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Foreword

This report summarizes the significant literature in the area of
image texture segmentation, classification, and synthesis. The intent
is to provide guidance and direction to the approaches available
for image texture processing and a measure of their relative merit.
The goal of this effort is to utilize texture processing techniques
for the classification of acoustic provinces in sidescan sonar imagery.

W. B. Moseley L. R. Elliott, Commander, USN
Technical Director Commanding Officer
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Executive Summary This report reviews the literature in the areas of image texture segmenta-
tion, classification, and synthesis methods. The approaches to these
areas are grouped into areas of fractal, spline, neural networks, model-
ing, and stochastic methods. An immense amount of literature in the
area was reviewed, and techniques with the most merit are presented.
From the review it appears that no single approach provides a robust
texture analysis methodology without requiring overwhelming complexity.
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Survey of Texture Segmentation, Classification,
and Synthesis Methods

1.0 Introduction This report surveys the documents reviewed in the areas of texture
segmentation, classification, and synthesis. The motivation behind this
research is to obtain an inventory of the techniques available, and their
relative merit. The purpose of this research is to assemble a core of
techniques that can be applied to generic texture processing problems.
The goal of this effort is to utilize texture processing techniques for the
classification of acoustic provinces in sidescan sonar imagery. This
section defines texture and discusses some of the perceptions obtained
from the literature review.

Modestino et al.1 describe tone as the average gray level of a region
and texture as the spatial distribution of gray levels in a region. They
further indicate that a subtle relationship exists between tone and tex-
ture that is highly dependent upon resolution; tone dominates at both
high and low resolution of a scene. They define texture as "a basic
local order or quasi-homogeneous pattern that is repeated in a nearly
periodic manner over some region large in comparison to the local
pattern size." They indicate, and it seems to be widely accepted, that
there are two fundamental approaches to texture discrimination: structural
and statistical.

In general, a given texture problem requires a combination of these
techniques. Consider the following examples of textures. A sand texture
can be handled with strictly statistical methods and a group of parallel
lines with strictly structural methods. Brick has a kernel that can best
be described by statistical methods, but the placement of this kernel is
best handled by structural methods. Straw has a structurally defined
kernel with a statistical placement rule.

In reviewing the literature about image texture, a perception develops
that there is pursuit for an algorithm that will globally perform the
task of texture analysis. In the two to three decades of this research,
hundreds of researchers have brought their own special tools into the
field from their areas of expertise. As a consequence, this area is difficult
to enter, there is an abundance of diverse techniques, each with its own
special language and mathematics. Furthermore, each approach in turn
appears to suffer a similar fate. In the beginning each new technique is
typically proclaimed as a definitive solution, but shortcomings are quickly
discovered. An abundance of research then ensues to overcome these
shortcomings. However, in the process of this fortification, the technique
often becomes too complicated and unwieldy to use. The most recent
example of this process is demonstrated by the relatively new area of
fractals. This approach, attributed to Mandelbrot, 2 is currently in the
process of fortification, as evidenced by the efforts of Ait-Kheddache
and Rajala.3 In this 1988 paper they indicate that visually distinct textures
may be indiscernible by fractal dimension (e.g., bark and pigskin) and
proposes the use of "higher order" fractals for the segmentation
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and classification of texture, based on work done by Hentschel and
.4Procaccia.

It would seem that the efforts in the area of texture could be best
described as a group of techniques Nk, which are completely effective
on a corresponding group of images k, where each /k is a subset of the 0
whole image space Q2. Typically, each N k technique is straightforward
and computationally efficient, and is effective on approximately 80% to
90% of the images to which it is applied. In an attempt to modify Nk

so that it can also contend with images in the set Q - ik , the technique
quickly grows to be computationally inefficient, complicated, and
unrecognizable. An explanation for this recurring phenomenon may lie
in the fact that the human vision/recognition system is not well under-
stood, and the efforts in the way of texture processing are an attempt
to model and mimic this system.

The first stages of this literature review have established that the best
method of texture analysis is, in fact, several methods. Almost any
particular texture analysis technique can likely be made to handle most
images, but the result is an overly complicated, time consuming method.
It would therefore seem more practical to use a variety of methods in
their simplest and most computationally efficient form as a front end to
the human vision system or perhaps to an artificial intelligence (AI)
system. Pursuing avenues that lead to complex and inefficient solutions
is needless, since many already exist and the computer hardware necessary
to handle these solutions does not. Review of the literature has proven
fruitful in this regard: it reveals blind avenues that others have followed
and provides a menu of techniques with various attributes. Each tech-
nique should be judged primarily on its efficiency and simplicity, and 0
different techniques should be compared in regard to the particular
class of imagery on which they are effective.

A new technique for texture processing has recently emerged. Neural
networks have shown a great propensity for easily coping with nonlinear
and chaotic phenomena. Neural networks are conceptually and compu-
tationally straightforward, but presently require excessive processing
time when simulated on a conventional digital computer. There is a
great amount of interest in the field, and several vendors report that
specialized hardware will soon be available. Widrow and Winter s have
already used neural networks to create a pattern recognition classifier
that is insensitive to translation, rotation, and changes in scale; these
operations have posed significant problems in the area of image processing,
yet are easily coped with by the human visual system. Neural networks
may prove to be highly effective for making decisions based on
information from several different texture extraction preprocessing
algorithms, or it may also be possible to directly apply a neural network
to model the phenomena that generate an image.

The following sections review the more promising techniques and
indicate their relative merit. Section 2.0 reviews papers that have done
comparisons between various algorithms. Section 3.0 reviews fractal
approaches, and Section 4.0 discusses a paper on the generation of
fractals using spline techniques. Section 5.0 discusses the newer neural •
network approaches to texture processing, and Section 6.0 briefly reviews
some of the more traditional modeling and stochastic techniques. Finally,
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section 7.0 discusses the principal conclusions drawn from this litera-
ture review.

2.0 Technique Comparisons Surprisingly few papers compare various techniques or attempt to
survey the area of texture processing. Furthermore, most textbooks pro-
vide only a cursory coverage of the wide variety of the techniques that
have been attempted.

Perhaps this deficiency is best explained, as it has been so aptly put
by many, by the fact that so many of these techniques are ad hoc by
nature. Only two survey papers were found: Haralick,6 and Conners and
Harlow.7 Haralick is referenced many times, and his 1979 paper seems
to be well accepted as a baseline summary of the available techniques
up to that time. Haralick made a significant point in referring to the
current techniques, in that they typically emphasized either the tonal
primitive properties or their spatial interrelations, but not both. In this
paper he indicated eight popular statistical approaches to texture analysis:

autocorrelation function - Given a bounded region, 0 < u _ L. and
0<v < Ly, where (x, y) are the x, y translations, and I (u, v) is the total
"energy" of the image at position (u, v), then the autocorrelation is
given by:

1  f I (iiv)(u+Yv+y)dudv
p ( r , y ) = ()

Haralick describes tonal primitives as regions with uniform tonal
properties. If the tonal primitives are large, the autocorrelation drops
off slowly with distance; if small it drops off rapidly. If the tonal
primitives are periodic, the autocorrelation will also display a periodic
behavior.

optical transforms- the light amplitude distribution at the front and
rear focal planes of a lens are Fourier transforms of one another.

digital transforms - images are typically divided into smaller areas,
and digital transforms are applied. The areas are then compared based
on the transform characteristics. Popular transforms include the discrete
Fourier transform (DFT), sine and cosine transforms, Hadamard trans-
form, Slant transform and the Harr transform.

textural edginess - fine textures have many edges per unit area.

structural elements -for binary images, this technique emphasizes
the shape aspects of tonal primitives.

spatial gray-tone co-occurrence probabilities - a coarse texture has
a slight distribution change with distance, and a fine texture has a
larger change. This method does not capture shape aspects of the tonal
primitives and does not work well for textures with large area primitives.

Survey of Texture Segmentation, Classification, and Synthesis Methods 3



A previous paper by Haralick et al.S showed how to obtain 14 different
features from the gray-tone co-occurrence matrix, including entropy,
maximum probability, contrast, correlation, inverse difference moment,
and probability of run length. The co-occurrence matrix P, {P : G x G
to [0,1]) for an image I and binary relation R is given by:

P ,j)=no.[((a,b), (cd))ER II (a,b)= i and I (cd)=j] (2)
no. R

gray-tone run lengths - primitives for this method are maximal collinear
connected sets of the same gray tone. A coarse texture will have many
pixels in a gray-tone run, and a fine texture will have fewer.

autoregressive models - these models utilize linear estimates of previous
gray tones to generate the next gray tone. These models may be causal,
semicausal, or anticausal, and often inject a noise variable. For coarse
textures the coefficients will be similar, for fine textures the coefficients
in the linear estimate will have a wide variation. This approach is simple
and easy, but does work well with macro textures.

Haralick 6 further indicated that the first three techniques measure
spatial frequency, but that they are not invariant under monotonic
transformations of gray tone. For these techniques, fine textures will
have high frequencies, and coarse textures will have predominantly low
frequencies. He further mentioned that Weszka et al.9 showed that the
effectiveness of these techniques were significantly poorer than other
approaches.

Haralick made only little mention of structural approaches in this
paper. One such technique is mosaics, where a picture is tessellated
into regions and gray levels are assigned to each region based on a
specified probability density function. Also, he indicated that for macro
textures, investigators are using histograms of primitive properties and
co-occurrence of primitive properties as a generalization of the structural 0
and statistical approaches.

Conners and Harlow 7 made a detailed comparison of four algorithms:
* spatial gray-level dependence method (SGLDM)
* gray-level run length method (GLRLM)
" gray-level difference method (GLDM)
" power spectrum (PSM).

Conners and Harlow examined these algorithms based on the texture
information content of the intermediate matrices of the processes, and
thus determined the relative sets over which each algorithm is effective.
The results of their analysis follow:

" GLRLM could not discriminate all visually distinct texture pairs.
• There exists a visually distinct texture pair for which GLDM cannot

discriminate for any value of spacing, d.
" PSM cannot discern all visually distinct texture pairs.
* SGLDM can discern a larger class of textures than GLRLM, even

when only a sample spacing of I is used. SGLDM is also more powerful S
than GLDM and PSM.

* GLDM is more powerful than PSM.
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* None of these algorithms could discriminate between a Markov
texture and a 180 degree rotation of the texture.

" The GLRLM suffers from noise sensitivity.
" SGLDM and GLDM work better when multiple intersample spacing

distances are used.
- SGLDM is much more powerful than the PSM.

Weszka et al.9 analyzed these same algorithms, but Conners and Harlow 7

indicate that the comparison methods used by Weszka et al. were not
general enough to completely judge the algorithm's performance. However,
both papers drew the same conclusions on the relative power of these
four algorithms.

3.0 Fractal Techniques A fractal is an object with the property that it is self-similar at various
scales of magnification. Consequently, such an object has a fractional
dimension and its power spectrum is a function of 1/frequency. The
classical example'0 is the measurement of a shoreline, where the length
of the shoreline increases as the length of the measuring device decreases.
This effect can be stated as follows: given a yardstick of length L, the
measurement of an n-dimensional surface is given by M = nLD, where
D is the topological dimension of the yardstick. Given a fractal surface, D
is the fractional power that yields a consistent measure M for all sizes
of the yardstick L. 10 A more rigorous definition is: A random function
1(x) is a fractal Brownian function if for all x and Ax

Prob. I(x+Ax)-I(x) <y =F(y), (3)

AIIA I H )

where the spectral density of a fractal Brownian function is proportional
to f -2H- 1.

Fractals and fractal dimension have proven to be extremely valuable
in texture analysis and synthesis. °'0 11'1'2 13 They have been the only effective
method for generating realistic-looking terrain, clouds, and many other
objects that occur in nature. The use of fractal dimension has proven to
be highly effective in the segmentation and classification of many textures.
Perhaps their greatest attribute is the simplicity and numerical efficiency
of their algorithms. Mandelbrot2 is acknowledged to be the father of
fractal mathematics, although his work may be hard to follow and utilize.
Books by Barnsley et al.," Barnsley, 2 and Peitgen and Richter 3 seem
to be much more functional. The Science of Fractal Images" is a
collection of papers and lecture notes from many of the major researchers
in the area, and includes several ready-to-implement algorithms. Fractals
Everywhere12 is an excellent treatment of the mathematics involved and
is easy to follow. The Beauty of Fractals13 takes more of a dynamical
systems approach, looking deeper into the chaotic phenomena that generate
fractal shapes.

In his paper, Brammer 14 discusses many of the uses and character-
istics of fractals and fractal dimension.
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* It is generally true that the image of a fractal set is fractal with a
direct relationship between the dimensions.

• The fractal dimension at multiple resolutions can be used to determine
object ranges in imagery.

- The fractal sum of pulses method has been used for cloud analysis
and forecasting.

- Fractal dimension is used for detecting manmade objects in natural
scenes and for the automated detection of cracks in industrial applications.

- Fractal techniques are being used for image compression. The Peano
scan method achieves a bit rate of less than one bit per pixel. Barnsley
et al." are working on an iterated function method of image compression
that would give supervised compression ratios on the order of 10,000: 1,
and automated ratios of 125:1.

Fournier et al.15 provide algorithms that are a modification of
Mandelbrot's techniques, but are more computationaLy efficient. They
explain that the shear displacement process requires O(N 3) operations, 0
that the modified Markov process requires O(N log(N)) operations, and that
the inverse Fourier transform requires O(N log(N)) operations. Fournier
et al. provide algorithms in Pascal for fractal line and surface genera-
tion that require only O(N) operations. They note that the generated
objects are not stationary, isotropic, or self-similar, but that they are 0
realistic looking.

Pentland1 ° is frequently referenced by other researchers, and in this
paper he derives the relationship between the fractal dimension of a
surface and the fractal dimension of its image. He shows that a three-
dimensional (3-D) surface with a spatially isotropic fractal Brownian
shape produces an image whose intensity surface is fractal Brownian and 0
whose fractal dimension is identical to that of the components of the
surface normal, given a Lambertian surface reflectance and constant
illumination and albedo. Thus, if the surface is fractal, so will be the
image. Furthermore, the fractal dimension of imaged contours is the same
as that of the 3-D contour, and the surface's dimension is 1 plus the 0
contour's dimension. To determine if an image exhibits a fractal nature,
Pentland suggests that histograms over multiple scales can be used.
Using this method, if the standard deviation of the histograms are nearly
linear versus scale, then the image is fractal-like. An important charac-
teristic noted in this paper is that the fractal dimension of regions that
contain a boundary is typically less than the topological dimension. 0
Although this result is erroneous,10 it can be used successfully for edge
detection in an image.

In this paper, Pentland also reports the results of a fractal dimension
texture segmenter, which yielded a classification accuracy of 84.4% in
contrast to 65% for correlation statistics and 72% for co-occurrence 0
statistics. He used the power spectrum method of determining fractal
dimension given by log(P(f)) = - (2H + 1) log(f) + k, where P(f)is the
power spectrum, and the fractal dimension is given by 2- H. In this
test he used 8 • 8 pixel blocks, and he indicated that the results typi-
cally proved effective over scales of 4:1 and in some cases as much as
8:1. Pentland also indicated that one of the shortfalls of fractals is that •
they do not describe regular or large-scale spatial structures. However,
a possible method for handling this situation is first to detect the edges
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in the image and then to analyze the nonedge regions. He also points
out that fractals are strictly an abstraction and that physical objects will
behave like fractals only over a range of parameters; researchers seem
to have often overlooked this point in their discussions of the use of
fractal dimension for image analysis.

Keller et al.16 describe an unsupervised, low computational segmentation
routine that uses an improvement on the lacuanty feature introduced by
Mandelbrot. The term lacuarity is used to describe the characteristic of
fractals that have the same fractal dimension but exhibit different textures.
Keller et al. indicate that fractal dimension alone is generally insuffi-
cient to classify natural textures, and that natural fractal surfaces typically
exhibit statistical self-similarity vice deterministic self-similarity. In
this paper, thc segmentation was performed by clustering, and the box
dimension was used to estimate the fractal dimension. The paper includes
the algorithms for calculating the box dimension and the technique for
K-means segmentation. Keller modified the box-c inting method
for dimension estimation, thereby producing the "interpolation" method.
This method helped to overcome the quantization effects by interpolating
between the center point of a cube and each of its neighbors. The
results of the segmentation were excellent, indicating that this technique
shows great promise.

Margerum and Werkheiser1 7 provide code written in LISP for generating
fractal landscapes. They included several generated images and demon-
s1rated the effects of parameter change in the generation algorithm. The
scene generation involved using a coarse elevation grid and the formula
E., = Eayg + Rd 3 D, where E,, is the new elevation of the center
point of a square on the grid, E,g is the average of the four comer
values of the square, R is a random number from a Gaussian distribution,
d is the distance from the center point of the square to a vertex, and D
is the fractal dimension. A fractal dimension near 2 provided the most
realistic-looking results.

Vemazza18 provided a much needed comparison of fractal-dimension
estimators. He compared the results of four approaches to measuring
the fractal dimension of an image: the spatial Pentland approach, the
frequential Pentland approach (using the power spectrum), the blanket
approach, and the 'Euclidean approach. For the test he used an image
with fractal dimension of 1.2 and an 8 - 8 mask size. Once the fractal
dimension of each block was computed, the image was segmented using
a histogram of the fractal dimension. The best results were given by the
spatial Pentland method and the blanket approach, with the blanket
approach providing the best estimate of fractal dimension. The frequen-
tial Pentland approach and the Euclidean approach produced very jagged
curves, requiring linear estimation to determine the fractal dimension.
The procedure for the blanket approach is as follows:

An image is covered with an upper surface u(e, i,j) and a lower
surface b(E, i,j). Defining the gray-level image g(i,j) = u(O, i,j) = b(O, i,j)
at the beginning, with z = 1, 2, 3, . ., the blanket surfaces are

u(e, i, J) = max ju(e- 1, i, J) + 1, max u(e- 1, m, n))

for I(m, n) - (i, j) < 1 (4)
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and

b(e, i, j) =rin (b(e- 1, i, j) - 1, min b(E- 1, m, n))

for I(m, n) - (i, j)l< 1, (5)

where the image points (m, n) are the four neighboring points of (i, j).
The blanket volume is given by

V(E) = 7_ u(,i,j) - b(E,i,j) (6)
i, j

and the surface area is

A(e) = (V(e) - V(e - 1))/2. (7)

Thus, the surface area A is computed for different e values and, since
A(e) = X,2-D, D can be computed in the bilog plane as an estimate of
the linear regression.

Peleg et al. 19 introduce the concept of fractal signature. They describe
the fractal signature as the change in measured image surface area with
a change in scale. Using the blanket method given above by Vernazza,
they define the fractal signature as S(e) = 2- D. For a truly fractal
object, S is invariant with changes in e. For a nonfractal surface, the 0
magnitude of the fractal signature S(E) indicates the amount of informa-
tion that is lost for a given yardstick e. A high value of S(e) for a small
E indicates the presence of high frequencies in the image, and high
value of S(e) for a large E indicate the presence of low frequencies in
the image.

Thus, S(e) directly provides information about the fineness or coarseness
of a texture. Using the Peleg et al. method, textures are compared via
their fractal signatures:

D(i,j)= y (S, (e)-S, (e)log ) (8)
£

where the log weighting is due to the unequal spacing between points
in the log-log scale. They indicate that this technique required only a
small number of texture descriptors and used E = 2 to 49 in this paper.

Apparently prompted by Mandelbrot's comments that coastline
measurement yielded different results depending on whether the mea-
surement is made on the land side or the water side, Peleg et al. defined
a two-sided volume and area for the blanket technique. The new volume
and area measures are given as

Ve = UG D. ((i)-g901jA), (9)

i,j
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VI: T (g (, j) - b(i, j)), (10)

i,j

A+ (e)= V - v_ 1 , (11)

A (e) = - V'_ 1, (12)

with corresponding fractal signature measures S+ and S-. The new dis-
tance measure for comparing textures is given by

D(i,j)- . (S+T( e)-S() + (STe)-S(E))2 }log( +/2 . (13)
£ L

Testing with these new measures revealed that graphs of S- represented
the shapes of objects in an image, and S is the same for two different
images with the objects arranged in different positions. The measure S ,
which represents the background of the image, produced different results
for different object arrangements. Peleg et al. also mention that these
algorithms can be modified so that the blanket growth direction is
directional and thus sensitive to directional textures. This paper clearly
indicates that fractal measures can provide much significant information
even for nonfractal images.

Arduini et al.20 extend the Peleg et al. work by providing an adaptive
method of choosing the optimal mask size for determining the fractal
dimension of an image region. Arduini et al. note that a large mask will
tend to smooth the fractal dimension D in the area, but a small mask
will be very sensitive to noise. Furthermore, a large mask allows deter-
mination of D to a higher accuracy, but a small mask provides for better
spatial resolution. They also comment that when using the blanket method,
the surface area A(E) is given by Mandelbrot as A() = V(E)/2 e, and is
given by Peleg et al. as A(E) = (V(e) - V(E - 1))/2. They indicate that
the Peleg et al. method is less noise sensitive and that the Mandelbrot
method gives a more precise value. The Arduini et al. method involves
using a 20 0 20 mask over an image, and subdividing this mask into a
set of 10 smaller masks of various sizes and shapes. For each of these
smaller masks, they divide the mask into 5 - 5 blocks, compute the
fractal dimension for each block, and compute the variance of the fractal
dimension for these 5 e 5 blocks. Thus, the best mask to use for the
20 0 20 region will be the one with lowest variance in fractal dimension
among its 5 - 5 blocks.

For a test of this method, a fractal image of dimension 2.7 was
used with a patch having a fractal dimension of 2.3. The patch was not
visually discernible, yet the segmentation algorithm easily detected the
patch. In comparison to other fractal estimation techniques using
a 5 -5 mask, a 10 • 10 mask, and a region growing technique, the
Arduini et al. method provided the best results, particularly in its
preservation of the edges of the patch. They indicated that the
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FORTRAN-implemented algorithm took 6 hours for a 256 - 256 image
on a Hewlett-Packard HP1000 computer.

Ait-Kheddache and Rajala 2' extend fractal techniques to encompass
a larger class of images, i.e., to include images that contain different
textures with the same fractal dimension. They use the generalized
dimensions of fractals derived by Hentschel and Procaccia,4 where the
generalized dimension Df is given by

Df lir log{ i = 0 pieXp (f -1)logp} (14)

for any f> 0. Hentschel and Procaccia have proven that

lim Df = Do = fractal dimension, (15)
f +0

lim D- = information dimension, (16)
f - + I

lim D1 = D2 = correlation dimension. (17)
f 2

Ait-Kheddache and Rajala present images of bark and pigskin as an
example of textures that cannot be discerned by fractal dimension alone.
In their tests they used the lower three generalized dimensions (DO, D1,
and D2) to classify textures. Their results were 100% classification for
water/grass, water/sand, and bark/pigskin, and 81% for grass/sand. The
methods for computing the information and the correlation dimension
are a trifle complicated, but are explained in detail by Hentschel and
Procaccia.

4

While splines are typically a tool for graphics and for data interpo- 4.0 Spline Techniques
lation, the paper by Szeliski and Terzopoulos 22 is pertinent to texture
processing in that it provides a novel approach to generating fractal
curves. Two good references for spline fundamentals are Ahlberg et al. 23

and Bartels et al.24 Typically, a spline is a cubic function that is fit to
a series of points to form a smooth curve. These functions are typically
smooth in the first and second derivatives, but have a jump in the third
derivative. Techniques exist for both interpolation (exact fit to a data
set) and for approximation, where the maximum distance is specified
between the points and the spline. The fundamental theorem of splines,
due to Holladay (1957), is given by Ahlberg et al.23

Given a set of xi on the interval [a, b] and a corresponding set yi, 0
then of all functions f(x) having a continuous second derivative on
[a, b] such that f(xi) = yi, the spline function S(f; x) with junction points
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at the xi and with its second derivative equal to 0 at x = a, b minimizes
the integral

f bIf "(X)1 2 dx (18)

In their paper, Szeliski and Terzopoulos mention that splines are
easily constrained and well suited for modeling smooth objects, and
that fractals are more suitable for generating irregular shapes but are
difficult to constrain. They indicate that the generation of fractals using
Fourier methods results in fractals that cannot be controlled locally,
and that the standard perturbation method results in a nonstationary
process. To overcome these weaknesses,' Szeliski and Terzopoulos
employed a general class of multivariate spline models called controlled
continuity splines, which afford local control over smoothness. Using
this spline model, they injected white noise, and the smoothing effect
of the spline spread this noise spatially to produce a fractal-like curve
while retaining local control of the curve. He applied this technique to
synthesize realistic terrain from sparse elevation data with very impressive
results.

5.0 Neural Networks Neural network technology is the newest player in the texture analy-
sis arena, and it appears to have a great propensity for modeling nonlinear
and chaotic phenomena. A neural network is formed by connecting one
or more layers of neurons, where each neuron performs: 25

Xi -g Tijj + Oi (19)

- inp out

where Xj"' are the inputs to the neuron, X is the neuron's output,
T0 are the neuron's weights, 0 is a constant, and g(x) is a nonlinear
function, typically a sigmoidal form. The network is "trained" to behave
like a particular system by feeding it an input/output sequence of the
system to be mimicked. If t are the training output values for the p'h
input pattern, and 0 are the actual output values, the network is trained
by minimizing

E= " - OP)2 , (20)
p i

where i indexes the number of neurons in the output layer. An iterative
procedure for training, known as the backpropagation method, is given
by Lapedes and Farber 25 as follows:

A T-- =I S)o ( )  (21)
p
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and

Ai = EX 8p, (22)
P

where, for a neuron in the output layer,

s p) &) ((P) P 0
o )o, - oi (23)

and, for a neuron in a hidden layer,

8()= &)I- &) 6 P) (24)

This procedure involves first computing 8i for the output layer and then
using the previous equation to compute 8i for the hidden layers.

Lapedes and Farber25 proposed that a large class of functions of the
form R' mapping to R' can be accurately approximated using only two
hidden layers of neurons. They indicated that most signal processing
tests cannot distinguish between chaotic behavior (nonlinear systems)
and stochastic noise, and showed the ability of a neural network to
model the Glass-Mackey equation, which exhibits chaotic behavior. For
this test they used g(x) = 1/2(1 + tanh(x)) as the sigmoidal function.
Using the results of Takens 26 their system used four input nodes, since
the Glass-Mackey equation generates a strange attractor with dimen-
sion 3.5.

In an earlier paper, Lapedes and Farber 27 showed through testing that
neural networks are able to predict points in a chaotic time series with
orders of magnitude greater accuracy than conventional methods, such
as the Linear Predictive method and the Gabor-Volterra-Weiner
Polynomial method. They state that neural networks perform well, since
they globally approximate a system's mapping by performing a generalized
mode decomposition. They mention that the accuracy of the network
can be improved by increasing the number of neurons in the hidden
layers (the layers between the input and output nodes). For the Mackey-
Glass equation modeling, they used a two-layer neural network with
10 neurons in each hidden layer. This system required about 30 to
60 minutes training time on a Cray X-MP computer. They also presented
an interesting analogy between neural networks and Fourier analysis, 27

which is summarized in the following paragraph.
Consider the sum of two sigmoids: a1g (blx + cl) + a2g (b2x + c2); it

is seen that b adjusts the slope of the sigmoids, c adjusts the shifts, and
a adjusts the gain. If we let g be sinusoid, then a acts like a Fourier
amplitude, b like frequency, and c like phase shift. The a's are the
synaptic weights of the hidden to output layer, the b's are synaptic

12 Survey of Texture Segmentation, Classification, and Synthesis Methods



weights of the input to the hidden layer, and the number of g functions
is the sum of number of hidden units in the hidden layer. The number
of adjustable frequencies (using sine vice sigmoid) is thus determined
by the number of neurons in the hidden layer.

Lapedes and Farber 27 also presented a convenient scaling methodology,
where the network is "trained" using an input/output sequence in the
range of 0 to 1. Once the network has completed training, the network's
weights can then be scaled to handle inputs of an arbitrary range.

Many successful neural network applications to image processing
have been reported. Widrow and Winter5 used a neural network to
produce a pattern recognition classifier that is insensitive to translation,
rotation, and scale changes. Wilson 28 used neural networks as a voter
for pattern recognition. Wilson applied vector morphology to the texture
analysis problem and used neural networks for the voting logic involved
in determining the "fit" of image areas to the set of possible structuring
elements. Haykin and Leung2 9 successfully modeled radar sea clutter
using a two-layer neural network. Glover3" described a system built for
assembly line automatic inspection. The system consists of a video-
input optical/electronic Fourier feature extraction module and a PC/AT
with plug-in neural net board (Hecht-Nielson AZIOOO ANZA
neurocomputer) for feature signature classification. This system performs
global shape and texture analysis at speeds up to 15 images per second.

Tenorio and Hughes31 discussed a system that uses a Markov image
model, where Markov fields and approximate maximum a priori
probabilities are input to a neural network that is used to segment the
image. The system is invariant to rotation, scaling, position, translation,
and multiplicity of objects. They indicated that the system correctly
segments images regardless of the number of objects or their size,
providing the objects are within the knowledge base of the network.
This system will thus misinterpret unknown objects.

Mesrobian and Skrzypek 32 discussed a multilevel neural network
approach to the discrimination of natural textures. Their proposed system
will consist of three functional layers. The first layer is the feature
extraction network, consisting of parallel elements to extract edges,
line segments, line terminators, and corners from the image. The second
layer is the local boundary detection layer that locates the perimeter of
regions with uniform texture properties. The third and highest level
layer is the higher order discrimination network that attempts to segment
the textured images with a higher level of complexity. This level is
based on the premise that grouping mechanisms employed in the
discrimination of simple textures can also be used to discriminate textures
of greater structural complexity.

Manjunath et al." performed a comparison of texture segmentation
algorithms using a Markov random field model, implemented on Hopfield
neural networks. Segmentation tests were performed using an image
consisting of six Brodatz 3 textures. The following misclassification
error results were obtained:

- Maximum likelihood estimate - 22.2%
* Neural network with maximum likelihood estimate as initial state -

16.3%
" Neural network with random initial state - 14.7%
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- Neural network with simulated annealing - 6.7%
" Maximizing the posterior marginal distribution - 7.1%
" Neural network with stochastic learning - 8.7%
• Hierarchial network (coarse to fine) - 8.2%.

They indicated that although simulated annealing worked the best, 0
hundreds of iterations were required. Simulated annealing is a method
that allows the system to diverge in a controlled fashion to prevent the
solution from becoming trapped in a local minimum. The maximizing
posterior marginal distribution rule also performed well but required
hundreds of iterations. Reference 33 contains more details on the individual 0
approaches used.

Neural networks have two extremely attractive features: they are
conceptually simple, and they utilize a highly parallel approach that is
well suited for parallel processing. Many elaborate neural network soft-
ware packages are already commercially available, and neural network
hardware will soon be available that will allow the implementation of 0
high-speed networks. Neural networks may provide two promising avenues
to the texture analysis problem. One method will use traditional texture
analysis methods to extract feature vectors from an image and then use
a neural network to make inferences based on these vectors. Another
method will use a neural network to directly model the image by using •
the weights of the network as the feature vector of the image.

Many other techniques have been proposed and attempted with various 6.0 Modeling and Stochastic
degrees of complexity and fairly uniform degree of success. These Techniques
techniques can be roughly divided into modeling techniques, where a 0
model is specified for the generation or analysis of texture, and stochastic
techniques, where image statistics are used for texture identification.
This research focused on the newer techniques of fractals and neural
networks, although a few modeling and stochastic techniques were covered
in the process. The following two sections describe the papers that
present these types of techniques. •

Bovik et al.35 discussed texture analysis using local spatial filters, 6.1 Modeling
i.e., the Gabor function given by:

S
h(x, y) = g(x', y') exp[2nj(Ux + Vy)] , (25)

where (x',y') = (x cos 0 + y sin 0, -x sin 0 + y cos 0) and
(r/X) 2 +y29

g(x, y) = l/2nxt.a 2 exp 2+ 21

With their method, tunable Gabor filters are used to model an image,
and the segmentation is performed using channel amplitude and phase
comparisons. The Gabor filters have tunable orientation and radial
frequency bandwidths, making them well suited for this purprse. They
indicated that the channel amplitude response can be used to detect
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boundaries between textures and that large variations in the channel
phase response provide a way to detect discontinuities in texture phase.
The resulting segmentation achieved a good resemblance to visual per-
ception. The research performed in this paper was directed by physiological
evidence that Gabor-shaped receptive fields are fundamental to the
biological processing of texture.

Chellappa and Kashyap,36 Chellappa and Shankar,37'3 s Chellappa
et al. 39 and Chellappa 40 4 1 discuss the use of a two-dimensional noncausal
autoregressive model for the synthesis and classification of texture.
Chellappa and Kashyap 36 began with a Gaussian Markov random field
model given by

y (S) = 1 0, y (s + r) + '0)(S), (26)

rEN

and to simplify image synthesis they modified the model to be

y(s)= Y Ory(sEP)+ (0 (s),s E(, (27)
rEN

where Q = [(i, j), 0 <i,j<M-1], 0, and 13 are the model parameters,
eo(s) is a Gaussian noise signal, and N is the neighbor set of pixels for
the pixel y(s). E is the sum modulo M operator. The modified model
is said to have nearly the same second-order properties as the ideal
model for a large image. The set of M 2 equations can be represented in
a matrix vector form as

B(O)y = 1fpw, (28)

where B(O) is a block circulant matrix, and y and (o are M 2 vectors
derived from the arrays y(s) and co(s). Let the eigenvalues of B(O) be
given by p. If

p, = (I - 20T 4'), s E, (29)

where V, = col. [exp (slr-2M rEN], then an image vector y can

be synthesized by the following equations:

Y = I (f, '/R') + a (30)

SE Ql

a = E(y(s)), x, f Sp *T (._,l = Col. (,, 1 .. ) (31)
M

2
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f, = col. [ti, Xj tj . . -Xm Itj], M 2 
- vector (32)

M-1tj = col. [1, Xj, . . -], M -vector (33)

Xj =expf--2 IE s (i j)(34)

The algorithm requires O(M2 logM) operations. An extremely attractive
feature of this algorithm is the ability to control a specific set of parameters
0, and P, which determine the appearance of the texture. In earlier work
Chellappa and Kashyap tabulated the parameter values required to
duplicate several Brodatz 34 textures, using as few as 16 parameters for
a good representation. They also presented maximum likelihood methods
for determining the parameters required to fit their model to a given
texture.

Khotanzad 4 2 used methods similar to those of Chellappa. He used a
simultaneous autoregressive model given by:

for {g (x, y); x, y=O,..., M-l}

g(x, y) = , Oj, j g(x ED i, y E J) + %I- (o (x, y) ,(35)

(ij)eN

where N is a neighbor set defined in the spatial domain. He stated that
he used Chellappa's method of maximum likelihood for the model's
parameter estimation. Khotanzad specifically addressed texture classi-
fication in his paper, using different N models. Using one N model,
consisting of the four horizontal and vertical neighbors, and a second
that uses the four diagonal neighbors, he obtained an average correct
classification rate of 98%.

6.2 Stochastic
Cano et al.43 proposed a method to find a set of texture parameters

that is visually complete and compact, using a hierarchical filter bank
approach (multiresolution). The process involves applying a local mask H:

G1 (x, y) = Hl (x, y) Go (x, y); i = 1, .. ., N, (36)

where the first H is a low pass filter and successive H's are generated
by

H'= H -1 @1,. (37)

In equation 37, 0 denotes the Kronecker product. The size of the
mask increases geometrically with the level of resolution. The mean,

16 Survey of Texture Segmentaion, Classification, and Synthesis Methods



variance, and third-degree moments are then computed for each of the

images G1. The number of features that must be computed is given by

Nf= In2 (D-I)+D, (38)

where L is the number of hierarchical levels, D is the maximum degree
of moment, and n is the size of the mask. This method worked well for
stochastic textures but poorly for highly structured textures, since phase
information is excluded in the filter bank technique. For highly structured
textures Cano et al. developed a translation invariant operator based on
the Fourier transform. The resulting operator worked well on periodic
textures.

Fan44 used an edge-based hierarchical algorithm for image segmentation.
Generalized likelihood ratio like functions were used as discriminant
functions, and boundaries were located with a maximum likelihood
estimator. This algorithm required no prior knowledge of the texture
model parameters or the number of texture regions. The method worked
as well as 90% for some textures but as poorly as 60% on others.

Modestino et al.' discussed a texture discrimination approach based
on spatial gray-level co-occurrences and maximum likelihood classification
using a log-likelihood discriminator. This approach proved to be effective
on random fields with identical second moments, where autocorrelation-
power spectral density and edge density-correlation techniques were
ineffective. Because autoregressive models cannot account for edges
and because stochastic models do not provide for repetition of a local
pattern, Modestino et al. used a discriminator that employs both correlation
and edge density information. However, the discrimination process
required a knowledge of the model parameters for each texture. Another
disadvantage in this method is that an "interference" variable must be
judiciously set by the user. A tradeoff exists for the strength of the
interference between proper classification and ill-defined points of
the intersection of region boundaries.

Vickers and Modestino 45 extended Modestino's i work. Using this
technique, a training set of images is used for each texture class before
the unknown set is applied to the classifier. Required preprocessing
of the image included normalization, enhancement, and noise cleaning.
Testing on 8-bit Brodatz 34 images yielded classification rates as high as
98% over a small data set. Vickers and Modestino 4 previously outlined
a method to estimate the model parameters, whereas Modestino's' paper
required a priori knowledge of these parameters.

7.0 Conclusions It appears from this review that no single approach provides a robust
texture analysis methodology without an overwhelming amount of com-
plexity. The best approach to the problem seems to be to use a variety
of these methods in their simplest and most computationally economic
form. The idea of a multifaceted approach to texture analysis is also
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supported by the design of the primate visual system. It has been found47

that the visual center of the primate brain contains multiple maps of the
visual field, each sensitive to particular aspects, such as motion, color,
and shape.

Consequently, a texture analysis toolkit needs to be formed, prefer- 0
ably containing the better understood approaches. Edge detection must
be included in the toolbox for texture analysis, since most of the texture
approaches have difficulty with edges in an image. The edges typically
need to be isolated so that texture analysis techniques can be applied to
the regions between edges. The basic toolbox should probably include
edge detection, the gray-level co-occurrence matrix and its derivative
properties, fractal dimension, and a Markov random field model, since
results obtained by using these approaches are well documented. With
these analysis tools several image features can be extracted. These
extracted features can then be used as input to a human operator, to an
expert system, or to a neural network to perform the task of image
interpretation.

Neural networks may ultimately provide the infrastructure for a
"complete" visual system, incorporating both feature extraction and image
interpretation. Progress continues to be made both in the understanding
of the human visual system and in the development of parallel computing
machines. With the successful alliance of these two fields of research,
engineers and scientists may eventually be able to mimic the functionality
of the human visual system.
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