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Abstract

In recent years, methods of incorporating fault-tolerance in computer architectures
have shifted from the exclusive focus on traditional modular redundancy techniques
to include more efficient, analytical means of achieving the same result. Song and
Musicus (1990) describe such a method of analytic fault-tolerance by using a statis-
tical test and minimal redundancy to protect linear operations. Aliphas, Wei, and
Musicus (1991) in turn developed a hardware prototype to test this method of sta-
tistical fault-tolerance. Using this hardware prototype, a multidirectional, digital
interpolation sonar beamformer was implemented. Whereas the original prototype
used multiple processors performing the same task on different input data, this im-
plementation uses a different architecture whereby the same data is sent to multiple
processors performing different tasks. The digital beamformer relaxes the sampling
requirement typically required by sampling the incoming waveform at the Nyquist
rate and upsampling to form the beam. Implementing the beamformer on the cur-
rent architecture offered double fault detection and single fault correction capabilities
across a range of look angles. In conjunction with previous results, the results of this
thesis verify that the same fault detection and correction algorithm may be used for
architectures both with processors performing different operations on the same data,
and with processors performing the same operation on different data.

Thesis Supervisor: Thomas F. Knight
Title: Principal Research Scientist

Index Terms: Fault-Tolerant Computers, Digital Signal Processing Architectures,
Multidirectional Beamformers, Digital Interpolation Beamforming
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Chapter 1

Introduction

In a conventional N-modular redundant computer architecture, N copies of processors,

memory, and I/O units are driven with the same program and the same data. The

outputs of these N units are then compared to verify that they are operating correctly.

Although it is possible for these particular schemes to reliably detect or even correct

up to (N - 1)/2 errors, a large amount of additional hardware must be dedicated

to monitoring any potential faults, and the synchronization required between the

processors is very demanding. Traditional triple-modular redundancy, then, is capable

of single error correction, but at the expense of at least 200% overhead.

One method of incorporating fault-tolerance relies upon low redundancy, arith-

metic coding to protect linear computations against failure [2, 9]. This approach uses

a generalized likelihood ratio test (GLRT) in order to statistically produce the best

possible fault decisions in applications where the calculations are subject to trunca-

tion or rounding errors. The architecture utilizes a parallel bank of signal processors

performing the same linear function, where each processor operates on its own unique

input. This method of fault-tolerance was tested with a hardware prototype using

commercial processors, and successfully demonstrated [21.

A new approach to incorporating such analytic fault-tolerance has been taken

that creates the opportunity for an entirely new class of applications. By effectively

transposing the previous architecture, a design is achieved wherein a common input

is broadcast to a bank of signal processors each performing its own unique function.

9



Since one of the beneficial properties of linear operations is commutativity, it will be

seen that the same generalized likelihood ratio test will apply to the error detection

and correction of this new architecture. In addition, the opportunities for combin-

ing the two architectures exist, and open the door to a host of signal processing

applications.

To demonstrate the principles of this signal processing architecture, a multidirec-

tional sonar beamformer was chosen. Real sonar data was collected, and tested using

the beamformer programmed with existing hardware. Because of the low overhead

involved in arithmetic redundancy, such a sonar system is ideally suited for small,

unmanned applications where both power and size are constrained. This application

is only one, however, and certainly several others exist that could effectively utilize

such analytic fault-tolerance.

This thesis is broken into four remaining chapters. Chapter 2 reviews the deriva-

tion of analytic fault-tolerance for a single function architecture with multiple inputs.

Chapter 3 begins the work done for this thesis by extending the derivations of Chapter

2, and arriving at the new signal processing architecture with a single input and mul-

tiple functions. Chapter 4 discusses the aspects of digital interpolation beamforming,

and the implementation of a digital interpolation beamformer onto this single input,

multi-function architecture. Chapter 5 offers conclusions, and recommendations for

future work.
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Chapter 2

Multi-Input Single Function

(MISF) Fault-Tolerance

2.1 Aspects of MISF fault-tolerance

To meet the demands of many computationally intensive signal processing applica-

tions, massively parallel multiprocessor architectures are often used [8]. Some appli-

cations may require processors operating in parallel, and performing the same task.

For these types of applications, it is desirable to send different data to the different

processors in order to increase the total processing throughput. If N processors are

used in such an architecture, the total processing throughput is thus approximately

N times that of a single processor.

To protect these N processors from failure using triple modular redundancy would

require an additional 2N processors, as well as multiple voters to compare the outputs

of all processors. Figure 2.1 shows a triplicately modular redundant system for a single

processor. Each voter declares a processor's output faulty if it fails to agree with

the majority of all processor outputs. Majority here means two, so triple modular

redundancy is capable of isolating a single error. In theory, a single voter can isolate

an error from such a triplicated processor scheme. Additional voters are needed,

however, in the event that one fails. How the output of these triplicated voters are

then used depends upon the particular application. An alternative to this method of

11



t Processor

VoterInpu rocesor Output

Processor ] €

Voter

Figure 2.1: Triple Modular Redundancy for a single processor

fault-tolerance is to incorporate the redundancy analytically.

2.1.1 Adding redundancy

Figure 2.2 shows how redundancy is incorporated arithmetically with minimal over-

head.

F 2

0 0

Figure 2.2: MISF fault-tolerant architecture

In a manner analogous to adding parity bits to a data word, C "checksum" pro-

cessors are added to protect N "working" processors. Let Xk(m) represent a p length

data vector, or packet, sent to processor k at time m, where I < k < N. Each of the

12



C checksum processors then computes a different weighted linear combination of the

packets at time m, forming new packets (2]:

N
x (m)= wj,kj_.k(m) forj= N + 1,...,N + C (2.1)

k=1

where the Wj,k are scalar weights. The same linear function F is then applied to the

inputs of all N + C processors, producing r length output packets yk(m):

y_(m) = FxLk(m) for k = 1,...,N + C (2.2)

Thus F is an r x p matrix. The output error signals can then be computed by

subtracting the same weighted linear combinations of the outputs from the N working

processors, or channels, from the outputs of the checksum channels:

N
sj(M) = yj(m) - Ewj,kk(m) for j = N + 1,...,N + C (2.3)

k=1

For the ease of discussion, the time index m will be omitted from here on. Since these

error signals may be used for fault diagnosis, they will be referred to as syndromes.

If all processors have computed their results properly the syndromes should be zero,

since
N N

F wijkz_ =wWjkF-_k for j = N + 1,...,N + C
k=1 k=1

In actuality, the processors do not have infinite precision, and thus truncation or

rounding errors can be expected. These errors are typically small, and are uniformly

distributed over the range of the smallest quantization level used by the processors.

Furthermore, these errors due to limited precision occur randomly, and may be as-

sumed to be independent. By the central limit theorem then, in the absence of a

processor failure, the syndromes, which consist of a sum of uniformly distributed

random variables, may be approximated as low intensity white Gaussian noise.

To calculate the syndromes in the event of a processor failure, assume that the

output from processor k differs from its correct value by the composite error -k 19].

13



In this event, equation (2.3) becomes:

N

s,=-k-W,wkk +noise forj=N+1,...,N+C (2.4)
k=1

This equation can be simplified by defining the weights in the checksum processors

to be:
tob:-1 for i=j =1,...,GC25

WN+iN+J for i j(2.5)

so that
N+C

S= - wj,k k + noise for j = N + 1,...,N + C (2.6)
k=1

It is assumed that any hardware failures occur independently in the N + C pro-

cessors, so that at most one working or one checksum processor fails at a given time.

Suppose then that only the kth processor fails, so that only -k is nonzero. Given this,

the syndromes will have values:

S=- I -O5 + noise (2.7)

_N+C WN+C,kI

w here WN Ik

WN+C,kIj

is called the kth weight vector, and will be referred to as Wk.

Note that a checksum channel failure can be distinguished from a working channel

failure if at least two of the weights in the set {WN+l,k,. .. , WN+Ck} are nonzero for

all 1 < k < N [2]. Thus, a checksum channel failure results in only one non-zero

syndrome, whereas a working channel failure will result in at least two non-zero

syndromes.
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2.1.2 Selecting the weights

A block weight matrix can be defined, composed of the N + C weight vectors:

( WN+1,II1 . WN+1,NI -I .. 0

w. : : . (2.8)

WN+CiI WN+CNI 0 ... -I)

where each block is r x r. Naturally, the weights should be chosen so as to reduce the

difficulty of computing the checksum inputs and syndromcs. Small integers (0, ±1,...)

make particularly good choices, since no multiplication is needed then. A desirable

property is that the columns of W form a "complete set", wherein if (al a2--- aC)T

is a weight vector, then every vector of the form (±a l ± a 2 ... ± ac)T is also either

a weight vector or the negative of a weight vector [9]. This causes the weight vectors

to exhibit a useful symmetry.

There are various selection criteria for choosing the scalar weights wj,k, but they

should be chosen so that it is possible to distinguish between failures in the different

working processors. In case of failure on the kth channel, equation (2.7) implies that

the syndromes should lie on a line defined by the kth weight vector, Wk. If there was

no rounding or truncation noise present, the syndromes would fall perfectly on that

line. Due to errors of finite precision, however, they would not fall directly on the

line, but should fall close by. In this case, the processor closest in signal space to the

syndromes would be declared faulty. Hence it is desirable to maximize the angular

separation between weight vectors, in order to reduce the chance of a misdiagnosis.

If the inner product between any two weight vectors is defined as:

N+C

rk,m = WkWj, (2.9)
j=N+l

then the angle Okm between any two weight vectors k and m may be defined in the

usual manner:

cos01, = Irk,ml (2.10)
15rkkr-,m

15



To illustrate this method of geometric projection fault diagnosis, a simple two dimen-

sional weight matrix may be formed:

W= (C1 C3 -1 0) 2.1~ -~ ~5;)(2.11)

SI S3 0 -I1

where

Cn = COS(n) Sn =sin ( n)

Figure 2.3 shows the 4 columns of (2.11) assuming a block size of q = 1, where the

arrows indicate the weight vectors in two dimensional space. The angular separation

% HN+2
%

%I

H2  % WN+2 HI , H I
S I1)1

HN+I " 1l.......... .7 HN+IFa i- e ::::: U) WN+I

HI W 2 H2
I,

I %.HN+2 %

Figure 2.3: Weight vectors in 2D syndrome space with fault decision regions.

between weight vectors here is 45*. Syndromes falling far from the origin naturally

have higher energies, and probably correspond to a processor failure. Syndromes

falling near the origin have smaller energies, and probably correspond to mere round-

ing noise. Letting Hk be the hypothesis that the kth processor has failed, figure 2.3

shows the fault decision regions for the four different processors. The angular sep-

aration of the weight vectors may be further increased by using complex weights,

but at the cost of increased complexity. Furthermore, adding checksum processors

16



increases the syndrome space thereby allowing greater separation as well, but at a

cost of increased redundancy.

2.1.3 Fault detection and correction

If only one checksum processor was used in figure 2.2, then only one syndrome would

be formed. In this case, a single error could be detected, since that syndrome would be

zero except in the event a processor has failed. However, it is possible to distinguish

between a failure on processor k1 and processor k2 only if weight vectors W, and

W2 are linearly independent. This requires a minimum of two checksum processors.

Hence it is possible to detect and correct a single error with C = 2.

In general, in order to detect L failures, every possible set of L weight vectors

must be linearly independent, for otherwise it would be possible for a combination

of L failures to produce all-zero syndromes. This requires L dimensional weight

vectors, and therefore L checksum processors. In order to detect and correct up

to K failures, the hyperplane defined by all possible linear combinations of a given

set of K weight vectors cannot intersect with the hyperplane defined by all possible

linear combinations of any other set of K weight vectors, except at the origin [9].

In figure 2.3, if the hyperplanes are taken to be the lines represented by the weight

vectors, it is clear to see that these lines intersect only at the origin. So here, K = 1,

which is the dimension of a line. Detection and correction of up to K faults thus

requires a 2K syndrome space, or equivalently, 2K checksum processors.

Therefore, given C = 2K + L additional checksum processors, up to K + L

simultaneous failures may be detected, and, if no more than K have occured, can be

corrected, provided that every set of 2K + L weight vectors are linearly independent.

Note that the fault detection and correction capacity is independent of the number

of working processors. The work done so far has concentrated on a particular choice

17



of W, where N = 10 and C = 3:

I I I 1 0 0 I1 I I I-I 0 0

W= I I-I 0 0 1-I 0 -I 0 (2.12)
I - I-II -I 1 -1 0 0 0 0 -11

and therefore this configuration is capable of double fault detection, and single fault

correction.

2.2 Maximum likelihood estimation

A reasonable approach for diagnosing the failure is to measure the total syndrome

energy and compare it with a fixed threshold, y (8].

If it is above the threshold, i.e. if

N+C

j=N+I

then a failure has probably occurred. To diagnose the failure, hypothesize that pro-

cessor k has failed, with fault value -k" If this is the case, then each syndrome _j

should have the value -wj~k~k, according to equation (2.7). The energy Ek in the

difference between the observed syndromes and these expected values would then be:

N+C
Ek(_ ,) = E [[_1j + wj,kOk11 2  (2.13)

j=N+l

If processor k has actually failed, and 0 is the value of the actual failure, then Ek

will be on the order of the round-off noise. Otherwise, Ek will be large. Therefore,

for all N + C processors, estimate the failure Ok which best explains the observed

syndromes in terms of a failure on processor k in a least squares sense, assuming all

processor failures are equally likely:

4- min Ek(_k) (2.14)

18



Then the processor k most likely to have failed is the one that yields the smallest

difference in energy between the observed syndromes and their estimated values:

k +- min Ek(k) (2.15)

Correcting the output from processor k using the estimated fault value gives

(2.16)

Figure 2.4 shows this procedure graphically for an assumed batch size of q = 1. The

vector -Wk_¢ k is the projection of the syndromes s onto the kth weight vector line,

and the squared distance from s to the weight vector line is Ek(qS).

$N 2

length 4 k

/ k th weight vector

Figure 2.4: Graphical interpretation of MLE algorithm

This procedure can be shown [2, 9] to be equivalent to the following computation-

ally efficient algorithm:

Compute the cross-correlations pi,k between the syndromes

Pi,k =_k_ for j,k = N + 1,...,N + C

19



Compare syndrome energy with threshold

N+C

If Z Pkk > 7, then FAILURE
k=N+l

To correct the failure, compute relative likelihoods

PN+1,N+l . PN+l,Nr+C)WL ', = :' " .:w k
rk,k

PN+C,N+ " PN+C,N+C

N+C
where rkk = E fWJ,k l2

j=N+I

Choose the processor k with the largest L', (call it k).

Correct the fault
1 N+C

k = + - wk!!j  (2.17)
rk,k j-N+1

where -y is a constant threshold which can be set to achieve a desired probability

of false alarm, and the L' are proportional to the negative of the errors Ek plus a

constant. The reason for calling them relative likelihoods is explained below.

It is noteworthy to point out that this least squares algorithm can be shown 19] to
be optimal under some relatively simple conditions. It is already known that errors

due to finite precision arithmetic have been modeled as white Gaussian noise, with

statistics that may be precomputed based upon the linear function F, and the weights

wj,k. If, additionally

1. Rounding noise on each sample is uncorrelated with the signal and with round-

ing noise on any other sample.

2. There is either no rounding when computing the input checksums, or else the

linear function is an orthogonal transform.

3. The weight matrix forms a complete set.

then under these conditions, samples of the syndromes are all independent and iden-

20



tically distributed [2]. It will be seen that the beamformer implemented with this

analytic fault tolerance satisfies these conditions. Additionally, this least squares al-

gorithm is virtually identical to the statistically optimal Generalized Likelihood Ratio

Test (GLRT), which becomes a maximum likelihood criterion under the assumption

that all processors may fail with equal probability. The L' are relative because they

are proportional to the relative likelihood of a failure on processor k compared with

no failure at all. Furthermore, because the fault tolerance is statistical in nature, the

probabilities of error detection, false alarm, and misdiagnosis may be computed in

terms of the syndrome variances due to rounding and truncation noise.

2.3 Finite precision considerations

Any system designed to use the fault-tolerant algorithm described above utilizing cur-

rent signal processing technologies would benefit from employing floating-point arith-

metic, although the original algorithm considered the effects of fixed-point arithmetic

[9]. Floating-point processing carries with it its own implications. If the checksums

are computed with floating-point arithmetic, minimal rounding will occur in com-

parison to fixed-point arithmetic, and the energies of the syndromes will typically be

many times smaller. Therefore, hardware failures become easier to discover, and the

rounding noise in practice does not cause a measurable false alarm or misdiagnosis

rate.

Errors due to limited precision uncover a subtle disadvantage to using equation

(2.17) for error correction. In theory, once the faulty processor has been identified,

a simple linear combination of the syndromes is sufficient to estimate the fault; sub-

tracting this linear combination from the faulty processor's output yields the correct

data. In practice however, a fault can cause the floating-point processor's output to

have extremely large values, near the extreme limits of its dynamic range. These large

values are then carried over into the calculation of the syndromes, which will then be

very large as well. A weighted sum of these large valued syndromes may then cause

an overflow, causing trouble in the fault correction step. A more numerically reliable

21



approach to fault correction is to estimate the correct processor output directly from

the observed outputs of the other working processors. Combining equations (2.3) and

(2.17) yields:

= ±~ N+C - N+C NWjpY 7
E NW* Iy wlj,kwlj,m--

rk,k 3 =N+l - rk,k j=N+l m=1

1 N+C N+C 1 N

=k- E E Z w~jwj,.My, - - Erk j=N+l mN+1 - rk,k m=1

= - N+C

rk,k m=

- N+C (2.18)

mok

where rk, , is defined in (2.9). This formula is numerically more robust than (2.17),

although it involves about (N + C)/C times more computation.

2.4 Hardware prototype

The primary advantage of analytic fault-tolerance is that the computational overhead

is generally far less than the 200% overhead required by traditional triple modular

redundancy. This method, however, has its disadvantages as well. Because this

technique relies upon a statistical test to determine which processor most likely failed,

and the value of that fault, mistakes can occur in the presence of unusually high

rounding noise. Faults may be ignored, may be declared when they do not exist, or

may be misdiagnosed as another processor's error. Fortunately, a misdiagnosis occurs

for the most part when the error is small, and therefore any mistaken "correction"

will most likely be small as well. An additional problem is that a failed processor's

output is necessarily corrected from the syndromes, which are themselves corrupted

with round-off noise. Thus the reconstructed output contains a noisy version of the

missing output.

Additional questions arise when an actual implementation is considered. Consid-

eration must be given to moving data in and out of the N + C processors, as well as

22



performing the checksum and syndrome calculations, and shipping the data to the

MLE processor for final correction. Substantial control and processor synchroniza-

tion is required throughout. In order to test this least squares algorithm, a hardware

prototype was constructed [2] as illustrated in figure 2.5, using commercially available

components.

MVMEI47 Ethernet SUN 31260
M68030 Development System

Computer C Compilers: 68030,DSP32C
System & Programming Support
Controller,

VXWORKS

VE032C2 VE4032C IV-02

I/0 Output Data
Board

High Speed Parallel Ports

Figure 2.5: MISF algorithmic fault-tolerant testbed

The prototype was built using four commercial VE-32C boards from Valley Enter-

prises, each housing four floating-point DSP32C digital signal processors from AT&T,

for a total of sixteen processors. Each processor is theoretically capable of 25MFlops,

yielding a theoretical total of 400MFlops. Figure 2.6 depicts one of the processor

boards. All boards have VME interfaces, which are used for downloading code into

the processors, for passing synchronization messages between the host and the pro-

cessors, and for other board control. A 10MHz, 16-bit parallel bus provides input to

all four boards, feeding data into an input FIFO on each board which can be read by

any processor. A separate 10MHz bus can be driven with output from any processor

on any board.

A customized I/O board, illustrated in figure 2.7, configured to shunt the output

bus directly to the input bus, allows any processor to send data to up to four processors
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W6 16-' 16 T16

Input (P2/I), FFO, IK_ /O Matrix Switch Output (P2/JI)

High Speed (16-Bit) (16-Bit Data) ffigh SpeedData Port Data Port

Figure 2.6: Valley VE-32C processor board with four DSP32C's, VME bus interface,
and FIFO I/O bus.

on four different boards. It can also be used to buffer input or output data between

the host and the fast bus systems via the VME bus. A Motorola MVME147 VME

board with a MC68030 processor acts as host to the system, and is connected via

Ethernet to a Sun 3/260 development system. The host utilizes the VXWORKS

operating system, which interfaces smoothly with the SUN UNIX environment. C

code can be compiled for either the host or the DSP32C's, and downloaded using

VXWORKS and some custom commands.

Because of the limitations involved with shipping the data between processors,

the actual layout of the tasks becomes very important. A generic layout showing the

placement of the DSP32C's on the separate VE-32C boards in conjunction with the

I/O board is shown in figure 2.8. As it will be seen, the actual task distribution will,

with such an architecture, strongly iaxfluence the selection of the weights.
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Figure 2.7: Custom 1/0 board with FIFO's and bus shunt.
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Chapter 3

Single Input Multi-Function

(SIMF) Fault Tolerance

3.1 The structure

Representing a fundamentally different signal processing architecture, single input

multi-function (SIMF) fault-tolerance, introduced in [1], enables a wealth of applica-

tions previously unattainable with MISF fault-tolerance. As the name implies, SIMF

fault-tolerant architectures have a common input to all channels, with each processor

performing a different linear task on the data. Figure 3.1 illustrates such a system.

As figure 3.1 shows, SIMF fault-tolerance is merely a transposition of a MISF

architecture. The checksums now compute weighted linear combinations of the linear

functions, as opposed to the data. Letting Fk be the linear operator in the kth

processor for 1 < k < N yields:

N
Fj = wj,kFk forj= N + 1,..., N + C (3.1)

k=1

where again, the Wj,k are scalar weights. The same p length data vector x(m) is then

sent through all N + C processors, producing r length output vectors _k(m):

y,(m) = FkX(m) for k = 1,...,N + C (3.2)
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Figure 3.1: SIM F fault-tolerant architecture.

The syndromes then remain:

N
.s (m) = y(m)- ,wj,gy (r) for j= N-f- 1,...,N +C (3.3)

k=k

A SIMF configuration enjoys at least one advantage over similar MISF architec-

tures when it comes to balanced computations through the checksum channels. MISF

systems, as figure 2.2 illustrates, must first compute weighted sums of the input pack-

ets before processing in the checksum channels can begin. A SIMF architecture, by

comparison, is capable of processing data through the checksum channels without

delay. It may turn out, however, that the checksum channel operators in equation

(3.1) involve significantly more computations than those in the working channels. In

this case, the lack of delay before processing in the checksum channels begins may be

overshadowed by the delay in the processing itself.

This is not the case, however, if the structure of the operators in the working

channels are all similar. As in chapter 2, if the input and output vectors have length

p and r respectively, then the linear operator Fk may be represented as an r x p
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matrix. The structure of the individual Fk's, not surprisingly, will determine the

structure of the checksum channel operators. For example, assume that p = r = 2,

and the matrices Fk all have a diagonal structure such that:

Fk a 0 for k =1,..., N (3.4)
0 bk )

where ak, bk are arbitrary scalar variables. In this case, using equation (3.1), the

checksum channels become

F = k=l wjkak F ) for j= N +l,..., N + C (3.5)

and thus after precomputing equation (3.5) for all C checksums, the checksum op-

erators will require the same number of multiplies and additions when applied to

the data as the working channels, and the processing will be balanced. When the

working channel operators, Fk, do not all have the same matrix structure, there is

no guarantee that the checksum channel operators, Fj, will require the same num-

ber of multiplications and additions. In this case the processing is not balanced. It

should be noted that if the linear operators in the working channels are time varying,

Fk(t), then the checksum channel operators can be precomputed only if a closed-form,

analytic solution exists for equation (3.1).

3.2 The algorithm

The maximum likelihood estimation and correction algorithm of section 2.2 computed

cross-correlations from the syndromes, compared the sum of the auto-correlations

against a fixed threshold to check for failure, and computed relative likelihoods based

upon the correlations and the weight vectors of equation (2.12). In other words, the

entire algorithm depended only upon the syndromes. Since the syndromes for a SIMF

configuration are computed exactly as they are for a MISF configuration, the method

remains unchanged. Therefore, both architectures can be protected by the same fault
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detection and correction algorithm.

3.3 Possible applications

3.3.1 Same nature data

The most conceivable applications for SIMF fault-tolerance, are ones in which the

functions differ only slightly, and the nature of the operation the working channels

are implementing is the same. In other words, the matrix structure of the linear

operators are the same. Two examples of this would include both radar and sonar

processing. In these types of signal processing for instance, the inputs from several

sensors are delayed in a predetermined manner, and summed to determine the incident

signal strength from a predetermined direction. The working channels in these cases

then differ only by the delays given the signals of the various input sensors.

3.3.2 Different nature data

Not all of the data broadcast to the bank of processors in figure 3.1 need be used by

every processor. Each processor may apply its own window to select the portion of

the input composite data that is applicable to the linear operation being performed.

Figure 3.2 illustrates this case. The configuration depicted in this figure combines

the aspects of both MISF and SIMF. Not all processors are using the same input

packet, although the same composite data vector, x, is sent to all processors. In

this case, the checksum channels would receive the entire composite data vector, and

the various windows would then be applied in the weighted sum of the various Fk's.

Furthermore, the matrix structure of the various Fk's may or may not be the same.

If the matrix structure of the various Fk's differs from working channel to working

channel, it is quite likely that the checksum channel operators will require additional

multiplications and additions, and the computation will not be balanced throughout

the processors.

A potential application for the system of figure 3.2 can again be taken from radar
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Figure 3.2: SIMF fault-tolerant architecture for composite data.

and sonar processing. For very large arrays, sections of sensors are typically grouped

together into smaller sub-arrays in order to ease the processing burden, where _zk

represents data from the kth sub-array. The outputs of various processors can then

be combined to reconstruct the full array. It is also possible, assuming the data

bandwidths are the same, to perform radar processing in one or more processors, sonar

processing in others, and protect them all with the same set of checksum processors.

In a like manner, systems that were previously separate can be joined to reduce the

amount of redundancy required to make them fault-tolerant.
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Chapter 4

Beamformer Application

4.1 Multidirectional fault-tolerant beamforming

Single input, multi-function fault-tolerance is particularly well suited for multidirec-

tional sonar beamforming, where the linear operator has the same structure in all

channels, and the data need not be windowed prior to processing. Beamformers are

essentially spatial filters, getting their output by taking the weighted sum of signals

from an array of sensors. Rather than consider a channel to consist of a single sensor,

a channel will instead consist of the entire array of sensors. In this way, different

channels then implement different time delays between the sensors, thereby steering

the beam in a different direction. Figure 4.1 illustrates this point.

Most digital beamformers already work in this manner; rather than "paint" the

area of interest, the beams are computed in parallel to give an instantaneous beam

pattern. Ordinary digital beamformers, however, require very high sampling rates

and thus place severe demands upon the hardware, and do not have the benefits of

arithmetic redundanc;.
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Sensor Array

Multidirectional Beamformer

Figure 4.1: Multidirectional beamformer with N look angles.

4.2 Digital interpolation beamforming

Conventional analog time-domain beamforming may be represented as:

N.

b(t) = anxn(t - rn) (4.1)
ni=1

where n is the sensor number, N, is the number of sensors in the array, an is the nth

shading coefficient of the spatial window applied to the array, and r, represents the

time delay required for the nth sensor in the array in order to form the beam, b(t).

Figure 4.2 illustrates this conventional beamformer. In this particular application, no

spatial window was applied, and so an = 1 always.

Digital time-domain beamforming involves sampling equation (4.1) but places

considerable demands upon system components by requiring sampling periods several

times smaller than those required for mere waveform reconstruction. This is so that

the time delays needed to form the beam, typically much smaller than the Nyquist

sampling period, can be implemented. Digital interpolation beamforming relaxes this

requirement by allowing the data to be sampled at the Nyquist period, A, and then

interpolating the data prior to beamformation. The data is thus upsampled by a

33



' aI,,

, me Dlay xT

(IND b t)b
I

----- n Time1% Delay T

Sensor Array Beamformer

Figure 4.2: Analog beamformer and sensor array of N, hydrophones

factor of L to a new sampling period, b, such that b = A/L. The time delays needed

for beamformation are then approximated by integer delays, Mn, of the upsampled

period, 6, for each sensor in the array. The accuracy of this approximation depends

upon how accurately M,6 approximates 7,, where M,, is the rounded integer part of

the quotient , 6- . A beam for which

7-. = M. b, n = 1, .., N, (4.2)

is called synchronous [12]. Due to the linear nature of this equation, it is expected

that a synchronous beam would only be possible with a linear array, and indeed this

is the case. Any bandpass signal with bandwidth W centered on f, and limited to

the frequency interval

(fo- W12) <_ Iwl 5 (fo + W/2) for W <f (4.3)

may be represented as

x(t) = x,(t)coswot - xQ(t)sinwot (4.4)

where x,(t) and xQ(t) are the in-phase and quadrature components of x, respectively,

band limited to the frequency interval If 1 < W/2, and wo is the angular center
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frequency of the bandpass signal [5]. As in the case of the signal waveform, the beam

output may be expressed as

b(t) = bi(t)coswot - bQ(t)sin wt (4.5)

where bi(t) and bQ(t) are the in-phase and quadrature components of b, respectively.

Combining equations (4.1) and (4.4) yields:

N.
b(t) = E [x1.(t - r,)cosw0(t - r,) - xQ.(t - rn)sinwo(t - r,)] (4.6)

n=1

where x1n(t) and xQ.(t) are the in-phase and quadrature components, respectively of

Xn(t). Equating (4.5) and (4.6) yields the following:

N.

bi(t) = E [x In (t - Tr) coswoT, + xQ.(t - r,) sinwor] (4.7)

bQ(t) = E [xj,(t - T,)sinwo,, - xQ,(t - T,,) coswo,,r] (4.8)

Hence, the in-phase and quadrature components of the beam output can be obtained

from the in-phase and quadrature components of the sensor outputs.

4.2.1 Second-order sampling

Sampling equations (4.7) and (4.8) requires sampled versions of x,(t) and xQ(t) for

each sensor. Rather than use a complex demodulation scheme, these samples may

be obtained directly from the bandpass signal without need for analog multipliers

or filters via second-order sampling. With this method, the quadrature components

are obtained from the complex envelope in pairs, with each sample period yielding

two samples separated by one quarter of the carrier wavelength. In this manner,

one sample corresponds to the in-phase component, and the other corresponds to the

quadrature component. Which component is sampled first depends upon the way in

which the second-order sampling is implemented.
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Figure 4.3 illustrates the second-order sampling method for obtaining quadrature

components.

This sampling method requires a sampling period of A where

A =-t-< W-1 for t = 1,2,... (4.9)
2fo

In Figure 4.3a, the signal is delayed in the lower path and both samples are taken

simultaneously, yielding [12]

XI(mA) = X(MA)

= xi(mA) cos(womA)- xQ(mA) sin(womA)

= (-1)meX(mA) (4.10)

and

X2(MZA) = X(MA -4f0
=Xj(mA - 1 CS["MA- I1 - XQ(mA - 1-) sin[w0(mA -1A

4fostom 4O ~ 4fo 4fo

= (-1) txQ(A - 1 ) (4.11)
4fo

Here an implicit approximation is made by assuming xQ(mA - 4"-) - xQ(mA). This

approximation is valid for highly narrowband signals which can be expected with the

SDelay=

I / 4fo V x 2(m z )  0 xA"mz)

fs A" = 2fl fs = A1 '= 2f(l1

(a) (b)

Figure 4.3: Two methods of performing second-order sampling, (a) by delaying the
signal, and (b) by delaying the sampling gate

36



sonar system considered here [10], since this would mean a complex envelope that

varies slowly relative to the modulating frequency. This application, however, uses

samples obtained as in Figure 4.3b, where instead of delaying the signal. the lower

sampling gate is delayed. This effectively interchanges the order of the components

so that x'l(mA) = (-1)"mxQ(mA) and x'(mA) = (-1)"mxj(mA), again under the

same narrowband approximation. Sampling equations (4.7) and (4.8) with period A

therefore yields :

N.

b,(mA) = _ [xj.(mA - ,)coswor, + xQ.(mA - r,) sin wo,] (4.12)
n=1

N.

bQ(mA) = E [x1,(mA- r,) sinwor, - XQn(mA- r,) coswor,,] (4.13)
in=1

Henceforth it will be assumed that xt(mA) and xQ(mA) are available.

4.2.2 Interpolation

If A represented a sampling rate high enough for digital beamformation, equations

(4.12) and (4.13) would suffice. That is not the case, however, and the samples

must be interpolated to a higher sampling rate so that the proper delays may be

implemented by shifting the signals forwards and backwards by discrete sample bins.

Because they have a limited number of states, and because they have linear phase,

FIR filters are chosen for this task. Their absence of recursion allows for a reduction

in the required computation, by making it possible to only compute the output points

necessary. If the filter was IIR, this would not be possible, due to the feedback of the

outputs.

Since no FIR filter can ever have ideal low-pass filter characteristics, error will

be introduced at the beamformer output. This finite error affects the time-filtered

outputs of each sensor, which in turn affects the space-filtered beamformer output,

and is induced because the frequency response of the filter deviates from the desired

"box-car" shape. With proper filter design, this error can be minimized, but in

general the beam response will still be less than ideal because the number of sensors
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is typically limited.

The actual sonar chosen for this application was the WQS-1 obstacle avoidance

sonar with a cylindrical aperture. The necessary specifications for the WQS-1 are

listed in table 4.1. Other sonar implementations have utilized interpolation ratios of

Table 4.1: Parameters for WQS-1 implementation

Specification Variable Value
frequency of modulation f, 200 kHz
radius of array WRAD 6.875 in.
angular spacing of sensors ASPC 30
assumed signal bandwidth W 20 kHz
complex sampling period A 50 ps
number of sensors used N, 15
interpolation ratio L 7

4 and 10 [10, 12], and so an intermediate value was chosen for this application. With

the use of the Remez exchange algorithm [7], an optimal equiripple FIR filter, h(m,)

was designed with the following characteristics:

5 1 15 1
T 40- * 3 f T =4--0"

where f. and fj are the upper passband edge and lower stopband edge, respectively.

Equal weight was given to both the passband and the stopband errors. The ripple in

the passband and the stopband can be minimized by adding more coefficients to the

filter, at the cost of increased computational complexity. The number of coefficients,

No, used for this application was 63. The reason behind choosing N, as a multiple

of the interpolation ratio will become apparent in the next section. The impulse and

magnitude responses are shown in figures (4.4) and (4.5) respectively.

The first step to take in interpolating any sequence is to zero-pad it. Given an

interpolation ratio of L, the zero-padded data sequence may be represented by

vxt1.(-)) m = 0,±L,±2L, ...VlnJMm) L(4.14)

0 otherwise
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Figure 4.4: Filter impulse response for L =7, N, 63.

Magnitude Response, IH(e"0o) 1
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Figure 4.5: Filter magnitude response for L =7, A =50/Ls.
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where, again, A is the sampled period, and 6 = AIL is the interpolated period. An

analogous construction may be made for vQ,(mA) as well. Interpolating the data

sequences uses a discrete convolution so that

No-1

it(m65 ) = 1: h(k5)v1,[(m - k)bI for n = 1,..., N, (4.15)
k=O

where again, iv,(m,6) is formed in an analogous manner. Given that the time delays,

,r, required for beamformation are approximated by integer multiples of the upsam-

pled data period, equations (4.12) and (4.13) can be approximated appropriately by

shifting the interpolated sequences:

N.

bx(mA) = E {i.[(mL - M,)6] coswT, + O.Q[(mL - M,,)b] sinwoTn} (4.16)
n=1

Ne

bQ(mA) = E {jj[(mL - M,)b] sinwoTn - xQn[(mL - Mn)b] coswor,} (4.17)
n=1

and by combining equations (4.16) and (4.17) with (4.15), the following equations

result:

b,(mA) = [ E h(k65)v,.(mA - M,6 - kb) cosw,T+
n=l k=O

1_ h(k6)vQn(mA - Mn6 - k6) sin (4.18)
k=0

Ne [Nc-1

bQ(mA) = = IZ h(k5)vjn(mA - M.b- kb) sin wr.-
n=1 Lk=O

Z: h(kb)vQn(mA - Mb - kb) coswo,,Tn (4.19)
k=0

where bj(mA) and bQ(mA) are the approximated beam sums.

To simplify these results, it is possible to write the interpolated data values as a

single complex point vn(mA), such that v,,(mA) = vin(mA) -jvQ,(mA) where here

vn(mA) is baseband. The conjugation here is necessary to ensure the proper signs in
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the output equations. Using Euler's equation leads to

v,(mA )e-'w °'  = [vI.(mA ) cosw0 Tr + vQ,(mA ) sinworn]

+j[vi(mA) sin wr,, - vQ,(mA) coswomr] (4.20)

and with a similar baseband complex representation for the in-phase and quadrature

components of the beam, b(mA) = bi(mA) + jbQ(mA), so that equations (4.18) and

(4.19) can be reduced to

N. Nc-1

b1mA) = 1 j h(k,)e' ° nv,,(mA - M,,S- k,) (4.21)
n=1 k=O

4.3 Implementing the beamformer

Using the hardware described in section 2.4, a multi-directional digital interpolation

beamformer was chosen to demonstrate the principles of SIMF fault-tolerance. The

particular layout of the beams is as illustrated in Figure 4.6, where there are N =

10 working channels, and C = 3 checksum channels. The weights chosen for the

application were the same as in equation (2.12).

4.3.1 Calculating the time delays

Using the specifications of table 4.1, it is possible to determine the time delays and

their integer approximations based upon the geometry of the array. Figure 4.7 helps

illustrate how these values are determined. It is reasonable to assume that an incident

waveform may be approximated as a plane. The steering direction, 0, is then normal

to the incident waveform at the point of tangency. To steer the beam to this direction

then, requires a series of time delays, r,,, for each sensor. These time delays can be

found by projecting the individual sensors from a mirror image of the array onto

the incident waveform. Hence, the T,,'s are determined from the cosine of the angle

between the normal to the incident waveform, and the sensor of interest. With this

approach, the time delays would be zero at the geometric limits of the array, and
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Figure 4.6: Task layout for N = 10, C = 3
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Figure 4.7: Determination of time delays for a signal 0* off broadside

would be maximized at the point of tangency. For this application, however, these

values of r, are negated, so that the sensor closest in angular distance to the steered

direction will have the most negative value. This is done so that the values of M,

may be subtracted from the least negative integer approximation used in the array;

therefore M, = 0 corresponds to [-Tx-J. By doing this, the values of M, will be

strictly nonnegative, and will be referenced to the limits of those sensors in the array

used in the calculation of the beam (±Vo). By comparison, the Tr's are referenced to

the geometrical limitations of the array (0 ± 900 for a cylindrical array such as this).

4.3.2 Polyphase filter implementation

With limited memory on each of the VE-32C boards (8K 4-byte words per DSP,

or 32K bytes) zero-padding the data is not a viable option. Fortunately, this is
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not necessary. Equation (4.21) indicates that the output sequence has the same

sampling period as the original input sequences. Figure 4.8 gives a block diagram

representation of equation (4.21). The original complex signals, sampled with period

A, are upsampled by a factor of L, then filtered by a complex FIR filter. This is

the interpolation and sinusoid weighting step combined. Each sensor's signal is then

uniquely delayed by an integer number of samples at the upsampled data period.

After the signals have been delayed, they are then downsampled to the previous

period A, and summed to form the beam. The interpolation and decimation ratios

need not be identical, but since they are, they may be removed altogether by using

a collection of polyphase filters. Given a full order, linear phase FIR filter h of order

Nc - 1, a series of smaller order polyphase filters g#(mA) can be constructed [3] such

that

g(mA)=h(mbL+,8), for ,= ,1,...,L- 1 andVm (4.22)

Figure 4.9 shows the implementation of a polyphase filter bank. Here, the output of

the Oth path, y,(mA), corresponds to the interpolation output sample y(mbL + 3)

obtained by applying a single input x(mA) to the filter bank. In other words, for a

particular x(mA), each of the L branches of the filter bank contributes one nonzero

output (or vector of outputs) corresponding to its family of output samples. Since

the integer delays, M, remain constant for a given sensor and a given steering angle,

only one branch of the polyphase filter bank per hydrophone is required for a desired

steering direction. This makes it possible to not only remove the padded zeros in

the data sequence, but to implement the convolution with a filter 11L times as long,

XNMA T h~m6)eJ(Oo_. Time Delay IL

Figure 4.8: Digital interpolation beamforming for complex input sequences.
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Figure 4.9: Polyphase interpolation filter bank

thereby reducing total computation per sensor by an order of L2 for each steering

angle.

To obtain an expression for i,, in terms of M,,, assume for the moment that

M,, < L. Figure 4.10 illustrates this case. The choice of M,, is based upon the

number of steps back in time needed for a particular sensor to properly delay its

interpolated data and form the beam. Conversely, the outputs of the polyphase filter

bank steps forward in time with each sample sent through the network. Thus, for

the case where M,, < L, it must be that M,, + 3,, = L. The case where M,, _ L

corresponds to a combined whole integer delay P,,, plus the fractional delay /3,,

Accordingly, a modulo L division must first be performed on M,,. This yields the

following equations:

p = [Lln(4.23)

v l.Q IA - 28) -*

t=O t

A

M.=2, #=3

Figure 4.10: Determination of fractional delay
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Table 4.2: Subfilters used for N = 10, C = 3 beamformer application

Values of #,, for all N working processors

0 in degrees
n -22.5 -17.5 -12.5 -7.5 -2.5 +2.5 +7.5J +12.5 +17.5 +22.5
1 3 4 4 5 0 0 0 0 0 0
2 3 4 4 5 0 0 0 6 0 0
3 3 4 4 5 6 0 6 6 6 6
4 3 4 4 5 6 6 6 5 6 6
5 3 4 4 5 6 6 6 5 6 5
6 4 4 4 5 6 6 5 5 5 5
7 4 4 4 5 6 6 5 5 5 5
8 4 5 4 5 6 6 5 4 5 4
9 5 5 5 5 6 6 5 4 4 4
10 5 5 5 5 6 6 5 4 4 4
11 5 6 5 6 6 6 5 4 4 3
12 6 6 5 6 6 6 5 4 4 3
13 6 6 6 6 0 6 5 4 4 3
14 0 0 6 0 0 0 5 4 4 3
15 0 0 0 0 0 0 5 4 4 3

3,= [(P,, + 1). L -M,] mod L (4.24)

The values of /3, used in this application are given in table 4.2.

Using this fact, the inner summation term of equation (4.21) may be rewritten so

that
Nc-1 q

1 h(k,)v,,(mA - M,,6 - kb) = g 9g.(kA)x,,(mA - kA) (4.25)
k=O k=O

where, as with vn(mb), X,(mA) = x,,(mA) - jQ.(mA), and q is the order of the

/3,,th subfilter. By having selected Nc as a multiple of the interpolation ratio, q is

constant for all /3,,, 1 < n < Ne.

Now applying this result to equation (4.21), the same results are achieved without

zero-padding the data.

N. q
,(mA) = Z gO.(kl)e'wOx[(m - k)] (4.26)

n=1 k=O

Thus each output point is the sum over all sensors in the array of the resulting discrete
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time convolution between each sensor's complex data and a complex FIR filter. Since

all values are now :enced to the same sampling period A, it will be omitted for

simplicity.

4.3.3 Forming the checksum responses

An FIR filter can be implemented in several ways, but to aid in the representation

of input/output relationships, it is perhaps easiest to view an FIR filter as a matrix

multiplication. To do this, it is first necessary to define the data on which the filter

is to be applied.

Figure 4.11 shows the layout for a data bin of a single sensor for the first batch of

data. Here N, is the number of complex data samples per sensor sent in a given batch

4b Output region
i q  b Ns

I" Initial Data Batch
_ Subsequent

Batches

Figure 4.11: Data bin structure with q + b point overlap region and encircled filter
window.

of data, q is the order of the subfilters as before, Pn.k is the number of whole integer

delays for sensor n in working channel k, and b is the maximum number of whole

integer delays required across the sensors to form a particular beam. It is important

to note that since this application involves N = 10 different beams, b must be chosen

as the largest of the maximum delays required in each working channel so that the

checksum channel responses may be properly formed. In this manner, the size of

the data bin remains constant for all N + C processors, assuming a fixed set of look
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angles.

Even though only N. points get sent with each batch of data, the additional pad

points in the data bin, where pad = q + b, are necessary to maintain a continuous

output. In the absence of any whole integer delays, the last q points would be cycled to

maintain a continuous output through the use of overlap-save convolution [9]. When

whole integer delays are introduced, the FIR filter is implemented over a delayed set

of data points, initiated on the first batch of data. If a particular sensor had no

whole integer delays, and only the last q points were cycled, there would be precisely

b points of convolution overlap unaccounted for in the next filtering operation for

that sensor, since a given sensor applied to a given beam will always use the same

subfilter. Including b in the length of the data bin allows for the necessary delay in

the filtering operation. Including b in the number of data points needed to be cycled

after each convolution guarantees a continuous output from each sensor.

As Figure 4.11 illustrates, there is no delay compensation necessary after the first

batch of data, and hence the coefficients required in the checksum channels after the

first data batch are merely a weighted sum of the filter coefficients in the working

channels on a per sensor basis . The necessary delay comes in the first data batch,

and must be accounted for to properly form the checksum channel beams. The data

in this maxlen point data bin, where maxlen = N, + pad, can be represented by

means of the vector xn(m),

X_(M) = [X(mN. - pad) ... xn(mN, + (N. -I))]
r  (4.27)

where m is the batch number, and xn(t) = 0 for t < 0. Correspondingly, a similar

output vector from a single sensor and a single working channel, b_,k(m), can be

defined:

kn,k(m) = [bn,k(mN. - pad) ... bn,k(mN, + (N, - I))]T (4.28)

where output values preceding inN, - b, and following imN + (N, - b - 1), are invalid

due to the overlap-save convolution being performed. Thus, each xn(m) generates

valid output samples bn,k(mN, - b) through bn,k(mN + (N° - b- 1)) contained within
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;.,k(m). Written as a discrete time convolution, the input/output relationship is as

follows:

q

b.,k(t)=Lgp.,.(k)x,(t-k) fort =mN-pad,...,mN.+(N.- 1) (4.29)
k=O

where the phase terms have been temporarily removed for convenience. This repre-

sentation, however, fails to account for the shift applied to the first data batch for

sensors with nonzero whole integer delays. This delay can be accounted for with a

matrix multiplication representation. Define

gp,,(0) 0 ... 0

: gA..k(0) 0
gp.., (q) : 16.,k (o) "-

G,,k = (4.30)
0 gpf., (q) . 0

• ... go.",(0) 0

0 ... 0 g.k(q) ... (0)

where G.,k is a (maxlen - P,,k) x (maxlen - P,,k) band diagonal matrix operating

on the desired window of data from the nth sensor on the kth processor with P.,k

defined in equation (4.23). Let Op.,, be a Pn,k x P,,, matrix of all zeros. Then the

input-output for the nth sensor on the kth channel can be written as

Fnk(m) = ( OP."  ) (4.31)

so that h.,k(m) = Fn,k(m) -!,(M). It now becomes a simple matter to find the total

beam response of a given channel, _k(m), rather than just one sensor's contribution. A

block matrix, Fk(m), may be formed so that Fk(m) - [FI,k(m),.. ., FN ,k(m)], and

a block data vector, x(m) may be formed as x(m) = [xT(m),...,T, (M)]T. Then

equation (4.26) with whole integer delays properly accounted for becomes

bk(m) = Fk(m). x(m) (4.32)
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As figure 4.11 illustrates, Pn,k may be taken as zero after the first batch of data

without problem, since the delay has by that time already been implemented. This

means that Fk(m) is constant after the first batch of data, and thus the checksum

channel operators may be pre-calculated, allowing the checksum channel calculations

on-line to match those of the working channels. The structure of the Fnk(O) matrices

becomes very valuable in determining the proper filter coefficients required by the C

checksum channels. Figure 4.12 shows a weighted sum of the F",k(O)'s, for a given

n, over all N working channels. Again, the first pad rows(columns) are zero for this

------------------------ 1

Figure 4.12: Structure of checksum operators for the first batch of data and a single
sensor.

batch since the signal is assumed to be causal. Note that the only shift needed is at

the beginning since the last b points of lnk(m) are not output. Here, the separate

blocks represent the various individual matrices Gn ,kejwO'n,'k that operate on specific

windows of data for a given steering angle.

Note that the sum of the separate Fn,k(O)'S is band diagonal as well. The lightly

shaded region corresponds to the nth sensor in one or more of the N working channels

having anything but a maximal number of whole integer delays. This region has, at

most, b nonzero columns for a particular sensor in the checksum channels. The heavily

shaded area is the region within which all channels (for a given sensor) contribute to

the checksum output. Hence, for the first batch of data, it is necessary to store b + 1
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sets of complex filter coefficients, per sensor, in each of the C checksum channels. For

subsequent batches, only the last one of these b + 1 sets will be used.

4.4 Results

The beamformer was tested with forward-looking sonar data collected at Lake Cham-

plain [4]. Ten ribbed steel drums of length 72 in. and diameter 21 in. were used as

test targets. The acquired data consisted of 16 synchronous receive staves on the

AN/WQS-1 active sonar, of which 15 were used.

Figure 4.13 shows the return from a single ping, where the look angles of the

N = 10 processors have been chosen so as to center the beams on the target return.

This image shows the actual return from the 10 processors when they are all properly

working. Since each processor computes only one discrete look angle, and the pro-

cessor's are all separated by 5*, it was necessary to spatially interpolate the outputs

in order to get a smooth image. As figure 4.13 shows, the largest returns come from

+2.50, corresponding to processor 6. The target, in fact, was located at approximately
30 off broadside. As is shown, the largest return occurs at approximately 26.2 ms.

The smaller returns prior to this resulted from some assorted cinder blocks that were

in the water near the deployed target.

For the purposes of testing the maximum likelihood algorithm of section 2.2, a

processor was chosen to appear as though it had failed by injecting an error at its

output. Three types of constant errors were allowed, representing separate types of

failures. The options consisted of adding a constant to the data, setting the data to a

constant value, or adding a constant to a single sample. For the purposes of detecting

the faulty processor, the latter of these error types was needed. The threshold, f, was

set so that a single bit transient error on a single processor would not go undetected.

Once detected, the error was corrected using the numerically robust equation (2.18).

Once the threshold is set to detect a single bit error, detecting more severe errors

becomes easier. Table 4.3 shows the relative likelihoods of all processors when various

types of errors are injected into the first working processor.
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Figure 4.13: Beamnformer response when all processors working.
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Table 4.3: Measured relative likelihoods with threshold for N = 10, C =3

_________ (boldface indicates largest likelihood)if________Likelihoods
Task 1-bit fault, 1-bit fault, Set real=0,

No fault sample 3, all samples, imaginary=0,
__ __ _ __ __ _ __ _ 01 01 01

Threshold~ 4.085e-04 4.085e-04 14.085e-04 4.085e-04]
01 3.113e- 12 4.578e-05 1.56e-03 2.51e+00
02 1.98e-11 5.08e-06 1.73e-04 2.79e-01
03 3.4 7e-12 5.09e-06 1.73e-04 2.79e-01
04 3.84e- 11 5.09e-06 1.73e-04 2.79e-01
0.5 1.90e-11 3.05e-05 1.04e-03 1.67e+00
06 5.34e-12 8.19e- 12 2.04e- 10 5.96e-08
07 2.68e- 12 3.05e-05 1.04e-03 1.67e±00
08 4.14e-11 4.09e- 11 5.82e- 10 5.96e-08
09 7.31e-12 3.05e-05 1.04e-03 1.67e+00
010 2.15e-1I1 3.27e-1I1 5.53e-10 1.19e-07

CSP1 2.43e- 11 1.53e-05 5.19e-04 8.36e-01
CSP2 4.52e-12 1.53e-05 5.19e-04 8.36e-01
CSP3 1.98e-1II1 1.53e-05 5.19e-04 8.36e-01
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Given that a transient, single bit error would be difficult to pinpoint on an image

intensity plot, a much more catastrophic error was chosen to demonstrate the fault-

tolerance of the beamformer. In case of a real processor failure, a sonar operator

might expect that a component failure has occured somewhere. In either case, the

output would be erroneous. To simulate this type of error, the output of processor

6 was replaced with all zeros. Figure 4.14 shows the faulty, or corrupted, output

alongside the output corrected on the fly after the computation of every N, = 34

output points.

A final option on the program enables the injection of a clipping error, where

it is assumed that the most significant bits in the output registers of a processor

have failed, clipping the output at a certain level. Whereas the dramatic error of

figure 4.14 may be easy to recognize because it essentially paints a stripe down a

would be operator's display, a clipping error does not remove background noise, but

may be enough to remove any peak returns. Such an error would be much more

difficult for an operator to catch, and further illustrates the value of the system.

4.5 System challenges

The original prototype, built to test the concepts of MISF fault-tolerance, had a

number of constraints due to the use of off-the-shelf components [2]. Naturally, by

utilizing the same hardware the same constraints existed and, in addition, several

programming challenges appeared throughout the development of the beamformer.

Although the DSP32C's are themselves very fast, they are constrained by the 16-

bit, 1K-word FIFO's on the VE-32C boards, which limit the batch size, and hence

the data rate. As a result, with N, = 15 sensors per channel, only 34 complex data

samples can be sent for each sensor with a given batch. With the addition of the

extra buffer space needed in external memory on the VE-32C's for each DSP32C to

perform overlap save convolution, the overall length of the complex data buffers is

42, of which 8 points (q + b = 8) must be cycled after each batch. Hence, nearly 20%

of each sensor's data buffer must be cycled before new data may be read in. This
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Figure 4.14: Faulty output with processor 6 zeroed and corrected output

55



reduces the efficiency of the beamformer.

An additional problem with the VE-32C architecture is that only one DSP32C

per board can read data from the input FIFO at a time. The placement of the

working processors and the checksum processors in figure 4.6 is capable of overcoming

this problem when configured as a MISF fault-tolerant architecture. In this case,

advantage is taken of the zero weights; if weight wj,k = 0, then checksum processor j

does not need to read working processor k's input. This elegant layout is not possible

using SIMF fault-tolerance, however, since all processors receive the same input. In

this case, the same input must be transmitted four times. Many problems were

encountered in the initial development of the MISF fault-tolerant prototype when

attempting to read from and write to the FIFO's. It was found that these problems

resulted most directly from a lack of synchronization, more precisely when a DSP

tried to read from a FIFO at the same time another was writing to it. To combat

these problems, the 68030 microprocessor host was set up to control all transfers.

Several programming problems appeared throughout the implementation. The

DSP32C's come with an application library complete with several functions, though

several of them could not be used. The version of the DSP32C's used for this applica-

tion had a problem utilizing a particular two-way communication link between them

and the 68030 host. The parallel I/O interrupt register (PIR) is set up to "flag" the

DSP's when an operation must be performed. Unfortunately, the DSP's were capable

of writing to this register, but could not read from it. This made it impossible to use

some of the subroutines in the application library, including _firc used to implement a

complex FIR filter. To overcome this communications problem, a section of memory

was reserved for sending and receiving commands between the host and the DSP's.

In addition to these problems, the compiler used for the DSP32C's was an earlier

version, and had a relatively small symbol table. Errors resulting from exceeding the

size of this table were particularly difficult to catch, and required the programs to be

split into smaller, separately compiled pieces.
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4.6 Theoretical overhead

In an idealized system with no extraneous overheads for memory access, communica-

tion, synchronization, or scheduling, it is not difficult to calculate the percentage of

overhead dedicated to fault-tolerance [2, 8].

Using weight matrix (2.12) with a batch of p real data points per hydrophone, cal-

culation of the syndromes requires p(N + C)C = 39p multiply-adds. Using symmetry,

computation of the cross-correlations requires p(C + 1)C/2 = 6p multiply-adds. Sum-

ming the auto-correlations to test for failure accounts for 2 adds, and each likelihood

requires C 2 _ 1 = 8 additions and 1 scaling. In addition, there are 13 comparisons

between the likelihoods. Correcting the output, in theory, requires up to Cp = 3p

additions, and p scalings. The beamformers implement a complex FIR filter on com-

plex data prior to summing, and hence require qNep = 120p multiply-adds, and

(N, - 1)p = 14p additions. There are C = 3 processors forming redundant beams.

Since the GLRT computations are not protected by this configuration, they would

have to be performed in triplicate. The ratio of work done by the N = 10 processors

is thus about:
3 24p + 3 ( 6 p + 13- 9 + 15 + 4 p) (4.33)

1"0 +10 134p

Because beamforming is very computationally intensive, the theoretical overhead is

fairly minimal. In fact, for p = 2N, = 68, the overhead is a mere 36%.
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Chapter 5

Conclusions and

Recommendations for Future

Work

The purpose of this multidirectional sonar beamformer implementation was to utilize

the principles of multiple input, single function fault-tolerance, and apply them to

a different configuration consisting of a single input with multiple functions for an

actual application. This application was then to demonstrate that the usefullness of

analytic fault-tolerance is indeed much greater than previously acknowledged, as it

clearly did. In addition, this application opened the window to a more generic use of

analytic fault-tolerance, where entirely different applications may be joined to reduce

the overhead necessary for error detection and correction. Combined with earlier

results [2], the results from this thesis show that the maximum likelihood algorithm

of section 2.2 can be used to protect a combination of SIMF and MISF configurations.

The digital interpolation beamformer chosen for this application is not closed to

improvements. Several of the shorter subroutines could be replaced with more efficient

assembler macros, and the C-code itself has not been optimized. The beamformer ar-

chitecture implemented here itself is not fault-tolerant, but serves to demonstrate the

principles of SIMF fault-tolerance. In actuality, if, say, one of the VE-32C boards were

to fail, that would account for 4 processor failures, which the current configuration
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could not handle.

As a topic of future research, the concept of analytic fault tolerance, either for

MISF or SIMF (or a combination of both), may be extended to nonlinear systems

through the use of homomorphic analysis [10] or linearization, for example. As a

further extension, then, these nonlinear systems may be combined in a particular con-

figuration with linear systems, offering a very broad range of analytic fault-tolerance.
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Appendix A

Source Code

Various programs, subprograms, and header files were written for the DSP32C's and
the 68030 host. The usage, along with any dependencies, are listed in table A.1 for
clarity with the actual source code following.

Table A.1: Source files listed by processor, with dependencies

file processor(s) dependencies and/or include files
genb.c input genb32c.h, libb.h

mod-genb.c input dsp32c.h
beam.c beam filter.c, dsp32c.h

csp.c csp filter.c, dsp32c.h
filter.c beam, csp my.macros.h

write-coefX.c beam dsp32c.h, libb.h,
fircoef.h, myP.h

write.cspZ.c csp dsp32c.h, libb.h,
fircoef.h, myP.h

beam-mle.c mle dsp32c.h
write-weights.c mle dsp32c.h

beamtrans.c 68030 rw.c, util.c, dspstruct.h,
macros.h, scrn.h

dsp32c.h beam, csp,
I input, mle my-macros.h

Because they were written prior to work on this application began to facilitate
memory access and debugging, rw.c and util.c are not listed in this appendix. In
addition, genb32c.h, fircoef.h, and myP.h are not listed. The former differs from
dsp32c.h by a single constant redefinition, and the latter two merely contain the ma-
trices of subfilter coefficients, and whole integer delays for each sensor in all channels,
respectively.
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/* GENB.C - generates data for other processors

This starts by waiting for the host to send Ns via COMBUF.
It generates a block of 2Ne*Ns samples of fixed-point complex data
(in external memory, so the 68030 can examine it if necessary).

It then waits for a GOXMIT from the 68030, and sends the data,
1 block at a time, to its output.

It then loops back and repeats forever.
Acknowledges are returned to the 68030 via PIR as soon as possible.

COMMAND BUFFER USE:
COMBUFO: commands
COMBUFI: Ns (# complex data samples/sensor to generate )
COMBUF2: most recent error code
COMBUF3: count of sets of packets computed so far
COMBUF4: count of packets transmitted so far
COMBUF5: b (max # whole integer delays in working channels)

*1

#include "genb32c.h"
#include <libb.h>

/* Define Communications buffer assignments */
#define COMCMD 0

#define COMNs 1
#define COMERR 2
#define COMSET 3
#define COMPACK 4
#define COM-b 5

extern void put-PIRO; /* external subroutine to comm. with 68030 */
#define Theta 0 /* steered angle off broadside */

main()

int count,Ns,Nout;
register int i,j,nes;
register unsigned short *Port,command,*Combuf;
register short int *In,*Ptr;

float cond,ti,tq,tau,tht;
register float sarg;

/* Initialize buffer pointers */
In = (short int *)IBUF;
Port = (unsigned short *)PORT;

Combuf = (unsigned short *)COMBUFO;
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1* Initialize PIR, COMBUF areas *
put-.PIR(0);
Combuf(COM.CMD) = 0;
CombufECO..NsJ = 0;
CombufCOM-.ERR) - 0;
Combuf[CO..SET] - 0;
Combuf ECOM-.PACKJ = 0;
CombufCO..b) = 0;
Nout = 0;
Ns =0;

tht =(float)(Theta*M-PII180);
nes =(int) (Ne/2);
count = 5;

/* Enter the main loop, waiting for commands from the host *
for(; ;)(

/* Check if new data is needed *
if (count > 4){
Ptr = In;
for(count = 1; count<=4 ; count++){
i = Ns;
while(i-->0) ( /* condition the data *
if (mod((float)(LS*(Ns-1-i)) ,2.0)0=.0)
cond = 1.0;

else
cond = -1.0;

/* quadrature sampled 1st *
tq = (float)(Ns-1-i)*DELTA);
/* in-phase sampled 2nd */
ti = (float)(tq - (1.01 (4.0*Fc)));
for Qj = -nes; j <= nes; j++)

s-.arg = (float) CASPC*j)-tht-M_PI_.2);
tau - (float) (-mod-sin(s-.arg)*WRAD/C);
s..arg = -mod..sin((float) (WO*(ti-tau)));
*Ptr*+ = (short int) (2048.0 * s-.arg * cond); /* in-phase *
s-.arg = mod..sin((float)(WO*tq-tau)));
*Ptr*+ = (short int) (2048.0 * s-.arg * cond); /* quad. *

count = 1;
Ptr - In;
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if(Ns > 0) {
Combuf [COMSET) ++;

}
}

/* Main dispatch loop - wait for command in COMBUFO */
for(;;) {

/* Extract command code, dispatch to handler */
do{} while((command = *Combuf) 0 I command == ACKERR);
i = (command & OxffOO);
*Combuf = 0;

/* Do the dispatch */
if(i == GON) {
Ns = (int) Combuf[COMNs];
Nout = (int)(2*Ns*Ne);

putPIR(command);
count = 5;
break;

else if(i == GOXMIT) {
for (j=O; j++ < Nout;)

*Port = (short int)(*Ptr++);

putPIR (command);
Combuf [COMPACK] ++;
if(count++ == 4)

break;

} else {
Combuf[COMERR] = command;
putPI(ACKERR);

}
}

}
}

/* MODDGENB.C - transmits data for other processors

This starts by waiting for the host to send Ns via COMBUF.
It then waits for a GOXMIT from the 68030, and sends the data,
1 block at a time, to its output.

It then loops back and repeats forever.
Acknowledges are returned to the 68030 via PIR as soon as possible.
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COMMAND BUFFER USE:
COMBUFO: commands
COMBUFI: Ns (# complex data samples/sensor to generate )
COMBUF2: most recent error code

COMBUF3: count of sets of packets computed so far

COMBUF4: count of packets transmitted so far

COMBUF5: b (max # whole integer delays in working channels)
*/

#include "dsp32c.h"

/* Define Communications buffer assignments *1
#define COMCMD 0

#define COMNs 1

#define COMERR 2
#define COMSET 3
#define COMPACK 4
#define COM.b 5

extern void put-PIRO;

main()
{

int batch,count,Ns,Nout;
register int i,j;

register unsigned short *Port,command,*Combuf;
register short int *In,*Ptr;

/* Initialize buffer pointers */
In = (short int *)IBUF;

Port = (unsigned short *)PORT;
Combuf = (unsigned short *)COMBUFO;

/* Initialize PIR, COMBUF areas */
putPIR(O);
Combuf[COMCMD] = 0;
Combuf[COMNs] = 0;
Combuf[COMERR] = 0;

Combuf[COM-SET] = 0;
Combuf[COMPACK] = 0;

Combuf[COM-b] = 0;

Nout = 0;
Ns = 0;
count - 1;
batch = -1;
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1* Enter the main loop, waiting for commands from the host */
for(; ;){

count = 1;
if(Ns > 0)
batch += 1;

Combuf [COMSET] ++;
}

/* Main dispatch loop - wait for command in COMBUFO */
for(;;) f

1* Extract command code, dispatch to handler */
do{} while((command = *Combuf) 0 J command == ACKERR);

i = (command & OxffOO);
*Combuf = 0;

/* Do the dispatch */
if(i == GON) f

Ns = (int) Combuf[COMNs];
Nout = (int)(2*Ns*Ne);

putPIR(command);
break;

} else if(i == GOXMIT) {
Ptr = In + batch*Nout;
for (j=0; j++ < Nout;)

*Port = (short int)(*Ptr++);

putPIR(command);
Combuf [COMPACK] ++;
if(count++ == 4)
break;

} else {
Combuf[COMERR] = command;
putPIR(ACKERR);

/* BEAM.C(CSP.C) - Computes a beam response of the input data
in the working(checksum) processors, sends to output.

This starts by waiting for the host to send Ns, b via the COMBUF.
It waits for GORCV from the host, then reads multiple blocks of
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2Ne samples of fixed-point data from its input FIFO. (Puts data
in external memory, so the 68000 can examine it if necessary).

It converts to floating point, interpolates, then finds the

on-axis value.
If it is chosen as the faulty processor, it then injects the const.
error into the output buffer.

It performs overlap-save convolution by maintaining a circular
data buffer.

It then waits for a GOXMIT from the 68000, and sends the data in
floating point format, 16-bits at a time, to its output FIFO.

It then loops back and repeats forever.
Acknowledges are sent to the 68000 as soon as possible

COMMAND BUFFER USE:

COMBUFO : commands
COMBUF1 : Ns (# complex data samples/sensor for each batch)
COMBUF2 : last error command
COMBUF3 : count of sets of packets computed so far
COMBUF4 : fault type, sent from host
COMBUF5 : b (max # of whole integer delays in working channels)
COMBUF6 : 1 if faulty processor, 0 otherwise
COMBUF7 : failure sample, sent from host
COMBUFOf: real fault value
COMBUFlf: imaginary fault value

#include "dsp32c.h"

#include <libb.h>

!* Define communications buffer assignments */

#define COMNs 1
#define COMERR 2
#define COMSET 3
#define COMFAULT 4

#define COM.b 5
#define COMPROC 6
#define COMSAMP 7
extern void put-PIRO;

main(0
{

short int errproc, errflag, samp;
int Ns, b, nes, maxlen, pt, pad, Nout, points;

register unsigned short int *Port,command,*Combuf;
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register short iut In. *beam.io;
register iut start, n, m;
COMPLEX *Data, *Beam, *magn;
float *Mag, *f real, *fimag;

/* Initialize pointers */
Port = (unsigned short mnt *)PORT;
Data = (COMPLEX *)IBUF;
Beam = (COMPLEX *)BEM;
magn = (COMPLEX *)BBUF;
Hag = (float *)MBUF;
freal =(float *)(COMBUFOf);
fimag =(float *)(COMBUFlf);
Combuf = (unsigned short *)COMBUFO;

/* Initialize PIR, COMBUF areas
put_.PIR(O);

for (n0O; n<12; n++)
Combuf[n) = 0;

errflag = samp = 0;
nes = (int)(int)(Ne)/2);
errproc = Nout = maxlen = points =start =pad =0;

/* Main dispatch loop - wait for command in COMBUFO *
for(;;) T

1* Extract command code, dispatch to handler *
do{} while((command = *Combuf) ==0 IIcommand ==ACK_.ERR);
m = (command & OxffOO);
*Combuf = 0;

/* New Value of Ntot *
if(m GO-.N) f

Ns =(int) Combuf[COH-Ns];
b =(int) Combuf[COM...b];
errproc =Combuf CCOM..PROC];
errf lag - Combuf [COM-.FAULT];

samp = Combuf [COM..SAMP);
Nout = (int)(Ns*4);
pad = (int)(ORDER + b);
maxien = (int)(Ns + pad);
if (Combuf[COM.SET] 0){

points = (int)(Ns);
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start = (int)(pad);
for (m = 0; m < pad; m++){

Beazn[m).real = 0.0;
Beam [m] .imag = 0. 0;

put-.PIR(coinmand);

/* Receive and process new packet, Convert to Floating Point *
}else if(m == GO..RCV) (
for Cm = 0; m < Ns; m++){

for (n = 0; n < Ne; nft+){
pt = (int)(n*maxlen + pad +m)
In = (short int)(*Port);
Data~pt].real = (float)(In);
In = (short int)(*Port);
Data[ptlimag = -(float)(In); /* X = Xr - jXi *

/* Digital Interpolation Beazuforming, Data Cycling *

for (n = 0; n < Ne; n++) { * Interp. & Form Beam *
pt = (int)(n*maxlen);
filter(&Datarpt+start) ,&Beazn[start] ,points ,n,b,Combuf [COM_.SET]);
for Cm = 0; m < pad; m++) /* Cycle data *

Data[pt) = Data[Ns+(pt++));

if (errproc > 0){
for Cm = 0; m < Ns; m++){
if ((errflag==1) 11 ((samp==m) && (errflag==3))){
magn[m].real += *f real; magn[m].imag += *fimag;
}else if Cerrflagm=2) (
magn~m].real = *freal; magn~m].imag = *fimag;

/* Subsequent filters over all maxlen pts. *
points = int)(maxlen);
start 0;
put-PIR~command);
Combuf [COM_.SETJ 4+;

1* Transmit finished packet, 16 bits at a time *
}else if Cm == GO-.XMIT) (
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beam.io = (short int *)(BBUF);
*Mag = 0.0;

for (m0O; m < Ms; m++){
*Mag += (float) ((magn Em].real * magn Em].real +

magn[m).imag * magn[m.imag)/Ns);

for (n0O; n < 4; n++)
*Port = *beam-io++;

put_.PIR(cornmand); /* acknowledge quickly *

}else f
CombufCOM...ERR] = command;
put-IR(ACK-ERR);

#include "my-.macros .h"

void filter(in,out,N,sensor,b,batch) /* subroutine to implement *
COMPLEX *in, *out; /* complex FIR filter. *
mnt N, sensor, b;
unsigned short batch;

COMPLEX *fir, *coef, sum, *data =in;
register mnt t, k, n = 0;
int step;

step =(int)(FILTBUF + sensor*(b~l)*LEN*8); /* 8 bytes/complex pt. *
fir =(COMPLEX *)(step);

do f
if (sensor == 0){

out->real -0.0; /* set output to 0 if 1st hydrophone *
out->imag = 0.0;

in =data + n; /* ... reset data ptr *
k =(int)(min(n,GJRDER+b)));
t (int)(max(0,(n-ORDER)));
sum.real = 0.0; sum.imag = 0.0;
if (n < (ORDER+b))
do f
if ((k >= b) 11 (batch > 0))

coef = fir + b*LEN + (n-k);
else



coef - fir + k*LEN + (n-k);

sum.real += (float)(((in->real * coef->real) -

(in->imag * coef->imag)));

sum.imag += (float)(((in->real * coef->imag) +
(in->imag * coef->real)));

in--;

}while (k-- > t);
else (

coef - fir + b*LEN;
do (

sum.real 4= (float)(((in->real * coef->real) -

(in->iinag * coef->imag)));

sum.imag += (float)(((in->real * coef->imag) +

(in->imag * coef->real)));

in--; coefft4;

}while (k-- > b);

out->real += (float)(sum.real/Ne); /* normalize by Ne *
out++->imag += (float) (sum. imagiNe);

}while (++n < N);

* 1* WRITE_.COEFX.C :Computes complex filter coefficients needed for
working processor #X, and writes to external

memory to be used by BEAM.C

#include "dsp32c .h"

#include <libb.h>

#include "fircoef.h" /* matrix of subfilter coefficients *
#include "myP.h" /* matrix of whole integer delays *

/* Define communications buffer assignments */

#define T X /* selects look angle #X: theta =-22.5 + T*5 *

main()

int diff, step, nes, Q, M, M..max;
register int j, n, m;
register float tau, arg;

COMPLEX *filt, *Fir, *Coef, phase;
float mx, Theta;
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/* Initialize pointers *
Coef = (COMPLEX *)FILTBUF;

Theta = (float) Ctheta[T)*M-.PI/180);
nes =(int)((int)(Ne)/2);
step = Cint) (b + 1);

mx = Cf loat)(ASPC*nes) + (float)(abs(Theta)) - (float)(M-PI-.2);

H..max. = round((float) (WRAD*mod-sin(mx)/(C*DEL)));
for (n = 0; n < Ne; n++) (
Fir = Coef + n*step*LEN;
arg = (float)((n - nes)*ASPC - Theta - MP-)

tau = (float) ((WRAD/C)*mod-.sin(arg));
arg = (float)(WO*tau);
phase.real = -mod-.sinarg-M-PI-.2); /* = cos(arg) *
phase.imag = mod...sin(arg);
M M..max - round(tau/DEL);
if ((Q = (int)(CP[TIn]+l)*L - M)) ==(int) CL))

= 0;

for CQ = 0; j < step; j++){
filt = Fir + j*LEN;
diff = (int)(j -P[T[n));

if ((diff >= 0) && (diff <= b)){
for Cm = 0; m < LEN; m++) {
filt->real =(float)(fircoef [qI[ml * phase.real);
filt->imag =(float)(fircoef[Q][m] * phase.imag);
filt++;

else{
for Cm = 0; m < LEN; m++){

filt->real =0.0;
filt->imag =0.0;
filt++;

1* WRITE-.CSPZ.C calculates the summed complex filter
coefficients for CSP #Z, and writes
them to external memory for use by CSP.C

#define N 10 /* number of working channels *
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/* weights used for Zth CSP *
int ut[N] - fl. 1, 1, 1, 0, 0, 1, 1, 1, 1};

*include "ldsp32c.h"

#include <libb.h>
#include "fircoef.h" /* matrix of subfilter coefficients *
*include I'myP.h" /* matrix of whole integer delays *

main() f

mnt nes, Q, M, M..max, step, diff;
register mnt j, k, m, n;
register float tau, arg;
COMPLEX *fir, *coef, *filt, phase;
float mx, tht;

coef = (COMPLEX *)FILTBUF;
nes = (int)((int)(Ne)/2);
step = (int)(b + 1);

for (n =0; n < Ne; n++){
fir =coef + n*step*LEN;
for (k =0; k < N; k++){

tht =(float)(theta[k] * M-PI/180);
mx =(float)(ASPC*nes) 4 (float)(abs(tht)) - (float)(M-I-.2);
M..max = round( (float) (WRAD*mod-.sin(mx) /(C*DEL)));
arg = (float)((n - nes)*ASPC - tht - MP-)

tau = (float) ((WRAD/C)*mod.sin(arg));
arg = (float)(WO*tau);
phase.real = -mod-.sin(arg-M-PI-.2); /* =cos(arg) *
phase.imag = mod-.sin(arg);
M = ?max - round(tau/DEL);

if ((Q = (int)((P[k][n] + 1)*L M )) == (int)(L))

Q= 0;
for (j = 0; j < step; j++){

filt = fir + j*LEN;

if (k == 0) f
for (m = 0; m < LEN; m++){

filt->real = 0.0; filt->imag =0.0;

filt++;

filt = fir + j*LEN;
}/* END if (k ==0) ...

diff = (int)(j - P[k][nli;
if ((diff >= 0) && (diff <= b))
for (m = 0; m < LEN; m++) f

filt->real += (float)(fircoef[Q11m] *phase.real * t[kJ);
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filt->imag e= (float)(fircoef[Q][m] * phase.imag * wt[k]);
filt++;

} /* END for (j - 0; j < step; j++) ... */
} /* END for (k = 0; k < N; k++) ... */

} /* END for (n = 0; n < Ne; n++) ... */
} 1* END main */

/* BEAMMLE.C - Computes syndromes, syndrome cross-correlations,

likelihoods, picks the most likely failure ... and corrects it.

(N = 10, C = 3)

This starts by waiting for the host to send Ns to determine

batch size via COMBUFi.
It collects 13 input packets from the FIFO. For each packet, it
waits for GORCV from the host, then reads Ns complex floating-
point data points from its input FIFO, storing them in IBUF.

It accumulates the syndromes as the packets arrive, scaling by

1/16 to avoid overflow.
After computing the syndromes, it calculates the syndrome
cross-correlations, storing them in the rho variables.

It then computes the likelihoods, and picks the maximum.
It computes a threshold set to 1/2 the expected energy for a
one-bit error on the input. Depending on whether or not the

likelihood is larger than this, it corrects the error.
Acknowledges are sent to the 68030 as soon as possible.

COMMAND BUFFER USE:
COMBUFO: commands
COMBUFI: Ns (from host: # complex samples per hydrophone)

COMBUF2: last error command
COMBUF3: count of sets of packets computed so far

COMBUF4: count of packets computed so far
CDMBUF6: Most likely failed processor, or no fault (0)
COMBUF7: Most likely failed processor

*1

#include "dsp32c.h"

/* Define communication buffer assignments */
#define COMCMD 0
#define COMNs I
#define COMERR 2

#define COMSET 3
#define COMPACK 4
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#define COMDECIDE 6

#define COMMLE 7

extern void put-PIRO;

float scale = 1.0;

main() {
register unsigned short int *Port,command,*Combuf;
register short int *Inptr;
register float maxL, *Mag;
COMPLEX *In, *Out, *sl, *s2, *s3;
float *R, *Gamma, *Wt, *FixW, *Rho, *Likely, test;

register int i, j, k, m;
int Ns, count, proc;
void accumo, innerprodO;

/* Initialize Pointers */
Port = (unsigned short int *)PORT;
Combuf = (unsigned short int *)COMBUFO;

In = (COMPLEX *)IBUF;
Out = (COMPLEX *)CBUF;
sl = (COMPLEX *)OBUF;

Rho = (float *)RBUF;
Likely = (float *)LBUF;

Gamma = (float *)(LBUF + 13*4);
Wt = (float *)WBUF;
R = (float *)(WBUF + 4*39);
FixW = (float *)(WBUF + 4*52);
Mag = (float *)MBUF;

/* Initialize PIR, COMBUF areas */
putPIR(O);
Combuf[COMCMD] = 0;

Combuf[COMNs] = 0;
Combuf[COMERR] = 0;
Combuf[COMSETI = 0;
Combuf[COMPACK] = 0;

Ns = 0;
count = 0;

test = 0.0;

/* Main Dispatch Loop -- wait for command in COMBUFO */

for(;;) {

/* extract command code, dispatch to handler */
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do{} while ((command - *Combuf) 0);
M= (command & Oxff 00);
*Combuf - 0;

1* New Value of N *
if Cm == GO-.N) (
Ns = (int)Combuf (COM-.NsJ;
put...PIR(command);
s2 - si + Ns; s3 - s2 + Ns;

/* Receive and process new packet *
Ielse if Cm == GO-.RCV){
m = 4*Ns;
Inptr = (short mnt *)CIBUF + count*8*Ns);
while Cm-- > 0)

*Inptr++ =(short int)*Port;
Combuf [COM-.PACWI ++;
put.YIR(command);
i = (int)(3*count);
j = (int)(count*Ns);
1* Compute the syndromes, *
1* initializes if needed *
accum(-Wt [ii ,&In~j) ,sl,Ns,count);
accum(-Wt[++i] ,&In[j] ,s2,Ns,count);
accum(-Wt[++i) ,&In[j] ,s3,Ns count);

if (++count >= 13) ( /* If all 13 packets here, do GLRT *
k = m = 0;
*Gamma = (float) (1.0/(scale*2448.0));
innerprod(s1,s1,&Rho[O1,Ns); /* calculate the rho's *
innerprod(sl,s2,&Rho [1] ,Ns);
innerprod(s1,s3,&Rho [21 ,Ns);
innerprod(s2,s2 ,&Rho [4) ,Ns);
innerprod(s2,s3,&Rho[5] ,Ns);
innerprod(s3,s3,&Rho [B),Ns);
/* invoke symmetry ... *

Rho[3) = Rho[l); Rho[6) = Rho[2]; Rho[7) Rho [5];
/* sum of autocorrelations */
test = (Rho [0]+Rho [41 +Rho [8));
proc - 0; maxL = 0.0;
do f 1* compute the likelihoods *

Likely[k) = 0.0;
for Cm = 0; m < 9; m++){
i = 3*k + m/3; j = 3*k + m%.3;
Likely [kI +- Wt [jI *Wt [i) *Rho [ml *R[k);
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if (Likely [k] > maxL) ( /* choose faulty proc. *
maxL = Likely [k)
proc - k+1;

}while (++k < 13);
if (test > *Gamnma) /* indicate failed proc., if any *
CombufCO..DECIDEI = (short int)proc;

else
CombufECM-.DECIDE] = 0;

CombufCO..MLEJ = (short int)proc;

j =0;
do { * Correct the output *

accuin(FixW[kproc-1)*13+j] ,&In[j*Ns) ,Out,Ns,j);
}while (++ij < 13);

innerprod(Out ,Out ,Hag,Ns);
/* Avg. mag-2 of corrected output *
*Mag ( f loat)(*Mag/Ns);

count =0; test = 0.0;
Combuf £COt{.SETJ 4+;

put-.PIR(GO-.DONE); /* Signal that Likelihoods may be read *

}else{
Combuf[COM-.ERR] = command;
put-YIR(ACK_.ERR);

void accum(weight ,data,sum,N,flag)
float weight;
COMPLEX *data, *sum;
mnt N, flag;

register int i = 0;

if (flag !- 0)

flag - 1;

do f
sum[iJ.real = (float)(sum[i].real*flag + data[i).real*weight);
sum[i) .imag = (float)(sum[i) .imag*f lag + data~i) .imag*weight);
}while (++i < N);
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void innerprod(vl ,v2,out ,N)

COMPLEX *vl,*v2;
float *out;
int N;
{
register int i = 0;
*out = 0.0;

do {
*out += ((vi[i] .real*v2 [i] .real)+(v2[i].imag*vl[i] .imag))/scale;

} while (++i < N);
}

/* WRITEWEIGHTS.C : stores the weight matrix at WBUF in external
memory on BEAMMLE, prior to running. It is loaded and run at
the same time as write-coef*, and writecsp*.

*/

#include "dsp32c.h"
#define total 13
#define check 3
float wt [check] [total] =

{{1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0,-1.0, 0.0, 0.0},
{1.0, 1.0,-1.0,-1.0, 1.0, 1.0, 0.0, 0.0, 1.0,-1.0, 0.0,-1.0, 0.0},
{1.0,-1.0, 1.0,-1.0, 1.0,-1.0, 1.0,-1.0, 0.0, 0.0, 0.0, 0.0,-1.0}};

#define ONETHIRD 0.3333333333333333
#define TWOTHIRD 0.6666666666666666
float rkk[total] = {ONETHIRD, ONETHIRD, ONETHIRD, ONETHIRD, 0.5,

0.5, 0.5, 0.5, 0.5, 0.5, 1.0, 1.0, 1.0};
/* The following matrix is used when correcting faults *1
float fixW[total] (total] = {

{0., -ONETHIRD, -ONETHIRD, ONETHIRD, -TWOTHIRD, 0., -TWOTHIRD, 0.,
-TWOTHIRD, 0., ONETHIRD, ONETHIRD, ONETHIRD},

{-ONETHIRD, 0., ONETHIRD, -ONETHIRD, 0., -TWOTHIRD, 0., -TWOTHIRD,
-TWOTHIRD, 0., ONETHIRD, ONETHIRD, -ONETHIRD},

{-ONETHIRD, ONETHIRD, 0., -ONETHIRD, 0., TWOTHIRD, -TWOTHIRD, 0.,
0., -TWOTHIRD, ONETHIRD, -ONETHIRD, ONETHIRD},

{ONETHIRD, -ONETHIRD, -ONETHIRD, 0., TWOTHIRD, 0., 0., -TWOTHIRD,
0., -TWOTHIRD, ONETHIRD, -ONETHIRD, -ONETHIRD},

{-1., 0., 0., 1., 0., 0.,-0.5, 0.5,-0.5, 0.5, 0., 0.5, 0.5},
{ 0.,-1., 1., 0., 0., 0., 0.5,-0.5,-0.5, 0.5, 0., 0.5,-0.5},
{-1., 0.,-1., 0.,-0.5, 0.5, 0., 0.,-0.S,-0.5, 0.5, 0., 0.5},
{ 0.,-1., 0.,-1., 0.5,-0.5, 0., 0.,-0.5,-0.5, 0.5, 0.,-0.5},
{-1.,-1., 0., 0.,-0.5,-0.5,-0.5,-0.5, 0., 0., 0.5, 0.5, 0.},
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{0., 0-1-.,0.5, 0.5,-0.5,-0.5, 0., 0., 0.5,-0.5, 0.},

main() f

float *weight, *Rkk, *Fix;
register int i, j;

weight = (float *)WBUF;
Rkk = (float *)(WBUF + 4*39);
Fix = (float *)(WBUF + 4*52);

for Ci = 0; i < total; i++){

*Rkjk++ = rkk~i];

for (j = 0; j < total; j++){
if (i < check)

*weight+t+ = Cf loat)(wt[j) Ei)/16.0);
/* write weights in column major order *

*Fix++ = fixW[i][j];
1* write fixW in row major order *

/* DSP32c.h ::Include file for the DSP's *

1* The FIFO port address *
#define PORT OxACOOO

1* Define the codes for communication with the DSP32C's
Upper 8-bits = code
Lower 8-bits = transaction number

#define GO-.N Ox0100
*define GO-.XMIT 0x0200
#define GO..RCV 0x0300
#define GO-.DONE 0x0400

#define ACK..ERR Oxffff
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/* External memory data buffer addresses */
/* Define the communication buffer area DSP32C addresses */
/* Shorts */
#define COMBUFO OxffffeO
#de-fine COMBUFI Oxffffe2
#define COMBUF2 Oxffffe4
#define COMBUF3 Oxffffe6
#define COMBUF4 Oxffffe8

#define COMBUF5 Oxffffea
#define COMBUF6 Oxffffec
#define COMBUF7 Oxffffee

/* Floats */
#define COMBUFOf OxfffffO
#define COMBUFlf Oxfffff4
#define COMBUF2f Oxfffff8
#define COMBUF3f Oxfffffc

#include "mymacros.h"
#define ASPC 0.0523598776 /* angle between elements (radians) */
#define Fc 200000.0 /* carrier frequency in Hz */
#define DELTA 5.00e-5 /* quad. sam'ling period (sec) */
#define DEL 7.142857143e-6 /* interp. samp. period (sec)*/
#define WRAD 0.5729166667 /* array radius in feet */
#define C 5000.0 /* speed of sound in feet/sec */
#define WO 1.2566370614e+6 /* Sonar freq. in radians */
#define IBUF OxO08000 /* Stores incoming quadrature data */

/* These defines for beam, csp channels only */
#define BBUF OxOObO4O /* Beam Output, starts at BEAM + ORDER *1
#define BEAM OxOObOOO /* Interpolation results */
#define MBUF OxOOd8OO /* average magnitude over results */

/* These defines for beam-mle cbnnel only */
#define OBUF OxOOaOOO /* Syndrome buffers in beam-mle */
#define RBUF OxOObOOO /* Syndrome cross-corr. in beam-mle *1
#define CBUF OxOOcO00 /* Corrected proc. output in beam-mle *1
#define LBUF OxOOdO00 /* Likelihoods and thresh. in beam-mle */
#define WBUF OxOOeOOO /* Weights used by beam-mle */

float theta[] = {-22.5,-17.5,-12.5,-7.5,-2.5,2.5,7.5,12.5,17.5,22.5};

/* MYMACROS.H */
#define MPI 3.14159265358979323846
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*define M-.PI-.2 1 .57079632679489661923

#define M-.1-.PI 0.31830988618379067154
#define L 7 /* interpoltaion, ratio *
#define LEN 9 /* length(PolyPhase Filter) *
#define ORDER 8 /* LEN - 1 *
#define Ne 15 /* number of hydrophones *

#Idefine min(el,e2) (float)(el) <= (float)(e2) ? (float)(e1):(float)(e2)
*define max(e1,e2) (float)(e1) >= (float) (e2) ? (float)(el):(float)(e2)
#define abs(el) (float)(el) >= 0.0 ? (float)(el):(float)(-el)
#define sign(el) (float)(el) >= 0.0 ? (int)(1):(int)(-1)

#define FILTBUF OxOOcOOO /* Filter Coefficient Storage *

typedef struct{
float real;
float imag;
}COMPLEX;

/* LIBB.H *
extern float modo, mod-.sino, sqrto;
extern mnt roundo;
extern void filtero;

/* BEAMTRANS.C - The main subroutine which coordinates the fault
tolerance application for N=10, C=3.

The program runbeam(start,stop) sequences all activity

#define DEBUG 1
#define b..max 0 /* maximum number of whole integer delays *
#define maxbat 16 /* maximum number of data batches allowable *
#define endbat 47 1* last batch for which there is data *
#include <stdio.h>
#include <math.h>
#include '"dspstruct .h"
#include "macros .h"
#include "scm .h

mnt taberr-.shorto;
static void magnitudeso;
struct tabtrans transferD[] ,transferB[];

/* Help subroutine for this file *
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void tt.help()

{
printf ("FAULT TOLERANCE APPLICATION SEQUENCER (tabtrans.c)\n");
printf(" runbeam() - run all trans. once\n");
printf(" runbeam(nrun) - run all trans. nrun times\n");
printf(" runbeam(start,stop) - run trans. start through stop\n");
printf(" readcom() - disp. and interpret all comm. buffers\n");
printf(" readbeam(board,proc) - disp. buffers for beam.c proc.\n");
printf(" readbeam-all() - disp. buffers for all beam.c procs.\n");
printf(" readcsp(board) - disp. buffers for given csp.c proc.\n");
printf(" readcsp.all() - disp. buffers for all csp.c procsAn");
printf(" readbeam.mle() - disp. buffers for beam-mle.c proc.\n");
printf(" weightso) - prints weight matrix from beammle proc.\n");
printf("\n");

return;

/* Define struct which keeps track of which application has been
loaded into the DSP32C's

*/

int Nappl = -1;
struct appl apples[] = {

{"N=1, C=O "0,

transferD, 1, /* transactions table and length */
1, /* number of packets transmitted by input */
1, 3, /* input (board,proc) */
0, /* number of packets input by beam-mle */

2, 3, /* beam-mle (board,proc) */

0, /* number of beam processors */
{0,0,0,0, 0,0, 0,0, 0,0, 0,0), /* beam boards in order */
{O,0,0,0, 0,0, 0,0, 0,0, 0,0}, /* beam procs in order */
0, /* number of csp processors */
0, /* number of packets input by each csp */
{0,0,0,0}, /* csp boards in order */

{0,0,0,0}}, /* csp procs in order */

{"N=10, C=3 (weights 0,+-1)",
transferB, 17, /* transactions table and length */
4, /* number of packets transmitted by input */
1, 3, /* input (board,proc) list */
13, /* number of packets input by beam-mle */
2, 3, /* beam-mle (board,proc) list */

10, /* number of beam processors */
{0,0,0,0, 1,1, 2,2, 3,3, -1,-1, /* beam boards in order */
{0,1,2,3, 1,2, 1,2, 1,2, -1,-11, /* beam procs in order */
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3, /* number of csp processors *
1, /* number of packets input by each csp *
(1,2,3,-11, /* csp boards in order *
(0,O0-1)1. /* csp procs in order *

(NULL, NULL, 0, 0}

/* Define hardware addresses for the 16 DSP32C's PIC reg. banks *
#define PIO.. (struct dspstruct *)(boardO+OxOO)
*define PIOO-1 (struct dspstruct *)(boardO+0x40)
#define PIOO-.2 (struct dspstruct *)(board0+OxBO)
#define PIOO-.3 (struct dspstruct *)(boardO+OxcO)

*define PIO1-.. (struct dspstruct *)(boardl+OxOO)
#define PI01-1 (struct dspstruct *)(boardl4Ox40)
#define PI01-.2 (struct dspstruct *)(boardl+0x80)
#define PIO1-.3 (struct dspstruct *)(boardl.*OxcO)

#define PI02-0. (struct dspstruct *)(board2+OxOO)
#define PI02-.1 (struct dspstruct *)(board2+0x40)
#define PI02_.2 (struct dspstruct *)(board24Ox8O)
#define PI02..3 (struct dspstruct *)(board2+OxcO)

#define PI03-0. (struct dspstruct *)(board3+OxOO)
#define PI03..1 (struct dspstruct *)(board3+0x40)
#define PI03-.2 (struct dspstruct *)(board3+0x80)
#define PI03-.3 (struct dspstruct *)(board3+OxcO)

/* Define table of data packet transfers *
/* struct tabtrans f

unsigned short mnt I~board, SWboard0, SWboardl ,SWboard2 ,SWboard3;
struct dspstruct *pPlOtrans;
struct dspstruct *pPIOrcvO, *pPIOrcvl, *pPIOrcv2, *pPIOrcv3;
int transboard;
char *commnent;

/* Define table of data packet transfers for N=1, C=0 application *
static struct tabtrans transferD[J {

{ 10.BrdO,
SW-.InO, SW_.Out3 I SW-C~utEn I SW..LED, NULL, NULL,

PIO1-.3, PI00-0, NULL, NULL, NULL, 1,
"Input data from DSPE1) [3] to DSP[O] [O)"}
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/* This is the table defining the transfers for N=10, C=3 *
static struct tabtrans transferBE) = (

{IO-.BrdO & IO-.Brdl & IO-.Brd2 & IO-.Brd3.
SW-.InO, SW-.InO I SW-.Out3 I SW-.OutErL I SW-.LED, SW..InO, SW..Ino,

PI01-.3, PIOQ..O, PIO1-0., PI02..O, PIO3-0., 1,
"Input data from DSP[1] [3] to DSP[O) [0], DSP[1] [0], DSP[2] [0), DSP [3)[0]",

{IO-.Brd0 & IO-.Brdl & IO-.Brd2 & IO-.Brd3,
SW-.Inl, SW.Inl I SW-.Out3 I SW-.OutEn I SW-.LED, SWIn1, SW-.Inl,

PIO1..3, PIOO..1, PI01-.1, PI02..1, PI03-.1, 1,
"Input data from DSP[1] [3] to DSP[0] [1), DSP[1) [1], DSP[2] [1], DSP[3 [i]"}1,

{IO-.BrdO & 10,.Brdl & 10..Brd2 & IO..Brd3,
SW-I.n2, SW-I.n2 I SW-.Out3 I SW...OutEn I SW..LED, SW-I.n2, SW-.In2,

PIO1..3, PIOO..2, PI01.2, P102-.2, P103-2, 1,
"Input data from DSP[1] [3] to DSP[0] [2], DSP[1] [2], DSP[2] [2], DSP[3] [2]"},

{IO-.BrdO,
SW-I.n3, SW...Out3 I SW...OutEn I SW...LED, NULL, NULL,

PIO1..3, PIO.3, NULL, NULL, NULL, 1,
"Input data from DSP[1] [3] to DSP[O] [3]"},

{IO-.Brd2,
SW-.OutO I SW-.OutEn I SWJ..LED, NULL, SWIn3, NULL,

PIOO-.., P102-.3, NULL, NULL, NULL, 0,
"Output data from DSP[0] [0] to DSP[2] [3)"},

{IO-.Brd2,
SW-.Outl I SW-.OutEn I SW-.LED, NULL, SWIn3, NULL,

PI1001, P102-.3, NULL, NULL, NULL, 0,
"Output data from DSP[0] [1] to DSP[2] [3]"},

{IO-.Brd2,
SW-.Out2 I SW-.OutEn I SW-.LED, NULL, SW-.In3, NULL,
PIOO..2, P102-.3, NULL, NULL, NULL, 0,

"Output data from DSP[0] [2) to DSP[2] [3]"},
{IO-.Brd2.

SW-.Out3 I SW-.OutEn I SW-.LED, NULL, SW..1n3, NULL,
PIOO-.3, P102-3, NULL, NULL, NULL, 0,

"Output data from DSP[0] [3] to DSP[2] [3]"},

{IO-.Brd2,
NULL, SW-.Outl I SW-.OutEn I SW-.LED, SW-In3, NULL,

PI01-1, P102-.3, NULL, NULL, NULL, 1,
"Output data from DSP[1] [ii to DSP[2] [31"},

{IO-.Brd2,
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NULL, SW-Out2 I SWOutEn I SWLED, SWIn3, NULL,

PIO1_2, P102-3, NULL, NULL, NULL, 1,

"Output data from DSP[1] [2) to DSP[2] [3]"},

{ IOBrd2,
NULL, NULL, SWOutl I SWIn3 I SWOutEn I SWLED, NULL,

PI02_1, P102-3, NULL, NULL, NULL, 2,

"Output data from DSP[2] [1) to DSP[2) [3)"},

{ IOBrd2,
NULL, NULL, SWOut2 I SWIn3 I SWOutEn I SWLED, NULL,

P102-2, P102-3, NULL, NULL, NULL, 2,

"Output data from DSP[2) [2) to DSP[2] [3)"},

{ IOBrd2,
NULL, NULL, SWIn3, SWOutl I SWOutEn I SWLED,

PI03_1, P102-3, NULL, NULL, NULL, 3,

"Output data from DSP[3] [1] to DSP[2] [3]"},
{ IOBrd2,

NULL, NULL, SWIn3, SWOut2 I SWOutEn I SWLED,

P103-2, P102-3, NULL, NULL, NULL, 3,

"Output data from DSP[3] [2) to DSP[2] [3)111,

{ IOBrd2,
NULL, SWOutO I SWOutEn I SWLED, SWIn3, NULL,

PIO1O, P102-3, NULL, NULL, NULL, 1,

"Checksum Output from DSP[1] [0] to DSP[2] [3]"1,
{ IOBrd2,

NULL, NULL, SWOutO I SWIn3 I SWOutEn I SWLED, NULL,

PI02_O, P102-3, NULL, NULL, NULL, 2,

"Checksum Output from DSP[2] [0] to DSP[2] [3"1,

{ IOBrd2,
NULL, NULL, SWIn3, SWOutO I SWOutEn I SWLED,

PI03_0, P102-3, NULL, NULL, NULL, 3,

"Checksum Output from DSP[3] [0) to DSP[2] [3)"}
};

/* This is the routine which sequences all activity */

/* Basic communication protocol:

Runbeam writes command into location COMBUFO in DSP32C, together

with any auxiliary data in locations COMBUF1-7. Upper 8 bits is

the command, lower 8 bits is a unique transaction number.

DSP32C waits for a new command to appear in memory. It over-

writes the command with -1 to indicate that it read it, and

executes the command. When ready, it copies the command into PIR

to acknowledge the action. It then returns to the beginning to

await a new command.
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*/

/* Global error injection variables */

float dataval[68]; /* Uncorrupted data */
float errval[2]; /* Injected error values (constant) *1
int errtrans; /* Inject error just before this

transaction (if any) */
int errboard; /* board number to be affected */
int errproc; /* proc number to be affected *1
short int errflag; /* indicates error type */
int ncorrect[4]; /* number of correct/incorrect diagnoses

above/below threshold. [O]=correct above;
[1]=correct below; [2]=incorrect above;
[3)=incorrect below */

int histogram[15; /* histogram of error decisions */

/* For use with writing/reading actual sonar data -- MATLAB format */
char varout[] = "BOO";
char filein[] = "/usr/usr/ftsp/wbb1545/beam/input/Xxx.mat";
char fileout [) = "/usr/usr/ftsp/wbb1545/beam/batch/batchOO.mat";
char mskfile[] = "/usr/usr/ftsp/wbb1545/beam/input/mask.mat";

void runbeam(start,stop)

int start,stop;
{

int i,j,ti,il,i2, board, proc;
int nrun,nr,flag,dataflag,mskflag,rdflag,ldflag;
short int err, k;
unsigned short int *IOCRptr;
unsigned short int *Sptr;
struct tabtrans *thistable;
register struct tabtrans *ptrTab;
register int safety,command;
register struct dspstruct *pPIOxmit;
register struct dspstruct *pPIOrcvO,*pPIOrcvl,*pPIOrcv2,*pPIOrcv3;
void rdo,wdo;

FILE *mfp, *fopeno; /* Masking data for fault option 2 */

long dummy; /* Matlab
char *buf; /* file header */
double temp; /* parameters */

Sptr = (unsigned short int *)IOSTATREG;
IOCRptr = (unsigned short int *)IOCONREG;

/* Initialize error statistics *
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errtrans =-1
errboard = -1;
errproc = -1;

errflag = 0;
rdf lag = 0;
mskflag - 0;

1* Figure out which application has been loaded *
findappl();
if(Nappl < 0) return;
printf ("Running application Ys\n",aple[Nappl) comment);
thistable = apples[Nappl).table;

/* Parse arguments *
if(stop == 0) f

if (start ==0){

nrun =1

}else{
nrun =start;

start =0;
stop =applesENappl].ntrans;

I else{
nrun =1;

I

/* Main host data packet transfer loop *

1* Setup PCR registers -

Run, regular map, DMA, 16-bit, non-autoincrement *
for(i0O ; i < NBOARD ; i++){

for(j=0 ; j<4 ; j++i) f
il = ptrDSP~i][j] -> PCR;
ptrDSP[i)[j] -> PCR - ((il & PCR..RUN) I PCR-.REG IPCR-.DMA IPCR-PI016);

readPIOO);
if(askynqo)= 1

return;

/* select level of status printout during run *
flag -1;
printf ("Choose level of printout during run:\n");
printf(" 0 - print avg. magnitudes for each run without pause\n");
printf("I 1 - print avg. magnitudes, stop if error above thresh.\n");
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printf (" 2 - print avg.- magnitudes for each run with pause\n");
printf(C' 3 - print avg magnitudes and trans. details\n");
printf C" 4 - print avg. magnitudes, trans. details, PIO reg.\n");

askint("Choice: ",&f lag);

dataflag = askpromptC"Use actual sonar data?")
if (dataflag < 0) return;
if (dataflag > 0) f

ldf lag = askprompt("Load data into INPUT DSP? )

if (ldflag > 0) (
askint(" starting from batch: ",&i);

il = (int) (i-1+maxbat)>(int)endbat ? (int) (endbat-i+1):(int)maxbat;
nrun = (int)il;

for(j0O; j < il; j++.4)
wd(joi);

Ielse if (ldf lag ==0) nrun = (int)maxbat;
else return;

printf ("Select output datafile save option:\n");

printf(" 0 - None\n") ;
printf(" 1 - Save uncorrected (corrupted) output\n");

printf(" 2 - Save corrected output\n");
askint("Choice: ",&rdf lag);

/* Initialize error statistics *

for(i=O ; i<4 ;i++){
ncorrect~i] =0;

I
for(i=0 ; i<=apPles[Nappl] .nbeam + apples [Nappli .ncsp ; i++){

histogram[i) - 0;

1* Determine whether to screw up any output buffers in the DSP32C's *
il - askprompt("Force error in BEAM or CHECKSUM processor? )

if(il < 0) return;
if(il > 0) (

errboard =0;

errproc =0;

if(askint("Channel proc. (1) or checksum proc. (2): 1"&il)){

switch(il){
case 1:

printf("There are channel procs. 1 to Mdn",apples[NapplJ.nbeam);

askint("Which channel proc.? '1,&il);

errboard =apples[Nappl) .beam.bd[--ilJ;
errproc =apples[Nappll .beam-.pr~ilJ;
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break;

case 2:
printf("There are checksum procs. 1 to %d\n",apples[Nappl).ncsp);
askint("Which checksum proc.? ",&ii);
errboard = apples [Nappi) .csp-.bd [--il);
errproc = apples [Nappi] .csp.pr (ii);
break;

if(askint("Constant Error (1) or Masking Error (2): ',&mskf lag)){
errtrans = apples [Nappi . input-.pack;
if (mskflag==l) f

printf ("Options :\n");
printf C" 1 - Add constant to data\n");
printf C" 2 - Set data to constant\n");
printf(" 3 - Add constant to single sample\n");
errval[0) = 0.0; errval[i) = 0.0;

if(askint("Choose: ",&il)){
errflag = il;
if (il < 3) (
askfloat(" Real value? ",&errval[O));
askfloat C" Imaginary value? ",&errval 1:1);
}else f
askint(" Which sample? ",&il);
askfloat(" Real value? ",&errval[0]);
askfloatC" Imaginary value? ",&errval[1]);

else if Cmskflag==2){
mfp = fopen~mskfile,"orbit);
/* Prepare matlab data file *
fread(&dummy,sizeof(long),m~wp); /* eat machine ID *
fread(&dummy~sizeof(long),1mfp); /* eat X rows *
fread(&dulmmy,sizeof(long),1,mfp); /* eat 8 cols *
fread(&duummy,sizeof(long),1,mfp); /* eat imag. data flag *
fread(&duummy,sizeof~long),l,mfp); /* var name length *
buf = (char *)calloc(dummy,sizeof (char));
fread~buf,sizeof(char),dulmmy,mfp); /* eat var name *
/* Now data points may be read in *
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i - apples [Nappl.n rbean;
for Qi - 0; j < i+apples[Nappl).ncsp; j++) f

if Qi < i) {
board = apples [Nappli .beau..bd~j);
proc = apples[Nappl.bean..pr[j);

I else f
board = apples[Nappl.csp-.bd~j-i);

proc = apples [Nappl . csp..pr [j-i);
I
k -0;
if ((errboard -= board) && Cerrproc == proc) && (mskf lag M=1)

k = 1;
vr..s(board,proc,COHBUF6,1,&k); /* Faulty Proc. (conrt. fault) *

k =(short int)(errflag);
vr..s(board,proc,COMBUF4,1,&k); /* Fault Type (const. fault) *
k =(short int) (il);
vr..s(board,proc,COHBUF7,1,&k); /* Faulty Samp. (if applicable) *
vr-.fdsp(board,proc,COMBUFOf,1,&errval[O]); /* Real fault val. *
vr-fdsp(board,proc,COMBUFlf,l,&errval[1J); /* Imag fault val. *

Write Ns, b-.max into CQMBUF 1, 5. Code GQ... into COMBUFO
Wait to make sure that each pro. returns a GO-.N acknowledgement

if (start ==0){

for(i=0 i<NBOARD ; i++){
for(j0O ; j<4 ; j++) f
pPI~xmit =ptrDSP~i)[j);
POxmit ->PIR = 0; /* Init PIR reg. to default value *
PlOxmit ->PARE = COMBUFh;
PI~xmit ->PAR = COMBUFI;

POxmit ->PDR = (short int)(Ns);
pPIOxmit ->PAR = COMBUFS;
pPIOxmit -)PDR - (short int)(b-.max);

POxmit ->PAR = COMBUFO;
PIxmit ->PDR - GO.N;
safety = 0;
while(pPl~xmit->PIR != GO..N){

if(safety++ > SAFENU4){
safety -0;

/* readPIO();
printf ("Waiting for (%d,%d) to acknowledge new Ns value.\n",
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printf C" Current PIR=%x. Expecting %x. Wait "

pPIuxmit->PIR,GO-N);
il = askynqo);
if(il == 0){
break;
}else if(il ==-1){
return;

if (flag >= 3){
printf ("Acknowledge code (PIR): % x (#tries=%d)\n",

pPIOxmit->PIR,safety);

dispinitOC);
/* LOOP THROUGH PROGRAM WRUN TIMES *
for(nr = 1 ; nr <= nrun ; nr++) f

printf("*** BATCH %d ***\n",nr);

for(i = start ; i < stop ; i++) f /* DO ALL TRANSACTIONS *
ptrTab = &thistable[i];

if (flag >= 3) f
printf("\nTransaction: %d\n" ,i
printf C" %s\n" ,ptrTab -> comment )

I

/* Inject a random error, if desired, before this transaction *
if ((i==errtrans) && (mskflag2)) f
printf ("INJECTING ERROR INTO PROCESSOR %d,%d",

errboard ,errproc);
for (i1=0; il < 2*Ns; il+4){
fread(&temp,sizeof (double) ,1,mfp);
dataval~il) - (float)temp;

vr..fdsp(errboard, errproc IBBUF, 2*Ns ,dataval);

/* Setup the 10 board *
*IOCRptr = 10CR = ptrTab -> IOboard;
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/* Setup the FIFO switch registers on each DSP32C board *
ptrODSPO ->PARE = DSPSWREGh;
ptrODSPO - PAR =DSPSWREGl;
ptrODSPO ->PDR - DSPCR[O) = ptrTab ->SWboardO;

ptrlDSPO ->PARE = DSPSWREGh;
ptrlDSPO - PAR = DSPSWREGl;
ptrlDSPO - PDR -DSPCR[11 = ptrTab ->SWboardl;

ptr2DSPO - PARE = DSPSWREGh;

ptr2DSPO ->PAR = DSPSWREGl;
ptr2DSPO - PDR - DSPCR[2) = ptrTab ->SWboard2;

ptr3DSPO ->PARE = DSPSWREGh;
ptr3DSPO - PAR =DSPSWREGl;
ptr3DSPO ->PDR = DSPCR[3] = ptrTab ->SWboard3;

1* Send code to start the transmission *

PlOxmit = ptrTab -> pPlOtrans;
if(f lag >= 3) {
printf('prior transmitter PIR = Yx\n",pPlflxmit->PIR);

I
PlOxmit -> PARE =COMBUFh;

pPIOxmit -> PAR =COMBUFO;

command = GO-.XMIT~i;
pPlOxmit -> PDR = command;

/* wait until acknowledge code from DSP in PIR register *
1* (verify that DSP is has begun transmission) *

saf ety = 0;
while(pPI~xmit -> PIR !=command){

if(safety++ > SAFENUM){
readPIOO);
safety =0;
for(i1=0 ; il<NBOARD ;il++){
for(i2O0 ; i2<4 ; i2++) (

if(ptrDSP[i1l[i2] == pPlOxmit){
printf ("Transaction %d: Waiting for transmitter (%d,%d) .\n",

i,il,i2);
break;
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printf("I Currently PIR=%x; Expecting %~x. Wait '

pPlOxmit->PIR,GO-XMIT+i);

il = askynqO;
if(il == 0){
break;
}else if(il ==-1){
return;

if (flag >= 3){
printf("'Transmitter: PIR =%x (#tries=/.d)\n",

pPIOxmit->PIR, safety);

1* Send GO-.RCV code to start reception *
command = GO-.RCV+i;

if ((pPIOrcvO = ptrTab -> pPIOrcvO) != 0)

if (flag >= 3){

printf('Write GO...RCV in rcv0 (code %x)\n",command);

I
pPIOrcvO -> PARE =COMBUFh;
pPIOrcvO -> PAR =COMBUFO;
pPIOrcvO -> PDR =command;

if ((pPIOrcvl =ptrTab -> pPIOrcvl) !=0)

if (flag >= 3){
printf ("Write GO..RCV in rcvl (code %x)\n',command);

pPIOrcvl -> PARE =COMBUFh;

pPI~rcvl -> PAR =COMBUFO;
pPIOrcvl -> PDR =command;

if ((pPIOrcv2 = ptrTab --> pPIOrcv2) != 0)

if (flag >= 3){

printf ("Write GO-.RCV in rcv2 (code %x) \n", command);

pPIOrcv2 -> PARE =COMBUFh;
pPIOrcv2 -> PAR =COMBUFO;

pPIOrcv2 -> PDR =command;
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if ((pPIOrcv3 = ptrTab -> pPIOrcv3) != 0)

if (flag >= 3){
printf ("Write GO-RCV in rcv3 (code 'hx)\n" ,command);

I
pPIOrcv3 ->PARE =COMBUFh;
pPIOrcv3 ->PAR =COMBUFO;
pPIOrcv3 ->PDR command;

1* Wait for ack. from all rcvrs, starting with the first *
if (pPIOrcvO != 0)

safety = 0;
while(pPIOrcvO -> PIR != command)(

if(safety++ > SAFENUM){
readPIO();
safety = 0;
for(il=0 ; il(NBOARD ;if++){

for(i2=0 ; i2<4 ; i2++) {
if(ptrDSP[il)[i2] == pPIOrcvO) {
printf("'Transaction %d: Waiting for receiver (%d,%d).\n"I,

i,il,i2);
break;

printf("I Current PIR=%x, expecting %/x. Wait "

pPIOrcvO->PIR, command);
if = askynqo;
if(il == 0){
break;
I else if(il ==-1){

return;

if (flag >= 3){
printf ("receiver 0: PIR =%x (#tries=/d)\n",

pPIOrcvO->PIR, safety);
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if (pPIOrcvl !- 0)

safety - 0;

while(pPIOrcvl -> PIR !- command){
if(safety++ > SAFENUM){

readPIO0 ;
safety = 0;

for(il=0 ; ilCNBOARD ;il*+){
for(i2=0 ; i2<4 ; i2++) (

if(ptrDSP~ilJ[i23 == pPIOrcvl){
printf("'Transaction %~d: Waiting for receiver (Yd,Yd).\n,

i,il,i2);
break;

printf(II Current PIR=/.x, expecting %x. Wait "

pPIOrcvl->PIR, command);
ii = askynqo;
if(il == 0){

break;
}else if(il= -1){

return;

if (flag >= 3){
printf ("receiver 1: PIR = %~x (*tries=Yd)\n",

pPIOrcvi->PIR, safety);

if (pPIOrcv2 !=0)

safety = 0;
vhile(pPIOrcv2 -> PIR != command)(

if(safety++ > SAFENUM){
readPIOO);
safety = 0;
for(il=0 ; i1CNBOARD ;ii++){
for(i2=0 ; i2<4 ; i2++) (

if(ptrDSP~ill[i21 -= pPIOrcv2) f
printf ("Transaction %d: Waiting for receiver (%d,%d).\n"

i,il,i2);
break;
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printf(" Current PIR-/.x, expecting %x. Wait "

pPIOrcv2->PIR,command);
ii = askynqo;
if(il a 0){
break;
}else if(il =-1){
return;

if (flag >= 3)'(
printf ("receiver 2: PIR = x (#tries=%d)\n",

pPIOrcv2->PIR,safety);

if (pPIOrcv3 != 0)

saf ety = 0;
while(pPIOrcv3 -> PIR != command){

if (safety++ > SAFENUM){
readPIOO);
safety = 0;
for(il=0 ; il<NBOARD ;il4+){
for(i2=0 ; i2<4 ; i2++) (

if(ptrDSP[il] [i2) == pPIOrcv3) f

printf("Transaction %d: Waiting for receiver (%d,%/d).\n",
i,ii,i2);

break;

printf C" Current PIR=%x, expecting %x. Wait "

pPIOrcv3->PIR, command);
il = askynqo;
if(il -= 0){
break;

Ielse if(i1 = -1){

return;

if (flag >= 3){
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printf ("receiver 3: PIR = %x (#tries=/.d)\n",

pPIOrcv3->PIR, safety);

1* Turn off the output buffer on the transmitter *

pPlOxmit -> PARE - DSPSWREGh;
pPIOxmit -> PAR = DSPSWREGl;
DSPCR[ptrTab -> transboard) = pPIOxmit -> PDR =SW..LED;

if (flag >= 4){
readPIOO);
il = askynqo;
if(il -= 0){
break;
}else if(il ==-1){
return;

} * end transact *

/* print results of the GLRT test *
if (stop == apples[Nappl].ntrans ) f

/* Wait until beam..mle() is finished *
if((i = apples[Nappl.mle.bd) >= 0){

j = applesENappl.mle-pr;
safety - 0;

while(ptrDSP[i)EjJ -> PIR !GO-DONE){
if(safety++ > SAFENUM){

readPIOO);
safety - 0;

printf ("Waiting for beam-mle (%d,%d) to finish\n",i,j);

printf(" Current PIR=%x, expecting %x. Wait "

ptrDSP~i) Ejl->PIR,GO..DONE);

ii = askynqo;
if(il am 0) f

break;
I else if(il -- -1){

return;
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if(flag >= 3){

printf("Beam.mle() is done: PIR = %x (*tries=%d)\n",
ptrDSP[iJ [j)->PIR,safety);

j = taberr-.short(&err);
if(i >= 0) f
ncorrect [i) 44;

histogram [err) 44;

if (flag == 1 && (i==0 11 i==2)) break;
if (flag >= 2 && nr < nrun && askynq() <= 0) break;

if (rdf lag > 0)
rd(nr,rdflag); /* read output data, write to .MAT data file *

} * END NRUN */
if (mskf lag ==2)
fclose(mfp);

if(stop == apples[Nappl].ntrans){
printf("***DIAGNOSES: above threshold below threshold\n");
if(errtrans >= 0){

printf C" Correct: %15d %15d\n"
ncorrect [0],ncorrect [1));

printf(" Incorrect: %/15d %15d\n",

ncorrect [2) ,ncorrect [3));
I else f
printf C" count: %15d %15d\n"

ncorrect [2) ,ncorrect [3));
I
printf("\n***HISTOGRAM:\n Hyp:
j =apples[Nappl).nbeam;
il j+apples[Nappl..ncsp;
for(i0O ; i~j ; i++){

printf(" beam");

for(; i<il ; i++){

printf(" csp");

I
printf("\n none.);
for(i0O; i<j ; i++){

printf('1 %/d,Yd",

apples [Nappli .beam.bd [ii ,apples[Nappl.beam-.pr[iJ);
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for( ; i~il ; i++){
printf ( %dd"O,

apples [Nappi) csp-.bd i-j) ,apples (Nappi) csp..pr Ei-j 1);

printfC"\n :)
for~i-O ; i<=i1 i++){

priutf(015d" ,histogram CiJ)

printf("\n");

return;

/* Display the communications buffer area *
void readcom()

printf(COMBUFO: Command\n");
reads..all(CMBUFO, 1);
printf ("COMBUFl: Ns\n");
readsall (COMBUFI ,1);

printf("COMBUF2: Last Erroneous Command\n");
reads-,all (COMBUF2, 1);

if( 0 askyesO0) return;

printf('COMBUF3: Number of data batches processed\n");
reads..all (COMBUF3, 1);
printf("COMBUF4: INPUT, BEAMMLE: * separate data packets processed\n");
printf (I BEAM, CSP: Fault type\n");
reads..all (COMBUF4, 1);
printf("COMBUF5: BEAM, CSP :Maximum # vhole integer delays, b\n");
reads-.all (COHBUF5, 1);

if( 0 askyesO0) return;

printf('COMBUF6: BEAM-MLE: GLRT Thresholded decision\n");
printf C' BEAM, CSP: Faulty processor \W9)
reads-.all (COMBUF6, 1);
printf ('COMBUF7: BEAM-.MLE: Non-thresholded decision\nt);
Printf(" BEAM, CSP: Faulty sample number\n");
reads-.all(COHBUF7, 1);

if( 'askyeso) return;

printf("COMBUFOf: BEAM, CSP: Real fault value\n');
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read! dsp.all (COMBUFOf, 1);
priatf('COMBUFlf: BEAM, CSP: Imaginary fault value\n");
readfdsp-.all (COMBUFif .1);
printf('MBUF: Average squared magnitude of output\n");
readfdsp..all(MBUF, 1);

return;

1* Display all the data buffers for BEAM.C *
void readbeam(board~proc)
int board,proc;

short int N;

1* Read value of Ns from beam.c *
rd..s(board,proc,COMBUF1,1 ,kN);
debuglC" NsYd\n",N);

1* Display the output buffer *
printf("\nBEAM(d,%d) - output beam response buffer\n",board,proc);
readfdsp(board,proc,BBUF,N*2);

return;

1* Display all the data buffers for all BEAM.C *
void readbeam..all()

int i;

1* Figure out vhich application has been loaded *
findappl();
if(Nappl < 0) return;
print! ("Assuming application %~s vas recently run\n",

apples [Nappl) comment);

1* Find next beam processor, display its status *
for(i-0 ; i~apples[NapplJ-nbeam ; i+.) f
readbeam(applesCNapplJ .bean..bd~i] ,apples[Nappl.beam..pr~iJ);

if(askprompt("'More BEAM buff ers?") <- 0) return;
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return;

/* Display the data buffers for CSPx.C *
void readcsp(board,proc)
int board,proc;

short int N;

/* Read value of N from csp.c *1
rds (board,proc,COHBUF1,1 ,&N);
debugl(I" Ns=%d\n",N);

/* Display the output buffer */
printf("\nCSP(%d,%d) - output checksum beam response buff er\n",

board,proc);
readfdsp (board, proc, BBUF, N*2);

return;

/* Display the data buffers for all CSPx.C */
void readcspall()
{

int i;

/* Figure out which application has been loaded */
findappl();
if(Nappl < 0) return;
printf ("Assuming application Y.s was recently run\n",

apples [Nappl].comment);

/* Display the status of all the checksum processors */
for(i-O ; i<apples[Nappl].ncsp ; i++) {

readcsp(apples[Nappl].csp-bd [i] apples[Nappl].csp-pr[i));
if(askprompt("More CSP buffers?") <- 0) return;

I
return;

I

/* Display the data buffers for the BEAMMLE.C processor */
void readbeammle()
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short int N;
short err;
int i,il,board,proc;

/* Figure out which application has been loaded *
f indappl 0;
if(Nappl < 0) return;
printf ("Assuming application %s was recently run\n",

apples [Nappl) .comment);
board = applesfNappl).mle.bd;
proc = apples [Nappl) .mle-.pr;

1* Read value of N from beam..mle.c *
rd-s(board,proc,COMBUF1, 1,&N);
debugi C" Ns=/.d\n" ,N);

/* Diagnosed failure *
r-s (board ,proc ,COMBUF6, 1, kerr);
if (err > 0) f
printf("BEAM-MLE - failure diagnosed in processor %d ",err);
i = apples[NapplJ.nbeam;
if (err <= i) (

printfC" (74 ,%d) \n" ,apples [Nappli beam-.bd [err-i],
apples [Nappl) .beam.pr[err-l1);

Ielse f
printf("(%d,%d)\n",apples[NapplJ .csp-.bd[err-i-1],

apples [Nappl] .csp..pr[err-i-i]);

I else{
printf("BEAM-MLE - no failure detected\n");

1* Display the input buffers *
for(i-l; i<=apples[NapplJ .nbeam + apples[Nappl] .ncsp ;i++){

if(i <= apples[Nappl].nbeam) (
printf("\nBEAM-.MLE - input buffer, BEAM processor Wdn",i);
Ielse (
printf("\nBEAM-.MLE - input buffer, CHECKSUM processor Wdn",i);

readfdsp(board,proc,IBUF+(i-l)*8*N,2*N);
il askprompt("'More input buffers?");
if(!il){
break;
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} else if(il - -1)
return;

}
}

/* Display the syndrome buffers *1
for(i=1; i<=apples[Nappl].ncsp ; i++) {
printf("\nBEAMMLE - syndrome buffer d\n",i);
readfdsp(board,proc,OBUF+(i-1) *8*N,2*N);
il = askprompt("More syndrome buffers?");
if(!il) {
break;

I else if(il == -1) {
return;

I

/* Display the syndrome cross-correlations */
printf("\nBEAMMLE - syndrome cross-correlations\n");
i apples[Nappl].ncsp;
i i*i;

readfdsp(board,proc,RBUF, i);

/* Display the likelihoods */

printf("\nBEAMMLE - Likelihoods\n");

i = apples [Nappl] .nbeam + apples[Nappl .ncsp;
readfdsp(board,proc,LBUF, i);
if(!askyeso) return;

1* Display the computed threshold */
printf("\nBEAMMLE - Threshold\n");
readfdsp(board,proc,LBUF i*4, I);
if( !askyes C)) return;

1* Display the fixed data */
if(err > 0) {
printf("\nBEAM_MLE - processor %d fixed data\n",err);

readfdsp (board, proc,CBUF, 2*N);I
return;

/* Returns code of which processor failed in *error
Returns 0 if correct diagnosis above threshold, I if correct
diagnosis below threshold, 2 if incorrect above threshold, 3
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if incorrect below threshold, -1 if 'q' typed during printout
or if error.

static int taberr-.short(error)
short *error;

short mnt N;
short err;
int i,ii,errb,errp;
int board,proc;
int retval;

/* Find board, proc location of outmle.c *
board = apples[Nappl.mle.bd;
proc = apples[Nappl.mle-pr;

/* Read value of N from outmle.c *
rd-.s(board,proc,COMBUFi ,i,&N);
debugi(" Ns=%d\n" ,N);

/* Display the magnitudes *
magnitudes 0;

1* Diagnosed failure *
rd-s(board,proc,COMBUF6, 1 ,err);
if (err > 0) (
*error = err;
i = apples[NapplJ.nbeam;
if (err <= i) (

errb = apples [NapplJ .beam-.bd [err-i];
errp = apples [Nappl) .beazn..pr[err-i);

}else (
errb = apples [Nappli .csp..bd [err-i-i];
errp -apples [NapplJ .csp-.pr [err-i-i];

1* Correct failure diagnosis *
if(errtrans >=0 && errb == errboard && errp ==errproc){
printf ("CORRECT DIAGNOSIS: processor (%d,Yd) failed\n",

errb,errp);
retval - 0;

1* Failure occurred, but incorrectly diagnosed *
}else if(errtrans >inO) f
printf ("INCORRECT DIAGNOSIS: processor (%d,Yd) actually failed~n",
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errboard, errproc);

printf(" processor (%d,%d) declared as failed",errb,errp);

retval = 2;

/* No failure, but GLRT declared a failure anyway *

}else f
printf ("FALSE ALARM:\n");
printf(" no failure, but processor (%d,%d) declared faulty\n",

errb,errp);

retval = 2;

}else{
*error = apples[Nappl].nbeam + applesENappl].ncsp + 1;

if(errtrans >= 0) f /* Failure, missed by GLRT *
printf ("FAILURE NOT DIAGNOSED:\n");

printf(" processor failure in (%d,%d) missed\n",
errboard, errproc);

retval = 3;

}else f
printf ("CORRECT DIAGNOSIS: ALL PROCESSORS WORKING\n");

retval = 1.;

return (retval);

1* This subroutine uses the information in the apples descriptor
to figure out where all the beam and csp programs are supposed
to be, reads the complex outputs from outmle, computes the average

magnitudes, and then prints a listing of the magnitudes in a
4 by 4 square, matching th-,, magnitude to the processor location.

static void magnitudes()

mnt board,proc,i,j,nf, mleb, miep;
float faulty-.mag[4) [4] ,correct.mag [4)[4) ,max = -1.0;

1* Init the Hag array *
I or(board 0 ;board < NBOARD ; board++){

for(proc -0 ;proc < 4 ; proc+4){
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faulty..mag[board][proc] -1.0;
correct-.mag~board[proc] -1.0;

mieb = apples[Nappllmle-bd;
miep = apples[Nappl.mle-pr;

/* Read magnitudes, allocate to the positions in the array *

for(i= 0 ;i<apples[Nappl] .nbeam; i++) {
board =apples [Nappi] .beam-.bd~i];
proc =apples [Nappi] .beam.pr[i);
rd-.fdsp bard,proc, MBUF, 1, f aulty.mag [board] [prodl);
if ((oard != errboard) 11 (proc != errproc))

correct-mag [board] [proc) = faulty.mag[board] [proc];
else

rd-.fdsp(mleb,mlep ,MBUF, 1,&correct-.mag [board] [proc]);
if (max-faulty-.mag[board] [proc]<0) maxfaulty-mag[board] [proc];

I
for(i0 ; i<apples[Nappl].ncsp; i++) { /* used only for scaling *

board =apples[Nappl].csp.bd[i];
proc = apples[NapplJ.csp-.pr[i];
rd.f dsp (board ,proc ,MBUF, I,&faulty-mag [board] [proc]);
if (max-faulty-.mag[board] [proc]0o) max=faulty-.mag[board] [proc];
faulty-mag [board] [proc] = -1 .0;

dispOCf aulty-.mag, correct-mag 1max);

/* Print the magnitudes *
return;

dispinitO C)

int i,j,rl,r2;
float tht;

home-.cursoro;
clear-.screeno;
move..cursor(1 130);
printf ("Average squared magnitudes");
move-.cursor(2,18);
printf ("uncorrected");
move-.cursor(2,45);
printf(" I");

107



move-.cursor(2, 57);

set...scroll(16,24);
inverse-.videoo;
for (i1l; i<= 10; i..){

move-.cursor( i42, 3);
tht = -22.5 + (i-i)*5.0;
if (tht < 0.0) prirntf("%5.lf".tht);

else printf("+%4. lf",tht);

regular-.videoo;
move-.cursor(l6,0);

dispO(MagI ,Mag2 ,max)
f loat MagI [4] [4] , Mag2[(41 [4] 3max;

jut board,proc,i, barend, line;
float ratio,sanp;

ratio =33.0/max;
for (i =3; i < 13; i++){

move-.cursor(i, 10);
erase-.lineo;
move..cursor(i ,45);
printf C' 1I");

for Ci = 1; i <= 2; i++){
for(board =0 ; board <NBOARD ;board++){

for(proc=O ; proc<4 ; proc+4) f
if (i==1) samp = Magl~board][proc); /* faulty output *
else samp = Mag2[board][proc]; 1* corrected output *
if (samp >- 0) f
barend=Cint) Csamp*ratio)*10+Ci-1)*37;
if ((arend > 43) && Ci 1))
barend = 43;

else if ((arend > 80) &&(i == 2))
barend -80;

if (board=0O){
line - proc43;

else if (board==1 U <proc Uproc<3){
line = proc46;

else if (board==2 U <proc Uproc<3){
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line = proc+8;

else if (board==3 && O<proc &&proc<3){
line = proc*1O;

else break;

barch( line , 1O+((i-1)*37) ,barend )

if (samp - max)(
inverse..videoo;
printf('X");
regular-.videoo;

move-.cursor(16,O);
} * end dispO */

1* This subroutine tries to determine the application loaded.
If Nappl is -1, then asks user for help, after displaying which
DSP32C programs appear to have been loaded.

If Nappi >= 0, then simply returns

void findappl()

mnt i;

if(Nappl == -1){

printf ("Cannot tell which application has been loaded.\n');
layout 0;
printf ("Which application is this? \n");
for(i=O ; apples[i].comment ; i++) (

printf(" %~d: Ys\n",i,apples[i) .comment);

askint ("Choose? ",.&Nappl);

return;

1* This subroutine reads the Wmat matrix from outmle0, and
formats this weight matrix for display

109



void weights()

int i,j ,k,board,proc;
int nf,nc;
short sdataE9);
float Wmat[64);
float W[4J[16J;

1* Find the application *
f indappl 0;
if(Nappl < 0) return;

1* Count number of FFT and CSP processors *
nf =apples[Nappl].nbeam;
nc =apples[Nappl].ncsp;

/* Read the weight matrix *

rd-.fdsp(apples [Nappli .mle..bd, apples [Nappl] .mle.pr,WBUF,nc* (nf+nc),

Wmat);

1* Distribute the weights among the boards *
for(i0O ; i<4; i++) f
for(j=0 ; j<16 ;j++){

W[i][j] = 0.;

for(i0O ; i~nf+nc ;i++){

if(i < nf) (
board =apples ENappl] .beam-.bd[i];
proc =apples [Nappl . beam-.pr EiJ;

I else{
board =apples[Nappl) .csp-.bd[i-nf);
proc =apples ENappl) .csp..pr[i-nf);

I
for(k=0 k~nc ; k++){

W Eboard) [proc+4*k] Wmat £i+ (nf+nc) *kl;

1* Format for display *
for(i0O ; i<NBOARD ; i++){

printf("G'.d,*): 11,i);

for(j=0 ; j<4 ; j++){
rd-.s(i,j ,DSPNAME,8,sdata);

sdata[8) - 0;
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printf('1.15s I, (char*)sdata);

printf ("\n");

for(k0O ; k<nc; k++){
printf( 11)
for~j=O ; j<4 ; j++){

printf ("%15.7g ",W[i] [j+4*kJ);
I
printf('\n");

I
if(i<NBOARD-1) prizitf("\n");

return;

void rd(batch,readflag)
int batch,readflag;

MAT B;
jut i,board,proc,mem;
float Data[1O*Ns] [2];
double translate;
FILE *fopeno, *fd;

varout[l] =batch/lO + '0'; fileout[38] = batch/1O + '0';
varout[2] batchY.1O + '0'; fileout[39] = batch%1O + '0';
if ((fd=fopen(fileout,"wb")) == NULL)
printf ("Can't open output file~n");

lseek(fd,OL,O);

board = apples[Nappl.mle-bd;
proc = apples[Nappl.mle.pr;
B.type =(long)1000;
B.mrows = long)Ns; B.ncols - (long)10;
B.namlen =(long)4; B.imagf = (long)1;
if (readflag==1) ( 1* read corrupted data *

rd-.fdsp(board,proc,IBUF, (1O*2*Ns) ,Data);
}else ( /* read corrected data *
for (i-0; i<10; i++) (
mem = IBUF + i*8*Ns;
if ((errboard =- apples[Nappl.beam..bd[iJ)

&& (errproc -= applesENappl).beam.pr[i]))

rdjfdsp(board,proc ,CBUFI (2*Ns) ,&Data[i*Ns] [0));
else

rd-.fdsp(board,proc,mem, (2*Ns) ,&Data~i*Ns) [0]);



fvrite(&B,sizeofO4AT) ,1,fd);
fvrite(varout,sizeof (char) ,B.namlen,fd);
for (i - 0; i < lO*Ns; i++) f /* write the REAL data *

translate =(double)Data[iJ (0);
fwrite(&translate,sizeof (double) ,l,fd);

I
for (i = 0; i < 1O*Ns; i++) f /* write the IMAG data *

translate = (double)Data~i) El);
fvrite(&translate, sizeof (double) ,l1 fd);

I
fclose(fd);
printf ("Data written to %s\n",fileout);

void wd(batch,start)
mnt batch,start;

double val;
long dummy;
char *buf;
short i, j, data[Ns] [2*Ne];
mnt count, board, proc, mem;
FILE *fopeno, *fd;

fileinC34) = (batch~start)/1O + '0';
filein[35J = (batch+start)%lO + '0';

if ((fdfopen(filein, "rb")) == NULL)
printf ("Can't open %s\n" ,filein);

fread(&dulmmy,sizeof(long),l,fd); /* eat machine ID
fread(&duimmy,sizeof(long),l,fd); /* eat X rows *
fread(&duimmy,sizeof(long),1,fd); /* eat # cols
fread(&duznmy,sizeof(long),1,fd); /* eat imag. data flag *
fread(&dulmmy,sizeof(long),1,fd); /* var. name length *
buf = (char *)calloc(duummy,sizeof (char));
fread(buf,sizeof(char),dummy,fd); /* eat var. name *
/* NOW DATA POINTS MAY BE READ IN *

for~i -0; i < Ns; i++){
for(j = 0; j < 2*Ne; j++){
fread(&val,sizeof (double),l1,fd);
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data~i)[j] = (short int)val;

fclose(fd);
board =apples[NapplJ.input.bd;
proc = apples[Nappl.input-pr;
count -(int)(2*Ns*Ne);
mem - IBUF +t batch*2*count;

vr-s(board ,proc ,mem, count, data);
j = start+batch;
printf ("Batch number %d written to Ox%4x on (Yd,%d).\n",

j ,mem,board,proc);

1* DSPSTRUCT.H :include file for 68030 files *

/* Terminal characteristics *
#define TERMLINES 20
#define SBIG Oxffff

1* Number of boards in the system *
#define NBOARD 4

/* Define the codes for communication with the DSP32C's

Upper 8-bits = code
Lower 8-bits = transaction number

#define GO..N 0X0100
*define GO-.XMIT 0x0200
#define GO-.RCV 0x0300
#define GO-DONE 0x0400

/* Define miscellaneous constants *
#define NULL 0
#define SAFENUM 25000 /* number of times to test for acknowledge *

/* VME BUS HARDWARE REGISTERS */
/* Master Address Modifier Register on VMEchip (8 bit port) *
*define VME-.MAMR OxFFFE200D

1* VMEbus address modifiers */
*define STD-.SPR..DAT Ox3D /* Standard Supervisor Data *
#define STD-SPR-.COD Ox3E
*define STD-USR-DAT 0x39
*define STD-.USR-.COD Ox3A
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#def ine SHORT-.SUP WxD
*define SHORT-.USR 0x29

1* Structure mimicing the PIO register configuration of the DSP32C *
struct dspstruct{

unsigned short int PAR, junkI, PDR, junk2, ENR, junk3,
ESR, PCR, PIR, junk4, PCRh, PARE, PDR2;

1* Pointers to the PIO registers on the 4 boards, 4 DSP per board *
extern struct dspstruct *ptrDSP[4] (4);
/* Pointers to the PIO registers on boards 0, 1, 2, 3 *
extern struct dspstruct *ptrODSP[4 , *ptrlDSP [4) ,*ptr2DSP [4) ,*ptr3DSP [4];
1* Pointers to the PIO registers on boards 0, 1, 2, 3, DSP #0 */
extern struct dspstruct *ptrODSPO, *ptrlDSPO, *ptr2DSPO, *ptr3DSPO;

1* Globals holding the latest contents of read-only registers
DSPCR -Switch/LED control registers on the 4 boards
10CR -10 board control register

extern unsigned short mnt DSPCR[4], 10CR;

/* Base Address of the Valley boards *
#define base OxffffOOOO

/* Addresses of the 4 boards *

#def ine boardO (base+0x0000400)
#define boardi (base+0x0000800)
#define board2 (base+0x0001800)
#def ins board3 (base+0x0003400)

/* 10 board control/status register addresses *
#define IOCONREG (base+OxOOOCOOO)
#define IOSTATREG (base+OxOOOCOO2)
#define IGOUTFIFO (base4OxOOOC0O4)
#def ine IOINFIFO (base+OxOOOCOO6)

/* Switch Register DSP32C address for DSP boards *
*define DSPSWREGh Oxa
#define DSPSWREG1 0x8000

#define DSPFIFOh Oxa
#define DSPFIF01 OxcOO
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/* Define bit field codes for the PCR register in the DSP-32C *1
#define PCRRUN Ox01
#define PCRREG Ox02

#define PCRENI Ox04

#define PCRDMA OxO8
#define PCRAUTO OxlO

#define PCRPDF Ox20
#define PCRPIF Ox40

#define PCR-DMA32 OxlO0
#define PCR-PI016 Ox200
#define PCRFLG Ox40

/* Define bit field codes for the I/O board *1
#define IOBrdO OxOEOO
#define IOBrdl OxODOO
#define IOBrd2 OxOBOO
#define IOBrd3 0x0700

#define IOFifoEn Ox4
#define IOLedOn Ox8000

/* Define Switch Register bit field codes for the VE-32C boards */
#define SWInO OxO0
#define SWIn1 Ox01
#define SWIn2 0x02
#define SWIn3 0x03

#define SWInDis Ox04
#define SWOutO xO0
#define SWOutl Ox08

#define SWOut2 0x1O
*define SWOut3 Ox18
#define SWOutEn Ox20
#define SWLED Ox80
#define SWIRQ2MT Ox40

/* Define the communication buffer area DSP32C addresses *1
#define COMBUFh Oxff
/* Shorts *1
#define COMBUFO OxffffeO
#define COMBUF1 Oxffffe2
#define COMBUF2 Oxffffe4
#define COMBUF3 Oxffffe6
#define COMBUF4 Oxffffe8
#define COMBUF5 Oxffffea
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*define COMBUF6 Oxffffec
#define COMBUF7 Oxffffee

/* Floats */
#define COMBUFOf OxfffffO
#define COMBUFlf Oxfffff4
#define COMBUF2f Oxfffff8
#define COMBUF3f Oxfffffc

/* Memory buffer locations in DSP32C's */
#define IBUF OxO08000 /* Input buffers in external memory */
#define BBUF OxOObO4O /* Beam output buffers in external memory */
#define OBUF OxOOaOOO /* Syndrome buffers in outmle */
#define CBUF OxOOcOOO /* Corrected processor output in outmle */
#define RBUF OxOObOO0 /* Syndrome cross-correlations in outmle *1
#define LBUF OxOOdOOO /* Likelihoods and threshold in outmle */
#define MBUF OxOOd800 /* Average magnitude buffer */
#define WBUF OxOOeOOO /* Weights used by outmle */
#define FASTBUF OxOOOcOO /* Internal RAM buffer */
#define FASTBUF2 Oxfff800 /* Internal RAM buffer */
#define DSPNAME OxOOfffO /* DSP32C prog. name (used by downloado))*/

/* Define struct defining which application is loaded into DSP32C's */
extern int Nappl; /* Which application was loaded last */
struct appl {
char *comment; /* explanation of the application *1
struct tabtrans *table; /* Table of data transfers for runbeam */
int ntrans; /* Length of this table */
int input-pack; /* number of packets transmitted by input */
nt input-bd,inputpr; /* board, proc location of input program */

int mlepack; /* number of packets input by beam-mle */
int mle-bd,mle-pr; /* board, proc location of GLRT program */
int nbeam; /* number of beam processors */
int beambd[12],beampr[12];/* board, proc of up to 12 beam programs*/
int ncsp; /* number of csp processors */
int csppack; /* number of packets input by each csp */
int csp-bd[4],csp-pr[4];/* board, proc of up to 4 csp programs */1;

extern struct appl apples[];

typedef struct {
long type;

long mrows;
long ncols;
long imagf;
long namlen;
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I MAT;

1* Define table struct defining the data packet transfers *
struct tabtrans f
unsigned short int IOboard, SWboardO ,SWboardl ,SWboard2 ,SWboard3;
struct dspstruct *pPlOtrans;
struct dspstruct *pPlarcvO, *pPIOrcvl, *pPIOrcv2, *pPIOrcv3;
int transboard;
char *comm~ent;

1* Function type definitions *
1* init.c */
extern void init..help(),init-.all() ,io-.inito;
extern void dsp-init(),dsp-.board-.inito;
extern void dsp..proc-.inito;

1* util.c */
extern void util-.help-.auxo;
extern mnt askyes C),askynq(),askprompt 0;
extern mnt askinto),askshorto),askfloato;

1* rv.c */
extern void rw..help(),rw-help..aux(),help0;
extern. void readfo),readfdsp0 ,readfdsp..all();
extern. void readso),reads-.all() ,readio),readi-.all0);
extern. float pow20),ftoieeeo;
extern void writefdspo),writeso),vriteio;
extern void rd-.s(),vr-.s(),rd-.i(),wr.iO;
extern void rd-f(),wr-.f(),rd..fdspo,vr-.fdspo;

/* tabtrans.c */
extern void tt-.help,runbeamo;
extern void readcomo),readbean(),readbeam..allC) ,readcsp0;
extern void readcsp-.all() ,readbeam-.mle(),findappl() ,veightso;
extern, mt taberro;

/* la.c *1
extern void la-.help(),lao,laB(),laC(),download-.all() ,layout0;
extern mnt downloado;

/* vrta.c */
extern void vrta-.helpo),run(),run..allC) ,stopO);

/* setpcr.c *
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extern void setpcr-.help(),readPIOC) ,readPI02();
extern void setPCR(),setPCR-.all() setPAR(),setPAR-.aJlO;

*define Ne 15 /* number of hydrophones *
*define Ns 34 /* Ns is the * complex samples per hydrophone *

1* MACROS.H *
#ifdef DEBUG
extern mnt debugO;
#define debugO(s) printf Cs)
#define debugl(s,x) printf(s,x)
*define debug2(s,x,y) printf(s,x,y)
#define debug3(s ,x,y,z) printf(s,x,.z)
*define debug4(s,w,xy,z) printf(s,V.,X,Z)
*else
#define debugO(s)
#define debugi (a,x)
#define debug2(s,x,y)

#define debug3(s,x,yz)
#define debug4(s,,xyz)
#endif

/* SCRN.H *
set ..scroll(top bottom)
/* top and bottom of scrolling region *
mnt top,bottom;

if ((top < 25) &
(top < bottom) kk
(bottom < 25))

printf("\033[%d;%dr' ,top,bottom);
else printf('\033[;r");

barch(line~startcol,stopcol) /* make barchart *
mnt line, startcol, stopcol;

int i;
move-.cursor(line,startcol);
inverse..videoo;
for(i-startcol ; i< stopcol ; i++){

printf ("X");
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regular..videoo;
I

move-cursor (line, col)
int line,col;
f

printf C"033 C%d; %dH", line, col);

inverse-.video 0
f
printf("\033[7m") ;

I

regular-.video()

printf ("\033 Cor") ;

clear-.screen C

printf ("\033 [23"I);

erase-.line()
f
printf("\033[K");

home..cursor C
f
printf ("\033 [OH"t);

I

set..yert..axis(rowl,row2,col)
int rowl,row2,col;

int i;
for (irovl; i <- row2 ;i++)

move-.cursor(i ,col);
printfC"")
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