
AD-A252 472 ENTATION PAGE __________

1111 1111 lit IJ[f Dralon San fjlo~mmods rgagwding this buren estimate or any other aspeato this ollebtionI of 4 ormaion.inldg
I mmliii I olrifomai~patons"Re ~ ponj* 1215 J'efri Davis Hightiay. Suite 1204. "aIgon, VA

Offios of Management wdBudget. Washington, DC 20503.

Validation Summary Report: Verdix Corporation, VADS AT&T 3B2/600GR
Unix System V, Release 4.0, VAda-1 10-6363, Version 6.1, AT&T
3E21600GR under UNIX System V (Host & Target)
6.

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

Ada Validation Facility, Language Control Facility ASD/SCEL ORGANIZATION

Bldg. 676, Rm 135 AVF-VSR-530.0492
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORINGMONITORING AGENCY NAME(S) AND 10. SPONSOR INGIMONITORING

Ada Joint Program Office AGENCY

United States Department of Defense DI %k

1 2a. DISTRIBUTION/AVAILABILITY 1 2b. DISTRIBUTION

Approved for public release; distribution unlimited.

13. (Maximnum 200

Verdix Corporation, VADS AT&T 3B2/600GR Unix System V, Release 4.0, VAda-1 10-6363, Version 6.1, AT&T
3B32/600GR under UNIX System V (Host & Target), 920513W1.1 1252, ACVC 1.11.

92-17197

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.____PRICE__

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIIL-STD-1815A, 16PRC

17. SECURITY I18. SECURITY I19. SECURITY 20. LIMITATION OF
CLASSIFICATION I CLASSIFICATION
UNCLASSIFIED IUNCLASSIFED IUNCLASSIFIED________
NSN Standard Form 298, (Rev. 2-89)

PreSaibed by ANSI Std.

AVF Control Number: AVF-VSR-530.0492
1 June 1992

92-03-18-vRx

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920513W1.11252
VERDIX Corporation

VADS AT&T 3B2/600GR UNIX System V, Release 4.0, VAda-110-6363, Version 6.1
AT&T 3B2/600GR under UNIX System V, Release 4.0 =>
AT&T 3B2/600GR under UNIX System V, Release 4.0

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Accesion For

NTIS CRi&I
UTIC TAS

Jklstifciwonl

By

Di t. ,lto: -.

List

A/-

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 13 May 1992.

Compiler Name and Version: VADS AT&T 3B2/600GR UNIX System V, Release 4.0,
VAda-110-6363, Version 6.1

Host Computer System: AT&T 3B2/600GR
under UNIX System V, Release 4.0

Target Computer System: AT&T 3B2/600GR
under UNIX System V, Release 4.0

Customer Agreement Number: 92-03-18-VRX

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920513W1.11252 is awarded to VERDIX Corporation. This certificate expires
on 1 June 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

SAVaa i organization
Direc trda ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer: Verdix Corporation

Ada Validation Facility: ASD/SCEL, WPAFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: VADS AT&T 3B2/600GR UNIX System V, Release 4.0
VAda-l10-6363, Version 6.1

Host Computer System: AT&T 3B2/600GR (UNIX System V, Release 4.0)

Target Computer System: same as host

Declaration:

[I/we], the undersigned, declare that [I/we] have no
knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation
listed above.

Customer i Date

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES.... 1-2
1.3 ACVC TEST CLASSES1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG891.

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of Tdentity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H BB3025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDIB02B BDIBO6A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Co mentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55BO9C B86001W C86006C CD7101F

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST. .FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and mist be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various- floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

C96005B uses values of type DURATION's base type that are outside the
range of type DURATION; for this implementation, the ranges are the
same.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIALIO
CE2102F CREATE INOUT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT--I0
CE2102J CREATE OUT FILE DIRECT I
CE2102N OPEN IN FILE SEQUENTIAL_10
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIALI10
CE2102Q RESET OUT--FILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT-FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECTI0
CE2102V OPEN OUT FILE DIRECT I0
CE2102W RESET OUT FILE DIRECT I
CE3102E CREATE IN FILE TEXT1 0
CE3102F RESET Any Mode TEXTI0
CE3102G DELETE TEXTIO
CE31021 CREATE OUT FILE TEXTI0
CE3102J OPEN IN FILE TEXT-10
CE3102K OPEN OUT FILE TEXTI0

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify -an Tnappropriate value fo? the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this Tmplementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 21 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B24009A B33301B B38003A B38003B B38009A B38009B
B85008G B85008H BCI303F BC3005B BD2BO3A BD2DO3A
BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT'FIRST..FLOAT'LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

CD009A, CD1009I, CD1CO3A, CD2A24A, and CD2A31A..C (3 tests) were graded
passed by Evaluation Modification as directed by the AVO. These tests use
instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LENGTHCHECK-i.e, the allowed Report.Failed messages have
the general form:

* CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-4

CVPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly VA 22021

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

3-1

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3805
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 69
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 270 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were not loaded directly onto the host computer. The tape
was loaded onto a Sun Workstation, and the tests were copied over Ethernet
to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V1 represents the maximum input-line
length.

Macro Parameter Macro Value

SMAX IN-LEN 499 - Value of V

$BIG IDl (l..V-1 W> 'A', V > '1')

$BIG ID2 (l..V-l => 'A', V > '2')

$BIG ID3 (I..V/2 => 'A') & '3' &
(1..V-1-V/2 => 'A')

$BIG ID4 (1..V/2 => 'A') & '4' &
(l..V-I-V/2)> 'A')

$BIG INT LIT (I..V-3 > '0') & "298"

$BIG REAL LIT (l..V-5 ,> '0') & "690.0"

$BIG STRING1 '"' & (I..V/2 -> 'A') & '"'

$BIG STRING2 '"' & (1..V--V/2 -> 'A') & 'I' & '"'

SBLANKS (l..V-20 => '

$MAX LEN INT BASED LITERAL
"2:" & (l..V-5-> '0') & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (l..V-7-> '0') & "F.E:"

A-1

MACRO PARAMETERS

$MAX STRING-LITERAL "' & (1..V-2 -> 'A') & ""

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 4

$COUNT LAST 2147483647

$DEFAULT MEM SIZE 16777216

$DEFAULTSTOR UNIT 8

$DEFAULT SYS-NAME ATr MIPSSYSV4

$DELTA DOC 0.0000000004656612873077392578125

SENTRY ADDRESS SYSTEM."+"(16#40#)

SENTRY ADDRESS1 SYSTEM."+"(16#80#)

SENTRY ADDRESS2 SYSTEM."+"(16#100#)

$FIELD LAST 2147483647

$FILE TERMINATOR ' '

$FIXED NAME NO SUCHTYPE

$FLOAT NAME NO SUCHTYPE

$FORM STRING ""

$FORM STRING2 "CANNDT RESTRICT FILE CAPACITY"

$GREATER THAN DURATION
100000.0

$GREATER THAN DURATION BASE LAST
- - 0o1o0.o

$GREATER THAN FLOAT BASE LAST
-- - - l. .E+308

$GREATER THAN FLOAT SAFE LARGE
5.UE307

A-2

MACRO PARAMETERS

$GREATERTHANSHORT FLOAT SAFE LARGE
_ - 9.07E37

$HIGH-PRIORITY 99

$ ILLEGALEXTERNALFILE NANEl
V/illegal/file-name/2(1$%FILE1 .DAT"

$ILLEGALEXTERNALFILE NAME2
w/illegal/file-nae'2($%FILE2.DAT"

$ INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDE PRAGMAl PRAGMA INCLUDE ("IA28006D1.TST")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("IB28006D1.TST")

SINTEGERFIRST -2147483648

$INTEGER LAST 2147483647

$INTEGERLASTPLUS_1 2147483648

$ INTERFACELANGUIAGE C

$LESS THAN DURATION -100000.0

SLESSTHANDURATION BASE -FIRST
_ _ - -l6000000.0

$LINETERMINATOR ASCII.LF & ASCII.FF

$LOW JPRIORITY 0

$MACHINE-CODE STATEMENT
CODE_0'(OP -> HOP);

$MACHINECODETYPE CODE_0

$MANTISSA DOC 31

$MAXDIGITS 15

SMAXINT 2147483647

$MAXINTPLUS 1 2147483648

$MININT -2147483648

$NAME TINY-INTEGER

A-3

MACRO PARAMETERS

$NAMELIST ATI'_MIPSSYSV4

$NAMESPECIFICATIONi /homel/acvcl 11/c/e/X2120A

$NAME-SPECIFICATION2 /omel/acvcl 11/c/e/X2120B

$NAMESPECIFICATION3 /homel/acvcl 11/C/eiX3119A

$NEGBASEDINT 160000000OE#

$NEW MEM-SIZE 16777216

$NEWSTORUNIT 8

$NEWSYS-NAME AlTMIPSSYSV4

$PAGETERMINATOR ASCII.FF

$RECORD-DEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORDNAME CODE_0

$TASKSIZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLEADDRESS VAR_ 'ADDRESS

$VARIABLEADDRESS1 VAR_2 'ADDRESS

$VARIABLEADDRESS2 VAR_3 'ADDRESS

$YOUR PRAI3MA PRAGM'A PASSIVE

A-4

APPENDIX B

COMPILATICN SYSTEM OPTICNS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

COMPILATION SYSTEM OPTIONS

ada VADS Reference ada

ada - invoke the Ada compiler

SYNTAX

ada (options] (sourcefile]... [objectfile.o]...

OPTIONS

-A (disassemble) disassemble the units in the source file after compiling
them. -A can be followed by arguments that further define the
disassembly display (e.g. -Aa, -Ab, -Ad, -Af, -Al, -As):

a add hexadecimal display of instruction bytes to disassembly
listing

b disassemble the unit body [default]
d print the data section (if present) as well
f use the alternative format for output
1 put the disassembly output in file "filename.das"
s disassemble the unit spec

-a file name (archive) Treat file name as an object archive file created
by ar. Since some archive files end with .a, -a is used to
distinguish archive files from Ada source files.

-D identifier type value (define) Define an identifier of a specified type
and value. See VADS ADA PREPROCESSOR REFERENCE.

-d (dependencies) Analyze for dependencies only. Do not do semantic
analysis or code generation. Update the library, marking any defined
units as uncompiled. The -d option is used by a.make to establish
dependencies among new files.

-e (error) Process compilation error messages using a.error and send it
to standard output. Only the source lines containing errors are
listed. Only one -e or -E option should be used.

-E
-E file
-E directory (error output) Without a file or directory argument, ada

processes error messages using a.error and directs a brief
output to standard output; the raw error messages are left
in ada source.err. If a file pathname is given, the raw
error messages are placed in that file. If a directory
argument is supplied, the raw error output is placed in
dir/source.err. The file of raw error messages can be used
as input to a.error.

-el (error listing) Intersperse error messages among source lines and
direct to standard output.

-El
-El file

B-2

COMPILATION SYSTEM OPTIONS

-El directory (error listing) Same as the -E option, except that source
listing with errors is produced.

-ev (error vi(l)) Process syntax error messages using a.error, embed
them in the source file, and call the environment editor
ERROR EDITOR. (If ERROR EDITOR is defined, the environment variable
ERROR--PATTERN should also be defined. ERROR PATTERN is an editor
search command that locates the first occurrence of '###' in the
error file.) If no editor is specified, vi(l) is invoked.

-F (full DIANA) Do not trim the DIANA tree before outpuit to net files.
To save disk space, the DIANA tree will be trimed so that all
pointers to nodes that did not involve a subtree that define a
symbol table will be nulled (unless those nodes are part of the
body of an inline or generic or certain othere values needing to
be retained for the debugging or compilation information). The
trimming generally removes initial values of variables and all
statements.

-K (keep) Keep the intermediate language (IL) file produced by the
compiler front end. The IL file will be placed in the .objects
directory, with the file name Ada source.

-L library_name (library) Operate in VADS library library_name.
[Default: current working directory]

-ifile abbreviation (library search) This is an option passed to the
ld(l) linker, telling it to search the specified
library file. (No space between the -1 and the file
abbreviation.) (self-hosted applications only)

For a description of the file abbreviations, see also
Operating System documentation, ld(1).

-M unit name (main) Produce an executable program by linking the named
unit as the main program. unit name must already be
compiled. It must be either a parameterless procedure or
a parameterless function returning an integer. The
executable program will be named a.out (self-hosted) or
a.vox (cross-development) unless overridden with the -o
option.

-M sourcefile (main) Produce an executable program by compiling and
linking source file. The main unit of the program is
assumed to be The root name of the .a file (for foo.a
the unit is foo). Only one .a file may be preceded by
-M. The executable program will be named a.out
(self-hosted) or a.vox (cross-development) unless
overridden with the -o option.

-o executable-file (output) This option is to be used in conjunction
with the -M option. executable file is the name
of the executable rather than The default.

B-3

COMPILATION SYSTEM OPTIONS

-0[0-9] (optimize) Invoke the code optimizer. An optional digit
(there is no space before the digit) provides the level of
optimization. The default is -04.

-0 full optimization
-00 no optimization
-01 copy propagation, constant folding, removing dead variables,

subsuming moves between scalar variables
-02 add common subexpression elimination within basic blocks
-03 add global common subexpression elimination
-04 add hoisting invariants from loops and address

optimizations
-05 add range optimizations, instruction scheduling and one

pass of reducing induction expressions
-06 no change and instruction scheduling
-07 add one more pass of induction expression reduction and

instruction scheduling
-08 add one more pass of induction expression reduction and

instruction scheduling
-09 add one more pass of induction expression reduction,

instruction scheduling and hoisting expressions common
to the then and else parts of if statements.

Hoisting from branches (and cases alternatives) can be slow
and does not always provide significant performance gains so
it can be suppressed.

NOTE: This version of VADS includes a preliminary SPARC-
specific optimizer. It schedules loads to avoid pipeline
conflicts and moves instructions to the delay slots of
branches and calls. Since it can be slow for some programs,
it is only enabled at optimization levels greater than 4.

For more information about optimization, see COMPILING ADA

PROGRAMS, Compiler Optimizations and pragma OPTIMIZE CODE(OFF).

-P Invoke the Ada Preprocessor. See VADS ADA PREPROCESSOR REFERENCE.

-R VADS-library (recompile instantiation) Force analysis of all
generic instantiations, causing reinstantiation of
any that are out of date.

-S (suppress) Apply pragma SUPPRESS to the entire compilation for all
suppressible checks. (See also pragma SUPPRESS(ALLCHECKS)).

-sh (show) Display the name of the tool executable but do not execute it.

-T (timing) Print timing information for the compilation.

-v (verbose) Print compiler version number, date and time of compilation,
name of file compiled, command input line, total compilation time and
error summary line. Storage usage information about the object file
is provided.

B-4

COMPILATION SYSTEM OPTIONS

-w (warnings) Suppress warning diagnostics.

DESCRIPTION

The command ada executes the Ada compiler and compiles the named Ada
source file, ending with the .a suffix. The file must reside in a VADS
library directory. The ada.lib file in this directory is modified after
each Ada unit is compiled.

By default, ada produces only object and net files. If the -M option is
used, the compiler automatically invokes a.ld and builds a complete
program with the named library unit as the main program.

Non-Ada object files (.o files produced by a compiler for another
language) may be given as arguments to ada. These files will be passed
on to the linker and will be linked with the specified Ada object files.

Command line options may be specified in any order, but the order of
compilation and the order of the files to be passed to the linker can be
significant.

Several VADS compilers may be simultaneously available on a single system.
Because the ada command in any VADS location/bin on a system will execute
the correct compiler components based upon visible library directives,
the option -sh is provided to print the name of the components actually
executed.

Program listings with a disassembly of machine code instructions are
generated by a.db or a.das.

DIAGNOSTICS

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer to the RM. Each RM reference includes a
section number and optionally, a paragraph number enclosed in parentheses.

RELATED TOPICS

a.app, a.das, a.db, a.error, a.help, a.ld, a.make, a.map, a.pr

Generated 10-21-91 VADS

B-5

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

a. id VADS Reference a.ld

a.ld - prelinker

SYNTAX

a.ld [options] unitname [linkeroptions]

OPTIONS

-DO (objects) Use partially linked objects instead of archives as an
intermediate file if the entire list of objects cannot be passed to
the linker in one invocation. This option is useful because
of limitations in the archiver on some hosts (including Ultrix,
HPUX and System V).

-DX (debug) Debug memory overflow (use in cases where linking a large
number of units causes the error message "local symbol overflow"
to occur).

-E unit-name (elaborate) Elaborate unit name as early in the

elaboration order as possiBle.

-F (files) Print a list of dependent files in order and suppress linking.

-L library_name (library) Operate in VADS library library_name.
(Default: current working directory]

-o executable-file (output) Use the specified file name as the name of
the output rather than the default (a.out (self-hosted)
or a.vox (cross-development)).

-sh (show) Display the name of the tool executable but do not execute it.

-U (units) Print a list of dependent units in order and suppress linking.

-v (verbose) Print the linker command before executing it.

-V (verify) Print the linker conmmand but suppress execution.

[linker options] All arguments after unit name are passed to the linker.
These may be options for the linker, archive libraries,
library abbreviations or object files.

DESCRIPTION

B-6

COMPILATION SYSTEM OPTIONS

a.ld collects the object files needed to make unit name a main program
and calls the ld(l) linker to link together all Ada and other
language objects required to produce an executable image in a.out
(self-hosted) or a.vox (cross- developmnent), unit name is the main
program and must name a non-generic subprogram. If-unit name is a
function, it must return a value of the type STANDARD.IhrEGER. This
integer result will be passed back to the shell as the status code
of the execution. The utility uses the net files produced by the Ada
compiler to check dependency information. a.ld produces an exception
mapping table and a unit elaboration table and passes this information
to the linker. The elaboration list generated by a.ld does not include
library level packages that do not need elaboration. In addition,
packages that contain no code that can raise an exception will no longer
have exception tables.

a.ld reads instructions for generating executables from the ada.lib file
in the VADS libraries on the search list. Besides information generated
by the compiler, these directives also include WITHn directives that
allow the automatic linking of object modules compiled from other
languages or Ada object modules not named in context clauses in the Ada
source. Any number of WITHn directives may be placed into a library, but
they must be numbered contiguously beginning at WITH1. The directives
are recorded in the library's ada.lib file and have the following form.

WITH1:LINK:object file:
WITH2 :LINK:archive file:

WITHn directives may be placed in the local Ada libraries or in any
VADS library on the search list.

A WITHn directive in a local VADS library or earlier on the library
search list will hide the same numbered WITHn directive in a library
later in the library search list.

Use the tool a.info to change or report library directives in the
current library.

All arguments after unit name are passed on to the linker. These may
be options for it, archive libraries, library abbreviations, or object
files.

VADS location/bin/a.ld is a wrapper program that executes the correct
executable based upon directives visible in the ada.lib file. This
permits multiple VADS compilers to exist on the same host. The -sh
option prints the name of the actual executable file.

FILES AND DIRECTORIES

a.out/a.vox default output file
.nets Ada DIANA net files directory
.objects/* Ada object files

VADS location/standard/* startup and standard library routines

B-7

COMIPILATION SYSTEM OPTIONS

DIAGNOSTICS

Self-explanatory diagnostics are produced for missing files, etc.
Additional messages are produced by the id linker.

RELATED TOPICS

ada, a.make, a.info

Generated 10-21-91 VADS

B-8

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range -1.797693134E+308 .. 1.797693134E+308;
type SHORT FLOAT is digits 6 range -3.4028E+38 .. 3.4028E+38;

type DURATION is delta 0.0001 range -214748.3648 .. 214748.3647;

end STANDARD;

C-1

APPENDIX F OF THE Ada STANDARD

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INLINEONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, iidicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive a warning message will be emitted and an
PROGRAM ERROR will be raised at run time.

1.2. BUILT IN Pragma

The BUILT IN pragma is used in the implementation of some
predefineU Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Ada
body can be provided, for example the MACHINECODE package.

1.3. SHARECODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a
declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit the pragma applies
to all instantiations of that generic. When the first argu-
ment is the name of a generic instantiation the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE each instantiation will

C-2

APPENDIX F OF THE Ada STANDARD

get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has the same effect as SHARE CODE. It is
included for compatability with earlier versions of VADS.

1.4. NOIMAGE Pragma

The pragma suppresses the generation of the image array used
for the IMAGE attribute of enumeration types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM ERROR raised at run time.

1.5. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable defined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.6. INTERFACENAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declarative item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The
object must be declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.7. IMPLICITCODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.

C-3

APPENDIX F OF THE Ada STANDARD

The default is ON.

1.8. OPTIMIZECODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the

Ada RM.

2.3. INLINE

This pragmd is implemented as described in Appendix B of the
Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

2.5. LIST

This pragma is implemented as described in Appendix B of the
Ada RM.

2.6. MEMORYSIZE

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.7. NON REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called

C-4

APPENDIX F OF THE Ada STANDARD

recursively allowing the compiler to perform specific optim-
izations. The pragma can be applied to a subprogram or a
set of overloaded subprograsm within a package spec or pack-
age body.

2.8. NOT-ELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned
representation for composite types. It will not causes
objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.12. PASSIVE

The pragma has three forms

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a
task body will prevent the intended optimization, in these
cases a warning will be generated at compile time and will
raise TASKINGERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada RM.

2.14. SHARED

C-5

APPENDIX F OF THE Ada STANDARD

This pragma is recognized by the implementation but has no

effect.

2.15. STORAGEUNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that
DIVISION CHECK and in some cases OVERFLOW CHECK cannot be
supressed.

2.17. SYSTEMNAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object, a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-
age, task unit, or label, it refers to the address of the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is
not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification Of Package SYSTEM

C-6

APPENDIX F OF THE Ada STANDARD

Copyright 1987, 1988, 1989, 1990 Verdix Corporation

with UNSIGNED TYPES;
package SYSTEM is

pragma SUPPRESS(ALL CHECKS);
pragma SUPPRESS(EXCEPTION TABLES);
pragma NOT_ELABORATED;

type NAME is (attmips_sysv4);

SYSTEMNAME : constant NAME :- attmips_sysv4;

STORAGE UNIT constant :- 8;
MEMORY_SIZE : constant :-16-777-216;

- System-Dependent Named Numbers

MIN INT : constant :- -2 147 483 648;
MAX-INT : constant :- 2 147 -483 _47;
MAX--DIGITS : constant :-'5; - -
MAX-MANTISSA : constant :- 31;
FINE DELTA : constant :-.0*(-31);
TICK-- : constant :-0.01;

- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAXRECSIZE : integer := 64*1024;

type ADDRESS is private;

function "" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
fu-nction ">="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<-"(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function "+" (I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNSIGNED TYPES.UNSIGNED INTEGER) return ADDRESS renames "+";

NO ADDR : constant ADDRESS;

type TASK ID is private;
NOTASKID : constant TASKID;

subtype SIG STATUS T is INTEGER;

SIG STATUS SIZE: constant :- 4;

C-7

APPENDIX F OF THE Ada STANDARD

type PROGRAM ID is private;
NOPROGRAM_ID : constant PROGRAMID;

type LONGADDRESS is private;

NOLONGADDR : constant LONGADDRESS;

function "+" (A: LONG ADDRESS; I: INTEGER) return LONG ADDRESS;
function "-" (A: LONG-ADDRESS; I: INTEGER) return LONG_ADDRESS;

function MAKELONG ADDRESS (A: ADDRESS) return LONG ADDRESS;

function LOCALIZE(A: LONG ADDRESS ; BYTE SIZE : INTEGER) return ADDRESS;

function STATION OF(A: LONG ADDRESS) return INTEGER;

private

type ADDRESS is new UNSIGNED TYPES.UNSIGNED INTEGER;

NO ADDR : constant ADDRESS :- 0;

pragma BUILT IN(">");
pragma BUILTIN("<");
pragma BUILT-IN(">-") ;
pragma BUILT-IN("<=") ;
pragma BUILT IN("-");
pragma BUILT-IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO TASKID : constant TASKID :- 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO PROGRAM ID : constant PROGRAM ID :- 0;

type LONGADDRESS is new UNSIGNED_TYPES.UNSIGNEDINTEGER;

NO LONG ADDR : constant LONG ADDRESS :- 0;

pragma BUILT IN(MAKE LONG ADDRESS);
pragma BUILT-IN(LOCALIZE);
pragma BUILT_-IN(STATIONOF);

end SYSTEM;

5. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded
so as to provide for efficient access by the target
hardware, pragma PACK applied to a record eliminate the pad-

C-8

APPENDIX F OF THE Ada STANDARD

ding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representa-
tion is required.

5.2. Size Clauses

For scalar types a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation
clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address elaboration ordering requirements
prohibit inititalization of a variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides
an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode mneumonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-
lows:

C-9

APPENDIX F OF THE Ada STANDARD

CODE_n'(opcode, operand {, operand));

where n indicates the number of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODE_N'(opcode, (operand f, operand)));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODE 0'(op => opcode);

The opcode must be an enumeration literal (i.e. it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINECODE or
the 'REF attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the functions defined in MACHINI CODE. The 'REF attribute
may not be used as an arg -- in any of these functions.

Inline expansion of mawr.,e code procedures is supported.

6. Conventions for Implementation-generated Names

There are no ir.lementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause are interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when-the size
of ELEMENT TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT TYPE'SIZE is
very large, MAXEC SIZE is used instead. MAX RECORD SIZE

C-10

APPENDIX F OF THE Ada STANDARD

is defined in SYSTEM and can be changed by a program before
instantiating DIRECT 10 to provide an upper limit on the
record size. In any case the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR
if MAX REC SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS) when the
size of ELEMENT TYPE exceeds that value. For example for
unconstrained arrays such as string where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used instead.
MAX RECORD SIZE is defineU in -SYSTEM and can be changed by a
program before instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIAL 10 imposes no limit on
MAXRECSIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximum size of a statically
sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGESIZE length specifica-
tion every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE SIZE length attribute
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If

C-11

APPENDIX F OF THE Ada STANDARD

this value is exceeded the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-12

