
AD-A252 471
rATION PAGE FOrmA1.ve

ubl, 1,i IN 1111111 1111 1 1 hour per response. including the time for rgw ng ,nstruct.ons, searching exiting data sources gathering
and mainteining the data needed. and revievAng the collection of information. Send comments regarding this burden estimale or any other a81pe01 of thie olection of information. including
suggestions tor reducing this burden, to Washington Haedualers Service. Directorate for Inormiation Operations ard Reporls. 1215 Jefferson Davis lighway. Suite 1204. Arlington. VA
22202-4302, and to the Office of Information and Regulatory Affairs. Office of Management and Budget, Washington. DC 20503.

1. AGENCY USE (Leave 2. REPORT 3. REPORT TYPE AND DATES

I Final: 18 Mar 1992 to 01 Jun 1993

4. TITLE AND 5. FUNDING

Validation Summary Report: Tartan, Inc., Tartan Ada SPARC C30 version
4.2, Sun SPARCstation/ELC (Host) to Texas Instruments TMS320C30

(Target), 92031311.11244

6.

IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

IABG-AVF, Industrieanlagen-Betriebsgeselschaft ORGANIZATION

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 83
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND 1 T A GEN 10. SPONSORING/MONITORING

Ada Joint Program Office L IAEC
United States Department of Defense E LE -
Pentagon, Rm 3E114 JUL 0 1 i992.
Washington, D.C. 20301-3081
11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION

Approved for public release; distribution unlimited.

13. (Maximum 200

Tartan, Inc., Tartan Ada SPARC C30 version 4.2, Sun SPARCstation/ELC (Host) to Texas Instruments
TMS320C30 (Target), ACVC 1.11.

92-17195

14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIIMIL-STD-1815A, 16. PRICE

17. SECURITY 18. SECURITY p19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN

AVF Control Number: IABG-VSR 83
18 March, 1992

Ada COMPILER
VALIDATION SUMMRY REPORT:

Certificate Number: 92031311.11244
Tartan, Inc.

Tartan Ada SPARC C30 version 4.2
Sun SPARCstation/ELC ->

Texas Instruments THS32OC30

A-cesion For

r'JIS CRA&J

UJ,~~u AEd L

Prpae By

IABG mbH, Abt. IT!
Einsteinstr. 20
W-8012 Ottobrunn

Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 13 March, 1992.

Compiler Name and Version: Tartan Ada SPARC C30 version 4.2

Host Computer System: Sun SPARCstation/ELC
under SunOS Version 4.1.1

Target Computer System: Texas Instruments THS320C30 Application Board
(bare machine)

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
92031311.11244 is awarded to Tartan, Inc. This certificate
expires 24 months after ANSI approval of MIL-STD 1815B.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Direc mputer & Software Engineering Division
Instit- f r Defense Analyses
Alexandria VA 22311

, Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer. Tartan, Inc.

Certificate Awardee: Tartan, Inc.

Ada Validation Facility: IABG mbH

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: Tartan Ad aPARC C O i 4.2

Host Computer System: SPARC Station/ELC SunOS vers0in 41.1
Texas Instruments TMS320C30

Target Computer System: Application Board (bare machine)

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the
Ada Language Standard ANSI/MIL-STD-1815A ISO 8652-1987 in the
implementation listed above.

Customer Signature Date

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.. USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-1
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-2

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-3

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90 against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programmino Languaae,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1-1

INTRODUCTION

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and (UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

1-2

INTRODUCTION

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validateu Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

1-3

INTRODUCTION

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D B83026B C83026A C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDlB06A ADlB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A4lA CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A tea, is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 285 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

2-1

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predefined type SHORT INTEGER;
for this implementation, there is no such type:

C35404B 836105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E CS5B07B B55B09D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for
this implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C55B07A B55B09C B86001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORT-INTEGER; for this implementation, there is no such type.

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT-FLOAT; for this implementation, there is no such type.

C35713D and 886001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX-MANTISSA is less than 47.

C45536A, C46013B, C460318, C46033B, and C46034B contain length clauses
that specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the base
type; for this implementation, MACHINEOVERFLOWS is TRUE.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C instantiate
generic units before their bodies are compiled; this implementation
creates a dependence on generic units as allowed by AI-0408 & AI-0506
such that the compilation of the generic unit bodies makes the instan-
tiating units obsolete. (see 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A53A checks operations of a fixed-point type for which a length
clause specifies a power-of-ten TYPE'SMALL; this implementation does
not support decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation

2-2

IMPLEMENTATION DEPENDENCIES

does not support such sizes.

CD2BI5B checks that STORAGEERROR is raised when the storage size
specified for a collection is too small to hold a single value of the
designated type; this implementation allocates more space than was
specified by the length clause, as allowed by AI-00558.

The following 264 tests check operations on sequential, text, and
direct access files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE210'K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE21.05A..B (2) CE2106A..B '2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE220CB
CE240IA..C (3) EE2401D CE240IE..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A expect that NAME ERROR is raised when an
attempt is made to create a file with an illegal name; this
implementation does not support the creation of external files and so
raises USEERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS

Modifications (see Section 1.3) were required for 106 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B24007A B24009A B25002B B32201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B
838008A B38008B B38009A 838009B B38103A B38103B
B38103C 838103D B38103E B43202C B44002A B48002A
B48002B B48002D 848002E B48002G B48003E B49003A
849005A B49006A B490069 B49007A B49007B B49009A
B4A010C B54A20A B54A25A B58002A B58002B B59001A
B59001C B59001I B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EO1A 885007C
B85008G B85008H B91004A B91005A B95003A B95007B
B95031A B95074E BA1001A BC1002A BC1109A BC1109C
BC1206A BC2001E BC3005B BD2AO6A BD2BO3A BD2DO3A
BD4003A BD4006A BD8003A

2-3

IMPLEMENTATION DEPENDENCIES

E28002B was graded inapplicable by Evaluation and Test Modification as
directed by the AVO. This test checks that pragmas may have unresolvable
arguments, and it includes a check that pragma LIST has the required
effect; but, for this implementation, pragma LIST has no effect if the
compilation results in errors or warnings, which is the case when the test
is processed without modification. This test was also processed with the
pragmas at lines 46, 58, 70 and 71 commented out so that pragma LIST had
effect.

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT'FIRST..FLOAT'LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

Tests C45524A..E (5 tests) were graded passed by Test Modification as
directed by the AVO. These tests expect that a repeated division will
result in zero; but the Ada standard only requires that the result lie in
the smallest safe interval. Thus, the tests were modified to check that
the result was within the smallest safe interval by adding the following
code after line 141; the modified tests were passed:

ELSIF VAL <- F'SAFESMALL THEN COMMENT ("UNDERFLOW SEEMS GRADUAL");

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. These tests were modified by inserting "PRAGMA ELABORATE
(REPORT);" before the package declarations at lines 13 and 11,
respectively. Without the pragma, the packages may be elaborated prior to
package report's body, and thus the packages' calls to function
Report.Ident Int at lines 14 and 13, respectively, will raise
PROGRAMERROR.

B83EOlB was graded passed by Evaluation Modification as directed by the
AVO. This test checks that a generic subprogram's formal parameter names
(i.e. both generic and subprogram formal parameter names) must be
distinct; the duplicated names within the generic declarations are marked
as errors, whereas their recurrences in the subprogram bodies are marked
as "optional" errors--except for the case at line 122, which is marked as
an error. This implementation does not additionally flag the errors in the
bodies and thus the expected error at line 122 is not flagged. The AVO
ruled that the implementation's behavior was acceptable and that the test
need not be split (such a split would simply duplicate the case in B83EO1A
at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded
inapplicable by Evaluation Modification as directed by the AVO. These
tests instantiate generic units before those units' bodies are compiled;
this implementation creates dependences as allowed by AI-00408 & AI-00506
such that the compilation of the generic unit bodies makes the
instantiating units obsolete, and the objectives of these tests cannot be
met.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 & AI-00506
such that the compilation of the generic bodies makes the instantiating
units obsolete--no errors are detected. The processing of these tests was
modified by compiling the seperate files in the following order (to allow
re-compilation of obsolete units), and all intended errors were then
detected by the compiler:

2-4

IMPLEMENTATION DEPENDENCIES

BC3204C: CO, Cl, C2, C3M, C4, CS, C6, C3M

BC3205D: DO, DiM, D2, DIM

BC3204D and BC3205C were graded passed by Test Modification as directed by
the AVO. These tests are similar to BC3204C and BC3205D above, except that
all compilation units are contained in a single compilation. For these two
tests, a copy of the main procedure (which later units make obsolete) was
appended to the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by
the AVO. The test contains a specification of a power-of-ten value as
small for a fixed-point type. The AVO ruled that, under ACVC 1.11, support
of decimal smalls may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as
directed by the AVO. These tests check that various subprograms may be
interfaced to external routines (and hence have no Ada bodies). This
implementation requires that a file specification exists for the foreign
subprogram bodies. The following command was issued to the Librarian to
inform it that the foreign bodies will be supplied at link time (as the
bodies are not actually needed by the program, this command alone is
sufficient):

interface -aye -L=library ad900lb & ad9004a

CE2103A, CE2103B and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described

adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Mr Ron Duursma
Director of Ada Products
Tartan, Inc.
300 Oxford Drive
Monroeville, PA 15146
USA
Tel. (412) 856-3600

For sales information about this Ada implementation, contact:

Ms. Marlyse Bennett
Director of Sales
Tartan, Inc.
12110 Sunset Hills Road
Suite 450
Reston, VA 22090
USA
Tel. (703) 715-3044

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro9Ol.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a

3-1

PROCESSING INFORMATION

floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system -- if none is supported (item d). All tests passed, except
those that are listed in sections 2.1 and 2.2 (counted in items b and f,
below).

a) Total Number of Applicable Tests 3441
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 85
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 285

f) Total Number of Inapplicable Tests 634 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic data cartridge containing the customized test suite (see section 1.3)
was taken on-site by the validation team for processing. The contents of
the magnetic data cartridge were loaded directly onto the host computer.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link, an RS232 Interface, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were for compiling:

-f forces the compiler to accept an attempt to compile a unit
imported from another library which is normally prohibited.

-c suppresses the creation of a registered copy of the source
code in the library directory for use by the REMAKE and MAKE
subcommands.

-La forces a listing to be produced, default is to only produce a
listing when an error occurs.

No explicit Linker options were used.

Test output, compiler and linker listings, and job logs were captured on
magnetic data cartridge and archived at the AVF. The listings examined on-site
by the validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 240

$BIG IDi (l..V-l W>'A, V ->'1')

SBIG_1D2 (l..V-l W>'A, V >'2')

$BIG_1D3 (l..V/2 W>'A) & '3' &
(1. .V-l-V/2 -> 'A)

$BIG_1D4 (l..V/2 => 'A) & '4' &
(1..V-l-V/2 -> WA)

$BIGINTLIT (l..V-3 -> '0') & "298"

SEIG REAL LIT (l..V-5 -> '0') & "690.0"

$EIG STRINGi 1 & (l..V/2 -> 'A) &..

$BIG STRING2 ' & (1. .V-l-V/2 -> WA) & '1' &

$BLANKS (l..V-20 ->

$MAXLENIT-BASEDLITEA
"2:0 & (l..V-5 -> '0') & "11:0

SMAXLENREALBASED LIERA
"16:" & (1. .V-7 -> '0') & "F.E:"

$MAX STRING LITERAL ' & (l..V-2 -> 'A') &

A- 1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACC SIZE 32

$ALIGNMENT 1

SCOUNT-LAST 2147483646

$DEFAULT HEMSIZE 16777216

$DEFAULT STORUNIT 32

$DEFAULT SYS NAME T1320C30

SDELTA-DOC 2#1.0#E-31

SENTRYADDRESS SYSTEM.ADDRESS' (1618098031)

$ENTRYADORESSi SYSTEM.ADDRESS' (1618098041)

SENTRY ADDRESS2 SYSTEM.ADDRESS' (1618098051)

$FIELD-LAST 240

$FILETERMINATOR VI

$FIXEDNAME NO SUCHTYPE

S FLOATNAME NO SUCH -TYPE

$FORM-STRING

SFORM STRING2 "CANNOT RESTRICTFILE CAPACITY"

$GREATER-THANDURATION
100 000.0

SGREATER-THAN DURATION BASELAST
131 073.0

$GREATER THANFLOAT BASE LAST
3.'0282E+38

$GREATER THAN FLOAT SAFE LARGE
1.UE+38

$GREATER-THAN SHORTFLOATSAFE LARGE
1.0f+38

SHIGH-PRIORITY 100

S ILLEGAL EXTERNAL FILE NAME 1

YLLEGAL EXTERNAL FILE NAMEl

S ILLEGAL EXTERNAL FILE NAME 2
YLLEGAL EXTERNAL FILENAME2

S INAPPROPRIATE LINELENGTH
-1

S INAPPROPRIATE PAGE LENGTH
-1

A-2

MACRO PARAMETERS

SINCLUDE PRAGMA1 PRAGMA INCLUDE (-A28006Dl.TST-)

$INCLUDE PRAGMA2 PRAGMA INCLUDE (-B28006F1.TST")

SINTEGERFIRST -2147483648

$INTEGER-LAST 2147483647

$INTEGER LASTPLUS_1 2147483648

S INTERFACE-LANGUAGE TI C

SLESS THAN DURATION -100 000.0

SLESSTHANDURATIONBASEFIRST

-1311073.0

$LINETERMINATOR

SLOW-PRIORITY 10

SMACHINECODE STATEMENT
TwoOpnds'(LDI,(Imm,5),(Reg,RO));

MACHINE CODE TYPE Instruction-Mnemonic

SMANTISSADOC 31

SMAX-DIGITS 9

SMAX INT 2147483647

SMAXINTPLUS_1 2147483648

SMININT -2147483648

$NAME NO SUCHTYPEAVALIABLE

SNAME-LIST T1320C30

$NEGBASEDINT 16#FFFFFFFEI

SNEWMEMSIZE 16777216

SNEW-STOR-UNIT 32

SNEW SYS NAME T1320C30

$PAGE-TERMINATOR

SEECORD-DEFINITION record operation: Instruction-mnemonic;
Operand 1: Operand; end record;

$RECORD-NAME Two Opnds

$TASKSIZE 32

STASK STORAGESIZE 4096

$TICK 0.00006103515625

$VARIABLEADDRESS SYSTEM.ADDRESS' (160809800*)

$VARIABLE ADDRESS1 SYSTEM.ADDRESS' (1618098011)

$VARIABLE ADDRESS2 SYSTEM.ADDRESS' (1618098021)

A-3

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described
in this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-i

Chapter 4
Compiling Ada Programs

The tadac 30 command is used to compile and assemble Ada compilation units.

4.1. THE tadac30 COMMAND FORMAT
The tadac30 command has this format:

A% tadac30 [optzon...] file... [opton...]

Arguments that start with a hyphen are interpreted as options; otherwise, they represent filenames. There
must be at least one filename, but there need not be any options. Options and filenames may appear in any order.
and all options apply to all filenames. For an explanation of the available options, see Section 4.2.

If a source file does not reside in the directory in which the compilation takes place, the file must include a
path sufficient to locate the file. It is recommended that only one compilation unit be placed in a file.

If no extension is supplied with the rile name, a default extension of .ada will be supplied by the compiler.

Files are processed in the order in which they appear on the command line. The compiler sequentially
processes all compilation units in each file. Upon successful compilation of a unit

* The library database, Lbrry .Db, is updated with the new compilation time and any new dependencies.
* One or more separate compilation files and/or object riles are generated.

If no errors are detected in a compilation unit, tadac30 produces an object module and updates the library. If
any error is detted, no object code ile is produced, a source listing is produced, and no library enn-y is made for
that compilation unit. If warnings are generated, both an object code file and a source listing are produced. For
further details about the process of updating the library, files generated, replacement of existing files, and
possible error conditions, see Sections 43 through 4.5.

The output from tadac30 is a tile of type. stof or . tof, for a specification or a body unit respectively,
containing object code. Some other files are generated as well. See Section 4.4 for a list of extensions of files
that may be generated.

The compiler is capable of limiting the number of library units that become obsolete by recognizing
refinements. A library unit is a refinement of its previously compiled version if the only changes that were made
are:

" Addition or deletion of comments.
" Addition of subprogram specifications after the Last declarative item in the previous version.

An option is required to cause the compiler to detect refinements. When a refinement is detected by the
compiler, dependent units are not marked as obsolete

4.2. OPTIONS

Command line options indicate special actions to be performed by the compiler or special output file
properties.

The following command line options may be used:

4-1

COMPfl.G ADA PROGRAMS

the nxtimes. Please contact Tartan for information on how to perform these
customizatxons.

-ndb Controls whether the compiler generates delayed branch instructions (detailed in
Section 5.12).

-nhl When the nhl (no huge loops) qualifier is specified, the user is asserting that no
loops will iterate more than 223 times. This limit includes non-user specific loops.
such as those generated by the compiler to operate on large objects. Erroneous
code will be generated if this assertion is false. The compiler will generate a
run-time range check if overflow checks are not suppressed.

-Opn Control the level of optimization performed by the compiler, requested by n. The
optimization levels available are

Sfi0 Minimum - Performs context determination, cons:at folding.
algebraic manipulation, and short circuit analysis.

n = I Low - Performs level 0 optimizations plus common subexpres-
sion elimination and equivalence propagation within basic
blocks. It also optimizes evaluation order.

n = 2 Best tradeoff for space/time - the default level. Performs level
1 optimizations plus flow analysis which is used for common
subexpression elimination and equivalence propagation across
basic blocks. It also performs invariant expression hoisting.
dead code elimination, and assignment killing. Level 2 also
performs lifetime analysis which is used to improve register al-
location. It also performs inline expansion of subprogram calls
indicated by pragma INLINE, if possible.

n = 3 Time - Performs level 2 optimizations plus inline expansion of
subprogram calls which the optimizer decides are profitable to
expand (from an execution time perspective). Other opumiza.
tions which improve execution time at a cost to image size are
performed only at this level.

n =4 Space - Performs those optimizations which usually produce the
smallest code, often at the expense of speed. Please note that
this optimization level may not always produce the smallest
code. Under certain conditions another level may produce
smaller code.

-p Extracts syntactically corect compilation unit source from the parsed file and
loads this file into the library as a parsed Unit. Parsed units are. by definition,
inconsistenL This switch allows users to load units into the library without regard
to correct compilation order. The command remakecu is used subsequently to
reorder the compilation units in the correct sequence. See Section 10.2.5 for a
more complete description of this command.

-r Data on this switch is provided for information only. This switch is used ex-
clusively by the librarian to notify the compiler that the source undergoing com-
pilation is an internal source file. The switch causes the compiler to retain old
external source file information. This switch should be used only by the librarian
and command friles created by the librarian. See Section 3.6.1.

-S [ACDEILORSZ] Suppress the given set of checks

4-3

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned
in Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
this Ada implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references in this
Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, are outlined
below for convenience.

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range
-21.000000000000000000000000#e+128
2#0.111111111111111111111111#e+128;

type LONG FLOAT is digits 9 range
-2#1.0'00000000000000000000000000000#e+128
2#0.11111111111111111111111111111111#e+128;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

C-I

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the LRM which is Military Standard. Ada Progrwnming
Lmguage, ANSIMIL-STD-1815A (American National Standards Institute, Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas
This section summarizes the effects of and restrictions on predefined pragmas.

" Access collections are not subject to automatic storage reclamation so pragma CONTROLLED has no effect
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of new
objects.

" Pragma ELABORATE is supported.

* Pragma INLINE is supported.

* Pragma INTERFACE is Supported. The LanguageName TI.C is used to make calls to subprograms
(written in the Texas Instruments C language) from Tartan Ada. Any other Language Name wi be
accepted, but ignored, and the default will be used.

* Pragna LIST is supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of errors and/or warnings.

* Pragma MEMORYSIZE is supported. See Section 5.1.3.

* Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

9 Pragma PACK is supported.

" Pragma PAGE is Supported but has the intended effect only if the command line option -La was supplied
for compilation, and the listing generated was not due to the presence of erors and/or warnings.

* Pragma PRIORITY is Supported.

* Pragma STORAGEUNIT is accepted but no value other than that specified in package System (Section
53) is allowed.

* Pragma SHARED is not supported

* Pragma SUPPRESS is supported.

* Pragma SYSTEMNAME is accepted but no value other than that specified in package System (Section
53) is allowed.

5.1.2. Implementation.Defined Pragmas

Implememuation-defned pragmas provided by Tartan are described in the following sections.

S-1

APPENDDX F7TO ML-STD-18isA

The foreign body is entrely responsible for initializing objects declared in a package utilizing pragma
FOREIGN_BODY. In particular, the user should be aware that the implicit initializations described in LRM 3.2.1
ar not done by the compiler. (These implicit initlizaions are associated with objects of access types, certain
record types and composite types containing components of the preceding kinds of types.)

Pragma LINKAGENAME should be used for all declarations in the package, including any declarations in a
nested package specifration to be sure that there are no conflicting link names. If pragma LINKAGE :NAME is
not used, the cross-reference qualifier, -x, (see Section 4.2) should be used when invoking the compiler and the
resulting cross-reference table of linknames inspected to identify the linknames assigned by the compiler and
determine that there are no conflicting linknames (see also Section 4.5.4.2). In the following example, we want
to cal a function plmn which computes polynomials and is writen in C.

package Math-Functions is
pragma FOREIGNBODY ("C");
function POLYNOMIAL (X: INTEGER) return INTEGER;

-- Ada spec matching the C routine
pragma LINKAGENAME 'POLYNOMIAL, "plmn");

-- Force comp,.er to use name "plmn" when referring to this
-- function
-- Note: The linkage name "plmn" may need to be "_plmn",
-- if the C compiler produces leading underscores
-- for external symbols.

end MathFunctions;

with Math Functions; use MathFunctions;
procedure MAIN is
X:INTEGER :- POLYNOMIAL(10);

-- Will generate a call to "plmn"
begin ...

end MAIN;

To compile, link and run the above program, you do the following steps:

1. Compile Math Functions

2. Compile MAIN

3. Provide the object module (for example, math. tof) containing the compiled "C" code for plmn.

4. Issue the command:
% adalibc30 foreign MathFunctions math.tof

5. Issue the command:
% adalibc30 link main

Without Step 4, an atempt to link will produce an exror mege informing you of a missing package body for
Math-Functions.

Using an Ads body from another Ads program library. The user may compile a body written in Ada for a
specification into the library, regardless of the language pecified in the pragma contained in the specification.
This capability is useful for rapid prototyping, where an Ada package may serve to provide a simulated response
for the functionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ada body without mcompiling the specification.

The user can either compile an Ada body into the library, or use the command adalibc30 foreign (see
Section 3.33) to use an Ada body from another library. The Ada body from another library must have been
compiled under an identical specification. The pragma LINKAGE NAME must have been applied to all entities
declared in the specification. The only way to specify the linknam-for the elaboration routine of an Ada body is
with the pragma FOREIGN-BODY.

S-3

APPENDIX F TO MIL-STD-1815A

5.4.2. Length Clauses
Length clauses (LRM 13.2) are, in general, supported. The following sections detail use and restrictions.

5.42.1. Size Specifications for Types
The rules and restrictions for size specifications applied to types of various classes are described below.

The following principle rules apply.

1. The size is specified in bits and must be given by a satic expression.

2. The specified size is taken as a mandate to store objects of the type in the given size wherever feasible.
No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to feasibility:

An object that is not a component of a composite object is allocated with a size and alignment that
is referable on the target machine; that is, no atempt is made to create objects of non-referable size
on the stack. If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object for example:

type My_Enum is (A,B);
for Myenum'size use 1;
V,W: My_enum; -- will occupy two storage

-- units on the stack
-- (if allocated at all)

type rec is record
V,W: My.enum;

end record;
pragma PACK(rec);
0: rec; -- will occupy one storage unit

* A formal parameter of the type is sized according to calling conventions rather than size specifica-
tions of the type. Appropriate size conversios upon parameter passing take place automatically
and are transparent to the user.

* Adjacent bits to an object that is a component of a composite object, but whose size is non-
referable, may be affected by assignments to the object, unless these bits are occupied by other
components of the composite object. that is, whenever possible, a component of non-referable size
is made referable.

In al' cases, the compiler generates correct code for all operations on objects of the type, even if they are
stored with differing representational sizes in diffent contexts.

Note: A size specification cannot be used to force a certain size in value operations of the type; for
example:

type my int is range 0..65535;
for myint'size use 16; -- o.k.
A,B: my_int;

.A + B... -- this operation will generally be
-- executed on 32-bit values

3. A size specifwaion for a type specifies the size for objects o this type and of all its subtypes. For
components of composite types, whose subtype would allow a shorter representation of the component,
no auempt is made to take advantage of such shorter representations. In conram, for types without a
length clause, such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. For example:

.K.

APPENDIX FTO MIL-STh-I815A

A size specification cannot be applied to a rc.ord type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding a
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragma PACK.

5.42.5. Specification of Collection Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package System for the meaning of storage units.

Any attempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry hidden administrative storage requirements that must be
accounted for as part of the collection size. Moreover, alignment constraints on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object. size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
administrative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of I word results in an allocation of 2 words.

In the absence of a specification of a collection size, the collection is extended automatically if mor objects
are allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGE ERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified, no access collection is allocated.

5.4.2.6. Specifiation of Task Actvation Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package System for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.42.7. Specification of' SMALL

Only powers of 2 are allowed for ' SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence; it must then be possible to accommodate the specification of
'SMALL within the specified size.

5.4.3. Enumeration Representation Clauses

For enumeration representation clauses (LRM 13.3), the following restictions apply.

" The internal codes specified for the literals of the enumeration type may be any integer value bctween
INTEGER' FIRST and INTEGER' LAST. It is strongly advised to not provide a representation clause tt
merely duplicates the default mapping of enumeration types, which assigns consecutive numbers in as-
cending order starting with 0, since unnecessary rundme cost is incurred by such duplication. It should be
noted that the use of attributes on enumeration types with user-specified encodings is costly at run time.

" Array types, whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the aray involves a runtime trnslation of the index
value into the corresponding position value of the enumeration type.

5.4.4. Record Representation Clauses
The alignment clause of record representation clauses (LRM 13.4) is observed.

Static objects may be aligned at powers of 2. The specified alignment becomes the minimum alignment of
the record type, unless the minimum alignment of the record forced by the component allocation and the
minimum alignment requirements of the components is already rn,'re stringent than the specified alignment.

APPENDDC FTO IML-SD-ISISA

It should be noted that the default type mapping for records maps components of boolean or other tp that
require only a single bit to a single b in the reco layout, f th a mulple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of some but not all components, the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minimal Alignment for Types

Certain alignment properties of values of certain types ae enforced by the type mapping rules. Any represen-
tation specification that cannot be satisfied within these constraints is not obeyed by the compiler and is ap-
propriately diagnosed.

Alignment constraints are caused by properties of the target architecture, most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient manner. Typically,
restrictions exist that make ex-action of values that cross certain address boundaries very expensive, especially
in contexts involving array indexing. Permitting data layouts that require such complicated extractions may
impact code quality on a broader scale than merely in the local context of such extractions.

Instead of describing the precise algorithm of establishing the minimal alignment of types, we provide the
general rule that is being enforced by the alignment rules:

No object of scalar type including components or subcomponents of a composite type. may span a target-
dependent address boundary that would mandate an extraction of the object's value to be performed by two
or mor extractions.

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementation-dependent components allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discriminants of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLA USES

Section 13.5.1 of the Ada Language Reference Manual describes a syntax for associating interrupts with task
entries. Tartan Ada implements the address clause

for toentry use at intlD;

by associating the interrupt specified by intID with the toentry entry of the task containing this address
clause. The interpretation of intID is both machine and compiler dependent.

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKEDCONVERSION as documented in Section 13.10 of the Ada Language Refer-
ence Manual The sizes need not be the same, nor need they be known at compile time. If the value in the source
is wider than that in the target, the source value will be truncated. If narrower, it will be zero-extended. Calls on
instantiations of UNCHECKEDCONVERS ION are made inline automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECT 10. SEQUENTIALIO, TEXT_10, and

LOW LEVELIO as required by LRM Chapter 14. However, since the 320C30 chip is used in embedded
applications lacking both standard I/O devices and ile systems, the functionality of DIRECT_10.

SEQUENTIAL_1O. and TEXT_10 is limited

DIRECT 10 and SEQUENTIAL 10 raise USE ERROR if a ile open or file access is attempted. TEXT 10
is supported to CURRENT OUTPUT and from CURRENTINPUT. A routine that takes explicit file names rai=s
USE.ERROR.

APPE4DIX F TO ML-SMD1815A

5.9.5. Values of Integer Attributes
Tartan Ada supports the predefined ineger type INTEGER. The range bounds of the predefined type

INTEGER are:

Attribute Value

INTEGER' FIRST -2*'31

INTEGER' LAST 2**31-1

The range bounds for subtypes declared in package TEXT_10 are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST. I

POSITIVECOUNT'FIRST I

POSITIVECOUNT'LAST INTEGER'LAST-1

FIELD' FIRST 0

FIELD' LAST 240

The range bounds for subtypes declared in packages DIRECT_10 are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST

POSITIVECOUNT' FIRST 1

POSITIVECOUNT' LAST COUNT' LAST

APPENDIX FTO MIL-SMT-1I15A

Attbute Value for LONGFLOAT

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON 16#0.4000_0000_0#E-7 (approximately 9.31322575E- 10)

SMALL 16#0.8000_0000_0#E.31 (approximately 2.35098870E-38)

LARGE 16#OFFF_FFFE,_O#E+31 (approximately 2.12676479E+37)

SAFEEMAX 126

SAFESMALL 16#0.2=_0000_0#E-31 (approximately 5.87747175E-39)

SAFE LARGE 16#0.3FFFFFFF_8#E+32 (approximately 8.50705917E+37)

FIRST -16#0.1000_0000_0#E+33 (approximately -3.40282367E 38)

LAST 16#0.FFFFFFF..0#E+32 (approximately 3.40282367E+38)

MACHINE RADIX 2

MACHINE MANTISSA 32

MACHINEEMAX 128

MACHINEEMIN -126

MACHINEROUNDS FALSE

MACHINE OVERFLOWS TRUE

5.10. SUPPORT FOR PACKAGE MACHINE CODE
Package MACHINE CODE provides the programmer with an interface through which to request the genera-

tion of any instruction that is available on the C30. The implementation of package MACHINE CODE is similar
to that described in Section 13.8 of the Ada LRM, with several added features. Please refer to Appendix B for
the Package MACHINE-CODE specification.

5.10.1. Basic Information
As required by LRM, Section 13.8, a routine which contains machine code inserts may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragmas are allowed as usual.

5.10.2. Instructions
A machine code insert has the form TYPEMARK' RECORDAGGREGATE, where the type must be one of the

records defined in package MACHINECODE. Package MACHINECODE defines seven types of records. Each
has an opcode and zero to 6 operands. These records are adequate for the expression of all instrctions provided
by the C30.

5.10.3. Operands and Address Modes
An operand consists of a record aggregate which holds all the information to specify it to the compiler. All

operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the instruction being generated.

Each operand in a machine code ins must have an AddressModeName. The address modes provided in
package MACHINECODE provide a to all address modes supported by the C30.

1

APPENDX F TO MN-STD-1SSA

The next example illustrates the correction required when the displacement is out of range for the first
operand of an ADD 13 instruction. The displacement is first loaded into one of the index registers.

ThreeOpnds' (ADDI3, (IPDA, AR3, 2) , (Reg, RO) , (Reg, RI))

will produce a code sequence like

LDI 2, IRO
ADDI3 AR3(IRO), RO, R1

In -Fixup-Warn mode.' the compiler will also do its best to correct any incorrect operands for an instruc-
ton. However, a warning message is issued stating that the machine code insert required additional machine
instructions to make its operands legal.

5.10.6. Assumptions Made in Correcting Operands

When compiling in -Fixup-Quiet or -Fixup-warn modes, the compiler aernpts to emit additional
code to move "the right bits" from an incorrect operand to a place which is a legal operand for the requested
instruction. The compiler makes certain basic assumptions when performing these corrections. This section
explains the assumptions the compiler makes and their implications for the generated code. Note that if you want
a correction which is different from that performed by the compiler, you must make explicit machine code
insertions to perform it.

For source operands:

* SymbolicAddress means tat the address specified by the 'ADDRESS expression is used as the
source bits. When the Ada object specified by the ' ADDRESS instruction is bound to a register, this will -

cause a compile-time error message because it is not possible to "take the address" of a register.

* SymbolicValue means that the value found at the address specified by the ' ADDRESS expression will
be used as the source bits. An Ada object which is bound to a register is correct here, because the contents
of a register can be expressed on the C30.

* PcRel indicates that the address of the label will be used as the source bits.

" Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

* Symbolic .Address means that the desired destination for the operation is the address specified by the
' ADDRESS expression. An Ada object which is bound to a register is correct here; a register is a legal
destination on the C30.

* Symbolic._Value means that the desired destination for the operations is found by fetching 32 bits from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to the address used in the
Symbolic Address case.

• All other operands are interpreted as directly specifying the destination for the operation.

5.10.7. Register Usage

Since the compiler may need to allocate registers as temporary storage in machine code routines, there are
some resrictions placed on your register usage. The compiler will automatically free all registers which are
volatile across a call for your use (that is R0..R3, bits 32-39 of R4..R5, bits 0-7 of R6..R7, ARO..AR2, IRO, IRI.
BK, ST, IE.. IF, IOF, RS, RC, RE).

If you reference any other register, the compiler will reserve it for your use until the end of the machine code
routine. The compiler will not save the register automatically if this routine is inline expanded. This means that
the first reference to a register which is not volatile across calls should be an insuction which saves its value in a

APPENDDC F TO MEL-STD-iStSA

Name Meaning

MOVI Move a 32-bit integer from the first
operand to the second, emitting some
combination of LDI and STI's to do so.

MOVF32 Move a 32-bits float from the first
operand to the second, emitting some
combination of LDF and STF's to do so.

MOVF40 Move a 40-bit float from the first
operand to the second, emitting some
combination of LDF/LDI and STF/STI's
do so.

5.10.11. Unsafe Assumptions

There are a variety of assumptions which should not be made when writin, machine code inserts. Violation
of these assumptions may result in the generation of code which does not assemble or which may not function
correctly.

" The compiler will not generate call site code for you if you emit a call instrucuon. You must save and
restore any volatile registers which currently have values in them. etc. If the routine you call has out
parameters, a large function return result, or an unconstrained result, it is your responsibility to emit the
necessary instructions to deal with these constructs as the compiler expects. In other words, when you emit
a call, you must follow the linkage conventions of the routine you are calling. For further details on call
site code, see Sections 6.4, 6.5 and 6.6.

" Do not assume that the 'ADDRESS on SymbolicAddress or Symbolic_Value operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of an operand is determined
by your choice of Symbolic Address or Symbolic Value. This means that to add the coens of
X to ARO, you should write

TwoOpnds' (ADDI, (SymbolicValue, X'ADDRESS),
(Reg, ARO))

but to add the address of X to ARO, you should write
TwoOpnds'(ADDI, (SymbolicAddress, X'ADDRESS),

(Reg, ARO));

5.10.12. Limitations
The current implementation of the compiler is unable to fully support automatic correction of certain kinds of

operands. In particular, the compiler assumes that the size of a data object is the same as the number of bits
which is operated on by the instruction chosen in the machine code insem. This means that the insert:

TwoOpnds' (ADDF, (Symbolic-Value, Long_FloatVariable'ADDRESS),
(Reg, RO))

will not generate correct code when Long_FloatVariable is bound to memory. The compiler will assume
that Long_FloatVariable is 32 bits, when in fact it is stored in 64 bits of memory. If, on the other hand.
LongFloatVariable was bound to an extended-precision register, the inserion will function properly, as
no correction is needed

Note that the use of X' ADDRESS in a machine code insert does not guarantee that X will be bound to
memory. This is a result of the use of 'ADDRESS to provide a "typeless" method for naming Ada objects in
machine code inserts. For example, it is legal to say (Symbolc.Value, X'ADDRESS) in an insert even

when X is found in a register.

,5.17

APPENDIX FTO MIL-STD-i815A

LDIU @DEF2,ARO line 7
LDIU AR3,AR1
ADDI 2,ARI
LDIU *ARO++(I),R1
RPTS 2
LDI *ARO++(i),R1
II STI Rl,*ARI+ (l)
STI Rl,*ARI
LDI * AR3(2),RO ; line 43
BLT L22
LDIU .+AR3(4),AR7 ; line 44
LDFU R6,R7
LDIU R6,R7
LDIU I,RI line 18
LDIU IRO,ARO
SUBI3 RI,AR7,R2
STI R2,*ARO
LDI @DEF3,RO line 19
STI RO,*ARO
LDI * ARO(IRO),R2 line 20
STI R2,-AR1
BU ARI ; line 21

L14:
.word L15

.word L16

.word L17

L15: LDI 0,R7 ; line 27
BU L18 line 28

LI6: ADDI 1,R7 ; line 30
BU LI8 ; line 31

L17: MPYI R7,R7 line 33
LIB: NOP ; line 35

LDIU R7,R6 line 44
L22:

LDIU *+AR3(6),R6
LDIU *.AR3(7),R7
LDIU -+AR3(8),AR7
LDIU AR3,SP
POP AR3

RETSU

Total words of code in the above routine 46

.data
DEF3: .word L14
DFl: .word L22

.text

casestatement$00: RETSU

Total words of code in the above routine s 1

.data

.text
•data

DEF2: .word DEF4
DEF4: .word 1

.word 2

APPN"DDC F TO MEL=.-STD-) 815A

5.12. DELAYED BRANCHES
A feanre of the C30 architecture is the inclusion of delayed branching. Because of the processor pipelining.

normal branch instructions require four cycles to execute. During that time the pipeline is emptied and no other
useful instrucions may be executed. However, a second set of branch instutions is provided that allow three
more instrucuons to be executed after initiation of the branch and before actual transfer of control. It is very
important to use delayed branches whenever possible in order to achieve maximum processor throughput.

5.12.1. Generating Delayed Branches
'A special machine-dependent optimization phase attempits to generate delayed branches by seeking to identify

instructions that can be scheduled within the three-instruction branch delay. An instruction may be scheduled
during the branch delay if it is:

1. An instruction that currently precedes the branch in the basic block and produces no result or side effect
that could be used by any instruction preceding its potential location within the branch delay.

2. An instruction that currently follows a conditional branch, providing it has no side effects if the branch is
taken and produces no result or side effect that could be mis-used by any instruction between its potential
branch delay location and its current location.

3. A replication of an instruction that is currently at the address of the branch destination. If the branch is
conditional, this instruction must have no side effects if the branch is not taken. The branch target address
must be changed to point to the next address if such an instruction is discovered.

Instructions which are themselves branches may not be scheduled within the branch delay.

As an example, in the following code fragment, as presented to the delay branch optimization, can the BEQ be
usefully transformed into the delayed version, BEOD?

No. instruction

10 LDI 0,RO RO :-0;
11 ADDI 1,R1 ; R1 :- R1 + 1;
12 CMPI R1,R2 ; compare R1 to R2
13 BEQ Li ; branch if equal to Li
14 LDI *-ARi(1),R3 ; R3 :- some memory value

it LDI *AR7++(IRO),R4 ; and in parallel also load R4
15 ADDI R7,R5 ; R5 : R5 + R7;

21 Li: LDI 33,R3 R R3 : 33;

22 LDI R4,R5 ; R4 :R P5;

Searching for instructions in the first class above, the delayed branch optimizer discovers that instruction 10
can be moved down to the branch delay because its results are not used by instructions I I or 12. Instruction 12 is
not movable since its result is used by the conditional branch. Likewise, instruction I I's result is used by
instruction 12 and so it cannot be moved.

Applying the rules for the second type of delayed branch candidate, the delayed branch optimizer discovers
that instruction 14 (a two operation parallel instruction) cannot be moved up into the branch delay since it loads
R4 and the contents of R4 are read by instruction 22 if the branch is taken. Instruction 15 can be moved up into
the branch delay because it produces no result that can affect instruction 14 and its results are voided by
instruction 22 if the branch is taken.

While searching for the members of the third class, it is detected that instruction 21 can be replicated in the
branch delay and the branch retargeted, because its resut is voided by instruction 14 if the branch is not taken.
Instruction 22 cannot be moved since it will leave R5 in the incorrect state for insu n 15.

After the transformations are made, the code is:

S-21

APPENDDX F TO MIL-STD-I 1SA

address will also always be executed, so they also fall into this category. However, instructions that follow a
conditional branch will only be executed if the branch is not taken, and instructions at the branch target address
of a conditional branch will only be executed if the branch is taken. Therefore, it is not always beneficial to fill
the delay slots with these kind of instructions. These instructions will fill a delay slot only when the resulting
code is at least as fast as the ongnal code regardless of whether the branch is taken or not. The exception to this
is that insmuctions below a conditional branch will be considered as always being executed when the delay
branch optimizer can determine that the condition on the branch will not be satsfied a large percentage of the
time.

5.13. PACKAGE INTRINS ICS

The Int rinsicS package is provided as a means for the programmer to access cerain hardware
capabilities of the 320C30 in an efficient mannr.

The package declares generic functions which may be instantiated to create functions that have particulaiy
efficient implementations. A call to such a function usually does not include a hardware subroutine call at all, but
is implemented inline as a few 320C30 instructions. (Often a single instruction!)

5.13.1. Native Instructions
The following group of generic functions allows specific 320C30 instructions to be applied to Ada entities.

The user must instantiate the generic function for the types that will be used as the operand(s) and result of the
operation. These generic functions have been given the same name as the assembler's name for the correspond-
ing instruction. In some cases this convention leads to a conflict with an Ada reserved word. This conflict is
resolved by using the instruction name with an "i" appended to it.

For details of the operation applied by calling an instance of one of these generic functions see the
TMS320C30 User's Guide. Examples of their use are given in Figures 5-1 and 5-2. Refer to appendix C for the
signatures of all intinsics. The available operations are shown in the following table.

Name Meaning

ANDi Birwise logical-AND
ANDN Bitwise logical AND-NOT
ASH Arithmetic shift
FIX Floating point to integer conversion
FLOATi Integer to floating point conversion
LDE Load floating point exponent
LDM Load floating point mantissa
LSH Logical shift
MPYF 32-bit x 32-bit -> 40-bit floating multiply
MPYI 24-bit x 24-bit .> 32-bit integer multiply
NORM Floating point normalize
RND Round floating point
NOTi Birwise logical complement
ORi Birwise logical OR
ROL Rotate left
ROR Rotate right
SUBC Subtract integer conditionally
XORi Bitwise exclusive OR

APPENDIX F TO MIL-STD-1SI5A

Function Meaning

NO OverflowADDI Binary add with no overflow detection.
Result is always same as ue matheatcal answer tuncatd to
32-bits.

NoOverflow SUBI Binary subtract with no overflow detection.
Result is always same as true mathematical answer runcated to
32-bits.

No_OverflowMPYI Binary multiply with no overflow detection.
Result is always same as true mathematical answer mncated
to 32-bits.

5.13.3. 40-bit Floating Multiply Variants
The 40-bit floating multiply routine, the default used by the compiler, produces accurate answers across the

entire floating range. However, there is a minor speed penalty for supporting accurate multiplication for
operands with extremely negative machine exponents (i.e. values of -104 or less in the upper 8-bits of the float).
Therefore, a fast version that drops some bits for operands with extremely negative exponents is provided
through the intrinsics package. Use it whenever the floating values are not expected to contain large negative
exponents.

Function Meaning

Fast-MPYF4O 40-bit floating multiply that produces accurate
answers for all input values with machine exponents greater than -104.
For input values with exponent values less than or equal to -104, the
bottom 8 bits of the 32-bit result mantissa are suspect.
When checks are suppressed, executes in 13 cycles and may be inlined
automatically by the compiler to a sequence that executes in 3-11 cycles.
When checks are not suppess#, executes in 15-35 cycles, with 15 being
typical (35 is the "almost overflow" case).

SlowMPYF4 0 40-bit floating multiply that produces accurate
answers for all input values. When checks are suppressed. executes
in 14-47 cycles, with 14 being typical (47 is the "almost under/overflow"
case).
When checks are suppressed, the multiplication may be inlined
automatically by the compiler to a sequence that executes in
3-13 cycles. When checks are not suppressed, executes in 17-44 cycles,
with 17 being typical (44 is the "almost under/overflow" case).

5.13.4. 40-bit Floating Divide Variants
The 40-bit floating divide routine, the default used by the compiler, produces accurate answers acros the

entire floating range. However, there is a minor speed penalty for supportng accurate division for operands with
extremely negative machine exponents (i.e. values of -119 or less in the upper 8-bits of the float). Therefore, a
fast version that drops some bits for operands with extremely negative exponents is provided through the
intrinsics package. Use it whenever the floating values are not expected to contain large negative exponents.

S-25

APPENDIX F TO ML-TZD-1815A

The 320C30 hardware places certain requirements on the addresses used in circular addressing operations.
The values passed to an instandation of initCirc_Iter, the iterator initialization function, must obey these
rules. This normally means thtm it is necessary to use an address clause to position the entity whose address is
passed as the first parameter of InitCircIter.

The functions that operate an circular itmators are:

Name Meaning

InitCircIter Procedure. Allocate and initialize an iterazor. From left to right, the
parameters ae:

EBPlusStartIndex
Usually Array (Start_Index) ' address. Given n
such that n is smallest value where 2**n > BK. then
Array' address mod 2**n) must = 0. which can be
guaranteed only if Array is placed in memory using an
Ada addres clause.

Step Usually Array (0) ' suze/32.

BK Usually Array' size/32

Name One of Circ_Ite rator..Name_Type

ReleaseCircIter Procedure. Releases the iterator resources to th. compiler for other use.

Read CircIter Returns the value pointed to by the current value of the iteraor, plus
some arbitrary integer offset. The offset is added non-circularly.

Read-Then_CircAdd Returns the value pointed to by the current value of the iterautr, then
advances the iterator in accordance with the Step and BK specified in
the inidalization.

ReadThenCircSub Returns the value pointed to by the current value of the iterator, then
advances the iterazor in accordance with the Step and BK specified in
the inidalization.

Write_CircIter Procedure. Writes the location pointed to by the current value of the
iterator, plus some arbitrary integer offset. The offset is added non-
circularly.

WriteThenCircAdd Procedure. Writes the location pointed to by the current value of the
iterator, then advances the iterator in accordance with the Step and BK
specified in the initialization.

writeThenCircSub Procedure Writes the location pointed to by the current value of the
iterator, then advances the iteraor in accordance with the Step and BK
specified in the initialization.

Circ Add Procedure. Advances the iterator in accordance with the Step and BK
specified in the initialization.

Circ Sub Procedure. Advances the iterator in accordance with the Step and BK
specified in the initialization.

CircIterEB_Plus Index Extracts and reurns the "EB+Index" pan of the iterator.

Circ Iter_S tep Extracts and returns the Step par of the iterator.

CircIterBK Extract and run the BK part of the i erator.

5.27

APPENDIX FTO MEL-ST-1IS1SA

Hints for Improved Object Code Quality:

" For improved code, initialize the "most important" itrators first in textual order in the source code.

" If all BK's of all active iterators are not provably the same at compile-time, generated code will degrade
considerably.

" Always release iterazors when they ar no longer needed.

5.13.6. Bit-Reversed Addressing
The 320C30 bit-reversed addressing modes are made available through a set of generic functions that model

the entire process with an itcrator object and a set of subprograms to:

" Initialize the iterator.
" Read an object specified by the current value of the iterator.
* Advance the iterator to a new object.
* Release the iterator for later use.

These generics are documented using the same names and terms as in section 6.4 of the TMS320C30 User's
Guide.

A fixed number of iterazors are available for use in bit-reversed addressing. Iterators are named by the
enumeraion literals of the type BrevIteratorNameType. More than one iterator may be active at any
given time.

The same rules regarding the use of circular addressing iterators apply to bit-reversed addressing iterators.

The functions that operate on bit-reversed iterators are:

InitBrev_ter Procedure. Allocate and initialize an iterazor. From left to right, the
parameters are:

BaseAddr Plus_Start_Index
Usually Array (Start _Index, 0) 'address, as-
suming that the second dimension of the array holds the
data points to be addressed between each change in the
bit-reverse iterator. Array' address mod
Two To N must a 0. This can be guaranteed only if
Array is placed in memory using an Ada address
clause.

TwoToN Usually Array' size/2. Must bea powerof two.

Name One of BrevIteratorName Type.

Release BrevIter Procedure. Releases the iterator resources to the compiler for other use.

ReadBrev_I-ter Returns the value pointed to by the current value of the iterator, plus
some arbitary integer offset.

ReadThenBrev Add Returns the value pointed to by the current value of the iteraor, then
advances ft iterator according to the Two_ToN Specified in the in-
itialization.

Write_Brev_I-ter Procedure. Writes the location pointed to by the current value of the
iterator, plus some arbiary integer offset.

WriteThenBrevAdd Procedure. Writes the location pointed to by the current value of the
iterator, then advances the iterator in accordance with the TwcrTo N

specified in the initialization.

APP-NDIX FTO MIL-STD-I815A

parameter(s) are actually read in many of the functions. However, in all cases the results are only accurate to
single (32-bit) floating precision.

Figure 5-4 shows an example of the use of POWER-32 instantiated as the -"*- operator for floats.

with intrinsics; use intrinsics;
with textio;
with flt -o;

procedure test(a : float) is
function "**" is new POWER 32(float,float);
function ALOG10 is new ALOG1032(float,float);
b : float;

begin
text_io.put line("test: a, 10**a, aloglO(10**a) :");
fIti 0o. put (a);

b :- 1O.O**a;
fit_io.put(b);
fit_o.put (aloglO (b));
text io.new line;

end test;

Figure 5-4: Using the intinsic Math Functions

A call to an instance of any of these results in a call to an extremely fast-executing function to perform the
computation. These are "shared-code" generics in the sense that there will be only one object-code version of
each function created no mater how many instantiations are made.

The code generator contains built-in knowledge that these function calls are free from side effects and thus do
not cause optmizations to be blocked. The code generator also knows exactly which of the volatile registers are
used by each routine and will not save active values from registers that are not used by the routine being called.

Algorithms for the routines were adapted from Software Manual for the Elementary Functions; Cody and
Waite, Prentice Hall 1980; and Handbook of Mathematical Functons with Formulas, Graphs. and Mathematical
Tables. Milton Abramowiz and Irene A. Stegun. National Bureau of Standards (Applied Mathematics Series 55).
Washington D.C., 1964 (reprinted 1970); and the TMS32OC30 User's Guide. Some algorithms were developed
internally.

All routines are accurate to single (32-bit) floating precision. An augmented set of Cody-Waite accuracy tests
have been used to test them. Loss of precision was found to be limited to 2 bits or less of the 24-bit mantissa for
all the functions. Test results are available from Tartan on request.

Every attempt has been made to avoid raising an exception for any input value. Reasonable values are
returned under all conditions. It is assumed that most signal processing applications work in a "press on" mode.
In particular, the following rules hold for all routines, except the MEDIUMFAST, FAST and QUAD I variants
of SIN and COS:

1. The legal range for each parameter is that defined by the intersection of:

* The values of the parameter over which the p= mathematical function is defined

* The set of inputs yielding functions results expressable within the C30's 32-bit floating point
format

* The set of inputs with the values representable by the C30's 40-bit floating point format

2. With the exception of the MEDLTMFAST, FAST and QUADI variants of SIN and COS, any parmemr
not in legal range is replaced with the closes legal value on enry to the function. For the
MEDIUM_FAST, FAST and QUADI variants of SIN and COS. the function result is undefined for
parameters outside the restricted input range.

$-31

APPEDIX F TO ML-STD-1815A

COSH 38 te<lxl<te69 79 lx<- te 79 lxl <- te
TANH 53 Ixi<-.549 82 .549<ixi<-9.01 75 lxl <- 2.196

COTH 86 lxl<-.549 115 .5491x1<-9.01 108 lxl <- 2.196

ASINH 19 lxl<-.5 93 lxl > .5 93 lxi <- 100

ACOSH 53 x >- 2**32 89 x < 2**32 89

ATANH 25 lxi <- .5 85 Ixi > .5 55

ACOTH 54 lxl >- 2 85 lxl < 2 70

KEY:

tc - 2**24 * PI - PI/2 - 52707176.96 ~- 52707000
tS - 2**24 * PI - 52707178.53 - 52707000
tt - (2**24 -.5) * P1/2- 26353588.48 -- 26353000
te - 88.71875
te69 - 88.71875 + 0.69316 - 89.41191

S-33

