AD-A252 477
AR

RL-TR-92-16
Final Technical Report
February 1992

SPECIFICATION AND VERIFICATION OF
SECURE CONCURRENT AND DISTRIBUTED
SOFTWARE SYSTEMS

University of California

M. Archer, G. Fisher, K. Levitt, R. Olsson, J. AlveS-Foss,
J. Buffenbarger, G. Fink, D. Frincke, D. Huang,
P. Windley

?{j i B S,

g ELECTE U¢
@ . .39 % N
B, < I

[

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

2-16400
\\?\\\\\\\\\\\\\\\\\\\\\\\\N\\\k\\\\\\\\

-
8 - . ¢

q 2 (" e . A &
i o

c

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign natioms.

RL-TR-92-16 has been reviewed and is approved for publication.

APPROVED: Sl % M

EMILIE J. SIARKIEWICZ
Project Engineer

FOR THE comnan:)ﬁw

JOHN A. GRANIERO
Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3AB), Gtiffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE | oW noro7oso1es

Pubic reporting burden for this vof I Y i setimated verage 1 hour Per resporee, iNckuding the tiTe far reviewing NEUCHoNS, SSECING EXIRNgG G SaUces.

mmmnmmmmm wing the 1 af inf \ Send corrrnants regarding this buscisr sstmate o ary Other aspect of tres
colection of iffomtion, inciuding sugQestions for recucing this bLrden, ta Washington Headquartars Services, Disctorats for infonmaion Operations sncReparts. 1215 Jetferson
Davis Highway, Sube 1204, Adington, VA 222024302, and to the Office of Managemant and Buxiget, Peperwark Reduction Project (0704-0188), Washington, OC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
February 1992 Final Jul 88 - Dec 89

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SPECIFICATION AND VERIFICATION OF SECURE CONCURRENT C - F30602-88-D-0025
AND DISTRIBUTED SOFTWARZ SYSTEMS Task 13

& AUTHOR®) M. Archer, G. Fisher, K. Levitt, K. Olsson, PN T Joesre
J. Alves-Foss, J. Buffenbarger, G. Fink, D. Frincke, TA - 01
D. Huang, P. Windley WU - P1

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California REPORT NUMBER

Department of Electrical Engineering & Computer Science
Division of Computer Science
Davis CA 95616

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3AB) AGENCY REPORT NUMBER

. s HAT -
Griffiss AFB NY 13441-5700 RL-TR-92-16

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Emilie J. Siarkiewicz/C3AB(315) 330-3241

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12h. DISTRIBUTION CODE
Approved for public release; distributicn unlimited.

13. ABSTRACT Maamum 200 wards)

This report describes an investigation of techniques to support the specification and
verification of concurrent and distributed software systems, with special emphasis on
issues of security. The investigation has focused on two major areas. The primary
focus is a survey of existing methodologies and systems that are relevant to the
specification and verification of concurrency. The secondary focus is on the initial
design of a short-term workbench that embodies capabilities of existing systems to-
gether with new features that extend the current state of the art in the specification
and verification of concurrency.

The introduction to the report summarizes survey results and presents overall con-
clusions about the current state of the art. Sections 2 and 3 of the report present
the details of the methodology and system surveys respectively. The surveys include
high level feature comparison tables accompanied by extended reviews. Section 4
describes a design for the short-term workbench that will support computer-aided
specification and verification. Section 5 describes a set of extended examples that
were developed to test the design ideas. Section 6 concludes with an overall summary
and an overview of targets for future work.

14. SUBJECT TERMS 15 gtéuazn OF PAGES
Distributed Processing, Verification, Specification, Multilevel |;mcscoo€
Security
17. SECURITY CLASSIFICATION 18. SEC'IRITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASS [FIED UNCLASSIFIED UNCLASSIFIED /L
NSN 7540-01-280-5600

torm 298 iHev ¢ 89
Prescribed by ANSI Std 239 18
p. 31 -4

Contents

1 Introduction

1.1 Summary of Survey Results
1.2 Summary of Conclusions and Recommendations
1.3 Summary of Novel Research

2 Methodology Survey

2.1 Summary Comparison Table

2.2 Barringer and Mearns
2.2.1 Overview

2.2.3 Critical Remarks

2.3 Chen and Hoare

2.3.1 Overview

2.3.2 Technical details

2.3.3 Critical Remarks
2.4 Chen and Yeh

2.4.1 Overview

2.4.2 Technical Discussion

2.4.3 Critical Remarks
2.5 Flon and Suzuki

2.5.1 Overview

2.5.2 Technical Discussion

2.5.3 Critical Remarks
2.6 Halpern and Owicki

2.6.1 Overview

2.6.2 Technical Discussion

2.6.3 Critical Remarks
2.7 Jones

2.7.1 Overview

2.7.2 Technical Discussion

- 2.7.3 Critical Remarks

2.8 Lamport

2.8.1 Overview

2.8.2 Technical Discussion

2.8.3 Critical Remarks
2.9 Misra and Chandy

2.9.1 Overview

..................................

..................................

..................................

..

......................................

................................

................................

....................................

......................................

................................

...

......................................

................................

...

»_5_ % & 2 o 8 s _aA .a_s_a

AGCE. 10N Rar

NTIS CRral
oy o
Usannuinced |
Justiticeton

By . .
Dictabation !

Foooo b

AL L.

3 System Survey) 23
31 Overview L. et et et et e e e 23
3.2 Summary Comparison Table. 23
3.3 AfBrm L e 25

331 Overviewt e et et et et e e e e e 25
3.3.2 Execution and Rapid PrototypeSupport 25
3.3.3 Abstraction Mechanisms0ttt ittt 26
334 FormsofLogicSupported00, 27
3.3.5 Verification and Theorem Proving Support 27
3.3.6 Specification Checking - Completeness and Soundness e e e 27
3.3.7 Formal system Basis - Completeness, Consistency and Soundness 28
3.3.8 Qualitative Measures i it ittt e e e 28
339 AnExamplettt e et e 28
3.3.10 Critical Remarksttt ittt ittt ittt e 30
34 Enbanced HDM i e e e e e e 31
341 OVerVieW i ittt et et e e e e e e e 31
3.4.2 The Enbanced HDM Methodology 32
3.4.3 Revised Special Specification Language 34
3.4.4 Program Verification in Enhanced EDM 36
3.4.5 Hierarchical Development 36
3.4.6 The Theorem Proverand Howitis Used. 37
347 TheMLS Tool i it ittt it i ettt ittt e onaeann 38
3.4.8 The Implementation of Enhanced HDM 39
349 Conclusions e e e e e e e e e e 39
35 FASE e e e e e e e e e e e e e e e e 41
35.1 Overview e e e e e e e e e e e e e e 41
3.5.2 Execution and Rapid Prototype Support 41
3.5.3 Abstraction Mechanisms 00000 42
354 FormsofLogicSupported 0.0, 42
3.5.5 Verification and Theorem Proving Supporied L.. 42
3.5.6 Specification Checking—Completeness, Consistency, and Soundness 42
357 Examples............... e b e e e e et et e e e 42
358 Critical Remarksttt 44
36 HOL it et it ettt ettt e e 45
3.6.1 Overview e e e e e e e e e e 45
3.6.2 The HOL Verification System e. ... 45
363 AxiomaticBasisfor HOLt vuu.. 48
364 Critical Remarksttt entnennnenn 56
S S @) - < 63
371 Overview e e e e e e e e e e e e 63
3.7.2 Abstraction Mechanisms e 64
3.7.3 Forms of Logic Supported 64
374 FormalSystem Basis 64
3.7.5 Specification Checking 65
3.7.6 Execution and Rapid Prototype Support 66

<

3.7.7 Verification and Theorem-Proving Support 66

3.78 LowWaterMarkExample. 66
379 Critical Remarks i e e e 71
3.8 EVES . . . e 78
381 OVverview L e e e e e e e e e e e e e e 78
3.8.2 Execution and Rapid PrototypeSupport 78
3.8.3 Abstraction Mechanisms0 ittt et 78
384 FormsofLogicSupportedo ieni... 78
3.8.5 Verification and Theorem Proving Supported 79
3.8.6 Specification Checking—Completeness, Consistency, and Soundness 79
3.8.7 Formal System Basis—Completeness, Consistency, and Soundpness 79
388 Examples.ttt e e, 79
389 Critical Remarks00iiiiuiineen.. 81
39 GYPEY . . i e e e e e e e e e e e e e 83
3.9.1 Overviewt e e e e e e e e e e e 83
3.9.2 Execution and Rapid PrototypeSupport 83
3.9.3 Abstraction Mechanisms, 83
3.9.4 FormsofLogicSupported0...... 83
3.9.5 Verification and Theorem Proving Support 83
3.9.6 Specification Checking, 84
3.9.7 Support and/or Adaptability for Concurrency 84
3.10 Nuprl . .o e e e e e e e e e e 85
3.10.1 Overview e e e e e e e 85
3.10.2 Execution and Rapid Prototype Support 85
3.10.3 Abstraction Mechanisms 85
3.10.4 Forms of Logic Supported 85
3.10.5 Verification and Theorem Proving Supported 86
3.10.6 Specification Checking—Completeness, Consistency, and Soundness 86
3.10.7 Formal System Basis—Completeness, Consistency, and Soundness 86
3.10.8 Examples e e e e 86
3.10.9 Critical Remarkst it ittt 87
311 VDM . . e e e e e 90
Design of a Prototype Short-Term Workbench 91
4.1 OVerview L e e e e e e e e 91
4.2 The Role of the FASE, HOL, and OBJ3 High-Level Specification Languages 94
4.3 The Role of the SR Programming Language 94
4.4 The Role of the Annotated-SR Verification Tool 95
4.5 The Role of TED/Treemacs Theorem Proving Support Systems 95
Algebraic Specification and Verification of Concurrency in OBJ ‘ 97
5.1 Overviewofthe Approach 97
52 TheOBJLanguage. 98
5.3 The Readers/Writers Problem 101
54 StarOperations 101
5.5 Specification of Readers/Writers 103

5.6 Verification of the Readers/Writers Invariant 106
5.6.1 Construction of the Proof Object 108
5.6.2 Constructionof theInvariant, 114
5.6.3 Induction Scheme ¢ttt entuennnnean 114

5.7 Explicitly Concurrent Specification 119
5.7.1 Message-PassingExtensions 0L, 119
5.7.2 Message-Passing Protocol viit i, 120
573 Centralized Solutionsttt v ittt ittt 123
574 Examplesttt it e et e e 124

5.8 Verification of Implementations ¢ttt 126
5.8.1 TheSymbolTableProblemcotiieeeneenn. 129
5.8.2 Specification ofthe Symbol Table 129
5.8.3 Implementation of the Symbol Table 129
5.8.4 Verification of the Symbol-Table Implementation 132

5.9 Conclusionsand Future Work ool 138

510 Proof Toolso i i i it it ittt it ittt it it 140

Verification of Security in OBJ 143

6.1 Imtroduction ¢ i i i i ittt it e e e e 143
6.1.1 Using OBJ3 to Verify Security 143
6.1.2 General Observationst iitiinennennenn. 144

6.2 An OBJ3 Specification of A Simple Operating System 144
6.2.1 Architecture ettt e e e 144
6.2.2 SUPEIVISOr ¢ . . ittt e e e e e e e e 146
6.2.3 User Processesttt ttnnteteneneeen 151
6.24 Comclusiont e e e e e e 153

6.3 An alternatesecuritymodel L L. o L i e e 153

Specification and Testing of Security in FASE 158

7.1 Imtroduction i i i i it e e e e e e e e e e e 155

7.2 A generic specification for a secure resource manager 156
7.2.1 Writing final algebra specifications: the methodology e e e 156
7.2.2 Structure of the generic SRM specification a 158
7.2.3 Specializing the template SRM specification 159

7.3 Running the specification: the Millenexample 165

7.4 Advantagesofthe FASEsystem.¢c.c00uvevuuo...165

78 The PLANNER ittt ittt in ittt et nnoaeennnn 166
75.1 Detectingflows e e e e 166
752 Detaileddescription¢.0t ittt eeeannnn 167
7.5.3 Planner input vs. specificationimput e e e e e 171
75.4 Examples e e e e e e e n

7.6 Conclusions and future directions 176

7.7 Extended Examplesttt 178
7.7.1 Description of Millen system operations 178
7.7.2 Specification of the Millen example 180

7.8 High-level description of simple PLANNER 204

iv

8 Axiomatic Verification of Concurrency in SR
8.1 TheSynmtaxof Ammotated SR enenenn..
8.2 The Axiomatic Semanticsof SR.

9 Working Examples and Models
9.1 A Secure Network Mail System Model
9.1.1 Imtroductionttt ittt renannnnennn.
9.1.2 Overall Description0t i ittt i ettt eeeeenenn.
9.13 TheModel ittt tie e
9.1.4 Security Specification e e e e .
9.1.5 Discussionot v ittt ettt
9.1.6 Condusionst ittt e e et ..,
9.2 Initial Results on Specifying SDOS
9.2.1 High-Level Outline of an OBJC Specification of SDOS
9.2.2 Verifying Security Properties of the OBJC Specification of SDOS
9.3 A Security Kernel for Distributed Systems
9.3.1 Overview of Previous Research
9.3.2 OurKernelt e e e e
9.3.3 Summary e e e e e e e e e e e e e e

10 Conclusions

1 Introduction

This report describes an investigation of techniques to support the specification and verification of
concurrent and distributed software systems, with special emphasis on issues of security. The inves-
tigation has focused on two major areas. The primary focus is a survey of existing methodologies
and systems that are relevant to the specification and verification of concurrency. The secondary
focus is on the initial design of a short-term workbench that embodies capabilities of existing sys-
tems together with new features that extend the current state of the art in the specification and
verification of concurrency.

The remainder of the introduction to the report summarizes our survey results and presents
our overall conclusions about the current state of the art. Sections 2 and 3 of the report present
the details of the methodology and system surveys respectively. The surveys include high-level
feature comparison tables accompanied by extended reviews. Section 4 describes our design for the
short-term workbench that will support computer-aided specification and verification. Section 5
describes a set of extended examples that we have developed to test our design ideas. Section 6
concludes with an overall summary and an overview of targets for future work.

1.1 Summary of Survey Results

[n the initial months of the project, we reviewed approximately 200 abstracts of papers‘in the
following topic areas:

e Specification languages, for both sequential and concurrent programs

e Program verification methodologies and systems, for both sequential and concurrent programs
¢ Programming languages for concurrent and distributed programming

e Software environment support for specification and verification

From the 200 abstracts, we selected approximately thirty papers for detailed review and critique.
Those papers selected for detailed review included work from the most visible and productive
researchers in the field, as well as other representative work. From the members of the project team,
we selected one or two individuals to be specialists in particular areas. The specialists thoroughly
reviewed each of the papers in their respective areas and prepared a formal presentation on the
results of the review to the rest of the project group.

In conjunction with the literature review, we have reviewed appraximately two dozen systems
that have features to support computer-aided specification and/or verification. Of these we have
gained actual hands-on experience with ten. The systems selected for review have one or more of
the following features:

¢ support for a formal specification language in the form of parsing, type checking, and possibly
other forms of language analysis

o support for execution of formal specifications

o support for computer-aided verification

e software engineering support for specification and verification

Based on the results of the survey, we have compiled two “short lists” of methodologies and
systems that we believe represent the fundamentally important concepts necessary for the tasks
of specification and verification of concurrency, with special emphasis on security properties. The

methodologies and systems chosen for inclusion in the short lists comprise a broadly representative
set, covering the ma jor researchers working in the area.

The methodology short list includes of the work of eight of the major research groups in the
fields of specification and verification, with emphasis on concurrency. The methodologies are listed
below by their associated authors with a brief synopsis of the key features:

o Barringer and Mearns - important technical concepts for the specification of concurrency

o Chen and Hoare ~ foundations for specification and verification of concurrency in the CSP
language

e Chen and Yeh - foundations for event-based specification of concurrency

e Flon and Susuki - important work on specification of concurrenty via transformation to
non-concurrent representations

e Halpern and Owicki -~ widely referenced work on modular specification and verification of
concurrency based on computation histories _

e Jones - important concepts in process-oriented specification of concurrency

e Lamport - foundational work on temporal logic and other basic concepts of concurrency

¢ Misra and Chandy - well-recognized work on very high-level specification of concurrency

The system short list consists of six of the most representative tools for computer-aided
specification and verification:

e Affirm - provides basic support for algebraic specification

o EHDM - wide-range of support for specification and verification including software engi-
neering support

e FASE - strong support for executable specification

e HOL - powerful and general computer-aided verification system

o Larch - provides basic framework for two-tiered approach to specification adopted in the
design of our prototype workbench

e OBJS - strong support for execution of specifications and extendible so support high-level
specification of concurrency

The rationale for the selection of both of these short lists is based on a number of factors.
These factors are: _

o Completeness - those chosen comprise a complete and representative set, with no major

methodology concepts or system capabilities not covered by at least one member on the lists

o Suitability for the task at Aand - the systems should be relevant or potentially relevant to the
specification of concurrency and security

o System modifiability and stability ~ for the listed systems, the source code for the systems

must be public and readily available if the systems are to be modified to support concurrency

¢ Familigrity - when all other factors are equal, we prefer methodologies and systems of which
we have working knowledge and experience

Based on these factors, we believe that our lists include a representative sample of method-
alogies and systems that afford us full coverage on the state of current research and development.
The lists also form the basis for the ideas that will be embodied in the design of the short-term
workbench.

1.2 Summary of Conclusions and Recommendations

Rather than wait until the end of a lengthy report to present our overall conclusions, we
summarize them here based on the introduction presented thus far. We present a more technically
oriented review of our conclusions in the final section of the report. The conclusions are:

¢ Many methodologies exist for concurrent specification and verification, including several that
focus on security.

¢ Many systems exist that support specification and verification for sequential programs.

o Very few systems exist that support concurrent specification and verification, and certainly
po single complete system exists.

¢ We need a discriminated union of the different features in the methodalogies and systems on
our short lists in order to provide a single complete system.

o Very few of the methodalogies and/or systems address verification of both specification and
code; we believe that code-level verification is crucial for the honest verification of security
and we plan to address this issue in our workbench design.

o The design of our short-term workbench will be built on existing ideas and systems, not from
scratch; this includes the reuse of existing code from one or more of the systems.

1.3 Summary of Novel Research

As we have completed the surveys, we have found that there is a large amount of novel research
to be done in the areas concurrent specification and verification. In the design of our prototype
workbench, we have begun some of this research, specifically in the following areas:

e The algebraic specification and verification of concurreacy

o The algebraic specification of security properties

o The axiomatic semantics of the SR concurrent programming language, and its use in a

metbodology that will verify both specification-level as well as code-level security proper-
ties

o A model for a Secure Resource Manager that will provide the platform for high-leve! specifi-
cation and testing of security properties

o The specification of a secure network mail handler
o A proposal for a secure distributed operating system kernel

Our research bas resulted in a number of papers submitted for publication which we hope to see in
print in the very near future.

2 Methodology Survey

This section of the report presents the specific details of the methodology survey that we have
conducted. The survey is organized by the “short list” of methodologies presented in the previous
section. This list contains eight groups of authors whose work we believe to be the most significant
and representative of a larger body of relevant authors. Following the tabular comparison are
axtended reviews for the key authors summarized in the table.

2.1 Summary Comparison Table

Table 1 summarizes the results of the methodology survey. The table is formated with key features
listed in the leftmost column, and the reviewed methodologies listed along the top row. The features
are organised into seven major categories. Each of these categories is described briefly belo» In
the subsections which follow, detailed reviews of the summarizsed work are presented.

In Table 1, the features under the category “Models of Concurrency Supported” refer to the
major forms of concurrency supported in specification and programming languages. These features
are the union of those features used to describe concurrent execution in the current \iterature.
“Concurrency Properties” refer to attributes of a concurrent program that should be specifiable
and verifiable. Again, these features are drawn from the current literature, in particular (AS83).
The feature for “Granularity of Concurrency” refers to the lexical level of a program at which
concurrency is specifiable; it should be noted that some languages support specification at more
than one level. “Development Phases Supported” refers to the standard phases of the software life
cycle that are supported by the systems under review. The “Forms of Logic™ category includes
the most common forms supported in computer-aided verification systems. HOL (for Higher-Order
Logic) and Boyer-Moore (for the inventors’ names) are logics particular to two computer-based logic
systems. The “Quantitative” and “Qualitative Measures” categories include general features of the
usage and design of the methodologies. The measures are based on our actual experience with the
methodalogies together with experience reported in t:e literature. Finally, the “Systems Features”
category relates to those methodologies for which implemented system support is available; this
category is not applicable to those methodologies that are not yet implemented.

(2 Jo 1 1ied) uosuedwo) saidojopoy1d N 1 LICLAR

X {elx
(siix

ivi)

X X

lelx
X
X

X

B¢ ¢ 3¢ 3¢

p'¢ Uo®IYIIA
Suipop

ading

Gotjeaydadg

" K

X

X

spaysoddng saswy g yuswdojaaa

l)x
{ix

ﬁxxx

lelx X
lelx

o o pd
<

uojseddxd
X AR
uotyaun)
ssa00id
s|npous
:£38311n2007) Jo Ljun|nuvin)
seouaal]
ssouIg

X ojpeea

[03)

[01)

13quiyiaap 10/pus
quyjradg sappiadoag £r3uaianduo)

l6)x X
X

o ——————

X X

ody

Suissug Suseapy sukey

Supsevq aBwssajy dusg

8Iv) pAteyg

X SNOASIPUIY

__lo]

)] fs)

{¥)

ipajoddng Louaianduo) jo sjapopy

Apuryn
Mg usiy

wuyyong

ylodwey sauog

nang
uwndony 7 uojy

Yo oy
FUWYD R usy)

sueapy
% uvg

auou sulos wagede gyja e2uapada InQ
X X X X *2jaud areayjor aBre qita pageaiagu)
111).4 [s)x yioddns 33a0:d 21094y [EINUVEIN
X X . paisouniduy wajesg
piey -nej i} pood uy pood Ay e} pood GOPWIYLIA
pivy -y pood v} i3} pood Lpy aw) uojywoypaeds
98N Jo oseg
§py £180 dsO dSD adwnluey [va1 0y 2upsa3u)
| X X X YoM X X yioddns umop-doy,
-paws pow +pau ewe $powr jvwie sdurex 0891
Jutos +awios awos swios wonw Y i 22UNINAX fenyOy
oAajyeusnd
X X X filx X aBo| areoly
X . [vuojenbg
100 -10kog
T0H
X X atSof (esodway,
lotlx X 380 [ruoysodorg
X X X snjno[er ye2pIIq
Apuwy) nning LETY Oy swwapy

NUMQ g wisiy weypng yodwe] sauof uandon) Juoly RuUND FuUYH 7 ey
. NALSAG/ADOT10AOHLIN

~—~e-

-

10.
11.

12.

13.
14.
15.
16.
17.

18.

Table 1 Notes:

. Chen and Hoare have extended the original Hoare logic to support the concurrency features of CSP.
. The level of concurrency in the CLen and Yeh methodology is lexically at the statement leve], but

semantically interaction is only enforced at statements dealing with port interaction, which means
that the granularity is really more at the process level.

. Verification in the Chen and Yeb approach focuses on processes and interprocess communication;

verification of other aspects of the program are not considered but could presumably be bandied with
existing techniques.

. The methodology of Flon and Susuki is based on the transformation of concurrent programs to sequen-

tial programs, after which the verification is carried out using sequential verification techniques; in
this sense the methodology does not support any model of concurrency directly, though the concurrent
programs that are transformed are assumed to use a shared variable model.

. Goguen’s OBJ language does not support any model of concurrency explicitly. Rather, Goguen's

goal for the realisation of concurrent programs is to construct a specification which abstracts away
any explicit details of concurrency, but which is stated in a functional language that is amenable
to translation into a form that is concurrently executable. That is, Goguen’s goal is to move all
consideration of concurrent execution out of the hands of the specifier/programmer into the realm of
the language translator. Our work on extensions to OBJ3 includes features that do allow the explicit
representation of concurrency within the OBJ framework. Details of OBJ and our extensions to it are
covered in later sections of the report.

. See note 5.
. Since OBJ is a fully functional language, there is no clear distinction between a function invocation,

a statement, and an expression.

. Theorem proving support is based on the rewrite execution capability of OBJ. However, there is not

much in the way of other proof management facilities, such as proof management, built-in support for
induction, etc. We are currently adding some of these capabilities to OBJ.

. Although Jones’ and Owicki’s methodologies focus explicitly on the shared-variable level of concur-

rency, aspects of his methodology are applicable to other concurrency models.

Jones suggests that temporal logic should be incorporated into his methodology.

Luchham and coauthors hint at (wish for) proof rules for their Temporal Specification Language (TSL)
methodology.

The Luckham TSL methodology is based on Ada which does not support asynchronous message
passing.

Based on Ada, TSL granularity is at the task level.

TSL is based on a form of temporal logic combined with path expressions.

Coding is suppotted to the process level, but not below.

Owicki’s methodology adds history and other auxilliary variables to the base propositional logic.

As described below, we have implemented some extensions within the HOL system to support a form
of equational logic, and this is an area of continuing research.

In papers on the Larch system, the authors describe the interface from the Larch equational logic
to predicate logic, but it is unclear from system descriptions if the implemented system supports
machine-based predicate logic.

2.2 Barringer and Mearns
2.2.1 Overview

Barringer and Mearns propose axiomatic proof rules for the partial correctness and deadlock free
in Ada tasks. The work is based on proof methods for CSP proposed by Apt, Francez and de
Roever. In this approach, the correctness of a parallel program is proved in two steps. First, each
process of the parallel program is proved in isolation as an individual sequential program. Then, a
cooperation proof is made to ensure that the interaction between processes does not invalidate the
sequential proofs.

2.2.2 Technical Discussion
The following assumptions are made about Ada programs:

1. tasks do not share global variables
. task does not call its own entries

. all constructs terminate normally

2
3
4. calls to subprograms have no side effects
5. assignments have no side effects

6

. no two tasks have the same name

In this methodology, the correctness of a parallel program is defined in term of a global assertion
GI that asserts variables from all tasks. Since tasks are assumed not to share global variables and
since rendezvous is the only communication mechanism in Ada, the proof rules are centered on
axioms of the rendezvous mechanism.

Barringer and Mearns define the following terms in order to facilitate their axioms:

Input/output commands (I0): they are just entry calls and accept statements. Two IO com-
mands are said to match if one command is an entry call to the other’s accept statement.

Bracketed sections (BS): these are sections of the program, delimited by <’ and '>’ of the
form:

$1;10; 525
where s; and s, are Ada constructs that do not include any IO command.

The global invariant GI needs not hold within a bracketed section BS but no variable free in GI
may change outside a BS. Two bracketed sections match if they contain matching I0 commands.
Every 10 in a program must appear in a BS and must match with at least one other IO.

Since the body of an Ada accept statement may contain entry calls and/or accept statements,
a bracketed section may be nested. Barringer and Mearns propose that auxiliary variables can be
used to incorporate all the “intermediate global assertions™ into GI.

Co-operation: Given proofs of {P;} T; {Q.} for all tasks T;, 1 < i < n, considered in isolation,
the n local proofs are said to co-operate if

1. the assertions used in the local proof of { .} T. {Q.} have no free variables subject to change
inT,(i#7);

2. {pre(BS;)Apre(BS2)AGI} BS,||BS; {post(BS,\) A post(BS3) A GI} holds for all matching
pairs of bracketed sections BS, and BS;.

The paper also discusses how to prove blocking free and deadlock free. The proof methods are
similar to the methods of Owicki & Gries and Apt et al.
A summary of the proof rules involving Ada rendezvous is as following:
Entry call
{P} T..E; {Q}
Accept statement
{P} acccpt E;(...) do s; end {Q}

General com mumcat ion rule

f.o aw] Af"'l = aiﬂ} {Q}
{P}
Ti-Ej(aina G0, aout)“
accept Ej(fin:in...; fiptinout...; f, tout...)dos; end;
{Q[aio/fio' aou!/fout]}

Parallel composition rule
for all tasksT;, 1 <1 < n, proofs {P:} T, {Q‘»} cooperate

{P, A /\P AGI} Til}.. I Ta {@: A-..A Q. AGI}
I-‘ormauon ru
{P} s1; 53 {Px} {P1} 10:}]10; {Q1},{Q:} s2:54 {Q}
{P} < BS:>| < BS;> {Q}
whereBS; = 51,101,52 and BS: = 53,102,54

ansformahon rule

{P} ThiiT|l. . .17 {Q}
{P} Th|IT2ll...ITA {Q}

2.2.3 Critical Remarks

The methodology can be used to prove some interesting properties of Ada tasks such as blocking
free, deadlock free, and termination. However, it is not clear how the method can be generalized
to prove Ada tasks that communicate through shared variables. In general, Barringer and Mearns
methodology is just a retrospective fitting of proofs, it cannot be used as a development tool.

2.3 Chen and Hoare
2.3.1 Overview

Zhou Chao Chen and C.A.R Hoare presented a paper entitled Partial Correctness of Communi-
cating Processes which was almost immediately followed by a paper by C.A.R. Hoare, entitled
A Calculus of Total Correctness for Communicating Processes. In these two papers they intro-
duce a programming notation used to “...describe the behavior of groups of parallel processes,
communicating with each other over a network of named channels. ”

The methodology presented in these papers outlines the necessary proof rules and techniques
necessary to prove the desired behaviors. Each channel of communication has an auxiliary variable
associated with it. This variable (or trace) is an ordered sequence consisting of all messages
communicated over the channel, direction of the message is unspecified. In Hoare’s paper he also
added an auxiliary variable to each process, one for each channel connected to that process. This
variable is the ready state of the process. If the process is ready to communicate a message along
the channel it contains the value to be sent, if it is ready to receive a message along the channel
the variable contains the set of all possible messages (the type class) it can receive.

Proofs in this methodology deal mainly with a hierarchical development of the system. Prop-
erties (bebaviors) of the outermost layer is specified in terms of sequence of values communicated
over the external channels. Once the restrictions on the channels are shown to maintain these
properties, we then implement the lower layer in terms of paralle] communicating processes, or in
actual code. In the processes case, we must specify properties about the internal communication
channels. In both cases we must show that the implementation maintains the properties specified at
the higher level. This allows us to work with a small group of proofs at a time and use a systematic
top-down development/proof of the system.

2.3.2 Technical details

To manipulate the proofs, we need to use the following “health” rules and proof rules:
(H1) P sat TRUE
(H2) -(P sat FALSE)
(H3)
R=>S

(P sat R) = (P sat R)
If n is not a channel variable, and does not occur in P:

(H4) (Vn: N.P sat R(n)) = (P sat (Vn : N.R(n)))
The following is a list of proof rules and inference rules that Hoare uses when proving properties
of the processes. (R1) Output
((cle = P)sat R) = (R[()/past,{e}/c.ready,0/ready]
& P sat (R[(e)c.past/c.past])
Let R be an assertion not containing z.:
(R2) Input
((c?z: M — P(z))sat R) = (R[()/past,M/c.ready,0/ready]
& Yz : M.(P(z) sat R[(z)c.past/c.past]))
Define the ‘fixed point’ of F to be up.F(p) = F(up.F(p))
Also define Rt n (R restricted to n) to be: R{n A (#a.past+ ---+ #z.past > n)V R) where #s
stands for the length of the sequence s. -
(R3) Recursion
(p sat (Rt n)) = (F(p) sat (R{n+1))
up.F(p) sat R

(R4) Stop
(STOP, sat R) = R|0/ready,()/past]
(RS) Disjoint Parallelism
(Psat S)$ (QsatT)
(PllQ) sat (S & T)
the review of this paper by Barringer, Barringer uses as an example a version of a Bubble
Lattice Sort. Initially he specifies the properties of the Sort process. Then Sort is defined as a
paralle]l composition of Comp processes with the IN and OUT channels appropriately connected.
Now, using the inference rules we can prove that the above decomposition actually implement the
specification of Sort.

Once we get to the level of code, we can use the inference rules presented by Chen and Hoare,
or the modified versions of Hoare, and use these around the communication primitives in the code.
(The code in this case contains CSP-style commuhication primitives). Other portions of the code
can be verified separately using the standard axiomatic techniques of Hoare.

10

2.3.3 Critical Remarks

The method presented by Chen and Hoare, and later modified by Hoare, is a good hierarchical
development of a proof methodology. We can work from a high-level description of the process
down to the code level.

Using these techniques we can prove absence of deadlock, termination, fairness. This model
does not seem to be able to be proven complete, and has yet to be proven consistent. It also contains
no way of proving that a process P is non-deterministic. In other word if P sat R then there exists a
deterministic process Q such that Q sat R. Hoare also states that the axiomatization of sequential
composition, local variables, and assignment may cause some difficulty in this methodology.

2.4 Chen and Yeh

2.4.1 Overview

The model presented in the paper of Chen and Yeh is based on events and their relationships. An
event is described as “...an instantaneous, atomic state transition in the computation history of a
system.”

Using this event-based model they can specify interrelationships between processes based on
the ordering of these processes. If an ordering is not specified this implies an implicit concurrent
behavior amongst the processes.

They present an Event Based Specification Language (EBS) as a tool for formally specifying
systems using the event-based model. This language is based on partial orders and first-order pred-
icate calculus. The hope is that using EBS, the developer can avoid some of the more cumbersome
details involved in writing the specification when using a trace or temporal based model, yet still
have the ability to express everything those models allows him to express.

2.4.2 Technical Discussion

To implement an ordering between events the develop an “precedes” relation denoted by “—”. This
is a partial ordering that helps remove the system clock requirements necessary for a total ordering.
If e; and e; are events in the system and e; — e; then e; precedes e; by some measure of time.
They use this relation and specify the transitivity, irreflexivity, and antisymmetry properties of it.

Concurrency is specified by stating that if ~(e; — e32) A ~(e; — e;) then e; and e, are
concurrent.

They develop an “enables” relation which denoted by = that states if ¢; = e, then the
existence of event e; will cause the occurrence of event €2 and some time in the future. This
relation is also irreflexive, transitive, and antisymmetric.

Finally they specify the system, environment and interface ports. Where the system interacts
with the environment through the interface ports. Associated with each port is a history of uniquely
identified interface events which creates a total ordering.

After presenting the above definitions and relationships they present details of EBS for spec-
ifying the behavior of a distributed system. This language consists of the following operators and
precedence rules:

e unary operators: V (for all), 3 (there exists), and — (logical negation);

e relation operators: € (belongs to), = (equivalent), = (equals to), = (enables), and —
(precedes);

11

e logical operators: V (logical or) and A (logical and);
e implication: # > (logical implication) and < # > (two way logical implication).

An example, given in the paper, is of a reliable transmission system with input port A and
output port B. The equation specifies the property that for some message a, that is sent before
message a; then it is received before a;:

(* RT15(A,B): no out-of-order messages *)

Va,,a; € A,0,,02€ B

ay :,b‘ Aaz = bz

>(d] —OCQAblﬂb))V
(c; Ea;ANb = b:)V
(e2—= a3 Ab3 — b;)

Now that we have specified properties of the system, we can use these as building blocks for
more complicated systems. Properties of the more complicated systems can be proven using the
properties specified at the lower levels.

They state that the EBS language has the following benefits:

o Formality: Partial ordering relations and first order predicate calculus guarantee this

o Generulity: Safety, liveness, data-related and control-related properties can be specified and
verified.

.o Accuracy: The inherent behavior of distributed systems is represented by the lack of ordering
among events; mutual exclusion is specified by the preceded operation.

¢ Orthogonality: Properties are specified separately, which makes specification minimal and
extensible.

2.4.3 Critical Remarks

A trace (history sequence) of CSP can be seen as a sequence of events yet properties specified in
EBS are often much easier to manipulate than using traces. This should therefore allow a greater
flexibility and ease of specification compared to the other methodologies.

The examples presented in the paper seemed to be designed bottom-up although the method-
ology apparently can be used for a top down hierarchical design and specification of a system.
Further work with this methodology and development of our canonical model using this method is
recommended.

2.5 Flon and Suzuki
2.5.1 Overview

Flon and Suzuki propose that a parallel program whose processes communicate through shared
memory can be converted to an equivalent non-deterministic sequential program, and that by
proving some interesting properties of the non-deterministic program, we can indirectly verify the
semantics on the parallel version. The properties that can be proved are invariance, potentiality,
inevitability, absence of blocking, absence of deadlock, and absence of starvation. Flon and Suzuki
provide a procedure and a set of inference rules to facilitate the program conversion and the proving
processes. The inference rules are based on weakest precondition predicate transformation.

12

2.5.2 Technical Discussion

A non-deterministic sequential program is equivalent to a parallel program if for any execution

sequence of the non-deterministic sequential program, there is a corresponding execution sequence

in the parallel counterpart such that values of variables in the parallel version have the same

history sequence. In Flon and Suzuki method, a parallel] program composed from the cobegin-

coend construct can be converted to a sequential program denoted by the REP construct. The

REP construct is a repetitive guarded command and can only be terminated by an exit command.
REP ::= rep By = 51||B2 = S2|l...||Bn — S. per

The conversion procedure is as following. First of all, the entire parallel program is converted
to an indivisible form by introducing variables local to each process. Then, each statement in
the parallel program is transformed to an equivalent statement using the rules provided by Flon
and Suzuki. The rules cover the transformations of cobegin-coend construct, block construct,
assignment construct, conditional construct, and loop construct.

Flon and Suzuki also provide a set of inference rules to assert the weak correctness, blocking
free, deadlock free, and starvation free properties of a non-deterministic sequential program, and
claim that these properties can be applied to the parallel version. The following is a summary of
the inference rules:

Invariance 1
Vk:1<k<n:(IANBg= wlp(Sk,1)),I=> R

I = wip(REP,R)
where wlp is Dijkstra’s weakest liberal precondition, i.e., the construct is not required to terminate.
wip is the weakest precondition for invariance
Potentiality
~Q(0),@(m +1)A~R = 3k : 1 < k < N : (Bi A wp(Sk, Q(m)))
Q(m) = wpp(REP,R)
where wpp is the weakest precondition for potentiality.
Inevitability
-~Q(0),@(m+1)A-R=31:1<1< N : (B = wp(Sk,Q(m)))
Q(m) = wep(REP, R)
where wep is the weakest precondition for inevitability.
Blocking free
Vk:1<k<N:(IANBi=wp(S,I),I=>3k:1<k<N:B;
I = wbp(REP)
where wbp is the weakest precondition for blocking free.

Deadlock free
<k<N:(IABy= wp(Sk,I)),] = wpp(REP,B,)V Q

I = wdp,(REP)
where Q is the disjunction of all the guards of exit commands, and wpp is the weakest precondition
for deadlock free.

Starvatlon free
Vk - k< N:(IANBy= wp(Sk,1)),I= wep(REP,B;)VvQ

I = wsp,(REP)

where wsp is the weakest precondition for starvation free.

2.5.3 Critical Remarks

Since the primary objective of the Flon and Suzuki methodology is to prove some interesting prop-
erties of an existing paralle]l program, the methodology cannot be used for the hierarchical program

13

development, and cannot be used in conjunction with program development. The application of
the proof rules is straightforward; but obtaining a good invariance and a valid metric is not a trivial
task and requires a complete knowledge of behavior of other processes.

It is questionable whether the method can be applied to real examples. The parallel to se-
quential program conversion algorithm seems too tedious to follow, and some optimization should
be performed to ease the proving process.

2.6 Halpern and Owicki
2.6.1 Overview

Halpern and Owicki’s metLod consists of three steps: (1) Model a parallel program as a set of
modules that interact by procedure calls (2) Verify module properties using standard sequential
techniques (3) Compose modules into a system. Module specifications consist of an invariant, a
commitment, and service specifications. The invariant refers to safety properties and the com-
mitment refers to liveness properties (using temporal logic). The service specifications correspond
to each exportable procedure and consist of preconditions and postconditions which refer to both
safety and liveness properties, and of a liveness condition, which states the conditions under which
procedure termination is guaranteed.
Temporal logic is an important tool in this technique. Temporal logic is an extemsion of

ordinary logic to include time. Halpern and Owicki’s notation includes:

OP At some time P will be true (eventually)

oP P will always be true (henceforth)

OO P P will be true infinitely often

A ~ B Temporal implication; if A is true, OB

In addition to temporal logic, Halpern and Owicki make use of auxiliary variables, histories,

and private variables. Auxiliary variables are used in specifications and proofs; they are included
only for convenience in reasoning about a program. History variables are a special class of auxil-
iary variables; they are unbounded sequences used for recording interactions between modules. A
variable x which is ‘private’ in module M will have one instance for each module calling M. The
notation x[C] denotes a module referring to C’s version of x; x[*] denotes a module referring to its
own version of x.

2.6.2 Technical Discussion

Halpern and Owicki’s goal for this system is to ensure that the proof that a module meets its
specifications is independent of the code of other modules in the systems. To achieve this, it is
important that each module’s assertions be robust (i.e., other modules cannot make them false).
This is done by restricting assertions in each module M to variables local to M. Thus, a module’s
invariant and commitment clauses use only local variables and the service specifications use only
procedure parameters and private variables of the called module. Furthermore, assertions are
monotonic (i.e., once true they cannot be made false).

For verification purposes, the invariant of a simple module must hold when that module is
ready to interact with another module either by accepting or initiating a procedure call. For com-
pound modules, specifications are verified from the specifications of the components. Invariant and
commitment are shown to be implied by the conjunction of the component invariants and commit-
ments. Service specifications may be proved from the code or carried over from the component.

14

Note that it is always possible to assign values to the variables that are not open such that the
invariant is satisfied.

2.6.3 Critical Remarks

In Halpern and Owicki’s method, the proof process is simplified since proofs from code involve
oniy sequential reasoning. In addition, an individual module’s specification can be verified with-
out consideration of other modules (except service specifications). Finally, composition of system
specifications is based on logical reasoning, not the code that it is based upon.

2.7 Jones
2.7.1 Overview

Jones proposes a rigorous method for developing a program comprising tasks which execute in
parallel and interfere with each other. A rigorous method relies on underlying mathematical ideas
but uses these foundations for less formal arguments. The approach taken is intended to be precise
without being bulky. When complete formality is required, the necessary details can be added.

In a parallel program, a task interferes with another by modifying a variable accessible to
both or by message passing. Jones emphasizes shared-storage parallelism. There seems to be some
confusion concerning the method’s applicability to message-passing parallelism. However, message
passing can be considered as a restricted form of shared-storage access. Indeed, sending a message
to a task amounts to modifying its message queue in accordance with the intertask protocol. This
protocol invariably involves semaphore sequencing.

Programs are developed (implemented) by the recursive application of operation decomposition.
Operation is a noncommittal term for aprocedure, a function, or even a statement. As each high-
level operation is implemented in terms of low-level operations, only the specifications of the low-
level operations are necessary to justify the decisions embodied in the decomposition. This is
in contrast to methods requiring a completely coded solution. At the leaves of the development
tree, operations are implemented by programming-language statements. Their effects must also
be specified. Thus, for a thorough specification, the language employed should enjoy a formal
semantics, preferably provided in a style similar to that of Jones. Although Jones uses Ada for
examples, the method is not language dependent.

Specifications are operation stubs that include a specification block. A stub is an operation type
signature and a list of global variables that need to be accessed by the operation. A specification
block comprises a pre-condition, post-condition, rely-condition, and guarantee-condition. Jones’
main contribution is the complementary interaction of rely-conditions and guarantee-conditions.

2.7.2 Technical Discussion

Specifications are written using pre-conditions, post-conditions, rely-conditions, and guarantee-
conditions. Every operation in a problem decomposition has one of each; if not, defaults apply.
But before these are discussed more precisely, we need a few more definitions. A

A state is a collection of named values. More concretely, a task’s state is the collection of
variable values explicitly and implicitly accessible by the task. Thus, an operation can be viewed
as a function from one state to another. However, Jones emphasizes that while an operation
can change a value within a state, it cannot change the structure (i.e., add or delete variables).
Specifications employ predicates on states — functions on states with Boolean range. A relational

15

predicate on states is a function on two states with Boolean range whose arguments are recognized
as initial and final states. The final state, as well as its components, are denoted by priming.
For example, p(0,0’) 2 true is a relational predicate named p on initial state o and final state o’
defined to be true (i.e., always satisfied). Although relational predicates are no more powerful than
plain predicates, Jones claims their use simplifies the specification of larger problems.

A pre-condition is a predicate on a single state specifying over what subset of all possible
states an operation must succeed. If its pre-condition is not satisfied, an operation is completely
unconstrained (however, an error message would be appreciated).

A post-condition is a relational predicate specifying the required relationship between initial
and final states. It describes the effect of an operation on a state satisfying the pre-condition. An
appropriate post-condition for a nonterminating operation (e.g., an operating system) is somewhat
arbitrary.

A rely-condition is a relational predicate specifying how other tasks can modify the state.
Here, the initial state is that before modification and the final state is that after modification. A
rely-condition must hold across every interfering modification to the state. Curiously, a task may
violate its own rely-condition yet satisfy its specification. This phenomenon occurs, for example,
when many tasks are allowed to read a global variable, but only one task is allowed to change its
value. The writer relies on constancy but, of course, it may modify the variable.

A guarantee-condition is a relational predicate specifying how the task containing it can modify
the state. Once again, the initial state is that before modification and the final state is that
afterwards. A guarantee-condition must hold across all modifications to the state made by the task
containing it.

Intuitively, pre-conditions and post-conditions must hold once per operation execution; the pre-
condition on entrance and the post-condition on exit. In contrast, rely-conditions and guarantee-
conditions must hold at (potentially) many times during operation execution. Any time a variable
which is accessible to multiple tasks is modified, the guarantee-condition of the modifying operation
must hold and the rely-condition of all operations having access to the variable must hold. This
potential complexity is bravely represented in the proof obligations to come.

One way to view rely-conditions and guarantee-conditions is as concurrent versions of pre-
conditions and post-conditions, respectively. Another is as invariants holding only at certain times.

A partial specification — one missing one or more of the four conditions — assumes default

conditions. These are shown below.
pre-Default(c) ¢ true

post-Default(o,0') & true

rely-Default(o,0') & 0 = o'

guar-Default(o,0’) & true
The default pre.condition specifies an operation succeeding on any state. Such an operation is
analogous to a total function. The default post-condition does not constrain an operation’s modi-
fication of the state at all. Such an operation can modify every accessible variable or do nothing.
The default rely-condition assumes complete noninterference, as in a sequential environment. The
default guarantee-condition guarantees nothing, any interference is allowed.

Recall that Jones' method is for developing a program by decomposing a problem. The in-
teresting decomposition steps are those involving the implementation of an operation by a set
of suboperations that execute concurrently. Call the main operation OP and the suboperations
T.,T32,...,Tn. In order to prove that the development step is correct, several proof obligations
must be satisfied. Each is discussed below.

16

The tasks must rely on no more than the main operation:
rely-OP(gl,gl') = (vi: 1 <t < n:rely-T((gl,loc), (g1, loc))).
Here, gl is the state accessible to operations with access to OP. In contrast, loc comprises the local
variables of OP — those shared by the suboperations. Since loc represents variables inaccessible to
operations outside of OP, it cannot be modified by those operations, and the loc component of the
final state of each task’s rely-condition is implicitly guaranteed to be identical to the loc component
of the initial state. Thus, it need not be primed.
Independently, the tasks must guarantee what the main operation guarantees:
(31:1< i< n:guar-Ti((gl,loc),(gl',loc"))) = guar-OP(gl, gl").
Here, loc is comprises variables which are accessible to the task making the guarantee. Satisfaction
of this guarantee might involve modifying such a variable. Thus, in the final state loc is primed.

Each task’s guarantee-condition must be at least as strong as every other task’s rely-condition
— the tasks must be able to coexist:

(Vi,j:1<i# j<n:guar-Ti(o,0') = rely-T;(o,0")).
Here, o is the conglomeration of global and local variables accessible to a task. Note that since
1 # j, a task can do what it relies on other tasks not to do.

The main operation must satisfy the precondition of each task:

pre-OP(0) = (Vi:1 < i< n:pre-T,(0)).
This obligation, or more precisely its imprecision, suggests that there are an enormously large
number of proof obligations — Jones explicitly identifies only some of them. We identify the others
later, as a criticism of Jones’ method.

The remaining proof obligations refer to a dynamic invariant. This is a relational predicate
specifying that the computation being performed is solving the problem. A dynamic invariant is
comparable to the loop invariant of Hoare Logic fame. For example, if the problem is to find the
maximum element in an array, the dynamic invariant should say something along the lines of “the
candidate solution is no less than all elements examined so far”. Clearly, the pre-condition of the
main operation must establish the dynamic invariant:

pre-OP(0) = dinv(o,0).
This corresponds to the basis in an induction proof.

Furthermore, the interference expected by the main operation must not violate the dynamic
invariant:

dinv(o,0') A rely-OP(o’,0") = dinv(o,0").

Since the tasks implementing the main operation are expected to contribute to the solution,

they should preserve the dynamic invariant:
dinv(o,0'YA(3i:1 < i< n:guar-Ti(o',0")) = dinv(o,0").

Finally, if the dynamic invariant has survived the execution of each task and each task has

terminated successfully, the main operation should terminate successfully:

dinv(a,0') A (Vi: 1 <1< n:post-Ti(o,0')) = post-OP(c,0').
Actually, the preceding proof obligation does not mention termination. Therefore, a nonterminating
task needs a post-condition of true.

In order to abbreviate specifications and simplify proofs, Jones allows access restrictions to
be attached to the declaration of a variable. For example, a variable can be declared as read-
only within a task, making post-condition and rely-condition clauses specifying this form of access
unnecessary. This is a good example of Jones’ philosophy of rigor versus formality. Unfortunately,
he does not provide a list of allowable abbreviations — perhaps read-only is the only one.

2.7.3 Critical Remarks

Jones’ method is primarily an extension of bis sequential-program development method. This
sequential method utilizes only pre-conditions and post-conditions. As with many augmented
approaches, there are sharp edges. Some of them are discussed here.

While useful for documenting interference assumptions and promises, Jones’ method appears
to be deficient concerning task synchronization. For example, he recognizes that deadlock avoid-
ance requires an extension to his method. He suggests some form of temporal logic or a location
predicate. Perhaps a location predicate can be simulated by auxiliary variables, as is done to con-
trol interference when developing a “proof outline” for a concurrent program. If so, no extension
is necessary. Unfortunately, such simulation is rather awkward.

Another difficulty is deciding where to put (i.e., conjoin) individual specification clauses. A
pre-condition clause can be confused for a rely-condition clause, and vice-versa; a post-condition
clause can be confused for a guarantee-condition clause, and vice versa. Moreover, a clause often
needs to be in both confusable conditions. The problem seems to be that a task’s pre-condition and
rely-condition are independent — except at task entry. Likewise, the post-condition and guarantee-
condition are independent — except at task exit.

Recall the claim that Jones explicitly identifies only some proof obligations; we elaborate
this claim here. In his examples, Jones gives a specification for each task or function — no finer
granularity is mentioned. In fact, however, the behavior of each statement in a program needs to be
specified by a pre.condition, post-condition, rely-condition, and guarantee-condition (or defaults).
This is similar to a “proof outline”, where an assertion is placed before and after every statement.
Such detail allows implementations to be proven correct, but the universal quantifiers in the proof
obligations cause the amount of work required to explode.

A related criticism concerns a higher-level view of the development process. Recall that a
ma jor advantage of Jones’ method is that correct-implementation proofs can be carried out between
decomposition steps, rather than after complete decomposition. Thus, the reader is perhaps sedured
by the suggested development sequence:

{decompose, prove}’_,
resulting, after n steps, in a verified solution. Alas, experience suggests the more alarming:
decompose, prove”’)}"_1
where the function f grows ;}etty fast. The problem is that interference can occur between op-
erations on nonadjacent levels in the development tree; this potential interference generates proof
obligations. The deeper the tree gets, the more obligations there are at eack step. There is, perhaps,
no way to avoid this proof explosion when verifying concurrent programs.

2.8 Lamport
2.8.1 Overview

Lamport has done a great deal of work regarding the specification of concurrent programs
[OL82][Lam82][Lam86). The model used in the bulk of this work is a formal proof methodol-
ogy based upon temporal logic. Temporal logic may be used to describe a concurrent program at
any level of abstraction, which permits hierarchical specification and verification.

Lamport’s method of verifying concurrent programs as described in [Lam86] consists of fac-
toring a global program invariant into ‘pieces’ that are attached to control points in the program.
Control state then an explicit part of the invariant, and is described via control predicates. Control

18

state is necessary in Lamport’s method, since the invariant assertions attached to one process may
need to refer to the control state of other processes. The Owicki-Gries method uses dummy—or
auxiliary—variables rather than explicit encoding of control information. An extended version
of the Owicki-Gries method is described, which may be used to prove a larger class of program
invariants.

2.8.2 Technical Discussion

In [OL82], Owicki and Lamport describe a method whereby liveness properties are derived using
temporal logic and proof lattices. Temporal logic is a method of specifying assertions about future
events. Thus, two new operators are added to propositional calculus:

DOP P is true from now on

OP P will be true at some time hereafter
A third piece of notation is also useful: the assertion P ~ Q is true iff during an execution of a
program which reaches a state where P is true, Q becomes true eventually. This notation will be
useful in describing proof lattices.

Proof lattices are written as finite directed acyclic graphs, where predicates are shown as nodes
and a directed arc is drawn between predicates P, Q if the relation P ~ Q holds. Each lattice has
a single exit node and a single entry node. Clearly, if a proof lattice with entry point P and exit
point Q exists, then P~ Q.

A simple programming language is introduced; its only statements are: assignment, while,
cobegin, and variable declaration. The semantics of the program consist of the set of all its possible
ezecution sequences. Execution sequences describe a series of program states, each consisting of
a value-assignment to €ach program variable and ¢ control component. The control component
consists of a set of atomic actions which are eligible for execution. Concurrency is modeled by “a
nondeterministic interleaving of atomic actions from the various processes ... almost any concurrent
system can be accurately modeled this way ... any safety or liveness properties proved about the
model will be true of the system.” An additional constraint on the model is that no process is
‘infinitely faster’ than any other, which provides fairness; additionally, atomic actions are assumed
to terminate.

The contro! component may contain three different assertions: at A, in A, and after A (A
is an executable program statement). These assertions mean: control is at the program point
immediately preceding statement A, statement A is being executed, control is at the program point
immediately following A.

Liveness properties are statements about control flow; thus, they may be derived from program
invariants which include control flow information. Owicki and Lamport provide the following rules
for this purpose:

Control Flow Rule 1 (Concatenation) For the statement S;T
at S ~ gfter S ,at T ~» after T

at S ~ after T
Control Flow Rule 2 {!COBEGIN) For the statement c:COBEGIN S || T COEND
at S ~s after S ,at T ~» after T
at ¢~ after c
Control Flow Rule 3 (Single Exit) For any statement S:
in§ = (Qin S or Oafter §)
Control Flow Rule 4 (Atomic Statement) For any atomic statement < S >:

19

{P} < S5>{Q},0(at < S>> P)
< S>>~ (after <S> AQ)

Control Flow Rule 5 (General Statement) For any statement S:

{P}5{Q},0(in S = P),in § ~» after S

in S ~ (after S AQ)

Control Flow Rule 6 (while TEST) For the statement w: while < B > do S od

at w ~ ((at S A B) or (after w A=-B))
Control Flow Rule 7 (while EXIT) For the statement w: while < B > do S od

(at wandO(at w = B))~ §

(at wandO(at w = -B))after w

These rules may be used to create a graphical lattice proof of liveness properties. The paper

describes a liveness proof of the standard mutual exclusion problem, using the following invariant:

(at S andOO~in CS;) = (after NCy ~+ in CSy)
where CS; is the critical section of process i and NC, is the non-critical section of process i. This
formulation states that process 2 is guaranteed access to its critical section if process 1 remains in its
noncritical section. (Unfortunately, this logic cannot be used to express the more useful statement
that “within a reasonable amount of time” each process will be permitted access to its critical
section; it is only possible to state that ‘always’ a property will hold or ‘eventually’ a property
will hold.) The proof consists of starting with the contradictory expression—that process 2 does
not eventually get access to the critical section~—and generating a proof lattice which leads to a
contradiction.

2.8.3 Critical Remarks

Temporal logic is a useful tool for reasoning about liveness properties of concurrent programs, since
it permits statements about future events. Lamport’s model of temporal logic relies upon discrete
events, which may reduce the model’s usability for systems which cannot be represented this way.
The use of a proof lattice greatly simplifies liveness proofs. However, this version of temporal logic
bas the usual disadvantage of not being expressive enough to place bounds on the time which it
will take before an event will occur.

It is Lamport’s contention that using dummy variables to represent control state limits their
utility. He describes a strengthened version of the Owicki-Gries method that uses explicit control
predicates, permitting a larger class of invariants to be proven.

.

2.9 Misra and Chandy
2.9.1 Overview

In [MC81], the authors present a proof technique for networks of processes which communicate
via messages. The basic notation is similar to CSP [Hoa78) but uses explicit channel naming
rather than explicit process naming for message passing. One channel connects exactly one pair of
processes. Channels are directional. A channel is said to be incident on the processes it connects.

Processes are specified by a pair of assertions r and s, one corresponding to a precondition
and the other to a postcondition. For a process h, r|hls specifies that assertion s holds initially,
if r holds prior to a message transmission then “s holds at all times prior to and immediately
following that message transmission.” Message transmission refers to the sending or the receiving
of a message by process h. Assertions are on traces (described later).

20

Processes are defined to be either a sequential processes or a network of processes. Sequential
processes contain commands for message transmission. Networks consist of processes and their
channels. Channels may exist between processes in separate networks: for example, if a channel is
directed from process h, to process h; and h; is within network H but h; is external to H, then
the channel is said to be incident on H and directed away from H. If both processes are within H
then the channel is internal to H.

Misra and Chandy also make use of traces. An ezternal trace of a process h at a particular
point during computation is a sequence of tuples < (C1,11),--.,(Cn,vn) > Where the i** message
sent/received by h is along channel C; incident on h, and the message has value v;. An internal trace
of a process h is also a sequence of tuples < (C1,11),...,{(Cn,vn) >, Where in that computation the
i** message transmitted on all channels incident on or internal to h is transmitted along channel C,
with value v;. All traces are initially null sequences. For proof purposes, traces may be considered
auxiliary variables. :

Notation for sequences Z, 21, Z;:

z Length of Z

212, Z, is an initial substring of Z,

Zy =2, Z,, Z, are identical sequences

A VA Sequence obtained by appending Z; to Z1
<ej,...,en> Sequence having elements e, in the given order.

Two inference rules and a theorem are used extensively in proving the examples given in

[MC81]. They are:

Rule 1 (Network Composition) Deduce the internal specification of a network H from the ez-
ternal specifications of its component processes h;:
rilhalsi, Vi
/\s T.‘[H] /\| S . . R
Rule 2 (Inductive Consequence) Implication on precondition and implication on postcondi-
tion.
(sAr)=>r', r'[h]s
r{h]s
r(h]s’, ' = s
r(h]s ,
Theorem 1 (Hierarchy) Use the ezternal specifications of network H’s component processes h,
to produce H’s ezternal specification.
Vi, rilAds (SAR) = R, 5= 5o
RolH|So
where Ry, So are assertions on the erternal trace of H, and R, S denote A\, 7,, A, s,

2.9.2 Technical Discussion

The individual processes/networks must be specified as described above (i.e., for a process, give the
r|h|s assertions; for 2 network, additionally provide channel descriptions. Note that no network-
wide or global variables may be used in the specifications, though individual processes may use
their particular trace as an auxiliary variable. For example, a buffer process h might include the
assertion

truelh|ZowxZin

21

which ‘states that the sequence of messages output by a buffer is an initial subsequence of the
sequence of messages it receives.
It must be shown that r|h|s holds for each process/network.

¢ Sequential Process

1. Assert that the trace of A is empty.

2. Show that s holds initially.

3. Assert r before and after each message transmission command.
4. Annotate h. '

5. For each message transmission M show { pre(M) } M {s}

o Networks

1. Component processes must be shown to fulfill r{A|s.

. 2. The network assertion Ro|H|So must be shown, where Ry, So are assertions on the
external trace of H. This is done using the Theorem of Hierarchy.

2.9.8 Critical Remarks

Misra and Chandy’s system cannot be used to prove temporal properties directly (e.g., eventual
deadlock, eventual termination). Additionally, [Bar85] point out that Misra and Chandy’s reliance
on traces make it difficult to describe finite input sequences, since it introduces a great deal of
complication in the trace assertions.

3 System Survey

3.1 Overview

This section of the report presents the specific details of the systems survey that we have conducted.
As with the methodologies, the systems survey is organized by the “short list” presented in Section
1. This list contains six of the most significant and representative systems for software specification
and verification: Affirm, EHDM, FASE, HOL, Larch, and OBJ3. In addition to these six systems,
four other systems that did not make our short list are reviewed. These four systems are:

e Eves - a verification system with emphasis on verification of security

e Gypsy - an early system for the specification and verification of concurrent programs, in-
cluding support for code-level verification

¢ Nuprl - a verification system related to HOL but based on an alternate form of logic
e VDM - a foundational system for state-based specification, with some strong similarities to
EHDM

We bave included these additional reviews since the systems are significant, highly visible, and have

some important relationships to the systems on our short list. However, in terms of the systems
that shape the design of the prototype workbench, the six short-list systems have all of the features
and concepts that we need.

Following the detailed system reviews, our system survey concludes with a subsection that
compares the results of a detailed verification task carried out on the three systems with which we
have the most direct experience -~ Affirm, OBJ3, and HOL. This more detailed comparison further
supports our general conclusion that no single system has all the features necessary to specify
and verify concurrent software in a natural and convenient manner. Hence, our workbench design
embodies features from several existing systems.

3.2 Summary Comparison Table

Table 2 summarizes the results of our survey of existing, reasonably mature computer-based systems
for specification and verification. Listed in the Table are those systems that made our “short list.”
For the most part, these systems support specification and verification of sequential programs, with
a few features for the support of concurrency. An essential goal of our research is to meld features
from the methodologies of Table 1 with the mature systems of Table 2, producing a usable tool.

As with the methodologies comparison table, key system features are listed leftmost table
column, and the reviewed systems listed along the top row. The system features are organized into
five major categories. Each of these categories is described briefly below. In the subsections which
follow the tables, detailed reviews of the summarised work are presented.

In Table 2, the features under the category “Execution Support™ refer to the major models
of execution; the primary dichotomy in execution model is the whether the system supports fully
functional execution (i.e., no side effects) versus execution with state memory (i.e., side effects are
allowed). The “Forms of Logic” category includes the same entries as in Table 1 in Section 2 of
the report. The “Checking” category indicates whether the system performs completeness and/or
consistency checks of specifications. “Verification Support” includes a number of features useful in
a computer-aided verification systems. Finally, the category of “Qualitative Measures” lists general
features of the systems.

23

~ Affirm FASE EHDM HOL Larch OBJ3

___E-ercution Support:

Rewriting - X X X X X X
Functional Evaluation X X X X

State Memory X X

Interpretation X X X X X X
Compilation X

Error Handling fair good good good fair

Linkage to Low-Level PL Pascal Lisp Pascal ML CLU Lisp
-
Forms of Logi-:

Predicate Calculus X - X 12
Propositional Logic
Quantification X X X X X
Temporal Logic :
Higher-Order Logic X
Boyer-Moore
Equational X X X X[1] X X

X X [2) X

Hoare Logic
m
Checking: '

Consistency ~ X X X X
Completeness X X X X
Verification Support:
Rewriting X X X X X X
Tactics X
Induction X X X
Decision Procedure X
Proof Management some some some
Test Generation X
Qua.litativ_g Measures:
Top-Down Support X X X X X i—l
Ease of Use: ,
Specification good good good fair good good
Verification good N/A good good+ good poor
Level of Support none good good good fair good

Level of Completeness good good- good good poor good
Table 2. Systems Comparisons

Notes:

1. As described below, we have implemented some extensions within the HOL system to support a form
of equational logic, and we are continuing research in this area.

2. In papers on the Larch system, the authors describe the interface from the Larch equational Jogic to
predicate logic, but it is unclear from system descriptins if the implemented system supports machipe-
based predicate logic.

24

3.3 Aﬁirm.
3.3.1 Overview

This section presents a overview of the capabilities of the Affirm system from ISI {TE81] as a tool
for the development of abstract specifications and their verification. Although a later version exists,
Affirm-85 from General Electric Company {Kem86), this review covers the version developed at ISI.

Affirm is an interactive system for the formal specification and verification of abstract data
types (ADTs) and programs. It uses an algebraic specification language very similar to that pre-
sented in [GEM78]. Using this language the user can hierarchically define ADTs and a set of
equational rewrite rules for them. For each ADT the user need not completely define the rewrite
rules of the operations but need only define the type signatures. This allows the user to incremen-
tally develop the specification, leaving implementation decisions until a later date.

While the specification is being developed, the user can apply some toals provided by Affirm
to test the specification. Affirm will automatically check these rules for consistency using the
incremental Knuth-Bendix algorithm. It also provides methods for testing completeness using the
Guttag-Horning recognizable sufficient completeness test [GH78]. And, it allows testing of simple
cases by actually executing the specifications.

Affirm also supports a PASCAL-like statement language for the algorithmic implementation
of operations in the ADTs. This language differs from PASCAL by requiring all data types, and
operations performed on them, be defined as ADTs in Affirm. It also has a few additional constructs
that allow the user to add assertions about these types throughout the code. Using these assertions,
Affirm can avtomatically generate verification conditions (propositions) ing the inductive assertion
method [Flo67) or proving the code satisfies the assertions.

Using the algebraic specification language, the user can also generate equational propositions.
Once the system has propositions, either user generated or as verification conditions, the user can
use the underlying logic, based on propositional calculus, along with instantiation, case analysis,
skolemization, normalization and unification, to prove these. The structure of these proofs in the
system is maintained as a directed acyclic graph with subgraphs corresponding to the proofs of
the propositions. The user can change the graph by adding, deleting or modifying nodes, with
the ultimate goal of transforming the propositions, by rewrite rules, to the constant TRUE. If this
transformation fails, Affirm will try to inform the user why it failed and let the user correct the
proposition.

3.3.2 Execution and Rapid Prototype Support

As stated above, since Affirm is a rewrite system, any of the rules can be executed. The user can
simply type the keyword eval followed by the expression to evaluate, and Affirm will determine
the result.

This evaluation method, and the ability to develop partial specifications along with hierarchical
development, make Affirm ideal as a rapid prototyping system. The user, when developing a system
can mix specifications of interfaces that have yet to be implemented, with actual Pascal-like code.
At all levels of development the user can define partial operations and test to make sure they satisfy
the requirements. If they don’t satisfy the requirements they can be modified imnmediately while
Affirm keeps track of all the proof obligations and consequences of the change.

25

3.3.3 Abstraction Mechanisms

To demonstrate the Affirm abstraction Mechanisms we give a sample specification. The following
is the part of the Affirm version of the abstract specification of the Object ADT for the Low
Water-Mark System as given originally in [Kem86):

type Object;
{ e¢+ Declarations see }
aeeds types EleaType, SecuritylLevel;

declare z,x1:0bject;
declare o:LleaType;
declare s,s1:Securitylevel;

{ #ee Syntax of operations ees }

interfaces Write(e,x,s), Reset(x,s),Initial:Object;
interface ObjLevel(x) : Securitylevel;

interface Read(x,s) : EleaType;

intertace ObjectInduction(x):Boolean;

{ #e¢¢ Semantics ses }
axioms
Read(¥rite(e,x,81),8) ==
42 81 <= ObjLevel(x)
then if 81 <= s then ¢ else Null
else Read(x,s),
Read(Reset(x,81),s) ==
i? 81 <= ObjLevel(x)
then Jull
else Read(x,s),
Read(Initial,s) == Bull;

define 1mx3 =s
(Read(x,syshi) = Read(x1,syshi) and N
ObjLevel(z) = ObjLevel(z1));

schema
ObjectInduction(z) e=
cases(Prop(laitial),
all x1,e,8(IE(x1) imp Prop(¥Urite(e,x1,s))),
all z1,s (IB(x1) imp Prop(Reset(x1,s))));

end {Object};
type KleaType;
{ e Declarations eee }

declare reflexive,dusay:EleaType;
interface Full : EleaType;

{ ®%¢ Semantics ses)
axiom reflexive = reflexive = = TRUE;

end {ElenType};

The declaration section defines needed (i.e., imported objects) and variables used in the axioms.
Here for the type Object we use ElemType and Securitylevel ADTs. This mechanism allows the
user to hierarchically define ADTs, where a lower level ADT may not be fully specified. The
ElemType ADR is a good example of an ADT which has declarations but no semaatics for the
NULL operation. The syntax section defines the interface to each of the ADT’s Operations.

In the Object ADT there are several operations, to permit the user to Read, Write and Reset
the Object, and to determine the security level of the op ject or initialize a new object. The semantics
section defines the meaning of the ADT in terms of algebraic axioms about its operations. In Affirm,
the axioms are specified using either the keyword axiom, informing the system to automatically
apply an axiom whenever applicable in the course of a reduction, or the keyword def ine, informing
the system that the user will specifically invoke all applications manually. This permits the user
to control the flow of a proof development at the level desired. Affirm also allows the specification
of schemas for user defined proof arguments.

3.3.4 Forms of Logic Supported

The Affirm system support the algebraic specification language of Guttag, Horowitz and Musser.
Any propositions in the specification are simply Bolean-Valued expressions of the form
allzy,...,za(someys, ..., Ym(P(Z1,.. .1 Zn, Y11 - - -1 Ym)))

where all and some are universal and existential quantifiers.

In Affirm, all logical expressions are translated into a simplified internal IF-THEN-ELSE form
and skolemized.

Also supplied in the system is an operator similar to the weakest liberal precondition [Dij76]
to generate verification conditions for the Pascal-like language code segments.

3.3.5 Verification and Theorem Proving Support

The Affirm system also supports an interactive proof development environment. This is neither a
proof checker nor a proof finder.

Using the rewrite rules of the data types along with the rules of propositional logic, this
evironment is used to “simplify” the current proposition down to the logical constant TRUE.

The environment supplies some built in functions to allow the user to invoke definitions, apply
unproven lemmas, split the proposition into subgoals, and employ data type Induction schemas
that have been defined by the user.

To manipulate the proof, the system maintains the internal tree structure of the proof and
allows the user to traverse it at any time to prove a current leaf or retry an existing node.

3.3.8 Specification Checking ~ Completeness and Soundness

Affirm automatically checks for axiom inconsistencies and applies an incremental Knuth-Bendix
convergence process (KB70] to guarantee that all axioms maintain the Church-Rosser unique ter-
mination property. The user can also apply a completeness test to ensure that the axiom set is

27

sufficiently complete using the algorithm presented in (Gut75) and (GH78]. This test also catego-
rizes the operations into the constructors, modifiers, and selectors, which information can be useful
in other aspects of ADT verification.

3.3.7 Formal system Basis - Completeness, Consistency and Soundness

As mentioned before the system will check all specifications for consistency and allows the user to
determine sufficeient completeness. Based on the underlying logic of rewrite rules and the built in
axiomatization of integers and booleans the system seems complete.

3.3.8 Qualitative Measures

The system is very useful and easy to manipulate the proofs and specifications of the system. It
does not support any built in induction methodology other than user defined schemas. It also
does not support higher order logic although it gives a large amount of useful utilities and built in
techniques for the logic it does support.

3.3.9 An Example

The following is the Affirm version of the abstract specification of the Low Water-Mark Svstem as
given originally in [Kem86]:

type SecuritylLevel;
{ #e* Declarations see }
declare sl,sll:Securitylevel;

{ »es Syntaz of operations ses }
interfaces sl <= gli, sl >= gli : Boolean;
interface syshi: SecuritylLevel;

{ s¢¢ Semantics #se¢ }
axioms
sl <= gl == TAUE,
8l <= gyshi == TAUE;

axios
8l >= gll == gli <= g];

end {Securitylevel};

type EleaType;

{ ®e¢ Declarations ees }
declare reflexive,dummy:EleaType;

{ eee Semantics eee }

interface Full : EleaType;
axiom reflexive = reflexive = = TRUE;

28

ond {EleaType};
type Odject;

{ ®*+ Declarations ses }
needs types ElexType, Securitylevel;

declare x,x1:Dbject;
declare e¢:ElexType;
declare s,s1:Securitylevel;

{ ee¢ Syntax of operations ess }

interfaces Write(e,x,s), Reset(x,s),Initial:Object;
intertace ObjLevel(z) : Securitylevel;

interface Read(z,s) : EleaType;

intertace ObjectInduction(x):Boolean;

{ eee Semantics ees }
axioms
ObjLevel(Write(e,x,s)) ==
if s <= ObjLevel(x)
then s
else ObjLevel(x),
ObjLevel (Reset(x,s)) ==
if e <= DbjLevel(x)
then syshi
else ObjLevel(x),
ObjLevel(Initial) = syshi;

axioms
Read(Write(e,x,s81),s) ==
if? 81 <= DbjLevel(x)
then if g1 <= g
then ¢
else Null
else Read(x,s),
Read(Reset(x,81),8) ==
it 81 <= ObjLevel(x)
then Jull
else Read(x,s),
Read(Initial,s) == Full;

detfine x=x1 ==
(Read(x,syshi) = Read(x1,syshi) and
ObjLevel(x) = ObjLevel(x1));

schema
ObjectInduction(x) ==
cases(Prop(Initial),
all x1,¢,8(16(x1) imp Prop(¥rite(e,.x1,s))),
all z1,s (IB(x1) imp Prop(Reset(xz1,s))));

29

end {Object};

print proot;
theores StarPreserved, “(s <= ObjLevel(x)) imp VWrite(e, x, 8) = x;
proof tree:
72:! StarPreserved
invoke = /¢ Iavoke the ’s’ axiom
T72: 11 cases /¢ And then apply case analysis

72:-> (provent)

97 U: print proot;

theorem SSCpreserved, *(0bjLevel(x) <= 8) imp Read(x, s) = Full;
proot tree:
61:1=>55Cpreserved
employ Objectlnduction(x) /* Bere we employ user defined
Initial: /* dinduction schema
immediate
e1: Vrite: /¢ For the Urite case apply case
2 cases /* analysis then imvoke Inductioa
63: 4 invoke IE /* Dbhypothesis. Affirm then can
64: 5 put '’ = g search /% ‘’search’ for the proper
64: (provea!) /* instantiation
es: Reset: SSCpreserved /¢ Same for Read
3 cases
e7: 7 dinvoke IR
es: 8 put s’’ = g search
es: (proven!)

3.3.10 Critical Remarks

In a single environment Affirm permits the user to algebraically specify ADTs, test them for
consistency, completeness and execute test cases, prove propositions by transforming them using the
underlying logic and rewrite rules, and verify PASCAL-like programs using the inductive assertion
method.

Afirm lacks any form of parameterized typing. The current version of the system uses the
“text-editor” method of parameterization. In this particular example, the lack of parameterization
was not a problem. However, in examples with an ADT applied to several different types (e.g., bits,
bytes, words, and n-bit values etc.) the user would have to enter the specification for each separately.
If these specifications had interfaces with identical names, the user would then be prompted for
the type signature at every use of each unqualified interface. Furthermore, the verification of each
instance of the ADT would need to be separately verified.

30

3.4 Enhanced HDM
3.4.1 Overview

This section is a brief introduction to Enhanced HDM (Hierarchical Development Method-
ology), an interactive system for the composition and analysis of formal specifications and
programs{vHRG0]{Rus90]. It has been under continuous development at SRI since 1983; the Na-
tional Computer Security Center and NASA-Langley Research Center have been its principal spon-
sors. EHDM shares some concepts with SRI's previous methodology, HDM (a.k.a. old HDM), for
example the capability of expressing specifications for operations (as model-based specifications)
and a flow analyzer that determines if a specification is consistent with a model of multilevel
security. However, Enhanced HDM is more expressive and has substantially more proof support.
The unique features of Enhanced HDM are the expressiveness of its specification language
(Revised Special), certain aspects of the approach to mechanized theorem proving, its unique
approach to permit the reasoning about expressions that intermix declarative specifications and
imperative statements, and the support for verifying security properties of a specification.
Revised Special encourages a style of specification whereby a user can proceed from abstract
specifications through more detailed specifications, the process terminating with programs written
in a small but unimplemented subset of Pascal. Each step in the process entails the formulation
of decisions that are verified with respect to previous decisions. EHDM does not provide support
for the verification of executable and optimized programs. A system cannot be said to be verified
unless executable code is verified. However, substantial assurance about a system is obtained by
verifying specifications, and abstract algorithms that are easily converted into programs. EHDM
encourages a user to verify properties of a system'’s abstract specifications and of implementation
decisions described as abstract algorithms in a language that has many features of Pascal and Ada.
The justification for a system like EHDM is empirical evidence that most of the undetected
(and difficult to fix) errors in delivered systems occur in what is perceived as the design stages of
development. Using EHDM, the design of a system can be expressed as specifications and abstract
algorithms.
Among the unique features of Revised Special are:

o Parameterizable modules, through which generic modules can be specified, verified and ap-
propriately used.

o Support for second order predicate calculus, which, among other things, allows the user to
define and reason about induction schema.

e Support for program operations as first-class objects, which allows the user to declare, specify,
implement and verify operations at convenient points in the development of a system.

The goal for the EHDM theorem prover was to produce a fast and predictable response. To that
end, EEDM’s theorem prover is based on a collection of decision procedures. A decision procedure
determine whether a predicate within its domain of decidability is true or false. EEDM includes
decision procedures for propositional logic, equality over uninterpreted functions, and Presburger
arithmetic (essentially linear arithmetic). However, the logic of Revised Special is much more pow-
erful (i.e., first and second order predicate calculus), and is essential to express properties of complex
software systems. In order to prepare a formula of Revised Special for proof by the theorem prover,
the user can exercise combinations of the following options: (1) Cite (other formulas) premises
to be used in the proof, (2) Provide substitutions for certain quantified variables, and (3) Accept

31

the substitutions generated by EHDM’'s unification and resolution packages. This preprocessing
will transform the Revised Special formulas into formulas in the domain of the theorem prover's
decision procedures.

EHDM includes support for the verification of system security properties, mainly attempting to
ideatify covert channels that involve the transfer of information through the operating system state.
The MLS tool mechanizes the verification of Revised Special specifications, restricted to a particular
style, with respect to an information flow model of security. The purpose is to demonstrate that
according to the specifications there is no flow of information from a secure object to a secure
object of a lower level.! It should be noted that use of the MLS tool cannot guarantee the absolute
security of a system. In particular, the tool does not establish the correctness of executable code;
furthermore, the specifications it analyzes are relatively abstract, precluding any representation
decisions that would allow the multiplexing of an object among different security levels. However,
the tool can detect some insecurities that originate early in the design process, often subtle ones
that would be difficult to reveal by inspection of executable code.

A rugged version of the Enbanced HDM system bas been completed and documented, and is
available.

The remaining sections of this overview describe:

® A scenario for use of the Enhanced HDM system.

o The Revised Special specification language.

o The Pascal/Ada subset that constitutes the language for expressing verified programs.
o A hierarchical development.

o The theorem prover and how it is used to verify properties of specifications, operations, and
abstract programs.

o The MLS tool.
o The implementation of Enhanced HDM.
¢ A summary of available documentation.

o A description of SRI's research in verification and software methodology that led to Enhanced
HDM. Applications of Enhanced HDM and its predecessors are also summarized.

o Strengths and weaknesses of the current system.

3.4.2 The Enhanced HDM Methodology

As conceived by Floyd in the mid-60s, program verification is concerned with establishing the
consistency between a program and its specification, the specification being a pair of assertions
called the pre- and post- conditions. These conditions are usually expressed in predicate calculus
or some other formal logic. Any practical mechanisation of Floyd’s method requires all loops of the
program to be RcutS by assertions. The assertions are expressed in the same logic as the program’s
specifications. The program annotated by assertions can be viewed as consisting of paths, a path
being defined as a sequence of program statements bracketed by assertions. Each path defines what
is called & verification condition, a predicate which if true indicates that the path is correct with
respect to its bracketing assertions. The program is verified if all of its verification conditions are
verified.?

1 As described later, the model is not restricted to a Linear ordering of security levels.

3To be precise, this process only establishes partial correctness: the program satisfies its assertions whenever it
terminates. An exteasion of the verification condition paradigm can be employed to establish termination.

32

The Floyd paradigm has been the basis for most verification systems developed over the past 15
years. However, various extensions to this paradigm have been developed and implemented, mostly
in an attempt to solve the problems associated with verifying large programs that, among other
things, consist of many subprograms. These extensions have led to what are called methodologies.
In one form or another, all of these methodologies offer the following features:

o The capability to describe a system’s behavior in terms of abstract entities, thus leading to
specifications that capture the system’s behavior without reference to low-level implementa-
tion concerns. The implementation concerns one would hope to avoid (or at least postpone)
include concrete data representations and executable code the verification of which would have
to involve machine-specific concerns. The expectation, of course, is that the abstract specifi-
cations will be easier to produce, understand and debug than ones involving implementation
details.

¢ Hierarchical development, through which one proceeds in small steps from the abstract spec-
ifications to a concrete description of the system, such as optimized executable code. It is
through hierarchical development that the proof of a large system can be considered as a
collection of relatively small proofs.

o Reusability, through which generic specifications and implementations are verified and sub-
sequently used in different applications.]

Several methodologies, most notably Gypsy and the Stanford Ada-Anna methodology, started
with a hierarchical programming language that was subsequently extended with a notation for l
specifications, typically first- order logic. Others, most notably, Affirm, FDM and the two HDM;,
started with a specification language and empbasize reasoning about specifications. In some cases,
the specification language was linked to a programming language. In some cases (OBJ) there is a l
single language (aka, a wide spectrum language) serving for both specifications and programs.

The advantages of the programming language approach are clear: executable programs are
verified, and the user need learn only one language. On the other hand, it might be easier to
incorporate features in support of verification and software engineering into a specification language,
since it is not necessary to consider executability when it is decided what features to include. Rather
than debating the merits of each approach, we present a brief scenario of how Enhanced HDM would
be used in the design and verification of a system.

In developing a system with Enhanced HDM, a user might first express the overall requirements
of his system, probably using one or more modules which will constitute the top-level of the system
description. At an abstract level, a system is specified in terms of a collection of uninterpreted func-
tions. Some of these functions have an obvious connection with callable programs (e.g., clos.afile),
while others are primarily present for the purpose of specification, i.e., do not correspond to any
concrete representation or callable program. Examples of the latter would be functions that record
the history_of_sent.messages or the set_of failed_processors. One can call these ghost functions.

The heart of specification consists of axioms and definitions, the purpose of which are to express
constraints on the functions. The constraints are to be enforced ultimately by the implementation.
The developer will usually enclose these specifications in one or more modules. In constructing
the specification, he also might use previously specified modules — most typically parameterized
modules instantiated for current needs. For example, he might find use for a sets module, a holder
for elements without regard to any ordering.

Once the top level specification is complete, the user can pose and verify properties of the
specification. The goals of posing such properties are to debug the specifications and to extend the

33

. B

specification with even more abstract formulas. A property can take the form of a hypothesized
response to real or symbolic inputs, or can be a general theorems of the specification.

Next the user will want to take steps toward an implementation by making decisions on how
the functions of the top level are to be represented. First, he defines one or more next level modules,
the purpose of which are to provide functions that will serve as building blocks to represent the
top level functions. Then he creates the representation as a collection of mapping functions, one
for each upper level function. The axioms of the top level are then verified to be theorems of
the modules of the next level. The mappings will often be expressed as definitions and are quite
similar to Affirm’s equational implementation. Using the power of the specification language to
express mappings often leads to more concise descriptions than is possible with a programming
language. For example, it is usually easier to assert the existence of an element that satisfies a
certain condition than to exhibit a program that explicitly identifies the element.

At any point in the development process, operations can be introduced, an operation producing
a change (i.e., a side effect) to what are called state variables. The notation fo. the specification
of operations is that of Hoare triples (also called Hoare sentences). An operation ca.. be expanded
to a sequence of operations or, ultimately, into programs using our subset of Pascal. As we will
discuss below, having operations as first-class objects in the specification language allows the user
to pose lemmas about operations that will be helpful in structuring a proof.

The hierarchical development can continue until a level is reached, the specifications of which
the developer is prepared to accept as correct without verification. If it is to be claimed that
the implementation is verified the verification should be carried down to a level coansisting of ab-
stract programs that can be easily (with minimal chance of error) converted into executable code.
However, there is no obligation on the user’s part to proceed this far.

At any point in the hierarchical development process, the user can decide that one or more
interfaces are to be checked with respect to the multilevel security model. Typically, an interface
will be that of a resource manager (e.g., a file system) whose purpose is to enforce multilevel
security for a class of objects. The user specifies two modules. One of these is in the stylized form
acceptable to the MLS tool: operations on a collection of objects, each object being associated
with a constant security level. The other specification can be considered as an optimized version of
the first specification, allowing for objects to be multiplexed among different security levels. The
first module is verified with using the MLS tool. Next, the first and second modules are shown to
have identical external behavior. It is the second of the modules that is subsequently subjected to
hierarchical refinement.

3.4.3 Revised Special Specification Language

Revised Special is used for expressing all specifications and proofs. Revised Special is based on
malti-sorted predicate calculus and is intended to support both an axiomatic and constructive
(aka model-based) style of specification. The former (also called property-oriented specification)
facilitate the expression of design-level decisions; in particular, property-oriented specifications can
express partial properties. The constructive style, being essentially state machine specifications, is
often preferred by engineers.

Specifications are structured into modules with explicit import and export lists. Typically, a
module will correspond to what is called a theory, as it expresses many (although not all) interesting
properties of a mathematical theory (such as sets). Some modules, such as sets, serve primarily
to provide abstract functions for the purpose of specification; they are never implemented. Other

34

modules, (such as buffers), are refined down to concrete computational objects; see below. Module
specifications may be parameterized by types and constants (including function constants), for
uninterpreted — so that generic theorems can be stated and verified. Usually, the parameter will
be associated with the elements that will be stored in an object (such as in stack), the elements
used to index an object (such as the indices of an array), and functions defined on the indexing
elements (such as ;). Also, a parameter could correspond to an uninterpreted constant such as the
length of a stack or to an error return, such as the overflow response when push is called on a full
stack. Any proof about a parameterized module will be valid in all instantiations of the module.
Actual parameters must, of course, match the type of their corresponding formal parameters, and
in many situations it is necessary that they should satisfy additional semantic constraints (called
assumptions) expressed in the body of the module specification.

Inside a module, one usually declares types, either uninterpreted types or subtypes of existing
types. A function is declared by giving its name and signature. The heart of the specification gives
meaning to the functions declared in the parameter section or in the main body. Through the use
of the Lambda Calculus, a function (without a name) can be specified by giving it a definition
which can be recursive. The other way a function can be specified is in terms of axioms, an axiom
typically involving more than one function. When the theory in question is an abstract data type,
the axioms will have the appearance of rewrite rules, although at present there is not special-purpose
mechanization of rewrite rules. Predicate calculus can also be used in axioms. An important feature
of Revised Special is is quantification over functions. This second order capability is usually used
to define induction schema, but it has also been used to express abstract system requirements. For
example, a specification of a Crypto system can include the assertion that there does not exist a
function that can decrypt a message unless the key is known.

As indicated above, if the module contains parameters, the specification body can contain
what are called assumptions on the parameters. The assumptions are properties of the parameters
that must be verified to hold in any instantiation of the module. For example, an assumption might
require that a parameter that indexes into an object satisfies the properties of a totally ordered
set. If the instantiation associates character sequences with this indexing parameter, it must be
verified that the set of character sequences is totally ordered. The proof requires axioms about
lexical ordering.

The typical abstract data type specification is in terms of functions that have as its arguments
one or more abstract types. Using Guttag’s terms, the functions can be constructors, modifiers,
or selectors. The constructors are used to generate all instances of the abstract types associated
with the module. The general style is that of functional programming, a constructor taking an
instance of an abstract type (among other arguments) and returning a possibly difference instance.
Modifiers also return an instance of the type, but cannot generate any instances different from those
producible by constructors. Selectors return a concrete object associated with particular instance
of the abstract type (e.g., the top element of a stack).

Different from the functional programming model, most programming languages are based
on the von Neumann computational model. To provide a link to the von Neumann model, Re-
vised Special provides operations. Functions or variables can be declared to be state objects. An
operation, similar to a function, has a signature that declares the types of its input and output
arguments. However, different from a function, an operation can be declared to have a side effect
on one or more state objects. An operation op is specified in terms of a Hoare triple of the form
{P}op{Q}: if assertion P is true prior to op being called, Q will be true after the call. P and Q will
usually be in terms of state objects, P characterizing the state expected prior to the call, and Q

35

the state following the call. A Hoare triple can appear anywhere a boolean expression is expected
in the specification. Operations can appear anywhere in a module specification, but typically are
used as the development process evolves to the consideration of program-level concepts. One can
use Revised Special to specify the operations of a conventional von Neumann language; in such a
specification, conventional program variables will be declared as state objects, and the assignment
statement (for example) is then specified in terms of its effect on particular state objects.

A module specification can also pose lemmas and theorems, properties that when verified
are true of a specification. The approach to verifying these properties is discussed in a later
section, but for now it suffices to say that theorems usually express fundamental properties of the
specification and lemmas are employed to facilitate the verification of theorems. One interesting use
of Revised Special is to pose theorems about sequence of operations that are verified with respect
to specifications for the individual operations. This application is discussed in the next section.

S.4.4 Program Verification in Enhanced HDM

The user can write and verify programs written in a very small subset of Pascal (which is also
a subset of Ada), the subset supporting the following statement types: assignment, if- then-else,
while and repeat-until. Program variables are declared as Revised Special state variables, and
procedure calls correspond to Revised Special operations with actuals substituted for formal argu-
ments. Rather than calling this lJanguage a subset of Pascal, it has been suggested that it be called
an abstract programming language; the possibility of making the abstract programming language
a part of Revised Special is discussed later. Currently, there is no compiler for our subset of Pascal.

EHDM uses the Hoare-triple notation to express that a program is to be verified with respect
to pre- and post-conditions. To facilitate its proof, a program can be decomposed into sections.
For example, the body of a while loop is considered as a section separate from the initialization
of variables that might precede the while loop. The user can separately prove the body and
initialization, and then indicate that the proof of the program is to be accomplished by citing the
proofs of the separate sections. The advantage of this approach are in allowing the user to divide
up his program into sections as he sees best and to split off as lemmas complex properties.

3.4.5 Hierarchical Development

Hierarchical development involves the representation of a module in terms of lower level modules
and the verification of the representation. .

The representation is itself a module that considers the following. The user indicates that
a module is to be represented in terms of one or more other modules; more generally, a set of
modules can be represented in terms of a different set, the two sets perhaps overlapping. Each
abstract type in the upper module set is given a representation in terms of lower module types. It
might be necessary to define what equality of the upper level types means in terms of the lower
level ones. For example, two stacks each represented in terms of an array and an integer pointer
can be declared as equal if their pointers are equal and the arrays are equal in positions up to
the value of the pointer; the remaining positions in the array are of no consequence. Finally, the
representation contains a definition for each function of the upper level.

The verification of the representation is conceptually straightforward. Each of the axioms of
the upper level becomes a theorem to be proved of the module set of the representation and the
lower level modules. Furthermore, the user is obliged to state and verify particular proofs about
the equality relation he defined, namely transitivity, reflexivity, symmetry and substitutively with

36

respect to all upper level functions.

3.4.8 The Theorem Prover and How it is Used

The heart of the theorem prover is a collection of decision procedures for propositional logic,
equality over uninterpreted functions and linear arithmetic. The linear arithmetic package reasons
about equalities or inequalities that involve addition and multiplication by constants. A very
limited nonlinear capability (multiplication by variable values) is supported. The key feature of
the decision procedure set is that it decides automatically whether a formula in its domain is a
theorem or not a theorem.

In carrying out a proof of a theorem or lemma, the user will cite as premises axioms of the
specification; definitions are automatically expanded, actuals being substituted for formal. In citing
the premises, the user is indicating his expectation that his theorem can be proved with respect to
those axioms.

It is not possible to write specifications for real systems if one is restricted to the domains
provided by the decision procedure. A Revised Special specification will usually consist of formulas
in first and second order predicate calculus. In the absence of any assistance from the user, the
prover will replace all variables and functions of the theorem and cited premises with arbitrary
constants or constant functions. Although what results is in the domain of the decision procedure, it
is usually not a theorem. What is needed to produce a provable theorem are particular substitutions
for the variables and functions.

Substitutable variables are those that are universally quantified in the premises and existen-
tially qualified in the conclusion; the situation is complicated by the interaction of universally and
existentially quantified variables, but still relatively straightforward. The user is allowed to pro-
vide substitutions for substitutions for substitutable variables, doing so upon citing premises or the
theorem to be proved.

Also included in the prover is a special package called the Hoare Sentence Prover (HSP). The
HSP transforms expressions involving Hoare triples and user-provided substitutions into formulas
of the underlying decision procedures. What the HSP generates is very close to conventional
verification conditions, although it also allows for user-cited premises.

The bare-bones prover returns PROVED or UNPROVED; it does not return RfalseS since the
theorem in question might be true subject to appropriate premises and substitutions. To assist the
user in debugging proofs, 8 number of tools are provided.

The show variables feature identifies the substitutable variables and their dependencies. The
proof trace indicates the theorem under proof and the premises after the substitutions have been
made. The proof debugging aid allows the user to play with a failed proof. In particular, he can
explore the theorem under proof and each of the premises, requesting that the proof be carried
out assuming that particular expressions or subexpressions are assumed to be true. For example,
he can request that the antecedent P of a premise (P implies Q) be assumed true. This way, he
can determine if his ultimate proof would have succeeded if he was successful in proving P. If the
answer is yes, he could then focus his attention on why the attempted proof of P was unsuccessful.
Note that the proof debugging aid does not allow the user to modify substitutions; we will have
more to say later about this deficiency. The proof chain checker assures that proofs have been
provided for everything that the user has declared as provable, i.e., lemmas, theorems, assumptions
on parameters for instantiated modulus, and axioms in modules that are subject to hierarchical
refinement.

37

8.4.7 The MLS Tool

EHDM includes support for multilevel security. The MLS tool takes as input a Revised Special
module subject to a few restrictions and produces a new module containing theorems to be verified.
If these theorems are successfully proved, perhaps requiring the citing of premises and substitution
of variables, then it is claimed that the original module is multilevel secure.

SRI's model of multilevel security is addressed in [FLR77] (a preliminary description of the
model) and [Rus84] (a description appropriate to Enhanced HDM). The model assumes a collection
of security levels. Security levels are assumed to contain two components: a clearance level, taken
from a totally ordered set, and a list of categories, lists ordered according to inclusion. The set of
clearances typically includes the levels (in order) UNCLASSIFIED, CONFIDENTIAL, SECRET
AND TOP SECRET. The set of categories includes what are called need to know rights, typically
NATO, ATOMIC, etc. The set of security levels forms a lattice with TOP SECRET and all rights
the topmost element and UNCLASSIFIED and no rights at the bottom. For any pair of security
Jevels s11 and 112 it is either the case that sll { = 512 or NOT (sil j= sl2), the latter corresponding
to sl1J; 512 or sll and sl2 being Rincomparable.S

Furthermore, the model assumes a collection of users, each of whom is assigned a security level.
Users can invoke operations, that can cause a state change and return a value. It is assumed that
users are Rsharing a systemS$ by allowing arbitrary interleavings of invocation of operations. Assume
an arbitrary sequence of operation invocations S terminated by user Ul invoking an operation; let
the value returned to Ul be V1. Consider another sequence S2, which is S with the removal of all
operations invoked by users whose security levels sl2 satisfy NOT(sl2 j= sl1). We say the collection
of operations is a multilevel secure system if the sequences S1 and S2 yield the same value to Ul.
The model is conceptually simple. It says that what a user can obtain from a system cannot be
influenced by users whose security level is not less than or equal to his.

The SRI model cannot be mechanized directly, as it implies the need to carry out an induction
over arbitrary sequences of operation invocations. A trick, similar to that developed by Floyd for
program verification, is used to avoid the need for induction. The trick involves introducing objects,
each of which is assigned a security level, and considers the security of operations individually.
Considered abstractly, each operation is viewed in terms of the invocation level (assumed to be
sl1), the objects that obtain new values as a result of the invoeation, and the objects that impact
the value returned to the users or those that impact the objects that obtain new values. Then, an
operation is said to be multileve] security if

1. The value returned to the user depends on objects whose security levels sl2 satisfy sl2 ;= sll.
2. The objects that acquire new values are at security level sl2 such that sl ;= al2.

3. Consider an object at security level sl2 that acquires a new value dependent on the value of
an object at security level sll. It is required that sll ;= sl2.

The MLS tools assumes a Revised Special specification where objects are partitioned accord-
ingly to security level and where each operation is specified, essentially using a form of Boare
triples. For such a specification, the MLS tool produces three sets of theorems for each specified
operation, in correspondence with the three conditions above. These theorems are contained in a
module that is subject to verification similar to any theorem expressed in Revised Special. Usually,
the theorems are quite simple - actually trivial, reflecting the rather simple property being verified.

The MLS tool will find application in the analysis of secure resource managers, a subsystem
responsible for managing a collection of objects associated with a security level. Access to the

38

view char

objects is provided through a collection of operations. A secure operating system will have a
pnumber of such managers, such as a file system, a directory system, a virtual memory system, etc.

The tool assumes that each object is assigned a security level that is never changed (the
tranquility principle). In practice, then, only abstract specifications can be modeled by the tool.
Concrete specifications that allow an object to be multiplexed among different security levels are
excluded. A buffer that is sanitized after being released by a user cannot be modeled.

Access violations are easily checked, whereby a user gains control over an object for arbitrary
reads and writes. However, the tool also reveals subtle security violations that result in information
flow at a relatively low rate. These flows are said to be associated with covert channels, and typically
arise from operations returning error conditions. For example, an object could be locked by a user,
thus denying other users access to it. In the process, information could flow in violation of the
model if the locking is carried out by a user whose security level is higher than those attempting
subsequent access to the object.

The MLS has the potential of exposing significant security flaws in the specifications of real
systems. However, it is emphasized that the MLS tool cannot establish the security of a system.
It does not address program errors. Furthermore, it only handles design decisions that are quite
abstract.

$.4.8 The Implementation of Enhanced HDM

After starting up the verification system, the user with a conventional glass teletype will be talking
to the EMACS editor throughout most of his session. He is free to create module specifications,
each of which will occupy a file, or to retrieve some existing module. The conventional EMACS
commands are available to him. Once a module is ready to be processed, the user will call on
commands to parse a module, typecheck it, and to prove identified formulas. Error messages are
displayed in a separate window and, where relevant, the cursor will appear near the source of the
error. Version control assures that the most recent versions of modules will be used.

3.4.8 Conclusions

We view as a success the effort on Revised Special. It integrates what are recognized as the seminal
ideas of specification language technology: module parameters with semantic constraints, functional
in addition to operational (state-based) specifications, support for lambda definitions together with
general predicate calculus, support for hierarchical refinement and support for higher-order logic.
Revised Special provides features that enhance the expressiveness and reusability of specifications.
Moreover, in addition to a specification language, it is a first attempt at a proof justification
language. The primary weakness of Revised Special is the absence of a formal semantics (currently
under development), particularly important since it combines a number of different logics. Also,
not all of the features of the language are currently implemented, the language could benefit form
additional predefined types (such as arrays and sequences), and additional syntactic sugar could
be provided.

The goal regarding verification of code was to improve on the classical verification condition
approach. A premise for the EHDM approach was the belief that users find it difficult to reason
at the level of verification conditions becanse much of the structure of the program and of the
specifications is lost when verification conditions are generated. Particularly difficult is the posing
of lemmas that have a clear relationship to the program being proved; it is such lemmas that are
the most powerful and the most appropriate in explaining a proof. The EHDM approach to code

39

verification involves reasoning in teruus of Hoare sentences. The program being proved together
with its specifications are specified as a Hoare sentence, as are the sections of the program. Thus,
the user can decompose his program as he sees best to facilitate its proof, perhaps posing lemmas as
he proceeds. He then describes the proof of the program in terms of its pieces, the Hoare Sentence
Prover assuring that the proof is valid. We believe that the basic idea of reasoning at the level of
Hoare sentences is attractive, although the EADM implementation does not yet provide adequate
proof support. In particular, the assembling of a proof of a program from proofs of its components
could be automated. Moreover, the construction of a proof of a program section often requires
the user to consider numerous cases simultaneously. These cases usually correspond to paths in
the programs and would yield distinct verification conditions using the classical approach. We
anticipate an approach that integrates the concept of verification conditions with reasoning at the
level of Hoare sentences. This approach would benefit the user by allowing him to consider the
cases individually at first, and subsequently to assemble them together. No support exists for this
at present.

The goal for the Theorem Prover was to move towards a Rman-machine symbiosis,S the user
describing his proof and the machine checking it. Towards this goal, SRI has developed a collection
of decision procedures together with a preprocessor for predicate logic that handles gquantified
variables and functions. It is, then, the user’s responsibility to cite lemmas needed in his proof and
to provide substitutions for free variables such that the formulas given to the decision procedures are
indeed theorems. The underlying decision procedures are reasonably fast and the user is provided
assistance in jdentifying the bound and substitutable variables. However, users have found that
the construction of proofs can be somewhat more difficult than it should be, mostly because of the
absence of antomated support for the construction of proofs. A formula to be verified often consists
of conjunctions in the conclusion, disjunctions in the hypotheses, implications in the hypotheses,
and cases arising from case or if-then-else statements. In the EHDM system, the user must consider
the formula in toto, citing axioms and producing substitutions that will handle all cases. Or, if the
formula is too large and complex to consider in one shot, he can break it down by hand, proving
the individual cases, and then describing a proof that assembles the individual pieces into a proof
of the original formula. It would be preferable to have mechanical support for proof decomposition,
particularly since there are several interactive theorem provers (e.g., HOL) that already provide it.
Furthermore, it is difficult and often tedious to create and input the substitutions for free variables.
Some mechanical support here would be very desirable. An additional weakness of the theorem
prover is the impogsibility of extending the decision procedures with use-supplied axioms. For
example, it would be desirable to extend the decision procedures about arithmetic with facts about
multiplication and division over variables, leaving intact the core decision procedure.

As in old Special, the MLS tool handles specifications (called MLS specifications) that associate
a constant security level with objects. Several of the flaws in the previous tool have been avoided,
particularly those related to nondeterministic specifications. The one weakness of the MLS tool
relates to the absence of mechanical support for relating an MLS specification to the rest of the
system under design. It is desirable to verify that an MLS specification has the same external
behavior as one with a more concrete representation; the verification system should require such a
proof and provide support for it.

The interface to Enhanced HDM, through EMACS and popup mouse accessible menus, is
reasonably adequate. Ultimately, it would be desirable for the communication between the user
and the theorem to be of a higher bandwidth. For example, substitutions for free variables could
be effected by the user pointing to expressions.

40

3.5 FASE
3.5.1 Overview

The FASE system (Final Algebra Specification and Execution) was developed at Illinois by Samue]
Kamin, Myla Archer, and Stanley Jefferson [Kam83, KJA83, KA84, JK86) FASE specifications
are written and executed using a final algebra semantics. Final algebra specifications are similar
to initial algebra specifications typified by systems such as OBJ, consist of an operation signature
and operation definition rules. Final algebra operation definitions may—but are not necessarily—
given in a restricted form of rewrite rules. In contrast to initial algebraic specifications, objects
bave abstract representations as tuples of functions. Essentially, objects are represented by their
observable behavior. Here, observable behavior means operations that permit one object to be
distinguished from another. Furthermore, the semantics of the FASE specification are those of a
final algebra rather than an initial algebra: that is, the most abstract algebra with a given behavior.

3.5.2 Execution and Rapid Prototype Support

The ability to test specifications by executing them is a major feature of the FASE system. How-
ever, it is possible to write specifications that are not executable. FASE specifications are always
executable if they lack quantifiers. Specifications with restricted quantification (e.g., over a finite
set) are often executable.

The FASE environment is integrated with Franz Lisp permitting the user to write Lisp pro-
grams that exercise specifications. Additionally, FASE allows the user to move between specifica-
tions and implementations, thus permitting the user to develop a complete specification and then
substitute Lisp implementations of some objects for their specifications.

To facilitate the concrete implementation of abstract specifications, FASE supplies a built-in
random tester. This tester selects a collection of expressions and evaluates each one using both the
implementation and the specification; discrepancies are reported to the user.

FASE permits the user to supply a a more ‘human readable’ grammar, in addition to the
standard Lisp-style notation used in writing the specifications. This grammar is supplied in a
separate file called the “signature” file. The grammar is parsed based on the Earley algorithm, and
is somewhat more powerful than the mixed-fix syntax allowed by OBJ. In addition, placing the
signature in a separate file from the body of the specification makes it possible to provide multiple
grammars for each specification.

Finally, in [KA84)] the following methodology is suggested for implementors starting with a
specification:

o Interactive evaluation of expressions to gain understanding

o During development of the implmentation, use interactive evaluation of test cases to decide
upon details

¢ Use user-defined syntax to test the implementation
o Extensive random testing using the bui't-in RandTestGen

The execution of specifications involves both lagy evaluation and finite functions. Lary evalua-
tion is necessary, since ob jects are considered to be infinite structures describing all future behavior,
and using eager evaluation would result in infinite computations.

41

Since FASE specifications generally are composed of finite functions (i.e., take on a default
value at all but a finite number of points) objects may be represented by sequences of (argument,
value) pairs plus a default value. This greatly reduces the amount of work that must be done during
execution, and prevents the deterioration of performance that generally results when an object is
modified several times.

3.5.8 Abstraction Mechanisms

Because of the underlying final algebra semantics, FASE objects are described by indicating the
behavior of distinguishing set operations. In initial algebra systems such as OBJ, operations are
described by giving s method for calculating their values. This can biss implementations based upon
such specifications, indicating that the specification is not completely abstract. FASE specifications
do not have this problem, since caly distinguishing bebavior is described.

3.5.4 Yorms of Logic Supported

Specifications may be written using first-order logic, including quantifiers. Higher-order logic is not
supported. There is no direct provision for temporal logic; however, the appropriate axioms could
probably be added without difficulty.

3$.5.5 Verification and Theorem Proving Supported

Some work has been done to allow FASE to work with a proof tree editing system called TED.
Theorems may be stated using the syntax specified in the data type’s signature, and TED manages
proof sequences by parsing the theorems and then sending them to the user's choice of theorem-
prover and remembering the result of the proof.

3.5.8 Specification Checking——~Completeness, Consistency, and Soundness

One advantage of final algebra specifications is that it is easy to determine when an object has been
completely defined. This is not true for all specification systems: for example, it is very difficult to
determine when an OBJ object is complete.

3.5.7 Examples

There are two ma jor styles to FASE specifications. Both involve the Distinguishing Set. A FASE
specification of a SET done in an (initial) algebraic style is shown in Figure 3.5.7. In this specifica-
tion, the operators empty, add, rem are defined in terms of the distinguishing set operator isin.
The operator max is defined using quantification: for integers (n:Int), nisin S (isin(n,S))and
for all integer m (AA m:Int) if m is in S than n is greater than or equal to m.

However, there is a second style of specification which makes the final algebra nature of the
specification explicit. Such a specification is shown in Figure 3.5.7. In this specification, the oper-
ations empty, add, rem are all defined in terms of their future bebavior with respect to the dis-
tinguishing set operation isin. For example, the specification for empty states that when isin(n)
is applied to empty the observable result is always false. The specification for adding a number »
to the set S states that the observable behavior for isin(n, S) is trueif either nis in S or n was
the integer just added (n = m).

42

Setofint

enpty : => Setoflnt

add : Int SetoflInt -> Setoflnt
rem : Int SetofInt -> Setoflnt
isin : Int SetofInt => Bool
max : SetofInt =-> Int

DISTINGUISHING SET isin ;

isin(n, empty) => false ;
isin(n, add(m,S)) => nem | isin(n,S) ;
isin(n, rem(m,S)) s> “nem & isin(n,S) ;
max(S) =>
(n:Int)
(isin(n,S) &
((AA m:Int)(isin(m,S)->(n>m | nem))))

Figure 1: Algebraic style FASE specification for SET

SetofInt

empty : => Setoflnt

add : Int Setoflnt => SetofInt
Ten : Int SetoflInt -> Setoflnt
isin : Int SetofInt ~> Bool
max : SetofInt -> Int

DISTINGUISHING SET isin ;

empty => [<n> |-> false] ;
add(m,S) => [<a> |-> nem | 1sin(n,S)] ;
reaa(m,S) > [<> |-> - nem & isin(n,S)] ;
max(S) =
(n:Int)
(isin(n,S) &
((AA m:Int)(isin(m,S)->(a>= | n=m))))

Figure 2: Final Algebra specification of SET

43

3.5.8 Critical Remarks

As described in [KA84), one weak point of the FASE system is the inability to execute some
natural specifications that include quantifiers. It is possible to rewrite these specifications so that
they will become executable, but at the expense of supplying either a less abstract definition or by
substituting less natural definitions.

Errors are handled in a very simple fashion; no provision is made for expressing error recovery
Or error messages.

It is possible to write ambiguous grammars for the user-defined signature files; this is not true
for OBJ. However, the user-defined syntax permitted by the Earley algorithm is more general than
that of OBJ.

3.6

HOL

3.6.1 Overview

HOL is a general theorem proving system developed at the University of Cambridge [Gor87],
[CGMS87] that is based on Church’s higher-order logic. Church developed higher-order logic as a
foundation for mathematics, but it is a promising Janguage for describing computational systems of
all kinds. HOL can be used for proving properties of anything that can be expressed in higher—order
logic including hardware and software [Joy88b], [Joy88a]. This section provides a brief introduction
to higher—order logic as well as its implementation in HOL.

3.6.2 The HOL Verification System

Higher-order logic is a mathematical theory; HOL is a computer program that uses higher-order
logic to verify hardware and software. HOL grew out of Robin Milner's LCF theorem prover and
is written in the computer language ML. '

HOL has several subsystems that contribute to its use as a verification environment:
Several theories, including booleans, individuals, numbers, products, sums, lists, and trees.
These contain the five axioms that form the basis of higher-order logic as well as a large
number of theorems that follow from them.

. Rules of inference for higher-order logic. These rules contain not only the eight basic rules

of inference from higher—order logic, but also a large body of derived inference rules that
allow proofs to proceed using larger steps. The HOL system has rules that implement the
standard introduction and elimination rules for Predicate Calculus as well as specialized rules
for rewriting terms.

. Canned methods of proceeding in a goal directed fashion called tactics. Tactics are functions

that embody knowledge about commonly used proof techniques. These tactics can be applied
to goals to produce simpler goals, 3 number of subgoals that prove the original goal and so
on. Tactics can never be used to build an incorrect proof since each of them must include a
justification for the tactic in the form of an already proven HOL theorem.

Examples of tactics include REWRITE.TAC that rewrites a goal according to some previously
proven theorem or definition, GEN.TAC that removes unneeded “forall” clauses from the front
of terms, and EQ_TAC which says that to show two things are equivalent, we should show that
they imply each other.

. A proof management system that keeps track of the state of a proof and manages goals and

subgoals.

. A metalanguage for programming the verification system. The metalanguage for HOL is ML,

the language in which HOL is written. ML is a type polymorphic, lambda calculus-based
functional language. ML is a powerful programming language in its own right and has been
described in [GMW79)]. Using the metalanguage, tactics can be put together to form more
powerful tactics, new tactics can be built, and results of proofs can be made into new theories
for later use. The metalanguage makes the verification system extremely flexible.

Terms There are four kinds of terms in HOL:

1
2.

Variables
Constants

45

Operator | Application | Meaning

= tl = t2 t1 equals t2

. tl,t2 the pair t1 and t2
/\ tl /\ t2 t1 and t2

\/ t1 \/ t2 tior t2

=n> ti ==> t2 | t1 implies t2

<=> t1 <=> t2 | t1if and only if 2

Table 1: HOL Infix Operators

Binder | Application | Meaning |

! 'x.t foral x, t
? 7x.t there exists an x such that t
e ox.t choose an x such that ¢t

Table 2: HOL Binders

3. Function applications
4. Abstractions

Variables and constants are denoted by any sequence of letters, digits, underlines and primes
starting with a letter. Constants are distinguished in the logic and any identifier that is not a
distinguished constant is taken as a variable.

Function application is denoted by juxtaposition. Thus a term of the form "t1 t2" is an
application of the operator t1 to the operand t2. Its value is the result of applying t1 to t2.

An abstraction denotes a function and takes the form “\x.t". ! An abstraction "\ x.t" has
two parts: the bound variable x and the body of the abstraction t. It represents a function, £, such
that "£(x) = t". For example, "\ y.2*y" denotes a function which doubles its argument.

Constants can belong to two special syntactic classes. Some constants are declared to be
infix. Infix operators take two arguments and are written "rand1 op rand2" instead of "op randi
rand2". Table 1 shows several of HOL’s built-in infix operators.

Another special class that constants can belong to is the class of binders. A familiar example
of a binder is V, written in HOL as !. If c is a binder, then the term "c x.t" (where x is a variable)
is written instead of "c(\x.t)". Table 2 shows several of HOLs built-in binders.

Types HOL is strongly typed to avoid Russell’s paradox. ? Every term in HOL is typed according
to the following recursive rules:
¢ Each constant and variable has a fixed type. letter.

o If x has type a and t has type S, the the abstraction \x.t has the type (a — g).
¢ If t has the type (a —) and u has the type a, the the application t u has the type 5.

Types in HOL are built from type variables and type operators. Type variables are denoted
by a s~quence of asterisks (*) followed by a (possibly empty) sequence of letters and digits. Thus

!The ASCII symbol \ is used in place of the greek letter A which is customarily used to represent an abstraction.

?Russell’s paradox is the case where in s high-order logic, one defines a predicate that leads to s contradiction.
Specifically, suppose that we define P as P(x) = x(x) where denotes negation. P is true when its argumen: applied
to itself is false. Applying P to itself leads to a contradiction since P(P) = P(P). This is prevented by typing since
in & typed system the type of P would not allow it to be applied to itself.

46

Operator Arity | Meaning

bool 0 booleans

ind 0 individuals

num 0 natural numbers
(*)1list 1 lists of type *
(*,**)prod | 2 products of * and **
(»,x*)sum |2 coproducts of * and **
(e,s#)fun |2 functions from * to **

Table 3: HOL Type Operators.

=, s#2 and *ab2 are all valid type variables.

Type operators construct new types from existing types. Each type operator has a name
(denoted by a sequence of letters and digits beginning with a letter) and an arity. If 04,...,0, are
types and op is a type operator of arity n, the (o1,...,0,)op is a type. 3 A type operator of arity
0 is a type constant.

HOL has several built-in type operators which are listed in Table 3. The type operators bool,
ind, and fun are primitive. HOL has a special syntax that allows (*,#*)prod to be written as (»
=x) (*,*=)sum to be written as (* + ==), and (*,*=*)fun to be written as (» -> =x),

The Choice Operator The axiomatization of HOL uses Hilbert’s choice operator . This is a
binder with type given by:

€@ : (#=>bool)->»
The idea is that if £:ty->bool then "@(f)" denotes some value v such that "£(v)" is true.

For example, "€x:num.x*x=25" denotes S (but not -5 as the type num only contains the
non-negative integers). An interesting side—effect of the choice operator is that all types must be
non-empty since the term "@x:t.T" is a non-determinant member of the type t; this member must
exist.

Sequents, Theorems, and Inference Rules The HOL system supports proof by natural de-
duction. Assertions in HOL are not just boolean formulae asserting some independent truth, but
are of the form (A,C) where A is a set of assumptions and C is the conclusion. The assertion states
that if all the formulae in set A are true then so is the formula in C. This forms a sort of sequent
calculus and is very similar to the way proofs are carried out by humans and thus represents a
natural proof environment than other systems. The form (A,C) is called a sequent.

A theorem is a sequent that has a proof This means that the truth of the sequent has
been established through rules of inference from other theorems. There are certain distinguished
theorems called azioms that are taken as true without proof. Axioms are necessary as a starting
point. Naturally, any good proof system will have as few axioms as possible.

A proof consists of a series of steps that show that the sequent to be proven can be derived
from already proven theorems using the rules of inference. Most proofs in HOL take place in a
goal-directed manner, meaning that the sequent to be proven is written down and then treated as
a goal which is broken down into subgoals until the subgoals are reduced to a point that they are
trivial to prove (i.e. they are already theorems themselves).

*Note that type operators are postfix while normal fanction application is prefix or infix.

47

There are special kinds of axioms called definitions. A definition is an axiom of the form c=t
where ¢ is a constant and t is a term without free variables. A constant c is said to be defined in
a theory if there is only one axiom in the theory containing c and that axiom is a definition. A
theory in which all the axioms are definitions is said to be definitional. This is important because
definitional theories have the property that they cannot introduce any new inconsistencies to the
system. This property is known as conservative eztension.

All axioms, definitions, and theorems are stored relative to a theory. A theory is a set of type
operators, constants, axioms and parent theories. Parent theories provide for a hierarchy in which
the contents of an ancestor theory are available in the child theory. Higher-order logic is extended
by defining new theories. To use a theory, one declares it a parent of the theory currently being
drafted and then all of the components of the parent are available for use in the new theory.

Goal Directed Proofs in HOL The approach to proving theorems that is used in HOL is due
to Robin Milner. He originally developed the approach for a proof system called LCF. LCF was
designed for reasoning about recursively defined functions. The HOL system is a direct outgrowth
of LCF.

A goal is a sequent, that is, it has a list of assumptions and a conclusion. In general, a goal
that is to be turned into a theorem will not have any assumptions, and so the list of assumptions
will be empty. After the goal has been proven, the sequent will have a proof, if it is indeed true,
and becomes a theorem (recall that a theorem is a sequent with a proof).

In HOL, a proof is a function that turns a list of theorems into a theorem. We can obtain proofs
by applying tactics. A tactic is a function that takes a goal as its parameter and produces a list
of subgoals and a proof. When the subgoals are proven, they will each have associated theorems.
Applying the proof to the list of theorems proving the subgoals produces a theorem for the original
goal. For example, suppose that T is a tactic and g is a goal. Evaluating T g results in a list of
subgoals and a proof, [g1 ; g2 ;...;g-n) and p. Eventually, after proving each of the subgoals
(using tactics) we will have a list of theorems, [t.1 ; t2 ; ... ;tn). If T is a valid tactic,
applying p to that list of theorems achieves g and the proof is complete. Tactics will be discussed
in detail in a later section.

3.6.3 Axiomatic Basis for HOL

This section discusses the mathematical foundations of HOL. Moreover, it discusses the way this
foundation is implemented in HOL. Higher-order logic is based on Church’s typed-A-calculus.
There are many formulation of this logic. The one used in HOL is very similar to the one discussed
in [And86).

Al of the data objects in HOL are classified according to their membership in sets. For
«xample, 3 is of the type num because it belongs to the set containing all of the natural numbers.
Types in higher-order logic are expressions that denote sets. All types in higher-order logic must
denote non-empty sets. This is enforced by the new.type function that requires, in addition to the
representation for the new type, a theorem proving that it is non-empty.

At the heart of HOL are five axioms. Axioms can neither be proven or disproven. They
represent what we believe to be true about the world. A complete discussion of the axioms on
which HOL is based is beyond the scope of this report, but a bnd’ discussion should shed some
light on what they mean. Here are the five axioms:

1. The boolean cases axiom

48

BOOL_CASES.AX [~ !t:bool. (t=T) \/ (t=F)

says that every boolean object is either true of false.
2. The implication antisymmetry axiom

IMP_ANTISYM_AX |- ft1 t2. (t1 ==> t2) sa> (t2 e=> t1) s=> (t1 = t2)

states that if t1 implies t2 and t2 implies t1, then t1 and t2 are equal. In some sense, this
axiom relates implication and equality.
3. The n-axiom

ETA_AX [= 1t:eedas, (\x. t x) =t

states, in a round-about way, that two functions are equal if they give the same results when
applied to the same arguments. This property is called ertensionality. For example, the
n-axiom states that A z . sin z and sin are the same function.

4. The select axiom
SELECT_AX |- {P:s=>bool.!x. P x ==> P(Q P)

states that the choice operator, when used with a predicate expressing a particular property
returns an element that satisfies that predicate. This really just defines the meaning of the
choice operator, as we have discussed it, in a formal manner.

5. The infinity axiom
INFIRITY_AX |~ ?f£:ind->ind. ONE_ONE ¢ /\ < (ONTO ¢)

states that there is a set, called :ind that has an infinite number of members.

From these five axioms, all of the thousands of theorems that make up HOL can be derived.
In addition to the derived theorems, we can also make use of definitions. Recall from our brief
discussion of definitions and the principal of conservative extension that definitions, while techni-
cally axioms, cannot undermine the soundness of a logical system. Thus, we can define a number
of familiar logical objects using the primitive constants =, ==> and €. Some of these include:
T.DEF I= T = ((\x:*.x) = (\x:#.x))

FORALL_DEF |- ! = \P:s->bool. P=(\x.T) (binder)

EXISTS.DEF |~ ? = \P:#->bool. P(€ P) (binder)

AND_DEF I= /\ = \t1 t2.!t. (tis=>t2sadt)m=dt (infix)
OR_DEF 1= \/ = \t1 t2.!t. (tissdt)sa>(t2andt)esdt (infix)
IFF_DEF |- <=> = \t1 t2. (tie=>t2) /\ (t2m=>tl) (infix)
F_DEF |- Fe ittt

NOT_DEF |- = s \t, t =s=>F

49

Axioms and theorems represent the data in a verification system such as HOL. In order to
derive theorems from the axioms given above, we need rules of inference that say what kinds of
derivations are legal. The rules of inference are a very important part of any system of logic. If
derivation rules could be added to the system without regard to some formal basis, HOL would
be unreliable and unsound. HOL has a set of eight primitive inference rules from which all of the
other rules in the system must be derived. An inference rule has the general form:

Al |- t1 A2 |- t2 An |- tn
(conditions)

Al-t
Such a rule asserts that if the premises are proved and the conditions hold, then the conclusion
may be deduced. Here are the eight inference rules: :
1. ASSUME ~ Given a term “t", conclude t |- ¢.
2. REFL - Given a term “t", conclude -t = ¢.
3. SUBST - Perform substitution for variables in a theorem
4. BETA.CONV - Perform f-reduction on a term. f-redcution substitutes a function argument
into the function body: (A x.t[x]) u = t[ul.
. ABS - Introduce abstractions into theorems.
6. INST_TYPE - Instantiate type variables. ,
7. DISCH - Discharge an assumption, that is, an assumption on the assumption list is moved to
the conclusion as the antecedent in an implication.
8. MP - Perform modes ponens. Given - t1 and - t1 =e> t2 deduce the theorem | t2.

o

Inference rules in HOL are ML functions that return a theorem object. HOL's strong typing
provides security in that the user cannot create arbitrary theorem objects without using a rule of
inference. New rules of inference are created from the primitive inference rules through function
composition.

All proofs in HOL can eventually be reduced to proofs using the primitive inference rules. This
is a very powerful concept because it means that one need only look at the ML code implementing
the eight primitive inference rules to trust the result from the system. In most theorem provers,
there are literally thousands of lines of code that must be trusted in order to trust the resuit from
the system. The code implementing the eight inference rules can be read and understood in few
bours; as a result, it is fairly easy to convince oneself of their correctness.

Tactics and Conversions There are two ways of going about a proof. One way is to start with
a set of axioms and inference rules and work forward until the desired theorem is derived. For
example, given the theorems:

LESS.SUC = |- ! X y.X<Cy=ms>x < (SUCY)

FIVE_LESS_SIX = |- 6§ < 6
and the modus ponens inference rule
th1 |- th2 thl

th2
we can derive S < SUC 6 using the HOL expression
MP LESS_SUC FIVE_LESS_&SIX

50

The second way to prove a theorem is to start with the theorem that you want to prove as a
goal and then to reduce it to subgoals until the subgoals are already proven theorems or axioms.
Of course, each of the reduction steps must be justified in some way. This is the way most proofs
are done in HOL and we will see many examples of them.

As stated earlier, a tactic is an ML function that is applied to a goal to reduce it to subgoals.
For example, a tactic called MATCH.MP_TAC could be used to prove the goal from the previous
example. MATCH.MP_TAC says that a theorem of the form x ==> y can be used to reduce a goal of
¥ to a subgoal of x. The goal in the previous example was

5§ < SUC 6
Using MATCH.MP_TAC and LESS.SUC, we get a new subgoal of

BE<é6
which of course, is trivially true by the theorem FIVE_LESS._SIX.

Tactics can be described using the following notation:

<goal> -
SESSSSSEUSESSEERESEEEEEE <tactic>
<goal> <goal> ... <goal>
For example, CONJ_TAC is described by
t1 /\ t2
sssssssss CONJ_TAC

tl t2
Thus CONJ_TAC reduces a goal of the form (asl,"ti / t2") to two subgoals (asl,“ti1") and
(asl,"t2"). The fact that the assumptions of the top-level goal are propagated unchanged to the
two subgoals is indicated by the lack of mention of assumptions in the notation.

~ Another example is INDUCT.TAC, the tactic for doing mathematical induction on the natural
numbers:
!m.t[m]

SESEESSSSESESESESEEEERRE INDUCT_TAC

t[0] t[m] t[SuC =]
INDUCT.TAC reduces a goal of the form (asl,"!m.t[m]") to a basis subgoal (asl,*t[0]") and an
induction step subgoal (t[m].asl,"t[SUC m]"). Note that the induction hypothesis, "t {m)" has
been appended to the list of assumptions.

Tactics provide a way of doing proofs in HOL that closely mimics the way one does proofs
in mathematics. For example, it is quite common in a proof of equality, *x = y", to prove two
subcases, namely "x s> y" and "y ==> x". HOL's EQ_TAC does precisely this. The following is a
brief description of some of the most commonly used tactics:

1. GEN.TAC is used to reduce goals of the form "! x . t[x]* to a goal of the form *t[x]".
In an informal proof, one would commonly drop a universal quantification whose scope is the
entire term since it is understood that free variables are taken to be universally quantified.

2. ASM_CASES_TAC is used to consider alternative cases. In an informal proof of a goal such as
“if z then y else z" one would show that if “x* is true then "y” is true and if “x" is false
then “z" is true. "ASM_CASES.TAC x" reduces a goal to two subgoals, one with “x" added to
the assumption list and one with " x" added to the assumption list. When both goals are
proven, the original goal is considered proven.

3. EQ.TAC, as described above, is used to reduce a goal involving equality to two subgoals, one
with the implication from right to left and the other with implication from left to right.

51

4. REWRITE.TAC is used to rewrite a goal using known theorems. It also performs simple boolean
simplification. In an informal proof one commonly says “...and now, because x = y..." mean-
ing that the goal is simplified using the theorem +x = y by algebraic manipulation. tt
REWRITE_TAC takes a list of theorems and rewrites the goal with them to produce a
subgoal.

5. STRIP.TAC is used with goals containing implications. If the goal has the form x ==> y we
can assume x is true since if it is not, the goal is trivially true by the definition of implication.
STRIP.TAC removes the antecedent from the implication and adds it to the assumption list.
The consequent is the new goal.

6. EXISTS.TAC is used to pick a value for an existentially quantified variable. This is a reasonable
thing to do since an existentially quantified theory merely states the existence of a single value
which makes it true. Certainly if we can pick such a value for our goal, then the goal is true.
EXISTS.TAC “x* reduces a goal of the form *? y.t[yl" to a goal of the form “t[y/x]".

A tactic is an ML functions that maps an argument of type goal (term list # term) to a
pair consisting of a list of subgoals and a validation. A validation is a function that takes a goal
list and produces a theorem. If the theorem corresponds to the original goal, then the tactic has
succeeded in proving the goal.

Because the result of the validation is of type thm, it must use ML fanctions that return that
type. We bhave already seen functions that return objects of type thm, they were inference rules.
In some sense, tactics let the user do a goal directed proof, all the while building a large forward
proof as the validation. Goal directed proof in HOL is just a way of getting the system to keep
track of the details of the forward proof for you.

Because all steps taken by tactics must eventually be validated by an inference rule, tactics can
never prove a false statement. Tactics can, however, look like they are working and not really be
valid. They won’t produce a “wrong” proof, but they will waste your time. You should be careful
to ensure that tactics you write are valid.

Tacticals A tactical is an ML function that returns a tactic (or tactics) as result. Tacticals
are used to combine existing tactics into new tactics. They are used extensively in HOL proofs.
The most commoanly used tactics are ORELSE, THEN, THENL and REPEAT which are described in the
following paragraphs.

The tactical THEN corresponds to sequencing in programming flow control. The specification
of THEN is

THER : tactic -> tactic -> tactic
H T1 and T2 are tactics then T1 THEN T2 is a tactic which first applies T1 and then applies T2 to
all the subgoals produced by T1.

The tactical ORELSE corresponds to alternation in programming flow control. The specification
of ORELSE is

ORELSE : tactic => tactic <> tactic
If T1 and T2 are tactics ORELSE T1 ORELSE T2 is a tactic which first tries T1 and then if T1 fails
tries T2.

The tactical THENL corresponds to roughly to parallel execution in programming flow control.
The specification of THENL is

THENL : tactic -> tactic list -> tactic
If T is a tactic which produces n subgoals and T1,...,Tn are tactics then the tactic T THENL

52

[T1;...;Tn] first applies T and then applies Ti to the ith subgoal produced by T. THENL is used
when one wants to do different things to different subgoals.

The tactical REPEAT corresponds to looping in programming flow control. The specification of
REPEAT is .

REPEAT : tactic -> tactic
If T is a tactic then REPEAT T is a tactic that repeatedly applies T until it fails.

As a simple example, the following is a tactic built using tacticals and some of the tactics that
we saw in the last section:
(REPEAT GEN_TAC) THEN EQ_TAC THEN (EXISTS_TAC "x" ORELSE STRIP_TAC)
This tactic applies GEN_TAC repeatedly to the goal until all of the universal quantifiers have been
stripped, breaks the equality into two subgoals using implication and then either uses EXISTS_TAC
to pick a value for an existentially quantified variable of uses STRIP.TAC to strip the antecedent
from the goal.

Conversions Conversions are a very important part of the HOL system. References [Pau83)] and
[Pau87] give a more detailed introduction to conversion.

Conversions are functions that map terms into theorems. Conversions play an important role
in rewriting terms, manipulating goals and writing decision procedures. As an introduction, let’s
look at one of the most basic conversions REWRITE_COXV. REWRITE.CONV takes a single argument that
is an equality theorem and returns a conversion for that specific theorem. Using this conversion
produces a theorem tailored to the particular term given to it. For example, suppose we create a
conversion called less_conv using REWRITE_.CONV and LESS_THN.

LESS_.THM = |- !(m:num) (n:num). @ < (SUC n) s (m=n) \/m<n

let less_conv = REWRITE_CONV LESS_THNM;;

We can use this conversion to produce instantiations of LESS_THN.
less_conv "m < (SUC n)*;;

l-m<(SUCn) = (m=n) \/m<n

less_conv "(5+46) < (SUC (5+6))";;

I- (5 +6) < (SUC(5 +6)) = (BE+6=5+6)\/(5+6)<(5+86)

less_conv "n < m";;

evaluation failed term_match

Note that, if possible, the conversion produces a theorem that is a specialization of the theorem
given to REWRITE.CONV such that its left-hand side matches the given term. The last example shows
that the conversion fails if no match is possible.

Conversionals Conversionals are to conversions as tacticals are to tactics. They are operators
for putting conversions together. THENC is the sequencing operator for conversions. The expression
(c1 THENC ¢2) t uses c1 to produce a theorem t = t1 and then c2 to produce a theorem +
t1 = t2. The overall effect is a theorem I t = t2 because of transitivity. The conversion fails if
either of ¢1 or c2 fails.

ORELSEC is the alternation operator for conversions. The expression (c1 ORELSEC c2) t uses
c1 to produce a theorem F t = t1. If that fails, then it uses c2 to produce a theorem + t = t2.
The conversion fails if both of its arguments fail.

53

REPEATC repeatedly applies a conversion to a term until it fails. Here is the implementation of
REPEATC
letrec REPEATC conv t =

((conv THENC (REPEATC conv)) ORELSEC ALL_CONV) ¢t;;
REPEATC can be implemented as a recursive ML function that uses the conversionals THENC and
ORELSEC. ALL_CONV is the identity conversion. It alway succeeds.

Converting Subexpressions None of the conversions that we have seen so far work on the
subexpressions of terms. For example,
less_conv "(1 < (SUC n)) /\ (n < (SUC p))";;

evaluation failed term_match
The conversion is applied to the top level, that is, to the conjunction, and not finding a match,
fails. We need to be able to apply conversions to the subterms as well.

The function DEPTH_.CONV applies a conversion to all the subterms in an expression depth first.
Note that it does not retraverse a term, so the result may not be in the simplest form. Here is an
example of its application to a simple expression:

(DEPTH_CONV less_conv) "(1 < (SUC n)) /\ (a < (SUC p))";;

l-1<(SUCn) /\n<(SUCpP)=((1=n)\/1<n)/\
(a=p)\/n<p

The function TOP.DEPTH.CONV applies a conversion to all the subterms in an expression in a
top down manner. The function retraverses the result until no further conversion can be applied.
The final result of using TOP_.DEPTH.COKV is always in its simplest form, but takes longer than using
DEPTH.CONV.

CONV_.TAC As we have seen, conversion produces a theorem from a term. That doesn’t do us much
good in a goal directed proof. HOL provides a tactic called CONV_.TAC for using the results of a
conversion in a goal directed proof. It takes a single argument, the conversion that is to be used,
and produces a tactic.

CONV_TAC : (conv -> tactic)

In essence, CONV_TAC applies a conversion to the goal and then returns the right-hand side of the
theorem returned by the conversion as the new subgoal. If the conversion fails, then the goal is
unchanged.

Defining Conversions In order to understand how conversions work, the following example
showing the definition and use of a simple conversion is presented. Suppose that we wish to prove
the following goal:
set_goal((J, "t am . (n <= (SUCm)) = ((n <=m) \/ (ne (SUC B)))");;
After rewriting with theorems about the meaning of <= and what it means to be less than the
successor of something, we are left with the following goal:
“t(n:aum) (m:num).

(aeom)\/n<n)\/(neSUCH) =

(a<n\/ (n=a))\/ (o= SUCaE)"

Now, of course, this is trivially true, but we still have to do some rather unpleasant specialization
of the disjunctive symmetry theorem to finish the proof. We’d like to be able to have a tactic that
can show terms like this are true.

The reason that we recognize a goal such as the one is true is because we know that disjunction
is associative and commutative. We can reparenthegize and reorder the terms at will. We want
to write a conversion that reassociates the terms and then order them in some consistent manner.
This is called “term normalization.”

In our conversion, we will use the following theorems about disjunction:

DISJ.ASSOC = |- tabec.a\/b\/c=(a\/b)\/¢c

DISJ_SYM = |- !(ti:bool) (t2:bool). t1 \/ t2 = t2 \/ t1

DISJ3.SYM = |- tabc. (a\/ D) \/c=(a\/e)\/D

HOL has a built-in ML function << that defines an arbitrarily, but unique total order on terms.
“a:bool" << “4";;
false : bool

"4" << “a:bool";;
true : dbool
We want to define DISJ_SYM_CONV such that
DISJ_SYM_CONV "a \/ d" ==> |- a \/ Db =Db \/a if b << a

DISJ_SYM_CONV "(a \/ b) \/ ¢" ==>
l- (a\/b)\/cs(a\/c)\/D if c <D

Here is the ML code for DISJ_SYM.CONV
let DISJ_SYM_CONV t = (

let (t1,t2) = dest_disj t in

i? (not (is_disj t1) & (t2 << t1)) then
(SPECL [t1;t2] DISJ_SYM)
else
let (t3,t4) = dest_disj ti1 in
i? (t2 << t4) then
(SPECL [t3;t4;t2) DISJ3_SYM)
else fail

) ? failwith *‘DISJI_SYM_CONV';;

Of course, this simple conversion only works if the goal has three or fewer subterms.

We can write a general version using DISJ_.SYM_CONV that works even when the goal has more
than three subterms as follows:
let DISJ_NORMALIZE_CONV =

TOP_DEPTH_CONV (REWRITE_CONV DISJ_ASSOC)

THENC TOP_DEPTH_CONV DISJ_SYM_CONV;;
The normalization conversion reassociates the term and then uses TOP.DEPTH_CONV to completely
order the term, no matter what its sise.

Now we can write the tactic. We want to normalise an expression and then prove it using
REFL.TAC if possible. Note that we don’t want to just fail if the two sides aren’t equal, we still want
the expression normalized. Also note that REFL_TAC won't work if there are universally quantified
variables. The tactic should also be written such that GEN_TAC is used only if the goal can be solved
with REFL.TAC. Here is the ML code for such a tactic.
let DISJ_NORMALIZE_TAC =

55

CONV_TAC DISJ_NORMALIZE_CONV

THEN (((REPEAT GEN_TAC) THEN REFL_TAC) ORELSE ALL_TAC);;
This tactic is very general. Not only does it solve goals where the disjunctive terms are equal, but
it normalizes unequal terms, so that we can determine where the inequality lies.

3.6.4 Critical Remarks

This section relates our personal impressions of HOL after having used it extensively. There are
several points that should be made before a detailed discussion of the strengths and weaknesses of
HOL are discussed.

HOL is still a research system, not a commercial product. In addition, HOL is young in

relation to many other theorem provers such as Boyer~-Moore and EHDM. These points have
several implications:

1.

HOL is not polished. As an example, error messages, while much improved over earlier ver-
sions, are terse and sometimes not helpful. As another example, the help system is incomplete
and somewhat ad hoc.

. HOL is not finished. An example is the theory of numbers. While there is a large collection

of theorems about numbers, they are ad hoc. A more careful analysis of what theorems are
important might include other theorems about numbers in the base system. Another example
is the set of conversions for dealing with universal and existential quantifiers. The set is by
no means exhanstive and all of the conversion are not found in the same file.

Overall, HOL has great potential, but there are many deficiencies. The next sections will

discuss the strengths and weaknesses on the basis of the following criteria:

= W N =

o

12.

. The overall usability of the theorem prover.

. HOL's formal foundations.

. The soundness of the theorem prover and its trustworthiness.

. The expressibility of HOL’s specification language for describing the structure and bebavior

of hardware designs.

. The suitability of HOL's specification language for expressing generic designs.
. The suitability of HOL's specification language for describing systems composed of hardware

and software.

. The suitability of HOL's specification language for describing concurrent and distributed

systems.

. Examples for which HOL is particularly well-suited and those it does not handle well.
. HOL's performance on large examples.

10.
11.

The extensibility of the system, including defining new types and decision procedures.

The proof power of the HOL environment. Consideration will be given to how automatic

proofs are, the capability of the system to carry out proofs by induction, the capabilities for

reusing proofs, and the ability of the user to interact with the prover when it fails to discover

8 proof.

The “software engineering” features of the environment, e.g., its capability to reason about

changes to designs, its support for modularization and refinements, its capabilities for inte- -
grating design and proof.

56

Ease of Use This section discusses the overall usability of the ROL system. Ease of use hinges
on several factors, among them the user interface, the style of proof, the proof management system,
and theory and theorem management.

HOL’s user interface is somewhat Spartan. As delivered, it is nothing more than a read-eval-
print loop. Work should be done to supply a user interface that takes advantage of the features
available on modern workstations such as windows, menus, expanded character sets, mouse-driven
‘editing, etc.

The style of proof in HOL is natural and flexible. Proofs can take place in a forward, backward,
or mixed mode. Tactics provide a natural way of going about goal-directed proofs. Using tactics,
proofs can be done in a manner that mimics the way a human proves theorems. Indeed, one of the
best ways to structure a proof in HOL is to do a hand-proof first and use the informal proof as a
guide in developing the formal proof.

HOL contains a simple proof management system based on a goal stack. More extensive proof
management systems exist independent of HOL that provide the capability of editing tae proof
tree at arbitrary points and give the user the fiexibility of pursuing subgoals in a less structured
manner. An example is the Treemacs proof editor from the University of Lllinois [Ham88].

HOL provides a simple system for managing theories in the form of a library package based
on the UNIX file system. HOL stores theories in directories of files and can be loaded from within
HOL using the load 1ibrary command.

Another problem that arises when using HOL is that the user frequently knows which theorem
should be used next, but does not know the name of the theorem. This necessitates searching
through pages of listings giving the names of theorems, looking for the particular theorem needed
for the job at hand. This works when the number of theorems is small, but becomes unwieldy for
large collections. It is not inconceivable that a good theory of numbers would contain thousancs
of theorems. This problem needs to be solved, but it is not clear what the best solution is. It is
possible that a database management system using pattern matching might be step in the right
direction.

Perbaps one of the most frustrating areas impinging on ease of use is the quality of docu-
mentation about the system. In this area, HOL gets particularly poor marks. Users are left to
discover very important points about the theorem prove: by chance, or from informal contact with
other users. This should change in the future since Mike Gordon has a contract to produce good
documentation for the system. This documentation is to be available early in 1990.

Formal Foundations HOL’s formal foundations are very strong. HOL is based on Church’s
typed A—calculus (also known as higher-order logic). Typed A—calculus was developed as a formal
basis for mathematics and has received considerable attention independent of its use in theorems
provers. Different logics counld, of course, and are used in theorem provers. There is no way to argue
that higher—order logic is the “best” logic, but one can conclude that higher-order logic imposes
no fundamental limitations on HOL. Another point in its favor is that the theoretical foundation
of HOL is familiar to people trained in classical logic. Most of the logic is already known to the
user and the user is not forced to learn a new logic before beginning.

Higher—order logic seems to be necessary for building a trustworthy theorem prover. See the
section that follows on trustworthiness for more information. In addition, higher-order logic allows
generic specifications to be easily defined.

57

Soundness and Trustworthiness Simply put, to say that a theorem prover is sound is to say
that one cannot conclude that false is true within the system. To say that a theorem prover is
trustworthy is to say that it faithfully implements the logic upon which it is based.

There is little doubt that the logic upon which HOL is based is sound. One cannot reach this
conclusion by proof since it is a bypothesis that can never be proven, only disproven. The more
important question is whether or not HOL faithfully implements higher-order logic.

HOL is based on 5 primitive axioms. There are three ways to create a new theorem in HOL:

1. One can declare it an axiom.

2. One can make a definition.

3. One can create a theorem from existing axioms definitions, and theorems using inference
rules.

While HOL allows one to declare arbitrary axioms, this practice is discouraged unlike other
systems such as EEDM where this is the standard means of introducing new bases for proof. Axioms
are distinguished in HOL so that they can be identified in theories, providing a measure of safety.

The principle of conservative extension assures us that as long as definitional axioms are added
to the system then the system will remain sound. HOL encourages the use of definitions. Theories
that are free of axioms (that is, contain only definitions and theorems) are called definitional and
are sound .

An inference rule is an ML function that returns an object of type theorem. HOL contains §
primitive inference rule. Every other infereace rule is based on some functional composition of the
& primitive inference rules.

The combination of definitional theories and a small pumber of axioms and inference rules
make HOL extremely trustworthy. In order to be assured that the a result of true is correct,
one need only be convinced of the correct implementation of 5 inference rules and the & primitive
axioms. Incorrect code elsewhere might lead the theorem prover to fail to return an answer, but
will not lead to an incorrect answer.

Higher—order logic seems to be essential to building a trustworthy theorems prover. With-
out higher-order logic, it is impossible to declare recursive axioms in a definitional manner. We
have seen that the ability to use definitions rather than declaring arbitrary axioms is essential to
maintaining the soundness of the theorems prover.

Another facet of trustworthiness where higher-order logic is important is induction. Without
higher—order logic, the induction schema cannot be expressed in the logic and thus the induction
cannot be carried out mechanically in the system but is left to for the user. Various first-order
system bhave attempted to provide induction without higher-order logic, but none have been suc.
cessful.

One deficiency of HOL in the area of trustworthiness is HOL management of theories. HOL's
theories are stored in text files (which contain LISP expressions) and thus can be edited without
invalidating them. In addition, when a theory is changed in the system, its descendants are not
invalidated as they should be. While attempts to add this capability would probably be futile due
to the insecurities of the operating system and other issues, this area should not be ignored in a
system to be used for commercial proofs.

HOL currently does a good job of protecting the user from accidentally cheating and declaring
something proved which is not. It does far less to guard against deliberate tampering. Before HOL
is used in a commercial endeavor, one would probably also want more assurance that the results

58

from HOL are genuine. An independent proof checker that checks a transcript of the primitive
inferences taken by HOL during a proof to ensure that they are all valid and no shortcuts were
. taken would solve this problem since the user could not fake a correct series of inference steps
without actually doing the proof. Proof checkers are simpler to write than theorem provers and
would provide an added measure of security.

Trustworthiness has a downside. HOL is extremely trustworthy precisely because it requires
that every theorem be derived by primitive inference. This means that many of the decision
procedures used in other theorem provers for Peano arithmetic, boolean algebra, etc. cannot be
used in HOL as they get their speed from doing the manipulation of terms outside the object
world, that is without using primitive inferences. Research should be undertaken to find decision
procedures that work by primitive inference but are fast enough to be of use.

Expressiveness In the area of expressiveness, we will deal with three topics:
1. The expressibility of HOL's specification language for describing the structure and behavior
of designs.
2. The suitability of HOL's specification language for expressing generic designs.

3. The suitability of HOL's specification language for describing systems composed of hardware
and software.

As was mentioned in the preceding section, HOL is based on higher-order logic. This gives
HOL incredible flexibility in what it can express. Higher—order logic is Turing complete, meaning
that any thing that can be expressed using any other programming language, can be expressed in
HOL. This is as much as can be hoped for in any language. In addition, because of its higher-order
capabilities, specifications expressed in HOL are generally more concise and clear than they might
be in some other notation.

Since HOL is based on higher-order logic, any specification, at any level, can be parameterized,
but very little research has been done in this area. One could easily imagine, for example, a generic
ALU specification and implementation that allows each of the ALU’s functions to be specified and
verified separately; these separate proofs and specifications could then be automatically composed
with the generic ALU implementation to form a custom ALU proof. While this has not yet been
done, there does not seem to be any fundamental limitation in HOL that would prevent this.

The question of HOL’s suitability for specifying mixed systems can perhaps be best addressed
by example. Jeff Joyce of the University of Cambridge has specified and verified a microprocessor
called Tamarak along with a compiler for the microprocessor. This verification shows the efficacy
of HOL for specifying mixed systems. On another level, since almost all modern computers are mi-
crocoded, any verification of a microprogrammed microprocessor demonstrates HOL’s capabilities
in this area. There have been several large microcoded examples completed at different institutions.

Performance on Different Classes of Problems Higher-order logic is extremely expressive,
but that does not mean that HOL will perform equally in all problem domains. Because HOL has
been used extensively to verify hardware systems, there is a large body of knowledge about using
HOL in this domain and many useful techniques have been developed and widely disseminated.
Researchers, both here at the University of California, Davis and elsewhere, are just beginning to
use HOL to verify interesting properties for software.

Recent work at UCD has identified several limitations in the present version of HOL which
make it difficult to describe the implementation of some programs. An example of a deficiency in

59

this area is the inability of HOL to define arbitrary recursive definitions. HOL does not allow this
for gcod reason (soundness), but of course, any real program will allow totally recursive functions.
This problem is non intractable, but is simply an example of the kinds of issues that will have to
be resolved before HOL is used to verify programs.

Not surprisingly, HOL seems to do particularly well in developing theories about mathematics.
Set theory, group theory, etc. can be expressed and developed quite naturally in HOL. This is
important since making formal proofs tractable requires that the user of the formal system have a
large body of preproven theorems about mathematics readily available.

Performance on Large Examples HOL has been used by several different researchers to specify
and verify several Large Scale Integration (LSI) sized examples. Most of these are hardware, as the
raw HOL logic is suited to hardware descriptions. Researchers at the University of Calgary have
specified and verified a small LISP-based microprocessor (the SECD microprocessor) and are in
the process of verifying another (the so—called Three Instruction Machine, or TIM). Researchers
at the University of Cambridge in England, where HOL was developed, have verified three or four
chips that could be classified as “large,” including a network control chip and a microprocessor on
the same level of complexity as a PDP-8.

HOL is being used to verify the VIPER microprocessor. It appears that VIPER represents
the upper end of hardware that can be verified using current techniques. There does not appear
to be any fundamental limitation in HOL that would limit its usefulness to small or medium-
sized problems, but new techniques for structuring proofs, new abstraction mechanisms and more
automated methods of proof need to be explored.

Abstraction Mechanisms HOL is weak in the areas of structural, behavioral and temporal
abstraction. For example, HOL does not contain any built-in theories about gates, devices, spe-
cific programming languages, etc., or types specific to hardware specification such as bit-vectors,
words, and so forth. It is difficult to see how built-in theories of gates would be useful without
having the theorem prover linked to a CAD system and supplying the user with specification and
implementations for the standard libraries of gates available in the CAD system as well as decision
procedures for doing proofs with them.

Another sxample is the lack of a formal means for dealing with temporal issues - as would
be required in proofs about concurrent programs. There are techniques to be sure, but they exist
outside the system and thus there is no built-in support for state-based proofs and reasoning about
temporal issues.

HOL is strong in the area of data abstraction. HOL’s type definition package maintains the
soundness of HOL while at the same time making the declaration of new types and functions on
those types reasonably automatic.

The ability to define new types in HOL and then write specifications in terms of these new types
gives HOL a powerful abstraction mechanism. Not all verification environments are so powerful.
Some limit the specification to terms involving boolean logic, so that it is impossible, for example,
to say abstractly that an ALU should sum jts inputs.

HOL provides no formal support for reasoning about changes to a design. This means that a
small change to the implementation of a design invariably necessitates redoing the proof. Depending
on how the proof was done, this may be trivial, or may be a major undertaking. Many systems are
structured enough that with the appropriate abstraction mechanisms, mechanisms for reasoning
about changes to a design should be possible. This represents a fertile area of possible research.

60

Extending HOL HOL’s extensibility is one of its strongest points. Indeed, one could argue that
to use HOL is to extend it since one cannot prove a theorem without adding it to a theory. User's
can add new theories, types, tactics, conversions, and so forth to tailor the system to their needs.

In addition to being extended by proving theorems, ML, the metalanguage of HOL, provides
a mechanism for programming the theorem prover and defining new functions. HOL is a system
that can be tailored to a particular problem domain. One could imagine, for example, a hardware
verification environment built on top of HOL, linked to a CAD system.

HOL is extensible without the user having to modify the internal code. In addition, HOL
protects the user from making extensions that will make the system unsound. For example, we
discussed how tactics are validated. A user can write a new tactic, but if the validation does not
work, then the tactic cannot be used to mistakenly conclude that an HOL term is true.

Proving Theorems in HOL HOL is a interactive theorem prover. It does not attempt to carry
out proofs without user intervention. Proof systems that attempt to automatically generate proofs
almost always fail, leaving the theorem prover in an unknown state. The user then adds another
lemma and tries again. HOL does not require user assistance for every inference, but the user is
expected to guide the proof. As an example, the proof script of an n-bit ALU we carried out is
about 600 lines long, but produces a proof which takes over 220,000 primitive inference steps.

HOL has powerful induction schema that include both induction over natural numbers and
structural induction over both built-in and user defined data types. HOL’s data abstraction package
includes a facility for automatically generating induction tactics for user defined types.

HOL peeds to be expanded to include decision procedures for terms involving common types
such as numbers and booleans. One often gets to a point in a proof that the answer is obvious,
but there are hours of term manipulation left to be done. There are already existing algorithms
for dealing with many of these situations and they should be included in HOL so that this kind of
tedious work can be avoided where possible.

Software Engineering Features HOL has no built-in capability to reason about changes to
completed proofs. This is an area of active research and new ideas could be easily tested in HOL
due to its powerful metalanguage, *1L.

HOL supports the modularizaiion of proofs through the creation of theories. A theory is a
collection of related theorems, types, definitions, and axioms. For example, the type definitions
and theorems about natural numbers are collected in a theory called :num. HOL maintains a
hierarchical dependency graph showing which theories depend on others. This hierarchy is used to
provide modular proofs of correctness that limit the effect of changes to a system being verified.

HOL’s type checker is strong and is used to maintain soundness. The typechecker has very
good inferential capabilities, freeing the user from worrying about type declarations where they can
be inferred from context.

HOL provides no means of executing even simple expressions. This can be very frustrating
since one defines functions and cannot execute them over several example to get a feel for their
correctness before starting on a long verification effort. Many times, one defines a function, only
to discover part way through a proof that it is incorrect. This usually invalidates the proof so far
and the user is obliged to start over. On a more general level, an execution facility can be used tc
give the specification writer feedback that the specification is correct. A formal specification that
does not match the requirements is useless.

61

Concluding Remarks Overall, HOL is a very capable system that has proven itself through use

in several large proofs.

There are tradeofls, of course, in the design and implementation of theorem provers. HOL is
extensible and programmable; there is only a small amount of code that must be trusted. EKDM
and, to a greater extent, Boyer-Moore are handcrafted for performance; they attempt to automat-
ically prove theorems. HOL is perhaps less focused and, in some situations, more difficult to use,

but much more flexible and in the end stronger.

62

3.7 OBJ3
3.7.1 Overview

OBJ3 is an equational programming language designed for the specification and implementation of
abstract data types. Recent literature, however, demonstrates that OBJ3 has many applications.
In particular, the language and its interpreter support testing, debugging, and rapid prototyping
of algebraic specifications of software systems [GW88]. More importantly, specifications can be
mechanically verified, by using the interpreter as theorem prover [Gog88].

Because OBJ3 can be used for all phases of a development effort, it is a wide-spectrum language.
OBJ3 is also a functional language, since user-defined operations cannot cause side-effects.

OBJ3’s encapsulation unit is the object. The object construct corresponds roughly to the
module or package constructs found in other programming languages.

An object has a name and can contain several kinds of components. These components define
sorts and operations that are exported by the object. Sorts are analogous to data types; operations
are analogous to functions. Specifically, an object can contain: importing instantiations of other
objects; sort, subsort, variable, and operation declarations; and equations. Before continuing,
however, some definitions are necessary.

The fundamental data structure in OBJ3 is the term. A term is defined recursively: It is either
a variable, a constant (an operation with no arguments), or an operation with terms as arguments.
A term containing no variables is a ground term. An OBJ3 computation is the reduction of a ground
term. A reduction is the simplification of a term according to a set of equations. QOperationally,
equations are treated as unidirectional rewrite rules.

An object is smported when its sorts and operations are needed by the importer. OBJ3 supports
several importation mechanisms — they are extremely flexible. These mechanisms promote top-
down, modular design. They are discussed in more detail, later in this section.

A sort declaration is used to construct a user-defined sort. A subsort declaration allows an
element of one sort to be an element of another sort.

A variable declaration allows variables to be used in equations. Each variable is declared to be
of a particular sort. An equation containing a variable is an abbreviation for the set of equations
obtained by replacing the variable with each element of its sort. Of course, an equation may contain
more than one variable.

An operation declaration specifies the name, arity, and coarity of an operation. An operation
can be overloaded, since its arity and coarity are part of its name. For a mixfix operation, the
argument positions are declared by embedding underbars in the operation name (e.g., .+.). Various
operation attributes can also be defined. These include: associativity, commutativity, a precedence,
and an evaluation strategy. An evaluation strategy specifies the order in which the operation’s
arguments are reduced.

An eguation specifies a relationship between two or more operations. Thus it specifies how a
term can be reduced. In fact, an equation is simply an ordered pair of terms. If, after variable
binding, the left-hand side of an equation is equal to a subterm, that subterm can be replaced by the
equation’s right-hand side, using the variable binding. Conditional equations are also supported. A
conditional equation is applicable only when its associated boolean condition (a term that reduces
to true or false) reduces to true.

63

3.7.2 Abstraction Mechanisms

OBJ3 supports a program-development paradigm called parameterized programming [Gog84].
When a parameterized object is instantiated, an actual parameter is bound to each formal pa-
rameter. An actual parameter is also an object (i.e., it provides sorts and operations). OBJ3's
parameterization mechanism is far more powerful than Ada’s generic-package mechanism.

Each actual parameter must satisfy the theory associated with its corresponding formal pa-
rameter. A theory is an object-like construct that specifies the syntactic and semantic requirements
of an actual parameter.

In general, an actual parameter may satisfy a theory in more than one way. The way in which
an actual parameter does satisfy a theory is specified by an object-like construct called a view. A
view is a mapping from sorts and operations in the theory to sorts and operations in the actual
parameter. Often, explicit views are unnecessary; OBJ3 is quite adept at determining default views.

3.7.3 Forms of Logic Supported

Strictly speaking, an OBJ3 specification is written in equational logic. Each equation specifies that
one or more pairs of terms are equal, and therefore interchangeable. Practically speaking, however,
OBIJ3 provides several built-in objects that make writing a specification far easier. In addition,
more complex objects can be imported from a library supplied with the interpreter.

The built-in objects define boolean, integer, rational, real, tuple, and string operations. Most
are implemented by Lisp code for efliciency.

The library objects define sets, lists, arrays, complex numbers, quaternions, categories, and
unification. A decision procedure for propositional calculus and a bubble-sort algorithm are also
specified in OBJ3.

3.7.4 Formal System Basis

For a specification language to support verification, it must have a formal semantics. Otherwise,
theorems cannot be legitimately proven. OBJ3 has both an operational semantics and a mathe-
matical semantics.

The operational semantics of OBJ3 is based on order sorted term rewriting. Order sorted term
rewriting defines the behavior of the interpreter’s rewrite-rule engine.

The mathematical semantics of OBJ3 is based on order sorted equational logic. Order sorted
equational logic is a restricted form of equational logic (a system with no sorts) and a generalized
form of many sorted equational logic (a system with no subsorts). Equational logic is seen as too
permissive, whereas many sorted equational logic is seen as too restrictive. This compromise has
several benefits:

Ax-ag the advantages of “strong typing”, which of course we call strong sorting,
are: to .tch meaningless expressions before they are executed; to separate logically and
intuitively distinct concepts; to enhance readability by documenting these distinctions;
and, when the notion of subsort is added, to support overloading, coercions, multiple
representations, and error handling, without the confusion found in many programming
languages [GW8S].

Order sorted equational logic is a rigorous mathematical theory. Of primary importance,
however, is the way in which the sort of an operation is determined. When an operation name

64

is parsed, its sort is chosen to be the smallest (i.e., lowest in the hierarchy) of those possible.
But this choice may be changed to a larger sort (i.e., higher in the hierarchy), in order to apply an
equation. Subsorting sometimes allows an operation to be defined as total, when it would otherwise
be necessary to define it as partial; this greatly simplifies the operation’s specification because it
does not have to detect argument values that are outside of the intended domain. Thus, error
handling is often automatic.

The formal semantics of an OBJ3 object is an algebra. An algebra is a collection of sets with
functions among them. An object’s sorts correspond to the algebra’s sets, its constant operations
of each sort correspond to the elements of each set, and its other operations correspond to the
functions. Since OBJ3 is based on order sorted equational logic, the proof theory of that formal
system applies directly to OBJ3 specifications.

For an object’s operational and formal semantics to agree, its fomal semantics must be an
initial algebra (GM83]. An initial algebra is one where every element of every set can be named
using the given functions (i.e., there is no “junk”) and all true equations can be proven to be true
using the given equations (i.e., there is no “confusion”).

An object’s formal semantics is an initial algebra if the object is canonical. An object is canon-
ical if it is confluent and terminating. An object is confluent if the order of equation application
does not effect the result. An object is terminating if every reduction terminates.

For many examples of interest, the rules of equational deduction are both sound and complete.
In particular, this is true when every sort contains at least one constant. However, there are
important examples without this property [GM83).

8.7.5 Specification Checking

An OBIJ3 specification can be analyzed in (at least) three ways. It can be shown to be free of
syntactic errors, it can be shown to have desirable application-independent properties, and it can
be shown to have desirable application-specific properties. The first two classes of properties can
be established by general-purpose tools, which are discussed here. The last class is established by
verification, which is discussed later.

As the interpreter processes an object, it parses and sort-checks each equation according to
the sort, subsort, variable, and operation declarations. Thus, it detects all syntactic and even some
obvious semantic errors. Unfortunately, this is the only automatic analysis currently available.

An important feature that is missing from OBJ3 is a tool for determining if an object is
canonical. In general, this question is undecidable, but in practice such a tool often succeeds.
More specifically, two tools are necessary. The first tries to prove that an object is terminating;
the second that a terminating object is confiuent. Usually, termination is obvious and requires
no proof. Confluence can be demonstrated by the Knuth-Bendix completion procedure [KB70).
This procedure can even generate new equations that make an object confluent. Unfortunately, the
Knuth-Bendix procedure does not always terminate.

The Knuth-Bendix procedure has been implemented for a predecessor of OBJ3 named OBJ
[Gog80]. Unfortunately, these two languages are substantially different. Perhaps a future version
of OBJ3 will also provide tools to help check for termination and confluence.

Another useful tool that is not provided is an automatic test generator [Jal89]. Such a tool
takes an object as input and produces as output an arbitrarily large set of terms. The terms are
produced in order of increasing size so that all operations are covered. These terms can then be
reduced by the interpreter to test the object.

65

3.7.6 Execution and Rapid Prototype Support

For a specification language to support testing, debugging, and rapid prototyping, it must be
executable. An interpreter for OBJ3 specifications is available from SRI International; it is written
in Kyoto Common Lisp.

The interpreter maintains a collection of currently defined modules. A module is either a
parameterized object, an instantiated ob ject, a theory, or a view. Initially, only the built-in modules
are defined. The built-in modules provide arithmetic, logic, and string operations. By default, a
reduction is performed in the context of the most recently instantiated object, but the interpreter
can be instructed to reduce in the context of any defined object

Commands are given to the interpreter by typing them at a prompt. The in command causes
a file of commands to be executed. Such a file can also contain in commands. The show command
pretty-prints a module or displays system-parameter values. These parameters primarily control
the interpreter’s verbosity (e.g., reduction tracing); they are changed by the set command. The
reduce command reduces a term. When it finishes, it displays the result and the number of rewrites
performed.

In OBJ3, input is the term to reduce and output is the result of its reduction. This is the
only form of input/output that is provided. Thus, rapid prototyping of computational algorithms
is supported, but a rapid prototype cannot demonstrate a realistic user interface.

3.7.7 Verification and Theorem-Proving Support

There are three levels to consider when using OBJ3 as a theorem prover. Only the activities of
first level are supported by the interpreter. Activities of the other two levels must be performed
manually.

At the lowest level of verification, equations are applied to reduce terms. For a person, this
work is tedious and error-prone. Fortunately, machines thrive on term substitution. Thus OBJ3’s
rewrite-rule engine can execute proof scores.

At the middle level of verification, these proof scores are constructed. A proof score contains
modaule definitions and reductions that prove a theorem. More precisely, the theorem is only proven
if all the reductions reduce to true. For example, a proof score might employ induction to prove
that a property of a particular specification always holds.

Automatic construction of proof scores is an attractive prospect, especially if their correctness
is guaranteed. One approach is to supply a library of generic proof scores that can be instantiated
as needed. Another approach is to employ “proof management” software that understands proof
tactics but relies on OBJ3’s interpreter to do the real work.

At the highest level of verification, the correctness of proof scores is justified. Such justifications
are usually very abstract and caanot possibly be done mechanically. The language employed is
mathematics (e.g., that of initial algebras).

3.7.8 Low Water Mark Example

As a concrete demonstration of the OBJ3 language, this section presents a specification of the Low
Water Mark security problem [CGEMS81]. Following this specification, the security constraints
are formulated as an invariant and an inductive proof is given that verifies that the specification
establishes and maintains the invariant.

The problem is to control access to a shared database containing a single item of information.

66

theory ITER is

sort Items .

op notfound : => Item .
endth

Figure 1: The Requirements for a Database Item.

In accordance with access constraints, a user can read the data item, write a new item into the
database (possibly lowering the database security level), or reset the database security level to its
highest possible value. A reader’s security level must not be lower than the database’s level and a
writer’s or resetter’s security level must not be higher than the database’s level.

Rather than designing a specification for a database containing a particular sort of data, a pa-
rameterized specification is constructed. Only one parameter is needed, but when the specification
" is instantiated the parameter must supply a sort and an element of that sort to return as the result
of a successful read of an initialized database. These requirements are specified by the theory in
Figure 1. The theory requires an instantiating object to supply a sort named Item and a constant
of sort Item named notfound.

The Low Water Mark specification is shown in Figure 2. Capitalization clearly counts and
follows the recommended conventions: Module and variable names are all uppercase. Sort names
are uppercase and lowercase. Operation names and keywords are all lowercase. Comments begin
with three asterisks and continue to the end of the line.

The first line of LWM declares a parameter I that must satisfy the ITEM theory. The object then
declares two sorts named Database and Level, imports a built-in object INT, and declares that
the integers are a subset of the levels. Thus, integers can be used as levels. Sort Int is declared in
object INT. The names, arities, and coarities of the operations provided by LWM are then declared.
Operation new constructs an initialized database with a security level of ten, the highest possible
value for this specification; read, write, and reset do what their names imply; rd-done, wr-done,
and rs-done return the results of read, write, and reset (resp.); 1vm bundles a security level with
a data item to form a database; high is the highest security level;, and none is the item returned
to writers, resetters, and unauthorized readers. Following this “signature” of LWM, several variables
are declared (variable I is distinct from parameter I). Finally, equations specify the behavior of the
declared operations. The first two construct an initialized database; the next three do the actual
reading, writing, and resetting according to the security constraints; and the last nine allow nested
invocations to interact appropriately.

In order to test the specification in Figure 2, it must be instantiated. First, an object must be
chosen as the parameter to LWM. Then, a view must be used to specify how that object satisfies the
ITEM theory. And then, another object must be constructed that imports and instantiates LWN.

A simple example is a database of natural numbers. Figure 3 specifies how the built-in ob-
ject NAT satisfies ITEM. Sort Item is satisfied by (mapped to) sort Nat and constant notfound is
satisfied by (mapped to) constant 0. The view ITEM-TO-NAT implicitly imports ITEM and NAT.
Figure 4 shows LWM being instantiated according to ITEM-TO-NAT. Sample reductions demonstrate
the specification’s operations.

There are three main steps in verifying that LWM correctly enforces the Low Water Mark security
constraints. First, a proof object is constructed from the specification object in Figure 2. The proof
object is then instantiated and augmented with a predicate on sort Database that expresses the
security constraints. This predicate is then used with a form of structural induction [GHM78] to
prove that the constraints are never violated.

67

ebjoct LUN(I :: ITER] is
sort Database .
sert Level .
pretectiag INT .
subsort Iat < Level .

ep nmew : => Database .

op read : Level Database => Database .

ep write : Level Ites Database -> Database .
op reset : Level Database -> Database .

rd~dene ; Item Database -> Datadbase .
wr~deae ;: Item Datad => Datab .
re~dens : Item Database -> Database .

lwn : Level Item => Database .
Righ : > Level .
aone : «> Ites .

333 3833

var L L1 : Level .
var 1 11 12 s 1tem .

eses Create a new datadbase.
oq nev = lwm(high,notfousd) .

eq high = 10 .

ses resd requires Preclev >= ObjLev; it does et change ObjLev
oq read(L,lwm(ll,I1)) =
if L >= L1 then
rd-done(11,1lem(l},11))
eloe
rd-dene(none,lmm(L1,I1))
7] .

ess yrite requires PrecLev <= ObjLev; it sets ObjLev te Preclev
oq write(L,I,lem(L1,I1)) =
it L <= L1 then
wredene(none,lm(L,I))
else
sr-dene(none,lwm(L1,I1))
71 .

ose reset requires Preclev ¢= ObjLev; it sets ObjLev te high
oq rveset(L,lwm(li, I1)) »
if L <= L1 then
re-done(none,lem(high,11))
else
re-dene(nene,lm(ly,l1))
E £ N

Figure 2: The Low Water Mark Specification Object (1 of 2).

ses Kliminate comploted invecations.
read(L,réd=done(12,1wm(L1,I1))) » read(L,lem(L1,I3)) .
read(L, or=done(12,len(l1,11))) = read(L,lem(l1,11)) .
read(L,rs-done(12,lem(L1,11))) » read(L,lwm(L1,I3)) .
erite(L,], rd~done(12,1vm(L1,11))) = write(l,I,lem(L:,11)) .
write(l, I . vr=done(12,19m(L1,11))) » srite(Ll,I,lem(L1,I1)) .
write(L,],ro~dene(12,lem(L1,11))) = write(L,l,lem(L1, I1)) .
reset(L,rd=done(12,vm(L1,11))) = reset(L,lm(ls, 1)) .
reset(L,yr-dene(12,1wu(L1,11))) = reset(L,lwm(Ls, I1)) .
reset(L,ra=dene(12,lwm(L1,11))) = reses(L,lwm(L1, I1)) .

1333222132

t

Figure 2: The Low Water Mark Specification Object (2 of 2).

vies ITEN-TO-NAT from ITEM to BAT is
sort Item to Nat .
op notfeund to O .

endv

Figure 3: Satisfying the Item Requirements.

object LUR1 is
pretectiag LUN[ITEN-TO-BAT) . ses instantiate
endo

reduce read(6,.erite(5,1111,009)) .

reduce read(4,vrite(5,1111,n0w)) .

reduce read(7,urite(6,2222,read(9,9rite(8,1111,00v)))) .
roduce read(6,orite(6,2222,read(9,vrite(8,1111,00w)))) .
reduce read(7,reset(6,write(5,1111,mew))) .

reduce read(7,reset(4,urite(5,1111,neu))) . {a): Input.

reduce ia LUNL : read(8,srite(5,1111,new))
rewrites: 9
result Database: rd-dome(1111,1wm(5,1111))

reduce ia LWN1 : read(4,wvrite(§,1111,n0v))
revrites: 9
result Database: rd-done(aone,lwm(5,1111))

reduce ia LUN1 : read(7,9rite(6,2222,read(9,9rite(8,1111,009))))
rev-ites: 17
result Database: rd-deme(2222,1wm(6,2222))

Teduce ia LVA1 : read(B,write(6,2222,read(9,vrite(8,1111,20v))))
rewrites: 17
result Database: rd-done(menme,lwn(6,2222))

zeduce in LWL : read(7,reset(6,erite(5,1111,00v)))
rewrites: 13
result Database: rd-dene(1111,lwn(6,1111))

redace ia LWR1 ; read(7,reset(4,orite(5,1111,00v)))
revrites: 14
result Database: rd-deae(mens,lwm(10,1111)) (b): Output.

Figure 4: Instantiating and Testing the Specification Object.

69

ebject PROOF~BOOL is
pretectiag TRUTU-VALUE .
pretectiag BOOL .

op eif_thea_else fi : Bool Bool Beel => Bool
[strategy (1 2 3 0) gather (2 & &) prec 0] .
op .mss_ : Bool Bool => Bool [atrategy (1 2 0) prec 51} .

endo

ebject PROOF-TRUTK(X :: TRIV] is
pretectiag TRUTN-VALUT .
pretectiag PROOF-BOOL .

op oif_thea.else _?1 : Beol Kit K1t -> Kt
(strategy (1 2 3 0) gather (& & &) prec 0] .
. op .ses_ 1 Klt K1t => Beel (strategy (1 2 0) prec §1] .

u‘o.
ebject PROOF-REL[X :: TRIV] ie

pretectiag TRUTH-VALUE .
pretectiag PROOF-TRUTH[X] . .

op .¢s. : Eit Elt => Beel [prec 1] .
op .<s=_ 1 Kit Elt => Beel [prec 51] .
op s : Rt Klt => Beel [prec 51} .
op .>s=_ : K1t Elt -> Boel [prec 61] .

endo

Figure 5: Signatures of Three Proof Tools.

Axn alternative approach is to verify the parameterized specification; thus any instantiation is
also verified. Although this technique has been shown to be mathematically sound [Gog88], OBJ3's
interpreter cannot perfor= reductions in the context of a parameterized object. Therefore, such a
verification cannot currently be automated.

In order to formulate a predicate that captures the Low Water Mark security constraints, the
proof object (and conceptually, the specification object) is modified to record a small amount of
historical information. In particular, three pieces of information are saved as part of the database:
the type of access made by the last successful invocation, the security level of that invocation,
and the security level of the database just before that invocation succeeded. With this historical
information available, the predicate can be formulated as an invariant of all constructable databases.

Aside from application-dependent reasons, like the history maintenance described above, the
transformation from specification object to proof object is necessary because OBJ3's interpreter
can only reduce ground terms. The trick is to replace variables with new operations called variable
operations [GHM78|. Unfortunately, a term containing variable operations does not always reduce
as expected. The problems are caused by the built-in conditional and relational operations. How-
ever, these can be replaced by the operations from PROOF-BOOL, PROOF-TRUTH, and PROOF-REL. The
signatures of these objects are shown in Figure 5.

The new conditional operation is “eager” whereas the original is “lazy”; its evaluation strategy
causes all of its arguments to be reduced before the boolean condition is tested. The new relational
operations are “symbolic” whereas the originals are “literal”; their equations can reduce them to
true but never to false.

70

Figure 6 shows the proof object. Operations rd, wr, and rs record history information as the
last argument to lwm. Operations avar, lvar, and ivar are variable operations that can replace
variables of sorts matching their coarities. Each variable operation has a single integer argument.
This makes an infinite supply of variable replacements available (e.g., 1var(0), 1var(1), lvar(2),
...). The proof tools are then instantiated for each necessary sort. The imported operations are
used in the equations as replacements for the built-in operations.

The proof object is just as executable as the specification object. In Figure 7, the proof object
is instantiated for natural numbers and some sample terms are reduced. These tests are the same
as those in Figure 4. This time, however, the results contain history information.

The Low Water Mark security constraints are embodied by operation invariant in object
INVARIANT shown in Figure 8. After instantiating the proof object, INVARIANT defines invariant as
a predicate on databases and instantiates a case-analysis rule for it. Case analysis is a second-order
axiom [GHMT78] that is instantiated as a module ezpression. This particular expression imports
PROOF-CASE from Figure 9 and renames sort Sort to Database and operation p to invariant. The
three equations for invariant cover eaca of the three possible types of database access. Variable
P represents the process (user) security level. Variable 0 represents to object (database) security
level.

With the invariant specified, a proof score employing structural induction can be constructed.
The score is shown in Figure 10. The basis proves that the invariant holds for an initialized database.
An object is then used to make an inductive hypothesis. Object INDUCTION imports INVARIANT and
(transitively) the instantiated proof object. An equation then assumes that the invariant holds for
a particular database. Variable operations are required here. With variables, the equation assumes
that the invariant holds for all databases, but that is the theorem to prove. The new equations for
rd-done, wr~done, and ra-done eliminate completed invocations, thereby allowing invariant to
be evaluated. Three reductions are necessary for the inductive step. Each reduction proves that the
invariant is preserved across a particular kind of access, whether it succeeds or not. The detailed
trace of each reduction is about two pages long. The traces demonstrate that the automatic proof
proceeds essentially as a wanual proof would.

3.7.8 Critical Remarks

The previous sections simply describe OBJ3, this section tries to gauge its suitability and effective-
ness as a specification and verification system. Both the language and its interpreter are considered.
Language deficiencies are probably permanent, since correcting them probably requires changing
the underlying formal system. Interpreter deficiencies are not so serious; fixing them just takes
time.

Perhaps the most important characteristic of OBJ3 specifications is that they are easy to
design, understand, and modify. To some extent, this is a characteristic of specifications written in
any equational language. This clarity results from the simplicity of equational logic, where there
are no sophisticated built-in operations or complicated models of computation. There is only one
rule: a term may be replaced by an equal term. Of course, it is a waste of time to start every
specification from scratch; libraries of specifications are developed and imported as needed.

Equational languages are functional languages. As such, they lack what programmers who use
conventional (imperative) languages take for granted — and have a hard time giving up. Namely,
a function can only return a single value, there is no global state, and there are no assignment
statements. But it is exactly these familiar “features™ that are responsible for most software

71

object LUR[I :: ITEN] is
sert Database .
sert Level .
sert Actien .
pretecting INT .
subgort Iat < Level .

op aev : => Database .

op read : Level Database => Database .

op write t Level Item Database => Database .
op reset : Level Datad => Databd .
p
op
L

rd=dene 1 1tem Database -> Datsbase .
sredens 1 ltes Datadase -> Database .
ro=done : Item Database => Datadase .

op 1wa : Level Item Action ~> Database .
op high : => Level .
op RORe : => [tem .

ops zd uT 78 : Lavel Laevel => Action .

sse Yariable operations.
op avar : Iat => Actien .
op lvar : Iat <> Level .
op dvar : Iat -> Itea .

ees Preof tools.
protecting PROOF-TRUTH(Database] .
pretectiag PROOF-TRUTH{Level] .
pretecting PROOF-REL[Level] .
pretactiag PROOF-TRUTH[Action] .

var L L1 : Level .
var 1 I1 12 : ltem .
var A : Actiom .

ose Create & aev datadase.
eq snev = lwm(high,notfound,rs(high,high)) .
eq bhigh = 10 .

sse read requires Preclev >= ObjLev; it dees net change Objlev
oq read(L,lwm(Li,I1,A)) =
eif L >s= L1 thea
vé~dene(11,lwm(L1,It,2d(L,L1)))
else
vd=dene(nene,lwm(L1,11,4))
791 .

oee orite requires Preclev <= QbjLev; it sets Objlev te Preclev

Figure 6: The Low Water Mark Proof Object (1 of 2).

eq write(L,I,lwm(L1,I1,A)) =
eif L <s= L1 then
wr-done(none,lwm(L,I,wr(L,L1)))
else
wr-done{(none,lwm(L1,11,A))
i .

ees reset requires Proclev <= ObjLev; it sets ObjLev to high
eq reset(L,lwm(li,I1,A)) =
eif L <s= L1 then
ro-done(none,lwm(high,It,rs(L,L1)))
slse
re-done(none,lwm(Ly,11,4))
 $ W

ess Eliminate completed imvocations.

read (L, rd-done(12,1wn(L1,11,4))) = read(L,lwm(L1,11,4)) .
read(L,or~dene(12,lwn(l1,11,4))) = read(L,lwm(L1,11,4)) .
read(L,re~done(12,1wm(L1,I1,1))) = read(L,lwm(L1,I1,R)) .
write(L,l,rd~done(12,1wm(L1,11,4))) = write(L,I,lwm(L1, 11,4)) .
write(L,I,ur~done(12,lwm(L1,11,4))) = write(L,I,1mm(L1,11,4)) .
write(L,l,rs~done(12,1wm(L1,11,4))) = write(L,],lwm(L1,11,4)) .
reset(L,rd=done(12,lwm(L1,I1,4))) = reset(L,lem(l1, I1,4)) .
reset(L,vr-done(12,1wm(L1,11,4))) = reset(L,lwn(L1,15,4)) .
reset(L,re~done(I2,lwm(L:,11,4))) = reset(L,lwm(Ls:,12,4)) .

232223232

endo

Figure 6: The Low Water Mark Proof Object (2 of 2).

ebject LWN1 is
protecting LVN[ITER-TO-JAT] . eee jinstantiate
endo

reduce read(8,write(5,1111,ne9)) .

reduce read(4,vrite(5,1111,new)) .

reduce read(7,write(6,2222,read(9,urite(8,1111,nevw)))) .
reduce read(5,vrite(6,2222,read(9,orite(8,1111,n0e9)))) .
reduce read(7,reset(8,write(5,1111,new))) .

reduce read(7,reset(4,srite(7,1111,0ew))) . (.);Inpng_

reduce in LWN1I : resd(6,erite(5,1111,new))
resrites: 11
result Database: rd-dome(1111,lwm(6,1111,rd(6,5)))

reduce in LVUR1 : read(4,write(5,1111,new))
revrites: 11
result Datadbase: rd-dose(aene,lwm(5,1111,9r(5,10)))

reduce im LWN1 : read(7,write(6,2222,read(9,9rite(8,1111,00¥))))
revrites: 19
result Database: rd-dene(2222,1wm(8,2222,rd(7,6)))

reduce ia LUN1 : read(5,urite(6,2222,read(9,orite(8,1111,00v))))
resrites: 19
result Database: rd-dene(ncae,lwm(6,2222,9r(6,8)))

reduce in LUN1 : read(7,reset(6,urite(5,1111,0ew)))
revrites: 18
result Database: rd-deme(11131,lwm(6,1111,rd(7,5)))

roduce in LUN1 : read(7,reses(4,srite(6,1111,009)))
resrites: 16
result Database: t‘-‘olo(nono.liu(lo.xtxl.r-(l.i)(b); Output.

Figure 7: Instantiating and Testing the Proof Object.

73

object INVARIANTY is
uwsiag LUR(ITER-TO-BAT] .

see Proof teola.
op imavariaat : Database => Bool .
using PROOF-CASE » (sert Sort te Database, op p to iaveriamt) .

ose Low water mark imvariasat.
var I : Bat .
var L P O : Level .

oq iavariant(lea(L,I,1d(P,0))) = (P >e» 0 and L ug= 0) we= true .
oq iaveriant(lwm(L,I,9z(P,0))) = (P <s» 0 and L mg= P) wgn true .
oq iavariast(Qwe(L,I,rs(P,0))) = (P <ss 0 and L @g® high) =p= trus .

eondo

Figure 8: The Low Water Mark Invariant.

edbject PROOGF-CASE is
sert Sert .

op p : Sort => Bool
op eif_then_else 11 : lool Sort Sort => Seort .
op eif_thea_else_fi : Bool Beel Beol -> Bool .

var B : Beal .
var 31 $2 1 Sert .

oq pleif D then 31 olse 32 7)) =
eif B then
p(s1)
olse
p(82)
" .
onde

Figure 9: The Case-Analysis Proof Tool.

74

eoe Basis
reduce iavariant(mew) .
sse Inductive hypothesis

ebject INDUCTION is
using INVARIANT .
var I : Nat .
var D : Database .
eq iavariant(lwm(lvar(1),ivar(1),avar(0))) = true .
eq rd=done(I, D)= D .
eq wr-done(l,D) = D .
eq rs-done(I,D) = D .

sss Inductive steps
reduce invariant(read(lvar(0),lem(lvar(1),ivar(1),avar(0)))) .

reduce invariant(write(lvar(0),ivar(0),lwm(lvar(1),ivar(1),avar(0)))) .
reduce i-vlrilnt(ro-ot(lvnr(o).ll-(lvnr(l).ivnr(l)(.’p(jﬂ*}&) .

seduce in IBVARIANT : iavariant(new)
roewrites: 10
result Bool: true

object INDUCTIOR

reduce in IBDUCTION : invariunt(read(lvar(0),lwa(lvar(1),ivar(1),avar(
o»N)»

resrites: 11

result Bool: true

reduce in INDUCTION : imvariant(write(lvar(0),ivar(0),lwm{lvar(1),ivar(
1),avar(0))))

rewrites: 11

result Bool: true

reduce in INDUCTION : imvariant(reset(lvar(0),lwm(lvar(l),ivar(1),avar(
0

rewrites: 13

result Bool: trwe (b): Outpat.

Figure 10: Verification of the Invariant by Induction.

75

defects. :

As advertised, OBJ3’s sort system is a realistic compromise between anarchy and tyranny.
Probably the best way to make a specification understandable is to use mnemonic sort names from
the problem domain. A strict sort system also helps to promote a disciplined style of specification.
Nevertheless, subsorting, overloading, and coercion relax many of the unnecessary restrictions found
in typical systems. Overloading is also heavily relied upon for defining proof tools for the example
verification.

OBJ3's parameterization mechanisms are more powerful than those found in any other lan.
guage. Theories, views, and module expressions allow very generic specification libraries to be
developed and reused. Even on its own, this sublanguage is worthy of merit. The sublanguage, and
the programming paradigm it supports, promotes and enforces hierarchical and modular designs.

Even though OBJ3 does not come with a conventional theorem prover, its interpreter can
do much of what a theorem prover is supposed to do. This leads to an interactive style of proof
development that is pragmatic, intuitive, and subject to user control. In addition, a failed proof
attempt often suggests corrections or lemmas by providing a readable trace of the failed attempt.
Reading such a trace really is the best way to debug a proof; provers that report only “proved” or
“unproved” provide no such help. In contrast to this interactive approach, fully automatic provers
are sometimes difficult to steer, while fully manual provers require a user to perform too much
tedious work.

As is, the interpreter provides only rudimentary verification support. Therefore, several im-
provements should be incorporated. Some of these improvements are already available in the Affirm
specification and verification system [TE81]. Alternatively, Affirm would benefit by integrating
some of OBJ3's features.

The rewrite-rule engine should be modified to enable it to reduce terms containing variables.
These variables could be treated (internally) as variable operations. Hence, full unification is
unnecessary. Affirm provides this capability.

The rewrite-rule engine should also be modified to accept recursion-limiting commands. These
commands are often needcd during verification because recursive equations cause nonterminating
reductions during a proof. Such equations occur naturally, but they also result when a conditional
equation is transformed into a regular equation. This transformation is also necessary for verifica-
tion and should be automated. Affirm provides a restricted form of recursion limiting. Namely, it
offers one-level rewriting.

A wverification interface should also be added to the system. This could be a separate tool for
constructing proof scores, or a shell that understands proof strategies and manages a proof attempt.
Affirm allows executable “proof schemas™ to be defined and provides a tree-based proof manager.

Tools that help prove that an ob ject is canonical are also needed. Thus, an order-sorted version
of the Knuth-Bendix completion procedure should be implemented. This should be provided as a
separate tool. Affirm includes an implementation of the procedure, but insists that all specifications
be canonical. It generates and adds completion equations while a specification is being input. This
approach seems clumsy and dogmatic.

All in all, OBJ3’s interpreter is quite efficient and relatively bug free. Error messages are
generally informative, but sometimes they try to be more helpful than they are. For example, if
the parser cannot decide between two parses it tries to print both possibilities, but they are often
indistinguishable. At least it tries to be helpful. The interpreter also provides easy access to the
underlying Lisp interpreter. OBJ3 purists may shudder, but this is a very important feature.

Even though the interpreter is intended to be run in an Emacs [Sta87) window, the user

76

interface could be improved. For example, command-history and command-completion mechanisms
would be convenient. There should also be a command to change what the interpreter considers as
the “current directory” for in commands. It should also change the current directory while reading
a file, so that nested in commands work as expected.

The reference manual is complete and well written. It describes the language, its extensive and
interesting history, its operational and mathematical semantics, and explains many examples. A
large bibliography is also provided. The Lisp code itself is also well organized and well documented.
The value of this latter feature should not be underestimated.

77

3.8 EVES
3.8.1 Overview

EVES is an environment for coding verified programs being developed at I.P. Sharp Associates
Limited, Ottawa. The aim of the project is a production quality verification system for programs
satisfying NCSC A1+ requirements. The system was also required to have a rigorous proof of sound-
ness, the designer’s contention being that many theorem provers in existence embodied primitive
and unsound concepts.

The method of proof consists in incrementally entering definitions of symbols and satisfying
certain proof obligations indicated by the system.

The research can be divided into two main components: Verdi which is the language for
specification and implementation (embodying the mathematical basis) and NEVER, the theorem
prover developed for constructs in Verdi.

The approach has been to construct a prototype system — m-EVES, divided into m-Verdi and
m-NEVER - and augment it to achieve the necessary power of EVES. Thus m-EVES provides an
environment for research and instruction. It has been completed at the end of 1987, and work has
continued since then towards the production quality EVES system. A fairly large proof regarding
the Low Water Mark example has been published in [CKM*88).

3.8.2 Execution and Rapid Prototype Support

The language for specification and implementation (m-Verdi) includes many common programming
features, based on Pascal-like constructs. It is a strongly-typed language, and presents constructs
for annotations.

Communication with the devices which affect the program and which may be affected by
it is provided by the environment, which introduces symbols and captures concepts forming an
axiomatic basis for the program.

A compiler for m-Verdi already exists; it has been developed using the Karlsruhe Code Gen-
erator Synthesis System. Programs in m-Verdi are compiled into code for VAX machines. The
compilerincorporates several optimizations, and it is also easily retargetable to other systems.

3.8.3 Abstraction Mechanisms

Abstraction and information hiding is provided in m-Verdi through the use of a package construct.
Packages collect together a sequence of declarations. Some symbols may be hidden from the rest
of the program, as well as the body of the package.

Packages are interesting in that they allow proofs to be deferred: while for other entities the
proof obligations must be satisfied at the time they are being declared, a package header may
be declared and used while the body of the package may be added later, at which time the proof
obligations must be satisfied. To avoid circularity, proofs for must use the state existing immediately
after the declaration is given.

3.8.4 Forms of Logic Supported

The logic behind EVES is based on Predicate Calculus, with extensions to allow for definition of
recursive functions and introduction of new symbols.

78

Proofs in EVES consist of extensions to a theory — a set of symbols (the vocabulary) along
with a set of axioms relating the symbols. Extensions to a theory are conservative, in the sense
that meanings of symbols existing prior to the extension do not change. This is explained in more
detain in [Cra87].

3.8.5 Verification and Theorem Proving Supported

The theorem proving style is based on the following components of the system:

o asimplifier: uses tautology checking, congruence closure, and linear programming techniques;

e arewriter: supports conditional rewriting with backchaining, forward rules, and rules allowing
permuted parameters;

¢ an invoker: conditionally expands function definitions based on heuristics;

¢ induction: based on the Boyer-Moore method for automatic induction.

The m-NEVER theorem prover allows for interactive development of proofs coupled to powerful
automatic capabilities. The system allows easy transition from a proof-checking mode, with user
input guiding the proof, to a largely automatic method, by invoking commands which allow the
system to use more and more heuristics. Large proof steps can thus be obtained.

3.8.8 Specification Checking—Completeness, Consistency, and Soundness

Specifications in m-Verdi are based on the Floyd-Hoare style, using pre- and post-assertions. Heuris-
tic information can be linked to prepositions.

Any symbol must be declared before being used. Proof obligations must be satisfied before a
symbol can become part of the vocabulary. This ensures soundness.

All declarations are syntactically and semantically checked by the system. Recursive proce-
dures must be well defined, and procedures’ verification conditions must be proved. A procedure
must be proved to terminate as well as to satisfy the post-condition.

3$.8.7 Formal System Basis—Completeness, Consistency, and Soundness

The basis of EVES is the many-sorted predicate calculus, which provides a rigorous mathematical
characterization. The semantics of the m-Verdi language is based on Denotational Semantics. The
logic has been shown to be sound relative to the formal semantics.

Note that this does not imply that any proof obtained using the m-EVES system is correct,
as there is no proof yet of the correctness of the implementation of m-EVES. There is still work to
be done in obtaining a proven “proof-checker” for proofs obtained through m-EVES.

3.8.8 Examples

As a demonstration of the use of m-EVES, we will show parts of the verification of a mathe-
matical algorithm: exponentiation using the fact that zv = (22)*/? for even y. This proof has been
obtained from [Cra88).

The declaration of the procedure which embodies this algorithm is given in Fig.1. Before this
procedure can be added to the theory, the auxiliary function EXP must be defined, and several
properties of DIV must be axiomatized.

79

!procedure FAST_EXPONENTIATION (pvar X,
pvar Y, pvar RESULT) =
initial (X'0 =X, Y0 = Y)
post RESULT = EXP (X’0, Y'0)
begin
RESULT :=
loop
invariant AND (IFT’GE (Y, 0),
TINES (RESULT, XXP (X, Y)) = EXP (X’0, Y,0))
measure ORDINAL’VAL (Y)
exit shen Y = 0
if xX0D (Y, 2) = 0O
then X :s TIMES (X, X)
Y := DIV (Y, 2)
else RESULT := TINES (X, RESULT)
Y := NINUS (Y, 1) :
end it
end loop
end FAST_EIPOBENTIATION;

Figure 1: Procedure for exponentiation.

!function EXP (X, Y): INT =

pre INT'GE (Y, 0)
measure ORDINAL:VAL (Y)
begin

i2 Y= 0 then 3

else TIMES (X, EXP (X, NINUS (Y, 1)))
end 1if

end EXP;

Figure 2: Function describing exponentiation.

80

Beginning proof of EXP...
IMPLIES (AND (Y <> 0,
INT'GE (Y, 0)),
ORDINAL’LT (ORDINAL’VAL (MINUS (Y, 1)),
ORDINAL’VAL (Y)))

ireduce;

Vhich simplifies
when rewriting with ORDINAL'LT_6 to ...
TRUE

Figure 3: Proof of function EXP.

The body of EXP is shown in Fig.2. As this is a recursive function, EVES requires a proof that
it terminates. This is done by showing that the measure expression (in this case ORDINAL’VAL (Y)
strictly decreases.

When the body of EXP is entered, the system shows what proof obligations should be fulfilled,
as shown in Fig.3. The only resulting obligation is completed by the simple rule reduce.

For the proof of FAST_EXPONENTIATION it is useful to add INT’GE (DIV (X, Y), O) as an
assumption; this can be obtained by applying a forward rule (FRULE) to a proposition which contains
DIV (X,Y). The declaration of this axiom, as well as the satisfaction of its obligations, is shown in
Fig.4.

Note that, as with the Boyer-Moore prover, this system attempts to complete the proof through
simplifications before invoking induction, and it finds the induction scheme automatically. The
transcript has been simplified to show only salient points.

A few more axioms have been used for the proof; these will not be shown here. When the
declaration of FAST_EXPONENTIATION is finally added, the proof obligation is satisfied by a simple
application of reduction.

3.8.9 Critical Remarks

The EVES system has achieved substantial success in obtaining verified and executable programs.
The potation used is rich enough to express several non-trivial programs and to write relevant
specifications and propositions. Because of the origins of m-Verdi in programming languages such
as Pascal, expressing programs in this language is quite natural.

The language however does not have any constructs to express concurrency, and neither is
there an inclusion of polymorphism or higher-order functions (though these might be included in
the final version of EVES).

It is also important to remember that the correctness of the implementation has not been
proved. This correctness is quite essential in a system of the size of EVES, which incorporates
many different rewrite tools and beuristic methods (i.e. there is a lot of code which must be
trusted).

81

faxiom DIV_NONNEGATIVE (X, Y) =
FAULE
triggers (DIV (X, Y))
begin INPLIES (AND (INT’GE (X, 0).
INT’GE (Y, 0)),
INT’GE (DIV (X, Y), 0))
end DIV_NONNEGATIVE;

Beginning proof of NONNEGATIVE ...
INPLIES (AND (INT'GE (X, 0),
INT'GE (Y, 0)),
INT'GE (DIV (X, Y), 0))

‘prove by induction;

Vhich simplifies to ...

Returning to :
Beginning proof of DIV_NONNEGATIVE ...
Inducting using the following scheme ..

produces ...

Vhich simplifies
with iavocation of DIV to ...
TAUE

Figure 4: Proof of an axiom about DIV.

82

3.9 Gypsy
3.9.1 Overview

Gypsy is an integrated system of methods for formal program specification, implementation and
verification. It provides precise means of expressing a program throughout all stages of its design
from initial formal specification, implementation, verification, to subsequent evolution. Gypsy
also provides modularity, incremental development, abstract data types, and support for process
concurrency which includes synchronizing process communication and real-time dependencies.

3.9.2 Execution and Rapid Prototype Support

The environment for Gypsy is called the Gypsy Verification Environment (GVE). This environment
is currently run on Symbolics 3600 and MULTICS. The two general services of the environment
are maintaining library and providing tools. It maintains in database a library of Gypsy pro-
gram, specification, and verification condition, etc.. It also provides the tools for implementing the
specification, programming, and verification methods.

The GVE contains several major subsystems to support the development and verification of
programs : a Gypsy database manager, a parser, an edit interface, a verification condition generator,
a theorem prover, a program optimizer, a Bliss translator, and an Ada translator. In addition to
all these, Gypsy has an overall top level executive which monitors the verification status of all units
in the database and guides the user through the verification process.

3.9.3 Abstraction Mechanisms

Gypsy is derived from Pascal. However, some of the rules in Pascal bas been changed in order to
simplify the verification processes. Gypsy does not allow nested routines, variable parameters, or
routines as parameters to other routines. This eliminates any side effects that may happen, thus
simplifies verification and increases the potential for optimization of expression evaluation.

Gypsy has the features that support unit-by-unit manipulation, increase unit independence,
and isolated unit interactions. The Independent Principle in Gypsy says that "the proof of a
routine may only depend upon its own specifications and implementation, and upon the external
specifications of the routines to which it textually refers”. The Independent Principle insures that
the implementation of one routine cannot interfere with the proof of any other routine.

3.9.4 Forms of Logic Supported

The verification in Gypsy can be done by formal proof, by run time validation, or they may simply
be assumed. Specification that are proved or assumed need not be evaluated at run time, and
therefore they are permitted to contain special operations and types that could not otherwise be
permitted.

3.9.5 Verification and Theorem Proving Support

There is a Theorem Prover in the Gypsy verification system which interactively assists in proving
the verification conditions. The Theorem Prover is mostly interactive and has commands that
attempt to complete a proof automatically. It is a tool that is easy to guide through a proof and
easy to follow. It can also display a "proof tree” which shows the steps of the proof.

83

3.9.6 Specification Checking

In Gypsy, it is possible to give formal, mathematical proofs that a program satisfies its specifications.
The Verification Condition Generator in Gypsy is designed so that it is always possible to construct
automatically a set of theorems (verification conditions), that are sufficient to prove the consistency
of a program’'s implementation and its specifications. If these formulas can be proved, then whenever
the program runs, its implementation causes an effect that satisfies its specifications.

3.9.7 Support and/or Adaptability for Concurrency

Gypsy also allows both the specification and the coding of concurrent processes. The process in
Gypsy is the same as the procedure except that it only allows message buffer as parameter.

Message buffer is a finite length queue in which there are only two operations: send (enqueue)
and receive (dequeue). The buffer uses a straight first in first out algorithm and all the operations
are mutually excluded in time.

The communication between the processes in Gypsy is done straightly through message buffer.
Buffer in Gypsy is a predefined structure, it may be declared locally or passed as parameter.
Gypsy keeps a history of all the transactions that are performed to a buffer. The send and receive
statements append the transaction to the appropriate local history with the time of transaction
stamped on the record. Therefore, the complete history of process interactions can be analyzed by
examining the histories of message traffic among processes.

3.10 Nuprl
3.10.1 Overview

The Nuprl system is the result of several experiments using Proof Refinement Logics at Cornell
University. It has been used primarily as a tool to study constructive type theory as applied to
mathematics.

Nuprl represents a different approach towards formally verifiedprograms. It is based on con-
structive logic: to prove that there exists an entity with a certain property one shows how such an
entity may be obtained. Propositions in this logic therefore have a computational content. More
details of the constructive approach czn be obtained in [Con85).

The system is quite powerful as a result of the use of the ML metalanguage. This language,
which also serves as the basis of other systems such as HOL and LCF-LSM, is very adequate for
expressing proof generating programs. What differentiates Nuprl from these other systems is its
reliance on constructive type theory.

$.10.2 Execution and Rapid Prototype Support

The Nuprl language allows for an explicit reference to the computational content of propositions
in its logic. This is given by using the term-of operator. When applied to a proof outline (or
a complete proof) it extracts the information needed for execution. In Nuprl the theorem prover
behaves more like a compiler than an evaluator.

The computational content arises from the eztraction form associated with every Nuprl proof
rule. Nuprl terms obtained from extraction terms have constructs corresponding to those in stan-
dard programming languages.

The process of evaluating a term consists in taking the noncanonical form of an extracted term
and reducing it to obtain a term closer to a canonical form.

3.10.3 Abstraction Mechanisms

There is no explicit notion of abstraction, as the language is a very simple functional notation. On
the other band the computational content of the proof - the eztract form - is hidden from the user,
and manipulated mechanically by the system. This is not rigid however — termss can be explicitle
manipulated by the system.

3.10.4 Forms of Logic Supported

The type theory forming the basis of Nuprl is derived from typed lambda calculus, a functional
potation supporting higher order logic. The lambda calculus has been extended to model a richer
type structure, including dependent types, propositions as types, and layering of type universes
into large types.

The semantics of Nuprl is therefore linked to the concept of types - equality of types, mem-
bership in a type, equality within a type, and so on.

The power of type theory allows us to use it to model several other logics. The type constructors
of Nuprl - disjoint union, cartesian products, etc ~ can be used to express logical connectives in
classic logic.

Nuprl also has built in definitions for integers and lists, along with appropriate induction forms;
this allows for easy modeling of number theory. A set constructor is also implemented primitively

85

in the logic.

3.10.5 Verification and Theorem Proving Supported

The methodology used for proofs in Nuprl is top-down, based on the concepts of refinements
and tactics. These tactics are metalanguage procedures which manipulate terms by embodying
the rules of inference available. Tactics can be used to manipulate proofs, obtain subterms, and
perform many other operations on the object language entities.

Refinement is provided by applying a rule to a goal and obtainiag subgoals, which will be the
next objects to which rules must be applied. Rules may also completely prove a goal. The proof is
therefore tree-structured.

The form of theorem proving relates to the concept of propositions as types ~ the proof must
show that the type specified by the proposition is inhabited. This is done by using types which
are known to be inhabited - say the integer type - and using type constructors to obtain the type
characterizing the proposition. The user must show that the type is inhabited by some element;
this element turns out to be the proof itself.

The rules which manipulate goals are specified in three ways: parsep Oin

e intro rules: break down the conclusion of goals into subgoals;
¢ elim rules: apply a specified hypothesis;

o reduce rules: rules for computation.

3.10.6 Specification Checking—Completeness, Consistency, and Soundness

Problem statements are written in the typed lambda calculus notation. Specifications constitute
the top node of the proof trees. All the nodes of this tree have a sequent - a goal and an associated
list of hypotheses.

The soundness of definitions in Nuprl follows from the soundness of type theory. Types defined
by users must be proved to be well formed.

3.10.7 Formal System Basis—Completeness, Consistency, and Soundness

The logic of Nuprl is based on Intuitionistic logic — classic logic without the law of the excluded
middle. The absence of this law as a proof method implies that proofs based on contradiction are
not allowed. Any function definable in this Intuitionistic logic has been proved by Kleene to be
Turing computable.

Type theory as such is a result of a large amount of mathematical and philosophical research
aimed at a logic which is powerful enough to represent large amounts of formal knowledge and yet
providddess soundness and consistency.

3.10.8 Examples

The first example we show here is from [C*86] and involves a proof of the law of the excluded
middle, that is that for a proposition P either P or P is true, but not both. This exlusive-or is
represented by the Nuprl operator vel

Figure S5shows the beginning of this proof. the subgoals have been formed by the system. Goals
which are labeled by a # indicate incomplete proofs, while those marked with a » indicate goals
which have been proved. Sequents are represented as hypotheses separated from goals by “>>".

86

& top
> all P:Ui. P vel °P

BY intro at U2

1# 1. P:(U1)
>> (P vel “P)

2+ > (U1) in U2

Figure 5: Proof of excluded middle

8 top 1
1. P:(U1)
> (P vel “P)

BY intro at Ul

1# 1. P:(U1)
2. “P&~"P
>> void

2+ 1. P:(U1)
> “PE"“P in U1

Figure 6: Proof of the law of excluded middle, cont.

The first tactic applied consists in generalizing the type of P to indicate an arbitrary propo-
sitional variable. Application of the intro rule results in a second subgoal of type membership,
which is usually solved automatically.

The empty type is indicated by void; the proposition shown in Figure Gtherefore says that
“F&~~P denotes an empty type.

The rest of the proof is straightforward manipulation, and is shown in Figure 7.

The previous proof did not provide any computational content, it is simply a proof about the
logic. In Figure 8we show a proposition and the evaluation of its extract term. The body of the
proof is not being shown for conciseness. The proposition indicates that for any two integers, either
they are equal or there exists another integer which added to one of them results in the other. The
computational content of this is a procedure which gives the difference beetwen two integers.

The evaluator has an ML interface, thus the notation looks slightly different from the proof
environment. Functions are indicated by a lambda calculus notation using \ as an approximation
to A. The word axiom refers to the leaves of the proof with no computational content. We will
not explain details of the functional notation used. The expression thm refeers to the theorem just
proved.

The Nuprl system uses windowing environments, and these transcripts are just an approxima-
tion of the actual interaction.

3$.10.9 Critical Remarks

This system has evolved mostly as a tool for reasoning about mathematics andd incorporating
several interesting reults in typee theory. As such there hasn’t been much concern with producing

87

top 11
1. P:(U1)
2. “Pe-°P
>> void

BY olim 2

1% 1. P:(U1)
“pPL°-“P
e 4

s 2

> void

A T

BY elim 4

1s 1, P:(U1)
“Pa~"pP
“p
°°pP

vV s N

2% 1. P:(UY)
“P&-“P
°p

e 4
void
>> void

bW -

Figure 7: Proof of the law of excluded middle, cont.

* top
>> all x,y:int.. (x=zy in int)|some x:int. ~(2z=0 im int)#(x+z=y in int)

eval

>term_of(thm) ;;

\xz.\y. (\E.decide(E;1.in1(1);
r.iar(<y-z,<\2.(\v0.any(v0))(r(axiom)),axiom>>)))
(int_eq(x;y :inl(axiom);inr(axiom)))

>let d = \y..decide(y;u.pi(u);u.p1(n)) ;;

\y..decide(y;u.pi(u);u.pi(u))

>d(term_of(thm)(7)(10)) ;;

3

Figure 8: Proposition and its extract term

88

production quality software. The main aim instead has been to explore methodologies.

On the other hand it has been applied to verification of hardware, of transformations, and pro-
grams, without using the elegant concepts described above, for example considering propositions as
types. Without these the interaction with Nuprl becomes very similar to that with proof checkeers
such as HOL.

The use of Nuprl for verification of real programs of significant complexity is yet to be achieved.

Instead it provides a different paradigm for reasoning about problems and structuring information
logically.

89

3.1 VDM

The Vienna Development Method (VDM) is a well-established representative of the model-based
approach to specification [Bjo78] [Jon78) [Bjo80] [Jon86) [Jon80) [CHJI86] [Jon83). Its evolution
began in 1966 with the Universal Language Description language, an attempt to formally define
PL/I. In 1969, the Vienna Development Language was developed as a method for formally defining
abstract interpreters. Then in 1974, VDM was developed as a denotational approach to specifying
software systems; its metalanguage, Meta-IV, was also defined at this time.

With a model-based approach, a specification is a model constructed from well-defined prim-
itives that maintain a state. A specification’s state is a composite data object that is only visible
to the specification’s operations. An operation can be invoked by a user to effect changes to the
state.

These primitives can be abstract or concrete. Using concrete primitives results in a rather
operational specification (i.e., a specification can look like code).

VDM’s metalanguage, META.IV, is considered to be “enriched” logic. Theorem proving is
done after an algorithmic transformation to raw logic. '

VDM’s built-in data types and operations make it very similar to the denotational approach
to specifying programming-language semantics. Data objects are defined by abstract mathematical
types. Operations are defined either implicitly or explicitly. A specification is refined by making
data-object representations more concrete. This is called data reification. Operations are then
redefined for the reified data structures. The relationship between a specification and an imple-
mentation is recorded in a retrieve function and invariants are proven by structural induction.

VDM provides a rich variety of built-in data types and associated operators. Scalars are
the simple boolean, numeric, and enumerated types found in most programming languages. Sets,
tuples, maps, and trees are the structured types. A tuple is a cartesian product; it can model a
pair, a list, or a record. A map is a finite-domain function; it can model an array or a hash table.

A specification can employ implicit or explicit operations. Implicitly defined operations use
applicative constructs. For example, recursive functions can define predicates that appear as precor-
ditions and postconditions. Explicitly defined operations use imperative constructs. VDM’s explicit
operations include: assignment with :=, selection with if-then-else, iteration with shile-do and
for-all-do, nondeterminism with a “parallel” statement, and sequencing with ;.

90

4 Design of a Prototype Short-Term Workbench

4.1 Overview

Based on the knowledge gained from our survey, we have begun the design and implementation
of a prototype short-term workbench. The goal for the workbench is to provide computer-based
support for:
e The high-level specification of a concurrent/distributed software system
o The verification of the high-level specification, with emphasis on the verification of security
properties
e The implementation-level specification of a concurrent/distributed software system
o Verification that the implementation-level specification is correct with respect to the high-level
specification
o Implementation of the specified software in an efficient, concurrent/distributed programming
language
o Verification that the implementation is correct with respect to the implementation-level spec-
ification (and thereby correct with respect to the high-level specification)

For the overall architecture we have chosen a two-tiered approach to specification, as developed
originally in the Larch system [Win87], [Hor85], [GHWS85]. Since Larch was developed solely for
specification of sequential programs, a major component of our research is to add capabilities to
specify concurrent and distributed programs.

Figure 1 is a high level diagram of the major conceptual levels of the workbench. The top two
levels are the separate tiers of the specification, and the bottom level is the concrete, executable
program. The algebraic tier of the specification expresses the highest levels of software abstraction.
In general, the algebraic tier presents specifications in an object-oriented style, in which the basic
unit of specification is an object description. Accompanying each object specification is a set of
basic operations on that object, plus a set of equations that formally specify how the operations
behave.

The axiomatic tier of the two-tier specification provides the interface between the high-level
algebraic abstractions and the concrete programming language. In our Larch-inspired approach,
the axiomatic tier is represented concretely by an axiomatic semantic description of the SR pro-
gramming language.

The annotations shown in italics in Figure 1 describe the framework for formal verification
in a two-tiered system. Specifically, the objects and operations are verified to be complete and
consistent at the algebraic tier. Such verification is based on known techniques from the study
of algebraic semantics. Once the operations have been validated at the abstract algebraic level,
they can be used to specify pre.- and post-conditions to be satisfied by the (SR) program at the
axiomatic level.

A significant advantage of the two-tier approach is that critical properties of the software system
can be stated at the appropriate level of abstraction. The algebraic tier of a specification is the level
at which high-level properties of a software system and stated and verified. For example, abstract
properties of security can be stated and verified at the algebraic level. Once these properties are
established and verified at the abstract algebraic level, more concrete properties of the program
can be stated and verified at the axiomatic tier. For example, one would state and verify that the
program correctly implements the security properties that were verified abstractly at the algebraic
level.

91

Algebraic Tier
of the Specification

Verified Algebraic
Operations and Prpoperties
7 Provide Interface

to Axiomatic Tier

Axiomatic Tier
of the Specification

Axiomatic Verification
Technigues used 10

"L Verify Specification
with respect to

SR Implementation

SR Concurrent
Programming Language

Figure 1: Three Conceptual Levels of the Specification and Verification Framework

92

Augmented OBJ3
and FASE
M (for the ol
algebraic tier)
W ion- Augmented Treemacs
B‘;f;%g > (the editor-based
Interface and [g proof manager)
Environment '
Support Tools Annotated-SR 1
" Verification Tool le v K Y
(for the \
axiomatic tier) A
Individual
Annotated-SR Theorem Provers
(e.g. Boyer-Moore
L, Language Resolution, HOL)

Translation and
Execution Tools

Figure 2: Tool Components of the Prototype System

Based on our two-tiered framework, Figure 2 shows the tool components which comprise our
initial design of a prototype specification and verification system. The tool to support the algebraic
tier will be a system such as OBJ3, augmented with features to support the specification of concur-
rency. The SR-based verification tool will assist in the management of the axiomatic specification of
the SR program. “Annotated-SR” refers to a version of the language with syntactic enhancements
to support the use of verification annotations attached directly to the program. Such annotations
include pre- and post-conditions, module invariants, and other axiom-based assertions.

High-level control of the specification and verification are provided by the editor-based proof
manager, and a set of general software development tools common to an advanced, workstation-
based software environment. It should be noted that while the Treemacs proof manager is shown
as a physically separate component in Figure 2, it is in fact a well-integrated component of the
general environment tools. In particular, as the name “Treemacs” suggests, the proof manager is
based on the same general-purpose Emacs editor that is used for all other forms of specification
and program editing. This form of uniform, editor-based interface is common in most advanced
software development environments today.

93

The roles of the key components shown in Figure 2 are introduced briefly just below. Then
in sections 4.2 through 4.5 we present extended descriptions of our research on key components of
the workbench.

4.2 The Role of the FASE, HOL, and OBJ3 High-Level Specification Languages

In our two-tiered approach, the top tier consists of an object-oriented, high-level specification
language. There are several such languages available for the specification of sequential programs.
At present we are pursuing a multi-language approach for the high.level specification tier. The
languages we are using are FASE, HOL, and OBJ.

There is much recent support in the software engineering literature for mixed-language software
development environments. The advantages of a mixed-language system stem from difficulty in
finding » a single, fully general-purpose language that satisfies all users needs. Rather, it is ‘more
likely that a family of more specialized languages can be put together in common environment,
allowing users to choose the language most suited to a particular problem and/or the language
with which a user has the most experience.

Most of the work reported in the literature discusses mixed-language environments at the level
of the concrete programming language. Here we are extending the mixed-language concept to
higher-level specification languages. Hence, in our workbench we will allow user the freedom to
choose from a set of specification languages, having the environment supply a well-defined interface
between components of a specification written in different languages. One of the areas of research
to be performed is how and at what level to define the intra-language interface. We will conduct
this research based on our experience with mixed-language programming environments.

1t is possible as the development of the workbench progresses, we will find that the mixed-
language approach is not satisfactory, either because of the excess overhead to requires to manage
mixed-languages specifications or because technical difficulties arise in developing the intra-language
interface. At present, however, the mixed-language approach is advantageous and we plan to pursue
as long as possible.

One of the best known is the OBJ3 language, developed at SRI by Goguen and his associates.
We have been gaining experience with OBJ3, and find it a useful vehicle for high-level specification.
We are not yet as firmly committed to OBJ3 as we are to SR, since there are several other algebraic
languages that have been implemented that we plan to evaluate thoroughly before making our final
decision. We can say that our initial experience with OBJ3 has been positive.

Another main component of our research is the extension of a high-level specification language
to support the specification of concurrent programs. Section 4.2 below describes the details of our
ongoing work with OBJ3, including extensions to handle specification of concurrency in an algebraic
framework. While the current work is in the concrete framework of OBJ3, it is conceptually
applicable to other algebraic languages, including potentially FASE and HOL.

4.3 The Role of the SR Programming Language

SR (Synchronizsing Resources) is a language for writing concurrent programs. It provides more
flexibility in the way processes synchronize and communicate than do other languages, including
Ada. For example, SR provides both synchronous and asynchronous operation invocation whereas
Ada provides only synchronous; having the asynchronous form simplifies many programs.

There are two primary rationale for choosing SR as our base programming language. The
first and most important rationale is purely technical — we feel that SR provides one of the most

94

conceptually sound and complete vehicles in which to express concurrent and distributed programs.
While there are other languages that express certain features of concurrency well, SR is reasonably
unique in its support of a full range of concurrency features in a conceptually uniform manner.

The second rationale for the choice of SR is pragmatic. Namely, several of our team members
have considerable experience with the language and its implementation. Since UC Davis is one of
the primary development sites for the language, we are in a position to design language extensions
that may be necessary to fit our evolving specification and verification methodology. No other
language affords us as clear an opportunity for evolving the language to fit our methodological
needs.

4.4 The Role of the Annotated-SR Verification Tool

This is the component of our prototype methodology that is the least well-developed at this point.
Tool support for axiomatic verification has been developed almost exclusively for sequential as
opposed to concurrent programming languages. By tool support in this context, we mean those
tools that produce theorems (actually conjectures, pending their proof) corresponding to properties
the user proposes to verify about the program. These tools are conventionally called verification
condition generators. Special purpose verification condition generators have been developed for
particular properties of sequential programs, such as information flow related to multilevel security.
For the verification of concurrent programs, the verification condition generator must consider all
possible interleavings of operations. This can lead to formidable theorems, the management and
simplification of which will be addressed in our research.

The initial necessary step to an axiomatic verification support tool is the development of the
formal axiomatic semantics of our base language — namely SR. This is a substantial research effort in
its own right, details of which are covered in section 4.5 below. Once our work on the semantics has
developed, we will begin to consider the problem of verification condition generation for concurrent
programs. This research will involve a blending of the work of several current researchers who have
addressed different aspects of the axiomatic verification of concurrency.

4.5 The Role of TED/Treemacs Theorem Proving Support Systems

The role of the theorem prover is to verify the verification conditions. Numerous mechanical
theorem provers are now available and we have been gaining practical experience with several. Also
available is the TED/Treemacs ! system that supports the management of the theorem proving
process. TED/Treemacs is a tree-editor-based system that can provide a uniform interface to a
variety of theorem provers and allows users to conveniently structure and carry out proofs.

In the context of program verification, it is convenient to view four classes of theorem provers:

o first-order logic-based, using resolution as the primary rule of inference (there are many of
these available, the best supported being those developed at Argonne and the University of
Illinois)

o first-order logic-based, using natural deduction (e.g., the Bledsoe theorem prover as used in
the Affirm and Gypsy verification systems)

o first-order based, with user-supplied instantiations (e.g., Muse and the theorem prover of the
Enhanced HDM verification system)

1TED and Treemacs are based on fundamentally the same principles; Treemacs is the successor to TED, containing
some updeted capabilities and better integration with the current release of the Emacs editor.

95

e recursive function-based (e.g., Boyer-Moore and LCF theorem provers).

As our methodology for concurrent verification evolves, we will consider how each of classes can
and should be used in the verification task.

As noted above, we have not yet determined what role temporal logic will play in the method-
ology we develop. It seems reasonably clear at this point that one or two fundamental properties
of temporal logic are necessary to reason completely about concurrent programs at the axiomatic
specification level. We are not sure at all what role, if any, temporal logic may play at the algebraic
specification level. If some form of temporal logic or the equivalent is necessary at some level of
specification, this will have a definite impact on the theorem proving support required.

5 Algebraic Specification and Verification of Concurrency in OBJ

As described in the introduction, we have begun initial experimentation with algebraic specifications
for concurrency within the framework of the OBJ3 system. Specifications at the algebraic level have
several appealing properties, including:

1. The algebraic semantics are founded on fully formal mathematical principles
2. Algebraic specifications are executable via rewrite rule interpretation
3. Support for formal verification is provided, also in the form of rewrite rule application

4. A layered approach to specification is possible within the general object-oriented framework
of algebraic specification; this layering fosters the definition of understandable specifications,
and helps subdivide the refinement and verification of specifications into manageable, logical
steps

5.1 Overview of the Approach

A major goal of research in the verification methodology is the development of mathematical
techniques for demonstrating that a program is correct. These techniques are even more valuable
when they can be applied to the verification of a concurrent program. In this section, we investigate
how an equational language can be used to specify concurrency and how its interpreter can be used
3z a theorem prover to demunstrate correctness.

At first glance, automatic program verification appears to offer a tremendous benefit: bug-free
software. Upon closer examination, however, verification techniques can only detect a small class
of the many ways in which a program may fail to execute as desired [Gog88]. Nevertheless, this
class is important. In particular, it usually contains the class of failures that are detectable by the
programmer’s test suite.! Testing a sequential program is not always easy; thoroughly testing a
concurrent program is often very difficult. Therefore, the study of automatic verification techniques
for concurrent programs is a worthwhile pursuit.

There are several approaches to specification; a popular dichotomy is the axiomatic approach
and the algebraic approach [GM86a). Among the algebraic methods, those with first-order equations
as their assertion language have the simplest semantics. Such specifications are easy to write
and understand; they are also relatively easy to interpret. Thus an equational specification is
executable. In practice, this is very important. Notice that an executable specification is essentially
a program. Equational languages are often advertised, therefore, as “very high-level” or “wide-
spectrum” languages.

OBJ3 is just such a language. Its advantages over other equational languages are: mod-
ule parameterization, operation overloading, subsorting, and availability. These are all important
software-engineering features. The language is described in Section 5.2.

The main body of this section contains the results of experiments that use OBJ3 as a veri-
fication tool. Section 5.4 describes a technique for modeling concurrency in OBJ3, Sections 5.3
and 5.5 employ the technique to develop a specification for the classic Readers/Writers problem.
Section 5.6 verifies an important property of this specification.

'Experience shows that a user is more prone to program sbuse than the programmer.

97

Section 5.7 proposes extensions to OBJ3 that provide a message-passing mechanism reminis-
cent of that found in CSP. A message-passing version of the Readers/Writers problem is also
presented.

A concurrent program is composed of atomic actions, which can each be proven correct by
existing sequential methods. Section 5.8 revisits an early paper on sequential-program verification
and demonstrates that OBJ3 can automate many of the steps. Here, the verification is somewhat
different: an implementation is proven correct with respect to a specification.

Section 5.9 recognizes that the results presented here are preliminary and, therefore, identifies
future research directions. These include implementing the extensions proposed in Section 5.7 and
attempting larger and more complex examples.

5.2 The OBJ Language

This section provides a very brief overview of OBJ3. If a seemingly esoteric feature is described
here, it is probably used in a later section. For more details, consult the reference manual [GW88].
OBJ3 is an equational programming language designed for the specification and implementation of
abstract data types. Its denotational semantics are based on order sorted algebra, its operational
semantics are based on order sorted term rewriting. An interpreter, written in LISP, is available
from SRI International.

OBJ3’s encapsulation unit is the object. An object can contain: importing instantiations of
other objects; sort,? subsort, operation, and variable declarations; and equations. An object can
be parameterized.

An operation declaration specifies the name, arity, and coarity of an operation. For a mixfix
operation, the argument positions are declared by embedding underbars in the operation name (e.g ,
-*.). Various operation attributes can also be defined. These include associativity, commutativity,
a precedence, and an evaluation strategy. An evaluation strategy specifies the order in which
arguments are evaluated; it allows operations to be “eager” (the default) or “lazy”. For example,
the evaluation strategy for if_then_else_fi is strategy (1 0). The numbers in parentheses
correspond to argument positions. Thus, the first argument is reduced first; the 0 then causes
equations for if_then_else_fi to be applied. Since there is no 2 or 3, the then and else subterms
are not reduced at this time.

An equation specifies how a term can be reduced. That is, it specifies a relationship between
two or more operations. If, after variable binding, the LHS of an equation is equal to a subterm, that
subterm can be replaced by the equation’s RHS using the variable bindings. Conditional equations
are also supported. A conditional equation is applicable only when its associated boolean condition
is true.

Figure 1 contains an object that defines a stack of integers; it also shows some sample reduc-
tions. The keyword protecting is a form of import. INT is a built-in object that provides sort Int
and the expected operations on integers. OBJ3 contains various built-in objects defining booleans,
naturals, integers, reals, and alphanumeric identifiers. Polymorphic equality (_ss_), inequality
(-=/=_), and conditional (1f_then_else_fi) operations are also provided. The op keyword intro-
duces an operation declaration. For example, nev is a constant operation that represents the empty
stack and top is a function that takes a single argument of sort Stack and returns an integer. Vari-
ables are declared with the var keyword. The eq keyword introduces an equation; cq is used for
s conditional equation. Here, the equations define stack-operation semantics, including (pathetic)

3 Algebraists prefer “sort” over “type”.

98

object STACK~OF-IBT is sort Stack .
pretecting IBT .
op new : => Stack .
op push : Iat Stack => Stack .
op pop : Stack => Stack .
op top : Stack -> Int .
var 8 : Stack .
var I : Iat .
eq pop(new) = new .
eq pop(push(1,8)) = S .
eq top(new) = 0 ,
eq top(push(1,8)) = I .
eado (s): Object.

reduce ia STACK-OF-IBT : top(pop(push(i,push(2,new))))
revrites: 2
result BxBat: 2

roduce in STACK-OF-IBT : sop(pep(push(i,new)))
resrites: 2
resalt Zere: O

reduce in STACK-OF-IBT : pop(push(3,push(2,push(1,new))))
rewrites: 3
result Stack: push(2,push(i,aew)) (b): Reductions.

Figure 1: A Stack of Integers.

odbject FUN-EIERARCRY is
sort Iat .
sort Jat .
ssbsort Bat < Iat .
endo

Figure 2: An Example of Subsorting.

error bandling. Two sample reductions demonstrate the operations’ behavior. Incidentally, OBJ3
has two kinds of comment, both extending to the end of the line. Those introduced by ***> print
during parsing, those introduced by s#» do not.

OBJ3 is a strongly sorted language; however, it allows subsorts to be declared and permits
operation overloading. Subsorts are useful when items of one sort are also items of another sort.
For example, Figure 2 might be part of a number hierarchy. This allows an operation that requires
an argument from the supersort (the integers) to be applied to an argument from the subsort (the
naturals). Subsorts make OBJ3 much more flexible and they simplify the specification of error and
exception handling. Operation overloading is useful when a single operation name is used for more
than one operation. The intended operation is determined by the (lowest) sort of each argument;
it can also depend on the required result sort. For example, Figure 3 contains an overloaded infix
addition operation. Overloading allows an equation to be applicable only when the arguments are
of the appropriate sort. Here (evidently), the overhead of complex addition is incurred only when
an argument is actually complex.

OBJ3 supports parameterized programming. When a parameterized object is instantiated,
an actual parameter (an object) is bound to each formal parameter. Each actual parameter must
satisfy the theory associated with its corresponding formal parameter. A theory defines the re-
quirements of an actual parameter. The way in which the actual parameter satisfies the theory is
specified by a view.? A view is a mapping from sorts and operations in the theory to sorts and

OBJ3 is quite clever in deducing default views.

99

object CORPLEX-ADDITION is
serts Complex Real .
op .*. 1 Complex Complex -> Cemplex .
op .*. : Complex Real -> Cemplex .
op .*. : Real Cemplex -> Complex .
op .*. : Real Real -> Real .
op ccadd : Complex Complex =-> Complex .
op cradd : Complex Real -> Complex .
op rradd : Real Real -> Real .
var C : Complex .
var B 1 Real .
eq C ¢ C = ccadd(C,C) .
eq C ¢+ R = creadd(C,2) .
oq R ¢+ C = cradd(C,B) .
eq R ¢+ R = rredd(R,R) .

ende

Figure 3: An Example of Overloading.

shoory KLEN is sert Klem .
op undefined : => Klem .
ondth

ebject STACK-0F-KLEN(E :: KLEN) is sert Stack .
op Bew : => Stack .
op push : Elem Stack ~> Stack .
op pop : Stack => Stack .
op top : Ssack => Klea .
var 8§ : Stack .
var B : Elem .
oq pep(new) = pew .
oq pop(push(£,8)) = § .
oq tep(aenw) » undefined .
oq tep(push(K,$)) = £k .
endo

viev ELEN-T0-IFT from ELEN to INT is
sort Elem to Int .
op undefined t0o O .

eadv

sake STACK-OF-INT is STACK-OF~KLIN{ELEN-TO-INT] endm

Figure 4: Another Stack of Integers.

operations in the actual parameter. Figure 4 defines a stack of integers as before, but by instan.
tiating a generic stack object with the INT object. ELEM is a theory requiring the parameter E* to
provide a sort named Elen and a constant of sort Elem named undefined. ELEM-TO-INT is a view
describing how INT satisfies ELEM. The sort mapping is the obvious one; sero is designated as the
top of an empty stack, as before. Finally, the make construct instantiates a stack of integers; it is
equivalent to the object in Figure 5.

‘Parameter B is distinct from variable K declared later in the object. In fact, the parameter is not explicitly

referenced in the object. However, if it was aecassary 1o instantiate, say, a list of elements within the object, the
import would be pretecting LIST(E], where £ is the parameter.

object STACK-OF-18T is
presecting STACE-OF-KLER[KLER-TO-IFT) .
ende

Figure 5: An Alternative Method of Instantiation.

100

odject SUNINC is protecting INT .
op £ : Iat Int => Int .
op g : Iat => Int .
var 1 J : Iat .
oqf(l,)) =1+,
eqg(l) s 1«1,
endo (a): Object.

reduce in SUNINC : £(g(1),g(2))
rewrites: 6

result BxNat: § (b); Reduction.

Figure 6: An Opportunity for Concurrent Term Rewriting.

5.3 The Readers/Writers Problem

A good example of a small concurrent programming problem is the Readers/Writers problem
(Fin86]. The problem is to provide an interface to a shared database. A solution must arbitrate
access to this database between competing processes in such a way that the integrity of the data
is maintained. There are two kinds of processes: readers traverse but do not modify the database,
writers traverse and modify the database. Since the internal structure of the database is unspecified,
data integrity is maintained by coarse access restriction. Specifically, if nr and nw are the number
of reader and writer processes currently accessing the database (resp.), the invariant in Equation 1
must always be true.

0<nrA0<nw<1A(Rr=0Vnw=0) (1)
The key point is that a writer requires exclusive access to the database. Notice that the scheduling
method for blocked processes is unspecified; we use first-come/first-serve (FCFS) scheduling.

5.4 Star Operations

This section describes how OBJ3 can be used to specify the behavior of a concurrent system.
Some clumsiness should be expected since we are using a language that has no explicit concur-
rency mechanisms to explicitly model concurrency. This is in contrast to th> concurrent term
rewriting approach [GKM87], where implicit opportunities for concurrency are detected within a
sequential specification. These opportunities are easy to detect in OBJ3 because it is a functional
language (i.e., operations cannot cause side-effects). Such an opportunity is shown in Figure 6.
In the reduction, the equation for g can be applied concurrently to reduce the two arguments to
£, but the equation for £ cannot be applied concurreatly with the equation for g. Concurrent
term rewriting is ap alternative to the Von Neumann model of computation because it avoids the
program-counter bottleneck. Incidentally, the approach can also be used to increase the execution
speed of a concurrent specification developed using the techniques described below.

The first obstacle to overcome is related to process naming. As in other sequential languages,
all OBJ3 operations are invoked in the context of a single anonymous process. However, we want to
reduce terms representing operation invocations from multiple processes. An important observation
is that we are not interested in the result returned by every invocation; rather, we are interested
in the result returned by a particular invocation, as affected by the other invocations. Therefore,
we need some way to identify the invocation we are interested in. This is done by invoking a
star operation, one with the same name except for a prefixed asterisk.® Generally speaking, each

*There is nothing special about the naming convention, any scheme could be used, but s prefixed asterisk makes
the correspondence obvious and it stands out nicely in & term. As far as OBJ3 is concerned, however, a star operation

101

object SENAPNORE is sort Semaphore .
pretectiag IIT .
beert Iat < Semaphors .
ops *p p ov v : Semaphore > Semaphore .
ope done ontside : Semaphore -> Semaphore .
var 8 : Semaphors .
var I : Iat .
eq *p(l) » done(I - 1) 42150 .
oq *v(l) = dene(I + 2) .
eqp(l)mI ~-1421>0.
qu(I) sl
oq v(ep(8)) = op(v(8)) .
oq ov(p(8)) = plev(s)) .
oq v(p(S)) = p(v(8)) .
oq p(dene(S)) = done(S) .
oq v(dene(3)) » done(S) .
oq outside(dene(l)) » I .,

ende (s): Object.

veduce ian SEMAPNOARL : eutside(v(ep(0)))
resrites: 10
result Zere: O

reduce ia SEMAPRORE : eutside(v(v(p(ep(p(0))))))
revrites: 23
result Zero: O

reduce ia SERAPNORE : ewtside(ep(v(v(v(p(0))))))
rowrites: 19
result BaBac: 1

reduce ia SENAPNORE : outside(v(ep(p(0))))
Tevrites: 11
result Semaphers: eusside(op(0))

reduce in SEMAPNORE : eutside(ev{p{(p(p(0)))))
rewrites: 10

result NaBat: 1 (b); Reductions.

Figure 7: A FCFS Semaphore.

“exported” operation® provided by an object requires a corresponding star operation; its definition
is often similar and sometimes identical to that of its nonstarred namesake.

Unfortunately, there are complications. For example, when an exported operation relies on an
auxiliary operation, an auxiliary star operation is often necessary to ensure that intermediate results
from other invocations do not interfere with the result we are interested in. Furthermore, other
operations are usually necessary to reduce a term containing the result of an invocation of a star
operation to that result. That is, the intermediate results of other invocations must be eliminated.
Specifically, the result must be moved toward the outside of a term where, it can participate in the
final reduction step.

Figure 7 contains an object that uses star operations to model the behavior of a FCFS
semaphore; it also shows some sample reductions. SEMAPHORE provides the usual P and V opera-
tions; but because an OBJ3 operation must always return something, they return the semaphore’s
value.
is 30 different from any other.

‘Uafortunately, OBJ3 provides no way of declaring that an operation is inaccessible to other objects. Thus,
oll operstions are exported. Only some operations, however, are intended for outside wee, others are suxiliary in
asture aad should not be invoked from outside the object. Note that an earlier version of OBJ3 did support hidden
operstions (GM87].

102

theory LEY is
sort Key .
endth

theory ITEN is

sort Item .

op motfound : => Item .
endth

Figure 8: The Requirements for Database Parameters.

Remember, this is only a model; as such it requires an interpretation. The remainder of this
section informally discusses this interpretation.

For a sequential specification, nested operations in a term model the history of invocations
made by a single process; that is, they model the time-ordering of invocations. With multiple
processes, however, a natural extension is to interpret nested operations in a term as the history
of concurrent invocations, exactly one of which is a star operation. Thus in the first reduction
in Figure 7, the »p operation models a P operation that blocks on a zero semaphore until a V
operation is subsequently invoked by some other process. The term then reduces to a value that
models the abstract semapbore’s value just before the P would have returned. A sv operation
behaves analogously. Notice how the term is reduced to the return value; the interaction of done
and outside strongly resembles exception handling in Lisp. The value returned by an invocation
of a p or v operation is immaterial; what is important is the invocation’s effect on the semaphore’s
value.

Although the object in Figure 7 is somewhat muddied by the star operation’s and their support,
the important semantics are still there. The conditional equations for *p and p ensure a nonnegative
semaphore; the equations allowing *v and v invocations to “pass by” »p and p invocations model V
operations that execute while P operations are blocked; in contrast, the lack of reordering equations
for »p and p invocations enforces the FCFS protocoal.

Finally, consider atomicity. A semaphore implementation usually employs an atomic test-and-
set instruction. A fact for OBJ3, and a natural assumption for any equational language, is that
equation application is atomic. This is necessary to ensure that terms remain well formed.

5.5 Specification of Readers/Writers

The technique used for the SEMAPHORE object of Figure 7 can be generalized to specify the Read-
ers/Writers problem. For concreteness, the database proper is specified as an associative list;
however, it is strongly sorted. For reusability, the key and item sorts are specified by the object’s
parameters. They are described by the theories in Figure 8. The first theory requires a KEY param-
eter to provide only a sort Key whereas the second requires an ITEM parameter to provide a sort
Iten and a constant notfound. Item notfound is returned by an unsuccessful read operation.

Figure 9 is a parameterized specification for the Readers/Writers problem. Its various parts
are described in the following paragraphs.

Oper(ationn *nev and new simply construct an empty database, shown below.
re(0,0,00d)

The rv operation encapsulates two semaphorelike counters and the database proper. The counters
record the number of readers and writers (resp.) currently accessing the database proper; eod
abbreviates “end-of-database”. Operation rec stores database records. When a record is written
to the database, its key and item components are stored as the first two arguments (resp.) to rec;

103

object READERS-WRITERS{K :: XEY, I :: ITEM] is
sert Database .
pretectiag INT .
subsert ltea < Database .

*aew : => Databdase .
ozd : Koy Datadase => Database .
our : Key Item Database -> Datadase .

se® : => Dasabase .
2d : Koy Database => Database .
or ¢t Key Itew Database ~> Dasabase .

v ¢ Iat Iat Datab => Databd .
eed : ~> Database .
rec : Key Item Datadase ~> Database .

333 333 333

erdont : Item Database ~> Database .
egrout : Ites Database ~> Database .
ep rdout : Item Database -> Database .
wreut : Jtem Database ~> Database .

$3

ep eoutside : Datadase -> Item .

var D : Database .

var £k K1 : ey .

var I I1 : Items .

var IR : Imt . ese pumber of readers
var BV : Iat . see aumber of writers

ose Create & nev datadase.
oq *new » rv(0,0,00d) .
eq new v ru(0,0,e0d) .

ses Eater the database.

eq ord(X,rw(NR,BV,D)) ® re(BR *+ 1,B¥,erd(X,D))
it N=so.

¢q owr(X,I,rw(BR,BV,D)) » re(NR,BV ¢ 1, eer(X,1,D))
42 (¥ == 0) and (BV == Q) .

eq vd(X,re(ER,BV,D)) = ru(BR + §,0¥,rd(K,D))
if =0,

eq or(K,I,rw(BR,5¥.,D)) = re(NR,BV + 1,9r(X,1,D))
if (N2 == 0) and (¥ == 0) .

see Rxit the datadase.
oq rwl(IR,NV,evdent(I,D)) = exdont(l,re(M - 1,0¥,D)) .
oq Te(NR,BV,ourent(I,D)) s cureunt(I,re(SR,BV ~ 1,D)) .
oq re(BR, V¥,rdeut(1,D)) = ye(dR - 1,04,D) .
oq rw(MR,IV,eveut(l,D)) = ye(MR,BV - 1,D) .

Figure 9: The Readers/Writers Specification Object (1 of 3).

104

sees Return results.
eq outside(erdout(i,D)) = 1 .
eq eutside(ewrout(l,D)) =1 ,

sse Read traversal algoriths.
eq ord(K,eo0d) ®» srdout(notfound,eod) .
eq eord(k,rec(k1,11,D)) =
if K == 1 then
srdout(I1,rec(Kk1,11,D))
else
rec(Ki,11,ord(K,D))
1 .
rd(Kk,00d) = rdout(motfound,eod) .
rd(K,rec(k1,11,D)) =
if K == K1 then
rdout (11,rec(K1,11,D))
else
rec(k1,11,rd(k,D))
M .

232

eee Urite traversal algoritha.
eq owr(K,I,e0d) = ewrout(I,rec(k,l,e0d)) .
oq owr(k,I,rec(k1,11,D)) =
it K == K1 then
eswrout(l,rec(X,I,D))
else
rec(ki, It ,our(X,1,D)) J
71 .
wr(k,]1,e0d) = srout(I,rec(k,1,e0d)) .
or(k,l1,rec(ki,I1,D)) =
if § == K1 then
wrout(I,rec(k,1,D))
else
rec(f1,11,er(K,I,D))
7] . !

22

ese Passing equaticns.

rec(ki, I1,ordout(I,D)) = erdout(l,rec(ki, I1,D)) .

rec(ki,11,%uront(1,D)) » ewront(I,rec(kt, I1,D)) . 1
reoc(R1,11,rdout(I,D)) » rdont(I,rec(k1,11,D)) . i
rec(k1,I1,vrout(3,D)) = grout(l,rec(k1,I1,D)) . :

ord(K1,rdont(1,D)) = rdout(l,erd(K1,D)) .
ord(Ki,erout(I,D)) = wrout(I,erd(Kk1,D)) .
owr(k1,11,rdont(I,D)) = rdout(l,owr(k1,11,D)) .
eor(k1,11,orout(1,D)) = wrout(l,swr(k1,11,D)) .

rd(k3,ordout(I,D)) = erdont(l,rd(X1,D)) .

rd(X1,ourent(I, D)) & ewrout(I,rd(X1,D)) .
sd(K1,rdeut(1,D)) = rdent(I,rd(k1,D)) .

Figure 9: The Readers/Writers Specification Object (2 of 3).

233 2222 3322

rd(X1,ereut(1,D)) = sreut(l,rd(k1,D)) .
wr(ki,11,ordout(I,D)) = eprdent(l,or(R1,11,D)) .
wr(ki, 11, 0ooreut(1,D)) @ epreus(l,vr(k1,11,D)) .
wr(Kk1,11,2deut(I,D)) » rdout(I,or(k1,11,D)) .
or(k1,11,ereut(1,D)) = wreut(l,wr(k1,11,D)) .

332132

eonde

Figure 9: The Readers/Writers Specification Object (3 of 3).

105

the third argument is the rest of the database. An eod terminates the “list” of records.

The *rd, »swr, rd, and vr operations do what their names suggest; their uniform coarities are
discussed later. The *rdout, swrout, rdout, and wrout operations are necessary for decrementing
the rv counters upon database exit. Specifically, »rd, »vr, rd, and vr “bubble into” the database
until the desired key or eod is found, whereupon they reduce to *rdout, swrout, rdout, and wrout
(resp.) and bubble back out of the database, decrementing the appropriate counter as they pass
V.

The use of outside here is analogous to its use in the SEMAPHORE object from Figure 7.

READERS-WRITERS defines a rather curious subsort relation. Specifically, the object declares a
sort Database as a supersort of Item. To understand why this is necessary, consider the coarities
of the operations.

Intuitively, a read should return an item and a write should return nothing (a write modifies
the database). However, an OBJ3 operation must return something, so both #rd and swr (hence
srdout swrout) return items; *rd returns the item read and swr returns the item written. In
contrast, both rd and wr (hence rdout wrout) must return a database. This is because the result
returned by an inconsequential reader or writer — a rd or vr — must be accessed by other readers
and writers.” Clearly then, rd, wr, rdout, and wrout all require a coarity of Database. And
even though the coarity of »rd, swr, srdout, and *wrout is Database, the subsort relation Item
< Database allows them to return items.

The four conditional equations enforce database-entry synchronization; compare them to Equa-
tion 1 on page 101. They also ensure that the appropriate counter is incremented. Conversely, the
next four equations decrement a counter when an invocation leaves the database. Notice how a
rdout or wrout disappears after it passes rw. However, a *rdout or swrout eventually bubbles
to the outside of the termn where one of the next two equations — those for outside — finish the
reduction. Next come equations that implement the typical traversal algorithms for a read or write
operation. The remainder of the equations allow certain operations to pass by each other. If more
sophisticated scheduling is desired, additional equations of a similar nature could be used (e.g., to
reorder read and write invocations). Alternatively, rw could be given an additional argument — a
list of blocked invocations — that would be ordered according to the scheduling discipline.

The number of equations would be greatly reduced if OBJ3 supported second-order equations.
The OBJ3 alternative — parameterization and instantiation — is hardly worth the effort here.

In order to test a READERS-WRITERS database, key and item views are needed. The views in
Figure 10 are for a database whose keys are alphanumeric identifiers® and whose items are natural
numbers (zero represents a nonexistent item). An instantiation and some sample reductions are
also shown.

5.6 Verification of the Readers/Writers Invariant

In the last section, OBJ3 was used to specify a concurrent programming problem and to test the
specification on a few samples of input data. Although bugs found during testing are guaranteed
to be bugs, testing is not guaranteed to find all the bugs. Program verification strives to be more
thorough. Accordingly, this section describes OBJ3's use as a verification tool. In particular, we
prove that the operations provided by the READERS-WRITERS object of Figure 9 maintain the truth
of Equation 1 on page 101.

"With regard to the result of & reduction, s rd is & 20-0p, but & ur may have an effect.
$QIDL provides "qualified long identifiers™ (vis., LISP symbols).

106

view KEY-TO-QIDL from KEY to QIDL is
sort Rey to 14 .
eadv

viev ITER-TO-NAT from ITEN to BAT is
sert Items to Nat .
op netfound te 0 .
ondv
sake RY is IIADIIS-IIITIISIIIY-TD-QIDL.ltll-tn-lA(L)nlbbjgct

reduce ia RV : eutside(ord('s,wr('a,1,sew)))
revrites: 22
result BaBat: §

reduce ia BV : eutside(ord(’a,sr('d,1,nev)))
rewrites: 24 .
zesult 2ero: O

reduce ia RV : eutside(ord(’a,or(’a,2,ur(’a,1,n0w))))
resrites: M
result BzBat: 2

reduce ia RV : eutside(erd(’a,vr(’s,2,9r(’b,1,00v))))
rewrites: 40
result Balat: 2

reduce in RV : ostside(erd(’b,wr(’a,2,92('b,1,n0¥))))
Tourites: 36
rosult EzBat: 2

reduce in RV ;: entside(swr('b,3,er(’a,2,97(’d,1,nev))))
rowrises: 38
result EaBat: 3

roduce in RV : eutside(wr(’d,3,9r(%s,2,09r(’d,1,00v))))
revrites: 40
ressls EsBat:

reduce in RV : eutside(wr(’d,2,°2d('d,ur('d,1,nev))))
revrites: 38
result Bzlat:

reduce ia BV : eutside(wr(’p,2,rd('d,%wr(’s,1,808))))
reerites: 36
result Uslat: 1 (b)' Reducticas

Figure 10: Instantiating and Testing a Database.

107

edbject DIVIDE is’
protectiag RAT .
ope divide div : Rat Rat => Rat .
op suadefined : ~> BRat .
var X Y : Rat .
ops zvear yvar : -> hat . ses Yariable eperasions
oq divide(X,Y) =
42 Y == O then

uadefined
else
div(X,T)
b £
oq div(iZ,Y)eo X/ Y,
oade (s): Object
roduce ia DIVIDE : divide(zvar,yvar)
reuTites: 4
result Bat: zvar / r:Rat>iskat(yvar) (b): Reduction.

Figure 11: A First Attempt at Using Variable Operations.

There are three main steps in the verification. First, a proof object is constructed from the
specification object in Figure 9. This proof object is then instantiated® and augmented with a
predicate on sort Database expressing the Readers/Writers invariant. This predicate is then used
with a form of structural induction to show that serviced invocations maintain the invariant.

$.6.1 Construction of the Proof Object

The transformation from specification object to proof object is necessary because the OBJ3 inter-
preter was not designed to be a theorem prover; modifications that eliminate the need for this step
are considered later. The fundamental problem is that the interpreter can only reduce variable-free
terms (i.e., ground terms). There exist more powerful reductions systems — unification systems —
that can reduce terms containing variables [Lel88), but such flexibility is actually unnecessary here.
The trick is to replace variables in a term with variable operations [GHM78]. A variable operation
is a new constant operation whose coarity is the sort of the variable it replaces. Alternatively, a
variable operation can be given an integer argument thereby allowing it to replace any number of
variables of that sort.

Unfortunately, a term containing variable operations does not always reduce as expected.
Consider the rudimentary proof object and reduction in Figure 11, where variables X and Y are
replaced by operations xvar and yvar.!° The problem is that OBJ3's built-in equality operation,
-%=_, returns £alse because yvar is not syntactically equal to 0. The solution is to replace the built-
in equality operation with a symbolic equality operation, _=s=_. The symbolic equality operation
reduces to true if its arguments are equal, but does not reduce to false (i.e., it does not reduce
at all) if its arguments are unequal.

Unfortunately, the symbolic equality operation causes yet another problem, as demonstrated
in Figure 12. This time, the culprit is the lasy i2_then_else_f{ operation. Its evaluation strategy
directs the interpreter to reduce the if subterm first. If it reduces to true, the operation reduces
to the then subterm; if it reduces to false, the operation reduces to the else subterm; but if it

*Verification of & parameterised object offers the additional advantage of proof reusability. Furthermore, it has
beea shown to be mathematically sonnd (Gogss]. Unfortunstely, the OBJ3 interpreter cannot perform reductions
ia the context of & parameterised object. Therefore, sutomatiag ssch a verification seems difficult.

19The strange looking r:Rat>NzRat operation is & retract, part of OBJ 3% subsorting mechanism. Ignore it.

108

edject DIVIDE is
protecting RAT + PROOF-TRUTH{RAT] .
ops divide div : Rat Rat -> Rat .
op undefined : => Rat .
var X Y : Rat .
ops xvar yvar : => Rat . ses Yariable operations
eq divide(X,Y) =
i2 Y =s= O then
undefined
else
div(X,Y)
e .
eq div(X,Y) =X/ Y.
ado (»): Object

reduce in DIVIDE : divide(zvar,yvar)
reorites: 1
resalt Rat: if yvar ®s= O then undefined olse “(ISf'MHM‘

Figure 12: Adding a Symbolic Equality Operation.

odbject DIVIDE is
pretectiag RAT ¢+ PROOF-TRUTH(RAT] .
ops divide div : Rat Rat -> Rat .
op uadefined : => Rat .
var X Y : Rat .
ops zvar yvar : => Rat . see Varisble eperatioas
oq divide(X,Y) =
eif Y sgs 0 then

sadefined
else
div(1,Y)
7] .
oq divI, TN ex/ Y.
ondo (a): Object

reduce in DIVIDE : divide(zvar,yvar)
rewrites: 2
result Rat: eif yvar ®se O then uadefised olse ‘(” mmnt(ynr) 79

Figure 13: Adding an Eager Conditional Operation.

reduces to neither true nor false (e.g., yvar ss= 0), the if_then_else_fi operation remains in
the term. In the first two cases, the selected subterm is subsequently reduced; but in the latter
case, neither subterm is reduced, even though both may be reducible. The solution is to replace
the built-in conditional operation with an eager conditional operation, eif_then_else_fi. The
eager conditional operation has an evaluation strategy that directs the interpreter to reduce all
three arguments!! before attempting to select a subterm.

The final version of the proof object is shown in Figure 13. Symbolic equality and eager
conditional operations produce a more satisfying result.

Syntax and semantics for _=s=_ and eif_then_else_fi are provided by PROOF-BOOL and
PROOF-TRUTH. These are objects that roughly correspond to OBJ3's built-in BOOL and TRUTH ob-
jects. Figure 14 shows the signature of both objects, Section 5.10 lists them in their entirety.
PROOF-TRUTH is parameterised; it can be instantiated for comparison and selection of elements of
any sort. PROOF-BOOL is similar to — but more sophisticated than — PROOF-TRUTH[BOOL). Notice
how important overloading is. Without it, a different operation name would be needed for each

3 Arguments are reduced left-to-right, but since an OBJ3 operation cannot cause side-effects, the evaluation otder
is uaimportant. -

109

object PROOF-BOOL is
pretectiag TRUTN-VALUE .
pretactiag BOOL .

op oif_then_else 71 : Beol Bool Beol -> Bool
(strategy (1 2 3 0) gather (& & &) prec 0] .
op .®e=_ : Bool Beol -> Bool [strategy (1 2 0) prec §1] .

object PROOF-TRUTH([X :: TRIV) is
pretectiag TRUTN-VALUE .
pretectiag PROOF-BOOL .

ep eif_then_slse_fi : Beel Kit Klt ~> It
{strategy (1 2 3 0) gasher (8 8 &) prec 0) .
op .®ss_ 1 K1t Kit => Beel {strategy (1 2 0) prec $1] .

onde

Figure 14: Signatures of PROOF-BOOL and PROOF~TRUTH.

sort. Also noteworthy are the evaluation strategy for eif_then_else_fi and the single equation
for _=s=_. In comparison, the built-in TRUTH object gives i2_then_else_fi the attribute strategy
(1 0) and uses a built-in equation (i.e., L1sP code) to always reduce a _==_ to true or false.

The elided portions of PROOF-BOCL and PROOF-TRUTH are primarily the familiar tautologies.
Unfortunately however, some boolean simplification rules are schematic or higher order. They
represent an infinite number of equations [GHM78]. For example, the “logical-substitution™ rule
says that all occurrences of an if subterm can immediately be reduced to true or false, if the
occurrence is in a corresponding then or else subterm (resp.) — regardless of how deeply nested
the occurrence is. In addition, since the equation sets are logically incomplete, special-purpose
equations are often necessary. Consequently, equations are added as needed.

The final step in transforming a specification object into a proof object is to remove conditional
equations. This is necessary because the boolean condition associated with a conditional equation
probably uses _»=_, which means it will not reduce properly in the presence of variable operations.

A conditional equation of the form
lerath

can be transformed into a regular equation of the form
loa2dehenrelsel s

allowing variable operations and the symbolic equality and eager conditional operations to be
used as before. The transformed equation is recursive. Operationally, it implies a nonterminat-
ing reduction sequence. This is especially evident considering the eager evaluation strategy for
eif_then_else_2i. A proof tocl that prevents this unpleasant bebavior is described later.

Figure 15 is the proof object that results from applying the abovementioned transforma-
tions to the specification object in Figure 9. Notice the systematic naming convention for
variable operations, the multiple instantiations of PROOF-TRUTH, the equations using operations
from PROOF-TRUTH, and the erstwhile conditional equations. Also, remember that the object is still
uninstantiated.

110

objoct ARADERS-VRITERS(K :: KEY, I :: ITEM) is
sert Database .
proetecting INT .
subsort Itea < Database .

op emew : => Database .
op eord : Key Datadase -> Datadass .
op our : Key Items Database => Database .

op mew : => Database .
op rd : Rey Database -> Database .
op or t Key Item Datadase -> Datadase .

ep rv : Iat Iat Database ~> Database .
op eod : -> Database .
op rec : Key Item Database => Datadase .

op erdost : Item Database -> Database .
op eowrout : Item Datadese => Datadase .
op rdout : Item Datadase «> Databdase .
op wrout : Item Datadase ~> Database .

op eoutside : Datadase -> Itea .

ooe Variabdle eperatioas.
op dvar : => Database .
op kvar : => Bey .
op dvar : => ftem .
ep mrvar : «> Iat .
ep awvar : => Iat .

ose Precf teels.
pretecting PROOF-TRUTH [Datadase] .
pretectiag PROOF-TRUTH(Key] .
pretectiag PROOF-TRUTH [Item] .
pretectiag PROOF-TRUTH(Iat] .

var D : Database .

var K k1 : Rey .

var I 11 : Item .

var BB : Ist . ses aumber of readers
var BV ¢ Iat . ®os gsumber of sriters

ese Creste a nev database.
oq *sev » rv(0,0,00d) .
oq wev = 7u(0,0,00d) .
ese Enter the datadase.

oq ord(Kk,rw(NR,0V,D)) =
oif BV wen 0 then

Figure 15: The Readers/Writers Proof Object (1 of 3).

111

ro(ER « 1,0V, ,ord(X,D))
else
opd(K,re(BR,0¥,D))
7] .
oq oor(k,I,re(3R,8¥,D)) =
oif (FR wg= O) and (¥ se= 0) then
ro(BR 0V + 3,0w9r(X,1,D))
else
owr(E,1,2w(MR,0N,D))
29 .
oq rd(K,re(ER,BV,D)) =
oif SV wew O then
re(ER ¢ 1,0V, rd(X,D))
else :
rd(K,re(NR,8¥,D))
7] .
oq or(Kk, I, re(SR,5V.D)) =
eif (ER wgs 0) and (BV ue= Q) then
re(BR, 0V + 1,9r(X,1,D))
else
or(X,I,re(BR,I¥,D))
1.

ooe Exit the database.
oq re(BR,BV,erdout(I,D)) & erdeut(I,re(iR - 1,0V,D)) .
oq vw(ER,WV,eureut(I,D)) » eyrent(l,re(Nk BV - 1,D)) .
oq ro(BR,BV¥,rdewt(1,D)) = reu(Ek -~ 1,0¥,D) .
oq re(ER,NV,erest(l,D)) = ru(PR,B¥ - 1,D) .

ose Returnm resslts.
eq eutside(erdowt(l,D)) @ I .
oq eutside(serent(l,D)) = 1 .

ese Road traversal algeritha.
oq ord(k,e0d) = srdout(motfound,eed) .
oq eord(Kk,rec(X1,I1,D)) =

aif K ss= K1 then
erdout(11,rec(ki, I1,D))

else
rec(X1,11,°rd(K,D))

29 .

24(E,00d) = rdest(astfeund,eed) . s

rd(K,rec(X1,11,D)) =

eif K =s= L1 then
rdout(11,r0c(E1,13,D))

else
roc(k1,I1,rd(X,D))

7 .

22

see ¥rite traversal algeriths.

Figure 15: The Readers/Writers Proof Object (2 of 3).

112

owr(K,1,00d) = eyrout(l,rec(k,I,eod)) .
ewr(K,I,rec(X1,11,D)) =
eif Kk w3 K1 then
ewrount(I,rec(X,1,D))
else
rec(Kk1,11,99r(k,1,D))
11 .
wr(k,1,00d) = wront(l,rec(k,I,00d)) .
or(k,I,rec(k1,I1,D)) =
eif Kk ms= K1 then
wrout(l,rec(X,1,D))
olse
rec(k1,11,wr(K,1,D))
1 .

32

23

sse Passing equations.

rec(K1,11,erdout(1,D)) » erdout(l,rec(k1,I11,D)) .
rec(k1,11,ewrout(l,D)) = ewrout(]l,rec(X1,11,D)) .
rec(f1,11,rdout(1,D)) = rdout(I,rec(k1,11,D)) .
rec(ki,11,orout(1,D)) = wrout(I,rec(X1,I1,D)) .

erd(K1,rdout(1,D)) » rdout(I,srd(K1,D)) .
erd(k1,erent(1,D)) = wrout(l,srd(X1,D)) .
syr(K1,11,rdout(l,D)) = rdout(l,ser(k1,11,D)) .
owr(X1,11,orout(1,D)) = wrout(I,ewr(K1,11,D)) .

rd(E1,erdout(I,D)) = erdout(l,rd(K1,D)) .
rd(X1,e9reut(I,D)) » egrout(l,rd(k1,D)) .
rd(K1,rdout(I,D)) = pdout(I,rd(X1,D)) .
rd(ki,eront(I,D)) = wrout(I,rd(x1,D)) .
or(k1,11,erdout(1,D)) = erdout(l,vr(X1,I1,D)) .
wr(Kk1,11,ovrout(1,D)) = esrout(I,wr(k1,11,D)) .
wr(ki,11,rdout(1,D)) ® rdout(l,wr(X1,11,D)) .
wr(Ki,I1,erout(1,D)) = srout(I,wr(k1,11,D)) .

23332322 3333 2232

eado

Figure 15: The Readers/Writers Proof Object (3 of 3).

113

object AV is
usisg READERS-WRITERS [REY-T0-QIDL,ITEN-TD-DAT] .

see Proof tools.
op iav : Datadbase -> Bool .
wsing PROOF-IENT
using PROOF-CASE * (sort Sort to Database, op p to inv) .

ees Readers/VUriters invariant.
var D : Database .
var DR BV : Iat .
oq imv(re(IR,BV,D)) =
((BR >s= 0) and (BV >s= 0) and (EV <s= 1) and
((ER =g= 0) or (BN mwge 0))) mgm true .
endo

Figure 16: The Readers/Writers Invariant Property.

$.6.2 Construction of the Invariant

The next step in the verification is to translate Equation 1 on page 101 into an OBJ3 equation.
This equation is part of the predicate object RW in Figure 16. As in Figure 10, RV is an instantiated
database mapping identifiers to natural numbers. However, the source of the instantiation is the
proof object from Figure 15. Operation inv is a predicate on sort Database; its equation defines
it to be true iff the invariant is true. RW also imports PROOF-INT and PROOF-CASE. The signatures
of these proof tools are shown in Figure 17; Appendix 5.10 lists both in their entirety. PROOF-INT
provides symbolic relational operations on integers that are similar in purpose to _=s=_. Likewise,
it contains some familiar and some special-purpose tautologies. PROOF-CASE provides a “case-
analysis” rule [GEM78]. This is an example of a second-order rule; it is instantiated by sort and
operation renaming.!? This is one of OBJ3's module-expression constructs.

5.6.3 Induction Scheme

Having constructed the proof and predicate objects, terms whose reductions verify the invariant can
now be formulated. The approach resembles structural induction, a generalization of induction over
the integers [GEM78). First, we prove that the invariant holds for a newly constructed database
(the basis). Next, we assume properties of an existing database (an inductive hypothesis) and
prove that an invocation trying to “enter” the database preserves the invariant (an inductive step).
Finally, we assume properties of an existing database (another inductive hypothesis) and prove
that an invocation trying to “exit” the database preserves the invariant (another inductive step).
Both star and nonstar operations must be considered. This doubles the number of reductions in
the proof, but half of them are essentially reruns. Before starting, however, one more proof tool is
necessary.

Recall that the transformation from a conditional equation to a regular equation introduced
tail recursion. Also, notice that some of the traversal equations from Figure 9, hence Figure 15,
are recursive. In order to avoid infinite reduction sequences, this recursion must be controlled. The
solution is to use a modified version of the interpreter that provides a user-callable LisP function
recursion-limit, shown in Figure 18. Arguments are bound to parameters according to Lisp’s
“by keyword” parameter-passing mechanism. Some defaults apply. If the :0bj keyword/argument
pair is omitted, all operations with the specified name are recursion limited. If the :op pair is

MConventional parameterisation and instantiation did not seem to work here.

114

object PROOF-INT is
protectiag TRUTH-VALVE .
protecting INT .
pretecting PROOF-TRUTH[INT] .

op .<s_ 1 Iat Iat => Bool [prec 61] .
ep .<s=_ : Iat Iat -> Bool [prec 61] .
ep _>s_ : Ist Iat => Bool (prec 51) .
op .>s=_ 1 Iat Int => Bool [prec 51) .

object PROOF-CASK is
sert Sort .

op p : Sort => Bool .
op eif_then_olse_fi : Bool Sort Sort -> Sort .
op eif_then_else_fi : Bool Bool Bool => Bool .

var B : Bool .
var 81 82 : Bort .

oq p(eif B then 81 else 82 ti) =

eif B then
p(s1)
else
p($2)
£ .
ende
Figure 17: Signatures of PROOF-INT and PROOF~CASE.
.
(recursion-liait
10bj <obj-name> jstring
10p <ep-name> setring

1limit <limitd>) jinteger

Figure 18: Recursion Limiting.

115

geduce invienes) .
reduce inv(new) . (s): Reductions.

reduce in RV : imv(enes)
rewrites: 12
result Bool: true

zeduce in B¥ : inv(new)
resrites: 12

result Beol: true (b); Results.

Figure 19: The Bases Proofs.

omitted, all operations in the specified object are recursion limited. If the :limit pair is omitted,
the limit is removed.

The modified interpreter maintains a list of recursion-limited operation names. Just before
each reduction step, the top operation of the subterm to be reduced is compared to those on the
list. If a match is found, the current recursion depth for that operation is compared to its limit.
H the limit has been reached, the subterm is marked as reduced; otherwise, the current recursion
depth for that operation is incremented and subterm reduction proceeds.

Figure 19 shows two reductions proving that the invariant holds for a newly constructed
database. No recursion limiting is necessary here. The equation for *nev (or new) is applied,
then the equation for inv. The rest of the reduction sequence is straightforward simplification —
a process called jittering.

Figure 20 shows an inductive hypothesis and four reductions proving that the invariant is
preserved by an invocation trying to enter the database. OBJ3’s ev keyword causes the Lisp
expression following it to be evaluated. This and recursion-1limit are used to avoid the recursion
problems discussed earlier. For tidiness, the limits are removed when they are no longer needed.
RW1 imports the predicate object RW from Figure 16 and adds the inductive-hypothesis equations.

The assumption is that the current state of the database satisfies the invariant. In other words,
iav(rv(arvar,swvar,dvar))

is true. Now what we want to do is show that a erd, rd, swr, or wr invocation on the database
preserves the invariant. The four terms to be reduced are constructed accordingly. In the reductions,
the equation allowing the invocation to pass by rw is applied first, leaving a large eif_then_else_fi
subterm surrounded by inv. Case analysis then distributes inv to the then and else subterms.
The rest is jittering.

Notice that none of these terms reduce to trua, as before. This is because a counter’s current
value may prevent an invocation from entering the database. In essence, the synchronization
provided by conditional equations in a specification object translates to equational polling in a
proof. These reduction results are interpreted as follows. If an invocation is allowed to enter the
database, the invariant is preserved; but if it is not allowed to enter, it blocks until it can. Clearly,
this is only partial correctness. However, techniques for proving finite termination (i.e., that an
equation set leads to reductions that always terminate) are well known [Gog80).

Figure 21 shows two inductive hypotheses and four reductions proving that the invariant is
preserved by an invocation trying to exit the database. This proof is simpler than the database.
entry proof due to a general fact that a process has no reason to block when giving up a resource.
Both inductive hypotheses import RW1, the inductive hypothesis from Figure 20. Thus, RW2 and
RW3 represent additional facts that we assume are true when a reader or writer (resp.) is in the
databagse. Assuming that a reader is in the database, there must be at least one reader and no

116

ebject R¥1 is using RV .

eq Arvar >s» 0 = true .

oG avvar >sa 0 = true .

oq Rwvar <s» 1 ® true .

eqQ arvar ss= 0 or asvar ugs 0 = true .
eado

ov (recursien-limit 1odj “READERS-VRITERS" sop “erd” slimit 1)
ov (recursion-limit :ebj “READERS-VAITERS" :ep “rd” :limit 1)
reduce inv(erd(kvar,rv(arvar,avvar,dvar))) .

reduce iav(rd(kvar,rv(arvar,awvar,dvar))) .

ov (recursien-limit :1odj “READERS-VRITERS" iop “erd")

ov (recursion-limit :edj “READERS-VRITERS" :op “rd“)

ov (recursion-limit :obj “READERS-WRITERS* sop “ser :limit 1)
ev (recursion-limit 1ebj "READERS-WRITERS" :op “wr” :limit 1)
reduce iav(ewr(kvar,ivar,re(arvar,awvar,dvar))) .

reduce iav(er(kvar,ivar,rv(arvar,awvar,dvar))) .

ov (recursiop-limit :obj “READERS-WVRITERS" :op “ser")

ov (recursion-limit :odbj “READERS-WRITERS” :op ‘(w)*)Reductions.

reduce in RV¥1 : iav(erd(kvar,rv(arver,asvar,dvar)))

rourites: 17

result Beol: eif mwvar mss= O then true else inv(erd(kvar,rw(arvar,aevar,
dvar))) ¢4

reduce ia R¥1 : iav(rd(kvar,rv(arvar,awvar,dvar)))

rewrites: 17

result Bool: eif awvar ms= O then true else imv(rd(kvar,rv(arvar,awvar,
dvar))) ¢4

reduce in RV1 : imv(vsr(kvar,ivar,re(arvar,avvar,dvar)))

revrites: 25

result Bocl: e¢if awvar wew O and arvar ss= 0 then true else iav(ewr(
kvar,ivar,re(arvar,naovar,dvar))) fi

reduce ia R¥1 : iav(er(kvar,ivar,re(arvar,asvar,dvar)))

revrites: 286

result Boel: eif awvar =s= O and arvar =s= 0 thea true olse imv(wr(
Rvar,ivar,re(arvar,asvar,dvar))) i (b): Results.

Figure 20: The Inductive Steps for Database Eatry.

117

odbject RU2 is

usiag M1 .

var BB BV ;: Iat .

oq arvar >s O = true .

eq awvar ws= 0 = tyrue .

oq erdest(ivar,rv(MR,BV,dvar)) o ru(NR,BV,dvar) .
ende
reduce iav(rv(arvar,sevar,erdest(ivar,dvar))) .
reduce iav(rv(arvar,ssvar,rdout(ivar,dvar))) .

object RV3 is
usiag RV .
var N2 BV : Ist .
eq arvar wges 0 o trye .
eq awvar >s 0 = true .
eq awvar <s= 1 = true .
eq sewrout(ivar,re(ER,BV,dvar)) = rv(NR,BV,dvar) .
eado
reduce iav(re(arvar,sever,verent(ivar,dvar))) .
feduce iav(rv(arvar,sevar,sreus(ivar,dvar))) . (s): Reductions.

reduce ia R¥2 : iav(rw(arvar,avvar,erdout(ivar,dvar)))
revrites: 16
result Boel: true

reduce ia R¥2 : iav(rev(arvar,asvar,rdout(ivar,dvar)))
rewrites: 14
result Boel: trme

reduce ia RY3 : imv(rv(arvar,awvar,swrout(ivar,dvar)))
rewrites: 19
resslt Beel: true

reduce ia B¥I : fav(rv(arvar,awvar,erest(ivar,dvar)))
reerites: 18

result Beel: true (b): R Its.

Figure 21: The Inductive Steps for Database Exit.

118

writers in the database. Assuming that a writer is in the database, there must be no readers
and exactly one writer in the database. The last equation in each object discards an exiting star
operation after it has updated the counters and left the database (nonstar operations are already
discarded by specification equations). This allows the inv equation to be applied. In the reductions,
the equation allowing the invocation to pass by rv is applied first, then the invocation is discarded
and inv is expanded. The rest is jittering.

5.7 Explicitly Concurrent Specification

Admittedly, star operations specify concurrency in a subtle way. A more conventional approach,
analogous to message passing, is now considered. Unfortunately, the approach relies on nontrivial
modifications to OBJ3's interpreter. These changes define a new language, tentatively named
OBJC, which is not yet implemented. This section describes the proposed modifications and
demonstrates the approach on the Semaphore and Readers/Writers problems. Verification is not
discussed.

We begin by recognizing that message passing can be simuiated by other language constructs.
Common examples that provide nonlocal transfer of data are input/output statements and global
variables, but these are unavailable in OBJ3. In some sense, this is because input is a term to
reduce, output is a reduced term, and only local variables can be referenced. In fact, OBJ3 enjoys
a simple and elegant formal semantics partly because it prohibits global constructs; extending the
language could risk these nice semantics. But:

This world of systems programming, which may be strongly non-Church-Rosser as well
as nonterminating, with its many flags and strategies, may seem like Alice’s Wonderland
to the theorist, and he might well long for & return to the simplicity of initial algebra
semantics. However, the problems posed by the need to connect with the real world,
including input/output and real-time programming, are not going to go away [GKM87].

$.7.1 Message-Passing Extensions

Nevertheless, the extensions are confined to a single parameterized object, MESSAGE, providing
message-passing operations and sorts. Of course, the operations cannot be realized by equations,
they must be treated specially by the interpreter. Externally, however, MESSAGE looks like a user-
defined object.

Figure 22 shows the parameterization and signature of MESSAGE. Its sorts and operations allow
disjoint subterms to exchange message terms. If these disjoint subterms are thought of as compu-
tations in distinct processes, MESSAGE operations model interprocess communication. The theme is
simplicity. Low-level operations are provided so that high-level mechanisms can be constructed.

The built-in theory TRIV simply requires the parameter X to provide a sort E1t. Messages
passed by an instance of MESSAGE are of this sort.

Several new sorts are provided by MESSAGE. Message insulates a user from the nonlocal be-
havior of message-passing operations. All MESSAGE operations have this coarity. QIDL provides
alphanumeric identifiers that are used as symbolic addresses to establish the connection between
communicating subterms. Messageld is just Nat. It is used to maintain the connection between
communicating subterms for the duration of a transaction. More specifically, when a message is
first sent to a symbolic address, it is automatically assigned a unique identification number. A
subsequent reply must refer to the original message by its number.

119

ebject NESSAGE [X :: TRIV) is
sert Ressage .
oert Ressagelum .
pretectiag QIDL .
pretecting NAT .
subsort K1t < Nessage .
subsert Ressagelum < Bat .

op sead : 14 Elt => Nessage .

op seadiag : 1d Elt -> Ressage .

op seat : Nessagelus -> Nessage .

op wait : Ressagelus => Nessage .

op waiting : RessageBum ~> Nessage .

op vaited : NesssgeBum K1t => Nessage .
op receive : 14 -> Hessage .

op receiviag : 1d => Nessage .

op received : Nessagefwe Klit ~> Nessage .
op reply : Ressagelwm K1t -> Ressage .
op replying 1 Nessagelum K1t > Ressage .
op replied : Nessagelum -> Rassage .

onde

Figure 22: Signature of MESSAGE.

Notice that parameterization requires the operations — hence messages — to be strongly
sorted. This is a tradeoff. Message passing is more convenient with polymorphic operations, but
polymorphism is more difficult to reconcile with OBJ3's existing semaatics.

When discussing a transaction, we shall call the subterm initiating the exchange the “sender”;
the other participating subterm is the “receiver”. Although this is superficially obvious, notice that
the receiver sends, and the sender receives, the reply.

5.7.2 Message-Passing Protocol

MESSAGE allows subterms to pass messages in a variety of ways. To illustrate how its operations are
used, however, a simple synchronous exchange is described here. A sender initiates the exchange
by constructing a message, addressing it with an identifier, and sending it to a receiver. When
a suitable receiver is located, a message number is generated and the message is delivered. The
receiver then processes the message while the sender waits. After a reply is constructed, the receiver
completes the exchange by using the message number to reply to the sender. Figure 23 pictorially
describes this interaction and suggests alternatives. We now examine this simple exchange in more
detail.

A sender sends by applying an equation that introduces a send operation into its subterm. A
send takes two arguments: an entry identifier ¢ and a message term a. If, at that time, there exists
a subterm receiving(e), message m is sent. Otherwise, send(e,n) reduces to sending(e,n), thus
informing the sender that there is currently no receiver.

A receiver receives by applying an equation that introduces a receive operation into its
subterm. A receive takes one argument: an entry identifier o. If, at that time, there exists a
subterm sending(e,n), message m is sent. Otherwise, receive(e) reduces to receiving(e), thus
informing the receiver that there is currently no sender.

The protocol is designed to avoid temporal assumptions. In particular, a send can appear
before or after its corresponding receive. The first operation to appear blocks; the second locates
the first. In addition, the protocol is nondeterministic. If multiple matching senders or receivers

120

sender ‘Teceiver

send(e,m) receive(e)
sending(e,n) receiving(e)
/ \
l‘nt(i) P > rcceived(i,m)
' message i i
\ "reduce m"
vh'atovor “co.nstruct "
: i
vait(i) reply(i,r)
hﬁng(i) rcplyi@
Vlit.d(i,r) D R AR » ropliod(;)
Teply to i

Figure 23: Message-Passing Protocol.

121

appear, any one might be selected. These considerations apply to the wait and reply operations as
well. In fact, the vait/reply subprotocol is virtually identical to the send/receive subprotocol.

Suppose a send(e,m) is matched with some receiving(e). The case where the sender is
blocked is analogous. Message m is sent from sender to receiver by assigning a message number i to
m, reducing send(e,m) to sent(i), and reducing receiving(e) to received(i,m). These steps
are performed without any intervening reductions (i.e., the sequence is atomic).

After the message has been passed, regular reduction resumes. Since the sender needs to
receive a reply, it retains the message number i and eventually applies an equation that introduces
wait(i) into its subterm. Since the receiver needs to send a reply, it retains i, constructs a reply
r, and eventually introduces reply(i,r) into its subterm.

If a subterm replying(i,r) exists when wait(i) is introduced into the sender, the reply r
is sent. Otherwise, wait(i) reduces to waiting(i), thus informing the sender that the receiver is
not currently replying.

If a subterm waiting(i) exists when reply(i,r) is introduced into the receiver, the reply r
is sent. Otherwise, reply(i,r) reduces to replying(i,r), thus informing the receiver that the
sender is not currently waiting.

Suppose a wait(i) is matched with some replying(i,r). As before, the case where the
sender is blocked is analogous. Reply r is sent from receiver to sender by reducing wait(i) to
vaited(i,r) and replying(i,r) to replied(i). Again, these steps are performed without any
intervening reductions.

Close inspection reveals that the argument i of both vaited and replied is unnecessary; the
message number can be retained simply by copying it. This brings up an interesting point: as long
as both sender and receiver have a copy of the message number, a bidirectional communication
channel exists between them. Unfortunately, the channel is half-duplex; the sender and receiver
must alternate in their roles as waiter and replier. As with UNIXx pipes [Bac86], however, two
half-duplex channels can simulate a full-duplex channel. For example, the second message sent
from sender to receiver in half-duplex “mode” can be a unique entry identifier constructed from
the existing channel's message number. The sender and receiver can then use this new identifier
to establish another half-duplex channel in the opposite direction. Of course, they must agree on
who sends on which channel.

The protocol in Figure 23 permits both synchronous and asynchronous communication. A
synchronous message is one where the sender waits for a reply and the receiver sends a reply. An
asynchronous message is one where the sender does not wait for a reply and the receiver does not
send a reply. Hybrid methods cause problems. For example, if a sender behaves asynchronously
and its receiver behaves synchronously, replying never reduces to replied and the receiver blocks
forever. At first, retry counting seems like a solution to this problem. That is, the receiver can re-
peatedly reduce replying to reply and count the number of times reply is reduced to a replying.
Unfortunately, those are probably the only reductions occurring; there is no way to tell what the
sender is up to. Fortunately, ignorable replies are not terribly important; a sender can always
communicate its desire for a reply as part of the message, thus instructing the receiver to behave
accordingly.

Notice that a message conld contain MESSAGE operations. Although the idea of a recursive
“chain letter” is intriguing, we avoid defining its meaning, at least until a reasonable use for one is
discovered. The consequences of such a message are boggling.

MESSAGE provides twelve operations. Earlier, this object was claimed to be simple; arguably,
that is not true. But if we try to reduce the number of operations, the object becomes more

122

eutside(server(- -) ,clients(
client(-+"),
client(-+4),

;liont("°)))

Figure 24: A Client/Server Term with a Static Number of Clients.

outeide(receive(’outaide) ,sorver(--), ,clients(
client(--),
client(-*°),

;ltolt(-")))

Figure 25: A Client/Server Term with a Message Catcher.

difficult to use. Perhaps the greatest temptation is to eliminate sent and replied. Instead of
reducing to these monadic operations, we could simply reduce to their argument. Unfortunately,
this complicates the detection of a successful send or receive (resp.). Likewise, and because they
bundle together their two arguments, vaited and received are necessary. Another temptation is
to eliminate sending, vaiting, receiving, and replying. Instead of reducing to these blocked
operations after a first attempt to communicate, we could wait until both the sender and receiver
are ready before reducing in either. But these operations are convenient, both for specification and
interpretation. A specification can use them to terminate a blocked communication attempt. An
interpreter can use them to record the state of partially completed communications; no internal list
of blocked operations is needed. Clearly, neither send nor receive can be eliminated. Likewise,
synchronous communication requires wait and reply. Finally, consider the “geometry” of the
protocol. Message-passing solutions are often unbalanced, yet these twelve operations exhibit a
great deal of symmetry. A simpler object would lack this important attribute.

5.7.3 Centralized Solutions

A concurrent programming problem can generally be solved in two ways. A centralized solution
is characterized by a single server process that coordinates the execution of multiple clieat pro-
cesses. In a decentralized solution, the responsibility of global synchronization is shared among all
processes. OBJC is general enough to specify both centralized and decentralized solutions, but we
shall concentrate on centralized solutions.

A client/server solution can be implemented by a client object and a server object. A term
to reduce is then constructed from a server subterm and multiple client subterms. Equations in
the server object cause reductions in the server subterm; client-ob ject equations reduce elsewhere.
Figure 24 shows a template for a client/server term with a static number of clients. Operation
outside operates as before: it bundles its arguments and provides context. Unfortunately, reducing
such a term to a result is also as awkward as before. Figure 25 shows a template that uses message
passing to solve the problem. With this term structure, the server or any client can send a message

to the ’outside entry. An equation like
outside(received(2,N),5,C) = N

can then be used to terminate a reduction and return the message M as its result. This, of courQe,
is reminiscent of LISP’s catch/throv mechanism. Alternately, outside can be thought of as a
“termination server”. If the number of clients is not static, a dyadic version of clients can be

123

outside(receive('entside) ,perver(--),
clients(client(-- "),
clients(client(--),

;.'uon-(elionb ++),eliont (s) 0)

Figure 26: A Client/Server Term for an Arbitrary Number of Clients.

used to maintain a list of clients. Figure 26 shows the even Lisp-ier template.

A server subterm comprises several components. At minimum, it must contain the message-
passing entries referenced by its clients. Synchronization and scheduling information is probably
also stored there, along with application-dependent data.

MESSAGE guarantees that message-passing reductions at the server interface are mutually ex-
clusive. Conditional synchronization and mutually exclusive access to application-dependent struc-
tures is enforced by server equations that maintain counters and message queues within the server
subterm. Mutually exclusive access to the counters and queues is guaranteed by the atomicity
of equation application and the locality of server state. Scheduling is accomplished by reordering
these quenes. Notice that MESSAGE exhibits FCFS behavior; a FCFS scheduling discipline may not
require explicit queues.

A server may service more than one type of request (e.g., allocate requests and deallocate
requests). Such a server may receive all requests through a single entry or it may have several
entries that each receive requests of a particular type. Requests are segregated by using different
entry identifiers. A single-entry server should accept requests promptly, whether or not they can
be serviced immediately. These requests should then be queuned for scheduling (based on content)
and serviced when appropriate. A multi-entry server that implements a FCFS discipline probably
does not need scheduling queues.

A client subterm is usually simpler than the server subterm, at least with regard to message
passing. It requests service with a send and obtains results with a wait.

5.7.4 Examples

Figure 27 is an OBJC server object that models the behavior of a FCFS semaphore. A companion
client object is shown in Figure 28. These two objects are somewhat analogous to Figure 7, where
star operations are used.

The server object in Figure 27 begins by instantiating MESSAGE for integer messages. As before,
operations must return something, so p and v return the semaphore’s value. Operation new takes
an integer argument and returns a semaphore whose counter is initialized to the argument’s value.
A semaphore is bundled by a sem operation, which plays the role of server in Figure 25. The first
two arguments of sem are the 'p and 'v message identifiers (resp.) — the server entries. The last
argument of seam is the semaphore’s counter. Since a semaphore is a FCFS structure, and since the
multi-entry approach is used here, explicit queues are unnecessary. Notice that a blocked reply at
one entry does not prevent requests at the other entry from being serviced.

The client object in Figure 28 imports the server object, but only uses its operations indirectly,
via messages. It also instantiates MESSAGE again, this time for reduction-termination purposes, as
in Figure 25. The client’s p and v operations are equationally translated into server requests.
Since the server provides multiple entries, empty messages are sufficient, but OBJC requires that
something be sent. In CSP, an empty messages is called a signal [Hoa78]. Operations user and

124

object SENAPNORE is sort Semaphore .
protectiag INT ¢ RESSAGE[INT] .

op umew : Iat -> Semaphore .
op sem : Nessage Nessage Int -> Semaphore .
eps p v : Iat => Int .

var I : Int .
var R1 N2 : Nessage .
var § : RessageBum .

sse Create an initialised semaphore.
oq aew(l) = sem(receive(’p),receive(’v),1) .

oee Service requests.
¢q san(received(E,R1),K2,1) « sem(reply(8,p(1)),N2,p(1)) i X >0 .
oq sem(N1,received(E,N2),I) = gsen(R1,reply(B,v(I)),v(1)) .

sse Got ready for more requests.
oq sem(replied(N),N2,1) = sem(receive(’'p), N2,1) .
oq sem(Ni,replied(1),I) » sem(Mi,receive(’y),1) .

oq p(I) =X -1 .
oq v(I) =1+,

endo

Figure 27: A Semaphore Server Object.

object USER is sert User .
protecting SERAPHORE .
protec :ing RESSAGE{INT] .

ope p v 1 => Ressage .

op user : Iat Nessage Nessage -> User .

op done : Nessage -> User .

op eutside : Nessage Semaphore User User => Nessage .

var N A3 N2 : Ressage .
var § B3 32 : Ressagelwm .

var § : Semaphore .
var U1 U2 : User .

var I s Iat .

oe® Request semaphere service.
oq p = send(’p,0) .
oq v = gead('v,0) .
eq sent(N) = wait(l) .

ose Reduce te the number of the user that finished first.
oq user(l,vaited(N1,R1),%aited(82,N2))) = dene(send(’eutside,1)) .
oq outside(received(3,N),8,.U01,U2) = N .

onde

Figure 28: A Semaphore Client Object.

125

done play the role of clients in Figure 25. Operation user bundles a user’s two requests together
with a “user number”. After both of a user's requests have been serviced, its user number is sent
to 'outside. The last equation reduces a term to the user number of the first user to finish. As

an example,
outside(receive(’outside) ,new(l) ,user(1,p,v),user(2,p,v))

reduces to either 1 or 2.

Notice the awkwardness involved in ensuring that the send to *outside is issued only after a
user’s requests have been serviced. When message passing is used, evaluation strategies cannot be
relied upon to provide sequencing.

The next example is an OBJC solution to the Readers/Writers problem. Again, a client/server
structure is used to provide mutual exclusion and conditional synchronization. Figure 29 is the
server object. The client object is shown in Figure 30. These two objects should be compared to
Figure 9.

The server object in Figure 29 is parameterized; as before, it can be instantiated with various
KEY and ITEM objects. Since messages are database items, MESSAGE is instantiated with ITEM.
Operation rv plays the role of server in Figure 25. However, it behaves quite differently than
the rv of Figure 9. Specifically, wr still modifies the Database argument of rv in place, but rd
initiates a read traversal on a copy of the database, which is put on a list of active read traversals,
which is the last argument of rv. This technique simplifies the read traversal algorithm. Operation
new creates an initialized database; the two conditional equations succinctly provide conditional
synchronization for it. A database contains only one entry, *rvw. Therefore, a request message must
specify whether a read or write is desired. This is done by passing a rd or wr subterm, which
is translated into a get or put. Operation gets is used like LisP’s cons to construct the list of
active read traversals. Notice that even though rw has only one entry, the FCFS discipline avoids
an explicit queue.

The client object in Figure 30 instantiates a Readers/Writers database that maps identifiers
to the natural numbers, as before. The client’s read and write operations reduce to rd and wr
server requests (resp.). The user, done, and outside operations behave almost as before. A user
bundles two requests together. After these are serviced, the user reduces to done. After both users

are done, a term reduces to its database argument. For example,
eutside(new,
user(vrite(’fred,100),7vead(fred)),
sser(erite(’fred,200),urite('fred,300)))

reduces to

re(receive(’re),0,0,rec('fred,2,00d) ,00r)

where z is either 100, 200, or 300. Notice that the initially intuitive

outside(aev,
sser{vrite(’'fred,100) ,srite(tred,read(’fred) ¢ 1)),
wser(erite(’fred,200),vrite(*fred ,read(’fred) ¢ 1)))

is not only nondeterministic, but it contains a chain letter, as discussed previously. In order to
achieve the intended effect, explicit sequencing must be used. The trick is to put the read and
write operations on a list and only reduce one to a send when it is at the head of the list. After
the send is serviced, it could be removed from the front of the list to allow the next operation to
be processed.

5.8 Verification of Implementations

The verification techniques of Section 5.8 are useful for proving properties of a particular specifica-
tion or solution. In this section, we investigate how OBJ3 can assist in the top-down development

126

ebject READERS-VURITERS[Key :: KEY, Item :: ITEW] is

114

sorts Readers-¥riters Database .
pretectiag INT + NESSAGE{ITEN] .

op mew : => Beaders-Vriters .

op rv : Message Int Int Datadase Nessage -> Readers-Writers .
op rd : Key => Item .

op wur : Ley Item => Isems .

op geot : RessageBus Key Datadbase -> Nessage .

op put : Ressagelum Ze¢y Item Database -> Datadase .
op rec : Kay Item Datadbase -> Database .

op eod : ~> Database .

op eor : => Ressage .

op gets : Ressage Ressage -> Nessage .

op putreply : Ressage Database -> Database .

op putdone : Datadase => Database .

var R R : Ressage .

var § : Hessagelmm .

var D : DPatabase .

var £ K1 : Key .

var J 11 : Items .

var IR : Iat . see sumber of readers
var BV : Iat . ess aumber of writers

Create a» imitialized database.
eq nev ¢ re(receive(’rv),0,0,00d,00r) .

Service requests.

¢q re(received(s,rd(K)),NB,5V,D,R) =
re(receive(’rv) IR ¢+ 1,04, ,D,gets(get(¥,X,D),1))
i 5 == 0 .

cq re(received(¥,wr(K,1)),0R,0¥,D,R) =
re(receive(’'rw) ,JR,BV + 31,put(8,K,1,D),R)
i (BB == 0) and (BV == 0) .

Purge serviced requests.
oq re(R,MR,E¥,D,gess(roplied(N),R)) » ru(R,BR ~ 1,0V,D,R) .
oq rw(N, DR, B¥,putdone(D),R) = re(K,ER,B¥ - 1,D,R) .

Read traversal algorithm.
eq get(§,K,e0d) » reply(¥,notfound) .
oq got(B,Kk,rec(X1,I,D)) =
if K == K1 then
roply(s,1)
eles
got(8,K,D)
71 .

¥rite traversal algoritha.

Figure 29: A Readers/Writers Server Object (1 of 2).

put(8,L,1,00d) = putreply(reply(8,I),rec(k,l,00d)) .
nt(l.l.loﬂc(ll.u.l’)) -
1€ K == K1 then
patreply(reply(8,1),rec(k,1,D))
else
rec(k1,13,put(8,k,1,D))
71 .
putreply(replied(l),D) » putdene(D) .
roc(ki,l1,putdene(D)) = putdese(rec(ki,11,D)) .

22

22

eado

_Figure 29: A Readers/Writers Server Object (2 of 2).

127

sbject USKR is sort User .
protectiag QIDL + BAT ¢ READERS-WRITERS[QIDL,BAT] .

op real : Key => Nessage .

op erite : ley Item -> Message .

op user : Nessage Message -> User .

op done : ~> User

op eoutside : Readers-iriters User User => Readers-liriters .

var N1 R2 : Nessage .

var § B3 B2 : Ressagelum .
var BV : Readers-liriters .
var K : Rey .

var I : Ites .

ses Jequest database service.
oq read(K) = gend(’rv,rd(X)) .
oq write(k,1) = sead('rev,wr(k,1)) .
oq seat(P) = gait(y) .

sse Reduce teo the fimal datadase valse.
oq user(vaited(E1,M1),vaited(F2,R2)) © done .
oq euteide(ll,dens,done) = RV .

Figure 30: A Readers/Writers Client Object.

of a solution.

An early step in developing an object is to construct a specification object. A specification
object implements its operations autonomously; it does not employ operations from other user-
defined objects.)® This is also known as direct implementation. A specification object is more
than just a “thought tool”. Its executability allows a specification, and the implementations that
import it, to be tested. More importantly, properties of the specification, and the correctness
of the implementations that import it, can be proven. “Thus a true top-down implementation
methodology can be achieved” [GHM78).

A later step in developing an object is to construct an implementation object. An implemen-
tation object implements its operations via operations from other user-defined objects. Typically,
this is done to reduce time or space requirements. A specification object may have multiple imple-
mentation objects.

Verifying such a development means proving that the implementation object correctly imple-
ments the operations specified by the specification object. This is done by proving that for each
equation in the specification object, the equation holds when its operations are replaced by their
implementations from the implementation object. This, in turn, can be done by showing that each
specification equation reduces to true, when reduced in the context of the implementation ob ject.

As before, however, complications arise when OBJ3 is used as a theorem prover. In particular,
the proof tools described in Section 5.8 are also needed here.’* The proof technique is demonstrated
by verifying the correctness of an implementation step in the development of a symbol table main-
tenance program. Both the methodology and sample problem are taken from a seminal paper
{CHM78]. Aside from using OBJ3, the remainder of this section tries to follow the original work
as closely as possible.

15 An object can hardly avoid using built-in operations.
14 Actually, this verification was done before the Readers/Writers verification — as a warmnp.

128

theory IDESTIFIER is
sort Identifier .
endth

theory ATTRIBUTE is

sort Attribute .

op undefined : -> Attribute .
endth

Figure 31: The Requirements for Symbol Table Parameters.

5.8.1 The Symbol Table Problem

A good example of a problem whose solution (i.e., whose implementation) must be both time and
space efficient is the symbol table for a compiler of a block-structured programming language, the
example for which was introduced in section 3.11 of the report. This section considers further
details of the OBJ3 implmentaion and verfication of the problem.

The problem is to maintain a dynamic mapping from program identifiers to their attributes.
This mapping changes, according to the rules of static scoping, when the parser: enters a program
block, encounters a variable declaration, and exits a program block. A symbol table provides the
following operations.

¢ init: Allocate and initialize the symbol table for the outermost scope.
o enterblock: Prepare a new local naming scope.
o addid: Add an identifier and its attributes to the symbol table.

o leaveblock: Discard eatries from the most current scope and reestablish the next outer scope.
If already in the outermost scope, do nothing.

o isinblock: Has a specified identifier already been declared in this scope? (Used to check for
duplicate declarations.)

o retrieve: Return the attributes associated with the most local definition of a specified identi-
fier.
5.8.2 Specification of the Symbol Table
For a symbol table to map abstract identifiers to abstract attributes, its object must be parameter-
ised. The parameters are required to satisfy the IDENTIFIER and ATTRIBUTE theories in Figure 31.

Specification of the required operations is straightforward; the specification object is shown
in Figure 32. In order to test the specification, it must be instantiated. Figure 33 instantiates a
SYMBOLTABLE that maps strings to the natural numbers; some example reductions are also shown.

5.8.3 Implementation of the Symbol Table

A symbol table is implemented as a stack of mappings. As promised, the STACK and MAPPING
objects do not need to be implemented, the direct implementations provided by their specification
objects are sufficient. Both objects are parameterized. STACK takes one parameter, characterized by
the ELEMENT theory in Figure 34. MAPPING takes two parameters, characterized by the DGHAIN and

129

object SYRBOLTABLE(I :: IDKNTIFIER, A :: ATTRIBUTE] is
sert Symboltadle .

iait : => Symbeltable .

eatarbleck : Symbeltable => Symbeltable .

addid 1 Symbeltadle ldentifier Attridute -> Symbeltadle .
leaveblock : Symbeltadle => Symbeltadle .

isindleck : Symboltadle Idemtifier -> Bool .

retrieve : Symboltable Ideatifier ~> Attridute .

$333833

ar 8 : Symboltadle .
1 : Xdeatifier .

Astribute .

< 4«
&
= -

L)

leavedlock(init) s 4nit .
leavablock(enterblock(S)) = § .
leaveblock(addid(S,I,A)) » leaveblock(S) .

isiableck(init,I) = false .
isindleck(enterdleck($S),I) » false .
isiableck(addida(s,l A),I1) =
if I == I1 then

true
else

4isindlock(s,11)

222 222

retrieve(iait,l) & gndefined .
retrieve(enterblock(s),l) = retrieve(s,1) .
retriove(addid(s,I,4),I1) =
47 1 o= I1 ghen

A
else

retrieve(S,11)
179 .

122

onde

Figure 32: The Symbol Table Specification Object.

130

view IDESTIFIER-TO-QID from IDENTIFIER to QID is
sort ldeatifier to 14 .
eadv

vies ATTRIBUTE-TO-BAT from ATTRIBUTE to BAT is
sort Attribute to Bat .
op uadefined to O .

eadv

make ST is SYABOLTASLE(IDENTIFIER-TO-QID,ATTRINGN-EisMATR wtidn.

reduce in ST : retrieve(eaterdlock(addid(addid(init,’bud,3),ed,6)),
*bud)

rewrites: 7

result Nallat: 3

reduce in ST : retrieve(eaterbleck(addid(addid(iaic,’bud,d),’ed,08)),
p411)

rewrites: 8

result Zere: O

reduce in ST : isinblock(enterblock(addid(addid(init,'bud,d),’ed,8)),
‘bud)

rewrites: 1

result Beol: false

reduce in 8T : isisblock(leaveblock(eaterbleock(addid(addid(imit,’bud,
3),%e4,6))),dud)

rewrites: 7

result Bool: true

reduce in ST : isiadlock(leaveblock(enterblock(addid(addid(imit, *bud,
3),ed,8))),'bill)
rewrites: 8

result Bool: false | (b); Reductions.

Figure 33: Instantiating and Testing a Symbol Table Specification.

theory KLEREIT is

sort Klement .

op undefined : ~> Element .
eadth

Figure 34: The Requirements for Stack Parameters.

theery DORAIN is
sert Demaia .
eadth

theery RANCE is
sert Raage .

op sndefined 3 ~> Range .
ondth

Figure 35: The Requirements for Mapping Parameters.

131

ebject STACK(K :: ELENENT] is
sort Stack .

ep newstack : => Stack .

ep push : Stack Element -> Stack .
op pop : Stack => Stack .

op top : Stack -> Element .

op ismew : Stack -> Bool .

op replace : Stack Element -> Stack .

var 8 : Stack .
var £ 1 Eleaent .

eq pep(nevstack) = nesstack .
pop{push(8,5)) = S .

eq
oq tep(newstack) = undefined .
oq sop(push(S,K)) = K .
L |
oq
oq

isneu(neustack) = true .
isnev(push(3,k)) = false .

replace(S,B) = push{pop($).E) .

Figure 36: The Stack Specification Object.

RANGE theories in Figure 35. The STACK and MAPPING specification objects are shown in Figure 36
and Figure 37 (resp.).

A SYMBOLTABLE implementation object is shown in Figure 38. There are only two “high-
lights”. First, notice the overwhelming ugliness of the importation of a stack of mappings. As the
comment indicates, parameterized views would be a big improvement.}® Second, consider the new
operation symt. This is a representation operation. Like a type-breaking function in MopuLA2, 2
representation operation allows something of one sort to be treated as if it is of another sort, but

no conversion or coercion takes place. For example, in the equation
init = gymt(push(aevstack,newmap))

from Figure 38, symt is used to treat a nearly new stack as an empty symbol table. Subsorting
could obviate representation operations in many cases, but circular subsort relations might arise in
others.

Since the implementation object has not yet been verified, it should be tested. Figure 39 is
analogous to Figure 33, it instantiates a SYMBOLTABLE mapping strings to numbers and shows some
example reductions. Clearly, the rewrite count is an inappropriate measure of an implementation’s
efficiency.

$.8.4 Verification of the Symbol-Table Implementation

As before, there are several important steps in the verification. First, a proof object is constructed
from the implementation object in Figure 38. This proof object is then instantiated and augmented
with any necessary lemmas.!® Equations from the specification object are then reduced in the
context of this augmented object. Finally, of course, the lemmas are proven.

Although a correct implementation must implement every operation in a specification, we
consider only a single equation from the specification object. This equation is an interesting one;

15There are hints that parameterised views might be supported in a later version of the interpreter [GWSS).
1¢ Antomatic theorem proving is an iterative exercise; each unsuccessful iteration suggests new lemmas.

132

object NAPPING[D :: DOMAIN, R :: RANGE] is
sort Napping .

op newmap : ~> Napping .

op defmap : Mapping Domain Range -> Mapping .
op evmap : Napping Domain -> Range .

op isdefined : Mapping Domain -> Bool .

var B : Rapping .
var D D1 : Domain .
var R : Ramge .

eq eovmap(mewmap,D) = undefined .
eq evmap(defmap(N,D,R),D1) =
if D == D1 then
R
else
ovmap(N,D1)
3.

isdefined (newmap,D1) = false .
isdefined(defuap(N,D,R),D1) »
if D == D1 then

tree
else

isdefined(N,D1)
3 .

22

Figure 37: The Mapping Specification Object.

in particular, it is recursive and its proof requires a lemma.

A proof object is constructed exactly as before. Conditional equations are transformed into
regular equations, variable operations replace variables, the symbolic equality operation replaces
-==_ and the eager conditional operation replaces if_then_else_fi. Recall that these proof tools
are provided by PROOF-TRUTH. Figure 40 shows the proof object corresponding to the implementa-
tion object in Figure 38.

Unfortunately, implementation via importation causes a subtle problem. It is not difficult
to solve, just inconvenient. Namely, a specification object imported by an implementation object
must also be transformed into a proof object; the proof object is imported instead. Transformation
stops at this second level because — by definition — a specification object does not import other
user-defined objects. The STACK and MAPPING proof objects are not shown here.

The next step is to construct a verification condition. We want to verify that the equation
retrieve(addid(s,1,4),11) =
i I == I1 then
s
else
retrieve(s, 1Y)
7|

from Figure 32 holds in the context of Figure 40. The = is a metasymbol, not a built-in operation. In
order to make the equation reducible, it is replaced by =s=. Variable operations, the representation
operation, and PROOF-TRUTH operations transform the equation into the verification condition shown
in Figure 41.

Object retrieve in Figure 41 instantiates the proof object from Figure 40 and augments it with
a lemma that was discovered to be necessary in an earlier proof attempt. Following that, recursion
is limited to avoid an infinite reduction and the verification condition is reduced. Examination of
the detailed OBJ3 reduction trace demonstrates that the proof proceeds essentially as it does in

133

ebject SYNBOLTAMLE(I :: IDENTIFIER, A :: ATTRIBUTE] is

sert Symbeltadle .

op iait : -> Symboltadble .

op eaterblock : Symboltable -> Symboltable .

op addid : Symboltable Ideatifier Attribute -> Symboltable .
op leaveblock : Symboltable ~> Symbolcable .

op isimbleck : Symboltable Idemtifier -> Bool .

op retrieve : Symboltable Ideatifier ~> Attridute .

pretecting STACK[
ELENENT-TU-RAPPING [DORAIN-TO-IDENTIFIER, RABGE-TO-ATTRIBUTE]] .

pretectiag STACK
[view to RAPPING
{view 20 1 is
sort Desain to Idemtifier .
ondv,
view to A is
sert Rasge to Attridute .
op undefined to undefimed .
eadv]
is
sert Klement to Rapping .
op uadefined to newwmap .
endv] .

op symt : Stack -> Symboltable .

var 3 : Stack .

var I : Ideatifier .

var A : Attribute .

init = symt(push(newstack,nevmap)) .
esterbleck{(symt(S)) = symt(push(S,newmap)) .

addid(sywt(S),1,A) » symt(replace(S,dstmap(top(S),1,4))) .

2 2 2 2

leaveblock(symt(3)) =
it ismew(pop(S)) then
syat(replace(S,aemmap))
else
syt (pop(8))

.

isindlock(symt(S),1) = isdefined(top(S),I) .

2

oq retrieve(symt(3),1) =
if isnew(S) then

Figure 38: The Symbol Table Implementation Object (1 of 2).

andetined
else
12 iedefined(tep(8),1) then
evmap(tep(s),1)

retrieve(symt (pop(3)),1)
271
71 .

onde

Figure 38: The Symbol Table Implementation Object (2 of 2).

134

view JDENTIFIER-TO-QID from IDEBTIFIER to QID is
sort ldeatifier to Id .
ondv

view ATTRIBUTE-TO-BAT frem ATTRIBUTE te AT is
sert Attridute to Bat .
op andefined t0 0 .

eadv

sake ST is SYBOLTDLK[XDEIT"’!D-TO-QID.l'ﬂ'llw-mw.

reduce in ST : retrieve(eaterblock{addid(addid(init,’dud,3),’ed,6)),
*bud)

resrites: 36

result EzBat: 3

reduce ia ST : retrieve(enterblock(addid(addid(init,’bued,3),’ed,6)),
'pill)

resrites: 33

result Zero: O

reduce ia 8T : isiablock(eaterdlock(addid(addid(iait,’bud,d),’ed,8)),
bed)

rewrites: 13

result Bool: false

reduce ia ST : isiablock(leaveblock(eaterblock(addid(addid(iait,*bud,
3),%d,6))), bud)

rewrites: 23

result Boel: true

reduce in ST : isimdlock(leavedlock(eamterdlock(addid(addid(init, ’bud,
3),ed4,68))),bi11)
resrites: 24

result Bool: false (b): Reductions.

Figure 39: Instantiating and Testing a Symbol Table Implementation.

135

object SYRBOLTABLE(I :: IDESTIFIER, A :: ATTRIBUTE] is
sert Symboltable .

*»p
op
op
op
o
”»

init : -> Symbeltadle .

eaterbleck : Symboltadle -> Symboltadle .

addid : Symboltable ldeatifier Attribute -> Symbeltable .
leavedleck : Symbeltadle -> Symboltabdble .

isiableck : Symboltadle Ideatifier -> Bool .

retrieve : Symbeltable Ideatifier -> Attribate .

pretectiag STACK(

ELENENT-T0-AAPPING [DONAIS-TD~IDKSTIFIER, RABGE-TO0-ATTRINTL]) .

pretectiag STACE

bt 4

(view te MAPPING
[view to I is
sert Domaiz to Ideatifier .
oadyv,
view to A is
sert Range to Attridute .
op undefined to undefined .
endv])
is
sort Element to Mapping .
op undefined to newmap .
eadv] .

syat : Stack => Symboltadle .

pretectiag UAT .

op
*p
op

svar : Bat -> Stack .
ivar : Jat => ldeatifier .
avar : Bat => Attribute .

pretectiag PROOF-TRUTH(Symboltable] .
pretectiag PROOF-TRUTH([Stack] .
pretectiag PROOF-TRUTK{Identifier] .
pretectiag PROOF-TRAUTN[Attribute] .

ver § : Stack .
var I : Idemtifier .
var 4 : Attridbete .

Ao |
q
*q

iait = symt(push(newstack,newmap)) .

eaterbleck(synt(3)) » synt(push(S,newmap)) .
addid(synt(3),1,4) = synt(replace(S,defmap(tep(s),I,4))) .

Figure 40: The Symbol Table Proof Object (1 of 2).

136

eq leavedlock(symt(S)) =
eif isnew(pop(S)) then
symt (replace(S,newmap))
else
symt (pop(S))
4 TN

eq isindlock(symt(S),I) = isdefined(top(S),I) .

eq retrieve(symt(S),I) =
eif ismew(S) then
undefined
else
eif isdefined(top(S),I) then
evmap(top(S),I)
olse
retrieve(symt(pop(S)),I)
73
E £ N

endo

Figure 40: The Symbol Table Proof Object (2 of 2).

object RETRIEVE is
extendiag SYNBOLTABLE{IDESTIFIER-T0-QID,2TTRIBUTE-TO-BAT] .
var 8 : Stack .
eq ismew(S) = false .

endo

eov (recursiom-limit :obj “SYNBOLTABLE" :0p “retrieve" :limit 1)

reduce
retrieve(addid(synt (svar(0)),ivar(0) ,avar(0)),ivar(1))
g
eif ivar(0) ms» jvar(1) then
avar(0)
else
retrieve(symt(svar(0)),ivar(1))
7] .

ov (recursion-limit :ebj “SYNBOLTABLE" (a)): “Rsuintstibs and Reduction.

reduce in RETRIEVE : retrieve(addid(symt(svar(0)),ivar(0),avar(0)),
ivar(1)) ss= eif ivar(0) =ss jvar(1) thea avar(0) else retrieve(
syt (svar(0)),ivar(1)) £i

revrites: 18

result Beol: true (b): Result.

Figure 41: Correctness Proof of retrieve Implementation.

137

object RETRIEVE is .
extending SYNBOLTABLE(IDENTIFIRR-TO-Q1D,ATTRIBUTE-TO-BAT] .
ep pi : Symbeltable -> Beol .
ssing PROOF-CASE ¢ (sort Sort to Symbeltable, op p to p1) .
var 8 1 Stack .
oq pi(symt(8)) = isnew(S) ms= false .

eado

reduce pi(inrit) .

ebject RETRIEVEL is exteadimg RETRIEVE .
oq isnew(svar(0)) = false .
endo

reduce pil{enterbleck(symt(svar(0)))) .
reduce pi(addid(symt(avar(0)),ivar(0),avar(0))) .
reduce p1(leavedlock(symt(svar(0)))) . (.); Instantiations and Reductions.

reduce in RETRIEVE : p1(iait)
resrites: 4
result Beel: true

reduce ia RETRIEVE!L : pi(enterbdlock(symt(svar(0))))
resrites: 4
result Bool: true

reduce in RETRIEVEL : pi(addid(symt(svar(0)),ivar(0),avar(0)))
rewrites: §
result Bool: true

reduce in RETRIEVEL : pi(leavedlock(symt(svar(0))))
rewrites: 10

result Bool: true (b): Results.

Figure 42: Proof of Lemma for retriave Proof.

the original work.

The final step is to prove the lemma assumed in Figure 41. For proof, the lemma is formulated
as part of an equation for a predicate on symbol tables. If the predicate can be proven invariant —
that is, if it is true for all symbol tables — then the lemma is true. Invariance is proven as before:
by structural induction.

Figure 42 shows the proof. Once again, the proof object from Figure 40 is instantiated. This
time, however, it is augmented with the predicate operation p1 and the case-analysis rule from
PROOF-CASE. The first reduction is the basis; it shows that the predicate is true for an initial-
ised symbol table. Object RETRIEVEQ is the inductive hypothesis; it augments RETRIEVE with an
equation that makes the predicate true for symbol tables constructed from one fewer operation
invocation than those considered in the inductive steps. The last three reductions are inductive
steps; they show that the predicate holds for symbol tables constructed from one more operation
invocation than those assumed in the inductive hypothesis.

In general, an inductive hypothesis is necessary for structural induction. For this proof, how-
ever, the equation added in RETRIEVEL1 is never used; the equations from RETRIEVE are sufficient to
prove the inductive steps. Incidentally, only the leaveblock proof requires the case-analysis rule.

5.9 Conclusions and Future Work

Although an equational language is not typically used to record duign decisions regarding concur-
rency, our work demonstrates that concurrent behavior can be specified equationally. Star opera-

138

tions can specify the allowable interaction of processes that are competing for some shared resource
and message-passing operations can model interprocess communication. An equational language
is also a useful tool for reasoning about an equational specification. In particular, properties of
a specification can be verified and development steps can be proven correct. Actually, verifying
a development step can be viewed as verifying a set of properties; however, the two activities are
pragmatically distinct.

OBJ3 is a good language for this research. It has powerful parameterization mechanisms
and a flexible type system. Subsorting and overloading is especially convenient. In addition, it is
available, well documented, and appears to be readily modifiable. This last characteristic is only
partially confirmed.

The work described here is experimental and preliminary. In fact, equational specification and
verification is only one facet of an envisioned development methodology for concurrent software.
This is a two-tiered methodology (cf. LARCE [Win87]), where equationally defined operations are
used as auxiliary functions in an axiomatic specification of a concurrent program. The implemen-
tation tier is supported by a conventional concurrent programming language (e.g., SR [AOC*88)).

There is much more work to be done. The following proposals are in suggested chronological
order.

As with any methodology, experience with more and larger examples is necessary to determine
if it is general enough to be useful. There are several traditional benchmarks that seem suitable:
the Dining Philosophers problem, the Sleeping Barber problem, and some variety of electronic-mail
system. Each problem should require about one man-week to specify. Property verification tends
to be more time consuming; however, two man-weeks per problem should be sufficient for small
sets of fundamental properties.

The task of constructing a proof object should be substantially simplified — or even eliminated
— thereby obviating the proof tools in Appendix 5.10. One way to accomplish this is to modify
OBJ3 to reduce terms containing variables (cf. ArrirM [TE81]). An estimate of the time required
for this ambitious project should be deferred until the original developers are consuited. A less-
ambitious modification is to overload the built-in operations so that they evaluate their arguments
normally, symbolically, or eagerly depending upon the presence of variable operations. Such a
project might require two or three man-months. Alternatively, a group of objects that implement a
unification algorithm is available [GW88]. These should be evaluated for suitability as proof tools.

The semantics of conditional equations should be defined equationally, so that they can be
reduced directly rather than requiring a transformation to regular equations. This should be easy.

The MESSAGE protocol should be shown to be general enough to model the message-passing
protocols of currently available concurrent programming languages. In particular, the flexibility of
SR’s mechanisms should be captured.

Finally, the mathematical semantics of the message.passing operations, as well as their im-
pact on the verification methodology, should be investigated. In addition, these operations should
be implemented, by modifying the OBJ3 interpreter, thus constructing an interpreter for OBJC.
One approach to mathematically specifying the semantics is that used in the definition of FOOPS
[GM86b), an equational language supporting states (i.e., program variables). Namely, an OBJ3 in-
terpreter could be implemented in OBJ3, then modified to support message passing. The semantics
of OBJC would, therefore, be defined in terms of the semantics of OBJ3. A more straightforward
definition — if attainable — would be desirable; the topic should be studied for one or two man-
months. An OBJC implementation should require about three or four man-months. '

139

5.10 Proof Tools
ebject PROOF-BOOL is

protectiag TRUTR-VALUE .
protecting BOOL .

op eif_them_else_fi : Bool Bool Boel => Bool
[strategy (1 2 3 0) gather (& & &) prec 0] .

op .=e=_ : Bool Bool ~> Bool [strategy (1 2 0) prec 51} .

var BT K : Bool .

o eif srue then T else E fi = T .

oq eoif falge then T olse Efi =k .

oq eif B thes true else true fi = true .

oq eif B thea false else false fi = false .

var 81 B2 : Beel .

oq B ugm B = true .

legical substitution

eq oif B then B ugs Bl else 32 fi »
eif B then true msv B1 else B2 £i .

oq oif B then Bl mgu B else B2 fi =
eif B then Bl =ps true else B2 7i .

oq eif B then D1 else B ws= B2 fi =
oif B then Bl else false == B2 fi .

oq @if B thea Bl else D2 =3 B fi =
oif B then B1 else B2 me= falge f4 .

were legical substitation
var ABCDEFOAGENIJEKL : Bool .

oq eif A thea (B or A) ws= trus else C i =
oif A then (B or true) =s= true olse C i .

oq eif A then (B and i) =e=» true else C fi =
eif & then (B and true) ®sg= true else C f1i .

eq eif A and B then (C and (A or D)) =ps true else E fi »

oif A and B then (C and (trwe or D)) =s= true else K fi .

oq oif A and B then (Cor B) ms= true olse D i =
oif A aad D thea (C or true) we= true oelese D fi .

onde

object PROOF-TRUTH(X :: TRIV] is

pretectiag TAUTH-VALUE .
pretecting PROCP-30CL .

op eoif_them_else_f1 : Beel Kit Kit -> Klt

[strategy (1 2 3 0) gather (8 & 8) prec 0] .
op .ms=_ : Eit K1t =) Beel [strategy (1 2 0) prec 61] .
var TE : Ris .

oq eif true thea T elge K fi o T .
oq oif false then T olse R fi = K,

oq Ewgn Ko true .

var P Q R : Beel .

140

var ABCD : Elt .
sse if distribution

eq eif eif P then § else R fi then A else B fi =
oif P then eif Q then A else B i else oif R then A else B £i £i .

sse logical sudstitution

oq eif P then oif P then A else B fi elsa C ti =
oif P then A else C 74 .

eq eif P then C olse eif P then A else B fi fi =
eif P then C else B 1 .

oq eif P then eif then eif P then A else B fi else C fi else D 1
oif P then oif § then A ¢ls0 C 21 eloe D £3 .

oq oif P then oif Q then C else ¢if P thea A else B £1 71 else D £
eif P then ¢if Q thea C olse 4 71 else D 11 .

oq eif P then D else oif Q thea oif P then A else B £i else C i ¢4
eif P then D else eif Q then B olse C 71 £i .

oq eif P then D else oif Q then C else oif P them A else B £i £i £i
eif P then D else ¢if Q then C else B fi £1 .

endo

ebject PROGF-INT jis
protecting TRUTH-VALUE .
protecting INT .
protecting PROOF-TRUTH[INT] .

op
op
p
op

-<s_ : Iat Iat => Boel [prec 61]) .
«<s=_ : Int Iat => Bool [prec 61} .
<>s_ 1 Iat Iat => Boel [prec 51) .
Os=_ : Ist Iat => Bool [prec 51) .

var A B : Iat .

22338 2322 2222

£

A <s A = false
A <s®» A = true
A 28 A = false
A >sm A = true

0 < 1 = ¢true .

O <sm §{ » true .
0> 1 = false .
0 de= 1 = false .

1B« ((A>nB) er (Augnp~1)) .
1<uBss ((A<sBD~-1)er (AugnB ~1)) .
1 de= B = A8,

1<soBw ((A<snB) or (A~1mg=])) .

L 2K 2R 3% J

[N B

sbject PROOF-CASE is
sert Sert .

op
op
*p

p ¢ Sert => Beel .
oif_thea_else.fi : Besl Sort Sert => Sert .
oif_thea_elve_f1i : Beel Beel Becl => Boel .

var B : Boel .
var 31 82 : Sert .

oq

p(eif B then 81 else 82 i) »

141

aif B then
p(s1)
alse M
p(S2)
1 .

endo

142

6 Verification of Security in OBJ

6.1 Introduction

This section discusses the OBJ3 system [GW88] and its usefulness in the verification of security
properties in operating systems. In addition, an example of an OBJ3 specification of a simple
operating system with security properties is presented.

6.1.1 Using OBJS to Verify Security

This section will discuss ways in which OBJ3 may be used to verify security. The general format is
meant to correspond to [CM81), which compares the specification systems/languages HDM, Special,
Ina Jo, FDM, Gypsy, and AFFIRM. The types of security properties which are of interest include
the following (description taken from [Lan83]):

o Simple security condition. A subject can read an object only if the security level of the subject
is at least that of the object.

e *.property. A subject can modify an object O; in a manner dependent on an object O, only
if the security level of O, is at least that of O,.

Suggestions for the implementation of information flow models and take-grant models will be dis-
cussed in the following sections.

Information Flow Models OBJ3 does not have any tools specifically designed for verifying
security, unlike HDM (which has an associated multilevel security formula generator). Information
flow analysis, which focuses on the transfer of information between objects, would be difficult to
perform directly in OBJ3. This is partially caused by OBJ3’s lack of the concept of state: OBJ3
may only reduce terms in isolation, not sequences of terms. Thus, there is no way to directly
implement side effects. However, one can get around this problem by implementing state as an
OBJ3 object. For example, one might define a module ARCHITECTURE which contains sorts
Memory, Register, and Mar, then define specific operations which modify items having these sorts.
Undesirable information fiow would occur when one of the operations causes information to be
moved improperly within the items. For example, if sort Memory could be divided into private
and public parts, then undesirable information flow would occur if items located in the private area
could be moved into the public area. One could attempt to determine whether this could occur by
formulating a boolean expression which stated that the information hAad been moved improperly.
K the system reduced this expression to boolean true, then the system clearly permits undesirable
flow.

One disadvantage of the above technique is that the system must be “tricked” into doing the
analysis of information flow. It is possible that the rewrite engine will not “find” the appropriate
sequence of events which will cause undesirable information flow in a reasonable amount of time;
thus, one cannot rely upon a false reply to an expression stating undesirable flow. In addition,
covert channels cannot always be detected by this method (particularly those which rely upon
timing or system characteristics, such as page fault rate).

Take-Grant Models Take-grant models use digraphs with Jabeled arcs. Each label defines
whether the vertex at the arc’s origin has a particular “right” over the vertex at the end of the arc.

143

In this context, rights refer to the ability to take or grant access rights to another node. Take-grant
models are used to answer the question “Can a subject (node) A gain access to an object (node)
B?

OBJ3 provides a natural method of analysis for this model. An object LABELED-DIGRAPH
can be defined; this object would export functions which perform graph traversals and the sort
Labeled-digraph. Traversal from one node to the other would depend upon the labeling of the arc
between them; for example, if node A has take rights over node B, then any node C which has a
path to B would also have a path to A. Similarly, if node B has grant rights over node A, then any
node C which has a path to B would have a path to A. The user could then instantiate (view) a
Labeled-digraph item with the desired configuration. Finally, the user would request the system
to reduce an expression declaring that a path exists between a particular subject and object. An
affirmative result would indicate that the subject could gain rights to the object; a negative result
would indicate the opposite.

Unlike the information flow method, all answers returned by OBJ3 are conclusive. Of course,
the user is still at the mercy of the rewrite engine and may find that large graphs require a great
deal of computation. Additionally, covert channels are still not addressed.

6.1.2 General Observations

OBIJ3 has a fairly easy syntax to learn, although it is somewhat unforgiving regarding punctuation.
Since OBJ3 specifications are executable — via term rewriting — they are somewhat easier to work
with than purely specificational systems. Not all properties may be proven using term rewriting
(and others cannot be proven efficiently in this fashion); this implies that some human intervention
is necessary.

OBJ3 does not specifically provide tools which manipulate security properties or permit spec-
ification of concurrency. However, it is possible to compensate for this by building objects which
provide such concepts as state and input/output histories.

6.2 An OBIJ3 Specification oi A Simple Operating System

In this section, an OBJ3 specification of a secure operating system will be presented. The operating
system is based on the one described in [Lev80]. In brief, the system may be broken down into three
components: the architecture, the supervisor, and the user processes. Each of these components
will be described by one or more OBJ3 objects. The following sections consist of a description of
the component being defined by the object, the OBJ3 code, and asummary of the code.

6.2.1 Architecture

The architecture used in this system is very simple. It consists of a memory, a collection of user
registers, and a memory management unit (mmu). These components are all built out of registers,
each of which contains a single word of information.

The following operations may be performed:

o Fetch.
e Store.

e Trap.

144

The fetch instruction causes information transfer from a memory register into a user register; the
store instruction transfers information from a user register to a memory register, and the trap
instruction transfers control to the supervisor (generally so that a supervisor — privileged —
instruction may be executed).

The following pages contain the object definition of object ARCHITECTURE.

obj ARCEITECTURE is

ses The sorts provided by ARCHITECTURE
sorts Regblock Rogutor Block-nua Displacement .
sorts Nemory Bloc
sess Imported modules
protecting INT .
protecting BOOL .

®ss A partial ordering of sorts
subsort Int < Displacesent Block-num
subsort Block < Memory

subsort Mmu < Regblock .

e

L g rogutoz operations

L 24

L J
op (..) : Int Int => Register .

op (_.) : Register Regblock -> Regblock .
op . Iogblock Int -> Register .

op Re, g-vnl Register -> Int .

op Reg-id : Register -> Int .

op Set-reg : Regblock Int Int -> Regblock .
op nil : ~> Regblock .

op ulrogutor T => logutor .

op ﬂonr-rogblock Regblock -> Regblock .
e

sss BemOTy operations

e

op (_.) : Int Regblock -> Block .

op Block-id : Block -> Int .

op Block-contents : Block -> Regblock .

op Clear-block : Block -> Block .

op ._. : Block Memory -> Memory .

op eom : => Nemo: r{

op Mem : Memory Block-num Displacement -> Register .
op Set-msea : Memory Block-num Displacement Int -> Memory .
op Set-mem : Memory Block-num Regblock -> Memory .
op _[.] : Memory Block-num -> Regblock .

op Clear-mes : Memory -> Memory .

L 11]

sss MMU operations

e

op .. : Register Register ~> Mmu .

op Mar : Mmu Int -> Register .

op Set-mar : Mau Int It -> Mau .

op Rogblock-to--u : Regblock -> Mmu .

soe Equational Part ese
var : i' : E .

var : Int . .

var ' ister .

ur Rdb Rb’ block .

B’ 31 um .
iz 3% 1
D’ : ﬁup acement .
ux M N’ : Nemory .
e
ese register
ooe

oq nil[I] = ailregister .

oq ((TI')RBI[I]) = if I == J then (I I’) else RBLJ] 2i .
oq Reg~val(II®") eI,

oq Reg-val(nilregister) = -1 .

oq Reg-id(I 1’)= I .

oq Reg-id(nilregister) = -1 .

oq Set-reg(nil, I, I’) = nil .

oq Set-reg(((II’) M), J, K) =

i? I == 3 then (I K) Rb else (I I’) Set-reg(Rb, J, X) £i .
oq Clear-regblock(nil) = nil .

oq Clear-regblock((I I’) Rb) = (I 0) Cleaxr-regblock(Rb)

145

(L1]
ses penory

st

eq Block-id(I Rb) = I .

oq Block-contents(I Rb) = Rb .

oq Clear-block(I Rb) = I Clear-regblock(Rb) .

eq Nea(B1 M, B, D) =

if B == Block-id(Bl) then (Block-contents(B1))(D] else Mem(M,B,D) 2i .

oq MNen(eom, B, D) = nilregister .

oq Set-men(B1 X, B, D, J) =

it B == Block-id(Bl) then (B Set-reg(Block-contents(Bl), D, J)) M
else Bl Set-men(N,B,D,J) £i .

oq Set~men(Bl K, B, Rb) =

it B == Block-id(Bl) then (B Rb) M
else Bl Set-mem(N,B,Rb) 2i .

oq Set-mem(eon, B, D, J) = eom .

oq (B1)R] =

u B == Block-id(Bl) then Block-contents(Bl)

else N[B) 2i .

oq Clear-sea(Bl M) = Clear-block(Bl) Clear-mea(N) .

oq Clear-sea(eom) = eom .
ot
22 amm

oq llu'(l R, I) =

i2 I e= 0 thon R else R’ ti.

oq Set-mar(RR’, I, I') =»

i2 I == 0 then (I I’) R’ else R (1 I’) £i .
oq Regblock-to-mmu(Rb) = (Rb[0] Rb[1]) .

The most important sorts provided by ARCHITECTURE are Memory, Mmu, Register, and
Block. Sort Register is defined to be a pair of integers; the first in the pair gives the register id
number and the second is the value contained in the register. Sort Block contains an id number
and sequence of registers Sort Memory is defined to be a collection of blocks. Sort Mmu is defined
as a pair of registers. Note that this specification does not require a particular size memory; for
brevity’s sake it was decided that the user would be responsible for instantiating the proper size
memory.

ARCHITECTURE provides many operations for manipulating its sorts; among them are oper-
ations for concatenation of registers (to form blocks), an array-style notation for getting the value of
a particular register in a register block or in memory, operations to clear memory/blocks/registers
(clear means set to zero), and operations for changing the value of a particular register in memory.

It is worth noting that the sorts Displacement and Block-num have been defined as supersorts
of sort Int (integer). This indicates that all integer values are also Displacements (or Block-num)
and also implies that there may be Displacements (or Block-num) which are not integers.

.~

6.2.2 Supervisor

The supervisor is fairly complicated, so four ob jects have been used to define it: OPSYS, SUPERVI-
SOR, SUP-OPS, RUN-SUPERVISOR. The object OPSYS contains objects which are “borderline”
between the architecture of the system and the system’s supervisor. For example, OPSYS de-
fines the state of the system (State) as consisting of the mode of operation, the contents of the
memory, the contents of the mmu, and the contents of the user registers. OPSYS also provides
functions which allow the manipulation of State’s components. Additionally, OPSYS provides the
unprivileged mode instructions described earlier.

obj OPSYS is extending ARCHITECTIRE .

‘l‘. .

rini al-state : lcuf{ Regblock Regblock -> State .
op Set-state-Teg : State In §> State '

146

op Set-state~reg :
op Set-state-amu :
op Set-state-amu :
op Set-state-mea :
op Set-state-mea :

State Regblock -> State .

State Int Int -> State .

State Regblock -> State .

State Block-num Displacement Int -> State .
State Memory -> State .

op Get-state-reg : State <-> Regblock .
op Get-state-mmu : State -> Mmu .

op Get-state-mea : State -> Memory

op Get-state-mod : State -> Mode

op privileged : -> Node .

op unprivileged : -> l!odo .

sss unprivileged mode inatructions

op Petch
op Store

op cﬂtm-

wvazrs B W ¢ Ihu
nn Rb Ib'
vu'. Bng
Disp. te
i PEcr e
va.rn Mo’ :
oq Got-stno—to‘

logblock .
S .to .

I.nitid-luto (Mo, X,

oq Goet-state-mmu(Initial-state(Mo, N,

oq Get-state-men(Initial-state(Mo, N,
oq Get-state-mod(Initial-state(Mo, N,

: State Int Int Int -> State .
Stato Int Int Int -> State .
: State Int Int ~> State .

op Trap : Stno => State .

Rb, Mu)) = Rb .
Rb, Mu)) = Mu .
Rb, Mu)) = X .
Rb, Mu)) = Mo .

oq Goet-state-reg(Set-state-msea(Initial-state(Mo, N, Rb, Mu), B,
oq Get-state-mmu(Set-state-mea(Initial-state(Mo, K, Rb, lln). B,
oq Get-state-reg(Set-state-mmu(Initial-~state(Mo, N, Rb, Mu), I,
oq Get-state-men(Set-state-msu(Initial-state(No, N, Rb, ln). 1,
oq Goet-state-mmu(Set-state-reg(Initial-state(Mo, N, Rb, Mu), I,
oq GCet-state-memn(Set-state-reg(Initial-state(Mo, N, Rb, Mu), I,

oq Set-state-mem(Initial-state(Mo, M, Rb, M),

B,D,N) =

Initial-state(Mo, Set-men(M, B, D, ¥), Rb, Mu) .

oq Set-state-nea(Initial-state(Mo, M, Rb, Mu), N’) =

Initial-state(No, W’, Rb, Mu) .

oq sn-u.to-r.g(lnitid-tno(lo M, Rb, M), I,)=

Initial-state(Mo, M, Set-reg(Rdb, I, J), Mu) .

oq Set-state-reg(Initial-state(Mo, N,

N, Rb’, M) .

oq Set-state-mmu(Initial-state(Mo, N,

Initial-state(Mo, N, Rb, Set-maxr(Mu, I, J)) .

oq Set-state-mmu(Initial-state(Mo, N,

M, Rb, Mu’) .

oq Set-state-mmu(Initial-state(Mo, N,
n, Rb, b’) .

oq Petch(S, I, J, K) =

Initial-state(Mo,

Initial-state(Mo,
Initial-state(Mo,

Reg-val (Mea(Got-state-mea(S) .

oq Store(S, I, J, k) =
Reg-val (Mar (Got-ltno-u(S) M,

K,

Reg-val((Get-state-reg(s)) (1)) .
oq Trap(Initial-state(unprivileged, N, Rb, Mu)) =
Initial-state(privileged, N, Rb, Mu) .

endo .

The second ob ject which is used to define the system supervisor is named SUPERVISOR. This
object defines the supervisor state (Supstate) as a collection of supervisor variables and the system
state (State) defined previously. The supervisor variables defined are: the current process id (CP),
a list containing each process’ authorisation level (PAL), a save area for each process’ user registers
and mapping registers (SR, SMAR), and information regarding the security level of each block
in the system: authorisation level (BAL), status (BAP), access count (BAC), attached to device

(BDF).

In addition to providing operations which read/set each of these supervisor variables, SU.

Rb, Mu), Rb’) =
kb, M), I, J) =
Rb, Mu), Mu’) =
Rb, Mu), Rb’) =

t-nato-rog(s I,
Reg-val (Mar (Got-nuto-u(S) N, 0.

Set-state-men(S,

147

G LWoo
" Nt

A A A~ §]

[RSA]

:lg:lg. []

-2

PERVISOR defines authorization levels (Alevel). This is done by taking advantage of the subsort
construct to declare integers as a subsort of Alevels, providing two operations Syshi and Syslo which
are defined to return sort Alevel, and then defining the value of the < operator when applied to
integers and Alevels. It is interesting to note that only two equations are needed in addition to the
subsort and the op definitions. The first of these equations declares that I < Syshi is true for all
integers I, and the second declares that J < Syslo is false for all integers 1. Since Int is a subsort of
Alevel, all Ints are automatically of sort Alevel; however, the standard integer < operation will be
used to compare them. This combination of declarations ensures that all “integer” authorization
levels will automatically fall between Syshi and Syslo.

Another item worth noting is the use of overloading to simplify setting values in SMAR and
SR. This permits the user to use the same function call (Set-Smar/Set-Sr) to modify either one
of the SMAR registers or the entire SMAR block. It is also interesting to observe that object
SUPERVISOR imports OPSYS via an eztending clause; this permits SUPERVISOR to add new
data items having sorts defined originally in OPSYS.

obj SUPERVISOR is
protecting II‘SL.
otecting BOOL .
;:otocti‘:: ARCHITECTURE .
extending OPSYS .
sorts Supstate Alevel Pid .
sorts Block-info-list Block-info
subsort ;x_:t < ﬁovo .
subsort Pid < Iat .
op Syshi ¢ => Alevel .
op Syslo : => Alevel .
op aillevel : -> Alevel .
op (_.) . : Iant Alevel Regblock -> Regblock
op LI : Regblock Int => Alevel .
op <. : Int Alevel ~> Bool .
op Hext-Cp : Pid ~> Pid .
op Cp : Supstate -> Pid .
op Pal : Supstate Pid -> Alevel .
op Sr : Supstate Pid -> Regblock .
op Smar : Supstate Pid -> Regblock .
op Bal : Supstate Int -> Alevel .
op Bap : Supstate Int -> Bool .
op Bac : Supstate Int -> Int .
op Bdf : Supstate Int -> Bool .
op Set-Cp : Supstate Pid -> Supstate .
op Set-Pal : Supstate Pid Int -> Supstate .
op Set-Sr : Supstate Pid Regblock -> Supstate .
op Set-Smar : Supstate Pid Regblock -> Supstate .
op Set-Bal : Supstate Int Alevel -> Supstate .
op Set-Bap : Supstate Int Bool ~> Supstate .
op Set~Bac : Supstate Int Int -> Supstate .
op Set-Bdf : Supstate Int Bool ~> Supstate .
op Get-State : Supstate ~> State .
op Set-State : Supstate State -> Supstate .
op Make-block : Int Alevel DBool Iat Bool -> Block-ipfo .
op bal : Block-into -> Alevel
op bap : Block-info ~> Bool .
op bac : Dleck-info => Iat .
op bdf : Block-info -> Bool .
op set-bal : Block-info Alevel -> Block-iafo .
op set-bap : Block-info Bool -> Block-infe .
op set-bac : Block-infe Iat -> Block-into .
op set~-bdf : Block-info Bool => Block-info .
ep set-bal~-list : Block-info-list Int Alevel -> Block-info-list .
op set-bap~list : Block-info-list Int Bool -> Block-info-list .
op set-bac-liat : Block-info-list Int Iat -> Bleck-info~list .
op set-bdf-liat : Block-info-list Int Bool -> Block-info-list .
op Block-id : Block-info ~> Imt .
op .. : Block-info Block-info-list -> Block-info-list .
op .[) : Block-info~list Int -> Block-into .
op ail-b : => Bleck-info-list .

148

op mnilblock : ~-> Block-info .
op Init-supstate : Pid Regblock MNemory Memory Block-info-list
State -> Supstate .

PP’ : Pid
vars A A’ ngiock
vars Ai Ag' : Alevel .
vars Srl Srl’' : Memory .
vars s-i Sal’ : l.l;-ory:;‘

i il’ : § 351 ~list .

:5'.":lgigsk-m=°._ ontis
vars R! R : Register .

vars St St’ : §tate .
vars Su Su’ : Supstate .

;:: ;1"5 *3!:.330?? :

vars Ne Ne’ : Memory .

vars Re Re’ : Regblock .

sse level comparisons

eq I < Syshi = true .

eq I < Syalo = false .

ses getting elements from a block list

oq Block-id(Make-block(I, Ai, T1, N, T2))= I.

oq (Bi Bil)[I] = if Block-id(Bi) == I then Bi else Bil[l] i .

eq nil-b[I] = nilblock .

ses getting list elements in block list

oq set-bap-list(Bi Bil, I, T1) =

if Block-id(Bi) == I then set-bap(Bi, T1) Bil

else Bi set-bap-list(Bil, I, T1) £i .

eq set-bal-list(Bi Bil, I, 4i) =

if Block-id(Bi) == I then set-bal(Bi, A4i) Bil

olse Bi set-bal-list(Bil, I, Ai) £i .

oq set-bac-list(Bi Bil, I, J) =

if Block-id(Bi) == I then set-bac(Bi, J) Bil

olse Bi set-bac-list(Bil, I, J) fi .

oq set-bdf-list(Bi Bil, I, T1) =

if Block-id(Bi) == I then set-bdf(Bi, T1) Bil

olse Bi set-bdf-list(Bil, I, T1) 2i .

ess internal block access routines

oq bal (Make-block(I, 4i, T1, §, T2)) = Ai .

oq bap(Make-block(Il, 4i, T1, ¥, T2)) = T1 .

oq bac(Make-block(I, 4i, T1, ¥, T2)) = ¥ .

oq bdf(Make-block(I, 4i, T1, N, T2)) = T2 .

eq set-bal (Make-block(I, Ai, Ti, B, T2), Ai’) = Nake-block(I, 4i’, T1, ¥, T2) .
oq set-bap(Make-block(I, 4i, T1, ¥, T2), T3) = Make-block(I, Ai, T3, N, T2) .
oq set-bac(Make-block(I, Ai, T1, ¥, T2), N) = Nake-block(I, i, T1, K, T2) .
oq set-bdf(Make-block(I, Ai, T4, ¥, T2), T3) = Make-block(I, Ai, T2, B, T3) .
sss Read values from supervisar state

oq Cp(Init-supstate(P, A, Srl, Sal, Bil, St)) = P .

oq Pal(Init-supstate(P, A, Srl, Sal, Bil, St), P’) = A[P’] .

oq Sr(Init-supstate(P, A, Srl, Sal, Bil, St), p’) = Se1[P’]) .

oq Smar(Init-supstate(P, 4, Srl, Sal, Bil, St), P’) = SallpP’] .
oq Bal(Init-supstate(P, 4, Srl, Sal, Bil, St), 1) = bal(9il(1)) .
oq Bap(Init-supstate(P, A, Srl, Sal, Bil, St), I) = bap(Bil(1l) .
oq Bac(Init-supstate(P, 4, Srl, Sal, Bil, St), I) = bac(Bil[I1l) .
oq A2 (Init-supstate(P, A, Srl, Sal, Bil, St), I) = vag(Bil(1]) .
g Get-State(Init-supstate(P,A,5rl,Sal,Bil, St)) = St .

sss Yrite values of supervisor state

oq Set-Cp(Init-supstate(P, 4, Srl, Sul, Bil, St), P’) =
Init-supetate(P’,A,Srl,S8al,Bil,St) .

oq Set-Pal(Init-supstate(P, A, Srl, Sal, Bil, 8t), P', N) =
Init-supstate(P, Set-veg(4, P’), Srl, Sal, Bil, St) .

oq Set-Sr(Init-supetate(P, A, Srl, Sal, Bil, St), P’, Re) =
Init-supstate(P, A, Set-mea(Srl, P*, Re), Sal, Bil, St) .

oq Set-Smar(Init-supstate(P, 4, 3rl, Sal, Bil, 5t), P’, Re) =
Init-supstate(P, 4, Srl, Set-men(Sal, P’, Re), Bil, St) .

oq Set-Bal(Init-supstate(P, A, Srl, Sal, Bil, S¢), I, B) =
Init-supstate(P, A, Srl, Sal, set-bal-list(Bil,IN), St) .

oq Set-Bap(Init-supstate(P, 4, Srl, Sal, Bil, St), I, T1) =
Init-supstate(P, A, Srl, Sal, set-bap-list(Bil, I, T1), St) .

oq Set-Bac(Init-supstate(P, A, Srl, Sal, Bil, St), I, N) =

149

Init-supstate(P, 4, Srl, Sal, set-bac-list(Bil,I,N), St) .

oq Set-Bd2(Init-supstate(P, A, Srl, Sal, Bil, St), I, T1) =
Init-supstate(P, A, Srl, Sal, ut-bd!-lut(lxl 1.71), St) .
eq Set-State(Init-supstate(P, A, Srl, Sal, Bil, St), St*) =
Init-supstate(P, A, Srl, Sal, Bil, St’) .

::d:oxt-Cp(P) @« it P == 1 then 2 else 1 £i .

The third object making up the supervisor component of the system is SUP-OPS. This object
contains the definitions of the four privileged instructions provided by the system: Purge, Raise,
Get, Swap. These instructions are defined in detail in [Lev80]; a brief description follows here.

Purge is used to set the contents of 2 memory block to zero and raise its authorization level to
Syshi (effectively making it unusable by a user process). Purging may only take place in privileged
mode, and only when no processes are accessing the block and the block is not attached permanently
to an input/output device.

Raise is used to change the status of a block to ‘active’ and change its authorization level to
match that of the current process. Raise is only performed on a purged block; in effect, Raise
makes a purged memory block available to a user process.

Get is used to give a process access to a particular block. This is done by setting the block’s
access count to one, placing a pointer to the block in the process’ mmu, and setting to zero the
access count of the block that the process’ mmu previously indicated. Get may only be performed
upon blocks that are active, not currently being accessed, and having an authorization level equal
to that of the current process. This prevents a process from using Get to gain unauthorized access
to another process’ data.

Swap is a simple operation; it is used to switch current processes. Swap is responsible for
transferring all of the current process’ user registers (and mmu) into temporary storage so that the
succeeding process cannot manipulate ijt. Any process may call Swap.

It is worth noting that object SUP-OPS contains all the explicit security information. By that
it is meant that the security policy of the system is embedded in the four supervisor operations
(i.e., processes may access only blocks at the same authorization level). It is in this block that
the user could modify security policy. For example, one might wish to permit processes to access
blocks with authorization levels less than or equal to their own; this would require modifying the
precondition for operation Get. One might also like to specify both a read and a write authorization
policy, such as the one given by the conjunction of *-property and simple security. These could also
be accomplished by modifying SUP-OPS (and some modifications to Supstate in SUPERVISOR).

QBJ’:%I_ggruchxcal structure is very useful for localizing security properties.
;ﬂjnoct:ia‘ BOOL .

op Purge : Supstate nn => Supstate .
op Raise : Supssate Iant -> Supetate .
op Get : Supetate Int Iant -> Supetate .
op Swap : Supctnto => Supetate .

vars P P

vurl A A il.
vul 3:1‘&’1' .‘::bioek
vm Sal Sal’ log
lﬂ..ln 2ck- uto-nu .
i: ks™:
3‘ :;::.;. .
""81“"-..1

150

eq Purge(Su, I) =

if (Bac(Su,N) == 0) and (not Bdf2(Su, N)) then

Set-State(Set-Bap(Set~Bal(Su, N, Syshi), N, not Bap(Su,¥)),
Set-state-nen(Get-State(Su),

Clear-nem(Get-state-men(Get-State(Su)))))

else Su fi .

eq Raise(Su, W) =

if (not Bap(Su,N)) then

Set-Bap(Set-Bal(Su, N, Pal(Su, Cp(Su))),

N, true)

else Su fi .

oq Get(Su, ¥, K) =

if Dap(Su,N) and (Bac(Su,N)== 0) and
(Bal(Su,N) == Pal(Su,Cp(Su)))

a:elcc (Set-Bac(Su,N,1),
Reg-val (Mar(Get-state-mmu(Get-State(Su)),K)),

2%
else Su 21 .
oq Swap(Su) =

Set-State(
Se

t-Saar
Set-Sr(Set-Cp(Su, Bext-Cp(Cp(Su))), Cp(Sw),
Get-state-reg(Get-State(Su))),
cp(su),
Get-state-mmu(Get-State(Su))),
Set-state-mmu(
Set-state-reg(Get-State(Su) ,Sr(Su,Bext-Cp(Cp(Su)))),
Regblock-to-mmu(Smar(Su, Next-Cp(Cp(Su)))))).
endo .

6.2.3 User Processes

Both user processes and the final portion of the supervisor will be discussed in this section, as they
are intertwined.

The user process object USER-PROCESS provides the sorts Instruction, Instruction-sequence,
and Process. Instructions are composed of instruction hames and their arguments (zero to three ar-
guments). Once again, overloading is used to permit a ‘variable number’ of arguments in a strongly
sorted system. Instruction-sequences are simply ordered sequences of instructions. Processes are
made up of an instruction sequence. No other information was included in Process at this time, in
the interest of brevity.

In addition to these sorts, USER-PROCESS provides operations to remove an instruction from
an instruction sequence or a process and to read (without removing) an instruction.

The object RUN-SUPERVISOR embodies the supervisor chores which correspond to process
manipulation. This object provides the sort System-state, which consists of the supervisor state
combined with the state of the system processes (only two processes provided in this implemen-
tation). The operations provided by RUN-SUPERVISOR are: Execute (which causes a process
to ‘execute’ one of its instructions), and Step (which returns the System-state after the current
process has executed an instruction). At present, processes are themselves responsible for calling
Swap; however, if the concept of fair scheduling were to be introduced it would be in this module
that the changes would be placed.

obj ‘ﬁﬁiii!?'ériss is
tect B
g’::..':tﬁ SUPERVISOR .

sort tructjon .
sort truction-sequence .

sort truction-name .
sort Process .

151

subsert Instruction < Instructiom-sequence .

op Do-Fetch : -> Imstruction-name .

op Do-Store : ~> Instruction-name .

op Do~Trap : => Instructicn-name .

op Do-Purge : ~> Instruction-name .

op Do-Raise : -> Instruction-name .

op Do-Get : -> Instruction-name .

op Do-Swap : -> Instruction-name .

op Iastr : Instruction-name Int Int Int -> Imstruction .

op Instr : Instruction-name Int Int -> Instruction .

op Instr : Instruction-nsme Int -> Instruction .

op Instr : Iastruction-name -> Instruction .

op e0i : ~-> Imstructiom .

op nil-iastruction : -> Imstruction .

op _. : Iastruction Instruction-sequence -> Instructiom-sequence .
op Get-instructiom : Instruction-sequence ~> Instructiom .

op Remove-instruction : Instructiscn-sequence -> Instructien-sequence .
op Init-process : Instruction-sequence -> Process .
op Advance : Process -> Process .

op Read-instruction : Precess -> Iastruction .

var Iﬂ-" mﬁaémo .

oq Get~-instzuction(In Ins) = In .

oq Remove-instruction(In Ins) = Ins .

oq Remove-instruction(eoi) = eoi .

oq Advance(Init-process(In Ins)) = Init-process(Ins) .

oq Advance(Init-process(eoi)) = Init-process(eoi) .

oq Read-instruction(Init-process(In Ins)) = In .

oq Read-instruction(Init-process(eoi)) = nil-instruction .

.

..............
..............

obj RUN~SUPERVISOR is
protecting INT .
protecting USER-PROCESS .
protecting SUPERVISOR .
protecting SUP-OPS .
protecting ARCEITECTURE .
protecting QPSYS .
sort System-state .
op Select~process : System~state Int -> Process .
op Init-system-state : Supstate Process Process -> Systea-state .
op Run : Systea-state -> System-state .
op Step : Systea-state -> Systea-state .
op Execute : Supstate Inatruction -> Supstate .
vars Su Su’ : Supstate .
vars Sst S;: ’ y;:o-suto .
vars * : Process .
vars ?3‘ 4 :°§m .
oq Select-process(Init-system-state(Su, Proc, Proc’), I) =
i2 I == 0 then Proc else Proc’ fi .
oq Step(Init-system-state(Su, Proc, Prec’)) =
i2 Cp(Su) == 0 then
Init-system-state(Execute(Su, Read-instruction(Prec)),
Mvn.«(h'oe).

Prec’)
01.’:0 Init-systea-state (Execute(Su, Read-instruction(Prec’)),

ec,
Advance(Prec’)) 24 .
oq Execute(Su, Instr(Do~Petch, I, J, [)) =
Set-State(Su, Fetch(Ges-State(Su), I, J, K)) .
oq Rxecute(Su, Instr(Do-Store, I, J, K)) =
Set-3tate(Su, Stere(Get-Ssate(3un), I, J, X)) .
oq Execute(Su, Instzr(Do~Trap, I, J, K)) =
Set-State(Su, Trap(Get-State(Su))) .
oq Execute(Su, Isstr(Do~Purge, I)) = Purge(Su, I) .
oq Rxecute(Su, Inatr(Do-Raise, I)) = Raise(Su, I) .
oq Execute(Su, Instr(Do~Get, I, J)) = Get(Su, I, J) .
oq Execute(Su, Instr(Do~Swap)) = Swap(Su) .
endo .

152

8.2.4 Conclusion

As shown by the example, it is possible to use OBJ3 to specify a simple operating system. An
advantage of using OBJ3 is that one may write a sample term defining the state of the system
(including process information, etc.) and let OBJ3 apply the reduction rules. This permits spec-
ifications to be exercised, which allows the user to decide whether the system the specifications
describe corresponds to the system the user desires. Additionally, the modular form of OBJ3
specifications permits the user to experiment with, for example, different security models within
the system. The hierarchical design of an OBJ3 specification, combined with restricted forms of
importation should also lead to easier maintenance of the specification by reducing the scope of
modifications.

6.3 An alternate security model

e

ses This security object provides the operations
see¢ may-read and may-write, which have been

ses defined to comply with the s-property and
ess gimple security (DoD model)

obj SECURITY is sorts Security .
protecting INT .

protecting BOOL .

subsorts Security < Int .

ess gecurity levels

op top~secret : -> Security .
Op secret : -> Security .

op classified : -> Security .
op contidential : -> Security .

ses gecurity operations

op level(.) : Security -> Iat .

op may-read(_ _) : Security Security -> Bool .

op may-write(_ _) : Security Security -> Boel .

op may-declassify(_ _ _) : Security Security Security -> Bool .
op may-classity(_ _ _) : Security Security Security -> Bool .
op _>_ : Security Security -> Bool [assoc] .

#es oquational specificatien
vars S T U : Security .

sss assign levels

oq level(top-secret) = 4 .

oq level(secret) = 3 .

oq level(classified) = 2 .

oq level(confidential) » 1 .

QS >Tm= level(S) > level(T) .

ses can read dowmn
oq may-read(S T) = S == T or level(S) > level(T) .

153

ees can 'ri.to"\l‘p
oq may-write(S T) = S wa T or level(T) > level(S) .

see reduction/increase of classification level can only be done by t-s level
oq may-declassify(S T U) = level(S) == level(top-secret) and level(T) > level(U) .
oq may-classify(S T U) = level(S) == level(top-secret) and level(U) > level(T) .

endo

154

7 Specification and Testing of Security in FASE

7.1 Introduction

In response to the National Computer Security Center’s demand for Al certified systems, there
is increasing interest in verification systems that can reason about specifications. An operating
system is Al certified if its specifications are verified to be correct with respect to a policy that
limits (1) the objects a process can access based on the security level of the process and object, and
(2) the flow of information between processes based on their security levels; as discussed by Goguen
and Meseguer [GM82b)[GM84b) Feiertag, et al. [FLR77), and Rushby [Rus84], (2) subsumes (1).
A number of verification systems have been developed with this need in mind, several specialized
to carry out security flow analysis.

Clearly, program verification is difficult. However, verification of a specification with respect
to the security flow policy need not be as difficult as verifying a large program such as an operating
system with respect to a specification that fully describes what the operating system does. The
security policy is expressed as follows: Given a sequence of operations invoked by processes at
different security levels, an operation at a given level L1 can interfere with the results of an operation
at level L2 only if L1 < L2. It is difficult to verify a system with respect to this policy, as it entails
a proof that considers every sequence of operations. It can be shown that the verification effort can
be significantly simplified to just showing that the individual specifications of operations satisfy
a policy. However, this method generally requires that the objects have constant security levels
[FLR77). This assumption is clearly unacceptable if the specifications are at a level of abstraction
where objects are shared among users of different security levels — clearly the case for most operating
systems. There are various tricks for converting a specification that allows for mutable security
levels to one in which the security levels are constant, but at the cost of significantly increasing the
cost of certification of the implementation — by verification, testing, etc.

Furthermore, it does not make sense for verification to be the only supported certification
method. Most specifications will contain errors that are better detected by conventional testing.
Furthermore, although not mandated for Al certification, verification of a system'’s specifications
does not guarantee gystem correctness; errors can certainly occur in an implementation. Although
verification of the implementation of complex operating systems is beyond the stamina of human
and mechanical verifiers, verification of abstractions below the top-level operating system interface
is feasible. However, at the more detailed levels the assumptions underlying the mechanical flow
analyzers are no longer valid.

Accordingly, this section presents two implemented tools that can assist in the testing of
operating systems with respect to security policies; the tools can be used, in principle, at any level
of abstraction.

The first tool is based on the Final Algebra Specification and Execution system (FASE)
(KJA83], and would be used to test specifications with real input values. FASE uses an exe.
cutable specification language which is operational in style, elements being represented in terms
of their observable behavior. The style allows for specifications that are highly abstract but to a
great extent executable. FASE is implemented in Lisp and allows the intermixing of Lisp code and
FASE specifications.

To facilitate the testing of an operating system (and its specification), using FASE we have
specified a Secure Resource Manager (SRM), a generic template of an operating system. The SRM
specification can be specialized to a specification of a particular operating system; the SRM is quite
general and handles most features of modern operating systems.

155

The second tool, called the PLANNER, is used to derive a sequence of operations that exhibits
a security flaw, most often a covert channel for information flow. The PLANNER is based on
classical methods of Al planning, specialized to achieve goals concerned with information flow.
The PLANNER attempts to achieve a goal wherein one of a process’ visible registers acquires a
value different from its value in an initial state, the change being caused by a process at a level not
less than or equal to that of the original process. The PLANNER uses a backwards-based search
strategy. To make the search informed, the planner has heuristics that identify the operations
that are most likely to be useful in achieving a goal. The planner can also be used to determine
a measure of the channel capacity associated with a particular sequence of insecure operations
through determining the number of possible values assignable to unbound variables in the plan -
in essence, the uncertainty of the information fiow. The PLANNER is implemented iz Prolog.

Although these two tools can be used independently, they can be used together in two ways.
For example, the FASE tool can be used to determine the initial and final states associated with a
sequence of operations suspected to be a subsequence of an insecure sequence; then the PLANNER
can determine a prefix and suffix to this sequence that achieves the unwanted flow. In addition, the
FASE tool can be used to test partial plans produced by the PLANNER, the plans being extended
by the user if the PLANNER becomes involved in long and fruitless searches.

The tools are demonstrated with respect to a simple operating system specification developed
by Millen [Mil79]. This operating system provides user operations to read and write memory, and
system operations to swap processes, and purge and claim memory blocks, the memory blocks
accessible only indirectly through segment registers. Not surprisingly, the system contains a covert
channel, the heart of which is the flow through the purging of a bloc: at one security level and
claiming of the same block at a different level.

7.2 A generic specification for a secure resource manager

To provide a general tool for the rapid prototyping of secure systems, we have developed a general
specification for a secure resource manager. To illustrate its usefulness, we will show in detail how
it specializes to a specification of the Millen operating system, and describe how the same process
could be applied to obtain specifications of arbitrary complexity.

The specification method we use is that of final algebra specifications, as in [Kam83], [KJA83].
It is less familiar than those usually encountered, which include, for example, algebraic specifica-
tions, and specifications given by defining pre- and post-conditions on operations. Therefore, before
giving details of the general specification and its specializations, we will review the method itself.

7.2.1 Writing final algebra specifications: the methodology

Despite its name, the final algebra specification method is not what is generally considered to be an
algebraic method; rather, it is operational. It represents elements, essentially, by their observable
behavior. Thus, a set S of objects of sort Elt is represented by a map from the carrier of Elt to
Bool; this map determines for each e of sort Elt whether it is a member of S. If the operation for
observing membership is named isin, then the map corresponding to S is the same as the map on
elements e of Elt obtained by holding S constant in the expression isin(S, e).

In general, an element of an abstractly specified sort s will be represented by a tuple of maps
(some of which may be 0-ary, and hence “maps” only by courtesy). Each element of the tuple will
correspond to an operation on elements of sort s in analogy to the way a map from Elt to Bool
corresponds to isin: it is obtained by holding the element of sort s constant while letting the other

156

arguments of the operation vary. The operations corresponding to tuple components of elements
of sort s form the distinguishing set for the sort s. Thus, the distinguishing set of the sort SetofElt
consists of the single operation isin.

To give a final algebra specification of : : apsiract data type, one must first determine the
operations in its distinguishing set. Any chuce of distinguishing set operators leads to a repre-
sentation of elements of the specified sort a: elements of a product space; this representation then
permits one to define the value returned by an operation as a tuple whenever that value is of the
specified sort.

There is no fixed recipe for finding the distinguishing set, but there are some hueristics. In
some cases, what certain components of this product space must be is clear. For example, it was
clear to us in writing our generic specification that any SRM (secure resource manager) must have,
among other things, a State component, a Scheduler component, and a SecPol (security policy)
component. When this happens, it is clear that there will be corresponding distinguishing set
operations that yield these components. In the case of an SRM, we have chosen to call them
stateofSRM, schedofSRM, and polofSRM. In other cases, one thinks in the other direction,
and starts from the operations to get the product space representation. A typical examplie of this
is an abstract sort StackofElt, in which one realizes that two stacks behave the same if one gets the
same things by reading their top and by popping them. This leads to a (recursive) representation
of StackofElt as a product Elt x StackofElt.

As we have indicated, once one has determined the tuple representation of elements of the sort
being specified, one can then define certain of the operations that return values of this sort — the
constructor operations — by giving their results as tuples. All other operations must be defined
in terms of these constructors, the distinguishing set operations, and the visible operations from
other data type specifications, without the use of tuples. A corollary of this requirement is that
tuples can be used to express elements of any sort only inside the specification of that sort.

We finish this subsection with a brief description of the notation and conventions used in our
specifications; these are as in the FASE system as described in [KJA83)

Each specification begins with the name of the sort being specified, followed by a declaration
of operations and arities; this is called the signature section. Aay operations in the AUXILIARY
OPERATIONS section are available only inside the given specification; all other operations are
visible operations, and may be used by programs (including other specifications). Following the
signature section is the list of those declared operations that constitute the distinguishing set.

Distinguishing set operations do not require explicit definitions. To compute the application of
such an operation to a list of arguments, one extracts the (unique) argument of the specified sort,
and applies the corresponding function in its tuple to the remaining arguments (a trivial application
if the tuple function is O-ary). All other operations, however, require definitions. Tuples in these
definitions are indicated by square brackets, their elements separated by commas. 0-ary functions
inside tuples are simply given as expressions. For functions with arguments, the notation “<a, b>
}=>...” can be read as “\ ab. .- ",

With regard to error values, there is an error value of each sort, together with a hidden
element of the distinguishing set that detects it: thus, there is an errSRM and an iserrSRM,
etc.. Function definitions are strict with respect to errors. Occasionally, the specifications will
include definitions of the form iserrType(opType(args)) => -..; these are translated as a prefix
to the definition of opType which, when satisfied, causes opType to return an error.

The following notation is used for Boolean operations: “&” is used for and, “|” for or, “~"
for not, and “=" for eqType for an appropriate choice of Type; these have the usual precedences.

157

Note that in the case of =, except for a primitive sort Type, it is not required that eqType be a
true equality relation, but only that it be explicitly defined and have the appropriate arity (except
that the system forces eqType to correctly detect equality to errType).

7.2.2 Structure of the generic SRM specification

For us, the term “secure resource manager” (abbreviated SRM) includes practically any operating
system. In our attempt to construct a genmeric specification for an SRM, we wished to create a
template which could be elaborated into specifications of many particular systems. We at first
envizioned that such a template would consist of certain fixed, unchanging specifications, with
subsorts being allowed variable specifications whose details would depend on a given application.
Instead, it became clear to us that the specified sorts in the template would fall into three categories.

We will call specifications in the first category “fixed.” These are essentially what we originally
envisioned as fixed, but to make specialization to an application more convenient, we have lootened
the requirement to permit addition of operations derived from other operations in the (combined)
specification. For instance, our Millen example has an added derived operation updateobjState
in the specification of State. In such specifications, the reachable carrier of the specified sort is
fixed relative to those of the sorts in its representation. Hence, any properties proved from the
general specification about all reachable elements of the specified sort, say by structural induction,
will hold in any application.

The second category contains what we will call “fixed representation” specifications. These will
specify a sort of fixed name, and will have a fixed list of distinguishing set operations of fixed arity.
As a result, the representation of the specified sort will be fixed relative to the sorts involved in its
representation. In general, such abstract types will have a fixed set of constants whose definitions
are independent of the application, and sometimes, other operations with fixed definitions. Any
properties that can be proved without structural induction about the elements of such a sort based
on provable properties of the sorts in its representatica will still hold in any application. Two sorts
in our template which have fixed representation specifications are SRMop and SecPol. SRMop has
a fixed null operation NOop, and a fixed “equality” operation eqSRMop (which is not a true
equality, but behaves like one in this and any application in which no two operations can have the
same name). SecPol has default policies noPol and recalcitrantPol.

The third category of specifications contains those having a fixed subsignature. In fixed sub-
signature specifications, at the very least, there must be a sort of the same name as the specified
sort. In general, certain operations of a certain arity also must be present. Other than arity, there
is no restriction on how the operations are defined. Such specifications correspond to the parameter
part of parameterized specifications which occur in other specification methods (e.g., that of OBJ
(GM82a], (GM84b]). Two of the sorts with such specifications in cur template are Object and
Request. Obiect has a fixed operation eqObject, which has fixed arity. Request has the fixed
operations opofRequest and argsofRequest, also with fixed arities.

In any application, there will be subsidiary data type specifications, which we simply refer to
as application specific. The sorts specified need not appear in all applications. Frequently, they
are required in order to define sorts needed in the representation of sorts of fixed subsignature, or,
possibly, of other application specific sorts. Among the application specific sorts present in our
Millen example is Content; it exists only to define part of the representation of sort Object.

Instead of giving the SRM template specification in isolation, we will show its completion for
the Millen example, and indicate which parts belong the the template. Table 1 gives a complete list

158

of the sort specifications in our Millen specification, together with an indication of the kind of the
specification (1 = fixed, 2 = fixed representation, 3 = fixed subsignature, 4 = application specific)
and the abstract representation of each sort. Note that the alternate representations mentioned in
the table as being the “real” representations of certain sorts show the structure of the reachable
part of the sorts.

As we have indicated, the general template consists of parts of those specifications of kinds 1, 2,
and 3. In table 2, we indicate for each of these specifications those operations in the Millen example
that are present in the template. The degree to which they are “present” is determined as described
earlier by the specification kind. For kind 2 specifications, we don't mention the distinguishing set
operations, since they must always be present in the template.

As a further aid to understanding the template specification, figure 6.2.2 gives a graphic rep-
resentation of the structures of sorts in the template baving kind 1 and kind 2 specifications. The
sort at each node in the tree is represented abstractly by the sorts of its children.

As indicated in table 1, the representations of ObjectSet and ProcessSet are different in the
Millen specification from those in the generic specification. In general, for the purposes of rapid
prototyping, it is sometimes convenient to replace a specification by an implementation, for a
number of reasons. In our Millen example, we have actually given smplementations of ObjectSet
and ProcessSet, rather than their ideal specifications (in which sets would be represented as maps
to Bool). These ideal specifications can, in fact, be given in the FASE language, but would require
the use of quantifiers (the operations findinObjectSet and findinProcessSet would use the
quantifier “some” — the existential operator that returns an instance). While many quantified
expressions can, in fact, be executed in FASE [JK86), this execution tends to be slow. Moreover,
for printing all members of an element of a “set” data type, as one frequently wants to do in
an interactive driver for a prototype, it is much more convenient to represent the set as a list.
Thus, we have chosen to do so in the Millen specification. Of course, there is, strictly speaking, a
proof obligation attached — one must verify that the implementation is correct. In this case, the
implementation is actually partial — one cannot create an arbitrary set of Objects, for example,
but only one in which no two Objects have the same Objectld. However, one can show that no
SRMop causes one to attempt to create a disallowed ObjectSet, provided one starts with a State
having a permissible one. Thus, in the context in which the Millen ObjectSet specification will be
used, it can be considered an implementation of the generic ObjectSet ([KA84], [Arc88]).

As a matter of fact, the notion of partial implementation crops up frequently in the context
of specializing the generic template to a specific example. One place, as we have indicated earlier,
is the specification of “equality” operators that are not true equality operators, but are sufficient
in context. Another place is in the use of a History component in the generic SRM. It is there to
facilitate detection of information flow in cases where this cannot be observed simply by looking
at the rest of the State. Provided that the History is never used to affect operations (i.e., in the
definition of any SRMop), but only used to observe the system, there is no reason to implement it
in implementing a system whose specification one has proved secure.

7.2.3 Specializing the template SRM specification

We believe that the usefulness of the template SRM specification lies in how it organizes one's
thinking about the workings of an (almost) arbitrary secure system by factoring the system into
its components that play conceptually different roles, and also in relieving one of having to specify
certain high-level operations. Some of these components (e.g., the Scheduler) will play more im-

159

SORT KIND REPRESENTATION
SRM 1 SRMopSet x State x Scheduler x Interp X SecPol
State 1 ObjectSet x ProcessSet x RequestList x History
SRMopSet 1 SRMop — Boal
SRMop 2 Symbol x (State x ArgList — State)
Scheduler 2 (State — Request) x (State — RequestList)
Interp 2 Request — Request
SecPol 2 (State x Request — Bool) x (State x Request — Request)
ObjectSet 1 Object x ObjectSet

[in generic template, Object — Bool]
ObjectPred 2 Object — Bool
Objectld 3 Symbol x Symbol x Int x Processld

(really {"X} + Int + Int x Processid]
Ob ject 3 Objectld x Content x Level x Int x Int
ProcessSet 1 Process x ProcessSet

[in generic template, Process — Bool |
ProcessPred 2 Process — Bool
Processld 3 Symbol x Int

[really {*System} + Int)]
Process 3 ProcessId x Bool x Level x [Int — Object] x [Int — Object]
RequestList 1 Request x RequestList
Request 3 SRMop x ArgList x Processld
History 3 State x RequestList
ArgList 1 Arg x ArglList
Arg 3 Object x Process x Int

[really Object + Process + Int]
Content 4 Symbol x Int x (Int — Int)

(really Int + (Int — Int))
Level 4 Bool x Symbol

[really {"syshi} + Symbol]
RegAsen 4 Int — Int
ComputeFn 4 Symbol x (RegAssn — Int)

Table 1: Millen specification overview

160

SORT KIND GENERIC OPERATIONS

 SRM 1 (al)
SRMopSet 1 (all but mitreSRMopSet)
SRMop 2 eqSRMop , NOop
State 1 (all but updateobjState)
Scheduler 2 null- and trivScheduler
Interp 2 trivinterp
SecPol 2 no- and recalcitrantPol
ObjectSet 1 (all)
ObjectPred 2 trivOb jectPred
Objectld 3 eqObjectld and precedesOb jectld
Object 3 idofOb ject
ProcessSet 1 (all)
ProcessPred 2 trivProcessPred
Processld 3 eqProcessld and precedesProcessid
Process 3 idofProcess
RequestList 1 (all)
Request 3 opof-, argsof-, procidof-, and nullRequest
History 3 init- and appendHistory
ArglList 1 (all)

| Arg 3 objidof-, procidof- , objidto- , and procidtoArg

All distinguishing set operations of kind 2 and kind 1 specifications are also generic.

For operations in kind 3 specifications, only the arity is generic.

Table 2: Generic template

161

ObjectPred —— (Object — Bool)

ProcessPred (Process — Bool)
Symbol
RM
S oP{(State X Arglist — State)
r— ProcessSet (Process — Bool)
— Ob jectSet (Object — Bool)
— State ~——— Re
| tList — Kequest
Reques L—RequestList
— History

SRM —_ SRMopSet —— (SRMop — Bool)

— Interp (Request — Request)
= (State X Request — Bool)
— SecPol E(State X Request — Request)

Figure 1: Overview of the SRM template specification

162

portant roles in some systems than others, but for any relatively complex system, most of them
will be non-trivial. The template has one further advantage: when it is completed (and in many
cases, only partially completed), it can be used as a rapid prototype of a system (or part of it).

Obtaining the Millen specification: As a concrete illustration of how the template SRM spec-
ification can be useful, we will describe here the ma jor decisions we needed to make in specializing
it to a specification of the Millen system. In the process of specialization, a number of omissions in
the description of the Millen system in [Mil79] became clear, and we had to make some decisions
about how to handle them. We tried to make these decisions so as to allow as much flexibility as
possible in the system objects one might wish to create for testing purposes.

In specializing the template, one first has to make decisions about how to complete the kind 2
specifications. We will take these in order.

The first such specification we encounter is SRMop, which determines what can be in an SR-
MopSet. Here, we soon discovered that the list of operations in [Mil79) needed to be expanded. For
example, a user, not being privileged, cannot directly execute certain commands such as Swap and
Purge (SWAP and PURGE in [Mil79]). The user is also unable to do a Get (GET, in [Mil79)),
not having access to information about free memory blocks. Thus we have added user opera-
tions uSleep, uRelease, and uGet which, in effect, ask the system to request the corresponding
privileged operations. We similarly decided that the privileged operation Raise will normally be
invoked as the indirect result of certain user calls to uGet, and that the privileged operations
ReadX and WriteX (READ and WRITE the X register in [Mil79] — created there to illustrate a
possible way to introduce a security flaw, which we wanted to be able to exhibit) similarly required
corresponding user calls to uReadX and uWriteX, respectively. There are also problems with
the nominally purely user operations uFetch, uStore, and uCompute (FETCH, STORE, and
COMPUTE, in [Mil79]) since a process would have to pass itself (or its name) as an argument so
that the correct memory block and registers to reference can be determined. Thus we also added
correspe nding system (although not privileged) operations Fetch, Store, and Compute.

Our template specification is structured to permit the definitions of operations to be factored
into what the operations do, and the pre-conditions under which the operations will be allowed. In
our Millen example, we isolate the pre-conditions into the SecPol factor of the SRM, particularly
since their enforcement is the system’s attempt to enforce the “true” security policy. Thus, our
operation definitions in the SRMop specification are free of the clutter of the pre-conditions.

The actual definitions of the operations force a number of implementation decisions concerning
what will be the elements of Arg and what some of the operations on Objects and Processes must
be. E.g there must be Int and Objectld arguments, and there must be an operation by which to
observe -he Content of an Ob ject.

The next kind 2 specifications we encounter are ObjectPred and ProcessPred. We see that we
cannot a-id constructors to these data types without knowing more about the structure of Objects
and Pro.esses. Since the Millen specification refers to Processes and memory blocks (which will
be one k:nd of Object) by number, »nd registers (another kind of Object) by name or number, we
decide that both Processes and Objects must have Ids, and that there must be predicates to decide
when a given Object or Process has a given Id. Thus we are also led to create additional data types
called Objectld and Processld, having equality operators. Having done this, we can now defined
the desired predicates that test equality of an Id to a given one.

We next encounter the components of the State. The only component not of kind 1 is the
History (kind 3). Though we are mainly discussing only kind 2 specifications, it is worth looking

163

more closely at History in order to understand the role it plays. In general, a History object
could be less detailed than we make it; since it is there for flow-detection purposes, it is enough to
record whatever information is needed for this purpose. We have chosen to keep essentially all the
information needed to reconstruct all changes of system State. Thus, a History is a State and a
RequestList; initHistory saves the initial State, and appendHistory is used to successively save
Tequests.

There being no explicit mention of scheduling in [Mil79], we have taken the Scheduler to be
trivScheduler.

In general, we see the Interp component of an SRM — the Request interpreter — to be a
mechanism by which the system can trap user requests and interpret them in terms of commands
only known to the system. This seems to us to be the natural way to allow for operations such
as TRAP [Mil79]. The specific element of sort Interp that needs to be included in any Millen
system is mitrelnterp, which changes user Requests into lists of Requests involving “internal”
operations; thus, a user uGet request becomes one of the sequences <Get> or <Raise, Get> of
system requests.

In any SRM, the SecPol component will be the “effective security policy” — actually, the filter
on Requests that attempts to enforce the true security policy — of the system. In operation, it
tests a Request for whether the pre-conditions associated with its SRMop are satisfied. In the
Millen example, these pre-conditions actually simply implement an access policy; in general, they
could make much more complex tests that might even examine the History component of the State.
However, the way we have structured mitreSecPol is typical of the way we would expect the SecPol
of any SRM to be structured: separate SecPols for the operations are combined into the overall
SecPol. The tests made by the SecPol on operations force some further decisions. For exampie, the
fact that the SecPal wants to know the Level of the Process requesting certain operations means
that such information must be obtainable from a Request. We have chosen to give each Request
a Processld component, although it would be sufficient to just use the Level of the corresponding
Process. Other decisions forced by the definition of SecPol are that each Object must have a Level,
and Int representing its access count, and so on.

Obtaining a specification of your pet system: The procedure we used above for the Millen
example can be followed to yield a specification of almost any system. Basically, one completes
the kind 2 specifications; in the process, one finds out the structure of the sorts having kind 3
specifications, and the operations needed in these specifications. In the process of elaborating the
kind 3 specifications, one creates the needed kind 4 specifications.

More particularly, one starts by determining the SRMops — the operations provided in the
system. Any restrictions on the permissiblity of these operations can be factored out and made
part of the SecPol. Which constructors to add to ObjectPred and ProcessPred depend mainly on
the needs of the SRMops, since these operations are the ones that ultimately select Objects or
Processes in order to change (or, in our applicative system, replace) them. There may be cases,
however, in which SecPol, for example, needs particular ObjectPreds or ProcessPreds. The basic
properties of an Object or Process can usually be determined from the high-level description of the
system. Further details that distinguish individual Objects or Processes are determined by what
various SRMops do, what the SecPol needs to test for, and so on. The needs of the Scheduler
and the SecPol, primarily, determine what, besides an SRMop and an ArgList, distinguishes one
Request from another. In the Millen example, a Request had an associated ProcessId; in systems
with a nontrivial Scheduler, Requests may need to have an associated priority instead, or as well.

164

Whether there will be a nontrivial History component in the State depends on what information
flows one wants to test for, and how much information about the previous states of the system one
needs in order to do so.

7.3 Running the specification: the Millen example

As mentioned in the previous section, we attempted to make our Millen specification as flexible as
possible; the reason for this is that one can then initialize the system to any permissible configuration
desired: any number of user processes (numbered starting from 0), any number of registers for any
given user process, any number of memory blocks, etc.. Having done this, we assume that the
system will be initialized in a permissible configuration; we also assume that the driver accepts
requests only if they could occur in the current state of the system. These conditions could be
enforced inside the specification, but it would be cumbersome to do 30, and we have chosen not to.

In the case of the Millen example, the SRMopSet of the initial configuration must be mitreS-
RMopSet. Also, the State of an initial configuration will have only one swapped-in Process, and
no memory block Objects that are referenced by more than one Process; moreover, its ProcessSet
must consist of the systemProcess and zero or more user Processes with ProcessIds numbered
consecutively from 0. Finally, the Scheduler of any initial configuration must be trivScheduler,
its Interp must be mitrelnterp, and its SecPol must be mitreSecPol.

Once an initial configuration is assigned to a Lisp variable, updates to this configuration must
be done by stepSRM, which will never violate the conventions of the system, and newreqSRM.
The driver should accept a new Request only if it comes from a Process of which inofProcess is
true (meaning the Process is swapped in).

Thus, to complete the rapid prototype of the Millen system one should write a driver that
1) creates a permissible initial configuration of the system upon reading input that controls the
variables in such a configuration (such as how many Processes there are, what memory block
Objects of what sizes there are, etc.), 2) takes as input instructions either to call stepSRM or to
call newreqSRM with a new Request, and 3) checks that incoming Requests could in fact arise at
the point they are given as input. As we will explain in the next section, the FASE system provides
a means to make the input instructions convenient to give interactively without the use of the long
function names appearing in the specification, and makes it convenient to write a driver for the
system in Lisp.

Although we have rnot yet written a driver for the Millen system, we have written drivers for
a number of other FASE specifications, and anticipate no difficulties in doing so.

7.4 Advantages of the FASE system

The FASE system [KJA83] is a system for executing final algebra specifications [Kam83] of abstract
data types. We find its use convenient for several reasons. Perhaps the most important reason is that
the specifications are executable whenever they do not involve quantifiers. Even some specifications
with quantifiers are executable, and the system is able to identify a class of such specifications which
it guarantees it can execute (although, for efficiency reasons, it is best to avoid quantification in a
rapid prototype).

There are, of course, other systems for executing specifications, such as OBJ and Affirm
(GHM78]. These mostly involve algebraic (equational) specifications. While such specifications
are sometimes straightforward to write, knowing when one has enough equations (or so many as
to lead to inconsistency) can be a problem. By contrast, we find final algebra specifications to

165

be among the easiest specifications to write. One does not have the problem of proving sufficient
completeness and consistency of equations. Once one has determined the abstract representations
as tuples of elements of various sorts, the definitions of their associated operations are usually
straightforward to derive from verbal descriptions.

In addition, the FASE system is integrated with Lisp, so that one can easily write Lisp drivers
to exercise, and hence test, one’s specifications interactively. One can easily incorporate into a
driver print routines that call operations from the specification in order to display, for example, a
system state represented in some convenient fashion by its observable behavior.

Specification and testing are further much facilitated by a provision for almost arbitrary user-
defined syntax. With an appropriate grammar, one can easily handle the formation of sets and
sequences, as well as coercions, and avoid typing in lengthy (though possibly, as in our example,
descriptive) function names. User expressions are delimited in Lisp by exclamation points, and in
specifications by underscores. Thus, in our Millen example, we can provide a grammar that will
allow us to say at the lisp level:

luser 0 calls uReadX on 2, 5 in M!
to abbreviate
(newreqSRM (mkRequest (uReadX)
’ (appendArglist (inttoArg 5)
(appendArgList (inttoArg 2) nilArgList))
(mkuserProcessld 0))
M)

(note that M in both the above can be a Lisp variable whose value is of sort SRM). While overloading
of operators in the specifications per se is not allowed, it is feasible to a great extent in the grammars,
since the parser is able to do type-checking of all but variables.

7.5 The PLANNER

This subsection discusses an approach to formal testing of an operating system with respect to
a security policy. The goal of the work is as follows: Given specifications for the operations of
an operating system, determine a sequence of operations that effect a disallowed information flow
between a pair of processes, assuming that such a flow exists.

This concept is implemented in a prototype system called the PLANNER, it is implemented
in Prolog, but uses its own searching code to make the search more informed that the basic Prolog
resolution method. It is based on an extension of classical Al planning methods [Nil80).

7.5.1 Detecting flows

Planning (of actions) is concerned with the automatic derivation of a sequence of operations (called
the plan) that achieve a goal. In classical planning, the goal is expressed in terms of two states: an
initial state and a final state, and the sequence of operations is to achieve the final state given the
initial state. Planning has been used to derive plans for moving robot vehicles so as to achieve a
goal such as “refueling a tank.”

The basic approach to planning involves searching combined with unification. The searching
can be forward driven, backward driven, or mixed. The backward approach is as follows. The goal
and initial states are described in terms of predicates on constants and variables. The operations
are specified in terms of preconditions and postconditions, each expressed in terms of variables and
constants. Variables can be bound during the planning process.

166

If the goal state unifies with the initial state, the plan is complete. The collection of operations
is scanned to locate an operation with a postcondition that unifies with the goal state. This
operation might have preconditions; for simplicity, assume there is only a single precondition. The
variables of the precondition might be bound to values as a result of the unification of the goal state
with the postconditions. Then the postcondition, with the variables appropriately bound, becomes
the new goal.

Complications arise when the goal is a conjunction of terms; a conjunction of terms can arise at
any point in the planning process; for example, when an operation is used that has more than one
precondition. Significant research has been devoted to this problem, none of the solutions avoiding
possible long and fruitless searches. One technique is as follows. When encountering a conjunction
of goals, pick one to work on; it might be possible to identify the most difficult of the goals assuming
a measure of difficulty is available. Identify an operation with a postcondition that unifies witk
this selected goal. Then the other goals are regressed backwards through this operation. If the
regressed goals conflict with the preconditions, than the choice of operation or the goal selected to
pursue was flawed, and the procedure backtracks to select a different operation or a different goal.
The planning process continues until the collection of goals unifies with the initial state.

Our security-based PLANNER is similar, but introduces some new concepts to cope with
information flow.

The goal state expresses an insecure flow, and is based on the concept of “interference” of
processes in an operating system. The concept of flow and of a a model “process” is wired-into the
PLANNER to reduce the search space. A more general planner would take an arbitrary security
policy and model of processes, but at the expense of search time.

Assume a goal state in which process P, is running and has read access to a collection of
registers; it is through these registers that a process acquires information. Assume an initial state
in which P; is also running. The contents of a register in the initial state and final state are to differ.
In order to exhibit information flow, the difference is to be caused by an operation by a process P;
whose security level is not less than or equal to that of F;; for simplicity the PLANNER assumes a
category model of security levels: processes at different levels are forbidden to communicate with
each other. Still working backwards, the PLANNER will have two types of goals to achieve:

1. Goals that involve information flow between processes: These goals are achieved by two
operations, one that produces a change in state (e.g., to a register) and the other that causes
a swap of processes. Assuming no single operation satisfies both of these needs, the final plan
must contain these two operations but not necessarily contiguously.

2. “Ordinary” goals as faced by the classical planner. These goals will arise from preconditions
of operations that the planner conjectures will become part of the plan.

These concepts are discussed in the next section with reference to the PLANNER deriving a
plan for insecure flow in the Millen operating system.

7.5.2 Detailed description

The current implementation of the PLANNER consists of a collection of rules written in Prolog.
Prolog was selected in order to take advantage of backtracking and resolution. Use of backtracking
provides a method whereby all possible plans may be considered, and use of resolution permits
planning variables to be left unbound as long as possible. The PLANNER contains four types of
rules: planning rules, difference computation rules, operation rules, and architecture rules.

167

Planning rules: Planning rules are used to manipulate plans. There are two types: those
that eliminate “unnecessary” goals, and those that select the subgoal which will be achieved next.
Unnecessary goals are goals that have already been achieved (as a side effect of solving other goals),
or goals that do not cause any real change in state. For example, the system may have two goals:
causing user A’s register i (denoted R(A4,1)) to contain value X (Goal 1), and causing user A to
become the currently active user (Goal 2). Suppose that in the initial state, user B is active and
user A is blocked, and that only active processes may modify their registers. Further suppose that
the system chooses to work on Goal 1 first, and achieves it via the following plan:

1. Make user A active so that X may be written into R(4,1)
2. Write X into R(A4,1)

Clearly, Step 1 of the plan also achieves Goal 2, so that goal may be eliminated from the system.
Step 1 and Step 2 may be considered subgoals of Goal 1.

The second type of planning rules consists of those rules that determine which goal the PLAN-
NER will try to achieve first. In theory, the goals are achievable in any order: if the PLANNER
determines that it is impossible to achieve all goals at some point in the computation, then it back-
tracks and tries them in a different order. However, in practice this does not always work with the
current version of the PLANNER, since it does not recognize infinite loops in planning sequences.
The PLANNER may attempt to achieve a sequence of goals where the solution to the first goal
“undoes” the solution to the last goal. This may be seen clearly in the following example.

Consider a system containing Goal 1 (described earlier) and Goal 2’: make user B active. This
time, user A is active initially. The following sequence will loop infinitely:

1. Make user B active (to achieve Goal 2).
2. Make user A active (to achieve Subgoal 1 of Goal 1). This, however, undoes Goal 2'.
3. Make user B active (to achieve Goal 2')

Both subgoals could have been achieved if the PLANNER had chosen to complete both of Goal 1's
subgoals before attempting to achieve Goal 2’. In order to avoid this type of looping, the current
version of the PLANNER uses two heuristics: complete all the subgoals of a goal at one time, and
complete the most complicated goals first (these are the goals most likely to undo other goals).
The complexity of a rule is measured by counting the number of subgoals it contains. These two
heuristics are not sufficient to prevent all infinite Joops, so future implementations of the PLANNER
are expected to contain some form of loop detection and escape. Possible methods of achieving this
are discussed in the conclusion.

Difference rules: The PLANNER operates by determining the differences between an initial
state and a final state, and then attempting to eliminate these differences. The PLANNER com-
putes differences by comparing state components in the initial and final states. For example, if
process A's register R(A,3) contained the value X in the initial state and the value Y in the final
state, then the PLANNER would add a register difference of [[A, i, X], (A, i, Y]] to the current
goal list. Every state component has its own collection of difference rules, since these depend upon
the representation of that component.

168

Operation rules: The operation rules embody the semantics of system operations. Each
operation the system provides is described in terms of preconditions and postconditions. For
example, it was mentioned earlier that a precondition of writing into a given process’ register is
the requirement that the process be currently active. A postcondition of writing the value X into
register R is that register R now contains the value X.

Figure 2 is a high-level description of the Fetch operation defined in the Millen system. Oper-
ationally, Fetch reads a value from a specified memory location and places it into a local register.
Fetch is called with four arguments: the user doing the fetching, the register into which the new
value will be written, and the virtual address of the memory block and physical offset within the
memory block of the new value. The with clause in the definition describes the system state that
will result from applying Fetch. The original system state, which is described in the full Millen
system definition given in subsection 6.8, is Memory, Register, Mmu, CurrentUid, WaitingUid ;
thus, Fetch is defined to modify only the Register portion of the system state.

The produces clause describes the actual difference of the operation: the value of register Rn
for User will be changed from its previous value (DontCare) to the new value (New). The value
DontCare indicates that the actual value that was originally stored in register Rn does not affect
the validity of the Fetch operation. The by clause states that this modification is produced by the
architecture rule doStoreReg; this rule is the one that the PLANNER uses to modify its internal
version of state. Architecture rules are described in more detail in a later section.

The with clause introduces the preconditions that must hold before Fetch may actually be
applied. In this example, the three preconditions state that (1) there is a physical memory location
which contains the value New, (2) User has access to that location (i.e., User has a virtual address
corresponding the the physical block address), and (3) User is currently active (i.e., the user id of
the currently active user—CurrentUid—is identical to User). If any of these preconditions does not
hold at a stage in the plan where the PLANNER wishes to apply Fetch, then the PLANNER will
make them subgoals and attempt to achieve them first. If these subgoals cannot be achieved, then
the PLANNER cannot add Fetch to the plan.

Associated with each of the preconditions there is a trigger and a difference clause. These
clauses are used to indicate ways in which the preconditions can be satisfied if they are not currently
true. The trigger clause specifies the particular component of state that must be modified. For
example, if there is a memory location containing the desired information but the current user
cannot access it (i.e., memMap fails), then the PLANNER triggers a change in current user Uid. The
difference clauses describes the exact difference that must be achieved in order for the preconditior
‘to be satisfied.

Operation rules are used by the system to create steps in the plan. As mentioned earlier, the
PLANNER operates by trying to achieve goals which are stated as differences between states. The
PLANNER starts from a given final state and works backward to satisfy the given inmitial state.
(Recall that information flow to a user A is defined here as information that was not available to
A in the initial state but is available to A in the final state. For the Millen system, information is
considered to be available to a user when it is in one of that user’s registers.) When the PLANNER
is working on a particular goal, it searches through the system operations until it finds one which
has a postcondition containing the desired difference. In our example, the PLANNER would select
Fetch to achieve the goal of modifying a register’s contents. In order to use an operation, the
PLANNER must ensure that the operation preconditions hold at the point in the plan where it
is to be used. These preconditions are then subgoals. Note that preconditions do not themselves
contain operations, but only architecture rules (described later).

169

operation Fetch(User, Rn, Mvirtual, Mn) with
state Memory, RegisterOut, Mmu, CurrentUid, WaitingUid
produces Register:
[[User, Rn, DontCarel. [User, Rn, New]]
by doStoreReg(Register, User, Rn, Newval, RegisterOut)
with
precond fetchMemory(Memory, Mphys, Mn, New)
trigger Memory
difference [[Mphys, Mn, undefined], [Mphys, Mn, Newval]]
end ;
precond memMap(Mmu, User, Mvirtual, Mphys)
trigger Uid
difference [[Uid], [WaitingUidl]
end ;
precond egual(CurrentUid, User)
trigger Uid
difference [[Uid], [WaitingUid]]
end

Figure 2: High-level description of Fetch: R(i) — Mem(j, k)

Some complications can arise when an operation has more than one postcondition, since all
of the postconditions of an operation must hold at the stage in the plan following the operation’s
application. If one of the operation’s postconditions does not hold, it is necessary to insert a subplan
between these stages. The initial state of the subplan corresponds to the state that holds after the
current operation is applied (i.e., operation postconditions hold), and the goal state is the one to
which the operation is to be prepended (see Figure 3).

Architecture rules: The PLANNER’s architecture rules are used internally by the PLANNER
to modify its view of the system state. They may also be considered predicates on the state that
are instantiated or revoked depending upon the operation being applied. For example, in a system
containing a collection of registers, there must be architectural rules that will allow the PLANNER
to observe and modify register values within the current state. Alternately, one may consider the
system to contain predicates such as “Register I of user A has value X” and “Register I of user A is
modified to contain value X.” Architectural rules are used within the plan to describe preconditions
and postconditions.

High-level System Description: As was alluded to in an earlier section, the PLANNER is
written in Prolog. However, a high-level translator has been developed so that it is not necessary
for the user to describe entire systems directly using Prolog code. This translator is capable of
generating most of the planning rules and operation rules, and some of the difference computation
rules. It is still necessary for the user to write Prolog code describing most of the difference
computation rules and the architecture rules. Fortunately, there are not many of these and they
tend to be easy to formulate. The full high-level description of the Millen system is given in the
Extended Examples Section 6.8.

170

Prefix of Plan Suffix of Plan

Postconditions: Preconditions:
P(x) P(x)
0(x) Q(x)
"R(x) R(x)
Subplan

Figure 3: Insertion of a subplan

7.5.3 Planner input vs. specification input

There are many similarities between the high-level description of the planner and the generic
specification of the system. Both systems contain an internal state and operation descriptions.
The preconditions of the PLANNER’s operation rules correspond to the security policy described
in the generic specification. The postconditions of the PLANNER's operation rules correspond
to the functional description of the operations in the generic specification. Further, plans found
by the PLANNER are executable by the generic specification (see Figure 4). At present, the
PLANNER does not contain all of the information in the full specification: for example, there
is no explicit history, interpreter or scheduling policy. The PLANNER does, however, contain
history information implicitly in the plan that it produces. An interpreter is not necessary for the
PLANNER, since it uses the expanded version of user operations to generate plans. However, it is
easy to find examples where the scheduling policy of a system can itself be either a source of flow
violations, or may eliminate certain types of low. The only notion of scheduling available to the
PLANNER lies in its ordering of goals, and the preconditions associated with operations.

7.5.4 Examples

An obvious example of insecure flow: This section describes the path which the PLANNER
follows to come up with a very simple example of information flow. The operations available to the
PLANNER include all of those used by the general Millen operating system, plus two that have
been added to induce flow: ReadX, WriteX. The Millen operating system has been expanded to
include a special system register X', which any user may read or modify using the new operations.

7

Security Flaw System

Specification

Plan to
detect flaw

Planner }

Figure 4: Planner and SRM specification

Clearly, flow between users may occur via this special register. To further simplify the example, the
system is assumed to contain only two users, each with exclusive access to two blocks of memory.
At each step in the plan, the system state and the plan state will be given.

The PLANNER is given the goal of finding a plan whereby one user obtains information
originally contained in the second user’s memory. This is stated by defining an initial state where
User 1's block does not contain User 2’s information, and a final state where User 1’s block does
contain User 2's information. Recall that we are working backwards from the final state toward
the initial state.

Initial state:

[R(Userl,i)= R, R(User2,i)= R, Mem(0,k) = M,
Mmu(Userl,m)=0 Mmu(User2,j)=1 Mem(l,k)= Secret
X = DontCare

\ Current user = 2)

Final state:
[R(Userl,i) = Secret R(User2,i)=R; Mem(0,k)= M,

Mmu(Userl,m)=0 Mmu(User2,j)=1 Mem(l,k)= Secret
A = DontCare
\ Current user = 1]
1. Mem(Mmu(Userl,m), k)o # Mem(Mmu(User2,5),k)o# 0
Mem(Mmu(Userl,m), k)= Mem(Mmu(User2,3),k)# 0
To shorten the plan, use User2 as the active process initially and Userl as the active process
in the final state. (The PLANNER will produce a correct pian even if this is not the case.)

172

Possible Plans for Goal 1:
o Store(i,m, k) by Userl, with R(Userl,i) = Mem(Mmu(User2,j),k)o

o Purge(Mmu(Userl,m))

There are two possible plans, since two operations contain a postcondition with a modified
memory. However, Purge can only write 0 into memory and we have excluded 0 as a possible
secret message.

Choose plan Store(i,m,k).

Usery

.. Store(i,m, kj

This sets up a new goal:
. R(Userl,i)= Mem(Mmu(User2,j5),k)o Possible Plans for Goal 2:

e Fetch(i, j, k) with t=0

¢ ReadX(i) with X = Mem(Mmu(User2,j),k)o
(Either possibility will produce a valid plan here. If plan Fetch is chosen, the PLANNER will
attempt to satisfy the precondition that there must be a register within Userl’s register set

containing the value in User2’s block. This produces a longer plan, so for illustration, ReadX
will be chosen.)

Choose plan ReadX(i).
U:rl

... ReadX (i) Store(i,m,k)

This sets up a new goal:

. X = Mem(Mmu(User2,j),k)o Only a WriteX can cause X’ to contain the desired value.
The problem is that the current process cannot do the write, since it does not have User2's
information. Thus, User2 must have done the write into X’ earlier. This sets up a subgoal
that must be achieved before goal 3 can be achieved.

. Current process = User2
Possible Plans for Goal 4:

o Swap
Ouly one possible plan, so choose plan Swap and propagate the goal 3.

Userd User1
.. Swap ReadX(i) Store(i,m, k)

The.e is now a plan for goal 3 which may be applied: Possible Plans for Goal 3:

173

o WriteX
Choose plan WriteX(i). The plan now becomes:

User2 User1
\.. WriteX(i) Swap ReadX(i) Store(i,m, k)

This sets up a final goal:
5. R'(User2,i) = Mem(Mmu(j),k)o
This may be achieved directly by plan Fetch(s, j, k).
Thus, the resultant plan is:

User2 Uirl

Fetch(i,j, k) WriteX(i) Swap ReadX (i) Store(i,m,k)

A moresubtle example of insecure flow: The previous example described an obvious example
of flow that was easily discovered by the PLANNER. In that example, information was directly
transferred from one user to another. This section describes a more complex example of information
flow where information is transferred indirectly. Here, one user will observe one of two possible
results, depending upon the actions of a second user. The operations used in creating this plan are
those described in subsection 6.6, excluding both the Compute operations and the two operations
that modify register X.

Some new notation will be introduced at this point. Objects and operation names may be sub-
scripted with plan stages: R(U,t), Store(s, 7, k). Plan goals such as =, # may also be subscripted
with a user level to indicate that they may only be satisfied by a user operating at that particular
level. For example, R¢(U,1) #, Ro(U, 1) indicates that user [’s register 1 at plan stage ¢ must not
have the same value that it did at plan stage 0, further, the change in value must have been caused
by a user operating at level y.

The following describes the reasoning the PLANNER could use to locate such a security flaw.
The relevant part of the system state is shown in this format:

(Mmu(X,j)=b Mmu(Y,j)=b; Mem(b,k)=M)
R(X,i)= Ry R(Y,i)=R;

1. Ry(X,i) #, Bo(X,3)
The initial goal of the system is to find a plan where user X bas a different value in one
of its registers if user Y takes a particular action (note that this violates the restrictiveness
property). Only user X can modify R(X,i). Possible Plans for Goal 1:

o Fetch(i, 5, k) by user X

Thus, goal 1 will be achieved when the following goal is achieved:

2. Memy_1(Mmu(X,j),1) #, Ro(X,3)
To fulfill this goal, we must ensure that something other than Ro(X,1) is written into the
memory block b, where b; = Mmuy,_;(X, 7). Since this inequality is restricted to be caused

174

by user Y, user Y must have had access to the block at some stage in the plan. The current
plan looks like this:

User X UserY User X
...Swap... Swap... Fetch(s,j k)

User Y cannot modify memory unless it has a pointer to it in its Mmu. Both users cannot
point to memory simultaneously, so user X must have regained access to the memory block
after Y. This sets up a new goal:

. Mmy_3(X,5)=b
Possible Plans for Goal 3:

[Gct(bl,])

The preconditions to this operation require block ; to be active, have no other user accessing
it, and have the proper security level, leading to three new goals:

. by is active
. b; is unused

. b; has level X
Possible Plans for Goal 6:

¢ Raise(b;)

This plan also achieves goal 4. The goals which still need to be achieved are: 2, 5. Possible
Plans for Goal 2:

o Purge(b)

This portion of the plan should take place before user Y performs Swap, since user X no
longer has access to b; here. The current plan and system state at t — 4 are:

UserX UserY User X
p———— . "~ - ~
...Swap...Purge;_4(b1) Swap...Raise(j) Get(b,,7) Fetch(s,j, k)

(Mmu(X,j)= by Mmu(Y,j)=b Mem(b,k)=0)
R(X, t) = R] R(Y, I) = Rz

Note that goa’ 2 has been achieved, since b; now contains 0 after the Purge. It is necessary to
achieve the preconditions of Purge (same as goal 5). This goal is achieved as a side effect of
Get, since that is the only operation which makes blocks available to the system. Additionally,
since we assumed that user X originally had b,, it makes sense to place this plan before user
X's first Swap. Assuming that User X initialized R(i) to something other than 0, the plan
and initial system state become:)

u..:x U .:rY U o:vX
Initialize Get(bs,3) Swap Purge,_4(b;) S waTRaise(7) Get(by,j) Fetch(i,j, ki

175

Mmy(X,j)=b; Mmu(Y,j)=b, Mem(b,k)=X #0
R(X,i)= R, R(Y,t)= R,

A necessary component of this plan is that the system is in collusion with the users, since a
user cannot directly name blocks or force the system to obtain a particular block.

7.6 Conclusions and future directions

Although verification of secure operating systems specifications is important and, hopefully, feasi-
ble, testing is also important and less expensive than verification at discovering flaws. Furthermore,
testing can be used to discover properties of a system aside from those related to security. Accord-
ingly, we have developed two testing tools as a first step towards an automated testing methodology
for secure systems.

The first tool is based on the FASE executable specification langnage. FASE has the advantages
of an algebraic language (abstraction, parameterization, and error handling) but has the intuitive
feel of an operational language. The FASE tool is used to execute specifications with real values. To
facilitate the testing of specifications for a secure operating system, we have written a specification
for a generic secure resource manager (SRM) in FASE, the specifications being a template for a
large class of secure operating systems. Altbough it remains to be determined that the SRM is a
suitable template for many of the operating systems of interest, our initial experience has convinced
us that generic specifications are possible for an operating system and for its security policies; at
the abstract level, operating systems have much in common. Although the generic feature is lost
at lower levels of abstraction, FASE can be used to mix specifications with decisions expressed
imperatively.

The second tool, the PLANNER, is used to derive a sequence of operations that exhibits a
security flaw, usually a covert channel. It is based on classical planning techniques, but extended
to handle goals that express a flow of information between processes. Different from the classical
planners, PLANNER is specialized to the domain of security flow. This specialization bas led to a
system whose performance is better than that achievable with a general planner.

Both the SRM and the PLANNER have been evaluated on small examples. The main example
is an operating system described by Millen, whose purpose is to demonstrate security verification.
Its main operating system features are process switching including swapping, and reclaiming of
memory blocks. Although clearly a toy, it has the basic features of a multiprogrammed operating
system with dynamic allocation of main memory.

Clearly, it is essential to consider larger systems. A suitable next step would be a system based
on MINIX, an operating system with the system calls of UNIX, but a vastly simpler kernel.

We bave several improvements in mind for FASE. Currently, many uses of quantifiers lead to
specifications that are not executable. When FASE is unable to execute a guantified expression,
the user has no choice but to try a different specification. We are considering a feature whereby
a user can define an implementation for a quantified expression (such as through an iterator over
a type). Furthermore, FASE can execute only specifications with respect to real values of input.
Extensions to symbolic evaluation would improve its :mhty in testing, but at the cost of producing
complicated expressions to the user.

The SBRM is an initial step towards a generic operating system specification. It should be
extended to include additional features in support of distributed systems. A good first step would
be generic message passing and remote procedure call.

176

The PLANNER's primitive search strategies work for operating systems that contain relatively
few operations. As the number of operations increases, so does the the probability of the PLANNER
making poor choices in attempting to achieve goals. Heuristics are needed to help the planner in
making choices.

177

7.7 Extended Examples

This subsection contains details of the MITRE system specification used in the planner and speci-
fication details for the Millen example.

7.7.1 Description of Millen system operations

This section describes the modified Millen operating system operations used in the generic specifica-
tion and in the planner. Table 3 contains the commands that only the operating system supervisor
may issue (i.e., requires privileged mode). All block addresses used in these commands are the
physical block addresses. Table 4 contains the commands that only the users may issue (requires
unprivileged mode). All block addresses used in these commands are virtual addresses, which
transformed to physical addresses via the memory management unit (MMU).

The Millen system has been modified so that each user has its own MMU and register set R,
thus eliminating the need for the private storage areas described in the original paper.

In the operations described below, the following notation is used:

b Physical block number

J Virtual block aumber

k Offset within block

R’ New value of R (after operation)

i,m Register index

There are several system variables appearing in the operation tables that have not yet been

discussed. These variables are used in the original Millen specification to enforce security con-
straints. The meaning of each of these is given below:

Cy Current process id

Pal(c) Security (access) level of user process ¢

Bal(b) Security level of block b

Bap(b) Activity status (block in use) of block b

Bac(b) Number of processes with access to block b

Bdf(b) Indicates whether block b is attached to an IO device

The security system used in the Millen operating system relies upon distinct security levels.

These levels are not ordered in the low water mark sense: a user may only gain access to a block at
its own level. Blocks can change level via the system command Purge, which sets the block security
level equal to syshi (a level which no user process can reach). Block levels are also modified by
system command Get(b,n): this command is issued on behalf of a user process, and causes the
block level to match the user security level. In addition, the user’s MMU is set to point to the
block, which has the side effect of releasing one of the user's current blocks.

178

Plan Preconditions Postconditions
Purge(b) Bac(b)=10 Bal'(b) = syshi
~Bdf(b) ~Bap'(b)
mode = privileged VkMem'(b,k)=10
mode = unpriv
[Raise(b) -Bap(b) Bal'(b) = Pal(Cp)
mode = privileged Bap/(d)
mode = unapriv
[Get(b,n) Bap(b) Bad(b) =1
Bac(b) =0 Bad(MMU(n))=0
Bal(b) = Pal(Cp) MMU'(n)=0b
mode = privileged mode = unpriv
Swap mode = privileged Cp=(Cp+ 1)mod P

Table 3: Commands issued by the supervisor

| Plan Preconditions Postconditions
Fetch(i,j, k) mode = unpriv R (3) = Mem(MMU(j), k)
Store(s, 3, k) mode = unpriv_Mem'(MMU(j), k) = R(i)
Computer(m) mode = unpriv R'(m) = f5(UR(m))
Table 4: Commands issued by users
_Thn Preconditions Postconditions
ReadX (i) mode = privileged R'(i)= X
mode = unpriv
WriteX(i) mode = privileged X' = R'(3)
mode = unpriv

Table 5: Commands added to induce a fiow violation

179

7.7.2 Specification of the Millen example

SRM /+ kind 1 =/
/* Secure Resource Manager =/

stateofSRM : SRM -> State

opsofSRM : SRM -> SRMopSet

schedofSRM : SRM -> Scheduler

interpofSRM : SRM -> Interp

PolofSRM : SRM -> SecPol

initSRM : ObjectSet ProcessSet RequestList SRMopSet Scheduler Interp SecPol
-> SRM

newreqSRM : Request SRM -> SRM

stepSRM : SRM -> SRM

DISTINGUISHING SET stateofSRM opsofSRM schedofSRM interpofSRM polofSRM;

initSRM (OB, PR, RL, OP, SCH, INT, POL) =>
[initState(OB,PR,RL), OP, SCH, INT, POL];

newreqSRX (r, M) =
[addregState(r,stateocfSRM(M)),
opsofSRM(M), schedofSRM(M), interpofSRM(M), polofSRM(M)];

stepSRM (M) =>
[stepState(statecfSRM(M) ,schedofSRM(M) ,interpof SRM(M) ,polofSRM(M)),
opsofSRM(M), schedofSRM(M), interpofSRM(M), polofSRM(M)];

180

State /+ kind 1 =/

/* The operation updatecbjState is a derive operation included for
convenience in this application. */

/* This specification contains the definition of the most central operation
of the entire specification, stepState. */

trivState : -> State

initState : ObjectSet ProcessSet RequestList -> State
updhistState : Request State -> State

addobjState : Object State -> State

addprocState : Process State -> State

addregState : Request State -> State

remobjState : Object State -> State

remprocState : Process State -> State

remreqState : Int State -> State

objsofState : State -> ObjectSet

procsofState : State -> ProcessSet

reqsofState : State -> Requestlist

histofState : State -> History

stepState : State Scheduler Interp SecPol -> State
updateobjState: Object Object State -> State

DISTINGUISHING SET objsofState procsofState reqsofState histofState;

trivState =>
(emptyObjectSet, emptyProcessSet, nilRequestList, initHistory(trivState)];

initState (0, P, R) => [0, P, R, initHistory(initState(0,P,R))];

updhistState (r, S) =
[objsofState(S), procsofState(S), regqsofState(S),
appendHistory(r,histofState(S))];

addobjState (o, S) =>
[addObjectSet(o,objsofState(S)),
procsofState(S), reqsofState(S), histofState(S)];

addprocState (p, S) =>
[objsofState(S), addProcessSet(p,procsofState(S)),
reqsofState(S), histofState(S)];
addreqState (r, S) =>
[objsofState(S), procsofState(S), appendRequestList(r,reqsofState(S)),

181

histofState(S));

remobjState (o, S) =>
[remObjectSet(o,objsofState(S)),
procsofState(S), reqsofState(S), histofState(S)];

remprocState (p, S) =>
[objsofState(S), remProcessSet(p,procsofState(S)),
reqsofState(S), histofState(S)];

reareqState (n, S) =>
[objsofState(S), procsofState(S), remRequestlList(n,reqsofState(S)),

histofState(S)];

stepState (S, SCH, I, P) =
let R be getreqScheduler(SCH,S) in
let SS be
updhistState(R,

[objsotState(S), procsofState(S), getreqlisScheduler(SCH,S),
histofState(S)]) in

let RR be getreqSecPol(SS,R,P) in

let RRI be getreqlnterp(SS,RR,I) in

let £ be opofRequest(RRI) and A be argsofRequest(RRI) in apSRMop(f,SS,A);

updateobjState (o1, 02, S) => addobjState(o2,remobjState(o1,S));

182

ProcessSet /* kind 1 =/

/+ This is an implementation of the "ideal" ProcessSet specification that is better
for interactive use in that it speeds the computation necessary to display a
ProcessSet and to perform the operation findinProcessSet. These things could, in
principle, be done by allowing quantifiers (specifically, the "some" quantifier)
in the definitions of findinProcessSet, firstinProcessSet, and restofProcessSet;
such definitions would remain executable in the FASE system. %/

emptyProcessSet : -> ProcessSet

addProcessSet : Process ProcessSet -> ProcessSet
remProcessSet : Process ProcessSet -> ProcessSet
isinProcessSet : Process ProcessSet -> Bool
findinProcessSet : ProcessPred ProcessSet -> Process
firstinProcessSet : ProcessSet -> Process
restofProcessSet : ProcessSet -> ProcessSet
isemptyProcessSet : ProcessSet -> Bool

DISTINGUISHING SET firstinProcessSet restofProcessSet;
emptyProcessSet => [errProcess, emptyProcessSet];

isinProcessSet (p, S) =
i? isemptyProcessSet (S)
ther false
else (p = firstinProcessSet(S) | isinProcessSet(p,restofProcessSet(S)));

addProcessSet (p, S) =>
if isemptyProcessSet(S) | precedesProcess(p, firstinProcessSet(S))
then [p, S]
else if p = firstinProcessSet(S)
then S
else [firstinProcessSet(S),
addProcessSet (p,restofProcessSet(S))];

remProcessSet (p, S) =>
i? isemptyProcessSet(S) then S
else if p = firstinProcessSet(S) then restofProcessSet(S)
else [firstinProcessSet(S;,
remProcessSet (p,restofProcessSet(S)) J;

isemptyProcessSet (S) => iserrProcess(firstinProcessSet(S));

findinProcessSet (P, S) =>
if isemptyProcessSet(S)

183

then errProcess
else let o be firstinProcessSet(S) in
if apProcessPred(P,o)
then o
else findinProcessSet(P,restofProcessSet(S));

isemptyProcessSet (S) s> iserrProcess(firstinProcessSet(s));

184

ProcessPred

/* The sort ProcessPred exists in order to make the definition of
findinProcessSet, useful in the definitions of many SRMops, independent
of the application. /

/+ Only the constructor isidProcessPred is specific to this application. #*/

apProcessPred : ProcessPred Process -> Bool

trivProcessPred : Bool -> ProcessPred

isidProcessPred : ProcessId -> ProcessPred

DISTINGUISHING SET apProcessPred;

trivProcessPred (b) => [<p> |-> b];

isidProcessPred (i) => [<p> |-> idofProcess(p) = il;

185

Process /* kind 3 =/

/# Only the name and arity of the operator idofProcess is part of the template
specification. »/

idofProcess : Process -> Processld

eqProcess : Process Process -> Bool
inofProcess : Process -> Boel

levotfProcess : Process -> Level
memblkofProcess : Int Process -> Object
regofProcess : Int Process -> Object
systeaProcess : => Process

mkuserProcess : Int Level Int -> Process
svapinProcess : Process -> Process
svapoutProcess : Process -> Process
precedesProcess : Process Process -> Bool
isprivileged : Process -> Bool

isregofProcess : Int Process -> Bool
updregProcess : Process Int Content -> Process
updmemblkProcess : Process Iat Object -> Process

DISTINGUISHING SET idofProcess inofProcess levofProcess
regofProcess memblkofProcess;

eqProcess (p1, p2) s> idofProcess(pl) = idofProcess(p2);

systenProcess s>
[sysProcessld, true, syshi, <n> |-> errbject, <a> |-> errObject 1;

mkuserProcess (i, 1, k) =>
[mkuserProcessld(i), false, 1,
<n> |=> if k > n then errObject
else mkregObject (mkregObjectld(i,mkuserProcessId(i)),
errContent,
errlevel),
<a> |=> err0bject];

svapinProcess (p) =>
(idofProcess(p), true, levofProcess(p),
<> |-> regofProcess(n,p), <n> |-> memblkofProcess(n,p)];

svapoutProcess (p) &>

[idofProcess(p), false, levofProcess(p),
<> |-> regofProcess(n,p), <n> |-> memblkofProcess(n,p)];

186

precedesProcess (pl, p2) => precedesProcessld(idofProcess(pi), idofProcess(p2));
isprivileged (p) => idofProcess(p) = sysProcessld;
isregofProcess (n, p) => “iserrObject(regofProcess (n, p));

updregProcess (p, n, c) =
[idofProcess(p), inofProcess(p), levofProcess(p),
<m> |-> if m=n then updatecontObject(regofProcess(m,p),c)
else regofProcess(m,p),
<a@> |-> memblkofProcess(m,p)];

updmemblkProcess (p, n, o) =>

[idofProcess(p), inofProcess(p), levofProcess(p), <m> |-> regofProcess(m,p),
<m> |-> if men then o else memblkofProcess(m,p)]:

187

Requestlist /= kind 1 »/

nilRequestlist : ~> Requestlist

nullRequestlist : Requestlist -> Bool

prependRequestlist : Request Requestlist -> Requestlist
appendRequestlist : Request Requestlist -> RequestlList
concatRequestlist : Requestlist Requestlist -> Requestlist
remRequestlList: Int RequestlList -> Requestlist
hdRequestList: RequestlList -> Request

tlRequestlist: RequestList -> Requestlist

DISTINGUISHING SET hdRequestlList tlRequestlList;
nilRequestlist => [errRequest, nilRequestlist];
nullRequestlist (R) => iserrRequest(hdRequestList(R));
prependRequestList (r, R) => [r, R};
appendRequestlist (r, R) =>

if nullRequestlist(R) then {r, R]

else [hdRequestList(R), appendRequestList(r,tlRequestList(R))];
concatRequestList (R1, R2) =>

if aullRequestList(R1) then R2

else [hdRequestList(R1), concatRequestList(tlRequestList(R1),R2)];
remRequestlist (n, R) =

i gullRequestlist(R) them R

else if n = 1 then tlRequestList(R)
else [hdRequestList(R), remRequestList(n-1,tlRequestlist(R))];

188

Request

nullRequest : -> Request

opofRequest : Request -> SRMop

argsofRequest : Request -> Arglist

oktoRequest : Request State -> Bool
procidofRequest : Request -> Processld
mkRequest : SRMop Arglist Processld -> Request

DISTINGUISHING SET opofRequest argsofRequest procidofRequest;
nullRequest => [NOop, errArglist, sysProcessld]; |
mkRequest (£, A, i) => [f, A, i];

oktoRequest (r, S) =>

ilprivilogod(findinProcoslSot(ilidProcoalProd(procidofnequost(r)).
procsofState(S)));

189

History /» kind 3 =/

/* Only the operations initHistory and appendHistory, with their declared
arities, are part of the template. Their definitions and the remaining
operations are peculiar to this application. s/

startHistory : History -> State

listofHistory : History -> Requestlist

initHistory : State -> History

appendHistory : Request History -> History

DISTINGUISHING SET startHistory listofHistory;

initHistory (S) => [S, nilRequestlist];

appendHistory (r, H) => [startHistory(H),appendRequestlist(r,listofHistory(H))]);

190

ArgList /= kind 1 s/

nilarglist : -> Arglist

nullArglist : Arglist -> Bool
appendArglist : Arg ArgList -> Arglist
hdArglist: Arglist -> Arg

tlArglist: Arglist -> Arglist
nthArglist : Int Arglist -> Arg
lengthArglist : Arglist -> Int

DISTINGUISHING SET hdArglList tlArglist;
nilarglist => [erzArg, nilArglist];
nullArglist (R) => iserrArg(hdArgList(R));
appendArglist (r, R) =

if nullArglist(R) then [r, R]

else [hdArgList(R), appendArgList(r,tlArgList(R))];
athArglist (n, R) =

if n<1 then errirg

else if n=1 then hdArglist(R)

else nthirglist(n-1,tlArglist(R));

lengthArgList (R) =>
if nullArglist(R) then O else 1 + lengthArgList(tlArgList(R));

191

Arg /+ kind 3 »/

/* Arg is an application dependent union type allowing a variety of arguments.
Objectlds and Processlds are guaranteed to be valid arguments in any
application, and hence objidtoArg, objidofArg, procidtoArg, and procidofArg
are part of the template. Int and ComputeFn Args are special to this
application. The get...Arg operators are also special to this application,
but we anticipate that their analogues (which, essentially, select
arguments and do the appropriate coercions) will be useful in defining the
SRMops of most other applications as well. s/

objidtoArg : Objectld -> Arg
procidtodrg : Processld -> Arg
inttoArg : Int -> Arg

fntoArg : ComputeFn -> Arg
objidofArg: Arg -> Objectld
procidofArg: Arg -> Processld
intofArg : Arg -> Int

fnofArg : Arg -> ComputeFn
getblkidArg : Int Arglist -> Objectld
gotublkindArg : Int Arglist -> Int
getoffsetirg : Int Arglist -> Int
getregindArg : Int ArglList -> Int
getuidArg : Int ArglList -> Processld
getfaArg : Int Arglist -> ComputeFn

DISTINGUISHING SET objidofArg procidofArg intofArg fnofArg;
objidtoArg (i) => [i, errProcessld, errint, errComputeFn];
procidtoArg (i) => [errObjectld, i, errlnt, errComputefn];
inttoArg (n) => [errObjectld, errProcesslid, n, errComputefn];
fatoArg (2) => ([errObjectld, errProcessld, errlmt, 1];
getdlkidarg (n, A) => objidofArg(athArglist(n, 4));
getublkindirg (n, A) => intofArg(nthirglist(n, 4));
getoffsetirg (n, A) => intofArg(nthArgList(n, A4));
getregindArg (n, A) => intofirg(nthArglist(n, 4));

getuidarg (n, A) => procidofArg(nthArglList(n, A));

192

getfnArg (n, A) => fnofArg(nthArglist(n, A));

193

Content /= kind 4 =/

/* The sort Content is specific to this application. A Content "is" gither an
Int (this will be the content of a register) or a map from Int to Int (which

will be the content of a memory block). =/

typeofContent : Content -> Symbol

regContent : Content -> Int

blkContent : Content Int -> Int
assignregContent : Int -> Content
assignblkContent : Content Int Int -> Content
isregContent : Content -> Bool

isblkContent : Content -> Bool

DISTINGUISHING SET typecfContent regContent blkContent;

assignregContent (n) => [’Register, n, <m> |-> errint];

iserrContent (assignblkContent (c, n, N)) => typeofContent(c) = ’Register;

assignblkContent (c, n, N) =>

[’Memblock, errlnt, <m> |=> if men then N else blkContent(c,m)]:

isregContent (c) => typeofContent(c) = ’Register;

isblkContent (c) => typeofContent(c) = ’Memblock;

194

Level /* kind 4 =/

/* The sort Level is particular to this application. It is essentially the
union of the sort Symbol with a one-element set (containing syshi). The
intent is to have a distinguished highest Level and a selection of other
othervise incomparable Levels. »/

eglevel : Level Level -> Bool

syshi : => Levael

mkLevel : Symbol -> Level

symofLevel : Level -> Symbol
issyshi : Level -> Bool

DISTINGUISHING SET issyshi symoflevel;
syshi => [true, errSymbol];
nklevel (s) => [false, s];

eqlevel (11, 12) => issyshi(l1)=issyshi(12) & symoflevel(l1)=symofLevel(12);

195

RegAssn /+ kind 4 s/
/+ The sort RegAssn is specific to this application. Its function is to

facilitate the definition of elements of sort ComputeFn, which permit
user processes to do computations on the contents of the registers available

to them. »/

retrRegAssn : Int RegAssn -> Int
procRegiAssn : Process -> RegAssn

DISTINGUISBING SET retrRegAssn;

procRegAssn (p) => [<n> |-> regContent(contofObject(regofProcess(n,p)))];

196

ComputeFn /* kind 4 */

/* We have defined only the most obvious of the possible elements of sort
ComputeFn here. Clearly, one could alsoc define any desired arithmetic
operations. */

nameofComputeFn : ComputeFn -> Symbol

evalComputeFn : ComputeFn RegAssn -> Int

selectComputeFn : Int -> ComputeFfn

constantComputeFn : Int -> ComputeFn

DISTINGUISHING SET nameofComputeFn evalComputeFn;

selectComputeFn (n) => [’select, <R> |-> retrRegAssu(n,R)];

constantComputeFn (n) => [’constant, <R> |-> n];

197

SRM /+ secure resource manager =/

OopsofSRM : SRM -> SRMopSet

stateofSRM : SRM -> State

schedofSRM : SRM -> Scheduler

interpofSRM : SRM -> Interp

polofSRM : SRM -> SecPol

initSRM : SRMopSet ObjectSet ProcessSet RequestList Scheduler Interp SecPol
-> SRM

newreqSRM : Request SRM -> SRM

stepSRM : SRM -> SRM

SRM ::= Request in SRM |-> newreqSRM(Request, SRM)
| next SRM |-> stepSRM(SRM)

/* Note that a variable can parse as an SRM, so that this simple grammar is
not useless. =/

198

Request

nullRequest : -> Request

opofRequest : Request -> SRMop

argsofRequest : Request -> Arglist
oktoRequest : Request State -> Bool
procidofRequest : Request -> Processld
mkRequest : SRMop Arglist Processld -> Request

Request ::= Processld calls SRMop on Arglist
|=> mkRequest(SRMop,Arglist ,Processld)

199

Processld

sysProcesald : -> Processld

mkuserProcessld : Int -> Processld
typeofProcessId : Processld ~> Symbol
intofProcesslid : ProcessId -> Int

eqProcessld : Processld Processld -> Bool
precedesProcessld : ProcessId Processld -> Bool

Processld ::= user Int [-> mkuserProcessld(Int)

SRMop

pameSRMop : SRMop -> Symbol
apSRMop : SRMop State Arglist -> State
eqSRMop : SRMop SRMop -> Bool
NOop : ~> SRMop

okargsSRMop : SRMop ArgList -> Bool
uStore : -> SRMop

Store : =-> SRMop

uCompute : -> SRMop

Compute : => SRMop

uFetch : -> SRMop

Fetch : =-> SRMop

uReadX : -> SRMop

ReadX : -> SRMop

ulriteX : -> SRMop

WriteX : -> SRMop

uRelease : -> SRMop

Purge : -> SRMop

uGet : -> SRMop

Raise : -> SRMop

Get : =-> SRMop

uSleep : -> SRMop

Swap : =-> SRMop

SRMop ::= uStore |-> uStore()

| Store |-> Store()

| uCompute |-> uCompute()
| Compute |-> Compute()
| uFetch |-> uFetch()

| Fetch |=> Fetch()

| uReadX |-> uReadX()

| ReadX |-> ReadX()

| uWriteX |-> uliriteX()
| WriteX |-> WriteX()

| uRelease |-> uRelease()
| Purge |-> Purge()

| uGet |=> uGet()

| Raise |-> Raise()

| Get |=> Get()

| uSleep |=-> uSleep()

| Swap |-> Swap()

201

Arglist

nilArglist : -> Arglist

nullArglist : Arglist -> Bool
appendArgList : Arg Arglist -> Arglist
hdArglist: Arglist -> Arg

tlArglList: Arglist -> Arglist
athArglist : Int Arglist -> Arg
lengthirglist : Arglist -> Int

AUXILIARY NONTERMINALS X

Arglist ::= nil |-> nilArgLlist()
IX1->X

X ::= Arg |-> appendArgList(Arg,nilArglist())
| X , Arg |-> appendArglList(Arg,X)

Arg

objidtoArg : Objectld -> Arg
procidtoArg : Processld -> Arg
inttoArg : Int -> Arg

fatoArg : Computefn -> Arg
objidofArg: Arg -> Objectld
procidofArg: Arg -> Processld
intofArg : Arg -> Int

fnofArg : Arg -> ComputeFn
getblkidirg : Int Arglist -> Objectld
gotublkindArg : Int Arglist -> Int
getoffsetArg : Int Arglist -> Int
getregindArg : Int Arglist -> Int
getuidArg : Int Arglist -> Processld
getfnArg : Int Arglist -> Computefn

Arg :

:« Int |-> inttoArg(Int)

| ObjectId |-> objidtoArg(Objectld)
| ProcessId |-> procidtoArg(Processld)
| ComputeFn |-> fntoArg(ComputeFn)

203

7.8 High-level description of simple PLANNER

program
state Memory, Registers, Mmu, RegX, Uid, WaitingUid
begin Memory
doStoreMem(Memoryin, Mb, M1, Rn, Memoryout) ;
doPurge (Memoryin, Memoryout) ;
doRaise(Memoryin, Mb, Memoryout) ;
doGet (Memoryin, Mmuin, Mb, MMUid, Memoryout, Mmuout)
end;

begin Registers
doFetchMea(Memoryin, Mb, M1, Rn, Memoryout) ;
doReadX(Memoryin, Mb, M1, Memoryout)

end;
begin RegX
doWriteX(Xin, Newvalue, Xout)
end;
begin Mmu
doGet(Memoryin, Mmuin, Mb, MMUid, Memoryout, Mmuout)
end;
begin Uid
doSwap(Uidln, WaitingUidIn, UidOut, WaitingUidOut)
end;

begin WaitingUid
doSwap(UidIn, WaitingUidIn, UidOut, WaitingUidOut)
end

operation Store{(Mb, Mnm, Rn) with
state MemoryQut, Registers, Mmu, RegX, Uid, WaitingUid
produces Memory: [[Mphys, Mn, undefined], [Mphys, Mn, Newval]l]
by doStoreMem(Memory, Mphys, Mn, Newval, MemoryOut)
with
precond fetchReg(Registers, Uid, Rn, Newval)
trigger Register
difference [{Uid, Rn, undefined], [Uid, Rn, Newval])
end ;
precond memMap(Mmu, Uid, Mphys, Mb)
trigger User
difference [[Uid]), [WaitingUidl)
end

end;

operation Fetch(Mb, Mn, Rn) with
state Memory, RegistersOut, Mmu, RegX, Uid, WaitingUid
produces Registers: [[User, Rn, undefined], [User, Rn, Newval])
by doStoreReg(Registers, User, Rn, Newval, RegistersOut)
with

precond equal(Uid, User)
trigger Uid

difference [[Uid], [WaitingUid]]
end ;

precond doFetchMem(Memory, Mphys, Mn, Newval)

trigger Memory

difference [[Mphys, Mn, undefined], [Mphys, Mn, Newvall]
end ;

precond memMap(Mmu, User, Mphys, Mb)
trigger Uid
difference [[Uid], [WaitingUid])
end

end;

operation ReadX(Mb, Mn) with
state MemoryOut, Registers, Mmu, Xout, Uid, WaitingUid
produces Memory: [[Mphys, Mn, undefined], [Mphys, Mn, Xout]]
by doStoreMem(Memory, Mphys, Mn, Xout, MemoryOut)
with
precond equal(RegX, Xout)
trigger RegX
difference [[RegX], [Xout]]
end

end
end

205

8 Axiomatic Verification of Concurrency in SR

In the two-tier methodology that we are developing, the axiomatic tier provides the means to
perform concrete verification of the correctness of actual running implementations. In this regard,
our methodology is more complete that the methodologies presented in the current literature, in that
the majority of current researchers are focusing solely on the level of specification of concurrency,
with no solid links to operational code.

The foundation necessary to verify operational code is the formal semantics of an operational
programming language. The next two subsections present our current work on building this founda-
tion for the SR programming language. The first subsection describes the syntactic enhancements
that are currently being added to the SR language to support verification. The second subsection
then outlines our most current version of the axiomatic semantics of SR. These semantics provide
the basis for completing our two-tiered methodology.

8.1 The Syntax of Annotated SR

SYSTEM

system
systemcomp
globalcom
globaldec!
rescomp
sepspec
specandbody
sepbody
abstractspec
concretespec
speccomplist
speccomp

importclause
extendclause
resbody
bodycomp
initial

final

block
blockcomp
decl

TYPES

typedesig
typedec]
typedefn
typerestr
enumdefn

- stringdefn
recorddefn
ptrdefn
capdefn

e @3 es se e84 Se 24 e s ee zs e

s se 8¢ o4 s ss er sz e

ee 46 oo s e 'li s ss es

(systemcomp // “;") *

globalcomp | rescomp | blockcomp | SYSINVARIANTS

“global” id (globaldecl // “;")* “end” | id]

constdecl | typedecl | optypedecl

abstractspec sepsp~c | specandbody | sepbody

concretespec “separate”

concretespec resbody “end” | “id” }

“body” id resbody “end” [“id"]

“resource” id speccomplist “end” [id |

“resource” id [speccomplist “body” id | (" (parmspec [/ “;")* “)”
(speccomp [/ 4™)*

importclause | extendclause | operdecl | constdecl | typedec! |
optypedec] | EQNDECL | SPECRESTR | RESINVARIANT | SPECVARDECL
“import” (id // 4,)*

“extend” (id // 4,)*

(bodycomp // “;")* “end” [id]

initial | final | procdecl | processdec! | importclause | decl
“initial” block “end” [“initial”]

“final” block “end” [“final”]

(blockcomp “;”) *

decl | stmt | importclause

typedecl | constdecl | vardec! | optypedecl | operdec!

typedefn | var

“type” id “=" typedefn | typerestr]

enumdefn | stringdefn | recorddefn | ptrdefn | capdefn
“{ public }" | “{ private }"

“en“m" “(” (l‘d // “,”) . ll)’l

“string” “(” expr “)* | “string (*)"

umn u(n [Um'm'tVu // u;n] u)‘

“ptr” typedesgi

“cap” var | “cap” operspec

207

 DECLARATIONS

vardec]
constdecl]
vardefn

initvar
uninitvar
varname
subscripts
range
SYSINVARIANTS
RESINVARIANT
BQNDECL
SPECRESTR
SPECVARDECL

OPS, PROCS, etc

optypedecl
operdec]
operclass
opername
operspec
parmspec
returnspec
oprestr
parmkind
procdec]
processdec]
JOSPEC

STATEMENTS

stmt
segstmt

skipstmt
stopstmt
extcode
asgastmt
incstmt
decstmt
swapstmt
ifstmt
ifstmtl
dostmt
dostmt1

n'o s e o'n -'n ui ®s o8 #% o8 ss s+ ee

(A I A I T

“var” (vardefo // “,")

“const” (initvar // “,")

ipitvar | unipitvar

varpame “:=" expr | varname “:" typedesig “:=" expr

(varname // “,”)* “:" typedesig

id | id subscripts

u[n range u]n l u[n range u’n range u]n

expr | expr “:” expr | “*" | “*" “" expr | expr “: *"
PORMULA *

PORMULA *

“eqn” [“let” | vardec] — constdec]]] (EQUATION;)® “nqe”
GENERATORS | PARTITIONS | CONSEQUENCES | EXEMPTS
vardec]

“optype” id [“="] operspec .
operclass opername operspec | operclass opername “:" id
“op” | “external”

id | id subscripts

“(" [Parmspec [/ “;” | “)" [returnspec] [10SPEC] oprestr

[parmkind) uninitvar

“returns” varname “:” typedesig

“{call " |“[send]” | “[call ,send]” | “[send , call |”
“var” | “val” | “res” | “ref”

“proc” id “(" [id // %,) “)" [“returns” id] block “end” | id)
“process” id block “end” [id]

PRE | POST | LIVE | PAIR | RELIES | GUARANTEES

segstmt | interstmt

skipstmt | stopstmt | asgnstmt | swapstmt | incstmt | decstmt |
ifstmt | dostmt | forallstmt | exitstmt | pextstmt | assert
u.kipn

“stop” [exitcode)

-(w expr n)n

var “:=" expr

var “+-"

var %~

var “:=:" var

“if* guardedcrnd “B" | “if” guardedemd ifstmtl “8”

“0" guardedcmad | “[)” guardedemd ifstmtl | elsecmd
“do” guardedemd “od” | “do” guardedemd dostmtl “od”
“0" guardedcmd | “[]” guardedemd dostmtl | “[J" elsecmd

208

guardedcmd
elsecmd
forallstmt
exitcmd
nextcmd
quant
direction
interstmt
invocstmt
callstmt
sendstmt
implstmt
inputstmt
receivestmt
returnstmt
replystmt
GENERATORS
PARTITIONS
opercmd
operguard
interquant
operindication
opersubscripts
syncexpr
schedexpr
rescontrolstmt
createstmt
location
destroystmt
concstmt
concemd
concinvoc
postproc

EXPRESSIONS

PORMULA
expr
orexpr
aandexpr
relexpr
shfexpr
addexpr
mulexpr
simpleexpr

ae ss se 8 o8 s as s s oi a6 ee o8 se es ss se ss €8 64 &0 es 60 & e “s e e+ as s e o8

. -i -'i %6 e oo so o0 ge

expr “— >” block

“else — >" block

“fa” (quant // “,”) “~ >" block “fa”

“exit”

“next”

id “:=" expr direction expr [“st™ expr]

“to” | “downto”

invocstmt | implstmt | rescontrolstmt | concstmt
callstmt | sendstmt

var | “call” var

“send” var ;

inputstmt | receivestmt | returnstmt | replystmt
“in" (opercmd // “[J") “ni”

“receive” operindication “(" [var // “,”] “)”
“peturn”

ureplyn

operspec “generated by” 777

operspec “partitioned by” 77?

[interquant | operguard [schedexpr] “— >" block
operindication “(" [id // “,”] “)” [“returns” id] [syncexpr]
“(" (quaat // %") *)"

id | id opersubscripts

u[n expr u]n l u[n expr u’u expr u]u

“and” expr

“by” expr

createstmt | destrystmt

var “:= create” id “(" [expr // “,"] “)” [location]
“on” var

“destroy” var

“co” (conccmd // “//”) “oc”

[interquant | concinvoc | postproc |

callstmt | asgnstmt

“— >” block

expr /* Evaluate with set operators on specvars */
opexp | orop expr |

andexpr | aadop orexpr |

relexpr [relop and expr |

shiexpr [shfop relexpr |

addexpr [addop shfexpr |

mulexpr | mulop addexpr]

[unop) simpleexpr

literal | var | arrayaggr

209

HYPER LITERALS

arrayaggr
vectorelem

LITERALS
literal

VARIABLES

var
ob jnamelist
objname
indicies

slice
args

OPERATORS

unop
mulop
addop
shfop
relop
orop

cs as

“(" (vectorelem // “n) u)n
[u[n expr a]n] expr

oumber | stringliteral | “true” | “false” | “null” | “noop”

objoamelist [args |
(objname // “.”)
id indices “*" * |id “°" *

“[* expr “|” | “[" slice “]” | “[” expr “,” expr “]” | “[" expr “," slice

u[n sb'ce a‘n expr u]n
expr “,n expr I expr u, ®n I ux .n expr
“"lexpr// 4] %)

u_ll |ll'l l“not” Iu@" Iu?”
“sn lu/n lu%"
L

u<<n lu>>n

u___n |u!=n Iu=n Iu>=n lu>n I«<=n lu<n [gandry la&n

“orﬂ I ul" l uxorﬁ

210

8.2 The Axiomatic Semantics of SR

operation invocation

call_statement

< b,p> (P! P’ 2,59} call op_denotation (actual) {R)

send_statement

< b,p> (P | p’jnacml) gend op_denotation (actual) {P)
where actual = = (val_args, res_args, var_args}

P is the precondition of a call/ send
P’ is used in satisfaction proof

e evaluating the argument expressions
e serviced by a proc — create new process
e serviced by an input statement — queue the invocation

e invocations of the same operation by the same invoking process are queued in the order
they are invoked.

e A call statement terminates when the operation has been serviced and results have
been returned

e A send statement terminates when a service process has been created or when the argu-
ments have been queued.

211

proc

proc oper (in_formal) returns result S end

input_statement

in op; (in_formal) returns result; and B; by E; = S; ' ni

e class = operations implemented by the same input statement

e For a given class, at most one process at a time can be selecting an invocation to ser-
vice or appending a new invocation. The access is in FCFS order.

e input statement delays the executing process until some invocation is selectable

e an invocation is selectable if the boolean-valued synchronization expression in the
corresponding operation guards is true

e no scheduling expression — the oldest selectable invocation is serviced

e scheduling expression — the oldest selectable that also minimizes the scheduling
expression is serviced

e both synchronization and scheduling expression can reference invocation arguments

e termination: the selected block terminates, return is executed, or exit/next is executed
(if input statement is within an iterative statement)

e results are returned to the caller when the input statement terminates or when a reply
statement is executed

e reply/ retum is associated with a smallest enclosing input statement or proc
e a process that executes reply continues executing with the statement following reply.
in request(time) and free by time — free ;= false

0 release() —» free := true
nl

212

{Q) proc oper (in_formal) returns result {T} S {X] end (W)

{Q} in op; (in_formal) returns resulr; and B; by E; — {T;} S, (X;} 0" ni (W}

{U) or {(U;} is assertion about invocation's termination

proc

(< bp> (THE) S (X} N “r_aux) > X = 1),
Y jk : (< jk> (V] reply (V] /v k= p/\ “r_aux) = (V= Ui,
Vjk : (< jk> (V] return {false} /\ k= p /\ “r_aux) = (V = (U N\ X))

< b,p> {Q] proc oper (in_formal) returns result S end {W)

input_statement

Yi:X; = W,

< bp> (T';! Ti;:;:l } S (Xi}\Tr_aux;) - X; - U;),

v ik :(<jk> {V)reply (VINk=p; N“r aux;)) = (V- Ui),

v jk : (< jk> (V) return {false} \ k= p; '\ “r_aux; = (V= (U; '\ X,)),
Y jk i (< jk> (V] next {false}/\ j= b\ “r_agux;) = (V= U)),

vk (< jk> (V) exit {false} N j= b A "7 aux;) = (V= U;)

< b,p> {Q] in oper; (in_formal) returns resuls; and B; by E; = S; ' ni {W}

213

RPC rule

® Satisfaction proof
For every call ¢ and matching proc (including process), prove Saz,,. (c.proc) valid.
Sat,,. (c.proc):
P-P)
NQAP) - TSR
N U N P) = RagFo e
NEP'NAX) > W

® Noninterference Proof

For every assignment statement S and assertion I parallel to S, prove
Nl (S.D) valid.

Nlg (S.D:
{1\ pre(S)} S {1}
For every call ¢ and matching proc and every assertion I parallel to both ¢ and
proc, prove NI_Sat,. (c.proc]) valid.
NI_Sa,,. (¢, proc, I):
a NQNAPY = IZLTH NQANP N U) - IZFER
For every assignment statement S of proc, and assertion I in proc that references
global variables, prove Ni,,,, (S.):
N’u[f (so D:

(I pre(s)) S (1)

214

Rendezvous rule
s Satisfaction proof

For every call ¢ and matching op; of input statement, and every op; of the same
input statement, prove Sat, 4, (c,0p;) valid.

Sat g4y (C. 0p;):

® /\ “10ck(Pendingeiqss (op,)) = P’ ﬁ:‘:‘,’.a.(.,,)

N QNP N " lock(Pendingeias op,)) = T, :_.:.::,'::‘:m“m))
N QNP N lock(Pendingeias (op,y) — false

NN C) o i tao P o™
NTN-C)- Q::a.m“""‘)

nE@E A U)-»R:J‘::, ,,:,:l e

NP NX)= W

in_formal,
where C= B, _actualy,

>}

Jauul
N (9 inv (opl) Buu ‘cunl., ;) - pos(mv (Wa »> pos(inv(op,)

in _j in _jonul in Jauul
Jmal n J .
V (Eiin_scstipnri,= Eiin .a..:.:', ,/\ posGnv’(op;))> posnv(op;))))

n_formal
I\ (9 inv(op;) : pos(inv(op;))< pos(inv(op;)) = ~B; -.._.a..:.._j,)

¢ Noninterference Proof

For every assignment statement S and assertion 1 parallel to S, prove Nl .. (S.)
valid.

Nipge SI): {1\ preS)} S (1}

For every call c and matching oper of input statement and every assertion I parallel
to both ¢ and oper, prove N/_Sat,4, (c, oper.l) valid.

NI_Sat, g, (coper]):

n Jund.’

os_oct t H.-.
a N Q AN P) - ’h.‘guh Mb"“‘_ ;)

NANP "U)-”..Jm iy,

215

Dynamic process creation rule
* Satisfaction proof

For every send s and matching proc (including process), prove Sazp,,. (s.proc)
valid.

Salpa (s.proc):
PoPANPNQTELZINXS W
* Nopinterference Proof
For every assignment and send statement § and every assertion I parallel to S,
prove Nl (S.) valid.
Nlpoe (SI: {1/\ pre(S)} S (1)
For every proc/process heading S and every assertion I parallel to S, prove
NI_Saz,, (S.D) valid.
NI_Satpe (SN): (/N pre(s)) — I-Lom¢
For every assignment statement S of proc, and assertion I in proc that references
global variables, prove NI, (S.I):
Nl (S, D):

{1 pre(S)} S (I}

216

Message passing rule

* Satisfaction proof

For every send s and matching op; of input statement, and every op; of the same
input statement, prove Sat,,, (s.0p;) valid.

Sat,,, (s. 0p;):

. pudug‘_(,,
P /\ “lock(Pendingeias (op,y) = P’ POALiA Gt e, ,...(,,,)
,in_formal_ Jod(}'udug‘_‘.))
N (Q /N " lock(Pending.iqe (op,))) = y ‘“""-«p yirue

N (Q /N 10Ck(Pendin g iqey (op;) — false
n_jmd Jod(rudug -, plomding, o,
NT NC) = Tiin sctual oy, ,.mn,ru:“_(,)~|uv(ap,).

lock(Pending,,
NETNTC) S Orae it
NP NX)= W

where
in_formael
C= B wul.:;‘,
" _jalud .
N (Y inv’ (0p;) : Biin_sctualy,: ;,, = pos(inv'(op;))> pos(inv(op;))
in_formal in_formal n _janul
V B;in_ectual, .;,, = (Eiin_esctual,, .' > E; .a-:.,(;,
.Jm. “J -»; N Y .
V (B in sctualys iy, = Eiin stutlmgy, ! POSANV'(0P;))> poS(inv(op;))))

in_f -
/\ (7 inv(op;) : pos(inv(op;)< posAnv(0p:)) = “Bjin sctuclun sy)

®* Noninterference Proof

For every assignment and send statement S and every assertion I parallel to S,
prove Nl (S.J) valid.

Nlpg SI): (1/\ pre(S)) S (I}

For every operation indication or reccive S and every assertion I parallel 1o S,
prove NI_Sat,,,, (S.J) valid.

oy,

in_fom
Ni_Sat,,, (SJ): (1/\ pre(S)) = / in_octutlyy (o,

217

number assignment rule

Each statement is attached with two sequence numbers delimited by < > . band p
are rvalues, b_aux and p_aux are auxiliary variables of type int, r_aux is auxiliary vari-
able of type bool.

<bp> S

<bp> S;:<b_aux++,p> S3:<bp> 3
where S® §;;: 52 S5y

S and S5 are not one of the following: do, fa, and co
S , is one of the following: do, fa, or co.

<bp> ifB;, =S, 6

<bp> ifB; »<bp> §; O'fi

<bp> do B, =S, I od

<bp> doB, = <bp> §; I od

wherey= x; V ...V x,

proc oper (formal) returns arg S end

proc oper (formal) returns arg < b_aux++, p_aux++> S end

A

process oper S end

process oper < b_aux++, p_aux++> S end

< b,p> in oper; (formal;) returns r; and B; by expr; = S; [I' ni

< b,p> in oper; (formal;) retumns r; and B; by expr; —
< bp_sux++> §; ([ni

218

if_statement

< b.p> [P n B,‘ } si {Q}o
® 1\ -BB) - Q

<bp> (P)ifB; = S, [' fi (Q)

<bp> (PN B;}S; Q)
<bp> (PN "BB} S, {Q}

<bp> (P}ifB;, =» S, [" else = S, £ (Q)

whereB,- = {B,,Bz, ...,B.-]]
BB= B,V 82\’ w Vv Ba-

do_statement

< bp> {INB;} S; {I).

¥ ijk :(< jk> {R}exit {false} N j=b) = (R = Q),

vijk:(< jk> (R} next (false} N j=b) = R = I)

< b.p) n] dOB,' -) S,- W od {(ll\-BB)\l Q}

where B; = {B B2 s B.-]}
BB= B,V B,V ..V B,_,

compound statement

<bpp P)S; R),
< bp»> (R} S, {Q)

<bp> (P} Sy < bp> 5, (Q)

219

9 Working Examples and Models
9.1 A Secure Network Mail System Model

9.1.1 Introduction

A mail system is secure if it can protect mail from unauthorized access, unauthorized modification
or unauthorized disclosure. This section proposes a secure network mail system to accomplish this
goal. The proposed model is independent of the techniques used to implement the system. The
model is based on the network mail system described by Owicki [Owi80), and on the secure military
message systems proposed by Landwehr et al [LE*84).

The Owicki network mail system [Owi80] has a ring structure. Each server consists of three
processes and three buffers. An incoming message from a neighboring node is read by the read
process; the message and all other messages sent by local users are stored in the switch buffer.
The switch process then retrieves messages from the switch buffer and deposits them into either
the output buffer or the user buffer depending on the destination of the mail. The output process
will read message from the output buffer and forward it to the next node. Local users receive mail
from the user buffer. The system assumes that all messages sent out by a node are guaranteed to
be received by the neighboring node. No security is imposed on the system except that messages
are only delivered to the correct receivers. However, the system does guara: . ze delivery as long as
the number of undelivered messages is less than the number of messages in the switch buffer and
the output buffer.

The Landwehr secure military message systems model [LH*84) supports arbitrary network
connection and captures the security policy that a military message system must enforce. The
model describes multilevel secure systems that protect information of different classifications from
users with different clearances. An object is a single-level unit of information and a container is a
multilevel information structure. In general, a message is a container. In this model, a user may
display, update, create, delete or release a message. Security is enforced by the system. Only an
authenticated user may log in the system, i.e., by presenting a unique user ID and by passing the
system authentication check. Once entering the system, a user may invoke an authorized operation,
and may access to information that has passed the system’s flow contral check. For example, a
user can view an entity with a classification less than or equal to the user’s clearance and the
classification of the output medium.

As noted in the introduction, the proposed architecture of each server in the mail system is
similar to the Owicki mail server [Owi80], and the security model is derived from the security model
of [LH*84], [LS86).

9.1.2 Overall Description

The proposed network mail system model supports arbitrary network connection and is a multilevel
secure system model. Each node has one server with five processes and three buffers. The five
processes are send, accept, switch, retrieve, and forward processes. The names of three buffers are
switch buffer, local buffer and forward buffer (see Figure 1). Each process is assigned to top security
clearance. Each buffer is a multilevel information structure and stores mail that is processed by
the server. A mail is a single-level unit and consists of two parts: a header and text. A mail header
contains sender ID, receiver ID, classification of the mail and timestamp that records when the
mail is entered the system.

Each user and pode are assumed to bhave a unique ID in the network. It is further assumed

220

CS(T) <= CL{V)
valid passwd
weighbor node N
terminal T
CS(M) = CSL(U) <=CL{V) CSL{A) = CSL(F}
CSL{S) = CSL{U)
SenderID(M) = UserID
andS A
CSL(S) <= CS(SB) CSL{A) <= CS(SB)
hwitch bufler SB decrypted mal
CS(M) <= CSL{SW)
CSL(SW) <= CS(LB) CSL{SW) <= CS({FB)
Node(M) = Server Node(M) <> Server
local bufSer LB orward buller FB
CS(M) <= CSL(R) -
ReceiverID = UserID oM < an-(r)l

CSLR) = CSL{V) <= CL{V)
CLR) <=M CSUF) = CSLi4,)
encrypiled mail
terminal T seighbor node N
ﬂ)’:?‘v) NOTE: M = Mail
local weer U

Figure 1: Mail Server Architecture

221

that a node knows how to forward mail to the proper destination, that all server processes can be
trusted and that connections of network devices are secure. A user may send, retrieve, or save mail.
However, sending and retrieving mail must be performed by the mail server on user’s behalf.
Security is enforced by the system and consists of three parts: access control, low control, and
privacy and integrity control. Access control prevents unauthorized access to an entity connected
to the network. Only authorized users may login the system, and only authorized server processes
may read or write into server buffers. Flow control prevents unauthorized dissemination of mail
stored in a buffer. A user may not read mail which has higher classification than the clearance of
the setting. Privacy and integrity control prevents unauthorized disclosure or modification of mail
that are being transmitted between nodes. This is to deter an eavesdropper from intercepting mail.

9.1.8 The Model-

In order to describe the model in details, first of all, we present the definitions of terms used. Then
we describe user’s operations. Finally, we describe roles of server processes. Security issues are
discussed as parts of each descriptions.

Definitions The following terms are used in this model and their definitions are provided as a
basis for the model.

o Entity - a network resource (device, file, mail, server process, server buffer) or a legitimate
user.

o Object — a passive entity that is acted upon by another entity. An object may be a device, a
mail message, or a buffer.

e Mail - a single-level unit of information. A mail message contains a header and text.

o Classification — a security level attached to an object. A classification includes a sensitivity
level and set of compartments.

o Buffer - a multi-level information urit containing mail.

o Subject - a subject may be a user or a server process acting on behalf of a user.
o ID - identifier. A string of characters names a unique entity.

¢ Clearance - a degree of trust associated with a sub ject.

o Current Security Level - the clearance of a subject that is currently being recognized. It must
be less than or equal to the clearance of the subject.

Description of User Operations Login: A user can gain access to the mail system only by
logging in. In order to login, the user provides a user ID and a password. The system will
authenticate the information provided by the user, the login process completed successfully only if
and when the system recognized the user as a legitimate subject and the clearance of the user is
higher than or equal to the classification of the terminal that the user is using.

Send reguest: After a successful login, a user may compose a mail message. The user selects a
current security level that must be equal to or less than the maximum clearance of the user. The
clearance of the server is set to a level equal to the current security level and the created message

222

will be classified at the same level. The user then enters the receiver ID and text. If the text is
from a file, the classification of the file must be less than or equal to the current security level of
the user.

Retrieve request: A user must first login the system. After a successful login, the user selects
a current security level and requests server to retrieve mail. A mail message may only be displayed
on a terminal if the message is intended for the user and the clearance of the terminal is higher
than or equal to the classification of the mail.

Save request: The retrieved mail will be saved as a file and the file is classified at the same
level as the mail.

Description of Server Processes Send process: When a user enters a send mail request, the
server’s send process sets its clearance to the current security level of the user. Before a mail
message can be admitted into the network, the send process timestamps the message and deposits
it into the switch buffer.

"~ Accept process: In order to receive mail from a neighboring node, the clearance of the accept
process must be equal to the clearance of the forward process of the neighboring node. The accept
process will decrypt the received mail (link to link decryption) and then deposit the received mail
into the switch buffer.

Switch process: The switch process reads mail from the switch buffer and deposits it into either
the local buffer or the forward buffer depending on the destination of the mail. The local buffer
contains mail intended for local users and the forward buffer contains mail intended for users of
other nodes.

Retrieve process: The retrieve sets its clearance to the current security level of the user, and
reads mail from the local buffer on user’s behalf. The retrieve process may only read mail that is
intended for the user and have a classification less than or equal to the clearance of the retrieve
process.

Forward process: The forward process reads mail from the forward buffer, determines the next
node to be routed and establishes connection with the accept process of that node. Before trans-
mitting the mail to the next node, the forward process encrypts the mail. The current security level
of the forward process and the accept process must be equal in order to establish the connaction.

Note that send process and retrieve process are parts of the send request and retrieve request
operations described below. The reason is that the server executes these operations on user’s behalf.

9.1.4 Security Specification

This section describes the security assumptions, the security assertions and the security require-
ments of the proposed model. The security assumptions contains rules that are beyond mail server’s
control.

Security Assumptions User behavior assumptions:

a. The Network Security Officer assigns clearances, device classification properly.

b. Sender selects a correct current security level when sending mail.

c. User with higher security clearance may know the security level of user with lower clearance,
but not vice versa.

d. User will follow the established security regulation.

Network/Server behavior assumptions:

223

server:
a. login secure
CS(T) <= CL(U)
valid authentication
. reclassify secure: to set current security level of a subject.
CSL(U) <= CL(U)
c. send secure
CSL(U) <= CL(U)
CS(M) = CSL(U)
CSL(S) = csL(U)
senderID = userlD
d. retrieve secure
CSL(R) = CSL(UW)
CSL(R) <= CS(T)
receiverID = UserlD
€. access secure: to obtain mail from buffers.
CS(M) <= CSL(process)
access right
f. store secure: to store mail into a buffer or to display mail on terminal.
CSL(process) <= CS(object)
g. forward secure
CSL($F sub i$) = CSL($A sub j$)
encryption/decryption

[~

where i,j are nodes that are connected.
h. Server is secure if and only if
. login secure
. reclassify securs
. send secure
. Tetrieve secure
access secure
. StOre secure
. forward securq

NN W

9.1.5 Discussion

Mail Delivery The model guarantees that users may only receive mail that are sent to them.
This is done by the switching process and the retrieve process. Furthermore, a sender does not
have to identify the security clearance of a receiver when he sends a mail to the receiver. If the
sender classifies the mail correctly, the model will prevent receivers with lower security clearance
from reading the mail. The model also protects users from exposing their security clearances from
users with lower clearances.

The model also guarantees mail delivery if (1) there is a path between the sender’s node and
the receiver’s node; (2) the routing information is available at each node; and (3) the number of
undelivered messages is less than the number of messages in the switch buffer and the output buffer.

The integrity and privacy of mail is enforced by the link to link encryption and decryption,

224

e. Each network user has a unique ID and a password.

f. All devices in the network have comparable security classes.

g. Each server knows how to route mail to proper destination.

h. Reliable information transmission across the network is available.

i. A reliable user authentication mechanism and a good encryption/decryption mechanism are
available.

Security Assertions Mail server security assertions:

Al. The classification of created mail must be equal to the current security level of sender.

A2. A sender may send mail to another user with security clearance equal to or less than the
security clearance of the sender.

A3. Server process may read mail with classification less than or equal to the current security
clearance of the process.

A4. The classification of retrieved mail is less than or equal to the current security level of the
receiver.

AS. Information removed from an object inherits the object’s classification.
Network security assertions:

A6. A user can use a terminal only when his security clearance is higher than or equal to the
classification of that terminal.

A7. A terminal may connect to a server if clearance of the connected server is less than or
equal to the clearance of the terminal.

AS8. A server may forward mail to server of a neighboring node if their current security levels
are the same.

A9. Any information transmitted over the network must be labeled with its classification and
is in an encrypted format.

A1l0. Noise is inserted randomly in the network by the server.

Notations

Let U denote user,
T denote terminal,
S denote server’s send process,
R denote server’s retrieve process,
A denote server’s accept process,
F denote server’s forward process,
SW denote server’s switch process,
SB denote server’s switch buffer,
LB denote server’s local buffer,
FB denote server’s forward buffer,
M denote mail,

CS denote object’s classification,

CL denote subject’s security clearance level,
CSL denote subject’s current security level.

Security Requirements The security requirements of the proposed mail system consists of the
following rules. Figure 1 above contains the architecture and the security requirements of a mail

225

and by the good encryption/decryption mechanism. Hence, an eavesdropper may not be able to
comprehend content of an intercepted mail.

Covert Channel An eavesdropper may rely on convert channel to deduce useful information. For
example, by observing the activity of the network link, an eavesdropper may be able to identify the
identity of the sender; by inferencing the buffer overflow message, a user may be able to determine
the traffic of a given class of mail in the network; by sending mail with different classifications to
a particular user, a sender may be able to identify the security clearance of the receiver.

Since covert channel can not be eliminated completely, the proposed model attempts to reduce
the bandwidth of leaked information. The bandwidth reduction is accomplished by the following
four mechanisms:- }

First, all data sent across network link are encrypted at the sending node and are decrypted
at the receiving node. By doing so, we can reduce the comprehensibility of an intercepted mail.

Second, noise is inserted randomly into the network by mail servers. The purpose of intro-
ducing noise into the network is to confuse an eavesdropper from distinguishing real mail from al
intercepted data. In reality, the noise may contain useful information such as network topology.

Third, the model prevents users with lower security clearance from identifying users with higher
clearance. This is corresponding with real life situation in which high security clearance personnel
will often be aware the identity of personnel with lower clearance but not vice versa.

Fourth, all mail is stored in a multilevel buffer. Hence, if the buffer is full, a sender can not
infer the traffic of a given class of mail.

9.1.6 Conclusions

In this section we have examined a secure network mail system model in which the correct mail
delivery property is enforced by the access control mechanism, in which the authorized information
dissemination property is enforced by the security clearance mechanism, and in which the integrity
and privacy property is enforced by the encryption and decryption mechanism. Similar to the
Owicki network mail system model, the guaranteed delivery property may be asserted if the number
of undelivered mail is less than the number of messages in the switch buffer and in the local buffer
and if the routing is possible.

Even though covert channels cannot be eliminated entirely, the model does reduce the band-
width covert channel. The reduction is made possible by randomly inserting noise in the network,
by encrypting mail-in-transit, and by placing mail with different classifications in the same buffer.

The model assumes that the server can be trusted and that mail delivery can be guaranteed
by the ronting mechanism.

226

Switch

Message System Appl. System Appl.
Handier Manager Manager Client Client
Basic Name
Managers Managers

Uomo

Name
Manager
Message
Handler

Name
Chent

Lt

Name
Chient
Message
|_Handler

Figure 2: SDOS Object Hierarchy

9.2 Initial Results on Specifying SDOS

We have begun to apply the OBJ-based specification methodology described in Section 4.2 to a
pumber of larger examples. One of these examples is a preliminary OBJC specification of the
Secure Distributed Operating System (SDOS) described in (VCH88, TCVW*88].

Given the distributed structure of SDOS, OBJC is well-suited to express its overall specifica-
tion. To date, we have only a major outline of SDOS specified in OBJC, but what we do have is
quite promising as an indication of the practicality of OBJC for distributed system specification.

Figure 2 is a high-level diagram of the OBJC objects that comprise the specification. This
OBJC object hierarchy accurately reflects the high-level organization of SDOS as described in
[VCHSS). The details of the OBJC SDOS objects are given in subsection 9.2.1. Subsection 9.2.2
contains a discussion of how the OBJC specification of SDOS can be constructed to permit the
verifcation of security properties using a state-machine approach, as suggested by the SDOS authors.

227

9.2.1 High-Level Outline of an OBJC Specification of SDOS

Selected objects from the SDOS specification outline are defined below in OBJC. Refer to Figure 2
for the hierarchical organization of the objects. The syntax and semantics of OBJC were discussed
in Section 4.2 of the report.

object INTERNET is
sort Internet .
protecting ETHERNET .
op internet : Ethernet Ethernet
=> Internet .
endo

object ETHERNET is
sort Ethernet .
protecting SDOS .
op ethernet : Sdos Sdos Sdos
=> Ethernet .
endo

object SDOS is
sort Sdoa .
protecting SWITCH + MANAGER + CLIENT .
define Manager-List is LIST(Manager] .
define Client-List is LIST({Client] .
op sdos : Switch Manager-List Client-List

=> Sdos .
endo

odject SWITCH is
sort Switch .
protecting MESSAGE-HANDLER .
define Message-Handler-List is
LIST[Message-Handler] .
op switch : Message-Handler-List
=> Switch .
endo

object NAME-CLIENT is
sort Name-Client .
protecting MESSAGE(INT] .
op nev-name-client : -> Name-Client .
op name-client : Message -> Name-Client .
var N : Messagelum .
eq nev-name-client =
name-client(send(’NameLocal,0)) .
eq name-client (sent(’Namelocal ,N,0)) =

228

name-client (wait(N,0)) .
endo

object NAME-MANAGER is
sort Name-Manager .
protecting MESSAGE[INT] .
Op nev-name-manager : Int
=> Name-Manager .
op name-manager : Message Int
-> Name-Manager .
var N : MessageNum .
var M : Int .
eq nev-name-manager(M) =
name-sanager(receive(’Name,0) M) .
eq name-manager(received(’Name,N,0) M) =
name-manager (reply(N,M) M) .
eq name-manager(replied(N,M) M) =
name-manager(receive(’Name,0) ,M + 1) .
endo

Given the object definitions above, the SDOS system behavior will be modeled by OBJC input
and output terms of the form shown below. The example top-level input term shows an internet
with two ethernet clients, each of which have in turn three sdos processes, with a single active
client and manager. The sample switch, client, and manager terms depict further details of the
initial input state of the system. Here a simple client-bound message with content “1234" is shown
residing in the application manager.

Top-Level Input Term:

internet(

sthernet(
sdos (switch.,nil,client) ,
sdos(switch(nil),nil,nil),
sdos(switch(nil) ,nil,nil)),

sthernet(
sdos (switch,, ,manager,nil),
sdos(switch(nil) ,nil,nil),
sdos(switch(nil),nil,nil))) .

Switch, Client, and Manager Input Terms:

switch(
message-handler(
nev-name-client-message-handler))

client(

application-client(
new-name-client))

229

switch(
message-handler(
nev-name-manager-message-handler))

manager(
application-manager(
nev-pame-manager(1234))),

Shown below are the resulting output terms when the “1234” message has been transmitted,
via the switches, to the application-client. The next message, “1235” is now shown as pending.

Switch, Client, and Manager Input Terms:

switch(
message-~-handler(
ncmh(receiving(’Namelocal,0),0)))

client(
application-client(
name-client(waited((101) .NzNat,1234))))

switch(
message-handler('
amph (receiving(’NameGlobal,0),0)))

manager(
application-manager(
name-panager (receiving(’Name,0),1235)))

8.2.2 Verifying Security Properties of the OBJC Specification of SDOS

The primary co-developers of OBJ3, J. Goguen and J. Meseguer, have also done foundational work
on the verification of security [GM82, GM84]. In [GM82, GM84] they describe the Goguen-Meseguer
methodology for security verification, and indicate how specifications written in a language such as
OBJ3 fit into their methodology.

This subsection of the report investigates the connection between OBJC specifications and the
Goguen-Meseguer security verifcation methodology. The general propostion put forth here is that
if an OBJC specification structured as a secure state machine, then its security can be verified
using the Goguen-Meseguer methodology. Details are presented of how to so structure the OBJC
specification of SDOS.

Overview Since an OBJC specification is (intuitively) a lattice of objects, we begin by naming
and informally describing the important objects in the lattice. Strictly speaking, the SDOS ob ject
should be at the top of the lattice; but in order to permit testing and demonstration, other objects
are placed above and orthogonal to it.)

SDOS is a distributed operating system: it runs on a network of host machines. This does
pot mean that each host is running a part of SDOS; it means that each host is running a copy of

230

SDOS and that a job started at one host can run (partially or wholly) on another host. Job sharing
requires interSDOS communication, which is something more than interhost communication.

Goguen-Meseguer applies only to nondistributed concurrent systems. This is because a
Goguen-Meseguer state machine can only mode] a single multiuser host — not multiple communi-
cating hosts. In order to overcome this restriction, Goguen-Meseguer is not applied to the top of
the lattice, thereby verifying the INTERNET object; it is applied to the sublattice at and below the
SDOS object, thereby accomplishing the original goal. Plainly put: the interhost communication
provided the communication primitives of OBJC is assumed correct and secure.

User Interface A Goguen-Meseguer state machine executes user commands. For the SDOS state
machine, user commands are somewhat subtle. One problem is that the command set of a state
machine is constant, but an SDOS user can write new programs that appear to be, or even replace,
those originally provided. Another problem is that a state machine (even a Turing machine) cannot
obtain additional input during computation. With these problems in mind, consider a user to be a
person at a terminal and the command set to consist of the single command

run <user-name> <program-name> <input-data>
What are the advantages of this perspective? Does it cause problems? This is considered below.

Logging on and off is no longer a special procedure. A terminal is always connected to SDOS.
A session begins with

Tun <user-name> login <password>
and ends with

run <user-name> logout
and all user commands between logout and login (as well as a user’s second login) are SDOS
no-ops. Notice that multiple users can be logged onto a terminal simultaneously. More practically,
a terminal can supply the first two fields of every command.

There is only one command and its semantics are constant.

During execution, the state machine does not interact with the user to obtain input data.
The data either comes directly from the command line or from within SDOS as addressed by the
command line. Such an address denotes data that is either in memory or the file system.

The file system is internal to SDOS. More specifically, every user has their own file system.
File ownership is determined by a file's location. Together, the file systems satisfy a security policy
at least as strong as that satisfied by SDOS.

Since a state machine has only a single-level command set, there are no “system calls” or “ma-
chine instructions” that can be called from a program. Therefore, a user-written program is simply
a textual sequence of run commands. This has several ramifications. A user who writes programs
has no new method of violating the security policy. Running a data file is no worse than typing
the data at the keyboard. A suitable collection of provided programs renders other programming
languages strictly unnecessary. More practically, a compiler whose output is a sequence of run
commands can be provided or even written with run commands. An alternate approach is to have
some programs accessible only from programs and not from the command line; but gince all run
commands, hence all programs, must satisfy the security policy, this is just an optimization.

A program that is run by a user other than the owner can do what the user, the owner, or
some combination can do. This capability is controlled by SDOS and any user that can update the
program. Since each command in a program has a <user-name> field, that is the granularity.

231

Import Lattice The objects at the upper nodes of the import lattice are described here. The
objects they import are also listed.

INTERNET This object provides context for communication between bosts.

¢ HOST

HOST This object encapsulates the components of a host computer: its users and the operating
system.
e USER
e SDOS
USER This object models a person at a terminal connected to a host running SDOS. Commands

and results are transferred between user and host as OBJC messages. A user behaves as a
client that runs programs by making run requests of an SDOS server.

¢ REQUEST-RESULT

SDOS This object encapulates the major components of SDOS. An SDOS behaves as a server.
It accepts, services, and returns the results of run requests from users through the interface
subsystem. Communication between user and host is accomplished with OBJC messages.
The other subsystems operate as internal servers; they are not directly accessible to users.

e INTERFACE-SS

e SECURITY.SS

e RUN-.SS

e FILE-SS

e VAR-SS

INTERFACE-SS This object is the user interface for SDOS. It accepts run requests from users,

dispatches internal requests to service them, maintains information about active requests,
and returns the result of serviced requests to the users. Before servicing a user’s request, the

login status and security level of the user is requested from the security subsystem. Requests
are:

op run : UserName Programlame InputData -> .

SECURITY-SS This object maintains security information about users and services requests
concerning it. This information is initialised during startup. Requests are:

op login : UserName -> .
op logout : UserName ~> .
op get-login : Userlame -> .
op get-level : UserName -> .

RUN-SS This object runs programs. A program is either a builtin program or a file of run
commands. The search-path variable resolves ambiguous program names. Requests are:

232

op run : UserName Seclev ProgramName InputData -> .

FILE-SS This object maintains user files. Each user has a separate set of files. Subject to
security, a user can access another user’s files by qualifying a file reference by the owner’s

name. Requests are:

op get-tile : UserName SecLev FileName FilePos -> .
op put-file : UserName SeclLev FileName FilePos FileData -> .
op rem-file : UserName SecLev FileName -> .

VAR-SS This object maintains user variables. Each user has a separate set of variables. Subject
to security, a user can access another user’s variables by qualifying a variable reference by the
owner’s name. Requests are:

op get-var : UserName SecLev VarName -> .

op put-var : UserName SecLev VarName VarData -> .
op rem-var : UserName SecLev VarName -> .

233

9.3 A Security Kernel for Distributed Systems

One of the longer-term research efforts we would like to undertake is the complete formal specifica-
tion of a security kernel for a distributed computer system. This kernel will be the software portion
of a trusted computing base satisfying the criteria for an Al level secure system as defined by the
Dzpartment of Defense.

In this section of the report we present our ideas on this kernel. We begin with a survey of
related work followed by the discussion of our proposed kernel.

The aim of the the kernel is to provide a set of primitive services that manage resource al-
location, communication, and process manipulation while ensuring the security properties of the
system. Using the kernel, the system developer will be able to create software systems that are
guaranteed to satisfy formally specified security policies.

9.3.1 Overview of Previous Research

Since distributed operating systems and computer system security are such important subjects,
there has been a lot of research in these areas. This subsection surveys several of these systems in
an attempt to give an overall view of the areas that have currently been explored.

Distributed Operating System Kernels One type of computer operating system is the dis-
tributed operating system. The following two systems are examples of Distributed Operating
System Kernels. These systems help enumerate the particular issues being evaluated using this

type of system:

o Security. In these systems security is considered a side issue. It appears that the other
issues take precedence and once they have been developed into a standard methodology then
security will become more central. Until then data integrity and minimal access controls are
all the security seen in these systems.

o Integrity. In a distributed environment, where data caching is implemented for performance
improvement and resource sharing is permitted, we need to worry about the integrity of the
data. These systems try to develop methods for insuring that the data remains consistent yet
performance is not hindered. The Alpha system even goes so far as to limit the loss of data
when a portion of the system goes down.

¢ Resource Management. In a distribute system there is a wide variety of resources that must
be managed fairly and efficiently. These systems try to develop the best methods for handling
the resources.

o Support: These systems are very different in the applications they support. The Alpha kernel
supports real-time applications developed for it specifically, where the V kernel provides a set
of language tools to allow a wide variety of applications to run on it.

¢ Performance. Performance is one of the key issues in this area. The ability of the kernel
to respond quickly to the dynamic nature of the distributed system, servicing requests and
scheduling processes in a fair and efficient manner is addressed in both of these systems.

234

Alpha Kernel The Alpha Kernel [Nor87] is a decentralized® operating system kernel for a
real-time command and control system. It is the initial phase of the implementation of the Archons
projects at Concurrent Computing Corporation led by E. Douglas Jensen.

The kernel executes as a set of identical processes running on a system of connected homoge-
neous hosts. The hosts are meant to number from 10 to 100 and be separated by no more that
on the order of 1000 meters. These processes cooperate to present to the client processes the
appearance of a single computer, completely hiding the decentralized nature of the system.

Currently, to keep the project manageable, security has not be addressed in the Alpha kernel.
It is a concept that will soon be looked at.

This kernel is meant to support a system that provides services for a single real-time command
and control application. There is no concept of multiple users or a diversity of processes. The single
application executes as a set of threads running through several objects (possible concurrently).
These threads have real-time constraints on their performance that the kernel must be able to
support.

V Distributed System The V distributed system is part of an ongoing research project to
study issues in distributed systems. The project is lead by D.R. Cheriton at Stanford University and
has produced numerous thesis topics and results over the last several years. It provides a “hands-
on” capability for testing new methodologies and experimenting with different system parameters
[Che8S].

This system is based on a collection of workstations connected by a high-performance network.
The primary configuration is that of diskless workstations connected to a set of file servers by the
network [CZ83]. This configuration allows a process to be scheduled on different hosts during its
lifetime. Since the process gets swapped out to a shared file server when not being executed, it can
easily be swapped in on another machine thus “migrating” the process among the machines. The
scheduler that handles this migration is designed to prioritorize processes and then schedule the
top n processes on the n machines in the system.

Although mentioned briefly in the literature, there appears to be no overt attempt to ensure
security in this system. The main emphasis seems to be placed on performance measures and
efficiency. Since the system is part of a continuous project, and the specifications of the system
change with time, it seems that it would be very difficult to ensure anything more than some
rudimentary security properties.

The system is designed to provide a high level of performance to a collection of applications
developed using kernel specific run.time modules for popular programming languages (ie., Pas-
cal, C). The system also supports co-location of servers with the hardware they serve to reduce
communication slow down and thus permit the use of real-time control applications.

This system emphasizes issues that are also important to the kernel proposed in our research.
The major difference is that the V system does not have a formal sense of security that is crucial
to this our research.

Security Kernels Another form of secure operating system is the security kernel. This system
is based on using a minimum set of secure operations in the kernel. These operations are then used
to build the overall system.

1The suthor defines the system as decentralised to avoid any ambiguity with the popular term distributed. The
system is decentralised since it executes as coopersting processes on physically separated hosts

235

The following systems are all examples of Security Kernels. These systems help enumerate the
issues being explored in this type of system:

¢ Security: Each of these systems tries to maintain a certain security policy. This is the reason
for the existence of the kernel and thus is the most important issue here. These kernels
try to separate “Trusted” and “Untrusted™ processes. The trusted processes are verified to
maintain the security of the system and thus avoid the internal checks performed by the kernel
on operations of untrusted processes.

e Integrity: Data integrity is & concern in these system. They use different techniques to
maintain that changes to system data is a result of verified or trusted operations.

o Resource Management: These systems each take different approaches to management of the
resources of the system. The differences occur in how the resources are allocated, how the
access to the resources is managed and exactly what the resources are.

e Support: Another issue being looked at in these systems is support. In the systems below
three of them are designed to support a UNIX-like interface executing on top of the kernel,
the other system is meant to be a secure execution environment for ADA.

o Performance: Again performance is considered a major issue where the implementation of
the kernel tries to keep the system efficient.

KSOS In the late 1970’s there was a project at Ford Aerospace to develop a provably secure
operating system [MD79]. This system, Kernelized Secure Operating System (KSOS), is intended
to be a fully functional muitilevel secure operating system with a Unix-like interface for larger
minicomputers.

The system is based on the security kernel concept. The kernel provides the basic operating
system functionality, and is enhanced by the inclution of trusted and untrusted system support
processes. These processes execute in three different modes.

In the kernel mode is the security kernel. This kernel must be a fully verified muitilevel
operating system kernel. It has complete access to the whole system and provides the interface
between the system and the client processes. Each invocation of an operation supported by the
kernel will be executed only if the calling process has the correct authorization to execute that
operation. In other words, the invoked operation has to comply with the implemented security
policy.

In the supervisor mode there is the Unix emulator (an untrusted process) that translates Unix-
like system calls into kernel calls on behalf of the original invoking process. Also at this level is
the trusted non-kernel security related software (NKSR). These processes are completely verified
routines that perform necessary security related operations that possibly violate the strict definition
of the security policy.?

This system provides a basis for execution of Unix processes in a secure environment by
logically separating processes of different security classifications onto separate virtual machines. It
also permits the development of different execution environments by allowing server processes that
execute in the supervisor mode to emulate those environments.

2KSOS implements s secure file server at this level. The server stores fles st several different security levels so
it must be clesred for the highest of these levels. It has t0 permit lower level subjects to read their fles and thus
viclates the *-Property.

236

Although this system supports data security and separation using the operating system ker-
nel model, it does not support any concept of distributed programming, but rather connects the
machines through standard network protocols.

LOCK (was SAT - was PSOS) The LOgical Coprocessing Kernel (LOCK) is a current
research effort by Secure Computing Technology Corporation to develop a hardware-oriented so-
lution to the problem of multilevel secure computer system development. The project is based on
the SRI specification of the Provably Secure Operating System (PSOS) [NBF*80]. The hardware
portion of the Trusted Computing Base specified by a Ford Aerospace attempt to implement PSOS
[FORS0], was picked up by Honeywell in 1982 as the Secure Ada Target project (SAT). LOCK
is the third phase of the SAT project to generate a “detailed design specification and a secure
microcomputer prototype by 1990” [SK86).

The LOCK system is designed to attach a generic coprocessing unit (SIDEARM) onto a mi-
crocomputer bus. The unit will act as reference monitor for the CPU and its resources. It consists
of one to four microprocessors with their own volatile and non-volatile memory and a separate long
term storage device.

This system will maintain the non-interference model of Goguen and Meseguer [GM84] with
respect to the TCSEC Al level specifications. This is done through the management of the reference
monitor and additional two-level encryption of secure data. This encryption enables the system to
use standard hardware for communication lines and long term storage by ensuring that the data
going on these devices is unusable to any unauthorized process or person.

The system is designed with a generic interface that will attach to a small machine-specific
device called the host interface connector. This device and its functionality will have to be proven
for each machine. But, since it is a small interface not much difficulty is seen here.

The initial prototype of the LOCK system will retrofit Kernel Extensions of the system into the
security relevant portions of a UNIX operating system. The idea is that with this small adjustment
(and a few others not yet determined to the operating system, the addition of the SIDEARM will
create a secure system with little performance degradation (performance should be 80% of the
original system).

This system is specifically designed for a single host with little mention of connecting it to a
network, and no mention of a distributed system. 3 Placing a lot of the security relevant functions
in hardware is a good way to improve performance and ensure reliability and integrity. With recent
developments in microprocessors that have built in resource management units, such as the Intel
80386 (INT86], all this work may be overkill and actually perform less efficiently than a software
based system that uses the microprocessors full potential.

Secure Xenix The Secure Xenix system is an “experimental system designed to run on
IBM PC/AT workstations” [GCC*87]. This project is headed by V.D. Gligor at t*e University of
Maryland.

The system is de-igned to meet the specifications of B2-A1 level as defined by TCSEC. To
meet this classification level they add an Access Control List mechanism to the standard UNIX
interface. This mechanism allows the system and users to implement mandatory and discretionary
access controls and maintains the required audit functionality.

3Combining this system with the THETA system mentioned later may be an effective way to develop s secure
distributed system if the interface between the two is similar enough.

237

In addition to the added access control the system includes a Secure Access Key (SAK) mech-
anism where, by a few special keystrokes, the user ensures an authenticated commuuication path
directly connected to the kernel. This will permit the user to perform operations-that may violate a
precise interpretation of the security policy but not the spirit of it, and also to change their current
classification level.

To maintain the security policy in the standardized UNIX file system, they create virtual
directories for each security classification. Thus when a8 UNIX process writes to, or is swapped to
the “tmp” directory, the data is considered secure.

The system also separates information by creating a separate process for each command of .
administrative users. These processes are further divided into trusted processes that do not require
superuser privileges and those that do.

Overall, this system seems like a good concept, but they are trying to retrofit security into an
existing system design. Regardless of the system, the designers inevitably have to “hack” something
to make up for an assumption the original system made?. Such anconventional modifications will
make the design and proof of the system muck more difficult.

UCLA Security Kernel The UCLA Data Secure Unix operating system was developed
in the late 70’s as a demonstration that general purpose functionality and verifiable data security
are attainable [PKK*79]. The UCLA Unix architecture is based on DEC PDP-11/45s and PDP-
11/70s. The kernel executes as a single process in the hardware kernel mode on the host machine
managing all client requests for machine resources.

Sitting above the kernel and executing in the hardware supervisor mode are a collection of
modules. Two of the modules, the File Policy Manager and the Dialoguer are trusted processes.
The other modules are instances of the Kernel Interface SubSystemn (KISS).

The Dialoguer is a process to which the user terminal can be reliably connected. This connec-
tion occurs whenever the user types a predefined break sequence. Now the user and system can
perform reliable authentication and modification of data security levels.

The File Policy Manager implements a shared file system while maintaining the security policy.
All requests to the file system are sent to the kernel which then forwards them to the Policy Manager
and passes its response back. Since the kernel manages all hardware access and thus defines memory
as a collection of virtual memory pages, the Policy Manager implements the file system using these
memory pages.

The KISS is a general interface to the kernel. It creates a more usable interface between general
processes and the kernel. These processes do not directly communicate with the kernel at all. Each
KISS is a separate interface for one process such as the scheduler, network interface nucleus or a
Unix interface emulator. Each of these higher processes can then be interfaces to other processes
running in the hardware user mode such as Unix user processes, or the Network Manager.

The security policy implemented by this kernel and the trusted processes is a capability based
policy. All operations, whether memary or 1/0 related are governed by a central capability mecha-
nism. Since 1/0 in the PDP-11 family is actually memory based and Unix devices are special files,
all operations must go through the Policy Manager. Success of all operations revolve on whether
the process has been granted the capability for that operation on that object. The granting of
capabilities is actually handled only in the File Policy Manager and not in the kerne!.

This system is a fully functional, verified operating system [Kem79]. Although the security
policy is actually implemented outside the kernel it seems to maintain a fine grain protection

*The crestion of the virtual directories is s good example of a hack

238

without loss of integrity or much performance degradation. Since the Policy Manager is the only
process with the ability to Grant capabilities this system may prevent some operations that would
be valid in the TCSEC specification. This limitation was left in place to simplify the proof and
remove several problems found in other capability based systems.

Secure Distributed Operating Systems The following systems are examples of Secure Dis-
tributed operating Systems. They help enumerate the issues involved in this type of system:

e Security: Again security is a primary issue and the reason these systems exist. They are
designed to provide a lot of functionality while still maintaining the security policy. Here
an important issue is the model used for the system. Both of these systems suppose that
a constituent operating system is executing on each host. THETA assumes that each host
system has been verified as a multilevel system for that single host. The other system assumes
the host systems are untrusted and thus each host is classified at a single security level.
Assuming this they then develop different methods to connect the individual hosts together.

o Integrity: These systems let the constituent operating system worry about data integrity.
Both ensure that data integrity during communication between hosts is maintained although
THETA assumes the network is already in place that can do this.

e Resource Management: These systems both let the constituent operating system on each host
actually control the resources. They then provide services to client processes to connect them
to the resources.

o Support: These systems support the constituent operating system on their host and then the
standardized protocol between hosts. Each system allows processes to execute on the host
that do not communicate with the system in any way.

o Performance: Performance is an issue that must be addressed, although in these systems the
tendency is to assume that the constituent operating system on each host will be able to
manage the additional load with little performance penalties.

Distributed Secure System A cost effective and highly efficient system has been proposed
by Rushby and Randell [RR83]. This system is composed of a network of standard UNIX systems
connected thorough the “Newcastle Connection” and small trusted hardware devices.

The system is effectively a distributed multilevel system which acts, from the users vantage
point, as a multilevel single host system. The main technique used in this system is that each host
actually runs as a singlelevel system, thus implicitly maintaining the mandatory access controls.

The individual hosts are connected by a system called “UNIX UNITED” [BMRS2] through a
local area network. Between each host system and the is the heart of this system the “Trustworthy
Network Interface Unit” (TNIU). The TNIU unit is a hardware system that guarantees via label
checking and encryption that messages sent across the network maintain the mandatory access
policies. In other words, a machine classified as Top-Secret can not send any messages to a machine
with a lower security clearance such as Secret.

This system supports single level hosts and connacts them together to develop a distributed
multilevel system. It supports whatever constituent operating systems exist on the hosts. The
distributed nature of the system is limited by the inter-host communication protocol established
by the TNIU.

239

The TNIU is a very good idea in that it develops a secure network interface and network
communication by encrypting the messages in the hardware before sending them out. Qur proposed
kernel will use this idea (slightly modified) to establish a trusted communication path between
separate hosts.

Trusted HETergeneous Architecture (THETA - was SDOS) The THETA system is
an experimental prototype for a B3 level secure distributed operating system [VCH88, TCVW*88].
The system is designed to allow connection of a network of hosts with a heterogeneous hardware
and software base.

The main premise behind the THETA system is that the network meets the requirements
for B3 level classification, and each host runs a secure multilevel constituent operating system
(COS) which also meets the requirements for B3 level classification. Using these assumptions and
the “hook-up” requirement of McCullough [McC87] THETA combines the COSs and network to
provide a B3 level distributed operating system.

THETA exists on the host machine as a collection of programs running as separate processes
on the host COS. Using THETA, a client process can either execute on the host COS or as a client
of an THETA process. Either way, all of the local operating system functions are performed by
the COS. But, whenever a client process wants access to an THETA object or operation it must
go through the THETA object manager process. The COS guarantees that the local objects and
operations provided by the THETA processes are protected from use by any non-THETA processes.

One of the THETA programs executing on the local host is called the switch. This is a
multilevel process and exists on each host. All operation invocations must be processed by the
local switch. If the operation involves communication with a remote host then the switch handles
the necessary network communications and eventually returns the reply to the invoking system
manager to pass on to the client.

Since THETA runs as a client on the host COS it should be much easier to port the programs
to new architectures. The verification of each port may be limited to some machine/COS specific
code with a large portion of the THETA code untouched. This means that the verification of
the new THETA system should be much easier that the initial verification of the whole system.
Unfortunately THETA does assume the existence of a verified single host COS existing on every
system.

As the previous system, THETA is limited to the security level of the COS. Communication
between THETA clients and objects is managed by THETA but is restricted by the abilities of the
COS. Although THETA appears to have more of a distributed nature and includes security as a
primary focus it is a fuller, and thus more limited system than a kernel would be.®

9.3.2 Our Kernel

The kernel proposed here targeted for a distributed operating system that will meet the Al clas-
sification level as defined by the TCSEC. It executes as a separate process on each host and
communicates through a trusted network to the kernels on other hosts. Each of these kernels can
be viewed as a general resource manager, such that a client process executing under control of
the kernel uses the operations provided by it to access any resources needed. The manager will
control access to all resources and guarantee that the security policy is maintained during these

‘A fuller system has alyeady made several protocol and design decisions which Limit the flexibility of the system.

240

accesses. To develop this secure general resource manager as implemeanted by the kernel we must
first understand the general classes of resources which this manager must control.

Resources

o Single-Process Non-preemptive: This resource type is allocated to a single process at a time
such that it has exclusive access to that resource until it deallocates the resource. Examples
of this type of resource are a terminal, printer, and outside communications port.

o Single-Process Preemptive: These resources are also allocated to a single process at a time,
but the process may temporarily loose control of the resource to another process. Examples
of this type of resource are a CPU, and some coprocessors.

o Multiple- Process Non- Preemptive: These resources may be allocated to more than one process
at a time. This may be accomplished by partitioning the resource into multiple single-process
subresources or simply sharing the same resource. The processes are guaranteed access to
the resource until they deallocate it. Examples of this type of resource are long term storage
devices, message passing channels (possibly limited to two processes), and virtual memory.

o Multiple-Process Preemptive: These resources are also allocated to multiple processes at a
time. The difference here is that the process may temporarily loose control of the resource
to another process. An example of this type of resource is physical RAM in a page swapping
environment.

Resource Manager Now that we know the types of resources that the manager must control we
should determine what the resource manager actually does. According to the TCSEC specification,
at the higher levels of classification the manager must contain only security relevant operations.
It must also manage the security policy of the system including auditing controls. Following this
definition asff®he description of the resource types given above we see that there are some immediate
considerations that the resource manager must address.

1. For the preemptive resources we must develop a scheduling policy, possibly a separate policy
for each resource. For example the physical RAM would probably be controlled by a scheduler
to minimize page swapping, while the CPU scheduler would probably be a circular scheduler
with possibly multiple priority queues to ensure fairness.

2. Security of resources is also important. Each resource must be classified at a certain security
level and this level may be changed during the lifetime of the resource. If use of a resource may
possibly violate the security policy then it must be monitored by a trusted resource server.
This is obviously a security policy concern and thus is managed by the resource manager.

3. Duplicate resources should also be considered for the preemptive resources. There may be
multiple copies of a resource or a resource may be partitioned into identical subresources. In
either of these cases a preempted user should be able to be rescheduled to any of the identical
resources with no difficulty or detectable difference. Although this appears primarily to be a
performance issue, knowledge and control of individual resources may be a source of covert
channels and thus should be bandled by the resource manager.

4. The resource manager must handle the audit mechanisms as specified by the TCSEC.

241

Model Given the above requirements for the resource manager the kernel can still implement
it many different ways. Each of these implementation methods is just a different model of the
resource manager but result in the same overall functionality. The following lut consists of the
models that are currently being considered.

o Separation Kernel: The kernel provides a basic set of services to allow the development of
several virtual machines. Each machine will be a virtual distributed entity that is allocated
a set of private resources (storage) and is assigned a security classification. All users and
processes using this machine will be cleared for the same classification level as the machine.
A Need-to-Know policy will be implemented on each virtual machine with a mandatory policy
governing communication between machines and to peripherals.

o Policy Kernel: This is currently a separate idea, but may be eventually merged into the above
concept. A policy kernel provides a basic set of services that permits the policy manager to
develop a statically defined security policy for the system. The services are general enough
that any policy can be implemented using them. The security verification of the palicy would
then be made easier by using the services as secure high-level operations.

e Capability Kernel: Here the kernel is similar to the UCLA Security Kernel. It provides simple
operations that allow the user to manipulate capabilities. Thus, the capability to read or write
an object has to be explicitly granted to the user allowing the system to directly control the
rights given to a particular user.

o Access Control Kernel: Here the kernel maintains the access control lists for all objects.
Requests to access an object must be granted by the kernel. Anyone with the appropriate
privileges in the access control lists may modify the access rights to an object. Here we control
the distribution of data by guarding these access privileges.

Basic Assumptions Regardless of the model used, the development of the kernel as a
resource manager will incorporate the following assumptions:

1. Trusted Users: It is assumed that the users of the system are trustworthy up to the level of
clearance they have obtained. These users will not deliberately violate security properties at
this level.

2.. Trusted Configuration: It is assumed that the configuration information, security classification
of devices and users, is accurate. The system will guarantee that only a trusted security officer
will be able to modify the configuration information.

3. Trusted Identification: It is assumed that there exists some trusted method of verifying the
identity of the user at login time.

4. Network Security: It is assumed that the communication network is Secure from an active
wiretapper. Rushby and Randell [RR83] developed a Trusted Network Interface Unit (TNIU)
to insure secure network communication. A similar hardware device, with slight specifica-
tion changes could be used here. The communication will probably be based on public key
encryption to permit a known host to come on-line and be authenticated.

242

5. Physical Security: It is assumed that the physical security of devices is guaranteed. Terminals,
processors, servers and various peripherals are physically located in areas whose security level
is that of the levels of the devices. (ie., an outside modem line could not be considered anything
but Unclassified while terminals in the Pentagon Security Room may be Top Secret). These
devices must also have been cleared to their clearance level.

6. Hardware Integrity: The hardware used is guaranteed to operate according to its specifica-
tions.

7. Processor Support: The processors used must be able to support virtual memory capabilities,
and separation of memory addresses. We do not want an untrusted user program to gain
access to any resources not allocated to it by the security kernel.

Kernel Services In this section I define the basic services provided by the kernel that are
available to the general user. Since the distributed nature of the kernel is transparent to the user,
the distributed environment services are not available to the general user.

The following is a list of possible services that the kernel should provide. The kernel maintains
strict control over the physical parameters of the system. Although this is not necessarily a complete
list, it is pretty comprehensive. Some additional services may be added if the kernel model is an
Capability or Access-Rights kernel to manage these additional resources.

o Resource Allocation: Exactly how this is performed and what the allocation actually means
depends on the type of resource. For example the kernel will allow users to allocate and
deallocate blocks of memory. All references to this memory will be relative to the user’s
memory space. Also under consideration is the idea of allowing the user to define memory
segments, each of which will be a separate virtual entity with associated privileges. This
would allow for the creation of virtual machines in which user processes will be confined.

e Resource Read and Write: These services allow the user to communicate with any resource
allocated to the user.

o Process Control: The kernel will allow users to create, and destroy processes. Currently the
kernel will manage process scheduling, but the scheduling of user processes may later be
relegated to a specific (possibly unverified) user supplied system process. If so, the security
of the interface will have to be verified.

e 1/O Control: The kernel will provide services to handle I/O to peripheral devices. There
will probably be two methods of handling I/O. The first will be a set of “trusted” device
drivers that are accessed through specific calls and interrupts. The kernel will ensure that
the privileges assigned to the devices are not exceeded by the data sent to the driver. The
second method would be to allow a user to exclusively control a device - this method is still
under consideration.

o Communication Control: The kernel will provide services that will carefully monitor all inter-
process and inter-machine communications. The exact mechanism and policy for this is still
under consideration. The final services will maintain the security policy but may be more
restrictive. This communication will consist of intra-system communication between processes
in the same distributed system and inter-system communication between processes in different
distributed systems.

243

8.3.3 Summary

Kernel The kernel will execute as an independent process on each bost. It will have complete
control of the hardware and system resources. When connected to a secure network® the kernel
will communicate with other identical kernels such that it will be able to access the resources the
other kernel manages.

This kernel will provide the basic functionality expected of an operating system. This will
include process creation, deletion and scheduling along with resource management. The kernel will
implement a resource manager by providing services to client processes that will permit them to
gain access to the resources and use them.

The kernel will maintain the security policy of the system. In the most likely implementation,
objects and subjects will be classified with respect to a particular security compartment. Within
a compartment, the rights for a subject to access an object will be explicitly specified. No subject
outside the compartment will have rights to the object.

The primary research issues involved here are summarised below:

o Security: This issue is by far the most important one here since this is why the system is
being designed. Here I will assume that if each kernel on an individual host can maintain
the security palicy, if the kernels communicate using a standard trusted protocol and the
communications network is secure, then we can ensure that the security policy is maintained
over the whole system. This concept has been formalized by McCullough [McC87] and is
used in the THETA system.

o Integrity: Data integrity is an essential part of computer security and thus is also a key issue
in this system.] intend to design the system to guarantee changes in data are authorized and
loss of data due to node failure is minimal.

o Resource Muugement:. As seen earlier, the kernel is effectively an implementation of a general
resource manager. The kernel will have complete control of the resources and provide services
to the client processes for use of these resources.

o Support: This general services provided by this kernel can be used by client processes to de-
velop an execution environment that is compatible with popular environments that currently
exist (ie., UNIX).

o Performance: Although performance is an important issue, this system will sacrifice perfor-
mance to ensure the security policy if no more efficient method is available.

Specification and Verification The details of the system will be specified by defining the
objects of the system and the operations performed on those objects. These objects will include
system specific ob jects that are not available to client processes. The specification will include all the
information necessary to implement the TCSEC security palicy but not restrict the implementation
to a particular method.

The verification will include proof that specified kernel ob jects maintain certain security poli-
cies. These policies will include those specified by the TCSEC [DOD83] and probably the “hook-
up” properties of McCullough{McC87). These properties ensure that secure single host systems are
connected correctly to form a secure muiti-host system.

%A secure aetwork is considered one which guarantees that messages are delivered oaly to the proper host and
that active wiretappers can not interfere with or understaad the messages.

244

Beyond this verification the system will have to be analyzed to determine if any covert channels
exist. If any are found that can not be removed, the bandwidth of the channel« must be determined
and possible methods to reduce the bandwidth will be presented.

Overall, a system as large and complex as a security kernel will provide - - cellent test bed
for the specification and verification of secure distributed systems. In addition to research results
on the kernel itself, the kernel project will drive our methodology and tool research.

245

10 Conclusions

The goal of this project was to investigate techniques for the verification of the secunty of distributed
systems. In carrying out the work, we surveyed the following:

o Techniques for the specification and verification of concurrent and distributed programs

o Existing mechanized theorem provers, mostly to evaluate their lnitaBi]jty for verifying con-
current and distributed programs

e Work towards the development of exemplary secure distributed systems, even in cases where
verification was not a design goal

An outgrowth of our work was a design of an environment suitable for the specification and
verification of secure distributed systems, and descriptions of several distributed architectures that
would be amenable to verification.

Our conclusions consider the following:

¢ The need for secure distributed systems

e A security rmodel appropriate to distributed systems

e A suitable abstraction of a system design that is verified with respect to the security model
- Al certification

o The feasibility of carrying the verification below the level of an abstract design, moving
towards beyond-A1l certification

¢ Mechanizations of the verification process using extensions of current theorem provers.

o Exemplary distributed systems that could serve as vehicles for an initial attempt to produce
an Al (or beyond) distributed system.

o Other research topics in support of secure distributed systems.

Informally, a system is secure if the information it stores is protected against release or modi-
fication by unauthorized users. The Multilevel Security Policy (MLS) as described in the Orange
Book {DODS83] associates security levels with users and objects, and requires that a user gets to
see the contents of objects at his or lower levels; that is information can flow to higher levels but
aever lower levels. A more abstract model of security that avoids the need to consider objects has
been formulated by Goguen and Meseguer [GM84][GM82], Feiertag, Levitt and Robinson [FLR77],
and McCullough [McC87]. In these models the information a user observes is to be dependent only
on the actions of users at his level or lower. That is, the actions of higher level users cannot be
observed by lower level users. This is the requirement of a MLS system, including a distributed
system. Generalisations of MLS can also be modeled with these systems through the use of event
systems whose elements are input, output or transition events. The events any user sees can be
specified as a function of his view, a view being his security level, his group, what objects others
have granted him access to, etc.

The burden of security falls on the operating system, although appropriate hardware support
can minimize the impact of security features on system performance. The LOCK system is an
example of a system with extensive hardware support, although all systems have some hardware
support, e.g., a memory management unit.

In simple terms an operating system that satisfies the MLS policy (or other policies) must
enforce access control: processes have access to objects in accordance with the security policy. In

246

addition, the operating system itself must not be a channel for the communication of information
not in accordance with the security policy. Such unwanted information flow can potentially occur
through objects managed by the operating system and to which more than one-users have access;
the term covert channel is often used in referring to such objects.

There have been attempts to develop systems that implement the MLS policy, most for single
host/multiple user systems such as mainframes or shared workstations.

In recent years there has been increasing interest in distributed systerns and, naturally, in secure
distributed systems. For our purposes in this report a distributed system consists of hosts (which
could be workstations, mainframes, personal computers), servers (which could be repositories for
objects accessible to multiple hosts, such as files, directories, names, passwords, etc.), and a network
through which the hosts and servers communicate with each other. Security is perhaps more
important for distributed systems in that such systems are likely to have many hosts and many
users with different authorizations. The security policy for a distributed system is identical to the
(abstract) version of MLS: A user is not to observe the actions of users except those at its level or
lower. A user can be associated with a host or might be an eavesdropper on the network - passive
or active.

There have been several proposals for secure distributed systems, and they vary according the
services offered by the system. In the simplest case, each host can support a single user or, slightly
more generally, users operating at the same level. In this case, Rushby and Randell [RR83], the
burden of assuring security falls on the network, which can mediate all communication between
hosts to assure only those intended to communicate with each other do so. Indeed, the fact that the
users are permitted to communicate only through a few well defined interfaces makes the attainment
of security for this simple (albeit useful) distributed distributed system easier than for a multiuser
mainframe. More complex distributed systems would include multilevel file servers, as proposed by
Rushby and Randell.

A more general distributed system would support multilevel hosts. More complex distributed
systems permit the sharing of memory or of hosts across the system; hosts could be shared through
process migration. For such systems the attainment of security requires secure hosts in addition to
secure interhost services.

The Orange Book defines a rating for a secure system according to the system’s services in
support of security and the extent of the certification of the system with respect to a security policy.
The highest ratings, Al and beyond-Al, are granted to systems that have been formally verified to
satisfied the policy. Al certification requires that the system design be verified, while beyond-Al is
more stringent in that it requires the verification of the system’s implementation. For a single-host
system the design is considered to be the specification of the functional behavior of each service
provided by the system, e.g., system calls and ordinary instructions accessible to user processes.
A few systems have been verified according to the Al criterion. We are aware of no distributed
systems that have been certified to be Al. A goal of this work was to make progress towards an
Al distributed system, through the definition of an interface for a secure distributed system and a
specification of a design.

Once the interface specification of a system has been verified, it remains to verify the imple-
meatation. Of course, a system cannot be considered to be verified unless the executable code
is verified. However, many errors that could render a system insecure can be eliminated through
verification of design decisions that can be formulated in stages of development well before code
is produced. One approach to staging the development and verification of a distributed system
is to consider it to be the interconnection of large self-contained components, each of which has

247

a specification. McCullough has developed a methodology for the verification of systems at this
level, which he calls hookup verification; the security policy is called restrictiveness. Through the
methodology the hookup of a set of components is concluded to be secure provided each of the
components (represented by its specification) is verified to satisfy restrictiveness and their hookup
is shown to satisfy particular properties,

Our work extends, mechanizes, and applies the McCullough methodology. Our extenmsion
involves writing specifications for a class of generic building blocks, the class including filters of
various kinds. Next we define a large class of components that are instantiations of these filters and
show that the instantiations satisfy restrictiveness. These components include queues, transformers,
multiplexors, de-multiplexors, and switches. A secure distributed system can be configured using
these components as building blocks, these blocks providing the links through which untrusted
components communicate. To demonstrate the utility of the methodology, we show how a set of
our components can be connected to produce a verified Rushby-Randell distributed system design.

All proofs are mechanically checked using the Higher Order Logic (HOL) system developed
at Cambridge [Gor88]. Of the existing mechanical proof systems, we found HOL to be the best
suited to reasoning about the interconnection of components with respect to a security policy. HOL
was selected for this project based on its support for higher order logic, generic specifications, and
polymorphic type constructs - all in support of writing and reasoning about general classes of
components.

Once the interconnection of a system of high-level building blocks has been established to satisfy
the security policy, it remains to verify the implementation of the blocks. We found it convenient
to divide the implementation of the basic building blocks into two basic abstractions: (1) the low
level mechanisms that provide the abstraction of processes, especially process separation, and (2)
secure applications that involve the interaction of processes. The first abstraction is successfully
achieved through conventional secure operating system design and verification.

The second is best achieved through programming with a concurreat programming language,
and consequently requires reasoning about concurrent programs. Our approach to the verification
of concurrent programs involves reasoning about the specifications of interacting programs and
then verifying the specifications. For the former, we favor algebraic specifications in the style of
OBJ, but reflecting the concurrent activity. We have developed an extension to OBJ (called OBJC)
which uses rewrite rules to represent concurrent programs that share state. Security properties,
among others, can be expressed in OBJC and the OBJ rewrite rules can be shown to satisfy such
properties. Although any theorem prover could be used, we have found it convenient to build the
theories necessary to accomplish proofs using OBJ.

To carry the proof down to the level of executable code, we suggest using a concurreat pro-
gramming language that runs on the process separation kernel; although we have yet to establish
the formal connection, the kernel can be the runtime system for the concurrent programming lan-
guage. We suggest using the language SR (Synchronising Resources) for the programming of secure
applications. Towards demonstrating the utility of SR we have developed its axiomatic semantics
and showed how it could be used to verify specifications of concurrent programs expressed in the
algebraic style of OBJ.

The main focus of the project was on the verification of secure distributed systems. However,
we also considered two aspects of secure system development that are important in the general
context of software engineering. These are the testing of secure systems and the rapid prototyping
of such systems.

Regarding testing, we have developed a planning system for the intelligent testing of secure

248

software. The system, called TPlan, is based on the ideas of STRIPS and GPS. A goal is presented
to TPlan that represents a particular state one hopes the program under test will not enter; with
respect to security, the state is one where an user has unauthorized access to objects or where
information has leaked through covert channels. TPlan can do an exhaustive search, but can take
advantage of heuristics such as: particular operations that might represent flaws in the system
and how many processes should be involved in exposing the flaw (each process requiring a context
switch to become active). TPlan produces a plan which can be interpreted as a test sequence that
exposes a flaw.

Regarding rapid prototyping, we have noted that many operating systems share structure. We
have developed a template for the rapid prototyping of operating systems, the template consisting -
of 4 levels of specification in an executable specification language. Using the template, & designer
can propose policies for access contral, process switching, scheduling, memory and file management
in terms of rules that are interpreted as programs. Currently, we are using our template to pro-
duce a rapid prototype of the MINIX operating system. The implementation of MINIX requires
12.000 lines of C and assembly code; our rapid prototype will require approximately 1000 lines of
specification.

249

References

[A*84]
[A*86)

[AA87)

(AD&3]

[AF*87]
[AK86]
[A1£85]
[Andse)
[AO*86a)
[AO86b)
(AO88a)
[AO88b]

{AOC*88]

[AP87]

Apt86)

G. Almes et al. Edmas: a locally distributed mail system. International Conference
on Software Engineering, 56-66, 1984.

G.R. Andrews et al. An overview of the SR language and implementation. Journal
of Distributed Computing, 1:133-149, 1986.

M. Abrams and A.K. Agrawala. Automated measurement and prediction of uncondi-
tionally synchronizing distributed algorithms. IEEE Conference on Distributed Com-
puter Systems, 498-505, 1987.

K.R. Apt and C. Delporte. An axiomatization of the intermittent assertion method
using temporal logic. In Automata, Languages and Programming: Incs, Volume 154,
pages 15-27, Springer-Verlag, 1983.

D.P. Anderson, D. Ferrari, et al. A protocol for secure communication and its perfor-
mance. IEEE Conference on Distributed Computer Systems, 473-480, 1987.

B. Auernheimer and R. Kemmerer. RT-ASLAN: a specification language for real-time
systems. IEEE Transactions on Software Engineering, 12(9):879-888, 1986.

M. Alford. SREM at the age of eight; the distributed computing design system. JEEE
Computer, 1(4), 1985.

P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Academic Press, 1986.

G.R. Andrews, R. A. Olsson, et al. An overview of the sr language and implementation.
Journal of Distributed Computing, 1:133-149, 1986.

G.R. Andrews and R.A. Olsson. The evolution of the SR language. Distmbuted
Computing, 1, 1986.

G.R. Andrews and R.A. Olsson. The evolution of the sr language. ACM Transactions
On Programming Languages And Systems, 10(1):51-86, 1988.

G.R. Andrews and R.A. Olsson. The evolution of the SR language. ACM Transactions
On Programming Languages And Systems, 10(1):51-86, 1988.

G. Andrews, R. Olsson, M. Coffin, I Elshoff, K. Nilsen, T. Purdin, and G. Townsend.
An overview of the SR language and implementation. ACM Transactions on Pro-

gramming Languages and Systems, 10(1):51-86, 1988.

Schlichting R.D. Hayes R. Andrews, G.R. and T.D.M. Purdin. The desing of the
Saguaro distributed operating system. IEEE Transactions on Software Engineering,
13(1):104-118, 1987.

K.R. Apt. Correctness proofs of distributed termination algorithms. ACM Transac-
tions On Programming Languages And Systemns, 8(3):388-405, 1986.

250

[AS83a)
[AS83b]
[B*82]

[Bac86]
[Bad86)

[Bar85)

[BB79)

(BC84]
[Bes85]

[BF*87)

[BG*82)
[BG85)

[BGHLS7]

(BHS6)
[BH*87]
(Bir85)

[BL75)

Gasser M. Ames Jr., S.R. and R.R. Schell. Security kernel design and implementation:
an introduction. IEEE Computer, 16(7):14-22, 1983.

G.R. Andrews and F.B. Schneider. Concepts and notations for concurrent program-
ming. ACM Computing Surveys, 15(1):UNKNOWN, 1983.

H. Berg et al. Formal Methods of Program Verification and Specification. Prentice-
Hall, Inc., 1982.

M. Bach. The Design of the UNLX Operating System. Prentice-Hall, 1986.

D.Z. Badal. The distributed deadlock detection algorithm. ACM Transactions On
Computer Systems, 4(4):320~337, 1986. ‘

H. Barringer. A Survey of Verfication Technigues for Parallel Programs. Volume 191,
Springer-Verlag, 1985.

T.A. Berson and G.L Barksdale Jr. KSOS—Development methodology for a se-
cure operating system. In Proceedings of the AFIPS National Computer Conference,
pages 365-371, 1979.

M. Boari and S. Crespi-Reghizzi. Multiple-microprocessor programming techniques:
MML, a new set of tools. JEEE Computer, 1(1), 1984.

E. Best. Concurrent behavior: sequences, processes and axioms. In Seminar on
Concurrency: Incs, Volume 197, pages 221-245, Springer-Verlag, 1985.

F. Baiardi, A. Fantechi, et al. Distributed implementation of nested communicating
sequential process: communication and termination. Journal of Parallel and Dis-
tributed Computing, 4, 1987.

D.M. Berry, C. Ghezzi, et al. Language constructs for real-time distributed systems.
Computer Languages, 7, 1982.

T.A. Budd and A.S. Gopal. Program testing by specification mutation. Computer
Languages, 10, 1985.

A. Birrell, J. Guttag, J. Horning, and R. Levin. Synchronization primitives for a
multiprocessor: a formal specification. Symposium on Operating System Principles,
21(5):94-104, 1987. '

B. Edupuguanty Bryant, B.R. and L.S. Hull. Two-level grammar as an implementable
metalanguage for axiomatic semantics. Computer Languages, 11(3):173-191, 1986.

F. Bastani, W. Hilal, et al. Efficient abstract data type components for distributed
and parallel systems. IEEE Computer, 1(10), 1987.

A.D Birrell. Secure communication using remote procedure calls. ACM Transactions
On Computer Systems, 3(1):1-14, 1985.

D.E. Bell and L.J. LaPadula. Secure Computer systems: Unified Ezposition and Mul-
tics Interpretation. Technical Report MTR-2997, The MITRE Corporation, Bedford,
MA, July 1975.

251

(BL8S]

(BM79)
(BM81a)

[BMS81b)

[BMRS2)

(BN84)

(BO*85]
(Boe8s]
(Boe88]

[Bok87]
[BRS3)

[Bro85a)
[Bro8Sb]

[BS86)

[BT84)
[BT8S)

(Bur84)

B.N. Bershad and H.M. Levy. A remote computation facility for a heterogenous
environment. JEEE Computer, 1(5), 1988.

R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.

R. Boyer and J. Moore. The Correctness Problem in Computer Science. Intl Lecture
Series in Computer Science, Academic Press, 1981.

R. S. Boyer and J. S. Moore. A verification condition generator for fortran. In
R. S. Boyer and J. S. Moore, editors, The Correctness Problem in Computer Science,
Academic Press, 1981.

D.R. Brownbridge, L.F. Marshal, and B. Randell. The newcastle connection, or unixes
of the world unite! Software — Practice and Ezperience, 12:1147-1162, December
1982.

A.D. Birrell and B.J. Nelson. Implementing remote procedure calls. ACM Transac-
tions On Computer Systems, 2(1):39--59, 1984.

R.G. Babb, K. Orr, et al. Workshop on models and languages for software specification
and design. JEEE Computer, 1(3), 1985.

H. Boehm. Side effects and aliasing can have simple axiomatic descriptions. ACM
Transactions On Programming Languages And Systems, 7(4):637-655, 1635.

B.W. Boehm. A spiral model of software development and enhancement. JEEE
Computer, 1(5), 1988.

S.H. Bokhari. Multiprocessing the Sieve of Eratosthenes. IJEEE Computer, 1(4), 1987.

G.V. Bochmann and M. Raynal. Structured specification of communicating systems.
IEEE Transactions on Computing, 32(2), 1983.

S.D. Brookes. In an axiomatic treatment of a prallel programming language. In Logics
of Programs: Incs, Volume 193, pages 41-60, Springer-Verlag, 1985.

S.D. Brookes. On the axiomatic treatment of concurrency. In Seminar on Concur-
rency: Incs, Volume 197, pages 1-34, Springer-Verlag, 1985.

T.P. Blumer and D. P. Sidhu. Mechanical verification and automatic implementation
of communication protocals. JEEE Transactions on Software Engineering, 12(8):827-
836, 1986.

L.A. Bergstra and J.V. Tucker. The axiomatic semantics of programs based on Hoare’s
logic. Acta Informatica, 21, 1984.

T. Bensel and D. Tavilla. Trusted software verfication: a case study. IJEEE Conference
on Security and Privacy, 14~24, 1985.

F. W. Burton. Annotations to control parallelism and reduction order in the dis-
tributed evaluation of functional programs. ACM Transactions On Programming
Languages And Systems, 6(2):159-174, 1984.

252

[BW82)
[BYS87)

[C*85a]
[C*85b)
(C*86]
[Cam8s]

[CESS86]

[CF*86)

[CGM8T]

[CH81]

[Cha85]
[Che8S8]

[CHL*89)

[CKM*88]

[CL*84]

(CL&5]

M. Broy and M. Wirsing. Partial abstract types. Acta Informatica, 18, 1982.

W. Bevier, W.and Hunt and W. Young. Toward verified execution environments.
IEEE Conference on Security and Privacy, 106-116, 1987.

J. S. Crow et al. SRI Verification System Version 2.0 Specification Language Descrip-
tion. Technical Report, SRI International, November 1985.

J.S. Crow et al. SRI Verification System Version 2.0 User’s Guide. Technical Report,
SRI International, November 1985.

R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

M. Campbell. Computer security: a status report. Hawaii Systems Sciences Confer-
ence, 2:742-755, 1985.

E. Clarke, E. Emerson, and A. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions On Programming
Languages And Systems, 8(2):244-263, 1986.

V. Carchiolo, A. Faro, et al. A LOTUS specification of the PROWAY highway service.
IEEE Transactions on Computing, 35(11), 1986.

A. Camilleri, M. Gordon, and T. Melham. Hardware verification using higher order
logic. In D. Borrione, editor, HDL Descriptions to Guaranteed Correct Circuit Designs,
Elsevier Scientific Publishers, 1987.

Z.C. Chen and C.A.R. Hoare. Partial correctness of communicating sequen-
tial processes. Proc. International Conference on Distributed Computing, UN.
KNOWN(UNKNOWN):UNKNGWN, 1981.

E. Chang. Veriiication of non-terminating concurrent progiams. JEEE Conference on
Distributed Computer Systems, 411-415, 1985.

D.R. Cheriton. The V distributed system. Commaunications of the ACM, 31(3):314-
333, 1988.

G.C. Cohen, M.J. Healy, K. Levitt, P. Windley, S. Kalvala, A. Jasuja, J. Pan, J.
Alves-Foss, J. Buffenba, and M. Sievers. Formal verification with hol - an aerospace
perspecitive. August 1989. NASA Contract NAS1-18586 Report (First Draft).

D. Craigen, S. Kromodimoeljo, I. Meisels, A. Neilson, B. Pase, and M. Saaltink. m-
EVES a tool for verifying software. In 10th International Conference on Software
Engineering, IEEE, 1988.

W.W. Chu, M. Lan, et al. Estimation of intermodule communication (IMC) and its
applications in distributed processing systems. IEEFE Transactions on Computing,
33(8), 1984.

K.M. Chandy and L. Lamport. Distributed snapshots: determining global states of
distributed systems. ACM Transactions On Computer Systems, 3(1):63-75, 1985.

253

[Cla79)
[CMs1]
[CM84a)
[CM84b)
[CM87)
[Cohs8é]
[Cob88a]
[Coh88b)

[Coh88c]

(Coh88d]

[Con85)

[Coo81]
[Cra84)

[Cra87]
[Crass)

[CV84]

[CZ83]

E.M. Clarke. Programming language constructs for which it is impossible to obtain
good Hoare axiomatic systems. Journal of the ACM, 26(1):129-147, 1979.

Gasser M. Huff G.A. Cheheyl, M.H. and J.K. Millen. Verifying security. ACM Com-
puting Surveys, 13(3):279-339, 1981.

K. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions On
Programming Languages And Systems, 6(4):632~646, 1984.

J. Chang and N.F. Maxemchuk. Reliable broadcast protocols. ACM Transactions On
Computer Systems, 2(3):251-273, 1984.

M.F. Coulas and G.H. MacEwen. Rnet: a hard real-time distributed programming
system. IEEE Transactions on Computing, 36(8), 1987.

N.H. Cohen. Ada Aziomatic Semantics: Problems and Solutions. Technical Re-
port 223, SofTech, 1986.

A. Cohn. Correctness Properties of the Viper Block Model: The Second Level. Tech-
nical Report, University of Cambridge Computer Laboratory, 1988.

A. Cohn. Correctness Properties of the Viper Block Model: The Second Level. Tech-
nical Report, University of Cambridge Computer Laboratory, 1988.

A. Cohn. A proof of correctness of the VIPER microprocessor: the first level. In
G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification, Verification, and
Synthesis, Kluwer Academic Publishers, 1988.

A. Cohn. A proof of correctness of the viper microprocessor: the first level. In
G. Birtwhistle and P. Subrahmanyam, editors, VLSI Specification, Verification, and
Synthesis, Kluwer Academic Publishers, 1988.

R. Constable. Constructive mathematics as a programming logic I: some principles of
theory. Annals of Discrete Mathematics, 24, 1985.

R.P. Cook. Abstractions for distributed programming. Computer Languages, 6, 1981.

D. Craigen. Ottawa Euclid and Eves: a status report. JEEE Conference on Security
and Privacy, 114-124, 1984.

D. Craigen. m-EVES. Technical Report CP-87-5402-21, L P. Sharp Associates Lim-
ited, 1987.

D Craigen. An application of the m-EVES verification system. In Second Workshop on
Software Testing, Verification, and Analysis, ACM /SIGSOFT and IEEE/CS, 1988.

M. Clint and C. Vincent. The use of ghost variables and virtual programming in the
documentation and verification of programs. Software — Practice and Ezperience,
14(8):711-737, 1984.

D.R. Cheriton and W. Zwaenepoel. The distributed V kernel and its performance for
diskless workstations. Ninth Annual ACM Symposium on Operating System Principles
in Operating Systems Review, 17(5):129-140, 1983.

254

(CZ85)
[dBM87)
(DE82)
(DE*87)
[Den82)

[Dij76)
[DOD83]

[ECD73)
(ELH83]
[EP*83)
[Fei80]

(Fin86]
[Flo67]

[FLR77a)
[FLR77b)

(FORS0]

(Fra83)
[Frasé]

D.R. Cheriton and W. Zwaenepoel. Distributed process groups in the V kernel. ACM
Transactions On Computer Systems, 3(2):77-107, 1985.

J.W. de Bakker and J.J.C. Meyer. Order and metric in the str;:am semantics of
elemental concurrency. Acta Informatica, 24, 1987.

R. Dannenberg and G. Ernst. Formal program verification using symbolic execution.
IEEE Transactions on Software Engineering, 8(1), 1982.

S.A. Dart, R.J. Ellison, et al. Software development environments. JEEE Computer,
1(11), 1987.

D.E. Denning. Cryptography and Data Security. Addison-Wesley Publishing Company,
Reading, Massachusetts, 1982.

E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

Department of Defense Trusted Computer System Evaluation Criteric. Department
Of Defense Computer Security Center, August 1983.

Jr. E.G. Coffman and P.J. Denning. Operating Systems Theory. Prentice-Hall Inc.,
Englewood Cliffs, New Jersey, 1973.

B. Elspas, K. N. Levitt, and D. Hare. Verification of Jovial Programs. Technical
Report, SRI International, 1983.

U. Engels, U. Pletat, et al. An operational semantics for specifications of abstract
data types with error handling. Acta Informatica, 19, 1983.

R. J. Feiertag. A Technigque for Proving Specifications are Multilevel Secure. Technical
Report CSL-109, SRI International, January 1980.

R. Finkel. An Operating Systems Vade Mecum. Prentice-Hall, 1986.

R.W. Floyd. Assigning meanings to programs. American Mathematical Society, 19-32,
1967.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system
design. In Proceedings of the Sizth ACM Symposium on Operating Systems Principles,
pages 57-65, ACM, 1977.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving muitilevel security of a system
design. In Proceedings of the Sizth ACM Symposium on Operating Systems Principles,
pages 57-65, ACM, 1977.

Provably Secure Operating System (PSOS) Final Report. Ford Aerospace and Com-
munications Corporation, June 1980.

L.J Fraim. Scomp: a solution to the multilevel security problem. 16(7):26-53, 1983.
N. Francez. Fairness. Springer-Verlag, 1986.

255

[FW86]
(G*86]

(Gan83]

[GC84)

[GCC*87)

(Geh82)
[Gel8S)
(GHTS]
[GHM?B]‘
[GKM87)
[GM82)
(GMa4]
[GM86a)
[GM86b)

[GM87a)

[GM87b)] -

D.A.Fisher and R.M. Weatherly. Issues in the design of a distributed operating system
for Ada. JEEE Computer, 1(5), 1986.

V. Gligor et al. A new security testing method and its application to the secure Xenix
kernel. JEEE Conference on Security and Privacy, 40-50, 1986.

H. Ganzinger. Parameterized specifications: parameter passing and implementation
with respect to observability. ACM Transactions On Programming Languages And
Systems, 5(3):318-354, 1983.

N. Gehani and T. Cargill. Concurrent programming in the Ada language: the polling
bias. Software — Practice and Ezperience, 14(5):413-427, 1984.

V.D. Gligor, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterer, M.S. Hecht, W.
Jiaug, A. Johri, G.L. Luckenbaugh, and N. Vasudevan. Design and implementation
of Secure Xenix. JEEE Transactions on Software Engineering, 13(2):208-221, 1987.

N. Gebani. Specifications: formal and informal — a case study. Software — Practice
and Ezperience, 12:433-444, 1982.

D. Gelernter. Generative communication in Linda. ACM Transactions On Program-
ming Languages And Systems, 7(1):80-112, 1985.

J. Guttag and J. Horning. The algebraic specification of abstract data types. Acta
Informatica, 10:27-52, 1978.

J. Guttag, E. Horowitz, and D. Musser. Abstract data types and software validation.
Communications of the ACM, 21(12):1048-1064, 1978.

J. Goguen, C. Kirchner, and J. Meseguer. Concurrent Term Rewriting as ¢ Model of
Computation. Technical Report SRI-CSL-87-2, SRI International, May 1987.

J.A. Goguen and J. Meseguer. Security policies and security models. IEEE Conference
on Security and Privacy, 7(5):11-20, December 1982.

J.A. Goguen and J. Meseguer. Unwinding and inference control. JEEE Conference
on Security and Privacy, SE-10(5):75-86, 1984.

N. Gehani and A.D. McGettrick. Software Specification Technigues. International
Computer Science Series, Addision-Wesley Publishing Company, 1986.

J. Goguen and J. ;Meseguer. Extensions and foundations of object-oriented program-
ming. ACM SIGPLAN, 21(10):153-162, 1986.

J.1. Glascow and G.H. MacEwen. The development and proof of a formal specification
for a multilevel secure system. ACM Transactions On Computer Systems, 5(2):151-
184, 1987.

J.1. Glasgow and G.H. MacEwen. The development and proof of a formal specification .
for a multilevel “secure system. ACM Transactions on Programming Languages and
Systems, 5(2):151-184, 1987.

256

[GM87¢]

[GMT*80]

[GMWT9]
[GNS88]
[Gog80]
[Gog8é]
[Gogss]
[Gol82]
[Gor83)
(Gor87]

[Gor8s)

[GS86a)
[GS86b)

[GT86a)

[GT86b)

[Gut75)

J. Goguen and M. Moriconi. Formalization in programming environments. JEEE
Computer, 1(11), 1987.

S. Gerhart, D. Musser, D. Thompson, D. Baker, R. Bates, R. Erickéon, R. London, D.
Taylor, and D. White. An overview of affirm: a specification and verification system.
In S. Lavington, editor, Information Processing 80, North-Holland, 1980.

M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. In incs, Volume 78,
chapter 2, spver, 1979.

D.K. Gifford, R.M. Needham, and M.D. Schroeder. The Cedar file system. Commu-
nications of the ACM, 31(3):288-298, 1988.

J. Goguen. How to prove inductive hypotheses without induction. In Lecture Notes
in Computer Science, Volume 87, pages 356-373, Springer-Verlag, 1980.

J.A. Goguen. Reusing and interconnecting software components. IEEE Computer,
1(2), 1986.

J. Goguen. OBJS as a Theorem Prover with Applications to Hardware Verification.
Technical Report SRI-CSL-88-4R2, SRI International, August 1988.

R. Goldblatt. Aziomatising the Logic of Computer Programming. Volume 130,
Springer-Verlag, 1982.

R. L. Gordon. Experience with a distributed system testbed. Hawaii Systems Sciences
Conference, 1:356-366, 1983.

M. Gordon. A Proof Generating System for Higher-Order Logic. Technical Report 103,
University of Cambridge Computer Laboratory, January 1987.

M. Gordon. HOL: a proof generating system for higher-order logic. In G. Birtwhis-
tle and P.A Subrahmanyam, editors, VLSI Specification, Verification, and Synthesis,
pages 73-128, Kluwer Academic Press, 1988.

K. Geihs and M. Seifert. Automated validation of co-operation protocol for distributed
systems. IEEE Conference on Distributed Computer Systems, 436—443, 1986.

S. Graf and J. Sifakis. A logic for the specification and proof of regular controllable
processes of ccs. Acta Informatica, 23, 1986.

J. Goguen and J. Tardo. An introduction to OBJ: a language for writing and testing
formal algebraic program specifications. In N. Gehani and A. McGettrick, editors,
Software Specification Technigues, Addison-Wesley, 1986.

J. Goguen and J. Tardo. An introduction to OBJ: a language for writing and testing
formal algebraic program specifications. In N. Gehani and A. McGettrick, editors,
Software Specification Techniques, Addison-Wesley, 1986.

J. Guttag. The Specification and Application to Programming of Abstract Data Types.
PhD thesis, University of Toronto, Department of Computer Science, October 1975.

257

(Gut87]
[GW88a]
(GW88b]
(H*86]
[Hals4)
[Ham8s)
[Hay87]
(HD8s]
[Hers7)
[HG8S]

[HI8S)

[EM33]
(EM*84a}

[HM84b)

[Hoa9)]
[Hoa75)

{Hoa78]

J. Guttman. Information flow and invariance. IEEE Conference on Security and
Privacy, 67-77, 1987.

J. Goguen and T. Winkler. Introducing OBJS. Technical Report SRI.CSL-88-9, SRI
International, August 1988.

J. Goguen and T. Winkler. Introducing OBJS. Technical Report SRI-CSL-88-9, SRI
International, August 1988.

J. Halpern et al. Muse - a computer assisted verification system. IEEE Conference
on Security and Privacy, 25-35, 1986.

J.Y. Halpern. A good Hoare axiom system for an Algol-like language. Eleventh Annual
ACM Symposium on Principles of Programming Languages, 262-271, 1984.

D. Hammerslag. Treemacs Manual Technical Report UTUCDCS-R-88-1427, Univer-
sity of Illinois at Urbana-Champaign Department of Computer Science, May 1988.

1. Hayes. Specification Case Studies. Prentice-Hall, Inc., 1987.

M.E. Hull and G. Donnan. Contextually communicating sequential processes — a
software engineering environment. Software — Practice and Ezperience, 16(9):845-
864, 1986.

M. Herlihy. Concurrency versus availability: atomicity mechanisms for replicated
data. ACM Transactions On Computer Systems, 5(3):249-274, 1987.

P. Hudak and B. Goldberg. Distributed execution of functional programs using serial
combinators. IEEE Transactions on Computing, 34(10), 1985.

T. Hikita and K. Ishihata. A method of program transformation between variable
sharing and message passing. Software — Practice and Ezperience, 15(7):677-692,
1985.

C. Heitmeyer and J. McLean. Abstract requirements specification: a new aprpoach
and its application. JEEE Transactions on Software Engineering, 9(5), 1983.

T. Higashino, M. Mori, et al. An algebraic specification of HDLC procedures and its
verification. IEEE Tvransactions on Software Engineering, 10(6):825-847, 1984.

M.E. Hull and R. McKeag. Communicating sequential processes for centralized and
distributed operating system design. ACM Tyansactions On Programming Languages
And Systems, 6(2):175-191, 1984.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576-583, 1969.

C.A.R. Hoare. Parallel programming: an axiomatic approach. Computer Languages,
1, 1975.

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666-677, 1978.

258

[Hoa81)
[Hoa87]
[Hof8s]

[HR*86]
[HW73)

[INTS6]
[Jal87)

[Jan87]

[JK86)

[JL*87)
[Jon83]
[Jon86]

[Joy88a)

{Joy88Db)

[JT88)
[Kar84]

[KB70]

C.A.R. Hoare. A calculus of total correctness for communicating processes. Science
of Computer Programming, 1(1):49-72, 1981.

C.A.R. Hoare. An overview of some formal methods for program design. IEEE
Computer, 1(9), 1987.

D. Hoffman. The trace specification of communications protocols. JEEE Transactions
on Computing, 34(12), 1985.

S. Hariri, C.S. Raghavendra, et al. Reliability analysis in distributed systems. JEEE
Conference on Distributed Computer Systems, 564-571, 1986.

C.A.R. Hoare and N. Wirth. An axiomatic definition of the programming language
Pascal. Acta Informatica, 2:335-355, 1973.

80386 System Software Writer’s Guide. 1986.

P. Jaloate. Synthesizing implementations of abstract data types from axiomatic spec-
ifications. Software — Pructice and Ezperience, 17(11):847-858, 1987.

R. Janicki. A formal semantics for concurrent systems with a priority relation. Acta
Informatica, 24, 1987.

T.A. Joseph and P.B. Kenneth. Low cost ma.nagément of replicated data in fault-
tolerant distributed systems. ACM Transactions On Computer Systems, 4(1):54-70,
1986.

J. Joyce, G. Lomow, et al. Monitoring distributed systems. ACM Transactions On
Computer Systems, 5(2):121-150, 1987.

C.B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions On Programming Languages And Systems, 5(4):596-619, 1983.

C. Jones. Systematic Software Develpment using VDM. International Computer Sci-
ence Series, Prentice-Hall, Inc., 1986.

J. Joyce. Formal verification and implementation of a microprocessor. In G. Birtwhis-
tle and P. Subrahmanyam, editors, VLSI Specification, Verification, and Synthesis,
Kluwer Academic Publishers, 1988.

J. Joyce. Using higher-order logic to specify computer hardware and architecture.
In D. Edwards, editor, Proceedings of the IFIP TC10 Working Conference on Design
Methodology in VLSI and Computer Architecture, North-Holland, 1988.

D.M. Johnson and F.J. Thayer. Stating security requirements with tolerable sets.
ACM Transactions On Computer Systems, 6(3):284—295, 1988.

R.A. Karp. Proving failure-free properties of concurrent systems using temporal logic.
ACM Transactions On Programming Languages And Systems, 6(2):239-253, 1984.

D. Knuth and P. Bendix. Simple word problems in universal algebras. In Compu.
tational Problerms in Abstract Algebra, pages 263-297, Pergamon Press, New York,
1970.

259

[Kem79]

[Kem85)

[Kem86)

(KJA8S]

[Kle85]
{Klu83]

[KP86)
[Kra87)
[Kro87)

[KS86)

[Kut84)
{L*83)

[L*85]

[Lad87]
[Lam82)
[Lams3)

(Lam86a)

R.A. Kemmerer. Formal Verification of the UCLA Security Kernel: Abstract Model,
Mapping Functions, Theorem Generation, and Proofs. PhD thesis, University of Cal-
ifornia, Los Angeles, 1979.

R.A. Kemmerer. Testing formal specifications to detect design error's. IEEE Trans-
actions on Software Engineering, 11(1):32-42, 1985.

R.A. Kemmerer. Verification Assessment Study Final Report, Volume III, The A firm
System. Technical Report, Department of Computer Science, University of California,
March 1986.

S.N. Kamin, S. Jefferson, and M. Archer. The FASE System of Ezecutable Specifica-
tions of Data Types. Technical Report, University of Lllinois, October 1985.

L. Kleinroch. Distributed systems. IEEE Computer, (1), 1985.

W.E. Kluge. Cooperating reduction machines. IEEE Transactions on Computing,
32(11), 1983.

S. Kaplan and A. Pnueli. Specification and Implementation of Concurrently Accessed
Data Structures: An Abstract Data Type Approach. Technical Report CS86-23, Weis-
mann Institute of Science, 1986.

B. Kramer. SEGRAS - a formal and semigraphical language combining Petri nets
and abstract data types for the specificatin of distributed systems. International
Conference on Software Engineering, 116-126, 1987.

F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987.

J. Kerridge and D. Simpson. Communicating parallel processes. Software — Practice
and Ezperience, 16(1):63-86, 1986.

S. Kutti. Why a distribute kernel? Operating Systems Review, 18(4):5-11, 1984.

K. N. Levitt et al. Investigation, Development and Evaluation of Performance Proving
Jor Fault-Tolerant Computers. Technical Report, SRI International, 1983.

Clarke L. et al. A comparison of data flow path selection criteria. International
Conference on Software Engineering, 244-254, 1985.

P. Ladkin. Specification of time dependencies and synthesis of concurrent processes.
International Conference on Software Engineering, 106-116, 1987.

L. Lamport. What Good is Temporal Logic. Technical Report, Digital Research Sys-
tems Center, November 1982.

L. Lamport. Specifying concurrent program modules. ACM Tvransactions On Pro-
gramming Languages And Systems, 5(2):190-222, 1983.

L. Lamport. Control Predicates Are Better Than Dummy Variables for Reasoning
About Program Control. Technical Report, Technical Report, Digital Research System
Center, May 1986.

260

[Lam86b]
[Lam8é6c]
[Lam86d)
[Lans1]
[Lan83]
[LBF85)

[Lelss)
[Len88]

[Lev80]
[LG86)

[LEMs4)
[LM87]
[Loes5)
[LRS79]
[LS84)

(LS86)

[LS87)

(Lubs4)

L. Lamport. Control Predicates Are Better Than Dummy Variables For Reasoning
About Program Control. Technical Report, Digital Research System Center, May 1986.

L. Lamport. On interprocess communication (Part I: basic formalism). Distributed
Computing, 1, 1986.

L. Lamport. On interprocess communication (Part II: algorithms). Distributed Com-
puting, 1, 1986.

C.E. Landwehr. Formal models for computer security. ACM Computing Surveys,
13(3):247-278, 1981.

C.E. Landwehr. The best available technologies for computer security. IEEE Com-
puter, 16(7):86-100, 1983.

T.J. Le Blanc and S.A. Friedberg. HPC: a model of structure and change in distributed
systems. IEEE Transactions on Computing, 34(12), 1985.

W. Leler. Constraint Programming Languagcs. Addison-Wesley, 1988.

P.M. Lenders. A generalized message-passing mechanism for communicating sequen-
tial processes. IEEE Transactions on Computing, 37(6), 1988.

K. N. Levitt. A Secure Operating System. Technical Report, SRI International, 1980.

B. Liskov and J. Guttag. Abtraction and Specification in Program Development. MIT
Press, 1986.

C.E. Landwehr, C.L. Heitmeyer, and J. McLean. A security model for military message
systems. ACM Transactions On Computer Systems, 2(3):198-222, 1984.

T.J. LeBlanc and J.M. Mellor-Crummey. Debugging parallel programs with instant
replay. IEEE Transactions on Computing, 36(4), 1987.

K. Loepere. Resolving covert channels within a B2 class secure system. Operating
Systems Review, 19(3):9-28, 1985.

K. N. Levitt, L. Robinson, and B. Silverberg. The HDM Handbook, Volumes I, II,
IIl. Technical Report, SRI International, 1979.

L. Lamport and F. Schneider. The Hoare logic of CSP, and all that. ACM Transactions
On Programming Languages And Systems, 6(2):281-296, 1984.

W. Lu and M. Sundareshan. A model for multilevel security in computer networks. In
Proceedings Tth Annual Joint Conference of the IEEE Computer and Communications
Societies, pages 1095-1104, March 1986.

J. Loecks and K. Sieber. The Foundations of Program Verification. B. G. Teubner,
1987.

B.D. Lubachevsky. An approach to automating the verification of compact parallel
coordination programs. Acta Informatica, 21, 1984.

261

[Lv85)
[LW86)
[Mas88]

[MB83)

(MB*84]
[MCs1]
[McC87)
[McHs5)
[McL87]
[MD79)
[Mel8s)]

[Mey85]
[MF86)

[MG83)
[Mil76)

[Mil83)

(Mil87)

D.C. Luckham and W. von Henke. An overview of Anna, a specification language for
Ada. IEEE Software, 2(2):9-23, 1985.

B. Liskov and W. Weihl. Specifications of distributed programs. Distributed Comput-
ing, 1, 1986.

1.A. Mason. Verification of programs that destructively manipulate data. Science of
Computer Programming, 10(2):177-210, 1988.

P. Merlin and G. Bochmann. On the construction of submodule specifications and
communication protocols. ACM Transactions On ngrcmmmg Languages And Sys-
tems, 5(1):1-25, 1983.

Schroeder. M.D., A.D. Birrell, et al. Experience with Grapevine: the growth of a
distributed system. ACM Tvansactions On Computer Systems, 2(1):3-23, 1984.

J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions on
Software Engineering, SE-7(4), 1981.

D. McCullough. Specifications for multi-level security and a hook-up property. IEEE
Conference on Security and Privacy, 161-166, 1987.

J. McHugh. An information flow tool for Gypsy. IEEE Conference on Security and
Privacy, 46-56, 1985.

J. McLean. Reasoning about security models. IEEE Conference on Security and
Privacy, 123-133, 1987.

E.J. McCauley and P.J. Drongowski. KSOS—The design of a secure operating system.
In Proceedings of the AFIPS National Computer Conference, pages 345-353, 1979.

T. Melham. Automating Recursive Type Definitions in Higher—Order Logic. Technical
Report 146, University of Cambridge Computer Laboratory, September 1988.

B. Meyer. On formalism in specification. IEEE Software, 2(1):6-27, 1985.

D.A. Mundie and D.A. Fisher. Parallel processing in Ada. IEEE Computer, 1(8),
1986.

P. McMullin and J. Gannon. Combining testing with formal specifications a case
study. JEEE Transactions on Software Engineering, 9(3), 1983.

J.K. Millen. Security kernel validation in practice. Communications of the ACM,
19(5):243-250, 1976.

A. Mili. Proving programs by stuctural induction: a new perspective on the sometime
method and the subgoal induction method. Hawaii Systems Sciences Conference,
1:112-117, 1983.

J.K. Millen. Covert channel capacity. IEEE Conference on Security and Privacy,
60-66, 1987.

262

[MJ83]
(MLF84)
[MM83]

[MMS85]

[MMS6]

[Mur86)
(Mus80]

[MW84]

[NBF*80]

[ND*86)
[Nem85)
(Nes87)
[Nic85)
[Nor87)
[NS78)

[NZ88)

P. Mateti and J. Jaffar. A correctness proof of an indenting program. Software —
Practice and Ezperience, 13.199-226, 1983.

W.N. McKusick, M.K.and Joy, S.J. Leffler, and R.S. Fabry. A fast file system for
UNIX. ACM Transactions On Computer Systems, 2(3):181-197, 1984.

A.R. Meyer and J.C. Mitchell. Termination assertions for recursive programs: com-
pleteness and axiomatic definability. Information and Control, 56(1):112-138, 1983.

Girgis M. and Woodward M. An integrated system for program testing using weak
mutation and data flow analysis. International Conference on Software Engineering,
313-323, 1985.

J. McHugh and A. Moore. A security policy and formal top level specification for
a multi-level secure local area network. IEEE Conference on Security and Privacy,
3444, 1986.

T.P. Murtagh. Eliminating proofs of non-interference from Levin-Gries CSP program
proofs. IEEE Conference on Distributed Computer Systems, 494~499, 1986.

D. Musser. Abstract data type specification in the affirm system. IEEE Transactions
on Software Engineering, 1:24-32, January 1980.

Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic
specifications. ACM Transactions On Programming Languages And Systemns, 6(1):68-
93, 1984.

P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt, and L. Robinson. A Prov-
ably Secure Operating System: The System, its Applications, and Proof. Technical
Report CSL-116, SRI, May 1980. ‘

V. Nguyen, A. Demers, et al. A model and temporal proof system for networks of
processes. Distributed Computing, 1, 1986.

R.M. Nemes. Modular verification of distributed systems. IEEE Conference on Dis-
tributed Computer Systems, 396—410, 1985.

D.M. Nessett. Factors afecting distributed system security. IEEE Transactions on
Software Engineering, 13(2):233-248, 1987.

R. De Nicola. Two complete axiom systems for a theory of communicating sequential
processes. Information and Control, 64(1):136-172, 1985.

J.D. Northcutt. Mechanisms for Reliable Distributed Real-Time Operating Systems
The Alpha Kernel. Academic Press, Inc., Orlando, Florida, 1987.

R.M. Needham and M.D. Schroder. Using encryption for aunthenmtication in large
networks of computers. Communications of the ACM, 21(12):993-999, 1978.

Black A.P. Lazowska E.D. Levy H.M. Sanislo J. Notkin, D. and J. Zahorjan. Intercon-
necting heterogeneous computer systems. Communications of the ACM, 31(3):258-
273, 1988.

263

[0C*88]
[OH86)
[OL82]

(Oss83]

(Owi80a)
[Owigob)
[Pag79)]
[Paus3)
[Paus?)
[Peas?)
[Pet8s)
[PKK*79]
(Pra84]
[Pro8s)
[PS*86)
[QK*85}

(Ram83]

J.K. Qusterhout, A.R. Cherenson, et al. The sprite network operating system. JEEE
Computer, 1(2), 1988.

B.R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating
processes. Acta Informatica, 23, 1986.

S. Owicki and L. Lamport. Proving liveness properties of concurrent programs. ACM
Tvansactions On Programming Languages And Systems, 4(3):455-495, 1982.

M. Ossefort. Correctness proofs of communicating processes: three illustrative exam-
ples from the literature. ACM Transactions On ngmmmmg Languages And Systems,
5(4):620~640, 1983.

S. Owicki. Aziomatic Proof Technigues for Parallel Programs. Garland Publishing,
Inc., 1980.

S. S. Owicki. Specification and verification of a network ‘mail system. In Seminar on
Concurrency: Incs, Volume 197, pages 198-234, Springer-Verlag, 1980.

F.G. Pagan. Semantic specification using two-level grammars: blocks, procedures and
parameters. Computer Languages, 4, 1979.

L. Paulson. A higher-order implementation of rewriting. Science of Computer Pro-
gramming, 3:119-149, 1983.

L. Paulson. Logic and computation: interactive proof with cambridge lcf. In Cam-
bridge Tracts in Theoretical Computer Science 2, Cambridge University Press, 1987.

M Pease. The Byszantine Generals problem. ACM Transactions On Programming
Languages And Systems, 4(3):382—401, 1982.

N Petschenik. Practical priorities in system testing. IEEE Software, 2(5):18-23, 1985.

G.J. Popek, M. Kampe, C.S. Kline, A. Stoughton, M. Urban, and E.J. Walton. UCLA
Secure Unix. In Proceedings of the AFIPS National Computer Conference, pages 355—
364, 1979.

V.R. Prasad. Interference-freedom in proofs of CSP programs. IEEE Conference on
Distributed Computer Systems, 79-86, 1984.

N. Proctor. The restricted access proessor, an example of formal verfication. IEEE
Conference on Security and Privacy, 49-59, 1985.

N. Prywes, Y. Shi, et al. Supersystem programming with Model. IEEE Computer,
1(2), 1986.

D. Quammen, J.P. Kearns, et al. Efficient storage management for temporary values
in concurrent programming languages. IEEE Transactions on Computing, 34(9), 1985.

A. Ramsay. A distributed programming assistant. Software — Practice and Ezperi-
ence, 13:983-992, 1983.

264

[Rei82]
[Rem84)

[Ric80]
[RK83]

[RM84)

[Rom87)
(RR83)
[RR86]
[RS*85)

[Rus81])

[Rus82)

{Rus84]
[S84a)
[S*84b)

[San84]
[Sch82a)

[Sch82b]

W. Reisig. Deterministic buffer synchronization of sequential processes. Acta Infor-
matica, 18, 1982.

J.H. Remmers. A technique for developing loop invariants. Information Processing
Letters, 18(3):137-139, 1984.

R.P. Rich. Mechanical proof testing. Computer Languages, 5, 1980.

K. Ramamritham and R. Keller. Specification of synchronizing processes. IEEE
Transactions on Software Engineering, 9(6), 1983.

G. Roman and Day M. Multifaceted distributed systems specification using processes
and event symchronization. International Conference on Software Engineering, 44-54,
1984. :

G. Roman. Specifying software/hardware iteractions in distributed systems. Interna-
tional Conference on Software Engineering, 126-136, 1987.

J. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55-67,
1983.

R.R. Razouk and M.T. Rose. Verifying partial correctness of concurrent software using
contour/transition-nets. Hawass Systems Sciences Conference, 2A:734-743, 1986.

D. Rotem, N. Santoro, et al. Distributed sorting. JEEE Transactions on Computing,
34(4), 1985.

J.M Rushby. Design and verification of secure systems. Eighth Annual ACM Sym-
posiura on Operating System Principles in Operating Systems Review, 15(5):12-21,
1981.

J.M. Rushby. Proof of separability. a verification technique for a class of security ker-
nels. International Symposium on Programming, Lecture Notes in Computer Science,
(137):352-367, 1982.

J. Rushby. The security model of enhanced hdm. In Proceedings of Seventh DoD/NBS
Computer Security Conference, pages 120-136, DoD Computer Security Center, 1984.

Ntafos S. An evaluatino of required element testing strategies. International Confer-
ence on Software Engineering, 250~260, 1984.

E.M. Clarke Sistla, A.P. et al. Can message buffers be axiomatised in linear temporal
logic? Information and Control, 63(1):88-112, 1984.

D.T. Sannella. A set-theoretic semantics for Clear. Acts Informatica, 21, 1984.

F.B. Schneider. Synchronization in distributed programs. ACM Tvansactions On
Programming Languages And Systems, 4(2):179-195, 1982.

J. Schwarz. Using annotations to make recursion equations behave. IJEEE Transactions
on Software Engineering, 8(1):21-35, 1982.

265

[SD*82]

[SAR8T]

[Shas4]

(Sil83]

[SKs5)
[SKs6)
[SL83]
[SL87]
(SM85]
[Sous4)
[Sousé)
S584]
[Ss88]

(SSM8s]

[ST88)

[Sta84]

C.A. Sunshine, D.H.Thompson, et al. Specification and verification of communication
protocols in AFFIRM using state transition methods. IEEE Transactions on Software
Engineering, 8(5), 1982.

F.A. Stomp and W.P. de Roever. A correctness prrof of a distributed minimum-
weight spanning tree algorithm. JEEE Conference on Distributed Computer Systems,
440447, 1987.

S.M. Shatz. Communication mechanisms for programming distributed systems. JEEE
Computer, 1(6), 1984

J.M. Silverman. Reflections on the verification of the security of an operating system
kernel. Ninth Annual ACM Symposium on Operating System Principles in Operating
Systems Review, 17(5):143-154, 1983.

1. Suzuki and T. Kasami. A distributed mutual exclusion algorithm. ACM Transac-
tions On Computer Systems, 3(4):344-349, 1985.

0.S. Saydjari and T.W. Kremann. A standard notation in computer security models.
Proceedings kof the 9th national Computer Security Conference, 1986.

A.U. Shankar and S.S. Lam. An HDLC protocol specification and its verification using
image protocols. ACM Transactions On Computer Systemns, 1(4):331-368, 1983.

S. Sluizer and S. Lee. Using executable specifications to model user requirements.
Hawaii Systems Sciences Conference, 2:41-49, 1987.

K.H. Sears and A. E. Middleditch. Software concurrency in real time control systems:
a software nuclens. Software — Practice and Ezperience, 15(8):739-759, 1985.

N. Soundararajan. Axiomatic semantics of commaunicating sequential processes. ACM
Transactions On Programming Languages And Systemns, 6(4):647-662, 1984.

N. Soundararajan. Total correctness of CSP programs. Acta Informatica, 23, 1986.

R. Schlichting and F. Schneider. Using message passing for distributed programming:
proof rules and disciplines. ACM Transactions On Programming Languages And Sys-
tems, 6(3):402431, 1984.

A.E.K. Sobel and N. Soundararajan. A proof system for distributed processes. Acta
Informatica, 25, 1988.

R. E. Shostak, R. L. Schwarts, and P. M. Melliar-Smitk. RSTP: a mechanical logic for
specification and verification. In , editor, Proceedings Sizth Conference on Automated
Deduction, June 1985.

D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Informatica, 25, 1988.

J.A. Stankovic. A perspective on distributed computer systems. JEEE Transactions
on Computing, 33(12), 1984.

266

[SW87)
(Sza87a)
[S2a87b)
(TA87)

[Tak87]

{Tay83]

S.M. Shatz and J. Wang. Introduction to distributed-software engineering. IJEEE
Computer, 1(10), 1987.

A. Szalas. Arithmetical axiomatization of first-order temporal logic. Information
Processing Letters, 26(3):111-116, 1987.

A. Szalas. A complete axiomatic characterization of first-order temporal logic of linear
time. Theoretical Computer Science, 54(3):199~214, 1987.

K. Tai and S. Ahujs. Reproducible testing of communication software. International
Computer Software and Applications Conference, 331-341, 1987.

T. Takaoka. A decomposition rule for the hoare logic. Information Processing Letters,
26(4):250-208, 1987.

R.N. Taylor. Complexity of analyzing the synchronization structure of concurrent
programs. Acta Informatica, 19, 1983.

[TCVW=*88] Jr. T.A. Casey, S.T. Vinter, D.G. Weber, R. Varadarajan, and D. Rosenthal. A secure

(TES1]

[TWWS82)

[UNKS8S5)

[UNK86]
(UUD8S]

[VB8S]
[VCHs8)
[vdm87]
[Vel84]

[VM87]

distributed operating system. JEEE Conference on Security and Privacy, 27-38, 1988.

D. Thompson and R. Erickson. AFFIRM Reference Manual. Technical Report, USC
Information Sciences Institute, February 1981.

J. Thatcher, E. Wagner, and J. Wright. Data type specification: parameterization and
the power of specification techniques. ACM Transactions On Programming Languages
And Systems, 4(4):711-732, 1982.

UNKNOWN. Ada for Specification: possibilities and limitations. Cambridge Univer-
sity Press, 1985. :

UNKNOWN. Program Specification and Transformation. North Highland, 1986.

S. Urban, J. Urban, and W. Dominick. Utilizing an executable specification language
for an information system. IEEE Transactions on Software Engineering, 11(7):598-
608, 1985.

T. Vickers Benzel. Verification technology and the al criteria. In Proceedings of
VERkshop 1II, in ACM Software Engineering Notes, 20(8), pages 108-109, 1985.

S.T. Vinter, T.A. Casey, and K.A. Huber. The Secure Distributed Opemtin‘g System
Design Project. Technical Report, BBN Laboratories Inc., 1988.

vdm. VDM '87 VDM - A Formal Method at Work. Proceedings. Volume 252, Springer-
Verlag, 1987.

P.A.S. Veloso. A sound and complete methodology for abstract data type specification:
correctness proof and example. Hawais Systems Sciences Conference, 1:399-405, 1984.

R.A. Volz and T.N. Mudge. Timing issues in the distributed execution of Ada pro-
grams. IEEE Transactions on Computing, 36(4), 1987.

[WE86)

[Wed85]

[Wey84]

[WHs4)

[Win87)

(Wit85a)

[Wit85b]

[WLds)

[WN86]

[WP*83]

[WS83)

[YC83]

[YM87)

(Zav86)

H. Weber and H. Ehrig. Specification of modular systems. IEEE Transactions on
Software Engineering, 12(7), 1986.

H.F. Wedde. A formal basis for correct implementations of distribl.{ted programming
languages. IEEE Conference on Distributed Computer Systems, 476-485, 1985.

E. Weyuker. Axiomatizing software test data adequacy. JEEE Transactions on Soft-
ware Engineering, 12(12), 1984.

R. Williamson and E. Horowitz. Concurrent communication and synchronization
methods. Software — Practice and Ezperience, 14(2), 1984.

J. Wing. Writing Larch interface language specifications. ACM Transactions on
Programming Languages and Systems, 9(1):1-24, 1987.

B.I. Witt. Communicating modules: a software design model for concurrent dis-
tributed systems. JEEE Computer, 1(1), 1985.

B.I. Witt. Parallelism, pipelines, and partitions: variations on communicating mod-
ules. JEEE Computer, 1(2), 1985.

R. J. Waldinger and K. N. Levitt. Reasoning about programs. Artificial Intelligence,
5(3):235-316, 1974 (also appeared in Studies in Automatic Programming Logic, Amer-
ican Elsevier, 1976, Manna and Waldinger (eds.)).

J. Wing and M. Nixon. Extending Ina Jo with temporal logic. JEEE Conference on
Security and Privacy, 2-12, 1986.

M. Wirsing, P. Pepper, et al. On hierarchies of abstract data types. Acta Informatica,
20, 1983.

P. Wegner and S. Smolka. Processes, tasks, and inonitors: a comparative study of
concurrent programming primitives. IEEE Transactions on Software Engineering,
9(4), 1983.

S. Yau and M. Caglayan. Distributed software system deﬁg‘n representation using
modified Petri nets. JEEE Transactions on Software Engineering, 9(6):733~740, 1983.

W. Young and J. Mchugh. Coding for a believable specification to implementation
mapping. JEEE Conference on Security and Privacy, 140-150, 1987.

P. Zave. Case study: the PAISLey approach applied to its own software tools. Com-
puter Languages, 11, 1986.

268

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (CsI) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

