
AD-A252 462

Integrating Commercial Off-The- MTP 92B0000002
Shelf Tools for Custom Software June 1992

Development

D. S. Blodgett cD.J. Phair DTIL's ELECTE I

JUL071992 Q
/A

cnan olorWil- T c reproduot.
io')z w1lt be ia b .aok azn4

This documxn a

3 l4s ai~ Sole

92m 1753

Bedford, Massachusetts

92-.7 081

Integrating Commercial Off-The- MTP 92B0000002

Shelf Tools for Custom Software June 1992

Development

D. S. Blodgett
D.J. Phair

Accesion For
NTIS CP'x&.

DTIC 143
Un~ar;io ',n,Ced
Justlficatfcn

By
D i ti. J ., ,

Av~jI :, : .

Contract Sponsor ESD
Contract No. F19628-89-C-O0O1 Dist
Project No. 589A
DepL D072

Approved for public release; .

distribution unlimited.

M[Rfm
Bedford, Massachusetts

ABSTRACT

Fourth-generation, object-driven languages (4GLs) (i.e., Hypermedia) have been used
effectively in requirements analysis prototyping and human-machine interface development and
have served as a front end to more complex applications. This paper describes the process of
evaluating, selecting, and integrating 4GL tools for specific applications running on a variety of
microcomputer platforms. To explore these different options, we will present an example of a
computer-based training system created in a 4GL and describe how numerous commercial off-
the-shelf software tools were integrated for added functionality. The logical extension to the
current suite of Hypermedia products is tools capable of producing device-independent source
code, which in turn is capable of being compiled into stand-alone applications. The impact of
using a set of nonhomogeneous tools will be discussed in terms of source code control,
supportability, and tool enhanceability.

ii

ACKNOWLEDGMENTS

The authors of this document would like to thank John Wilson for conceiving and supporting
this effort. Additionally, we appreciate thc extensive management support and helpful
suggestions that we received from Ed Fitzgerald, Steve Harris, Stu Jolly, and Dave White. We
would also like to acknowledge the review and support of ESD. Finally, we would like to
thank Pamela Guild and Brenda Proctor for early editing and formatting of the document.
Additional thanks go to Roberta Carrara (J103) for making suggestions resulting in the final
version.

iv

TABLE OF CONTENTS

SECTION
PAGE

1 Introduction
1

2 Custom Software Development 2

2.1 Language Classifications 2

2.2 Advantages and Disadvantages 2

3 COTS Tool Kits
4

3.1 HMI Development Tools 4

3.2 Code Generators 7

3.3 Custom Development Platforms 8

3.4 Cross-Platform Development Tools 9

3.5 Multimedia Tools 9

3.6 Database Tools 10

3.7 Low-Level Interfaces 14

4 COTS Tool Integration 18

4.1 Integration Criteria 18

4.2 Core Requirements 18

4.3 Derived Requirements 19

4.4 Selection Process 19

4.5 Cusom Development 20

4.6 Experience Base 21

5 Example of an Application Using COTS Tools 22

5.1 Ultrasonic Inspection Trainer 22

5.2 Real-Time Signal Generation Using Xcmds 24

5.3 Digitized Voice 24

5.4 Context-Sensitive Help System 25

5.5 Real-Time Digitized Video -'

6 Summary
29

7 Glossary
30

v

LIST OF FIGURES

FIGURE PAGE

1 Sample HyperCard Application, Chem Inventory, 2.1 5

2 Director Working Environment 11

3 Oracle System Stack 13

4 SQL*Plus Screen 14

5 HyperBasic Xcmd Script 15

6 Compllelt! Development Environment 16

7 Compilelt! Debugger 17

8 COTS Tools Used in the Ultrasonic Inspection Trainer Prototype 22

9 Sample Radome Inspection Display 23

10 MacRecorder 25

11 InterFACE Agent Editor 26

12 MediaGrabber Environment 28

LIST OF TABLES

TABLE PAGE

1 Sample Programming Language Classifications 3

2 Examples of Hypermedia Products 6

3 Examples of Code Generators 8

4 Sample Cross-Platform Development Tools 9

5 Oracle Support Utilities 12

vi

SECTION 1

INTRODUCTION

Integrating commercial off-the-shelf (COTS) tools has proved successful in expediting the
development of custom software applications. With the introduction of fourth-generation,
object-based languages (4GLs) and the expanding array of commercially available tools,
many developers have found an efficient alternative to traditional software development.
That is, the requirements for many applications can be satisfied by selecting and integrating
the appropriate set of commercial tools. In contrast, complete custom software development is
costly, risk-intensive, and time-consuming. The integration of COTS tools has been
successfully used in requirements analysis, prototyping, and human-machine interface (HMI)
development.

In recent years, the price-performance ratio between workstations and microcomputers
has closed dramatically. This has resulted in the widespread availability of economical
tools capable of producing high-quality applications quickly and easily. We will describe
the process of evaluating, selecting, and integrating 4GL tools that run on a variety of
microcomputer platforms and discuss the impact a set of nonhomogeneous tools will have
on development, supportability, and application enhanceability.

Also, we will present an example of a computer-based training system that is created in a
4GL language and describe how numerous COTS tools were integrated to add functionality.
This example will provide insight into the selection and integration of COTS tools in the areas
of multimedia, real-time processing, help systems, and simulation.

SECTION 2

CUSTOM SOFTWARE DEVELOPMENT

All software, to some extent, is custom software. Even if an application is constructed entirely
using COTS tools, some customization will be necessary to tie the various tools together. A
thoughtfully selected suite of COTS tools supplements, but does not completely replace,
custom-developed software.

2.1 LANGUAGE CLASSIFICATIONS

Custom software normally refers to an application that is constructed using a traditional
programming language such as C or FORTRAN. C and FORTRAN are third-generation
(3GL) programming languages. There are four distinct classes or generations1 of
programming languages. A first-generation programming language refers to the stream
of ones and zeros understood by the central processing unit (CPU). For example,
10011110 instructs an 8086 microprocessor to store the AH register in the flag register.
Second-generation (2GL), or assembly languages, take the groups of ones and zeros known to
the CPU and associate a pnuemonic with each function. Assembly languages, the "lowest"
level where practical programming can occur, are particularly useful for tasks which are
hardware-specific or speed-critical. Low-level languages are arbitrarily grouped as assembly
language and below; high-level languages are all others. The 3GLs, or procedural languages,
use English-like statements to cause specific processing to occur and easily support structured
programming, multiple data types, and complex processing algorithms. Most importantly,
3GLs remove the programmer from the details of hardware implementation. The highest level
of programming is done with 4GL object-based languages. An object is a building block, a
section of code that can be easily customized for a wide variety of tasks.

2.2 ADVANTAGES AND DISADVANTAGES

Assembly languages are used today primarily for real-time, performance-critical tasks.
Assembly language programming, a tedious, error-prone task, lends itself poorly to structured
programming and maintainability. Further, assembly language programming is cumbersome,
since detailed knowledge of the underlying hardware implementation is required. As a result of
their flexibility, the 3GLs are often the language of choice. Programming with 3GLs, because
of their long-time popularity, is often referred to as traditional programming. The 4GLs reuse
tried and proven objects to develop new applications, thereby making software development
easier and more predictable. Programming is necessary only to connect the objects to the
application, not to construct the objects or the application. Because less programming is
required, applications can be created faster and more economically than using traditional

I The term generation refers to the era in which this class of language was most popular.

2

programming methodologies. The trade-offs with 4GLs are slower execution speed, lack of
flexibility to implement complex algorithms and data structures, and the inability to process
real-time data.

Each generation's language has a purpose for which it is best suited. In general, there is a
direct relationship between the level of the language and the amount of control the programmer
has over the CPU. Low-level languages offer the most control over the hardware and system
resources, while 4GLs have the least. In most applications, an inverse relationship exists
between the level of difficulty to accomplish a task and the language level. High-level
languages support many more controls and building blocks than do low-level languages.
Thus, the higher the language, the easier it is to accomplish most tasks. Also, an inverse
relationship exists between development time and language level. Because low-level
programming is more difficult and involved, a task developed using a high-level language
takes less time to implement than one developed using a low-level language (see table 1).

Table 1. Sample Programming Language Classifications

r I I Development
Generation Level j Code J Function ILa ua Time
First Low 10011110 Store the AH register 8086 Impractical

in Flag machineIangug

Second Low cmpa.l (a2),al Compare the contents 68000 Long
of the value at the assembly
address pointed to by language
register a2 with the
value stored in
register al

Third High stwcpy(flf2,(strlen(f2)); Cause the string fl to C Average
contain the contents
of f2

Fourth High Put the date into line Cause the date to be HyperTalk Short
I of cd fld I printed in a field on

the screen

3

SECTION 3

COTS TOOL KITS

Before selecting the correct suite of COTS tools, it is important to be aware of the available
technologies. In order to provide a brief overview of some of the most popular technologies
and tool sets available today, we will focus on HMI development tools, code generators,
cross-platform tools, multimedia tools, database tools, and custom-compiled modules. We
have limited our discussion to microcomputer-based development tools, specifically Microsoft
Windows 3.0 and Apple Macintosh-based applications. Although the principles discussed in
this section apply to all platforms, we have found that these two platforms offer significant
development power at an economical cost. Further, the proven graphical nature of these
operating systems makes them naturally suitable for modem application development.

3.1 HMI DEVELOPMENT TOOLS

In recent years, 4GLs have been used extensively for HMI development. Many of these
graphically based 4GL COTS tools are known as Hypermedia products. Hypermedia tools
are comprised of a set of intrinsic objects that can be used to create sophisticated front ends for
complex applications, develop useful stand-alone applications, or act as the glue between
various COTS tools.

Claris Corporation's HyperCard (Macintosh), Silicon Beach Software's SuperCard
(Macintosh), and Microsoft Corporation's Visual Basic (Windows 3.0) are three of the most
popular Hypermedia products. On the Macintosh, products support the notion of projects2, or
stacks3, and cards. Under Windows 3.0, forms are the base object. Generalizing, a stack
represents the application; a card or form represents one display within that application. User
input is manipulated using predefined objects, such as buttons, fields, lines, and graphics.
Under Windows 3.0, there is a slightly different set of objects which are referred to as
controls. These objects all have different properties and can be set to generate messages based
on user input. Unlike a traditional programming language, where all code resides in one place,
each object within a Hypermedia product can have its own "script." A script is a set of actions
that the programmer wants to occur when the object is activated. Each tool has its own
proprietary scripting language. For example, HyperCard uses HyperTalk; Visual Basic for
Windows 3.0 uses BASIC.

Figure 1 shows a sample HyperCard application. The hand cursor arrow points to the right
arrow button whose HyperTalk script is shown. When the HyperCard application "catches"
the mouse action, then its script is executed. In this case, the next entry in the inventory is
displayed.

2 SuperCard.
3 HyperCard.

4

Chem Inventory 2.1____________I

Compound Name: ()()Ehl2-pyrrolidone-5-carboxylate

Formula: J C7H,102N J !ol. Wt-: i57,1

Company Name: Aldrich Catalog No.: 130.978-8

Where is it? Lab 22 shelf '9

How much on hand? 5 g Date Aquired: P7--9

Date Reordered229l

Comments/ In red bottle. IO ~
Safety notes:1/? K

MSD sheet? jfjj
Usage record:

Never used

220:1=1 Script of bkgnd button id 55= rgtaow

on mouseUp
isual effect wipe left

go next card
end mouseUp

Figure 1. Sample HyperCard Application, Chem Inventory 2.14

4 Chem Inventory 2.1, 0 1990 Dr. Dan Swartling, 5640 S. Maryland Ave. #BSMT, Chicago, IL 60637.

5

Hypermedia is an extremely effective tool for implementing proof-of-concept rapid prototypes
as well as operational prototypes. Hypermedia is used most effectively in requirements
analysis prototyping with a small development team (one or two engineers) with frequent
design reviews. The speed through which applications may be developed by one individual
allows various ideas to be explored and prototyped. Further, because Hypermedia products
exist in an interpretive environment, ideas can be explored in real time during design reviews.
The small initial cost, short learning curve, and small development team make Hypermedia
tools extremely cost-effective. A limitation to all Hypermedia products and 4GLs, in general,
is their ability to process real-time data. To compensate, most Hypermedia products have
"hooks" for externally developed commands, external commands/functions (Xcmds/Xfcns)
(Macintosh) and DLLs5 (Windows 3.0), to facilitate this function. An Xcmd is a section of
custom software, usually written in C or assembly language, which performs a specific
function such as hardware polling. (Table 2 lists sample Hypermedia products and our
experience with the tools.)

Table 2. Examples of Hypermedia Products

glication Platform]Flexibility Ease of Use Popularity Performance

HyperCard Macintosh **** ***Claris Corp.

PLUS Macintosh/ ** ** * **
Spinnaker Windows 3.0
SW

SuperCard Macintosh ******* "**
Aldus
Toolbook Windows 3.0 ** * ** **
Asymeti

Visual Basic Windows 3.0 * *** **** ****
Microsoft I

Hypermedia is not without drawbacks. As applications become large, Hypermedia becomes
difficult to maintain and expand. Because of the lack of one central program (i.e., the scripts
are distributed under various controls), in many cases it is easier to rewrite than it is to modify.
The fragmentation of scripts also results in Hypermedia applications that do not lend
themselves well to large development teams. Another drawback is the lack of freedom to
express complex data structures. In general-purpose processing, this is not an inconvenience;
however, this imposes serious lihnitations as the complexity of the application increases. The
trade-off for rapid development time and ease of implementation is lack of execution speed.
Because Hypermedia is interpreted and not compiled, execution times are longer than with
3GLs. As microcomputers become successively faster, this limitation becomes less relevant.

5 Dynamic link library.

6

Additionally, the skill and experience level of the programmer can have a dramatic positive
effect on the speed of the application. Finally, to increase performance in speed-critical
applications, an Xcmd/DLL 6 can be integrated smoothly. The final criticism of Hypermedia is
that it tends to develop unrealistic customer and management expectations. While it may be
possible to develop a semifunctional application in an extremely short period of time, it may not
be possible to produce all applications using this productivity rate. For the reasons previously
discussed, most applications cannot be completely developed exclusively with Hypermedia
tools.

Although Hypermedia is not appropriate for every application, its future is extremely
promising. As tools and development platforms become faster and more powerful, the
arguments against Hypermedia become less compelling. Moreover, when applications call
for a high degree of integration with other cutting-edge technologies such as multimedia,
there is no better formula for developing a successful application than Hypermedia.

3.2 CODE GENERATORS

Code generators allow programmers to construct an elegant HMI for an existing or new
application. Using a "what you see is what you get" (WYSIWYG) editor, that in many
cases is similar to a Hypermedia development environment, an individual with little
programming experience can construct and modify an application HMI. The way in which
code generators differ from Hypermedia is that with a few keystrokes, the (third generation)
source code, usually ANSI C or Pascal, is produced. Once the application has been converted
to code, the programmer adds small sections of code to connect application code to the
generated code. This code may then be compiled and linked together with existing or new
code to form a new application. Early code generators would not save user-supplied code if
the graphical portion of the application had been changed. Most modem code generators now
support this feature so that the operator has only to add application-specific code once. While
connecting the custom-developed code to the generated code is a nontrivial exercise, it is
certainly easier than developing the interface from scratch. The main advantage of using a code
generator is that it eliminates the need to master the implementation details of the graphical user
interface (GUI) libraries (i.e., the Macintosh desktop, the Windows 3.0 Presentation
Manager). Neuron Data's Open Interface will allow a programmer to develop an application
on one platform and produce source code for virtually any other GUI platform. For example, a
programmer could use Open Interface on a VAX/VMS-based machine and produce source code
capturing the "look and feel" of an Apple Macintosh application. (See table 3 for examples of
code generators.)

Code generators are relatively easy to use and provide a viable alternative to custom HMI
development in cases where Hypermedia is unavailable or not appropriate. Code generators
are particularly useful for porting an application from one platform to another (i.e., X-windows
to Windows 3.0). For example, a program which calculates the number of source lines of

6 These small sections of code are nontrivial to develop.

7

Table 3. Examples of Code Generators

Application [Platform [Flexibilit.l Ease of Use jCost] Performance
Open Interface Multiple **** ** $$$$$
Neuron Data
Protoryper Macintosh ** * **
Smethers-Barnes
Windows Maker Windows 3.*** T
Blue Sky
Systems

code in a program module written in ANSI C7 could be ported easily from Windows 3.0 to the
Macintosh. Using a code generator, a programmer could construct an elegant HMI, produce
the source code, and link together the application modules. Other uses for code generators are
facilitating demonstration and unit testing (by developing test drivers) of embedded technology
prior to integration. Further, code generators can be a useful starting point for programmers
prior to application development.

While code generators are beneficial, they can be expensive and have drawbacks. Some of
the more elaborate code generators such as Open Interface can cost upwards of $5000
(depending on platform). Additionally, the code these tools produce imposes a structure
on the development effort which is often difficult to build upon and maintain. Another
drawback is that these tools often lack the flexibility found in Hypermedia. Currently, no
commercial products exist that support functionality like Hypermedia and have the ability
to produce device-independent source code. While Open Interface is capable of producing
device-independent source code, it lacks the ability to attach actions to objects.

3.3 CUSTOM DEVELOPMENT PLATFORMS

The development environment that is used for custom software development can be one of
the most critical decisions made during the entire course of the development effort. Exploring
the vast range of implementation languages is beyond the scope of this discussion. The
language that we have had the most success with is C; we now are experimenting with the
object-oriented language C++. Our experience has shown C to be flexible and reliable over
a variety of tasks and applications. Moreover, validated ANSI C compilers are available for
almost any implementation platform.

7 Code written in ANSI C implies that the routines should compile without objection using any standard C
compiler.

8

3.4 CROSS-PLATFORM DEVELOPMENT TOOLS

The future of computing is a more unified development environment. In the future, tools
will be available that will allow applications to be developed independent of the GUI platform.
As previously discussed, some of these tools are available today, notably Open Interface,
PLUS, and Oracle. The advantage of such tools is obvious: applications can be developed
and maintained on multiple platforms using the same source code. Currently, vendors decide
which community to support with a product (e.g., VMS, OS/2, DOS, Macintosh). With
platform-independent applications, vendors no longer will have to make those decisions.

In theory, there are no disadvantages to cross-platform applications. (See table 4 for names
of tools and applications.) Actual implementations may not capture the "look and feel" of
an interface, may be slow, or may have implementation "bugs." As the industry matures,
cross-platform development tools will become more prevalent, functional, and cost-effective.
A similar parallel can be drawn by comparing the state of multimedia computing five years ago
to current cross-platform development tools.

Table 4. Sample Cross-Platform Development Tools

Application]Class Features Ease of Use Cost Performance
DB-Vista Database ** ** $$
Raima Corp.
Open Interface Code * * *** $$ ***
Neuron Data Generator
Orac/ Database * * $$ *Oracle Corp.
PLUS Hypermedia * ** * *

Spinnaker Soft

3.5 MULTIMEDIA TOOLS

Multimedia has become the buzz word of the early nineties. Although many theoretical
definitions of this emerging technology have been formed, the most simple and inclusive
definition can be found in its roots. Simply put, a multimedia application integrates various
media forms to produce an end result. The media forms are typically live video, computer
animation, and digitized sound. Because incorporating various media requires specialized
hardware and software, multimedia development from scratch would be prohibitively
time-consuming and expensive. Never before has the use of COTS tools been so warranted
than in this area.

Multimedia has found its way into education, marketing, and presentations. In the educational
arena, multimedia captures the student's attention and facilitates learning. For example, in

9

the early days of computer-based training, computers were used for drill and practice. The
computer would display a question and ask the student to select the correct answer from a list
of choices. State-of-the-art trainers now present the subject matter in a highly visual and
engaging environment rather than in one that bores the student with a rote question-and-answer
dialog.

Multimedia has also made its way into the corporate world. Multimedia presentations are used
to convey ideas, sell products, and capture the attention of the audience. To do this effectively,
multimedia saturates the audience with as much information as possible in the shortest period
of time. By doing so, the audience, be it customers, corporate management, or others, will
retain more information than with traditional briefing strategies. This technique is analogous
to the television commercial, where an enormous amount of information is compressed into a
30-second spot.

Because personal computers have become more powerful in the last five years, multimedia
applications are exploding into the matured mainstream of PC development. As hardware
advances have been made, so too has the software. Multimedia support tools allow for the
synchronization of digitized video, sound, and special effects to create stunning end products.
Figure 2 shows an example screen from MacroMind Inc.'s Director. This tool allows the
developer to create "scores" that coordinate various media and establish how a sequence will
be played. The sequence can then be saved as a movie file and played from 4GLs such as
SuperCard or HyperCard.

When selecting a multimedia development environment, one must look at the target application.
If a self-contained system is desired (no external devices such as a VCR or Laser disk),
real-time digitized video would the most viable option. However, this type of video requires
huge amounts of secondary storage as well as a powerful central processor. If more than a
few minutes of video is required in conjunction with digitized sound, a computer-controlled
VCR or Laser disk would be the most appropriate solution. Although computer-controlled
video equipment adds to the overall cost of the system, the extra investment outweighs the
performance degradation inherent with real-time digitized video. Computer-controlled video
also allows for voice and music to be played without requiring additional computer resources.

3.6 DATABASE TOOLS

Often times, as applications become more complex, the amount of associated data grows.
Data can take on many forms--it can be as simple as names and addresses of clients and
as extravagant as facsimile images. Most computer applications share data between users
and computers; therefore, database engines must be sufficiently sophisticated in design
and function. Because sophisticated database functions are complex to implement, many
developers have looked to COTS database packages to manage their data.

Today, most commercially available databases integrate easily with 3/4 GLs and have tools
to define, create, and populate the database. Also, many manage multiuser accessing of the
data by providing protection and locking mechanisms. Before selecting a COTS database
package, you should answer the following questions to define your needs and allow you
to choose the most suitable database for the application.

10

File Edit Control Window Lingo Sound Score

Figure 2. Directo r Working Environment

• How many users will be accessing the database concurrently?
* What level of data protection is needed?
* Will the database be centralized or distributed?
• Will the database run on diff'erent platforms?
• What type of licensing is needed?

In summary. if the application is targeted for use in a multiuser environment. networked or
accessed on multiple platfo~rms. you should consider taking advantage of" the commercially
available packages: otherwise, custom development is a viable option.

Although many commercial packages arc available today. one of the most popular is Oracle
Corporation's Oracle. Oracle provides a multiuser/multiplatform package that uses a standard

Im

query language (SQL) as its access language. This package provides tools to create and
manage custom databases based on the relational model8 . On the PC, Oracle is supplied
with a variety of support tools. For example, SQL*Plus provides an environment for writing
scripts to perform queries, updates, report generation, and data structure definition tasks.
Pro*C enables the use of embedded SQL commands in applications written in C and includes
a set of function calls that can directly invoke Oracle processes. Oracle also comes with a
complete set of utilities.

On the Macintosh, Oracle can be used in many ways. First, it can be called from a 4GL such
as HyperCard or SuperCard using embedded Hyper*SQL commands in HyperCard scripts.
Second, it can be integrated into C source code using embedded SQL commands and the Oracle
pre-compiler Pro*C. Last, it can be called from the newly released front-end package
OracleCard. (See table 5 for some examples of Oracle's uses.) Each method has advantages
and disadvantages. Using Oracle with HyperCard or SuperCard allows for rapid development,
but suffers in performance. Calling the Oracle engine from a conventional programming
language such as C increases performance, but lengthens development time. A strength of
OracleCard is the ability to run on both the PC and the Macintosh. As with HyperCard, this
method lacks performance for large database development applications.

The first step in creating an Oracle database on the Macintosh is to define the database structure
using the System Stack tool, which allows you to manage user access, tables, views, and the
database from within HyperCard. Figure 3 shows a sample screen from the System Stack
tool. In this figure, the table name "Defect Info" is defined. Fields and attributes are defined
by using the "Add Column" tool. Once the database is defined, it can be populated, queried,
or updated via a HyperCard script.

Table 5. Oracle Support Utilities

Name Purpose
CCF Expanding the database
IMP, EXP Backing up and reloading the database
SQL*Loader Loading data that is stored in formats other than the ORACLE

rieta database format (S2L*Loader)
IOR Peorming database administration functions such as starting,_ _ _ stopping, and initializing the database

8 The relational model is based on the premise that data is perceived as tables, and operations generate new

tables from old.

12

System Stack 9=

Create a New Table
Table Namej Defect Info

ADD COLUMN

Now Celuen: Column Type Null?
_ _ _ _ _ _Defect Name Char (12) 0

width Number (5,1) Not Null
CelemmTgpe height Number (5,1) Not Null
0 Character graphic Raw (1022)

Number Date Created Date Not Hull
Date Last Modified Date Not Hull
Raw Left Number (3)
Long Raw Top Number (3)[Lot Null Right Humber (3)Not Null 1

Rdd CoumnL Cancel QJ OK " cancel }

Log Off Options User Management Table Ih anagont± Database Managewent Connectwrity SQL*Lab

Figure 3. Oracle System Stack

On the PC, the database table would typically be created using SQL*Plus, where the tables are
created and populated via SQL commands. Figure 4 shows a sample SQL*Plus session.
Notice that all commands are entered in textual SQL format.

13

Worksheet Fll

IOR: Connected to ORACLE U5.1.22.14 - Production.
lOR: System global area (SOA) is 40316 (40K) bytes composed of

2228 bytes of fixed data
23752 bytes of variable data
4096 bytes of before image buffers, and
10240 bytes of buffers.

I OR: instance I recovered. ..
IOR: ORACLE warm started.

SQL*PIus: Uersion 2.1.12.14 - Production on lon Dec 23 11:30:49 1991

Copyright (c) 1987, Oracle Corporation, California, USA. All rights reserved. :

Enter usFr-ngSme: Scstem
Enter password:

Connected toV ORACLE U.1.22.14 - Production

SOL> CREATE TABLE DEFECT-IWFO
2 (Defect PNe Char (12>,
]3 (width humbar (5 1) Hlot 1Mul ll

Figure 4. SQL*Plus Screen

3.7 LOW-LEVEL INTERFACES

As applications have become more sophisticated, many vendors have realized the importance
of using an open architecture in their software design. The trend in third-party software
development is to find an unexplored niche in the software market and perfect it, rather than
to develop a package that "does it all." As this trend continues, software packages increasingly
will have to form with each other to create a successful application.

On the Macintosh, the concept of Xcmd addresses the issue of linking various COTS packages
together. The Xcmds are external code resources which adhere to a standard calling
convention and can be invoked from many 4GLs. Although originally developed to provide
a link to compiled functions, Xcmds are now used as gateways into third-party software.
Many Xcmds are now available for integrating packages and providing expanded "add-in"
functions. Further, Xcmds can give software the ability to control hardware devices, perform
complex animation sequences, and play computer-generated music. For example, an Xcmd
supplied with NEC's PC-VCR allows the software to control the VCR via a call to the Xcmd.
In the past, sample C or Assembler code would have been included in the manual, and the

14

programmer would have had the cumbersome task of making it work. With the advent of
Xcmds, programmers simply move the Xcmd resource to the application's resource fork 9 and
call it from the application.

Figure 5 shows an example Xcmd script developed with HyperBasic. The script is written
in a superset of the BASIC language and can be compiled to produce an Xcmd resource.
HyperBasic provides full support for the Macintosh Toolbox1° and supports structures such
as arrays, which most 4GLs do not. One drawback to developing Xcmds is that all variables
are volatile and lose their values upon exiting the Xcmd. Because of this, techniques must be
developed to allocate and manage shared memory. These techniques will be described in detail
in the application example presented at the end of this paper.

- File Edit Find Ia Font Size Window

XCMD Mletertest(rect$) Syntax Check
dim color&(5)
dim testlX(130)
dim test2X(130) Preferences...

the.-resul t$="ok"
If paramcounto>1 then -............----------------

the-result$-Error: Set Destination... nt"
end if
if the.-.result$>"ok" th, Remove...
xoffX ,, 343
yoffX = 237
xoffX = 28
yoffX = 14

If val(rect$) = 1 then
print "got 1"
for cX - I to 128

YE = testl(cS)
next ciN

for cX = I to 128
read test2X(cS))

next c*S
elseif val(rect$) = then
print "got 2"

_PenPat(whi te)
._PenSize(1, 11)
line: 23

Figure 5. HyperBasic Xcmd Script

9 The resource fork contains objects termed resources such as menus, buttons, icons, and code segments.
10 The Macintosh Toolbox is a set of 900 routines located in ROM that help programmers design user-friendly

applications and simplify access to the internals of the Macintosh operating system.

15

Besides bridging the gap between various third-party software, Xcmds provide a method
for developing time-critical code which can be called from a 4GL script. Typically, 4GLs are
interpreted and have poor performance when compared to compiled code. The Xcmds allow
the programmer to develop compiled functions that can be called from a script, thus increasing
the execution speed of the software.

Not long ago, Xcmds were considered to be a "magical" area of Macintosh software
development; but recently, tools have become available that have greatly eased the task
of Xcmd creation. The Xcmds can be written in C or Pascal or can be developed with
packages such as Teknosys' HyperBasic or Heizer Software's Compilel!!. Developing
Xcmds using 3GLs is a nontrivial task requiring a deep understanding of the Xcmd's calling
conventions and parameter block. Developing Xcmds using tools created specifically for their
creation is significantly easier.

Another tool that greatly eases the task of Xcmd development is Compilel!!. Its developers
took a novel approach to Xcmd programming by allowing Xcmds to be written in
HyperScript, a language similar to a 4GL script (see figure 6). With this approach,
programmers do not have to learn a new language to develop Xcmds.

Compilelti HC 2.0

global arect:Reel[8] - allocate a shared rectangle

- this function will plot a model Ascan signal
function PlotModelAscan ModelTableHand,index

put index into Md - move index into local variable
put IModeTTablel-andQ#.ntegerType[Ind] into i -- get the number of data point of the Ascan
put 144/255 into sf -- cak screen scale factor
put 8 Into x
add 3 to ind
put S into sl -left offset
put 6 into st -- top offset
put 236 into sr - right offset
put 146 into sb - bottom offset
SetRect arect,slst,sr,sb -- build a rectangle structure
BackPat black - sot the background pattern
PenPat white - set the pen to white
PenSize 1,1 - set the pen size to I pixel b J I pixelMoveTo x,(Mode1TableHand@.li.ntegerType find]I * Sf)+st -- move to ith first posfli 4
utid+ no startindtx

Compile It RnllleiDb"git! S SA/E

Figure 6. Compileld Development Environment

16

Like HyperBasic, Compilel! provides for advanced structures as well as full compatibility
with the Macintosh Toolbox. Compilelt! also supplies tools to analyze program deficiencies.
One of the slowest mechanisms in Xcmd execution is what is termed a "text callback." A text
callback occurs when the Xcmd needs the services of the calling program. When the services
of HyperCard are needed, such as checking if the mouse is within an object, the Xcmd passes
the "mousewithin" query back to HyperCard. HyperCard then answers with a True or False.
In a text callback, many conversions must take place, resulting in slow processing. Compilelt!
allows the user to analyze callbacks and points out areas that can be optimized. Another feature
unique to Compilelt! is its sophisticated optional debugging facility. This utility attaches a
symbolic debugger to the application's code resource that is activated upon entering the
Xcmd. Figure 7 shows a sample screen ofCompilelt!'s debugger. Within the debugger, the
programmer can set and clear breakpoints, view and modify containers (variables), and review
callbacks. In short, Compilefl! has opened Xcmd development to the novice Macintosh
developer.

PlotModelascan 2-
DebugIt!4 01991 Itty Bitty Computers, All Rights Reserved.

El Step Over j Review TeHt Callbacks S
Step El Revlew Blnary Callbacks

Trace (82)tI Trae the result ?

R PlotModeI lscan

___lrBkpts }it ? H
[r Bkpts arect R (record)

_ Send Msg black R (record)white R (record)

Refresh model tablehand H "test"
index H "1"

global arect:Rect[S] -- allocate a shared rectangle

-- this function will plot a model Ascan signal
function PlotilodelAscan ModelTableHand, Index

put index into end - move index into local variable
put tlodelTableHandt8. IntegerType|IndI into i - get the number

0 put 144/255 into sf -- calc screen scale facter
put 8 into x

Figure 7. Compilelt! Debugger

17

SECTION 4

COTS TOOL INTEGRATION

The selection of a COTS tool should be driven by two related concerns: application
requirements and tool suitability. The COTS integrator must provide a solution that satisfies
performance and presentation requirements, and stays within the bounds of available funds
and schedule. Application requirements identify the need that will be fulfilled by the new
application. Tool suitability refers to how well the selected COTS tool fulfills the application
requirements. The choice of tool set should be an iterative process. Application requirements
will drive tool selection, while tool selection will impact application requirements. When
employed thoughtfully, COTS tool integration capitalizes on the strengths and minimizes
the weaknesses of individual tools, while providing the system designer an economical and
efficient means of application development.

4.1 INTEGRATION CRITERIA

COTS tool integration is appropriate for most applications; however, it is important to only
integrate proven tools which provide useful services. Applications designers live and die with
the consequences of the tool set chosen. Poor performance and glitches in the COTS tool are
inevitably mirrored in the integrated application. It is a poor practice to force functionality out
of a COTS tool. The more convoluted the process, the more this suggests that the functionality
should be implemented in another way. The only tools which should be integrated are those
for which the vendor has provided a documented and graceful means of integration. To do
otherwise only increases the chances of application failure or of producing an unusable
application.

Custom development should be used as the application engine, the glue that ties all the COTS
tools together. Custom-developed software should also be used, in most cases, for low-level
data acquisition and speed-intensive tasks. It is possible to think of a custom-developed
assembly language routine as a building block, like a COTS tool, to be integrated by the driver
application. The driver application connects the various tools together and handles exceptions
and abnormal processing. Finally, custom software development should be used in the event
that no suitable COTS tool is available.

4.2 CORE REQUIREMENTS

From a computer science perspective, software provides a solution to some quantifiable
problem in terms of core application requirements. Core requirements describe the basic
function(s) of the system in very simple yet inflexible terms. For example, long-distance,
telephone-switching equipment primarily connects callers from one point to another. In the
telephone-switching example, a software designer could minimize the connection time using
algorithms derived from advanced queuing theory. As the system design becomes more
mature, the distinction between design and requirements blurs.

18

4.3 DERIVED REQUIREMENTS

Since design requirements are much less rigid than core requirements, the system designer
is permitted much more freedom to tailor the system to the available tools and technologies.
Tool selection can also feed the development of new core application requirements. The
following examples demonstrate how new technologies employed in COTS tool-based design
can alter and expand the focus of the application.

Case 1: A research scientist wants to monitor an experiment that is connected to a data
acquisition board and output the results to a video display in a user-friendly
manner. The core requirement is real-time data acquisition; the design must
support user-friendliness. A logical solution would be to develop custom (or
interface to vendor-supplied) data acquisition routines in a high-level language
such as C or assembly language. These routines could then be called through
Xcmds from a 4GL language such as SuperCard or Visual Basic. This would
exploit the rapid development time and flexibility of the 4GL language, while
minimizing the impact of its inability to process to real-time data.

Case 2: Suppose the situation described above requires that the data be collected, stored,
and analyzed over time. The solution in Case I could be expanded to provide
an interface to a relational database such as Oracle or DBVista. The 4GL
language would act as the front end to both the data acquisition tasks and the
database. This capitalizes on the ability of a relational database to quickly
create multiple views of data, while maintaining the user-friendly front end
provided by the 4GL language.

Case 3: Suppose the results of this experiment are also to be used for instructional
purposes. For example, the scientist (who is also a college professor) now
wants to present a lecture based on results of an experiment conducted
previously in the lab. The system described above could be expanded by
adding a multimedia product such as Director to play back the results, perhaps
speeding up months of collected data into several minutes. With the addition
of sound and other video effects, the professor could emphasize key points and
provide context.

The three cases demonstrate the ability of tool selection to influence application requirements.
Through the use of COTS tools, the application designer indirectly provided a smooth means
through which the system could grow quickly and economically. While the original
requirements never changed, the addition of cutting-edge technology, built around the original
functionality, spawned a considerably enhanced application.

4.4 SELECTION PROCESS

The process of selecting a suite of COTS tools is both a technical and managerial problem.
The choice of development tools is one of the most critical decisions that will be made during
the entire course of a project's life cycle. There are no hard and fast rules for selecting a suite

19

of COTS tools; however, some application-independent heuristics can be applied. The first
step is to assess the project environment using sore "rules of thumb" considerations such
as available staffing resources, staffing expertise, available financial resources, and project
schedule.

An important consideration that is often overlooked is the staff experience base. Management
should factor a learning curve into the application of any new technology. The more complex
the tool, the more the experience with the COTS tools becomes relevant. Finally, while
nonprogrammers can master specific software tools over time, it is an order of magnitude more
difficult to master a programming language such as C or assembly language. Often, the
success of COTS tool integration hinges on developing complex custom software to integrate
the tools.

Much of the selection process is based on experience and the understanding of the application
requirements. The relative ease and seamlessness of tool integration should not be taken for
granted. A hands-on trial is the best test of ease of tool integration. Often, vendors will supply
30-day evaluation copies of software for just this purpose. Choosing a set of COTS tools
should not be an arbitrary decision; it should be an iterative process. Finally, during the tool
selection period, avoid jumping to conclusions about the relative suitability of a class of tools
based on poor experience with one tool. Some considerations that should be weighed during
the tool selection process are:

* Are the core application requirements satisfied?
* Have any new application requirements surfaced?
* Can the project realistically meet schedule and budget constraints?
" How compatible is the tool?
" Is the product maintainable?
* How smooth is the integration?
" How committed is the COTS tool vendor to supporting the chosen tool?
" How easily can the tool be "extracted" and be replaced in the future?

The chosen suite of COTS tools must provide an effective solution for the problem defined
by the core application requirements. The degree to which integration can be accomplished
depends on the application and must be evaluated on a case-by-case basis. From an integration
perspective, the maintainability and seamles mess of the COTS tool implementation affect the
quality of the end product most. The relative maturity of a technology or a particular product
often determines the stability of the tool. Also, the reputation and size of the COTS tool vendor
are often good clues to the quality of the product. In general, the larger the company, the more
likely the product will be of high quality and available for the foreseeable future.

4.5 CUSTOM DEVELOPMENT

When a COTS tool satisfies an applications requirement, it is often advantageous to use it as
a building block. However, there are occasions when integration is not the best solution. In
cases where the integration will be less than seamless, integration should be avoided for two
reasons. First, tools that are poorly integrated typically present an awkward HMI and are

20

difficult (and unpopular) to use. Second, poorly integrated applications are often characterized
by "work-arounds" and "bugs." One of the worst possible scenarios is for the customer
to make a mistake and get caught in between tools (i.e., unable to return to a known point).
Poorly integrated applications are difficult to maintain and are often subject to unexpected
behavior. Finally, any task that performs safety-critical processing should not be done by
anything other than custom software.

4.6 EXPERIENCE BASE

Commercial software development is an inherently risky proposition. Successful software
development organizations have developed large experience bases and are able to learn from
failures and repeat successes. On a smaller scale, individuals and groups can apply this same
logic. Individuals should be encouraged to experiment and innovate; organizations should
strive to stay abreast of current technology trends and develop large experience bases. Trade
shows and journals are excellent sources for this information.

21

SECTION 5

EXAMPLE OF AN APPLICATION USING COTS TOOLS

5.1 ULTRASONIC INSPECTION TRAINER

In this section, we present an example that demonstrates integrating numerous COTS tools
to produce an end application. This example will focus not on the application but on the tools
used in its creation.

The Air Force Ultrasonic Inspection Trainer is being developed to train aircraft radome
inspectors. The objectives of this task are to improve the reliability of radome field inspection,
to make the trainer engaging and easy to use for novice computer users, and to develop the
trainer with minimum resources. The software is being developed on Apple Macintosh lIfx
and Quadra computers with eight megabytes of memory. The trainer capitalizes on
commercially available state-of-the-art multimedia and software tools. Figure 8 depicts
the tools used in developing this application. Because of the large number of tools contained
in this project, only a portion of the tools integrated will be discussed.

SuperCard

$ieonddt U&abbr WlngI

Figure 8. COTS Tools Used in the Ultrasonic Inspection Trainer Prototype

22

Figure 9 highlights several features of the SuperCard development environment. At the top
of the display is a menu bar that allows the user to navigate to other displays and request
specific functions. Within the vertical and horizontal scroll bars exists the enlarged view
of the radome object, which allows the user to scroll to other areas of the radome image.
The simulated ultrasonic meter shown in the bottom-right comer of the display is selected
to show only the ultrasonic signal. The user can enlarge the meter view to access the various
controls on the front panel via a menu selection. The signal that is displayed in the simulated
meter is generated via a call to an Xcmd, a mechanism developed to achieve the required signal
update time resolution. A small tool palette on the left side of the display provides the student
immediate access to rulers, a defect marking tool, a defect logging tool, and the ultrasonic
transducer. This figure shows that the student has selected the rulers and the defect
logging tool to enter the attributes for a defect.

Editor Help Meter Designer Instructor ScanTools Log

Figur9. Saml Rr In sp

0 15 20 25

Figure 9. Sample Radome Inspection Display

23

SuperCard is the main tool used to develop this software. SuperCard is a 4GL similar to
HyperCard but has expanded features such as sophisticated color objects, a powerful script
editing environment, and a symbolic debugger. Three classes of COTS packages were used
to develop the trainer in figure 8. First, Xcmd tools were used for real-time signal processing
and other time-critical tasks. Second, multimedia COTS tools were added for the
context-sensitive help system and animation for opening screens and tutorials. Last, data
analysis tools were used for preprocessing the ultrasonic data obtained in the field.

5.2 REAL-TIME SIGNAL GENERATION USING Xcmds

This application incorporates data collected from field inspections into the trainer software.
By doing so, the student can evaluate "real" signals prior to performing an actual inspection.
Because actual data is used, the signal-generation software has to be plotted in real time. This
requires developing Xcmds that would apply filters to the signal. The main tool for Xcmd
development is Compileld. Because Xcmds cannot retain their value and because passing
large amounts of data between SuperCard and the Xcmd is slow, a technique was developed to
allocate, initialize, and dispose of the data points. This technique makes extensive use of
Macintosh Toolbox calls to manage memory.

The first step in creating the Xcmd is to allocate and initialize memory with the data points. To
do this, a handle11 is created that refers to the pointer of the first data point. Because
Compileft! can manage structures such as arrays, accessing the data point is easy. As
mentioned earlier, Xcmds cannot retain any values, so the handles themselves must be passed
back to SuperCard for safe-keeping. The advantage to using handles, as opposed to passing
points, is that only eight bytes, rather than thousands, need to be passed. Once the array of
data points has been set up, SuperCard can call the Xcmd passing the handle a parameter and
manipulate any point via Compildt!'s built-in structure conventions. One drawback to this
technique is if the software unexpectedly quits without disposing the handle, problems will
arise because of dangling pointers.

5.3 DIGITIZED VOICE

To make the trainer software captivating and user-friendly, digitized sound is used extensively
throughout the software. To accomplish this, Farallon Computing's MacRecorder and
SoundEdit are used. MacRecorder, an external hardware device used to capture digitized
sound, is accompanied with a sound editor and an Xcmd utility for playing the sound via
a 4GL. Figure 10 shows the SoundEdit screen which allows the developer to record and
manipulate the sound. SoundEdit also provides a wide array of effects (filters) that can be
applied to the sound. For example, an echo filter can be applied to the voice sample to create
an echo chamber effect. The developer can also rearrange words by simply cutting and pasting
the sound spectrum.

11 A handle, a safe double de-referencing mechanism used to access data, is maintained by the Macintosh

memory manager.

24

File Edit Settings Windows Color Mail

Amplify.. ht

Figure.10. MaBaderds

'.. .;. .- nuolope...
Filter...

. Flanger

T a dFM Synthesis... i liSi D
Noise ...
Ping Pang

; lI~i i neuorb... 0. 1 10010110101

Smooth 11K -m .1 oI ooo

Figure 10. MacRecorder

Once the sound has been defined, it is saved as a "sad resource" and imported into SuperCard
via a menu selection. Next, an Xcmd for playing sound is imported into SuperCard.
To play the sound, the programmer simply enters the following script: PLAYSND
"INTRODUCTION." The number of sounds is limited only by the amount of available
memory; but caution must be used, because digitized sound requires huge amounts of space.

5.4 CONTEXT-SENSITIVE HELP SYSTEM

In keeping with the objective of providing a captivating interface for novice computer users,
we used a package called Bright Star Technology's InterFACE (INTERactive Facial Animation
Construction Environment) to develop an on-line help system. InterFACE provides tools
to create on-screen talking agents that interact with and guide users through the training
system. The InterFACE package consists of two major products: a complete graphical editing
environment that assists developers in creating the customized on-screen agent, and voice
synchronize. Agent images can be drawn with these supplied tools or created by importing
digitized images captured with a video camera or scanning device. To create a new agent,
the developer draws or captures the agent's face with the mouth position resembling the
supplied template. Figure 11 shows the agent editor with the agent's mouth position saying
the letter "F." For each letter or sound, the developer must draw the agent with the correct
mouth position. A total of 32 agent images must be created to produce reasonable, simulated
mouth-to-voice synchronization.

Once all the agent's expressions have been drawn, the developer may then synchronize
the agent's facial movement with digitized voice. To do this, the developer simply imports
the digitized voice segment and types in the spoken sentence. InterFACE converts the text to
phonemes and then to its internal language. This internal language consists of phonetic
symbols plus facial expression codes. Finally, the user must test the end result and perform

25

timing adjustments as necessary. If digitized voice is not required, the Macintalk voice
synthesizer software could be used. Although the Macintalk driver software does not produce
the same degree of definition as digitized voice, it uses far less memory and requires little or
no synchronization.

File Edit Go Rctors Sounds Dressing Room Mail

I 160 ×197

I ~

Figure 11. InterFACE Agent Editor

InterFACE may also be called from traditional programming languages such as C and Pascal
or from 4GLs. A driver, called RAVE, is placed in the system folder of the Macintosh and is
activated via low-level calls. In SuperCard, the supplied Xcmd is called to activate the talking
agent. For example, to wake the agent and have it say, "Hello can I help you," the following
command would be invoked:

RAVE[Hello Can I Help You.].

The RAVE Xcmd will then call the RAVE driver, which will control the computer-generated
voice and synchronization of facial expressions. Another useful feature of the package is the
ability to have multiple agents interacting on the screen simultaneously. Thus, agents can be
programmed to talk with each other during tutorials or informational sessions.

26

5.5 REAL-TIME DIGITIZED VIDEO

Real-time digitized video is used to create tutorials for the trainer software. The tutorial shows
proper scanning procedures and test equipment calibration steps. To create real-time digitized
video, a special video card and supporting software must be used. We used the RasterOps'
24XLTV card. This card supports 24-bit color and has the ability to capture real-time video
from video cameras and VCRs. The RasterOps card also comes with MediaGrabber software
for capturing frames of video to secondary storage. Figure 12 shows a sample screen of the
MediaGrabber utility.

In this example screen, 10 frames of video are being captured at the rate of 1 frame per second.
Depending on the bit depth of the image, up to 15 frames per second can be captured. (The
standard frames per second of a VCR or video camera is 30 frames.) Compression boards are
slowly becoming available to capture true real-time video. Even with compression, digitized
video is extremely memory-hungry. Five minutes of 24-bit video captured at 30 frames a
second can take almost a gigabyte of disk space. Though compression technology has made
advances to reduce this figure, caution should be used when using real-time digitized video.

Once the video frames have been captured on disk, Director combines all captured frames into
a video sequence. Overlaid titles and sound can then be added to the video sequence to create
the desired effect. The combination of digitized video segments, sound, and titles is then saved
as Director "movies," which can be played through an Xcmd movie player supplied with
Director.

27

....

Grab to Disk Ml

eS MediaGrobber" 1.7 11
(allbration ODD I czDHMI.2/13
(WiOration
(nlibratian............... (alibration 000.4 Driue

D (10ibration ODDS
D (allbration 0006

Grab file names start with: Benin
.......................

calibratiaq FC a 7nc e 17)

PICT format:.................. 8 bit gray (saue options

0 Manual Grabs

(@)Timed Grabs..........
...........-.I.; Num ber of Grabs

... M U........... Grab Interual (sec.)

Start Delay (sec.)

[D Beep when finished

Figure 12. MediaGrabber Environment

28

SECTION 6

SUMMARY

We described some of the tools commercially available at the time this paper was published.
Given the recent focus on COTS tools, a vast new selection of tools will undoubtedly become
available in the near future. Our intent is not to promote a particular product, but to give insight
by example. When selecting COTS tools for your own project, consider the following:

* What are the memory requirements of the tool?

" Does the tool provide an interface to the controlling shell software?

" How will the tool perform with other COTS tools?

" What are the licensing requirements?

* Is any special hardware needed?

* How dedicated is the company to the product (enhancements, upgrades, technical
support)?

• What time period is required to come up to speed with the tool?

" What is the likelihood that the tool can be applied to other projects?

Having answered these questions, you will select the appropriate tool confidently.

29

GLOSSARY

COTS commercial off-the-shelf
CPU central processing unit

DLL dynamic link library

GUI graphical user interface

HMI human-machine interface

InterFACE INTERactive Facial Animation Construction Environment

ROM read-only memory

SQL standard query language

WYSIWG "what you see is what you get"

Xcmd external command
Xfcn external function

2GL second-generation (programming) language

3GL third-generation (programming) language

4GL fourth-generation (programming) language

30

