ADfAZZ 692 \
A B - DTIC

ELECTE
s JuLl 9 1392

¥

A COGNITIVE APPROACH
TO THE DESIGN
OF
INFORMATION GRAPHICS
Technical Report AIP - 143

Stephen Casner

University of Pittsburgh
Pittsburgh, PA 15260

May, 1989

This research was supported by the Computer Sciences Division, Office of Naval Research

under Contract Number N00014-86-K-0678. Reproduction in whole or in part is permitted

for purposes of the United States Government. Approved for public release; distribution
unlimited.

92-18095
509 LT

Unclassified

N PA

M

=

REPORT DOCUMENTATION PAGE

Ta. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28, SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIRCATION / DOWNGRADING SCHEDULE

Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
AIP-143

S. MONITORING ORGANIZATION REPORT NUMBER(S)

68. NAME OF PERFORMING ORGANIZATION
Carnegie-Mellon University

6b. OFFICE SYMSOL
(If applicabie)

7a. NAME OF MONITORING ORGANIZATION
Computer Sciences Division

Office of Naval Research

6¢. ADORESS (City, State, and ZIP Code)
Department of Psychology

Pictsburgh, Pennsylvania 15213

7b. ADORESS (City, State, and ZiP Code)
800 N. Quincy Street
Arlington, Virginia 22217-5000

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

Same as Monitoring Organizatiof

8b. OFFICE SYMBOL
(it applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NOO0O14-86-K~-0678

8c AQDRESS (City, State, and 2IP Code)

10 _SOURCE OF FUNDING NUMBERS _p4000ub201/7-4-86

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. |NO. NO. ACCESSION NO
N/A N/A N/A N/A

11. TITLE (Include Secunity Clasufication)

A Cognitive Approach to the Design of Information Graphics

12. PERSONAL AUTHOR(S)
Casner, Stephen

13a. TY‘EE OF REPORT 13b. TIME COVERED

echnical

16. SUPPLEMENTARY NOTATION

submitted manuscript

rrom 86SeptlSto9l Sept.IJ

1S. PAGE COUNT
62

18. DATE OF REPORT (Year, Month, Day)
1989, Mav

17 COSAT!I CODES

GROUP SUB-GROUP

FIELD

18. SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)

Design, Human Factors; Algorithms, Theory, Graphics Design,
Task Analysis, Perception, Visual Languages, User Interface

19. ABSTRACT (Continue on reverse 1f necessary and identify by dlock number)

SEE REVERSE SIDE

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
Ounclassifieomunumted (X) SAME as ReT

O ornc users

21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL
Dr. Alan L. Meyrowitz

22¢. OFFICE SYMBOL

22b. TELEPHONE (Include Ares Code)
NO0O014

(202) 696-4302

DO FORM 1473,8aMaR

83 APR edition may De used until exnausted.

SECURITY CLASSIFICATION OFf THIS PAGE

All other editions are obsolete.

Unclassified

'

Abstract

Graphical representations popularly thought to be useful for communicating and processing
information yield mixed results when tested with real users. Cognitive research suggests that current
design methodologies fall to exploit the potentlals of graphics for expediting human performance of
information-processing tasks: (1) allowing users to substitute less effortful visual procedures in place
of more demanding non-visual procedures; and (2) streamlining users’ search for information by
supporting visual search heuristics. BOZ is a design algorithm that constructively applies cognitive
principles of the efficiencies that graphical displays can offer to the problem of discovering novel
displays to support specific user tasks. BOZ analyzes formal task descriptions and proposes visual
displays and procedures that can help streamline performance of a task. BOZ is used to generate
graphical aiternatives to a standard tabular display of airline schedule information to support a set of
common airline reservation tasks. Reaction time studies done with real users are reported that show
that the BOZ-designed displays significantly reduce users’ performance time to the task. Regression
analyses link the observed efficiency savings to visual procedure substitutions and pruning of
research. BOZ is also shown to be useful for analyzing existing displays to discover clever design
features that can then be subsequently incorporated into BOZ's design algorithm.

' Acce;slon F.o;’

| NTI5 cRaal

PPl raR 0
Uasu.aoimeud 0
Juwtifieatien

By
‘_D'istrib‘ti.n/

——————— -

e - Availability Cedes
F3 57 77 Ciseant andzer
_/ D13t | Special
R | -
- , i’
' !

A Cognitive Approach to the
Design of Information Graphics

Stephen Casner
Leaming Research & Development Center
University of Pittsburgh
Pittsburgh, PA 15260

May 1989

This work is supported by the Office of Naval Research, University Research Initiative, Contract
Number NO0014-86-K-0678, and in part by Virlual Machine Corporation, Pittsburgh, PA.

Reproduction in whole or in part is permitted for any purpose of the United States Govermnment.
Approved for public release; distribution unlimited. -

Thanks to Stellan Ohisson, Jill Larkin, Jefirey Bonar, and Alan Lesgold for helpful comments and
criticisms.

A Cognitive Approach to the Design of Information
Graphics

STEPHEN CASNER
University of Pittsburgh

Graphical representations popularly thought to be useful for communicating and processing
information yield mixed results when tested with real users. Cognitive research suggests that current
design methodologies fail to exploit the potentials of graphics for expediting human performance of
information-processing tasks: (1) allowing users to substitute less effortful visual procedures in place
of more demanding non-visual procedures; and (2) streamlining users' search for information by
supporting visual search heuristics. BOZ is a design algorithm that constructively applies cognitive
principles of the efficiencies that graphical displays can offer to the problem of discovering novel
displays to support specific user tasks. BOZ analyzes formal task descriptions and proposes visual
displays and procedures that can help streamline performance of a task. BOZ is used to generate
graphical alternatives to a standard tabular display of airline schedule information to support a set of
common airline reservation tasks. Reaction time studies done with real users are reported that show
that the BOZ-designed displays significantly reduce users' performance time to the task. Regression
analyses link the observed efficiency savings to visual procedure substitutions and pruning of search.
BOZ is also shown to be useful for analyzing existing displays to discover clever design features that
can then be subsequently incorporated into BOZ's design algorithm.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques--user
interfaces; H.1.2 [Models and Principles]: User/Machine Systems--human information processing;
1.2.1[Artificial Intelligence): Applications and Expert Systems; [.3.6 (Computer Graphics|:
Methodology and Techniques--ergonomics.

General Terms: Design, Human Factors, Algorithms, Theory.

Additional Key Words and Phrases: graphics design, task analysis, perception, visual languages, user
interface.

1. THE COGNITIVE FUNCTION OF GRAPHICAL DISPLAYS
A striking conclusion of recent studies concerned with understanding how and why
graphical representations are useful is that it is a false assumption that graphical

displays are inherently better than other representations, or that perceptual

o

inferences are in general made more efficiently or accurately than non-perceptual
inferences [13, 19, 20]. Rather, these studies suggest that the usefulness of a
graphical display is a function of the task that the user is performing. Twenty-nine
independent empirical studies surveyed in Jarvenpaa and Dickson {16] found
graphical displays superior to tabular displays for a restricted set of
information-processing tasks, and observed no benefits or poorer performance for
other tasks. The implication is that effective graphic design should begin with the
task that a to-be-designed graphicis intended to support, and be focused on finding
those parts of a task, if any, that might be performed more efficiently within the
context of a graphical display.

Larkin and Simon's [20] theoretical analysis points out two ways in which graphical

displays can facilitate human performance of information-processing tasks:

¢ Substituting visual operators for logical operators: Graphical displays often
allow users to substitute quick and easy perceptual judgements or graphical
manipulations (visual operators) in place of more effortful non-visual reasoning
steps (logical operators) that comprise a particular task. Visual operators such as
distance and size determinations, spatial coincidence judgements, and color
comparisons, sometimes give users the same information as more demanding
logical operators such as mental arithmetic, logical reasoning steps, or feature

comparisons.

¢ Reducing search: Good graphics often reduce the time that the user must spend
searching for information they need. Thisis accomplished either by grouping
together information required to draw a particular inference into one spatial
locality, or by employing techniques such as shading and spatial arrangement that
help guide the eye toward relevant information and away from irrelevant

information.

e J

To illustrate the two ways that graphical displays can help users, Figure 1 showsa
graphic used for train schedules in France in the late 1800's (22].

LR XN LSS

Figure 1 here

SEEREERBERERS

Marey's train schedule can be viewed as a 2-dimensional visual data structure that
indexes time and place information along the horizontal and vertical axes,
respectively. To retrieve departure and arrival times for a train, the user must
perform coincidence judgements along the horizontal axis. Note that for this simple
task in isolation, the train schedule does not result in any savings for the user.
Searching for departure and arrival times in a tabular presentation such as Figure 2
would seem to progress as quickly and perhaps more accurately. Consequently, with
respect to the task of retrieving departure and arrival times, allowing users to
substitute spatial coincidence judgements for table lookup seems to be of no use in
that it may be both inefficient to use and prone to errors due to the imprecise
representation of times. The empirical studies generalize this to show that in most
cases tabular representations are best for "information extraction" tasks (16}, and
thus there seem to be no inherent advantages of representing information

graphically.

Figure 2 here
S0 0SSSS0CORES

When used for other tasks, the visual train schedule offers several advantages by
allowing the user to substitute visual operators in place of more difficult logical
operators that would ordinarily require logical reasoning and mental arithmetic, and

reducing the time the user must spend searching for information. For example, to

am -
l’llllllll"l".'l‘lllz

Pari
' - N\ Kk

~— N
-] \ \\ \\k
AR EEANN N

Origin/Destination Departs Arrives

Paris-Montreaus 9:00 9:18
2ijon-Lyon 9:00 11:15
Montrsaus Macon 9:45 11:30
Paris-Dijon 1130 130
Macon-Lyon 11:45 12:48
fans-Lyon 12:30 6:30
Dijon-Lyon 2:30 415
Muontr=aux-Dijon 330 ¢
Pans-Dijon 4:30 515
Dijon-Lzvon 5:30 330
Paris'Lyoa 6:00 1015
Monrreaux-Macon 830 1139
2ans-Monrreaus 9:30 10:30
Macon-Lron 10:45 11:45

Figure 2

find a route between Paris and Lyon we can search for a single line that runs directly
from Paris to Lyon, or find a series of lines such that each successive line lies to the
right of the previous line. The savings in search time is achieved because of the way
the graphical display indexes the trains by city and time. Notice that accomplishing
this same task with the tabular display requires that we continually search the
entire list of trains since they are not indexed by city. We can also determine the
speed of a train by judging the slope of the line between cities. Rather than dividing
the total number of miles traveled (not represented in either display) by the
difference of the departure and arrival times, we can compare the speeds of trains by
performing simple slope judgements. We can determine the layover between two
trains in an intermediate city by estimating the distance between the end of the line
depicting the first train and the beginning of the line that depicts the second train.
This convention allows the user to substitute a simple distance judgement in place of

subtracting the departure and arrival times.

Note that a different user who wishes to understand the route structure of French
trains would find both of the displays shown in Figures 1 and 2 cumbersome and
would benefit most from the graphic shown in Figure 3. This structuring of the data
trades away the departure/arrival time capabilities to allow users to find a city
quickly (indexed by geographical location), and to determine routes by performing

connectivity judgements between the city names.

Figure 3 here

I XA ER R AR EY]

In summary, the three alternative ways of presenting the same information show
that effective graphical displays are not likely to follow from a design methodology
. concerned primarily with the information to be displayed but rather from a careful

analysis of the tasks that manipulate the information. That is, it is unlikely that we

>

%M ey 63
11,23 e't3 7N

Montreaos
]
"
P D]
e/ ’ 108 48
R] ’
s Dijon
. 1
Macon 1 e
.l 3 : 20
o
1038 ¥ 233 b
1149 418 dee .~
Lyon

Figure 3

can design graphical displays to support tasks without explicitly considering the

nature of those tasks.

The research described in this paper explores a cognitive approach to the design of
interactive graphical displays based on an analysis of the tasks for which they are
intended to support. Section 2 reviews previous work related to the problem of
designing graphical displays. Section 3 states the task-based design problem for
interactive graphical displays. In Section 4, a formalism is described that allows
designers to characterize the set of logical operators that comprise a user task.
Section 5 presents a catalog of visual operators describing information-processing
activities that occur within the context of a graphical display. Section 6 describes a
design algorithm called BOZ that analyzes a task description and searches the visual
operator catalog for ways to substitute visual for logical operators and take
advantage of visual search heuristics. BOZ proposes specifications (but not
implementations or renditions) of interactive graphical displays that support human
performance of the visual operators and search heuristics it finds. In Section 7, BOZ
is used to design alternative graphical displays to support a set of airline reservation
tasks. Section 8 discusses an experiment in which participants used the
BOZ-designed airline reservation graphics. Results show significant decreasesin
users’ performance times when using the BOZ-designed airline reservation displays,
and suggest that users obtained the efficiency savings through visual operator

substitutions and heuristic visual search.

2. PREVIOUS WORK
The following surveys theoretical and empirical work concerned with the problem of

designing effective graphics.

2.1 Designing by intuition

Tufte (27], Bertin (2], Cleveland [9], and Schmid (25] describe design principles
concerned with designing graphical displays for the purpose of storage,
communication, and manipulation of information. An important limitation of these
principles is that they are limited to recognizing and correcting bad practices used in
existing graphics. That is, given that the designer has set out to create a graphic
using his or her own design intuitions, these principles help the designer to avoid
practices that are known to make graphics ambiguous, confusing, or generally less
usable. The consequence of this limitation is that they do not help the novice
designers how to begin designing a display from scratch. A second limitation of the
intuitionalist approaches is that they focus entirely on the information to be
presented in a graphic and do not include a concern for the tasks for which the

graphics are designed to support.

2.2 Mackinlay's APT

Mackinlay [21] describes APT, a tool that designs static presentations of relational
information. A significant contribution of Mackinlay's work is to formally
characterize something that many of the intuitionalists informally alluded to: that
graphical presentations can be expressed as sentences in a formal graphical language
that have the same precise syntax and semantics as propositional formalisms. The
advantage of having a formalism for graphical presentations is that it provides a set
of criteria for deciding the role of each visible sign or symbol placed in a graphic. A
second contribution of APT is that, unlike intuitionalist proposals, APT designs
graphics with a minimum amount of intervention on the part of the designer. That

is, APT embodies a genuinely prescriptive theory of how to design a graphic.

Limitations of APT include the following. First, APT's analysis of formal graphical
languages does not extend to actions that allow users to manipulate the graphical
objects in a display. Forinstance, graphical interfaces such as those used in

intelligent tutoring systems and visual programming languages (4] require that user

be able to graphically manipulate the objects in a display, and that these
manipulations have meanings of their own independent of the meanings of the
graphical symbols themselves. Second, APT's design algorithm is based on an
analysis of the information to be presented and doesnot consider the tasks that the
user is to perform. This prevents APT from directly addressing the issue of
task-related advantages of graphical representations. Third, when deciding which of
a set of alternatives representations to choose, APT generalizes an experimental
result that shows that some designs allow users to more accurately extract
information from a graphic [10]. More recent experimental work [16] shows that this
criterion is an unreliable indicator of how accurately other tasks are performed with
the same or different graphic. In general, unreliable differences between users,
tasks, and situations suggest that determining the usability of a graphicis an

empirical question not decidable by algorithm.

2.3 Cognitive Approaches

Larkin and Simon's work [20] was first to pinpoint the two ways in which graphical
displays can help users when performing complex information-processing tasks: (1)
allow users to substitute quick visual operators for more effortful logical operators;
and (2) reduce the amount of time that users spend searching for information.
Cognitive research has discovered that gr:iphical representations can also effect the
way that users manage heavy information workloads in short-term memory (15], and
provide users with effective strategies for organizing their knowledge about a task in

a form readily applicable to problem-solving situations [18).

Cognitive research has pinpointed several design parameters that can be tuned
during the process of engineering good displays and has thereby enabled a new
generation of approaches that fill the gaps in previous approaches. The research
described below is the tirst design methodology to attempt to apply principles of how
graphics support tasks to the problem of designing novel displays.

R d

3. THE DESIGN PROBLEM FOR INTERACTIVE GRAPHICAL DISPLAYS
The problem of designing graphical displays to support an information-processing
task can be stated as follows:

Given a description of a task, analyze the description looking for ways to substitute visual operators
in place of logical operators. Create a graphical display that presents the information relevant to
the task in a form that allows the user to perform the visual operators. The visual operators and
display chosen should demonstrably offer some efficiency advantage to the user by either reducing
the time required to execute each operator, or by facilitating search techniques that reduce the

overall time the user must spend searching for information in the display.

The approach described here solves the design problem for interactive graphical

displays using the following four components.

A task description language is used to formally specify the individual logical

operators that comprise a task.

A catalog of perceptual and graphical operators (POPs and GOPs) describes a set of
information-processing activities that can be performed in the context of a graphical

display.

A design algorithm tractably searches the design space of visual operators and data
structures suitable for a given task. The design algorithm uses theorem-proving
techniques (12] when attempting to locate a set of perceptual and graphical operators
that can be shown to be formally equivalent to a set of corresponding logical operators
in a task description. Performing the visual procedure can then be shown to always
yield the same result as performing the procedure given in the task description.
Visual data structures are defined by collecting all information required to perform

each visual operator and creating a structure that attempts to insure that all

necessary information is presented in the same spatial locality and in a form that

supports the visual operators.

4. TASK DESCRIPTION LANGUAGE

The most important component of a task-based design methodology is a means of
making explicit the information-processing activities that the to-be-designed
representation is intended to support. Several task description languages exist in the
literature, two of them targeted specifically for use in designing user interfaces [24,
5]. Given the particular use of a task description language intended here, there are
two constraints that guided the decision to build a new task language over choosing
one of the existing techniques. First, it is important that the task description
language can be easily used by designers of graphical interfaces. Consequently,
despite the many psychological distinctions that more sophisticated task languages
allows us to make, it seemed impractical to adopt a language that would require
extensive background knowledge, skill, or experience on the part of the designer.
Second, it became clear after studying existing task languages that the
representation schemes used by those languages would not easily lend themselves to
the search algorithms required to match graphics to tasks efficiently. Existing task
languages were designed to increase our understanding of the psychological nature of
information-processing tasks and not neceésarily for use in efficient computer

algorithms.

The task description language used here adopts a representation scheme similar to
first-order logic. Tasks are described using a collection of logical operators. A logical
operator is composed of one or more statements. Statements use the three
meta-commands: AsK, TELL, and RETRACT to query, assert, and remove facts from a
simple database of facts. Facts are expressed using predicates that describe relations
between two or more data variables or literals. Predicates are either pre-defined or

user-defined. Pre-defined predicates include arithmetic and logical relations such as

S

10

PLUS, DIFFERENCE, AND, OR, NOT, etc. User-defined predicates can be any finite
ordered n-tuples of variables or values that describe n-place relations. Logical

operators can return values of arbitrary type.

For example, the following logical operator describes computing the layover between

two airline flights:

(LAMBDA compute-layover (flightA flightB)
(ASK (Departure flightB) D)
(ASK (Arrival flightA) A)
(ASK (DIFFERENCE D A) LAYOVER)
(RETURN LAYOVER))

The keyword LaMBDA is used to denote a logical operator. The list (f1ightA
f1ightB) is the set of arguments that compute-1ayover receives as input. The
Ask meta-command states that the database of facts should be checked to see if the
predicates that follow can be shown to be true: namely if there exist facts expressing
the departure and arrival times of the two flights. The statement (DIFFERENCE D
A) specifies that the pre-defined subtraction predicate is to be computed given the
values D and A, and instantiate the variable LAYOVER with the result. The RETuRN

statement is used to specify the list of values that the operator is to return.

Domain sets are used to specify the types of data variables and literals that occur in
user-defined predicates. Domain sets define the universe of discourse for the types of
information that the graphical representation will allow the user to manipulate.
Three types of domain sets are allowed in the present model: quantitative, nominal
and ordinal [21]. For instance, if we were to assert a relation between airline tlight
numbers and times of the day: (Departs FLIGHT1 T), we woulddeclare the
variable FLIGHT 1 as type nominal and the variable T as type ordinal. The task of

determining the name of the oldest individual in a group contains two domain sets, a

11

nominal domain set of names, and an ordinal domain set of integers that are

associated with the names.

Figure 11 shows a complete task description for the activities involved in finding an

airline flight satisfying time and cost constraints.

5. PERCEPTUAL AND GRAPHICAL OPERATORS (POPS AND GOPS)

The following describes a set of perceptual and graphical operators (POPs and GOPs),
or information-processing activities that are performed within the context of a
graphical display and whose performance depends on the use of a graphical display.
Perceptual and graphical operators are organized around a set of primitive graphical
languages available to the designer of a graphical display [21]. Primitive graphical
languages comprise the designer's resources for representing information visually.
The set of primitive graphical languages used in the present model are shown in
Figure 4. The primitive languages shown on left side of Figure 4 have the following
common characteristic: they all rely on placing visible graphical symbolsin a
graphicin order to convey meaning. That is, in order to use these primitive
languages to convey meaning in a graphic, we must place some sort of symbol in the
graphic that has one or more of the graphical features. In the work described here,
primitive graphical languages that use visible graphical symbols are called

notational languages.

Figure 4 here

LR SRR R Y Y]

Earlier observations of the graphical notations used for problem solving and
communicating information in various problem domains {6, 8], and of the graphical
conventions used in many computer interfaces suggest two additional categories that

relate meaning to actions performed on graphical symbols. A primitive action

L

e

Nstational Primitive
Craphical Languages

Herizental Position
etucal Pesiuon
Tartesan Foation
Heigat !
it

Az
Connect'nity
Zennty

Zhading
Thickness
Zashing

Slepe

Shape

Mases

Tavalar

Tart Whale

Deictic and Actien
Primitive Graphical Languages
Cverisy

2 Up

Annouate

Reterence

Figure 4

12

language is used to describe manipulations performed on graphical symbols that can
be associated with a meaning independent of the meaning of the graphical symbol
itself. A primitive deictic language is used to describe references made to graphical
symbols, groups of symbols, locations, or regions in a graphic. Football diagrams are
an example of a domain that uses a rich set of action and deictic conventions. Casner
[6] analyzes and implements a set of action and deictic conventions used in football
diagramming. The complete set of action and deictic languages used in the present
analysis is shown in the right side of Figure 4.

Associated with each of the primitive graphical languages is a set of perceptual and .
graphical operators (POPs and GOPs) that are admitted when the designer of a
graphical representation elects to use one or more of the primitive languagesina
graphic. For example, if we elect to use the "horizontal position" language we admit
a family of perceptual operators (POPs) such as determining the horizontal position
of a graphical object, comparing two or more horizontal positions, and finding the
midpoint of an interval defined by two horizontal positions. Horizontal position also
admits a set of graphical operators (GOPs) such as moving a graphical object from one

position to another.

The follow is a sample of the set of perceptﬁal and graphical operators (POPs and
GOPs) admitted by the Horizontal Position primitive graphical language. Itis
unlikely that we can enumerate an exhaustive set of all possible perceptual operators
since these are likely to vary with the experience and skill of individual users. The
goai hereis to arrive at a basis set that is sufficient to generate useful visual
procedures and displays. When the designer of a graphical representation elects to
attach meaning to the deliberate placement of a graphical object along a horizontal
axis, the following perceptual and graphical operators become available for defining

perceptual and graphical information-processing tasks:

13

Horizontal Position:

Perceptual Operations (POPs):
determine-horz-position
find-horz-positioned-object
search-object-at-horz-pos
confirm-object-at-horz-pos
horz-coincidence?
right-of?
left-of?
determine-horz-interval
bigger-horz-interval?
smaller-horz-interval?
equal-horz-intervals?
find-endpoint-of-horz-interval
find-midpoint-of-horz-interval
horz-weighted-interpolation
horz-containment?
determine-horz-projection
determine-horz-distance

Graphical Operations (GOPs):
horz-move
scale
overlay

Perceptual and graphical operators (POPs and GOPs) are formalized using the same
logic-based representation scheme used to describe tasks. Figure 5 shows an excerpt
from the set of formalized POPs and GOPs that are associated with the Horizontal

Position language.

A A ALY]

Figure 3 here

6. THE DESIGN ALGORITHM

BOZ is a design program that analyzes task descriptions and attempts to locate
perceptual and graphical operators and accompanying visual data structures that
can offer the user the two potential advantages of graphics that were described above.
Section 6.1 describes how BOZ uses the catalog of POPs and GOPs to attempt to

locate visual operators that can serve as substitutes for the logical operators given in

EditOps -

(HOPZPOS (CAPRESSIVENESS (vaLyE (VJANTI"ATIVE 149 3)

~fer | .
(CROINAL 39 1) Betore |
{NONINAL 53 1) 03| Detete

fRELATIONAL 1698 1))) OlReoracel K
(POPS (VALUE (finn-norz-located-on) B3

(LAMBOA NIL
(ASK (MorzPas A wP)) {yout
{RETURN & MP)))

Unao
{find-norz-pos (LMBOA (3) Fina
(ASK (HorzPos 3 HF)) Swap

“FETURN hP))) .
(find-ob)-at-horz-pos =
\LANBOA (rp)
(A3K (Horzfnt A ho)) Sreax
{RETUPN A))) =
{(confire-norz~-nos (LAMADA (2 ro)
“43K (HorPos 3 g:)
(RETUPN T NIL) D)
(horz~cowncidence? (LARBOA (3 b)
(EQUAL a v)
(EQUAL a B)
(EQUAL 3 a)
(EQUAL A B)
{RETURN T NILYD

Figure 5

14

a task description. Section 6.3 shows how BOZ constructs visual data structures that
support the prescribed visual operators and attempts to insure that all information
necessary to execute a particular operator is available in the same spatial locality.
Unlike previous approaches, BOZ begins by identifying a set of visual operators to be
performed and then designs a graphical display for the task information.

6.1 Operator Substitutions: Matching POPs and GOPs to LOPs

BOZ considers each logical operator (LOP) in a task description and exhaustively
searches the set of perceptual and graphical operators to locate those POPs and GOPs
that compute the same result as the LOP. This is accomplished using
theorem-proving techniques that attempt to show that POPs/GOPs and LOPs are
isomorphic. Two operators are considered isomorphic when they produce the same
output when given the same input. This property insures that whatever visual
procedures is followed in place of a corresponding non-visual procedures, it is
guaranteed that the user will obtain the same results if the visual procedure is

performed correctly.

Perceptual and graphical operators can qualify as isomorphs for a logical operator in
two ways. Simple substitutions are those in which a single perceptual or graphical
operator can be shown to be equivalent to a logical operator. Complex substitutions
are those in which two or more POPs and GOPs can be packaged together using one
or more of a set of combination, composition, or repetition rules [3} for building
complex operators from a set of primitives. The complex POP,GOP is then

substituted for the logical operator in the task description.

6.1.2 Simple substitutions
A single perceptual or graphical operator can be shown to be isomorphic to a logical
onerator in the following way. Suppose a representation is needed that allows users

to easily determine which individuals in a given set are relatives. The single

15

primitive operator necessary to complete this simple task can be encoded using the

task description language as follows:

(LAMBDA determine-if-related (personl person2)
(ASK (Related personl person2))
(RETURN boolean))

BOZ then is charged with the job of searching the set of perceptual and graphical
operators associated with each of the primitive graphical languages and locating
those that are isomorphs of the logical operator in the task description. Suppose
BOZ's search mechanism is currently considering the perceptual operators associated
with the Connectivity primitive graphical language. The following perceptual

operator can be found in Connectivity's collection of POPs:

(LAMBDA connected? (obj1 obj2)
(ASK (Connected objl obj2))
(RETURN boolean))

Note that determine-if-related and connected? are structurally the same.
That is, since both operators compute a query operation of a 2-place predicate and
return a boolean value, if we substitute the predicate Connected for Related, and
exchange the two argument lists, the operators are the same. We can then conclude
that we are entitled to "change the meaning" of the perceptual operator of
determining if two graphical objects are connected to ask the question whether or not
two persons are related. In other words, any graphic that represents the "related”
relation by using connectivity between graphical objects as an encoding scheme will
always allow the user to perform the perceptual operator and obtain correct answers.

Figure 6 shows a representation that uses the connectivity convention.

teeessREONS

Figure 6 here
(2222223 1%)

——— Ve
(mary —— bobd)
~ . ~——

(]“l}—__keﬂ:
S Sm—

Figure 6

16

6.1.3 Complex substitutions

More often than not, BOZ exhausts the list of perceptual and graphical operators
without finding a POP or GOP that is equivalent to a given LOP. For example,
suppose the task described above is changed to include information about the
particular kinds of relations between a set of individuals. An example task might be
"find the brother of Mary," or "find the cousin of Alison." This task can be

represented in using the task description language as follows:

(LAMBDA find-certain-relative-of-x? (x relation)
(ASK (Related x Y relation))
(RETURN Y))

If we consider each of the primitive graphical languages (including Connectivity
shown above) in isolation we note that none of them formally qualifiesas a
substitution of find-certain-relative-of-x. From a graphics design
perspective this is the same as saying that we cannot simply use graphical objects
and links between them to support this task because there will be no way of
understanding that the links are to represent different kinds of relations (e.g.,

mother, father, brother, etc) since there is only one kind of link.

When this occurs BOZ then considers complex perceptual and graphical operators
that are constructed from the set of simple POPs and GOPs using one or more of a set
rules for combination, composition, and repetition of operators [3] that are defined as

follows.

If fand g are operators:

(LAMBDA ' (ay, 49, ... dg)
(<meta-predicate > (< predicate> argy argo ... argy))
(<meta-predicate> (< predicate> argy args ... argp))

(<meta-predicate> (<predicate> arg; args... argc))
(RETURN Rf}, Rfy, ... Rfy))

and

(LAMBDA g (by, bo, ..., by)
(<meta-predicate> (<predicate> arg) args ... argy))
(<meta-predicate> (<predicate> arg; argz... argg))

(< meta-predicate> (<predicate> argy argy ... argy))
(RETURN Rgy, Rgg, ... Rgy)

then the combination of fand g is the operator:

(LAMBDA f-combination-g (ay, a9, ... an, by, ba, ..., byy)
(<meta-predicate> (<predicate> arg argz ... args))

(<meta-predicate> (<predicate> arg) argz ... arge))
(<meta-predicate> (<predicate> arg; argz ... argyp)

(<meta-predicate> (<predicate> arg) argz... argh))
(RETURN Rfl, sz, Rfs, Rgl, Rgz, ng))

The composition of fand g is the operator:

(LAMBDA f-composition-g (argy, ... (<predicate > argy arga ... argyg), ... ary,i

(<meta-predicate > (< predicate > arg) { <predicate> argy ardy ... aryy)
(<meta-predicate > { <predicate> argy (< predicate > argy ard: ... arygy)
(RETURN Ry, R, .. R))

for some argument, arg;.

The repetition of a single operator fis:

(LAMBDA f(ay, ag, ... a,)
(<meta-predicate> (<predicate> arg) args... argy))

Jriq'.ﬂ)

s aryged)

17

18

(<meta-predicate> (<predicate>> arg; argz... arg))
(<meta-predicate> (<predicate> arg) argz ... argy))

(<meta-predicate> (<predicate> arg argz ... arg,))

(RETURN Rfy, Rfy, ... Rfy))

Hence, a combination of two operators is a single operator that combines all of the
parameters, clauses, and outputs of both individual operators. A composition of two
operators is a single operator that uses another operator as one or more of its
arguments. A repetition of a single operator is that operator performed two or more

times repetitiously.

By adding the rules for defining more complex perceptual and graphical tasks, BOZ
can now design representations to support more complex logical tasks such as the
"relatives"” example given above. Figure 7 shows how the connected? perceptual
task can be composed with the read-1abe1 task associated with the Labels

primitive language.

sosss0ussss

Fivzure 7 here

Casssssners®

We can see that the composition of the two perceptual operators, one admitted by
Connectivity and the other by Labels, yields a complex perceptual operator thatisa
renaming of the original task operator. The representation that illustrates this

convention is shown in Figure 8.

298 EAB RS

- Figure 8 here

(ASK (Label ‘x L)
(ASK (Connected A B))

(ASK (Label (Connected A B) L)

...

Figure 7

,;‘;3. couting @

lael L >r2teT (‘ken

~— ——
< 7

comsins T\ /cousins

~

(stison)
N’

Figure 8

19

EEBEREER R R

Note that if the task is further extended to include directional relations such as "is
brother of,"” BOZ would use the composition of the POPs

determine-directed-relation and read-1abel.

6.2 BOZ's Search Complexity

BOZ presently contains about 250 POPs and GOPs descriptions that must be
exhaustively searched when considering each LOP in a task description. Ifa
graphical representation is to support n primitive tasks (25-50 for complex |
representations), in the absence of any mechanism to help prune the search space we

have the following worst case search complexity:

Toearch = 200n (simple substitutions) + 2002n (complex substitutions)

= 40,200n (total items searched)

If we later decide to allow 3-place substitutions (e.g., compositions of three POPs or
GOPs) we add an additional 8,000,000 x n items to the search space. BOZ
circumvents this problem by taking advantage of a formal property of the rules of
composition, combination, and repetition. Given a LOP that fails to match any of the
simple POPs and GOPs, we can perform a composition factorization of the LOP into

two component LOPs. For example, the LOP:

(LAMBDA find-relative Ujoe 'brother)
(ASK (Related jve X ‘brother))
{(RETURN X))

can be factored into two component LOPs:

(LAMBDA x (a)
(ASK (PredX a B))

20

(RETURN B))

(LAMBDA y (b)
(ASK (PredY A b))
(RETURN A))

The two component LOPs can now be used to independently search the list of simple
POPs and GOPs two times, one time for each component LOP. Any matches that are
found for the two LOPs can be shown to have the property that when composed
together they result in an isomorph of the original LOP.

Combination factorization and repetition factorization are defined analogously and
can be used to locate complex matches formed by combination and repetition. Adding

the factorization strategies reduces BOZ's worst case search complexity to:

t

‘search

= 200n + 6 x200n = 1400n

BOZ is implemented in Interlisp-D on a Xerox 1186 and takes roughly 12 minutes to
explore the entire design space of visual operators given a task description containing

50 logical operators.

6.3 Constructing Visual Data Structures

Once BOZ has located a set of perceptual and graphical operators that can potentially
serve as substitutes for the logical operators that comprise a task, BOZ must design a
visual data structure that supports those visual operators. Thisis accomplished by
examining the information that is required to perform each logical operator and
building a graphical display that insures that: (1) information is presented in a form
that matches the visual operator description; and, (2) all information needed to
perform a visual operator is presented in the same graphical object so it can be
accessed without moving the eye over the display. The following describes how BOZ

accomplishes this.

L

21

Recall that every task description is defined over a finite set of domain sets. Domain
sets are collections of user-defined variables that can assume exactly one of a set of
pre-specified values. When taken together, all of the domain sets used by a task
description form a feature space. A feature space is formally defined as the cross
product of all domain sets spanned by a task description. Figure 9 shows an example
of a feature space defined over a collection of domain sets that pertain to making a

reservation on a commercial airline.

EeEEEREELRE

Figure 9 here

ERXEEEXREEEE

Each individual operator in a task description defines a relation (v;, Vis oo Vi), for

some i, j, and k less than or equal to the total number of domain sets drawn from a
feature space, called a vector. Vectors are unordered collections of values such that
each value is selected from exactly one domain set. The length of a vector is defined
as the number of values contained in the vector, or the number of domain sets that
the vector spans. Vectors can have lengths that vary from 1 to n, where n is the total

number of domain sets.

Vectors are used by BOZ to define visual data structures in the following way. LetT

be a set of operators occuring in a task description, and t; an arbitrary member of T,
Let V(t;) be the vectors implied by an operator t;. The function EQV(V(t;)) computes

the equivalence relation that classifies each vector into exactly one of three
equivalence classes. Vectors V1 and V2 are said to be parallel when they each
contain a value from more than one common domain set. Vectors V1 and V2 are said

to be orthogonal when each vector contains a value from exactly one common domain

arrival time cost

airline flight aumber available? departure time
feature = ominal: X aominal: X quantitative: X Quantitatve: X quanutauve:
space tuceger {ves. no} nteger nteger integer
seating airlipe gate
X ordinal: X aominal; X nominal:
nrager stng 1areger

Figure 9

22

set. Vectors V1 and V2 are disjoint when they contain no values from common

domain sets. The equivalence relation is the set:

EQV(V(t)) = {{all parallel vectors} {all orthogonal vectors} {disjoint vectors}}

For example, the following tasks define five vectors.

(LAMBDA determine-departure-time (flight)
(ASK (Departure flight DEPARTS))
(RETURN DEPARTS))

(LAMBDA determine-cost (flight)
(ASK (Cost flight COST))
(RETURN COST)

(LAMBDA find-cheapest-leaving-at-T (time)
(ASK (Departure FLIGHT time))
(ASK (Cost FLIGHT COST))
(NOT (Departure FLIGHT2 time)
(Cost FLIGHT2 COST?2)
(LESS COST2 COST))
(RETURN FLIGHT COST))

{(LAMBDA window-seat-available? (flight)
(ASK (Seat flight SEAT))
(ASK (Available SEAT))
(ASK (Position SEAT ‘window))
(RETURN SEAT))

(LAMBDA determine-gate (airline)
(ASK (Gate airline GATE))
(RETURN GATE))

The vectors defined by the tasks are the following:

1. determine-departure-time = (;flight-number} X {departure-time})

2. determine-cost = (jtlight-number} X {cost})

3. find-cheapest-leaving-at-T = {{flight-number} X {departure-time} X {cost})
4. window-seat-available? = ({flight-number} X {seats} X

{window, aisle, middle} X {yes, no})

5. determine-gate = ({airline} X {gate})

Vectors 1, 2 and 3 are parellel, vectors 3 and 4 orthogonal, and vector 5 disjoint from

all others.

The algorithm that BOZ uses to construct visual data structures given a set of vectors
has two basic steps. The first part of the algorithm determines the possible ways in
which information from each domain set can be encoded as individual graphical
objects on the screen. After analyzing a task description (as described in Section 6),
each domain set has associated with it a set of possible primitive graphical languages
that can be used to encode that domain set. The set of possible primitive graphical
languages are precisely those that are associated with that POPs and GOPs that have
been selected in the previous design step (substituting visual for logical operators).
Each of these primitive graphical languages has a default presentation object
associated with it, either: point, line, or shape. For instance, the default for the
Height language is a rectangle. Hence, the possible ways of presenting information
manipulated by a task is defined by the set of graphical objects that are associated
with those primitive graphical languages that are associated with those POPs and
GOPs that have been shown to be useful for performing the task.

The second part of the algorithm uses the vectors to determine how the individual
graphical objects created in part 1 can be combined into composite visual data
structures such that all information necessary to draw a particular inference is likely
to bz grouped together in the same spatial locality. Thisis accomplished in the
following way. For each set of parallel vectors, BOZ forms the union of all domain
sets that appear in the set of parallel vectors. A simple visual data structure is
created by grouping together all of the graphical objects that visually encode the
domain sets in the union. For each pair of orthogonal vectors, we find the common

domain set where the vectorsintersect. This domain set is called the pivot point. A

24

multi-dimensional visual data structure is defined to be a graphical object that can be
transformed from reflecting a presentation of the domain sets defined by one vector,
to presenting the domain sets defined by another vector. Transformation of the
multi-dimensional visual data structure is accomplished by a graphical operator
(GOP) of the designer's choosing, usually mouse-selection. To further simplify the
data structures, when two domain sets occuring in a single vector are of the same
type, the graphical objects used to represent them can be composed into a single
graphical object. This technique known as mark composition and is due to Mackinlay
[21]. Similarly, two domain sets of the same type can be represented on the same

axis. This is accomplished using axis composition [21].

To illustrate how visual data structures are defined nsing vectors consider the tasks
defined for the airline reservation domain. Since vectors 1, 2, and 3 are parallel, a
simple visual data structure is created that presents all of the domain sets occuring in
each vector the same data structure. Since vector 4 is orthogonal to vectors 1, 2, and
3, a multi-dimensional visual data structure is created that can be transformed from
presenting the domain sets contained in vector 4, to the domain sets contained in
vectors 1, 2, and 3. The "pivot point” is the domain set {flight-number}. Vector5 is
disjoint from all other vectors and therefore defines its own separate data structure.
The abstract specifications for the visual data structures (one multi-dimensional and
one simple) defined by the vectors are shown in Figure 10, along with the set of
possible primitive languages that can be used to encode each domain set. Figure 10

also shows one possible presentation of the multi-dimensional visual data structure.

sseseeSEEeR S

Fieure 10 here
EeBESAESPEOS

cost—p

mark composition
axis composition
seats

Hoat-aumver: (Toxt)

irli Separmure: (Text, Nonssnism Penson)
posihion o arline qate~» snea (Texy Hensomim Ponsen}
com: Tat. Nagnt)

[P

sems: \Text. Inope)
.l T3 peanen: (Tem, Hontonts Peauen, Cirtensa Pesaon)
occupied | mee: (Tem, Desung)
: 1Tex, Inape, Commecw
m $299 arune: iTe spe, Connecunty)
—_—

(oe: {Taxt, Cartenan POSROm, CIARECANLY)

Figure 10

25

7. AN EXAMPLE: DESIGNING A GRAPHICAL AIRLINE RESERVATION SYSTEM

The following example illustrates how BOZ can be used to design graphical displays
to support user tasks in a real-world domain. The representation designed for the
tasks illustrates the two important ways in which graphical representations can help
users: (1) supporting the substitution of quick and easy visual operators in place of
more effortful logical operators; and (2) reducing the amount of time spent searching

for information [20].

7.1 A Simple Airline Reservation Task

The following describes a task in which a user must use airline schedule information
to locate a flight or series of flights that travel from Pittsburgh to Mexico City. To
make the task both challenging and realistic we impose the following restrictions on

the flight that the user may choose:

1. For connecting flights that pass through an intermediate city, the user is free to choost any
intermediate city as long as the layover in that city is not more than four hours.

2. The user may choose only those flights that can be shown to have available seats.

3. The user is limited to a $500 budget for the one-way trip. That s, the total price for any series
of connecting flights cannot exceed $500.

The task description for the airline task is shown in Figure 11.

ssessssssdons

Fisure 11 here

(AR EEENERNY Y |

The task requires that the user perform sophisticated searches and coordinate
information about the origin, destination, departure and arrival times, availability,
and cost of many flights. The domain sets that describe this information are specified
at the top of the task description in Figure 11. The section entitled OPERATORS

enumerates the logical operators that are necessary to perform the task correctly.

of: variable arfiney~ ;. -

L3I e LLetN=IR TS (cenuE Lt NuNLNAL < d) “rter) o
(0eseinarion NOMINAL 38) Sefore | X
iDeparture YROINAL 134) {i| Celere
{arrival ORGINAL 144 U |Reciacel X
{Cost QUANTITATIVE Sad) Switen
{Avarlabiivty NOMINAL 2))) B

CUPEMATIONS (7ALUE (determine-or1gin (LAMBOA (flignt) {ieut
(ASKR {Jdrigin fligne Ui urao
{aetermine-dest1nacion (LAMBOA (Plignt) Fira
{A3R (Uestinacion flagne 037535 S ~a0
(connect1ng? (LARBDA (fYignel fligne2) Reprint
(EQUAL (getermine-desgination Flignel) e
(determine-arigwn F113ne25}) EatCom
(getermine-deparcure-time (LANBOA (Pligne) Sreak
(ASK (Oeparture f1ignt 0))3) Eval
(deternine-arrival-tise (LANBOA (fligne) St

(ASKR (Arrival FYigne A}}1))
(gatermine-co1t (LANBDA (flignt)
(A3SR (Cost flrane C)));
(determine-avatlani1lity (LANBDA {fliqne)
(ASK {Avairlaoidiey flignt A))))
(leaves-arfeer? FLANBOA (f11anel fligne2)
{GREATERP (nerermine-arrival-tise flignel)
‘astermine-geparture~tiae f113nt2))))
{compute-layover (LAMBOA (fliantl fligne2)
‘OIFFEPENCE (7etermine-ceparture-cise f113ncl)
c2evermine-3rrival-cine F1I30EL07))
(compute-roral-cost (F1vgntl flgnt2)
1PLUS (secermine-cnst flraney)
‘recermine-cost f113ne2;))53)

Figure 11

26

When the task description is submitted, BOZ produces a specification summarizing
the possible ways of substituting visual operators and displaying information in a
form that supports visual operator performance. The specification for the airline

reservation task is shown in Figure 12.

ERERREERERER

Figure 12 here

EXELEEREEREE

In the VISUALOPS section, each of the logical operators in the original task
description now has an associated set of visual operators that have been shown to be
formally equivalent by BOZ's substitution algorithm. The VECTORS section contains
a single vector that specifies that regardless of what visual operators are chosen, all
information pertaining to a single flight is to be graphically presented using the same
graphical object. The section entitled GRAPHICAL-LANGUAGES summarizes the
possible ways of displaying each information type as defined by the set of visual

operator substitutions.

The specification in Figure 12 formally describes 756 possible displays for the airline
reservation task. The next step is to identify which alternatives are likely to be most
effective. Section 10 discusses two important factors that affect the success of a

graphical design:

e the extent to which the representation exploits users' real-world knowledge and

skills.

e the extent to which representations tap users' prior skills and experience with

graphics.

Window Image

(e enrfuagmolpe
syiprm_uiolpe
cbrayqans
sardns-ppe
vorianlnadogsayyian
uvogidalosd | eyunziioy
mv—....:m._a—.-v eyfiy 1 1-Ouyagnns 1.8 N _[ipe))
((uapym-9uruiayap
Y1613 .suymiagap
wbGLey-auiwiayap
ato|S-3smiayap
ULIRYE 1L AR 2 TS WETSE UITURERET)]
uoLsad. | PIUOZE 0L D eLa] D
dnonp.masy B an.y et vpwiaap)
. 0 adeigs _Aanpmeyap
LOUL {-PAIETP S3AUADLY-2UL | -3ULWIEYp
rihua-surtw iz ap yyprm. 2tz
Ui ey aumiatap G peys_aupmiaiap dngno) _mo)) AgAF1oar)
((|ouessi P A ApEM. 2t Ia L ap
ecuesny s)p-yifma) _eniwieap
83un4asjp-1yfiiay . autwioyap
eauesaip-atns. agwieyap
BIUEISIN-{F I 1AM IP
AIUELSUE [F I B i 10 fotfr
EE TR AT PR R L RY. XL WY, LTARY SRS T UTAE A
{((cadeys.aietdwon suumpod yrieas) WD Dot pagy
Leapgm paalng gaagges
dodogs-dedonys jaronr a0 3qfits "etajun.eaedunr) £oajge s gaed g
AA:.::mnm:._.::—..... ._:4::7 LANBIRTUTIR RTINSO TP Yy FY Iy L SR TN
((unppm-pujuseyap 1pbuag _agiwieyap
Wyhyay-auiwresap edo{s. aumiaap
U sndoednanaLauuw oy p
.._o.:moarpz...au—.._u._n..u.._._:r-..._. 1.1::—-3:; [CUTR I G Y RPN IRUAL R R A]
{(UIptm-suLwIE) AP
yibus| ~aviwre)ep
wblay-auiuieirp
atdoys. autmiryap
unjyysad. e 113A A magap
sojysad. (€ yuosisoy- AU p
dngna.mag) amyoasnyaetaposuiwsayepe) b)) C@ar g
(U1 apua 1y6tay 8do|S sodiian S04y Eraef) 17 M0
(advyg Gurnsegauly
mmmcxu_:wnc_J 4y16ua1 yipia ybtay Buipeyg efqel) Aluraegiese)
((uipta yatuay 1ubiap adoys sodisan sogeiop e(ael) 2wy {esi20)
((ipta nabuay
biey edoys sogdiing cogzioy epney) awiy.-einysedzp) $IowMONTI- 1
((3tdwS 3dAL=123030=TWIINAT"
(1602 A3 (tQP[1PAR AW |PALIIP AN }-AINYIeleg) Tl
! whopd -y

l ’ _ - e BUOYSI70Q ® P30

rJ

Y.

— i

—

27

Section 10 also discusses why choosing between alternative designs is necessarily an
empirical issue, and why simple strategies that attempt to generalize experimental

findings across tasks and users [21] are likely to obtain poor results in practice.

To support efficient exploration of alternative designs, BOZ contains a rapid
prototyping tool, implemented using the VisualActive™ interface construction kit
[11], that allows designers to quickly mock up candidate designs. The prototyping
tool allows designers to create the corresponding default graphical objects that are
associated with the perceptual and graphical operators as described in Section 6.3.
Graphical objects can have functions attz<hed to them that are called whenever
specified mouse selections are performed. The tool also contains a set of prepackaged
window, menu, and dialog box facilities that can be called by any function attached to
a graphical object. We use the prototyping tool here to help discover which designs

summarized in BOZ's output are likely to be the most useful.

The first design produced by BOZ given any task description is one in which
relational information is displayed in the rows and columns of a table. Beginning
with a tabular display requires that designer have explicit criteria for making
decisions to remove information from the table and encoding it graphically. This
requirement is consistent with the experimental findings that graphical displays are
not always better than tables and that tables should be treated as the default display.

Figure 13 shows a tabular display supporting the airline reservation task.

Firure 13 here

Next, we see that we have the opportunity to exploit a real-world notion when
encoding departure and arrival times. Times could be represented using Slope such

as done in everyday clocks. Choosing this encoding would allow users to perform

Window Image

sifnd vy

wrhn:s tinne Nia
we g urdgie Tt W
urdgn:zi UGS) ny
wedn:Zy nmontoy arit 94N
wang:, wdge £1°% 3o
urdpni umaGH eftt e

ureggi | uwn:3 61°% A

wdd3 L sy AT N
(Ul Y uiIrdong:t [J38 S [lal}

PA)IIY asnuedaqy 2asa ANNariTAv

Aud oo -1 y6inqgsiid

v e
Va0
REAEER
NN
SR L
Ao
R AR
Rl O R R

YAy
Firaiti g
FLIMITTEY

28

departure and arrival time comparisons in a familiar and practiced way. Figure 14
shows an implementation of the clocks idea. The CLOCKS display replaces the
numerical presentation of times in the table with clocks supporting slope judgements

and comparisons.

EEE 2222222 22 2

Figure 14 here

*E2EEELRREE

The problem with the clocks convention is that only one departure or arrival time can
be represented in a single clock. That is, the clock convention disallows the
possibility of grouping time information about many flights in the same spatial
locality. The CLOCKS display also fails to gather information about flights into
closer spatial proximity where users can perform quick comparisons. Using

CLOCKS, users must still search the rows and columns of the table.

An alternative is to exploit users' previous experience with horizontal time scales.
Figure 15 shows a display in which we replace the tabular display of departure and
arrival times with graphical objects positioned along a horizontal axis. Arrival and
departure times can share the same horizontal axis as well as the same graphical

object (axis and mark composition).

Figure 15 here
(XXX ERRY L])

The time scale convention avoids the problem of clutter when many flights are

present.

We can replace the words "ok" and "full" in the flight boxes and allow users to
substitute shading judgements when making availability determinations as in the

display shown in Figure 16.

Window Image

AMV A{Av et 1 TRTII
AMA‘V «M,v v 4 .

Q\V ﬁ.._.\V AR 4 XY v}
@/V A/Nv fLl o2 A ANIN]
P\ﬁ)\v A/\W,v Gery Mo L ey
A«\(mv AWV £t " W
Cv Q ciet - I
-1/».“.“:\ o::..n...un- id BTTAY * @ieania

swify 4 nvy
Kpo oomapw 1 ybangsind

Yo

,(U w'

v

Window Imagl\

(1

AN

i

1

NOory a¥

L 2L1ILoL e @

AN v
Ao osmtapy ~1 yBangsing

teLirtorL s 8 (L
1

1 1t 1

Lo _n: SR
' . A?. _.._
: e

SR YR :

WEEECTT TR L e

r RELKNORIN) IR *.... :-.__"._

_ L XY

Y 2 S
el oo — YR

b . .

29

EEEEREEREEER

Figure 16 here

FEeRRRERERER

It is not obvious that the time to interpret a shade offers any advantages over simply
reading the word "available"” but this is an empirical question that is addressed in

Section 8.

BOZ's output indicates that we can substitute the task of reading and adding
numerically expressed cost information by allowing users to perform height

judgement as shown in the display in Figure 17.

EEEERREBRERR

Figure 17 here

222231222 23)

Again it is not clear that allowing users to judge two or more combined heights yields
an advantage over simply adding the numbers, or that it helps users to more easily

rule out "tall" (expensive) flights.

The potential efficiencies of the various graphical displays for the airline reservation
problem are characterized by the following visual operator substitutions and visual

search heuristics.

Operator Substitutions:
DISTANCE JUDGEMENT: Thedisplaysin Figure 15, 16, and 17 allow users to substitute a
distance judgement in place of subtracting the numericaily expressed departure and arrival

times.

SHADE JUDGEMENT: Figures 16 and 17 substitute shade judgement for reading the words

“ok" and full.”

>,

Window Image\

LEDINany nd

- N

11 1 1 1

Aoy 1oy

L 2Lt nL 6 ¢
1 1 1] 1__1

_ll.‘ RXNES

: | —n::u,_: [

[5
el g

KD 0oap 1 yGInAsiig

tecLtitot s 8 £t 9 6 t+t ¢ 2
S VN U W N N

m_..?m ’

) :._.. I ___
[

&

‘e
- Y e

W\

Window Image

LneiNany Wt
¢ L c2LiLor e 8 L 9 S ¢t
1 L 1

rie

[L0 ey

€ ¢ L L tLoL e @

s

1] 1 1)

L 1 1 1 1 1 1

ool " XIT o :
A arrguol

A b ol

e WA

o

SN ETERTES . oo
Ao oonay ™1 ybungsig

QU1

b I R

[RUME N

ol pte

30

STACK HEIGHTS: Figure 17 substitutes judging the combined heights of two flight boxes for

adding two numerically expressed costs.

Search Heuristics:

RIGHT OF: Displays in Figures 15, 16, and 17 allow users to limit their search for connecting
flights to only those flights that appear to the right of the originating flight.

NO SHADED: Displays in Figures 16 and 17 allow users to immediately exclude from their

search any flight square that is shaded since shading indicates that the flight has no available

seats.

CHEAPEST FIRST: Thedicplay in Figure 17 allows users to immediately rule out "tall” flights

from their search since these are likely to exceed the $500 limit.

Whether or not users do or can follow these procedures, and the extent of the
efficiency advantages they offer is an empirical question that is addressed ir. Section
8. The study reported in Section 8 shows that there can be no algorithm that
accurately predicts the usability of a graphical representation or even in general

decide which is the most promising of a set of alternative designs.

7.2 Extending the Set of Airline Reservation Tasks
To show how BOZ scales up to more complex task I extended the task description to
include several other tasks that airline customers frequently perform. Since the

entire task description is lengthy (3 pages of code), the tasks are summarized as

follows:

Choose that tlight of several possibilities that has the best available seat: Some travelers
prefer aisle seats since they afford the best mobility. Some travelers prefer window scats for
the view. Smart Brazilian travelers pick seats on the right side of the plane when traveling
south and the right side when heading north.

31

Schedule around departure or arrival constraints: Many travelers have time constraints on
when they can leave or arrive at their destination.

Schedule a specific layover: Many business travelers keep more than one appointment on the

same trip. In this case the customer is concerned with finding a flight that passes through a
particular city and lays over during a particular time period.

Find the cheapest flight scheduled in some reasonable time interval: Graduate students
are usually most concerned with minimizing the cost of the ticket rather than with arriving
at their destination at a specific hour or day.

Find a flight that minimizes the number of take-offs and landings: Some customers try to
minimize the number of take-offs and landings to minimize the effects of jet-lag, nausea, or
ear trouble.

An extended task description was submitted to BOZ that included the tasks above.
One candidate design was produced using the prototyping tool and is shown in
Figures 18(a) and 18(b).

EEREREEERXESEEEENERPRESS

Figures 18(a) and 18(b) here

EESEREESREELEELEREREEEES

Time constraints are specified by creating a flight square and positioning it along the
time scale at the appropriate departure or arrival time. Specific layovers are
specified by creating two flight squares and positioning the arrival time of the first
flight and the departure time of the second flight at the appropriate points along the
scale. Cost constraints are indicated by typing a cost into the lower right region of
the flight square. Specifying a particular number of takeoffs and landings is
accomplished by creating the appropriate number of ﬂi.ghts squares. For example, to
search for a flight with two takeoffs and landings, two flight squares are created.
Viewing the available seating for a flight is accomplished by mouse-selecting the icon
that appears in the lower left corner of a flight square. This causes the seating chart

for that flight, shown in Figure 18(b), to be presented. Seats are occupied if they have

window Image

Py A . 3 I L e e R

LHOINAIN 2] Ny
T LeLitoL s 8 L 9 S ¢
[B T

1t 1 1

- lwie gt

bR N EASIN

7

vy

v v T (M0

-

RN

X W

c1abn g vy

Ao ooman " ybunqsiid

ey

T L ZLLILOL & 8
S SR R WS U U |

ant g

e

LT2% 1

Ladhbaiet i e saon et A ah atan 4 e e

e AN

S

Window Imagx

n

hi

QuawBicce Bunear 3uRw) 1H913) ﬁ\ ~

27

MR LRI

'

vf

(NP aeed 17 3537)

J iy IvAY = I3 M=

] B
ay :
M
: 1 ?.:J.::..,
DM TR L NY |
8 B RN
: e e el age

AL1D ODIXAW 01 NO1SHOH

Wby ey ooy

DA M AR Datt A LR AN S i
e L R I T R T R i i - v -

NSy e 91

32

a thick border and available otherwise. To view the status of any seat, or to reserve a
particular seat, left mousing ca the seat causes a dialog box to appear where the user

can view or type the relevant information.

8. USERS' PERFORMANCE WITH THE AIRLINE RESERVATION SYSTEM

Casner and Larkin (8] describes an experimental study in which real users worked
with the BOZ-designed airline displays. The purpose of the experiment was to
determine the extent to which the hypothesized efficiency advantages of the airline
displays were actually reflected in users' performance. Response times were collected
from eight participants who performed the simple airline reservation task (described
in Section 7.1) using four different versions of the displays a total of ten times each
(forty trials total). The four graphic versions used in the experiment were those
shown in Figures 13, 15, 16, and 17, herein called Graphics 1, 2, 3, and 4,
respectively. Each graphicin turnincludes an additional way of substituting a
visual operator for a logical operator. The purpose of the experiment was to test the
hypothesis that each additional visual operator substitution would reduce the time
required to complete the task through either savings gained in visual operator
performance, or through reductions in the total number of items in the airline

schedule that the user must consider.

Users completed the task after receiving an explanation of the conventions used in
each graphic and one practice trial. The order in which the graphics were presented
to the users was varied systematically to evenly distribute effects due to learning and

practice.

AN ERERRREE N S

Fizure 19 here
e 98850500080

Airline Graphic Used

Mean - ‘ . .
Response 19.3 10.1 7.2 7.4
Time ’

Mean .
Standard 343 I 1.7
Oewvia tion i

Total |
Number of 35 i 5 3 3
trroes .

* Significant at G5 level

Figure 19

33

The results shown in Figure 19 (Row 1) indicate significant differences in response
times between Graphics 1 and 2, and between Graphics 2 and 3, but not between
Graphics 3 and 4. The data suggest that graphical encodings used in Graphic 2 (and
also in Graphics 3 and 4) reduce the amount of time required to locate two connecting
flights, and/or to determine whether or not two flights obey the layover constraint.
Allowing users to perform the perceptual operator of determining the shade of a
flight box (Graphic 2) surprisingly resulted in a significant savings. The perceptual
task of determining whether or not two flights obey the cost constraint by judging the
heights of the flight squares did not result in any reliable savings over the task of

adding the two numbers, or in narrowing down the search space of flights to consider.

An analysis of the standard deviations in response times shown in Row 2 of Figure 19
suggests that users exhibited significantly more stable performance between
Graphics 1, 2, and 3 in that order. Row 3 of Figure 19 shows no observable differences

among error rates for the four graphics.

Our next step was to understand how users obtained the efficiency savings we
observed. We ran a regression analysis on the number of times each operator (visual
or logical) must be performed using each graphic to the observed user response times.
We obtained good-fitting models for each of the search heuristics excepting
CHEAPEST FIRST, suggesting that users took advantage of all of the applicable search
heuristics except CHEAPEST FIRST. The model also yielded estimates on performance

time for several of the individual visual and logical operators.

¢ The time required to fix the eye on each item in a display was unitormly about

330 milliseconds for all four displays.

34

e Visually estimating layovers (determine-horz-distance) using Graphics
2, 3, and 4 proceeded about 2 seconds faster than subtracting the numerically

expressed times.

e Judging the combined heights of two flight boxes(stack-heights) in Graphic
4 was negligibly 100 to 300 milliseconds slower than adding the numerically

expressed costs.

The saving gained through substitution of visual for logical operators and use of
search heuristics match well with the global reductions observed in overall response
times. Overall the results agree with users' comments after using all four graphics:
that Graphic 3 was the most effective. The interested reader can find details of the

experimental design and methodology in Casner and Larkin [8].

9. GENERAL DISCUSSION

The research described above adopts a task-based approach to the design of graphical
representations in which graphics are viewed as perceptually and graphically
manipulated data structures that help streamline task performance much in the way
that abstract data structures help expedite abstract computational processes. The
important distinction made in a task-based design methodology is that the effective
use of visual data structures and procedures, as with abstract data structures,
depends on choosing the right structure for the right task. Thatis, it is inappropriate
to say that a particular graphical display is the best choice or that it is useful in
general. One can only compare graphical displays with respect to a particular task.
Consequently, the design methodology proposed here first designs visual tasks based
on an analysis of the task requirements, and then proceeds to select a visual format

for the task information with the visual task in mind.

35

The task-based approach to graphical displays was made concrete by creating a
formalism that allows us to specify and compare alternative visual and non-visual
procedures, and to show that the alternative procedures always produce the same
results. Two specific types of cognitive efficiency advantages of graphical displays
were discussed: (1) alle-ring users to substitute quick and easy perceptual
judgements in place of more demanding logical reasoning steps; and, (2) reducing
search for needed information by grouping related information and supporting visual
search heuristics. The examples and experimental results suggest that the analysis
can be successfully applied to designing effective graphical displays that provide the
two types of efficiency advantages. Furthermore, the view of graphical displays as
visual data structures and procedures that provide efficiency advantages seems to
explain the difference between graphical displays that succeed in practice and those
that do not.

A necessary weak link in the design process is the inability to predict in advance the
relative usability of each of a set of alternative designs. Given that we can already
show that each of BOZ's designs can potentially help streamline users' tasks, the
remaining factors that most influence usability seem to be the extent to which a
display exploits the user's knowledge about "everyday things" in the real worid [23];
and the extent to which displays allow users to make use of existing knowledge and
skills for using graphics [17]. Real-world knowledge often allows users to quickly
understand a graphical convention. For example, the diagram about politicians
shown in Figure 20 exploits the user's knowledge that "left means liberal" and "right

means conservative."”

(AR E AR ERE Y] S

Iigure 20 here
IR AR ER RN AR R

The psychological literature shows that no other design consideration is likely to

outweigh the results achieved by exploiting real-world knowledge {23].

Smith (D) Jones (R)
® [
L L 1
liberal conservative
Figure 20

S

36

Furthermore, neglecting to use real-world conventions (e.g., putting libzrals on the
right, conservatives on the left) can lead to increased learning time and cognitive

work, and decreased response accuracy [23].

The second most important factor in choosing between alternative designs is the
extent to which each design can exploit previous experience, practice, and skill with
graphics that the user may have. There are many existing graphical conventions
that the designer can use and expect reasonable results. For example, when choosing
among designs that encode time as a dimension, those designs that use a horizontal
time scale are most likely to tap users' previous experience. The large number of pie
charts in the everyday literature suggest that users may have practised skill for
substituting size and slope judgements for more complex proportional reasoning
tasks.

The two factors affecting the usabililty of a graphic suggest that determining which
of a set of candidate designs is largely an empirical question not decidable by any sort
of quick-and-easy algorithm. Mackinlay's APT [21] attempted to predict the
accuracy of alternative graphic designs using an experimental observation that
presentation formats can be grouped into three basic categories that are ordered by
the degree of accuracy to which users can extract information from them [10].
However, more recent studies show that users' performance on information
extraction tasks are poor indicators of performance on other types of tasks (16].

Other research shows that users' performance is extremely sensitive to small changes
in the task, the complexity of the task {26], problem domain, and even the social
conditions in which the graphicis used (1]! The large number of psychological factors
influencing performance and the variance between users, tasks, and situations
suggest that a realistic strategy for deciding between alternative graphic desiyns
involves prototyping designs and performing small amounts of well-planned user

testing [14].

-

37

BOZ may also be useful for explaining why existing graphical displays are successful,
and to help discover clever design properties enjoyed by existing displays that can be
later incorporated into BOZ's design algorithm. Existing displays can be analyzed by
describing a set of activities for which the displays are claimed to be useful and
showing that the design of the display is such that it allows the users to perform
computationally interesting sets of visual procedures. Consider the graphical

representation used in the calculus for vectors in the plane, shown in Figure 21.

*RRERRREERRS

Figure 21 here

BREEBREERREES

Vectors use lines in the plane to represent forces acting on a body. The magnitude of
a force (a quantitative value) is represented by the length of a vector line. The
direction of a force (also a quantitative value) is represented by the slope of a vector
line. The surprising feature of vector representations is that they do not use the
spatial position of a vector to encode information. The spatial position primitive
graphical languages are the most informationally rich and salient of the primitive
language yet they are not used in the vector representation. The decision to keep the
spatial position primitive languages "in reserve" (at some cost in understandability
to the novice student) pays off when when the task of adding together vectors is
introduced. Leaving the spatial position languages free allows us to move vectors
around in the plane and be sure that the vectors still represent the same entity.
Having this freedom more specifically allows us to arrange vectors such that the
beginning of one vector coincides with the end of another vector as shown in Figure
21. We can make of use annotations (a GOP) and also draw a line that connects the
beginning of the first vector in a "train" and the end of the last vector. Of course, it
can easily be shown that the vector added as an annotation is exactly that vector that

represents the sum of all of the vectors in the train. Summing together vectors

Figure 21

38

without the benefit of the graphical representation of course requires more

sophisticated mathematical knowledge and procedures.

The analysis of the design used for vectors suggests the following general design
principle: that sometimes a sacrifice in one aspect of a design can lead to magnificent
gains in another aspect of the same design. The analysis of the vector representation
has provided an interesting design property that falls outside of BOZ's capabilities,
and that suggests a promising new idea to investigate that may be generalizable

across many types of graphical displays.

ACKNOWLEDGEMENTS

This work is supported by the Office of Naval Research, University Research
Initiative, Contract Number N00014-86-K-0678, and in part by Virtual Machine
Corporation, Pittsburgh, PA . I thank Stellan Ohlsson, Jill Larkin, Jeffrey Bonar,

and Alan Lesgold for helpful comments and criticisms.

REFERENCES

1. Asch, S.E., Studies of independence and submission to group pressure: A minority of one against a
ananimous majority. Psychological Monographs, 1956, 70.

2. Bertin, Jacques, Semiology of graphics, W. Berg, transl., Madison, WI: University of Wisconsin
Press, 1983.

3. Brainerd, W.S., and L.l Lundweber, Theory of Computation, New York: John Wiley and Sons,
1974.

4. Bonar, J. and R. Cunningham. Bridge: .\n inteiligent tutor for thinking about programminy, in
Artificial Intelligence and Human Learning, John Self, ed., London: Chapman and Hall
Publishing, 1988

5.Card,S.K ., Moran, TP, und \. Newell, Fhe Psyveiology of Human-Computer [nteraction, Hitlsdale,
N.J: Lawrence Ertbaum Associates, 1983,

6. Casner, Stephen, Building customized diagramming languaves, in Visual Languages and Visual
Programmunyg, S.-K. Chang, ed., New York: Plenum Press, in press.

7. Casner, Stephen, and Jill H. Larkin, Cognitive efficiency considerations for good graphic design,
submitted (also available as Learning Research and Development Center Technical Report,
1989).

39

8. Casner, Stephen and Jeffrey Bonar, Using the expert's diagrams as a specification of expertise, in
Proceeedings of the IEEE 1988 Workshop on Visual Languages, Pittsburgh, PA, October
10-12, 1988, 150-157.

9. Cleveland, W.S., Elements of Graphing Data, Monterey, CA: Wadsworth Advanced Books and
Software, 1895.

10. Cleveland, W. S. and R. McGill, Graphical perception: Theory, experimentation, and application to
the development of graphical methods, Journal of the American Statistics Association 79
(387), Sept., 1984, 531-554.

11. Cunningham, R.E., Corbett, J.D., and J.G. Bonar, Chips: A tool for developing software interfaces
interactively, Learning Research and Development Technical Report No. LSP-4, October
1987.

12. Genesereth, M., and N. Nilsson, Logical Foundations of Artificial Intelligence, Los Altos, CA:
Morgan Kaufmann Publishers, 1987.

13. Goldenberg, E. Paul, Mathematics, metaphors, and human factors: Mathematical, technical, and
pedagogical challenges in the educational use of graphical representation of functions,
Journal of Mathematical Behavior 7, 1988, 135-173.

14. Gould, J.D., and Lewis, C., Designing for usability: Key principles and what designers think,
Communications of the ACM 28, 3 (March 1985), 300-311.

15. Hegarty, Mary and Marcel Just, Understanding machines from text and diagram, in Knowledge
Acquisition from Text and Picture, H. Mandl and J. Levin, eds., Amsterdam: North-Holland,
1988.

16. Jarvenpaa, S.L. and G.W. Dickson, Graphics and managerial decision making: Research Based
Guidelines, Communications of the ACM 31, 6 (June 1988), 764-774.

17. Kieras, D., and P.G. Polson, An approach to the formal analysis of user complexity, [nternational
Journal of Man-Machine Studies 22, 1985, 365-394.

18. Koedinger, K.R. and J.R. Anderson, Abstract planning and perceptual chunks: Elements of
expertise in geometry, to appear in Cognitive Science.

19. Larkin, Jill, "Display-based problem-solviny,” Complex Information Processing: The Impact of
Herbert Simon, Klahr, D, and K. Kotovsky, eds., Hillzdale, NJ: Erlbaum, 1239.

20. Larkin, Jill and Iterbert Simon, "Why a diagram is (sometimes) worth 10,000 words,” Cuznitive
Science 11, 1987, 65-99.

21. Mackinlay, Jock, ".\utomatiny the design of graphical presentations of relationad intformation,”
ACM Transactions vn Graphics 3(2), April 1986, 110-141.

22. Marey, E.J., Lu Methode Graphique, Paris, 1385.
23. Norman, Donald, The Psychology of Evervday Things, New York: Basic Books, 1933,

24. Payne, Slepheﬁ and T.R.G. Green, Task-action grammars: A mndel of the mental representation of
task languages, International Journal of Man-Machine Studies 2, 1986, 93-133.

*»

40

25. Schmid, Calvin F., Statistical Graphics: Design Principles and Practices, New York: John Wiley
and Sons, 1983,

26. Schneider, Walter, Training high-performance skills: Fallacies and guidelines, Human Factors 27
(3), 1985, 285-300.

27. Tufte, Edward R., The Visual Display of Quantitative Information, Cheshire, Connecticut:
Graphics Press, 1983.

