that this

criterion is an unreliable indicator of how accurately other tasks are performed with

the same or different graphic. In general, unreliable differences between users,

tasks, and situations suggest that determining the usability of a graphic is an

empirical question not decidable by algorithm.

2.3 Cognitive Approaches

Larkin and Simon's work [20] was first to pinpoint the two ways in which graphical

displays can help users when performing complex information-processing tasks: (1)

allow users to substitute quick visual operators for more effortful logical operators;

and (2) reduce the amount of time that users spend searching for information.

Cognitive research has discovered that graphical representations can also effect the
way that users manage heavy information workloads in short-term memory [15], and

provide users with effective strategies for organizing their knowledge about a task in

a form readily applicable to problem-solving situations [181.

Cognitive research has pinpointed several design parameters that can be tuned

during the process of engineering good displays and has thereby enabled a new

generation of approaches that fill the gaps in previous approaches. The research

described below.is the iirst design methodology to attempt to apply principles of how

graphics support tasks to the problem of designing novel displays.

8

3. THE DESIGN PROBLEM FOR INTERACTIVE GRAPHICAL DISPLAYS

The problem of designing graphical displays to support an information-processing

task can be stated as follows:

Given a description of a task, analyze the description looking for ways to substitute visual operators

in place of logical operators. Create a graphical display that presents the information relevant to

the task in a form that allows the user to perform the visual operators. The visual operators and

display chosen should demonstrably offer some efficiency advantage to the user by either reducing

the time required to execute each operator, or by facilitating search techniques that reduce the

overall time the user must spend searching for information in the display.

The approach described here solves the design problem for interactive graphical

displays using the following four components.

A task description language is used to formally specify the individual logical

operators that comprise a task.

A catalog of perceptual and graphical operators (POPs and GOPs) describes a set of

information-processing activities that can be performed in the context of a graphical

display.

A design algorithm tractably searches the design space of visual operators and data

structures suitable for a given task. The design algorithm uses theorem-proving

techniques [121 when attempting to locate a set of perceptual and graphical operators

that can be shown to be formally equivalent to a set of corresponding logical operators

in a task description. Performing the visual procedure can then be shown to always

yield the same result as performing the procedure given in the task description.

Visual data structures are defined by collecting all information required to perform

each visual operator and creating a structure that attempts to insure that all

9

necessary information is presented in the same spatial locality and in a form that

supports the visual operators.

4. TASK DESCRIPTION LANGUAGE

The most important component of a task-based design methodology is a means of

making explicit the information-processing activities that the to-be-designed

representation is intended to support. Several task description languages exist in the

literature, two of them targeted specifically for use in designing user interfaces [24,

51. Given the particular use of a task description language intended here, there are

two constraints that guided the decision to build a new task language over choosing

one of the existing techniques. First, it is important that the task description

language can be easily used by designers of graphical interfaces. Consequently,

despite the many psychological distinctions that more sophisticated task languages

allows us to make, it seemed impractical to adopt a language that would require

extensive background knowledge, skill, or experience on the part of the designer.

Second, it became clear after studying existing task languages that the

representation schemes used by those languages would not easily lend themselves to

the search algorithms required to match graphics to tasks efficiently. Existing task

languages were designed to increase our understanding of the psychological nature of

information-processing tasks and not necessarily for use in efficient computer

algorithms.

The task description language used here adopts a representation scheme similar to

first-order logic. Tasks are described using a collection of logical operators. A logical

operator is composed of one or more statements. Statements use the three

meta-commands: ASK, TELL, and RETRACT to query, assert, and remove facts from a

simple database of facts. Facts are expressed using predicates that describe relations

between two or more data variables or literals. Predicates are either pre-defined or

user-defined. Pre-defined predicates include arithmetic and logical relations such as

10

PLUS, DIFFERENCE, AND, OR, NOT, etc. User-defined predicates can be any finite

ordered n-tuples of variables or values that describe n-place relations. Logical

operators can return values of arbitrary type.

For example, the following logical operator describes computing the layover between

two airline flights:

(LAMBDA compute-layover (flightA flightB)
(ASK (Departure flightB) D)
(ASK (Arrival flightA) A)
(ASK (DIFFERENCE D A) LAYOVER)
(RETURN LAYOVER))

The keyword LAMBDA is used to denote a logical operator. The list (f 1 i g h tA

f 1 i g h tB) is the set of arguments that c ompu te- 1 ayove r receives as input. The

ASK meta-command states that the database of facts should be checked to see if the

predicates that follow can be shown to be true: namely if there exist facts expressing

the departure and arrival times of the two flights. The statement (DIFFERENCE D

A) specifies that the pre-defined subtraction predicate is to be computed given the

values D and A, and instantiate the variable LAYOVER with the result. The RETURN

statement is used to specify the list of values that the operator is to return.

Domain sets are used to specify the types of data variables and literals that occur in

user-defined predicates. Domain sets define the universe of discourse for the types of

information that the graphical representation will allow the user to manipulate.

Three types of domain sets are allowed in the present model: quantitative, nominal

and ordinal [21]. For instance, if we were to assert a relation between airline ilight

numbers and timesof the day: (Departs FLIGHT1 T), we woulddeclare the

variable FLIGHT 1 as type nominal and the variable T as type ordinal. The task of

determining the name of the oldest individual in a group contains two domain sets, a

11

nominal domain set of names, and an ordinal domain set of integers that are

associated with the names.

Figure 11 shows a complete task description for the activities involved in finding an

airline flight satisfying time and cost constraints.

5. PERCEPTUAL AND GRAPHICAL OPERATORS (POPS AND GOPS)

The following describes a set of perceptual and graphical operators (POPs and GOPs),

or information-processing activities that are performed within the context of a

graphical display and whose performance depends on the use of a graphical display.

Perceptual and graphical operators are organized around a set of primitive graphical

languages available to the designer of a graphical display [21]. Primitive graphical

languages comprise the designer's resources for representing information visually.

The set of primitive graphical languages used in the present model are shown in

Figure 4. The primitive languages shown on left side of Figure 4 have the following

common characteristic: they all rely on placing visible graphical symbols in a

graphic in order to convey meaning. That is, in order to use these primitive

languages to convey meaning in a graphic, we must place some sort of symbol in the

graphic that has one or more of the graphical features. In the work described here,

primitive graphical languages that use visible graphical symbols are called

notational languages.

0s**00000*

Figure 4 here

Earlier observations of the graphical notations used for problem solving and

communicating information in various problem domains [6, 81, and of the graphical

conventions used in many computer interfaces suggest two additional categories that

relate meaning to actions performed on graphical symbols. A primitive action

vstational Primitive Doictic &ad Action

Graphial Languages Primitive Graphical Languages

7-fial PaIUCann) U

.f-t& Pesftie1 f U

7ilth

CAretvt
CZuecWficy

TSkass.01

Z~ir Whole

Figure 4

12

language is used to describe manipulations performed on graphical symbols that can

be associated with a meaning independent of the meaning of the graphical symbol

itself. A primitive deictic language is used to describe references made to graphical

symbols, groups of symbols, locations, or regions in a graphic. Football diagrams are

an example of a domain that uses a rich set of action and deictic conventions. Casner

[6] analyzes and implements a set of action and deictic conventions used in football

diagramming. The complete set of action and deictic languages used in the present

analysis is shown in the right side of Figure 4.

Associated with each of the primitive graphical languages is a set of perceptual and

graphical operators (POPs and GOPs) that are admitted when the designer of a

graphical representation elects to use one or more of the primitive langus ges in a

graphic. For example, if we elect to use the "horizontal position" language we admit

a family of perceptual operators (POPs) such as determining the horizontal position

of a graphical object, comparing two or more horizontal positions, and finding the

midpoint of an interval defined by two horizontal positions. Horizontal position also

admits a set of graphical operators (GOPs) such as moving a graphical object from one

position to another.

The follow is a sample of the set of perceptual and graphical operators (POPs and

GOPs) admitted by the Horizontal Position primitive graphical language. It is

unlikely that we can enumerate an exhaustive set of all possible perceptual operators

since these are likely to vary with the experience and skill of individual users. The

goal here is to arrive at a basis set that is sufficient to generate useful visual

procedures and displays. When the designer of a graphical representation elects to

attach meaning to the deliberate placement of a graphical object along a horizontal

axis, the following perceptual and graphical operators become available for defining

perceptual and graphical information-processing tasks:

13

Horizontal Position:

Perceptual Operations (POPs):
determine-horz-position
find-horz-positioned-object
search-object-at-horz-pos
confirm-object-at-horz-pos
horz-coincidence?
right-of?
left-of?
determine-horz-interval
bigger-horz-interval?
smaller-horz-interval?
equal-horz-intervals?
find-endpoint-of-horz-interval
find-midpoint-of-horz-interval
horz-weighted-interpolation
horz-containment?
determine-horz-projection
determine-horz-distance

Graphical Operations (GOPs):
horz-move
scale
overlay

Perceptual and graphical operators (POPs and GOPs) are formalized using the same

logic-based representation scheme used to describe tasks. Figure 5 shows an excerpt

from the set of formalized POPs and GOPs that are associated with the Horizontal

Position language.

Figure 5 here

6. THE DESIGN ALGORITHM

BOZ is a design program that analyzes task descriptions and attempts to locate

perceptual and graphical operators and accompanying visual data structures that

can offer the user the two potential advantages of graphics that were described above.

Section 6.1 describes how BOZ uses the catalog of POPs and GOPs to attempt to

locate visual operators that can serve as substitutes for the logical operators given in

(CROINAL A~ 1) eeto I(
(MNMINAL Sa 1) D) elete
fPREL:TIO:AL 1090 1)) o)Reaactl~

(POPS (VALUE (flfnd-harx-I'Ca ted-o j
tL.AMBDA '41L

(ASK toortPos A 4P))),Out
t RETURN A 1MP)V uunao

(finad-horr-pos (L..MBOA (i UMc
(ASK (MorzPos 9 u9)) S-40
-ETURN HP))) l~eannt

(f ind-01)-at-har-pos ,w
,LAYBOA O'0)j Edu!comf
(AZ'M (HorZPIJS A he)) areaK
'RETURN AM)

(coflfir*-ruorz-cas (LAMIOA (C1 he) t
*4SIK iVWrPoS s *-VI)

' RETURN T 31L)
(turr-co~nC~denCe? (LAUBOA (a o)

tEqUAL a 0)
(EQUAL a B)
(EQUAL b a)
(EQUAL A B)
i2ETLum T '410'!

Figure 5

14

a task description. Section 6.3 shows how BOZ constructs visual data structures that

support the prescribed visual operators and attempts to insure that all information

necessary to execute a particular operator is available in the same spatial locality.

Unlike previous approaches, BOZ begins by identifying a set of visual operators to be

performed and then designs a graphical display for the task information.

6.1 Operator Substitutions: Matching POPs and GOPs to LOPs

BOZ considers each logical operator (LOP) in a task description and exhaustively

searches the set of perceptual and graphical operators to locate those POPs and GOPs

that compute the same result as the LOP. This is accomplished using

theorem-proving techniques that attempt to show that POPs/GOPs and LOPs are

isomorphic. Two operators are considered isomorphic when they produce the same

output when given the same input. This property insures that whatever visual

procedures is followed in place of a corresponding non-visual procedures, it is

guaranteed that the user will obtain the same results if the visual procedure is

performed correctly.

Perceptual and graphical operators can qualify as isomorphs for a logical operator in

two ways. Simple substitutions are those in which a single perceptual or graphical

operator can be shown to be equivalent to a logical operator. Complex substitutions

are those in which two or more POPs and GOPs can be packaged together using one

or more of a set of combination, composition, or repetition rules [31 for building

complex operators from a set of primitives. The complex POPGOP is then

substituted for the logical operator in the task description.

6.1.2 Simple substitutions

A single perceptual or graphical operator can be shown to be isomorphic to a logical

onerator in the following way. Suppose a representation is needed that allows users

to easily determine which individuals in a given set are relatives. The single

15

primitive operator necessary to complete this simple task can be encoded using the

task description language as follows:

(LAMBDA determine-if-related (personi person2)
(ASK (Related personi person2))
(RETURN boolean))

BOZ then is charged with the job of searching the set of perceptual and graphical

operators associated with each of the primitive graphical languages and locating

those that are isomorphs of the logical operator in the task description. Suppose

BOZ's search mechanism is currently considering the perceptual operators associated

with the Connectivity primitive graphical language. The following perceptual

operator can be found in Connectivity's collection of POPs:

(LAMBDA connected? (obj I obj2)
(ASK (Connected objil obj2))
(RETURN boolean))

Note that determi ne- i f- related and connected? are structurally the same.

That is, since both operators compute a query operation of a 2-place predicate and

return a boolean value, if we substitute the predicate C o n n e c t e d for R e 1 a t e d, and

exchange the two argument lists, the operators are the same. We can then conclude

that we are entitled to "change the meaning" of the perceptual operator of

determining if two graphical objects are connected to ask the question whether or not

two persons are related. In other words, any graphic that represents the "related"

relation by using connectivity between graphical objects as an encoding scheme will

always allow the user to perform the perceptual operator and obtain correct answers.

Figure 6 shows a representation that uses the connectivity convention.

Figure 6 here

(maz ,-bobI

(Iae L~~- ken

alison i

Figure 6

16

6.1.3 Complex substitutions

More often than not, BOZ exhausts the list of perceptual and graphical operators

without finding a POP or GOP that is equivalent to a given LOP. For example,

suppose the task described above is changed to include information about the

particular kinds of relations between a set of individuals. An example task might be

"find the brother of Mary," or "find the cousin of Alison." This task can be

represented in using the task description language as follows:

(LAMBDA find-certain-relative-of-x? (x relation)
(ASK (Related x Y relation))
(RETURIN Y))

If we consider each of the primitive graphical languages (including Connectivity

shown above) in isolation we note that none of them formally qualifies as a

substitution off ind-certai n- rel ative-of-x. From a graphics design

perspective this is the same as saying that we cannot simply use graphical objects

and links between them to support this task because there will be no way of

understanding that the links are to represent different kinds of relations (e.g.,

mother, father, brother, etc) since there is only one kind of link.

When this occurs BOZ then considers complex perceptual and graphical operators

that are constructed from the set of simple POPs and GOPs using one or more of a set

rules for combination, composition, and repetition of operators [3] that are defined as

follows.

If fand g are operators:

(LAMBDA -in)

(<meta-predicate> (<predicate> arg, ar92... arga))

(<meta-predicate> (<predicate> argt arg2 ... argb))

17

(<meta-predicate> (<predicate> argl arg2 ... argo))

(RETURN Rf, Rf 2 ,... Rfd))

and

(LAMBDA g (bi, b2, ... , bin)

(< meta-predicate > (< predicate > arg1 arg2.. argf))

(<meta-predicate> (<predicate> arg, arg2 ... argg))

(<meta-predicate> (<predicate> argl arg2.. argh))

(RETURN Rg1 , Rg 2 ,... Rgi))

then the combination of f and g is the operator:

(LAMBDA f-combination-g (at, a2,... an, bi, b2, ..., bin)

(<meta-predicate> (<predicate> argl arg2 ... arga))

(< meta-predicate > (< predicate > argl arg2 ... argo))

(< meta-predicate > (< predicate > argl arg2 ... argf))

(< meta-predicate > (< predicate > argl arg2... argh))

(RETURN Rf, Rf2,... R, Rg1 , Rg2 ,... Rgd)

The composition off and g is the operator:

(LAMBDA f-composition-g (argl,... (< predicate > argj ar-2 ... drgf0,... argi,i

(< meta-predicate > I < predicate > arg1 (< predicate > arg, ar r, fj ... ae.))

(< meta-predicate > (< predicate> ar. 1 I t <predicate> arty ar2. ar-fJ... arc, 1)

(RETURN RI, R-,_. It))

for some argument, ari..

The repetition of a single operator fis:

(LAMBeDA f(al, a2, ... a,)

(<mcta-predicate> (<predicate> arg, arg2 ... arga))

18

(<meta-predicate> (<predicate> arg, arg2 ... argo))
(< meta-predicate > (< predicate > arg, arg2 ... arga))

(<meta-predicate> (<predicate> arg, arg2 ... argo))

(RETURN Rfl, Rf2, ... Rfd))

Hence, a combination of two operators is a single operator that combines all of the

parameters, clauses, and outputs of both individual operators. A composition of two

operators is a single operator that uses another operator as one or more of its

arguments. A repetition of a single operator is that operator performed two or more

times repetitiously.

By adding the rules for defining more complex perceptual and graphical tasks, BOZ

can now design representations to support more complex logical tasks such as the
"relatives" example given above. Figure 7 shows how the con nec ted? perceptual

task can be composed with the read- I abe I task associated with the Labels

primitive language.

Fiure 7 here

We can see that the composition of the two perceptual operators, one admitted by

Connectivity and the other by Labels, yields a complex perceptual operator that is a

renaming of the original task operator. The representation that illustrates this

convention is shown in Figure 8.

-. Figure 8 here

(ASK (Related 'mary X 'brother))

(ASK (Label X L))

(ASK (Connected A B))

(ASK (Label (Connected A B) L)

(ASK (Label (Connected 'mary X) brother))

Figure 7

IaeI b..h.UU ke

Figure 8

19

Note that if the task is further extended to include directional relations such as "is

brother of," BOZ would use the composition of the POPs

determi ne-di rected-relation and read-label.

6.2 BOZ's Search Complexity

BOZ presently contains about 250 POPs and GOPs descriptions that must be

exhaustively searched when considering each LOP in a task description. If a

graphical representation is to support n primitive tasks (25-50 for complex

representations), in the absence of any mechanism to help prune the search space we

have the following worst case search complexity:

Tsearch ---- 200n (simple substitutions) + 2002n (complex substitutions)

- 40,200n (total items searched)

If we later decide to allow 3-place substitutions (e.g., compositions of three POPs or

GOPs) we add an additional 8,000,000 x n items to the search space. BOZ

circumvents this problem by taking advantage of a formal property of the rules of

composition, combination, and repetition. Given a LOP that fails to match any of the

simple POPs and GOPs. we can perform a composition factorization of the LOP into

two component LOPs. For example, the LOP:

(LAMBDA find-relative cjoe 'brotheri

(ASK (Related 'joe X 'brother)

(RETURN X))

can be factored into two component LOPs:

(LAMBDA x (a)

(ASK (PredX a B))

20

(RETURN B))

(LAMBDA y (b)

(ASK (PredY A b))
(RETURN A))

The two component LOPs can now be used to independently search the list of simple

POPs and GOPs two times, one time for each component LOP. Any matches that are

found for the two LOPs can be shown to have the property that when composed

together they result in an isomorph of the original LOP.

Combination factorization and repetition factorization are defined analogously and

can be used to locate complex matches formed by combination and repetition. Adding

the factorization strategies reduces BOZ's worst case search complexity to:

tsearch = 200n + 6 x 200n = 1400n

BOZ is implemented in Interlisp-D on a Xerox 1186 and takes roughly 12 minutes to

explore the entire design space of visual operators given a task description containing

50 logical operators.

6.3 Constructing Visual Data Structures

Once BOZ has located a set of perceptual and graphical operators that can potentially

serve as substitutes for the logical operators that comprise a task, BOZ must design a

visual data structure that supports those visual operators. This is accomplished by

examining the information that is required to perform each logical operator and

building a graphical display that insures that: (1) information is presented in a form

that matches the visual operator description; and, (2) all information needed to

perform a visual operator is presented in the same graphical object so it can be

accessed without moving the eye over the display. The following describes how BOZ

accomplishes this.

21

Recall that every task description is defined over a finite set of domain sets. Domain

sets are collections of user-defined variables that can assume exactly one of a set of

pre-specified values. When taken together, all of the domain sets used by a task

description form a feature space. A feature space is formally defined as the cross

product of all domain sets spanned by a task description. Figure 9 shows an example

of a feature space defined over a collection of domain sets that pertain to making a

reservation on a commercial airline.

Figure 9 here

Each individual operator in a task description defines a relation (vi, vj ... vk), for

some ij, and k less than or equal to the total number of domain sets drawn from a

feature space, called a vector. Vectors are unordered collections of values such that

each value is selected from exactly one domain set. The length of a vector is defined

as the number of values contained in the vector, or the number of domain sets that

the vector spans. Vectors can have lengths that vary from 1 to n, where n is the total

number of domain sets.

Vectors are used by BOZ to define visual data structures in the following way. LetT

be a set of operators occuring in a task description, and t i an arbitrary member of T.

Let V(t i) be the vectors implied by an operator ti . The function EQV(V(ti)) computes

the equivalence relation that classifies each vector into exactly one of three

equivalence classes. Vectors VI and V2 are said to be parallel when they each

contain a value from more than one common domain set. Vectors V1 and V2 are said

to be orthogonal when each vector contains a value from exactly one common domain

airine [,flight number] X dep:aure t 1 ... 0.i1 U..F cost
feature nominal: noinl quanitative: x aeuanutawr: K | antr.tatt

space L In L "er L ,nteger Ln

O 1rcinal:| nominal: x nominal:

Figure 9

22

set. Vectors V1 and V2 are disjoint when they contain no values from common

domain sets. The equivalence relation is the set:

EQV(V(ti)) ={{all parallel vectors) {all orthogonal vectors} {disjoint vectors}}

For example, the following tasks define five vectors.

(LAMBDA determine-departure-time (flight)
(ASK (Departure flight DEPARTS))
(RETURN DEPARTS))

(LAMBDA determine-cost (flight)
(ASK (Cost flight COST))
(RETURN COST))

(LAMBDA find-cheapest-leaving-at-T (time)
(ASK (Departure FLIGHT time))
(ASK (Cost FLIGHT COST))
(NOT (Departure FLIGHT2 time)

(Cost FLIGHT2 COST2)
(LESS COST2 COST))

(RETURN FLIGHT COST))

(LAMBDA window-seat-available? (flight)
(ASK (Seat flight SEAT))
(ASK (Available SEAT))
(ASK (Position SEAT'window))
(RETURN SEAT))

(LAMBDA determine-gate (airline)
(ASK (Gate airline GATE))
(RETURIN GATE))

The vectors defined by the tasks are the following:

1. determine-departurc-Lirne = (,i,-ht-numberj X {departure-tiinet)

2. determine-cost = I 'lii~yht- numberi X icostj)

3. find-chcapest-Ieaving-at-T = ({fl iiyht- number) X (departure-time) X ('cost)

4. window-seat-available? = ({flight-number) X {seats} X

(window, aisle, middle) X (.yes, no)

23

5. determine-gate = ({airline} X {gate})

Vectors 1, 2 and 3 are parellel, vectors 3 and 4 orthogonal, and vector 5 disjoint from

all others.

The algorithm that BOZ uses to construct visual data structures given a set of vectors

has two basic steps. The first part of the algorithm determines the possible ways in

which information from each domain set can be encoded as individual graphical

objects on the screen. After analyzing a task description (as described in Section 6),

each domain set has associated with it a set of possible primitive graphical languages

that can be used to encode that domain set. The set of possible primitive graphical

languages are precisely those that are associated with that POPs and GOPs that have

been selected in the previous design step (substituting visual for logical operators).

Each of these primitive graphical languages has a default presentation object

associated with it, either: point, line, or shape. For instance, the default for the

Height language is a rectangle. Hence, the possible ways of presenting information

manipulated by a task is defined by the set of graphical objects that are associated

with those primitive graphical languages that are associated with those POPs and

GOPs that have been shown to be useful for performing the task.

The second part of the algorithm uses the vectors to determine how the individual

graphical objects created in part I can be combined into composite visual data

structures such that all information necessary to draw a particular inference is likely

to b- grouped together in the same spatial locality. This is accomplished in the

following way. For each set of parallel vectors, BOZ forms the union of all domain

sets that appear in the set of parallel vectors. A simple visual data structure is

created by grouping together all of the graphical objects that visually encode the

domain sets in the union. For each pair of orthogonal vectors, we find the common

domain set where the vectors intersect. This domain set is called the pivot point. A

24

multi-dimensional visual data structure is defined to be a graphical object that can be

transformed from reflecting a presentation of the domain sets defined by one vector,

to presenting the domain sets defined by another vector. Transformation of the

multi-dimensional visual data structure is accomplished by a graphical operator

(GOP) of the designer's choosing, usually mouse-selection. To further simplify the

data structures, when two domain sets occuring in a single vector are of the same

type, the graphical objects used to represent them can be composed into a single

graphical object. This technique known as mark composition and is due to Mackinlay

[21]. Similarly, two domain sets of the same type can be represented on the same

axis. This is accomplished using axis composition [21].

To illustrate how visual data structures are defined using vectors consider the tasks

defined for the airline reservation domain. Since vectors 1, 2, and 3 are parallel, a

simple visual data structure is created that presents all of the domain sets occuring in

each vector the same data structure. Since vector 4 is orthogonal to vectors 1, 2, and

3, a multi-dimensional visual data structure is created that can be transformed from

presenting the domain sets contained in vector 4, to the domain sets contained in

vectors 1, 2, and 3. The "pivot point" is the domain set {flight-number}. Vector 5 is

disjoint from all other vectors and therefore defines its own separate data structure.

The abstract specifications for the visual data structures (one multi-dimensional and

one simple) defined by the vectors are shown in Figure 10, along with the set of

possible primitive languages that can be used to encode each domain set. Figure 10

also shows one possible presentation of the multi-dimensional visual data structure.

l;zure 10 here

e- llght-1LETber - dePartke - arrivak,

Silight-nLarldber - depalrtLe - arrivat - ost-+

seats

i411 ps. *. .. gc..I 1 Ipe~~~ae..: ,?.nw. SIftIIfl C el.nfhe)

gearql s29q to#: IT.IY Ce.r.a poem c,.-x-tpJ

Figure 10

25

7. AN EXAMPLE: DESIGNING A GRAPHICAL AIRLINE RESERVATION SYSTEM

The following example illustrates how BOZ can be used to design graphical displays

to support user tasks in a real-world domain. The representation designed for the

tasks illustrates the two important ways in which graphical representations can help

users: (1) supporting the substitution of quick and easy visual operators in place of

more effortful logical operators; and (2) reducing the amount of time spent searching

for information [20].

7.1 A Simple Airline Reservation Task

The following describes a task in which a user must use airline schedule information

to locate a flight or series of flights that travel from Pittsburgh to Mexico City. To

make the task both challenging and realistic we impose the following restrictions on

the flight that the user may choose:

I. For connecting flights that pass through an intermediate city, the user is free to choose any

intermediate city as long as the layover in that city is not more than four hours.

2. The user may choose only those flights that can be shown to have available seats.

3. The user is limited to a $500 budget for the one-way trip. That is, the total price for any series

of connecting flights cannot exceed $500.

The task description for the airline task is shown in Figure 11.

Figure I iihre

The task requires that the user perform sophisticated searches and coordinate

information about the origin, destination, departure and arrival times, availability,

and cost of many flights. The domain sets that describe this information are specified

at the top of the task description in Figure 11. The section entitled OPERATORS

enumerates the logical operators that are necessary to perform the task correctly.

a .. -1 . .

iOeStina~iOn NOMINAL 44) c-efore
iOegatue 150OINdAL 144j Cel.ee
jA"r,e a] 0 0 AL 1 4 4, (,Reiael X
(Cost QUANTITATIVE SaO., 3-te,
(AA%,a~l~blty NOMINAL 21))%

,.PE#ArioJss j'ALUE ideterminO-Origin iLAMAO0A (flight) 6cut

(dotermine-aootination (LARSCA (fliagneP~

iconneCtinq? (LAMB0A (fliqht. 1 11,111) 403rnt
(EQUAL (Getermirae-e~SPtnation fligntl) 1

(determine-origin 911. Pl:2)j.) E;,izam
(deterulflO-Geprcuro-i.@ jLAMBDA (flight) Orebk

(ASK (Oeoarture fl.n 61j))Ea
(Otgunear'a1tue(LAMBDA (fl1ight)E,.

(ASK. (Arrival fliqht Anj))
deter~oine-coit (LAMBDA if 1 int)

iA3P. (cost "7911c C)M)
(determine-availa I41 lity iLAMBDA (fl l3ht)

tASP. (Ava1amilltV flight A'#)))

;GREATERIP 'ieterml..e-arr,I -tiae fliqntl
.determ ine-2eoartJre-c iee fI11.jht2))))

icomo..te-lavove, (LAMBDA iflilt f1h1
9
l~htZ)

;CIFFEPECE fletersens-cearture-time fli-;nt.)

17!""7e-4..a,al-tlme fli1ptl)))

PLUS iettr.,,ne-'d)%t f"Inlni

Figure I11

26

When the task description is submitted, BOZ produces a specification summarizing

the possible ways of substituting visual operators and displaying information in a

form that supports visual operator performance. The specification for the airline

reservation task is shown in Figure 12.

Figure 12 here

In the VISUALOPS section, each of the logical operators in the original task

description now has an associated set of visual operators that have been shown to be

formally equivalent by BOZ's substitution algorithm. The VECTORS section contains

a single vector that specifies that regardless of what visual operators are chosen, all

information pertaining to a single flight is to be graphically presented using the same

graphical object. The section entitled GRAPHICAL-LANGUAGES summarizes the

possible ways of displaying each information type as defined by the set of visual

operator substitutions.

The specification in Figure 12 formally describes 756 possible displays for the airline

reservation task. The next step is to identify which alternatives are likely to be most

effective. Section 10 discusses two important factors that affect the success of a

graphical design:

e the extent to which the representation exploits users' real-world knowledge and

skills.

* the extent to which representations tap users' prior skills and experience with

graphics.

Window Image

30

0

uc v .ju3c; . 7
.l_, 2 1 - A :- C 52 = =- T. -

.. - ' . Z5- -: a ! s p W

- .,.,. C . - - 1 .-- E-C

'e := . - . ' ('6 '5S " 1"("

,5'---, -

- ,-. " a--v

S 3.21 ., 33'-_ I)

* ~ ~ ~ ~ ~ ~ ~ 1 1 3-- '5 2 V'. ~ I'3I

~~~--Cfl- -3- -63

-Q E+ -a E z- z- -z -z
- - - - - -

a ~ 0( ~ T~ -

f-' 0. "a CL

p~ ~~~o L .'..

.3 5

.'-'I - m j 7
,.'-

-~- >+ - S -- .3 -,--
3- A, '"" -< "+"

-o6,.--. .



27

Section 10 also discusses why choosing between alternative designs is necessarily an

empirical issue, and why simple strategies that attempt to generalize experimental

findings across tasks and users [21] are likely to obtain poor results in practice.

To support efficient exploration of alternative designs, BOZ contains a rapid

prototyping tool, implemented using the VisualActiveTM interface construction kit

[11], that allows designers to quickly mock up candidate designs. The prototyping

tool allows designers to create the corresponding default graphical objects that are

associated with the perceptual and graphical operators as described in Section 6.3.

Graphical objects can have functions attv-hed to them that are called whenever

specified mouse selections are performed. The tool also contains a set of prepackaged

window, menu, and dialog box facilities that can be called by any function attached to

a graphical object. We use the prototyping tool here to help discover which designs

summarized in BOZ's output are likely to be the most useful.

The first design produced by BOZ given any task description is one in which

relational information is displayed in the rows and columns of a table. Beginning

with a tabular display requires that designer have explicit criteria for making

decisions to remove information from the table and encoding it graphically. This

requirement is consistent with the experimental findings that graphical displays are

not always better than tables and that tables should be treated as the default display.

Figure 13 shows a tabular display supporting the airline reservation task.

***OSS...ge

Fitzure 13 here

Next, we see that we have the opportunity to exploit a real-world notion when

encoding departure and arrival times. Times could be represented using Slope such

as done in everyday clocks. Choosing this encoding would allow users to perform



Window Image

C

_ a ,, -- - - _

* ? .

-

* ,Z



28

departure and arrival time comparisons in a familiar and practiced way. Figure 14

shows an implementation of the clocks idea. The CLOCKS display replaces the

numerical presentation of times in the table with clocks supporting slope judgements

and comparisons.

Figure 14 here

The problem with the clocks convention is that only one departure or arrival time can

be represented in a single clock. That is, the clock convention disallows the

possibility of grouping time information about many flights in the same spatial

locality. The CLOCKS display also fails to gather information about flights into

closer spatial proximity where users can perform quick comparisons. Using

CLOCKS, users must still search the rows and columns of the table.

An alternative is to exploit users' previous experience with horizontal time scales.

Figure 15 shows a display in which we replace the tabular display of departure and

arrival times with graphical objects positioned along a horizontal axis. Arrival and

departure times can share the same horizontal axis as well as the same graphical

object (axis and mark composition).

Figzure 15 here

The time scale convention avoids the problem of clutter when many flights are

present.

We can replace the words "ok" and "full" in the flight boxes and allow users to

substitute shading judgements when making availability determinations as in the

display shown in Figure 16.



Window IniagO

0)0

A) r . 'n

*~~~t *nzi4 9



Window Image

.0 .......................................................... O f i

............. ........................ . ..... ... . .

. ........... . . .. . . .. ........ :.. ..

.. .. - ---

**ct
. ... 0 ....



29

Figure 16 here

It is not obvious that the time to interpret a shade offers any advantages over simply

reading the word "available" but this is an empirical question that is addressed in

Section 8.

BOZ's output indicates that we can substitute the task of reading and adding

numerically expressed cost information by allowing users to perform height

judgement as shown in the display in Figure 17.

Figure 17 here

Again it is not clear that allowing users to judge two or more combined heights yields

an advantage over simply adding the numbers, or that it helps users to more easily

rule out "tall" (expensive) flights.

The potential efficiencies of the various graphical displays for the airline reservation

problem are characterized by the following visual operator substitutions and visual

search heuristics.

Operator Substitutions:

DISTANCE JUDGEMENT: The displays in Figure 15, 16. and 17 allow users to substitute a

distance judgement in place ofsubtracting the numerically expressed departure and arrival

times.

SHADE JUDGEMENT: Figures 16 and 17 substitute shade judgement for reading the words

"ok" and full."



Window Image

0 ............... .. .. .. ..... ........ CM

I-

.. . . .. . . . ... .. .

. . . . . ..

... ...........

(0~

-C C

C"d

.1 *F*-

* en



Window Imiage

......... .................. ('

T- r

U* . ..... )

,0L.

.. .. . .. .. . .. .. .

.............
.. . . . . . . . . . . . . . . . .-. .. ..0 I

:14



30

STACK HEIGHTS: Figure 17 substitutes judging the combined heights of two flight boxes for

adding two numerically expressed costs.

Search Heuristics:

RIGHT OF: Displays in Figures 15, 16, and 17 allow users to limit their search for connecting

flights to only those flights that appear to the right of the originating flight.

NO SHADED: Displays in Figures 16 and 17 allow users to immediately exclude from their

search any flight square that is shaded since shading indicates that the flight has no available

seats.

CHEAPEST FIRST: The display in Figure 17 allows users to immediately rule out "tall" flights

from their search since these are likely to exceed the $500 limit.

Whether or not users do or can follow these procedures, and the extent of the

efficiency advantages they offer is an empirical question that is addressed ir. Section

8. The study reported in Section 8 shows that there can be no algorithm that

accurately predicts the usability of a graphical representation or even in general

decide which is the most promising of a set of alternative designs.

7.2 Extending the Set of Airline Reservation Tasks

To show how BOZ scales up to more complex task I extended the task description to

include several other tasks that airline customers frequently perform. Since the

entire task description is lengthy (3 pages of code), the tasks are summarized as

follows:

Choose that tlight of several possibilities that has the best available seat: Some Iratvelers

prefer aisle seats since they afford the best mobility. Some travelers prefer window -cats for

the view. Smart lrazilian travelers pick seats on the right side of the plane when traveling

south and the right side when heading north.



31

Schedule around departure or arrival constraints: Many travelers have time constraints on

when they can leave or arrive at their destination.

Schedule a specific layover: Many business travelers keep more than one appointment on the

same trip. In this case the customer is concerned with finding a flight that passes through a

particular city and lays over during a particular time period.

Find the cheapest flight scheduled in some reasonable time interval: Graduate students

are usually most concerned with minimizing the cost of the ticket rather than with arriving

at their destination at a specific hour or day.

Find a flight that minimizes the number of take-offs and landings: Some customers try to

minimize the number of take-offs and landings to minimize the effects of jet-lag, nausea, or

ear trouble.

An extended task description was submitted to BOZ that included the tasks above.

One candidate design was produced using the prototyping tool and is shown in

Figures 18(a) and 18(b).

Figures 18(a) and 18(b) here

Time constraints are specified by creating a flight square and positioning it along the

time scale at the appropriate departure or arrival time. Specific layovers are

specified by creating two flight squares and positioning the arrival time of the first

flight and the departure time of the second flight at the appropriate points along the

scale. Cost constraints are indicated by typing a cost into the lower right region of

the flight square. Specifying a particular number of takeoffs and landings is

accomplished by creating the appropriate number of flights squares. For example, to

search for a flight with two takeoffs and landings, two flight squares are created.

Viewing the available seating for a flight is accomplished by mouse-selecting the icon

that appears in the lower left corner of a flight square. This causes the seating chart

for that flight, shown in Figure 18(b), to be presented. Seats are occupied if they have



W'indow Image

('

0 (.

* 2

-l 0_.l

I i - --- -

-

I- -:

-- 0



Window Image

.... ... ... . . ... ..

'~~~ ~ 0 -7-' i "

,ri
-- 71

0,....,

0 ,!



32

a thick border and available otherwise. To view the status of any seat, or to reserve a

particular seat, left mousing ca the seat causes a dialog box to appear where the user

can view or type the relevant information.

8. USERS' PERFORMANCE WITH THE AIRLINE RESERVATION SYSTEM

Casner and Larkin [8] describes an experimental study in which real users worked

with the BOZ-designed airline displays. The purpose of the experiment was to

determine the extent to which the hypothesized efficiency advantages of the airline

displays were actually reflected in users' performance. Response times were collected

from eight participants who performed the simple airline reservation task (described

in Section 7.1) using four different versions of the displays a total of ten times each

(forty trials total). The four graphic versions used in the experiment were those

shown in Figures 13, 15, 16, and 17, herein called Graphics 1, 2, 3, and 4,

respectively. Each graphic in turn includes an additional way of substituting a

visual operator for a logical operator. The purpose of the experiment was to test the

hypothesis that each additional visual operator substitution would reduce the time

required to complete the task through either savings gained in visual operator

performance, or through reductions in the total number of items in the airline

schedule that the user must consider.

Users completed the task after receiving an explanation of the conventions used in

each graphic and one practice trial. The order in which the graphics were presented

to the users was varied systematically to evenly distribute effects due to learning and

practice.

Viure 19 here



Airline Graphic Used

1 2 3 4

Mean . I I
Re$$onse ,93 10.1 7.2 7.4

Mean *

Standard J.4 a " 1.7 2.7 2.4Oeviation

tota. I

Erroes

* Significant at .C5 level

Figure 19



33

The results shown in Figure 19 (Row 1) indicate significant differences in response

times between Graphics 1 and 2, and between Graphics 2 and 3, but not between

Graphics 3 and 4. The data suggest that graphical encodings used in Graphic 2 (and

also in Graphics 3 and 4) reduce the amount of time required to locate two connecting

flights, and/or to determine whether or not two flights obey the layover constraint.

Allowing users to perform the perceptual operator of determining the shade of a

flight box (Graphic 2) surprisingly resulted in a significant savings. The perceptual

task of determining whether or not two flights obey the cost constraint by judging the

heights of the flight squares did not result in any reliable savings over the task of

adding the two numbers, or in narrowing down the search space of flights to consider.

An analysis of the standard deviations in response times shown in Row 2 of Figure 19

suggests that users exhibited significantly more stable performance between

Graphics 1, 2, and 3 in that order. Row 3 of Figure 19 shows no observable differences

among error rates for the four graphics.

Our next step was to understand how users obtained the efficiency savings we

observed. We ran a regression analysis on the number of times each operator kvisual

or logical) must be performed using each graphic to the observed user response times.

We obtained good-fitting models for each of the search heuristics excepting

CHEAPEST FIRST, suggesting that users took advantage of all of the applicable search

heuristics except Ch1EAPEST FIRST. The model also yielded estimates on performance

time for several of the individual visual and logical operators.

eThe time required to fix the eye on each item in a display was uniformly about

330 milliseconds for all four displays.



34

9 Visually estimating layovers (de te rmi ne-ho rz -d is tan ce) using Graphics

2,3, and 4 proceeded about 2 seconds faster than subtracting the numerically

expressed times.

* Judging the combined heights of two flight boxes (s t ac k - h e i g h t s) in Graphic

4 was negligibly 100 to 300 milliseconds slower than adding the numerically

expressed costs.

The saving gained through substitution of visual for logical operators and use of

search heuristics match well with the global reductions observed in overall response

times. Overall the results agree with users' comments after using all four graphics:

that Graphic 3 was the most effective. The interested reader can find details of the

experimental design and methodology in Casner and Larkin [8].

9. GENERAL DISCUSSION

The research described above adopts a task-based approach to the design of graphical

representations in which graphics are viewed as perceptually and graphically

manipulated data structures that help streamline task performance much in the way

that abstract data structures help expedite abstract computational processes. The

important distinction made in a task-based design methodology is that the effective

use of visual data structures and procedures, as with abstract data structures,

depends on choosing the right structure for the right task. That is. it is inappropriate

to say that a particular graphical display is the best choice or that it is useful in

general. One can only compare graphical displays with respect to a particular task.

Consequently, the design methodology proposed here first designs visual tasks based

on an analysis of the task requirements, and then proceeds to select a visual format

for the task information with the visual task in mind.



35

The task-based approach to graphical displays was made concrete by creating a

formalism that allows us to specify and compare alternative visual and non-visual

procedures, and to show that the alternative procedures always produce the same

results. Two specific types of cognitive efficiency advantages of graphical displays

were discussed: (1) alle-ing users to substitute quick and easy perceptual

judgements in place of more demanding logical reasoning steps; and, (2) reducing

search for needed information by grouping related information and supporting visual

search heuristics. The examples and experimental results suggest that the analysis

can be successfully applied to designing effective graphical displays that provide the

two types of efficiency advantages. Furthermore, the view of graphical displays as

visual data structures and procedures that provide efficiency advantages seems to

explain the difference between graphical displays that succeed in practice and those

that do not.

A necessary weak link in the design process is the inability to predict in advance the

relative usability of each of a set of alternative designs. Given that we can already

show that each of BOZ's designs can potentially help streamline users' tasks, the

remaining factors that most influence usability seem to be the extent to which a

display exploits the user's knowledge about "everyday things" in the real world [23];

and the extent to which displays allow users to make use of existing knowledge and

skills for using graphics [171. Real-world knowledge often allows users to quickly

understand a graphical convention. For example, the diagram about politicians

shown in Figure 20 exploits the user's knowledge that "left means liberal" and "right

means conservative."

H iure 20 here

The psychological literature shows that no other design consideration is likely to

outweigh the results achieved by exploiting real-world knowledge [231.



Smith (D) Joesn (R)

liberal conservative

Figure 20



36

Furthermore, neglecting to use real-world conventions (e.g., putting libzrals on the

right, conservatives on the left) can lead to increased learning time and cognitive

work, and decreased response accuracy [231.

The second most important factor in choosing between alternative designs is the

extent to which each design can exploit previous experience, practice, and skill with

graphics that the user may have. There are many existing graphical conventions

that the designer can use and expect reasonable results. For example, when choosing

among designs that encode time as a dimension, those designs that use a horizontal

time scale are most likely to tap users' previous experience. The large number of pie

charts in the everyday literature suggest that users may have practised skill for

substituting size and slope judgements for more complex proportional reasoning

tasks.

The two factors affecting the usabililty of a graphic suggest that determining which

of a set of candidate designs is largely an empirical question not decidable by any sort

of quick-and-easy algorithm. Mackinlay's APT [21] attempted to predict the

accuracy of alternative graphic designs using an experimental observation that

presentation formats can be grouped into three basic categories that are ordered by

the degree of accuracy to which users can extract information from them [ 10].

However, more recent studies show that users' performance on information

extraction tasks are poor indicators of performance on other types of tasks [ 161.

Other research shows that users' performance is extremely sensitive to small changes

in the task, the complexity of the task (26], problem domain, and even the social

conditions in which the graphic is used [ 1 ]! The large number of psychological factors

influencing performance and the variance between users, tasks, and situations

suggest that a realistic strategy for deciding between alternative graphic designs

involves prototyping designs and performing small amounts of well-planned user

testing [ 141.



37

BOZ may also be useful for explaining why existing graphical displays are successful,

and to help discover clever design properties enjoyed by existing displays that can be

later incorporated into BOZ's design algorithm. Existing displays can be analyzed by

describing a set of activities for which the displays are claimed to be useful and

showing that the design of the display is such that it allows the users to perform

computationally interesting sets of visual procedures. Consider the graphical

representation used in the calculus for vectors in the plane, shown in Figure 21.

Figure 21 here

Vectors use lines in the plane to represent forces acting on a body. The magnitude of

a force (a quantitative value) is represented by the length of a vector line. The

direction of a force (also a quantitative value) is represented by the slope of a vector

line. The surprising feature of vector representations is that they do not use the

spatial position of a vector to encode information. The spatial position primitive

graphical languages are the most informationally rich and salient of the primitive

language yet they are not used in the vector representation. The decision to keep the

spatial position primitive languages "in reserve" (at some cost in understandability

to the novice student) pays off when when the task of adding together vectors is

introduced. Leaving the spatial position languages free allows us to move vectors

around in the plane and be sure that the vectors still represent the same entity.

Having this freedom more specifically allows us to arrange vectors such that the

beginning of one vector coincides with the end of another vector as shown in Figrure

21. We can make of use annotations (a GOP) and also draw a line that connects the

beginning of the first vector in a "train" and the end of the last vector. Of course, it

can easily be shown that the vector added as an annotation is exactly that vector that

represents the sum of all of the vectors in the train. Summing together vectors



Vectors VetrAdditio

Figure 21



38

without the benefit of the graphical representation of course requires more

sophisticated mathematical knowledge and procedures.

The analysis of the design used for vectors suggests the following general design

principle: that sometimes a sacrifice in one aspect of a design can lead to magnificent

gains in another aspect of the same design. The analysis of the vector representation

has provided an interesting design property that falls outside of BOZ's capabilities,

and that suggests a promising new idea to investigate that may be generalizable

across many types of graphical displays-

ACKNOWLEDGEMENTS

This work is supported by the Office of Naval Research, University Research

Initiative, Contract Number N00014-86-K-0678, and in part by Virtual Machine

Corporation, Pittsburgh, PA. I thank Stellan Ohlsson, Jill Larkin, Jeffrey Bonar,

and Alan Lesgold for helpful comments and criticisms.

REFERENCES

1. Asch, S.E., Studies of independence and submission to group pressure: A minority of one against a
ananimous majority. Psychological Monographs, 1956, 70.

2. Bertin, Jacques, Semiology of graphics, W. Berg, transl., Madison, WI: University of Wisconsin
Press, 1983.

3. Brainerd, W.S., and L.II. Landweber. Theory of Computation, New York: John Wiley and Sons,
1974.

4. Bonar, J. and R. Cunnin ham. Bridge: \n inteiligent tutor for thinking about programming, in
Artificial Intelligence and Human Learning, John Self, ed., London: Chapman and 1lal
Publishing, 1983.

5. Card, S.K.. Moran. '. 'I. .nd A. N#w,,il. lOw P'vcnojogyof human.Cornptcr Irteraction. II iildaie.
N.J: L.awrence Erlhaum Associates, 1983.

6. Casner, Stephen. [luilding customi'zed diagramming languages, in Visuial l.ang'olges uni \:(Ztil
Programming, S.-K. Chang, ed., New York: Plenuin Press, in press.

7. Casner, Stephen, and Jill 11. Larkin, Cognitive efficiency considerations for good graphic dt.ign,
submitted (also available as Learning Research and Development Center Technical Report,
1989).



39

8. Casner, Stephen and Jeffrey Bonar, Using the expert's diagrams as a specification of expertise, in
Proceeedings of the IEEE 1988 Workshop on Visual Languages, Pittsburgh, PA, October
10-12, 1988, 150-157.

9. Cleveland, W.S., Elements of Graphing Data, Monterey, CA: Wadsworth Advanced Books and
Software, 1895.

10. Cleveland, W. S. and R. McGill, Graphical perception: Theory, experimentation, and application to
the development of graphical methods, Journal of the American Statistics Association 79
(387), Sept., 1984, 531-554.

11. Cunningham, R.E., Corbett, J.D., and J.G. Bonar, Chips: A tool for developing software interfaces
interactively, Learning Research and Development Technical Report No. LSP-4, October
1987.

12. Genesereth, M., and N. Nilsson, Logical Foundations of Artificial Intelligence, Los Altos, CA:
Morgan Kaufmann Publishers, 1987.

13. Goldenberg, E. Paul, Mathematics, metaphors, and human factors: Mathematical, technical, and
pedagogical challenges in the educational use of graphical representation of functions,
Journal of Mathematical Behavior 7, 1988, 135-173.

14. Gould, J.D., and Lewis, C., Designing for usability: Key principles and what designers think,
Communications of the ACM 28,3 (March 1985), 300-311.

15. Hegarty, Mary and Marcel Just, Understanding machines from text and diagram, in Knowledge
Acquisition from Text and Picture, H. Mandl and J. Levin, eds., Amsterdam: North-Holland,
1988.

16. Jarvenpaa, S.L. and G.W. Dickson, Graphics and managerial decision making: Research Based
Guidelines, Communications of the ACM 31, 6 (June 1988), 764-774.

17. Kieras, D., and P.G. Poison, An approach to the formal analysis of user complexity, International
Journal of Man-Machine Studies 22, 1985, 365-394.

18. Koedinger, K.R. and J.R. Anderson, Abstract planning and perceptual chunks: Elements of
expertise in geometry, to appear in Cognitive Science.

19. Larkin, Jill, "Display-based problem..solving," Comple'x Information Processing: Te Impact of'
Herbert Simon, Klahr, D, and K. Kotovsky, eds., liillsdale, NJ: Erlbaum, 19S9.

20. Larkin, Jill and I lerhert Simon. "Why a diagram is (sometimes) worth 10.000 words." COunitive

Science II. 1987, 65-99.

21. Mackinlay. Jock, ".\utomnatin,. the desin of'graphical presentations of relational inform.iton."
ACM Transactions on Graphics 5 (2), April 1986, 110-141.

22. Marcy, E.J., La .'ethode Graph/que, Paris. 1 885.

23. Norman, Donald. The Psychology o'E ',ervday Things, New York: Iasic Books, 19S8.

24. Payne, Stephen and T.R.G. Green, Task-action grammars- A mndel of the mental representation of
task languages, International Journal of Man-Machine Studies 2, 1986, 93-133.



40

25. Schmid, Calvin F., Statistical Graphics: Design Principles and Practices, New York: John Wiley
and Sons, 1983.

26. Schneider, Walter, Training high-performance skills: Fallacies and guidelines, Human Factors 27
(3), 1985, 285-300.

27. Tufte, Edward R., The Visual Display of Quantitative Information, Cheshire, Connecticut:
Graphics Press, 1983.


