
USACERL ADP Report N 89/14

~I~jAD-A252 461 September 1989US.,i my orps 1111 l 1 M lill/ti ill' 11,
of Engineers
Construction Engineering
Research Laboratoi y

GRASS 3.0 Programmer's Manual

by D
Michael Shapiro _

James Westervelt FEL7U ~_
Dave Gerdes JULN a9
Michael Higgins E w
Marjorie Larson " A

This manual introduces the reader to the
Geographic Resources Analysis Support System from
the programming perspective. Design theory, system
support libraries, systems maintenance, and system
enhancement are all presented.

92-16401
JieI Jfi Ip rIa i IIrIIb II u I

Approved for public release; distribution is unlimited.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE FmB Apoved0-0

Public reporting butden for this collection ol information Is estimated to aerage I hour per response. Inclurding the time for rw instructions. searching existing data sources,
gathering and maintaining the data needed. and comnpleting and cavlesring the collection ai Walno~n. Send commrents regarding this burden estimate or any other aspect of thes
collection ot information, icludinig suggestiore for reducing thes burden, to Washinton Headquarters Services. Directorate for Informration Operations and Reports. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Off"b of Management end Budget. Paperwork~ Reduction Projec (0704-0198). Washington. DC 20503.

1. AGENCY USE ONLY (Leave Bank) 12. REPORT DATE 3.- REPORT TYPE AND DATES COVERED

September 1989 Final
4. TITLE AND SUB3TITLE 5. FUNDING NUMBERS

GRASS 3.0 Programmer's Manual
WU A896-NN-TS9

6. AUTHOR(S) WU A896-NN-TF9
WU A896-NN-TJ9

Michael Shapiro, James Westervelt, Dave Geries. Michael Higgins, and
Marjorie Larson WU RD8P69NVC8

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Construction Engineering Research Laboratory (USACERL) ADP N-89/14
P0 Box 9(X)5
Champaign, IL 61826-9005

9. SPONSOR ING/MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORINGJMONITORING
AGENCY REPORT NUMBER

U.S. Army Engineering and USDA-Soil Conservation Service
Housing Support Center Cartographic and Geographic

ATTN: CEtISC-FN Information Systems Division
Kingman Building 14th & Independence Avenue SW
Fort Belvoir, VA 22060-5580 Washington, DC 20013

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161

1 2s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release: distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This manual introduces the reader to the Geographic Resources Analysis Support System from the
programming perspective. Design theory, system support libraries, systems maintenance, and system
enhancement arc all presented.

14. SUBJECT TERMS I5. NUMBER OF PAGES

GRASS 290
geographic information system 16. PRICE CODE

Geographic Resources Analysis Support System___________
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 120. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified SAR
NSN 7540-01-2805500 SrWd Form 2 (Fle. 2 89)

Prese.nbed brANSI Std 230.18
265-102

Notice to Program Recipients

This program is furnished by the U.S. Government and is accepted and used by the recipient
with the express understanding that the Government makes no warranty, expressed or implied,
concerning the accuracy, completeness, reliability, usability, or suitability for any particular
purpose of the information and data contained in this program or furnished in connection
therewith, and the United States shall be under no liability whatsoever to any person by reason
of any use made thereof.

The program belongs to the Government. Therefore, the recipient further agrees not to assert
any proprietary rights therein or to represent this program to anyone as other than a Government
program. The recipient also agrees that the program and all documents related thereto, including
all copies and versions (except when expressly authorized otherwise) in possession thereof, will
be discontinued from use or destroyed upon request by the Government.

The program is to be used only in the public interest and/or the advancement of science and
will not be used by the recipient to gain unfair advantage over any client or competitor.
Whereas the recipient may charge clients for the ordinary costs of applying the program, the
recipient agrees not to levy a charge, royalty or proprietary usage fee (except to cover any
normal copying and/or distribution costs) upon any client for the development or use of the
received program. Recipients desiring to modify and remarket the program will be required to
comply with a separate agreement. Only minor or temporary modifications will be made to the
program (e.g., necessary corrections or changes in the format of input or output) without written
approval from the Government. Should the program be furnished by the recipient to a third
party the recipient is responsible to that third party for any support and upkeep of the program.
Information on the source of the program will be furnished to anyone requesting such
information.

The accuracy of this program depends entirely on user-supplied input data. It is the user's
responsibility to understand how the input data affects the program output and to use the output
data only as intended.

All documents and reports conveying information obtained as a result of the use of the program
by the recipient will acknowledge the Corps of Engineers, Department of the Army, as the
origin of the program. All such documentation will state the name and version of the program
used by the recipient.

NTIS CRA,&I
D1C iAB
U ;a .! ,, : o . c e d -.

JuIstifiication

By
---

Di:t, ibution /

Availaliuty Cocs 4
Avai!a,.,o

Dist

A-it

,-0 r .

Thnis work was Perfonmed for the U.S Anmy Enixeiing andl Housimg Support
center (usAIRS) under the work uits A896-NN-TS9 entitled 'Imagery Data for
Triing Area Ma~ewt"A896-NN-TF9 entitled "Terrain Modeling for Htainrlig
Training Events adi Nabn'1 Resources Maiaement " and A896-NN-T9 entitled
"GRASS Application Mams." Additionllsporsoiship, camen from the U.S Department
of Agiiture Soil Conservation Service (SOS) Cartogmphic andi Geograplc
Infonmation. Systenw Division undler the work unit RD8P69NVC8 entitled

I ezzuts to SCS-GRASS, l1e LJSAEHSC Technical Monitor was Ms. kiie
Clark of tfe Natural andi Cultuia Resources Division. The SOS, Technical Moritor wa
Mr. Dick Listun.

.71* auhr would like to acknowledge Ms. Mary Martin for ler assistanc~e in
reviewing, editing, andl preparing ts documet

Tlis work was perforiud. by the FEzvinmnrental Division (EN) of the U.S AmiLy
Constnxwtion Engineering Resewrh Laboratory (USACERL). Dr. RK Jin is Chef of
UISACERIrFN.

COL Card 0. Magrell, is Cornmner and Director of USACERL, andl Dr. LR
Sbffer is Technical Director.

Table (it Cantuits

Chapter 1. I ntrd cin .. 1
1.1. Bacw ti ... 1
1.2. Objective... 1
1.3. A c p.. 1
1.4. Scope ... 2
1.5. Mode of Techimlogy Transfer ... 2
1.6. GRASS Information Center .. 4

Chapter 2. Development Guidehmrs 5
2.1. Intendled GRASS Audlience .. 5
2.2. Prograning Siwarads ... 6
2.3. Docunentation Standaids .. 7

Chapter 3. Multi-L.evel... 9
3.1. Genraml User ... 9
3.2. GRASS Pktgranmw.. 10
3.3. Driver Progranmr 12

3.4. GRASS System Desigprr.. 13
Chapter 4. Datbae Stutur ... 15

4.1. Progrmmning Inteface... 15
4.2. Gisdbase ... 16
4.3. Locations .. 16
4.4. Mapsets .. 16
4.5. Mapset Stmcture... 17
4.5.1. Mapset lles... 17
4.5.2. Fleentr... 18
4.6. Pemxnsnt Mapset,.. 19
4.7. Datbae Access Rules... 20
4.7. 1. Mapset Search Path .. 20
4.7.2. UNIX File Pemtissions... 20

Chapter 5. Grid Cell Maps ... 23
5.1. What is aGrid Cell Map Layer? ... 23
5.2. Grid Cell Hle Fomrt .. 24
5.3. Cell Header Fornxt .. 26

Hi--l

5.3.1. Regular Fb rt...... o.................................... 26
5.3.2. Reclais Fo r rm............t a 27
5.4. Cell Category FIle Fomat ... 28
5.5. Cell Color Table Fornut 28
5.6. Cell HistoryFile .. 29
5.7. Cell Range Fle a a................................. 29

Chapter 6. Vector Maps... 31
6. 1. Whatis aVector Map IAyer? 31
6.2. Ascii Are File Fomxit 32

6.2.1. Healer Section.. 33
6.2.2. Amc Section .. 34
6.3. Vector Category Attribute File .. 35
6.4. Vector Category Label File.. 36
6.5. Vector Indlex aidi Pointer Fle ... 37
6.6. Digitizer RegsU-ation Pbints File.. 37
6.7. Vector Topology Rules ... 37
6.8. Irnporling Vector Files Into GRASS 38

Chapter 7. Point Data Site Lis Files.. 39
7.1. Whatis a Ste UsO 39
7.2. Site File Forrit... 39
7.3. Prograrmng Interface to Site Files 40

Chapter 8. Image Data Groups... 41
8.1. Introduction.........................a... 41
8.2. What is a Group? 41
8.2.1. AList of Cell Fies... 42
8.2.2. Image Registration andl Rectification 42
8.2.3. Ixnage Classification .. 42
8.3. Tiv Group Stnxture.. 43
8.3. 1. TheREF File.. 43
8.3.2. L1e POEMT File... 44
8.3.3. The TARGET' File.. 44
8.3.4. Subgroups.. 44
8.4. lix~ery Prograrns .. 45
8.5. Programinnng Iterface for Giroups... 46

Chapter 9. Windlow andl Mask.. 47
9.1. Windiow.. 47
9.2. Mask 48
9.3. Variations.. 49

-iHi -

Cbepter 10. Emdroia~~t Vabls...................... le................ 51
10.1. UNIX Frion e t.. 51
10.2. GRASS Envimontnet ... 52
10.3. Diffeene Between GRASS ad~ UNIX Environnients............... 52

Cbepter 11. Compiling GRASS Piugrarns Using Grmkie.............................. 55
11.1. Grnaw... 55
11.2. Gxmke Vaiables... 55
11.3. Constructing a Grrakefile... 58
11.3.1. Building program~ from source (.c) files 58
11.3.2. Inchlefiles .. 59
11.3.3. Bulling object libraries.. 60
11.3.4. Building more than ore target ... 61
11 .3.5. Dori t bypass .o files .. 61

Chapter 12. GIS library.. 63
12.1. Introduction o.. 63
12.2. library Inritialization... 64
12.3. Diagnstic Messages .. 64
12.4. Enviirnmnt andi Database Information 66
12.5. F anrvntal Database Access Routines 68
12.5.1. Pkiompting for Database Files .. 68
12.5.2. Fuxiin Files in the Database .. 70
12.5.3. Legal File Nanes.. 72
12.5.4. Opening an Existin Database File for Reading 72
12.5.5. Opening an Existing Database Fife for Update.......:............... 73
12.5.6. Crtin andi Opening a New Database Fie......................... 74
12.5.7. Database File Management .. 75
12.6., Memxy Allocation.. 75
12.7. The Windlow ... 76
12.7.1. TIe Database Windlow.. 77
12.7.2. Ie Active Program Windlow.. 78
12.8. Cell Fie Processing... 80
12.8. 1. Prmnpting for Cell Fies.. 81
12.8.2. Rnding Cell Files in the Database..................................... 82
12.8.3. Opening an Existing Cell FHe.. 83
12.8.4. Creating and Opening New Cell Files 84
12.8.5. Allocating Cell 1/0 Buffers .. 85
12.8.6. Reading Cell Fies .. 86
12.8.7. Writing Cell Files ... 87

-iv- .iv-

12.8.8. Closing Cell I es .. 89

12.9. M ap L yer Support Ro utnes ... 89

12.9.1. Cell H ea le .. 89

12.9.2. Cell Category Fie 91

12.9.3. Cell Color Table .. 94
12.9.4. Cell Iistory File .. 98

12.9.5. Cell Range File .. 99

12.10. V ector File Processing ..1......... I00

12.10.1. P rm ptirg for V ector Files .. 101

12.10.2. Flinding Vector Files in the Database ... 102

12.10.3. Opering an Existing V ector F e ... 103

12.10.4. Creating and Opering New Vector Files 104

12.10.5. Reading and W riting V ector Files .. 104

12.10.6. Vector Category File ... 104

12.11. Site List Processing 105

12.11.1. Pnptirg for Site List Files 106

12.11.2. Opening Site List Files .. 107

12.11.3. Readirg and Wriing Site List Files ... 107

12.12. TeMOrary Files .. 108

12.13. Con m arxl Line Parsing .. 109

12.14. Sting M anipulation Functions ... 113

12.15. Enlwxn ed UNIX Routines .. 115

12.15.1. Running in -the Background ... 115
12.15.2. Partially Intem iptible System Call .. .116

12.16. M iscellaneous .. 116

12.17. GIS Library Data Stn tures ... 118

12.17.1. struct CellJ a ... 119

12.17.2. struct Categories 119

12.17.3. stn ct Colors ... 120

12.17.4. stnr t History .. 121

12.17.5. str ct Range ... 122

12.18. Loading the GIS Library .. 122

Cbapter 13. Dig Library ... 123
13.1. Introducion ... 123

13.1.1. Ir lude Files ... : 123
13.1.2. V ector A ir Types ... 124
13.1.3. Levels of Access .. 124

13.2. Level One Read Access 124

-V. "V.

13.2.1. Iniializato n/Ter in ton ... 124

132.2 . Reading A rcs .. 126
13.3. Level Two Read A ccess ... 127

13.3.1. InitializaionTeminion 27

13.3.2. Area Retrieval .. 128

13.3.3. Arc Retrieval .. 130

13.3.4. Area A nalysis Tools .. 131

13.3.5. A rc Analysis Tools .. 132

13.4. W riting Binary Dig files ... 133

13.5. Miscellaneous Tools 134

13.6. Loading the Dig Library ... 135

Chapter 14. Im agery Library ... 137

14.1. Introduction ... 137

14.2. Group Processing .. 138

14.2.1. F rom pting for a Group .. 138

14.2.2. FI ding Groups in the D atabase .. 139

14.2.3. REF F1le ... 139

14.2.4. TA RG ET File ... 142

14.2.5. PO INTS le .. 143

14.3. Loafing the Im agery Library ... 144

14.4. Im agery Library D ata Structures .. 144

14.4.1. struxt Ref .. 144

14.4.2. struct ControlPoints ... 145

Chapter 15. Raster Graphics Libra y ... 147

15.1. Introduction ... 147

15.2. Cornecting to the Driver 148

15.3. Colors .. 148

15.4. Basic Graphics .. 150
15.5. Poly Calls .. 152

15.6. Raster Calls ... 153

15.7. Text .. 154

15.8. U ser Input .. 156
15.9. Loading the Raster Graphics Library ... 157

Chapter 16. Display Graphics Library .. 159

16.1. Introduction ... 159

16.2. W indow M anagenent ... 159
16.3. W irdow Contents M anagenent ... 161

16.4. Coordinate Trariforn ation Routines ... 162

-vi- -vi.

16.5. Raster Grs ... 164
16.6. W itdow Clipping .. 165
16.7. Pbp-up M enus ... 166
16.8. Colors .. 167
16.9. Loading the Display Graphcs Library .. 167

Chapter 17. Lock Library .. 169
17.1. Introduction ... 169
17.2. Lock Routine Synopses .. 169

17.3. U se and Liniitations .. 170

17.4. Loading the Lock Librm y .. 170
Chapter 18. Row io library .. 173

18.1. Intr duc tion ... 173
18.2. Row io Routine Synopses .. 174

18.3. Rowio P gramnimg Considerations .. 176

18.4. Loading the Row io Library .. 177

Chapter 19. Segm en t Library ... 179
19.1. Introduction ... 179

19.2. Segment Routines 180

19.3. Iow to U se the Library Routines .. 183
19.4. Loading th Segm ent library ... 185

Chapter 20. V ask Library .. 187

20.1. Introduction ... 187
20.2. V ask Routine Synopses .. 187

20.3. A n Exam ple Progrm ... 190
20.4. Loading the Vask Library 191
20.5. Progrmnm ir Considerations .. 192

Chapter 21. W riting a D igitizer D river ... 195

21.1. Introduction ... 195

21.2. Writirg the Digitizer Device Driver 195
21.2.1. Functions to be W ritten ... 195
21.2.2. Functions A vailable Fbr U se ... 200

21.2.3. Com piling the D evice D river .. 202
21.2.4. Testing the Device D river ... 202

21.3. D iscussion of the F re r P ints (I s) ... 20 3

21.3.1. Setting up the D igitizer ... 20 3
21.3.2. P gram Logic ... 204

21.3.3. * ecific D river Issues ... 204
C hapter 22. W riting a G raphics D river ... 207

-vii- -vii-

22.1. I ntroduction ... 207

22.2. Basics .. 207

22.3. Basic Routines .. 208
22.3.1. Open/Close Device 208

22.3.2. Retum Edge and Color V alues ... 208

22.3.3. D raw ing Routines .. 209

22.3.4. Colors ... 209

22.3.5. M ouse Input ... 210

22.3.6. Par ls ... 211

22.4. Optional Routines ... 212

Chapter 23. W riting a Paint D river ... 215

23.1. Introduction ... 215

23.2. Creating a Source Directory for the Driver Code 216

23.3. The Paint D river Executable Program ... 216

23.3.1. Printer 1/0 Routines ... 216

23.3.2. Initialization .. 218

23.3.3. A lpha-nun eric M ode ... 218

23.3.4. Graphics Mode 219

23.3.5. Color Information .. 220

23.4. The D evice D river S ll Script .. 222

23.5. Program m ing Considerations .. 224

23.6. Paint D river Library .. 224

23.7. Com piling tt D river .. 225

23.8. CW air 125 Colors From 3 Colors .. 227

Chapter 24. W riting G RA SS Avll Scripts ... 229

24.1. U se the Bourne Shell .. 229

24.2. H ow a Script Should Start .. 229

24.3. G ask ... 230

24.4. G fi fle ... 231

24.5. D on' t U se #!.fbin/sh .. 231

Appendix A. Annotated Gnake Pte-defined Variables .. 233

A ppendix B . Tle CELL D ata Type .. 23 7

A pperIix C . Index to G IS Library ... 239

A ppendix D . Index to Dig Li brary .. 243

A ppendix E. Index to Im agery Library ... 245

A ppendix F. Index to D isplay Graphics Library .. 247
A ppendix G . Index to Raster Graphics Library .. 249

A ppendix I Index to Rowio Library ... 251

-Viil -vili-

Appendiix I. hIex tD Segment Libay.................................... 253
Appendiix J. Index to Vask Ilibriy... 255

Appendix K permuted index for Library &otns.......................... 257
Ine ... 275

1.1. ad grounId
The Geographic Resources Analysis Support System (GRASS) is a geographic
informtion system (GIS) designed ard developed by researchers at the U.S. Army
Construction Engireering Research Laboratory (USACERL). GRASS provides
software capabilities suitable for organizing, porfaying and analyzing digital spatial
data

Since tie first release of GRASS software in 1985, the nnmber of users and
applications has rapidly grown Because GRASS is distibuted with source code, user
sites (including many govemrmnt orgniizations, educ ona1 institutions, and private
firms) are able to customize aid enhance GRASS to meet their own requirements.
While researcers at USACERL still nuitin anl support GRASS, and still develop
and organize new versions of GRASS for release, progranners at numerous sites now
work directly with GRASS source code.

12. Objecive
Those who work with GRASS source code need detailed information on the structure
and organization of the softwam, and on procedures ai stardards for programming
and documentation TIe objective of this manual is to provide the necessary
infornation for pmrgran s to understand and enhance GRASS software.

1.3. Apjwo
GRASS software is continuously updated and improved. Software enhancements am
developed at various sites, ard submitted to USACERL to be shared with other sites
and included in future releases of GRASS. Improvements to the code are periodically
incorporated into new releases (which occur approxinmtely once per year).

With each new release of GRASS, more anl more sites have begun working directly
with GRASS .ource code. Sites are encouraged to use starnard procedures in

§1 I dnroction

-2- -2-

development of new GRASS capabilities. Sites tiht develop GRASS software we
encourged to learn and use GRASS pgrammm libraries, and to use standard
procedures for coding, conmmnti and documrting software. Ie use of GRASS
libraries and conventions will:

(1) Elinate duplication of functions that aheady exist in GRASS
libraries;

(2) Increase the capability of multiple sites to she en xemnerft
(3) Reduce problems in adapting contributed GRASS capabilities to new

data structures and new versions of GRASS software;
(4) Provide some common elements (such as documentation and user

interfaces) for users who use code contributed from multiple sites,
and reduce the learning curve associated with each contributed
capability.

The first GRASS Programmer' s Manual was developed for GRASS 2.0 (released by
USACERL in 1987). However, there were numerous and furdamental changes made
in GRASS 3.0 (released in 1988). Rather dn revise the existing Pgranmr? s
Manual, USACERL researchers elected to draft a new and more complete GRASS
Programmer's Reference Manual for GRASS 3.0. The approach used in the
development of this manul involves a systematic effort to describe GRASS
development guidelirs, user interfaces, data structures, programming libraries and
peripielal drivers.

1.4 Scope
Information in this manual is valid for GRASS version 3.0, released in Novener,
1988. As changes are made to GRASS libraries, data stnxturies, arnd user interfaces,
elements in this manual will require updating. Plans to perform updates, and the
availability of these updates, will be announced in the newsletter GRASSlippings and
other GRASS information forun.

1.5. Mode of Tedmology Trandf-
Army and Corps of Ergineer organizations can aquie GRASS software from
USACERL. Several other federal organizations provide distribution and support
services for GRASS within their own agencies, and several educational institions and
private finns also provide distribution, training and support services for GRASS
Current information on the status ard availability of services for GRASS can be
obtained from the GRASS Information Center. 1

'See §1.6 GRASS bifonntion Center (p. for phone nwtmers and mail addresses.

§1 Ih

-3- -3-

This manual should prove to be a valuable resource facilitating GRASS software
development efforts at the nuuronus govenment gency, educational institutions and
private firms that now use GRASS and plan to modify, enhance or customize the
software. Sites that develop new analytical capabilities or peripheml drivers for
GRASS are erouraged to share their products with others in the GRASS/GIS user
community. To facilitate this sharing process among user, support and development
sites, several forums have been establis ed. These include the following:

The GRASS Information Center,
The GRASS Inter-Agency Steering Committee,
An annual GRASS/GIS User Group Meeting,
GRASS9lippings, a quarterly newsletter, and
GRASSNET, an electronic mail and software retrieval forum

The GRASS Ifm n t maintains: (1) a set of publications on GRASS and
GRASS-related items, (2) updated information on locations that distribute and support
GRASS software and on training courses for GRASS, (3) the mailing list for the
newsletter GRAS2.lippings, and (4) updated information on the status of GRASS user
group meetings and software releases.

The GRASS Irta.Agenxy Steming Coniitte is an informal organization with
menbers from government agencies and other organizations that use, support and
enhance GRASS. This organization sponsors the annual User Group Meeting and the
quarterly newsletter. It holds at least two meetings annually to share and coordinate
GRASS plans among te participating agencies.

The annual GRASS(GIS Usw Group Meeting is hosted each year by one of the
mrnber agencies of the Steering Committee. Papers, demonsftations, and discussion
panels present GRASS applications and software development issues. The meeting
provides opportunities for cunent and potential users to share and demonstrate new
GRASS software.

The GRA8SCIip*V newsletter is published, approximately four times a year, to
provide information to anyone interested in GRASS software. TIe newsletter includes
articles on software development, hardware options and applications of GRASS.

GRASSNEr is an electronic mail forum that provides a mechanism through which
GRASS user and development sites can exchange nessages. It can be reached via
Arpanet, Internet and other networks. GRASSNET also includes a library of
contributed software available for users to retrieve and review. Thus, new software is
available before it is integrated into a formal release of GRASS code.

§I Iniodution

.4- .4-

1.A GRASY16 Infc matciCAmta
Sites wisix to contiibute, code to GRAS or wantirg to participete in amy of fem
GRASSV(GIS, uer conmmurity fonn, shuldd contact the GRASS Infomution Center
by Pbone at: (800)-UJSA-CERL, extension 220 or (217)-373-7220; by U.S mail at:
GRASS Informadon Center, USACERL, P.O. Box 4005, Cbwnpaign, H.,, 61824-4005;
or by elecimnic mail at: gras@cedcecer.amymil.

§1 Introducticm

-5- -5-

Dnomet Ge~de

GRASS continues its development with several key objectives as a guide. Tie
programmer should be awme of these and strive to write code flit blends well with
existing capabilities. All objectives ae based on an understanding of the needs of the
end-users of GRASS.

2.1. Inteded GRASS Audience
GRASS is a general purpose geographic information system Its intended users are
regional land plarers, ecologists, geologists, geographers, archeologists, and landscape
architects. Used to evaluate broad land use suitability, it is ideal for siting large
projects, managing parks, forest, and range land, and evaluating impats over wide
areas. These users me generally NOT equipped to write program or design a system
In many cases t ey have never used a computer or even a keyboar&

REGIONAL PLANNING TOOL -

GRASS is designed for plannin at the county, park, forest, or range level. It is
suitable for plaming at a maro scale where the laIn uses are larger than 30
meters (or so, depending on the database resolution). As yet, no. GRASS tools
exist for the modeling and simulation of traffic, electrical, water, and sewage
infrastruture loads, or for the precise positioning of urban structures.

UTM-REFERENCED -

To facilitate area calculations, a planinetric projection was desired for initial
GRASS development Funixng was provided through Army nilitary irstallations
which were familiar with the Universal Tranverse Mercator (UTM) projection
Due to these factors, GRASS developed around the 11PM coordinate system 1

INTERACIVE -
GRASS has a strong interactive component Its multi-level design allows users to
work either at a very user-frienly level, at a mre flexible conmmnrx level, or at

1The UM projection allows GRASS tD assurm equal aea cells anywhere in the database.

It also makes distame calculaions simnpe arid straightforward. This will change as futiure
releases allow other coomfinate systems (e.g., longitidatitude). The changes will probably
not affect overlay operations, but will nmst likely change the mthodology for distance and
atra calculations.

§2 Devopumnt Gtddis

-6- -6-

a programming level.
GRAPHC-ORIErME -

Many of the fuxrliorE can be accompanied by graphic output results.
FOR NON-PROGRAMMER -

Users of GRASS ame often firnstime users of a computer. To this end, it is
important that the programrr take the extra time to provide on-line help, clear
prompts, and user tutoials.

INEXPENSIVE -
GRASS can run on microcomputers in the under-$10,000 range. HIger-cost
equipment should be necessary only for providing faster analyses, and more disk
and memory space.

PORTABLE -
Ths system is intended to be as portable as possible. At the November 1986
User Group nmeting, groups interested in GRASS resoundingly stated t
portability was the number one concern, ranking firmly above speed ard user-
friendliness. GRASS code must be compilable on a wide variety of hardware
corflguration.

2± Iogam in Stauxards
Programming is done within the following guidelines.
UNIX-ORIENTED -

Prniaily for the purpose of portability, GRASS will continm its developmert
under the UNIX operating system envirnmenl Pogrmamrs should
accomnodate both AT&T (System 5) and Berkeley (UCB 4.2) UNIX.

C LANGUAGE -

All code is written in the C programming language. Some Fortran 77 code has
occasionally been adopted into the system, but problems with portability,
efficiency, ard legibility have resulted in most Forta program being rewritten
inC.

FUNCTION LEVELS -
GRASS is designed within a functional level scheme. Each level is designed to
peiform particular functions Piogmrnig must be done within ths scheme.
Briefly, these levels ae as follows:
Full Interactive Level -

The new and occasional user works at this level. As of the first writing of
this document, only one prograr, the GRASS neu, exists at this level. It
is expected that specialized models, natural langage interfaces, graphic
popup menu front-ends, and fancier menus will be developed in the fitm.
Prograris developed at this level may be specifically desigrd for one
hardwam a rgenent

Comnx-nd Interactive Level -
This is the level most used. Using the user' s login shell, GRASS conmmls
are rmde available through modification of the PATH variable. Commnds

§2 DeWopowt Gtidies

-7- -7-

at this level ame highly imteraive. Help and on-line maml conym l am
available. Historically, these progms have inclued both user inteife and
program function capabilities. In tl futture more and more conmyxis at
this level will actually contain only user interface code, after the user is
thoroughly intertgad, a conmW line will be constrted which then
drives a program at the Conmwd Level:

Conmr"l Level -
Commands at this level form the G, D, P, etc. languages. They ae
iby being non-irterative. All infomiation necessary for the

execution of the command is provided either in the conmmnd line or in the
standard input stream (with no prompting). Built on top of these comwrds
may be conmmis at either of the above two levels. The advanced user
who warts greater flexibility in the analysis options may use these directly.
Furthex, the system analyst can use these comndis as a high-level GIS
progranming language in concert with other UNIX utlilities.

Programming Levl -
For even greater flexibility in the application of GRASS, a user has the
opporttiity to program GRASS functions in the C larguage. The main
restinctions here am that the programmr use the existing GRASS function
libraries to the greatest extent possible, and support both AT&T and
Berkeley UNIX.

Libray Level -
Work at the library level should be done with the cooperation ad approval
of one group. At this writing, tt group is the GRASS programming staff
at USACERL. Those functions most critical am those that interface the
data It is believed that thiese functions will be more pem ient thn the
databse. Though the database may change, these functions (and the
programrmng environment) will not

2.3 Nw nxtati
GRASS is a public domain system While such systems am usually inexpensive to new
sites wishing to adopt them, costs incurred in putting up the system, modifying the
code, and urderstariing the product can be very high To minimize these costs,
GRASS programs shall be thoroughly docunented at several levels.

Source code -
The source code for the functions should be liberally sprinkled with
descriptive variables, algorithm explanations, and function descriptions.

On-line help -
Brief help/infonnation will be available for the new user of a program.

On-line manual -
Manual entries in the style of the UNIX manual entries will also be available
to the user.

§2 IRXkpmnt Guidefines

-8- -8-

'lUDoal -

The tools that we more involved or difficult to use shUll be acompaied by
tutorial documerts which temch a user lw to use the code. Iese have
been written in mff/tnff usixg the r m mr pek .2 documets
have been kept sepante from the GRASS dirrctoies, though it is suggested
that they appew with appropfiabe "nukefiles" under $GISASFtuias 3

2 Ths package, invoked with the -ms option to riff, is documented in section 7 of the

UNIX mmisl.
3 $GISBASE is the directory where GRASS is installed. See §10.1 UiX E)vronnrnt

Ip.*5)1 for detail&

§2 Deweopment Gidelines

-9- -9-

Muli-LeW

As intmduced in the previous section, the overall GRASS design irorporates several
levels:

Full Interactive Level
Command Interactive Level
Conrnid Level
Programming Level
Library Level

Each level is associated with a differen type of user interface.

3.1. Genwi Usr
The general GRASS user is someone with a skill in some resource area (e.g., planinrg,
biology, agroomy, forestry, etc.) in which GRASS can be used to support spatial
analysis. Such users have no significant computer skills, nmy be afraid of keyboards,
know nothing of UNIX, and may struggle with the learning curve for GRASS. Such
users should select the Fail lita-ive Levd, where they are guided though tie
options in a friendly way. Pogramns written at this level nmy take many forms in the
future. The promise of a natural language capability may take form here. Curent
success with graphic men, systems in other applications will lead to pleasant graphic
screens with pull-down menus. Interfaces developed at this level (aid this level only)
may be hadware-specific. GRASS may take the form of a voice-activated system
with fancy Al capabilities on one nachie, while it is driven by a pull-down menu
system which is also tightly interfaced to an RDBMS on anothex. All versions,
however, will rely heavily on the consistent comrmands available at the ConM
LeveL As of this writing the nenu version of GRASS is the sole representative of
this interface. It is anticipated dt specialized analysis models using little or me user
input will be developed shortly, making use of UNIX shell scripts and Conum d
LeI d corird These will be written by system analysts and will requure no
knowledge of C programming. Until improvements in speed alxi cost of hardware arxi
flexibility of software me available, most general users of GRASS interface the system
through the Commund Irtaciw Lkvd level.

§3 Muti-Levi

-10- -10-

The Coammid Inu dw Level requires some knowledge of UNIX. The user stas
up the GRAS tools individually through the UNIX shdl (comnrrly Bourne or Cah).
Once a GRASS tool is started, the user enters a very friendly and interactive
envionnmn-. Users ae not prompted through graphics. Prmpting is restricted to
writtien interaction

3±GRASSi Ptro~anui
The GRASS prtgranimar, usirg an army of programnmig libraries, writes interactive
tools and command line tools. Pmgranrfs must keep in mnd that Full Lrte
Leve tools will be:

a Written for the occasional user,
b. Verbose in their prompting;
c. Have available lots of help; and
d. Give the user few options.

The programmer also writes Cmmnri dvd tools. These:

a Can rnm in batch (background) mode;
b. Take input from the cormand line, staird input, or a file;
c. Can run from a shell; and
d. Operate with a standard interface.

GRASS programmers should keep the following design goals in rnirn

a Consistent user interface;
b. Consistent database interface;
c. Functional consistency;
d. Installation consistency, and
e. Code portability.

As much as possible, interacting with the user (e.g., prompting for database files, or
full screen input prompting) nmst not vary in style from program to program All
GRASS programs must access the database in a standard rrmnsr. Functional
mecbanisrm (such as automatic windowing and nirsng of cell data) which are
independent of the particular algorithm must be incorporated in most GRASS
programs. Users nmst be able to install GRASS (data, prograns, and source code) in
a consistent manrer. Finally, GRASS program s nmst compile and run on most (if not
all) versions of UNIX. To achieve these goals, all programning must adhere to the
following guidelines:

Use C language -
This language is quite standard, ensuring very good portability. All of the
GRASS system libraries are written in C. With very few exceptions, the GRASS
program are also written in C. While UNIX machires offer a Fortran 77,

§3 Muli-Lev

-11- - 11-

experience has shown that F77 code is wt a portable or preictalie when moved
between mahins, Existing Forrm code has occmonally been adopted, but
progrmmers often prefer to rewrite the code in C.

Use Bone shell -
GRASS also makes use of the UNIX command interpater to implement various
function scripts, such as men front-es to a suite of rlated functions, or
application nros con-hiring GRASS commnd level tools and UNIX utilities.
Portability requires hut *ese scripts be written using the Boure Shell (/bin/ls)
aux no other. See §24 Wing GRASS Se/&ripts Lp.229].

Do not access data directly -
Tl1 GRASS databse is NOT ga to retain its existing organization and
stnxture. These have changed in the past however, the library function calls to
the data have remained more consistent over tunm. Plans do exist to significantly
change the data orga izaion. While the progrnmmer should be aware of the data
capabilities mid limitations, it should not be necessary to open and read data files
directly.

Use Gn -ke-
GRASS code is compiled using the Ginrk comnd, which is a front-end to the
UNIX make utility. Gm* combines some pre-defined variables with a file
called Gnrakefie in the source directory to create a proper makefile, and then
rns make to compile the programr Each source code directory must have a
Gnrzkefi, written by the programmer, containing iinructions for making the
binmary executables, mual ard help entries, and other items from tl directory' s
contents. The Gmakefie does not contain hard-coded references to programs,
libraries, or directories outside the current directory. Variables defiring these
itens are used instead Gnureffles rerri identical system to system tim
providing consistency for system installation and compilation See §11 Conrpii*g
GRASS Program Us*ig Gnma [p.55] for more details.

Use GRASS libraries -
Use of the existing GRASS pwgranmmx libraries speeds up programmig
efforts While user and data interface may make up a large part of a new
program, the programmer, using existing library function, can concentrate
primarily on the analysis algorithms of the new tool. Such programs will

ia consistency in data access and (more importantly) a degree of
consistency in the user interface. Each library has a definition in Gnrrke to aid in
linking the library duinng program compilation and loading. Thle libraries ae
listed briefly below.

GIS M .rary This library contains all of the routines necessary to read and
write the GRASS grid cell data layers ard their support files. A standardized
method to prompt the user for map rnames is available. The library also provides
som general purpose tools like meorry allocation, buffer zeroing, string
analysis, and data searching. Nmty-nine percent of all GRASS progran use
routines from this library. See §12 GISLibrvy Lp.63].

Segmnt Library. For progran fhlt need random access to an entire map layer,

§3 Mii-LeM

-12. -12-

the segment library provides an efficient paging scheme for grid cell maps
While virtual memory operang systems perform paging, this library provides
better control axi efficiency of paging. See §19 Segert Library [p. 179].

Dig lrary. While GRASS is prinmrily a grid cell analysis and display system,
it also has some vector capabilities. The principal uses of GRASS vector files are
to gerrate raster maps and to plot base maps on top of grid cell displays.
However, it is anticipated that additional analysis and data inport capabilities will
be added to the vector database. Many vector formats exist in the GIS world, but
GRASS has chosen to implement its own inernal vector format The format is a
variant of arc-node. The Dig Library provides access to the GRASS vector
database. See §13 Dig Libraiy [p. 123].

Vask Library. This screen-oriented user interface is widely used in the GRASS
piograns. It provides the prograrmmer with a simple means for displaying a
particular screen layout, with defined fields where the user is prompted for
answers. The user, using the carnage return (or lne-feed) anI ctrl-k keys, moves
from prompt to prompt, filling an answer into each field. When the ESC (escape)
key is struck the answers are provided to the program for analysis. Users have
found this interface pleasant and consistent See §20 Vask Library [p. 1871.

Graphs iaries. Graphics design has been a difficult issue in GRASS
development To ensure portability and competitive bidding, GRASS has been
designed with graphics flexibility in mind. This has rnart restricting graphics to
a mirinal set of graphics primitives, which generally do not make full use of the
graphics capabilities on all GRASS machines. Two libraries, dhIspIab aid
raser, ae involved in generating graphics. The r asib contains the
primitive graphics comnwxls used by GRASS, At run time, programs using this
library conmumicate (through fifo files) with another program which tranl ates the
graphics comnanls into graphics on the desired device. Each time the program
run, it may be talking to a different graphics device. Functions available in the
raslb include color setting and choosing, line drawing, mouse access (with
three types of cursor), raster drawing operations, and text drawing. Gererally,
this library is used in conjunction with the disylayi. The dsiqi b provides
graphics window management routines, coordinate conversion capabilities, and
grid cell data to raster graphic conversions. See §16 Display Graphics Library
[p. 1591 and §15 Raster Graphics Library 1p. 1471.

3.3. Drive Pkogramxr
GRASS prograns are written to be portable. To this end, a termndous a Iount of
modularity is designed into the system Throughout its development, GRASS
progrars have become increasingly ,pecialized. The original monolithic approach
continues to fragment into ever smaler pieces. Smaller pieces will allow future
developers and users ever more variability in the mixing of the tools.

§3 Mutj-L-M

-13- -13-

Ths modulmity has been manifested in the grapics design. A graphics-oriented tool
cormects, at run fime, to a graphics driver (or trnslatr) program, This separe
process underswnds the stemdad grahcs commands generated by the GRASS tool,
and nakes te appropriate graphcs calls to a particular grphics device. Each
graphics device available to a user is accompanied by a driver program, and each
program understands the gphcs calls of the application program Poring of GRASS
to a new system primaily means the developrmt of one new graplics driver. See
§22 Writg a Graphics Driver [p. 2M.

Those sites using the digitizing software of GRASS must also provide driver routines
for teir digitizer. These routines, unlike the above graphics calls, are compiled
direcly into the digitizing pmgrum See §21 Writing a Digitizer Driver [p. 195].

Similarly, GRASS sites may wish to write code to support different hardcopy color
pfinters (irlet, dwrnal, etc.). See §23 Writing a Paint Driver [p.2151.

3.4. GRASS Syste Deigne
To date, GRASS system design has been done at one location: USACERL One, and
only one site nmust be responsible for the design of the system at the dab&e and
furdameta library level. As the softwa is public domin, sites me free to do tleir
own work However, the strength of future GRASS releases depends on cooperdion
and swing of software. Therefore, it is strongly encotuged tht database degn
md database lilwry dq- xmit be fuy omdimned with GRASS staff at
UISACEL

§3 Muddi-I

-15- -15-

Cha 4

Databse Sn wure

This section presents the progranr interested in developing new applications with
an explanation of the snrture of the GRASS databases, a iplemented urxler the
UNIX operating systen

4..Progrmzmfm Inr
GRASS Pmigratmne are provided the GIS Iibrwy, which interfaces with tie GRASS
databse. It is described in detail in §12 GLS Librwy fp. 63]. Pgramtn should use
this library to the fullest extent possible. In fact, a pmgranmmer will find that use of
the library will make knowledge of the d stiise . st unnecessary.

GRASS prograrn me not written with pecific database rwas or directories hard-
coded into them The user is allowed to select the database or change it a will. The
databse name, its location within the UNIX file sstez, and other related date
information are stored as variables in a hidden file in tIe userfs home directory.1

GRASS progrmi access this infonmation via routines in the GIS Iibrzy. The
variables tl specify tIe databse are described briefly below;, see §10 Eniruniet
Variables rp. 511 for more detais about these and other en iornnert variables

Note These GRASS envimrment variables may also be cast into the UNIX
envimronent to make them accessible for shell scripts.2 In the discussion below, these
variables will appear preceded by a dollar sign ($). However, C programs should not
access the GRASS enviroment variables using the UNIX getenv() since they do not
ongimte in the UNIX envimnzman GIS Library routines, such as G-getenv(p. 67),

rmust be used hsteA

This file is grassr under GRASS 3.0.
2 uinggisenv; see §24 Wriin GRASSSel 1ipts p 21

§4 Datase Sbxxture

-16- -16-

42 Gisdbe
The database for GRASS makes use of the UNIX lherarcical directory strture. The
top level directory is known as GISDBASF. Users specify this directory when
entering GRASS. The full mie of this directory is containd in the UNIX
envimnment variable $GISDBASE, and is retnmad by library routine
G-gisdbase (p. 67).

4.3. Localaw
Subdirectories urler the GISDBASE ae known as locations. Locations are
independent databases. Users select a location when entering GRASS. All database
queries and modifications are made to ths location only. It is not possible to
sinultareously access multiple locations. The currently selected location is contaid
in the envimnment variable $LOCATIONNAME, and is returned by the library
routine G-locationp. 66).

GISDBASE

II I I
locaion 1 locatiorL2 locaior ...

Wben users select a location, they are actually selecting one of the location directories.

4.4. Mapets
Subdirectories uuder any location are known as napsets Users select a mapset when
entering GRASS. New mapsets can be created during the selection step. The selected
mapset is known as the current nxpset It is namred in the environment variable
$MAPSEI and returned by G..ripset(p. 66).

LOCATION

I I I I I
rnapsetl mrpt2 mapset3 ... ERMANEN

Modifications to the database can only be made in the current rapset Users may only
select (a n thus imodify) a napset that they own (i.e., have created). However, data in
all mapsets for a given location can be read by anyone (unless prevented by UNIX file
pemiissions). See §4.7 Dakase Access Rudes Lp. 20] for nmre details.

When users select a mapset, they are a.,tually selecting one of the mapset directories.

Not The fill UNIX directory mnne for the current mapset is
$GISDBASE/$LOCATIONNAMF$MAPSET and is returned by tle library routine

§4 Datahae SaL-tre

-17, -17-

Gjocationxzth(p. 67).

N e Fach location will have a special mpset called PERMANENT tit contains
non-volatile data for the location that all uers will me. Liwever, it also contain
some infomnaion about the location itself ht is not found in other npsets. See §4.6
Permnent Ivkpset Lp. 19].

4A Mape Stndr
Mapsets will contain files ar subdimctories, known as database elements. In the
diagram below, the eleents are indicated by a trilirg/.

MAFSETr

I I I I I I I
SEAR PAII-I WIND cats/ cell/ paint/ windows/

4.&1. Mapst Fls

The following is a list of some of the nupset files used by GRASS progrnm

files furction

GROUP cunent mgy group
SEARCEUPATH neet amh path
WIND cument window

This list may grow as GRASS grows. The GROUP file records the current; imagery
group selected by the user, and is used only by imagery functions. The other two files
are fundantal to all of GRASS. These are WIND and SEARCH-PATH

WIND is the cumnt window. This file is created when the maset is created ar is
modified by the uindow commn The contents of WIND ae retmued by
Ggetuindow(p. 77). See §9.1 Window [p. 471 for a discussion of the GRASS window.

SEARCHPATH contains the napset search path. This file is created and modified by
the nrpsets connm-m. It contains a list of mapsets to be used for finding datbae
files. When users enter a database file nane without specifying a specific mapset, the
mapsets in this search path we searched to find the file. Library routines that look for

t files use the mapset search path to find databse files. See §4.7.1 Mapset
Search Path (p.2 0 for more infonnraion about the nupset search pat

§4 Databa Swave

-18- -18-

45 Elenis
Sutdrectories under a mupset are the database elents. Elements are not created
when the napset is created, but are created dyrnaically when referenced by the
application pmgramr. 3 Mapeet data reside in files under these elements.

The dymic creation of datbase elements makes adding new datbe elements
simple since no reconfiguraion of existing mqpsels is requred. However, the
prograrner must be av.'are of the dataase elements already used by cunenly existing
progra n when creating new elemenits. Furemore, as development occurs outside
USACERL, guidelines must be developed for intrducing new element naes to avoid
using the sane element for two diverse purposes

Pkrgram mars using shell scripts must exercise care. It is not safe to asnne tiet a
mapset has all, or any, database elements (especially brand new rapets). Certain
GRASS comnuixds automatically create the elenent when it is referenced (e.g., Gask).
In general, however, eements are only created when a new file is to be created in the
element It is wise to explicitly check for the existence of database elements.

3 See §12.5.6 Cating and Opening a INw Database File L,. 74].

§4 Databawe Srtt

-19- -19-

Here is list of some of the elements used by GRASS progrm written at USACERL:

element function
cell data layers (cell files)
cellhd heder files for dalt lwm
cats cabgWy informion for data lepre
colr color tdble for data l ym
colr2 secondary color tales for data layers
celLnisc riscellaous cell support files
list histnry infotrartion for data laers

dig binary vector data
dig-asii ascii vector data
dig-at vector atibute support
dig-plus vector topology support
dig-cata vector category label support
reg digitizer point registraton

bdlg binary dIg files
dig ascii dig files

icons icon files used by paint
paint label an corinent files used by paint
group finagery group support data
sitelists ite lists for sites prograrn
windows pre-defined windows

COMBINE corrbine scripts
WE[GHPf ueight scripts

Note The rneset database elements can be siple directory narns (e.g., cats, colr)
or multi-level directory rnm s (e.g., paintabels, ouxyz/subgroup/abc). The library
routines that create the element will create tl top level directory and all subdirectories
as well.

4.6. IPmneimt Maped
Each location must have a PERMANENT napset This mapset not only contains
original map layers aM vector files that nst not be modified, but also two special
files that are only found in this npset These files are MYNAME and
DEFAULTWIND ad are never nodified by GRASS software.

MYNAME contains a single line descriptive nane for the location This nane is
remred by the routine GrWnanr(p. 66).

DEFAULTWIND contains the default window for the location This file is used to
initialize the WIND file for new nupsets. The contents of this file are retbnid by
G-get-defaultitindouwp. 78).

§4 Daaae Stre

-20- -20-

4.7. Datase Access Rule
GRASS database acess is controlled at the mupset level. There ae thee simple
rules:

1 A user can select a nmpset as the current mapet only if the user is the
owner of the maipset directory (see §4.4 Mapets [p. 161).

2 GRASS will create or modify files only in the curmnt mapset

3 FIles in all mapsets may be read by anyone (see §4:7.1 Mapset Search Path
(p.20]) unless prohibited by nrmal UNIX file permissions (see §4.72 UMX
F1e Pernissions (p.20]).

4.7.1. Mapst Serdi Pah

When users specify a new data file, there is m anbiguity about the mapset in which to
create the file: it is created in the current nmpset However, when users specify an
existing data file, the databe must be seacbed to find the file. For example, if the
user wants to display the "soils" cell file, the system looks in the various database
mpsets for a cell file named "soils." The user controls which mapsets ae searched by
setting the nupet search path, which is simply a list of mipsets. Each mapset is
examined in turn, and the first "soils" cell file found is the one that is displayed. Thus
users can access data from other users' mapsets through the choice of the search path

Users set the search path using the nrpsets or Gnrpsets commairns.

Note. If there were more than one "soils" file, the nmpset search mechanism returm
the first one found. If the user wishes to override the search path, then a specific
nupe t could be specified along with the file nare. For example, the user could
request that "soils in PERMANEtW' be displayed.

4.7.2. UNIX File Penisow

GRASS 3.0 creates all files with read/write permission enabled for everyone aind
directories with read/write/search permission enabled for everyone.4 This implies that
all users can real anyone else's data files. 5

4 This means -rw-rw-rw for files, and drwxrwxrwx for directories. It is accomplished by
setting the unask to 0 in all GRASS prgrams.
5 It also implies that all users can modify and remove anyone else's files. Although GRASS

code won't create or modify files in other users' rapsets, the datbase is wide open to stadard
UNIX xcess. A planned improvenent will be to set the urn to 022 so that the penrissons
ae -rw-r--r-- for files and drwxr-xr-x for directories. This will allow cormplete control of
access to the database.

§4 Databe Srvlare

.21- -21-

While thwe is no mechism cuimntly in GRASS to modify these access pwifiors
access to a mepset can be controlled by removing (or adding) the ead and search
pem ,ssons on the mapset diectory iAWef uang the UNIX chmnd conmn-i, without
adversely affeclirg GRASS pograns. For example, suppose that the full UNIX mie
of the mapset is grass/*d pea4A&yz. To set the permiions so that only the
mapset ownr can access the xyz mapset:

chrmd 0700 /grasVdatW/qeifihiyz

To reset the permissions so that everyone can read from the mapset:

chrd 0755 /grasdatEuh/yz

Wanin Since the PERMANENT rnpset contains global dataase information, all
users nmust have read and seach access to the PEPMANENT mapset directory.6 Do' t
renove the read and search pemissions from PERMANENT.

6 PMAN1IET has the DEFAULT-WIND and MYNAME files. This is a riterr design

flaw. Global datase informaion should be kept in the datbase, btt not in any of the
rrpeets. All rrpsets could then be teated equally.

§4 Dataibme hxtaue

-23- .23.

hal 5

Grid COU Maps

This chapter provides an explanution of how grid cell map layers ae accommdated in
the GRASS databae.1

5.1. What is a Grid Cel Map Leyw?
GRASS grid cell map layers can be conceptalized, by the GRASS progremwx as
well as the user, as representi information from a paper nmp, a satellite image, or a
nmp resulting from the interpretation of oter maps. Usually the irformtion in a map
layer is related by a common Iheme (e.g., soils, or lardcover, or roads, etc.).

GRASS grid cell data are stored as a mabi of grid cells. Each grid cell covers a
known, reclargular (generally square) patch of land. Each cell is assigned a single
integer attribute value called the category number. For example, assum the land
cover map covers a state park The grid cell in the upper-left comer of the map is
category 2 (which may represent prairie); the next grid cell to the east is category 3
(for forest); and so or

laid cover
2 3 3 3 4 4
2 2 3 3 4 4
2 2 3 3 4 4
1 2 3 3 3 4
1 1 1 3 3 4
1 3 3 1 4 4

1 = urbn 3 -forest
2 = prairie 4 = wedards

In addiion to the cell data file itself, them am a number of support files for the grid
cell map layer. The files which comprise a grid cell map layer all have the same
name, but each resides in a differert database directory under the mapset These

'1 Th descriptions given her. am for GRASS 3.0 data fonmts only. Previous fomts, still
spported by GRASS but no longer generated, are described in docurments from earlier releases
of GRASS.

§5 Grid Cell Map

-24- -24-

datbae directories me:

diictry furmton
cell grid cell data files
celhi grid cell header files
cats map lay- category informuion
coir mp layr color tables
coir2 altite map layer color tables
fist map la er lhstry inforrmafion
cell-nisc niavllumous map layer support infonxation

For example, a map layer nmed soils would lve the files cell/soils, cellhdsoils,
colr/soils, cats/soils, etc.

Note Datbase directories are also known as datktase elenents. See §4.4 MApsets
[p. 16] for a description of database elemnts.

Note. GIS Library routines which read and write cell files are described in §12.8 Cell
File Processing [p.801.

52. Grid Cell File Format
The programmaer should think of the grid cell data file as a two-dimensional matrix
(i.e., an array of rows and colums) of integer values. Each cell is stored in the file as
one to four 8-bit bytes of data An NxM cell file will contain N rows, each row
containing M columr (or bytes) of data

The physical structure of a cell file can take one of 3 formats: uncompressed,
compressed, or reclassed.

Unconmrrsed frmna. The uncompressed cell file actually looks like an NxM
matrix. Each byte (or set of bytes for multi-byte data) represents a cell of the map
layer. The physical size of the file, in bytes, will be rous*cols* bytes-per-cell.

Camp ed fornmt. The compressed fomiat uses a run-length encoding schema to
reduce the amount of disk required to store the cell file. Run-length encoding mans
that sequences of the sae data value are stored as a single byte repeat count followed
by a data value. If the data is single byte data, then each pair is 2 bytes. If the data is
2 byte data, then each pair is 3 bytes, etc. (see Muti-byte ida fornu t below). The
rows are encoded iriependently; the nutmber of bytes per cell is constant within a row,
but may vary from row to row. Also if rn-length encoding results in a larger row,
then the row is stored non-rn-length encoded. And finally, since each row may have
a different length, them is an index to cach row stored at the beginning of the file.

Reatm Lers. Reclass map layers do not contain any data, but ar references to
another map layer along with a schema to reclassify the categories of the referemed

§5 Grid Cell Map

map 1~er. 7Ib reclh cell file itself cortis no useful infonmtion Tbe reclas
information is stored in the cell header file.

Mti-byte dWa f6ut, When the data values in the cell file requie morne dn one
byte, they are stored in big-endian formst,2 which is to say s a base 256 rnuber with
the most sigrificant digit first

Exampes:

cell value base 256 sored as

868 = 3*256 + 100 3 100

137,304 = 2*256 + 24*256 + 88 i12]24 1 88

174,058,106 = 10*25& + 95*256e + 234*256 + 122 10 95 1 234 1 1221

Negative values are stored as a sigred quantity, i.e., with the higbest bit set to 1:3

cell value base 256 strd as

-1 = -(1) 1[0 10 0 1
-868 = -(3*256 + 100) 11 0 1 0 1 3 1 1001

-137,304 = 42*256 + 24*256 + 88) 1 0 21 241 88

-174,058,106 = -(10*2563 + 95*2,5e + 234*256 + 1M) 1110 1 95 234 1 122

All data values in a given row are stored using the same mrnter of bytes. This nears
that if the value 868, which uses 2 bytes, occurred in a mw that uses 3 bytes to
represent the largest data value, 868 would be stored as W

Also, one row may only require 2 bytes to store its data values, anther 4 bytes, and
yet another 1 byte. The rows are stored inxiependently arid would be stored uing 2
bytes, 4 bytes, and 1 byte respectively.

Fle portability. The multi-byte format described above is, except for negative values,

'2 The fact that th values are stored big-encrm should not be construed to mean that the
aclhne arlutectue nmt also be big-endi. 7ih programs which read cell files perform the

necessary arithrntic to constrt the value. They do NOT assurne anything about byte ordering
in the cpu.

: This neans that tie value is stored using as nmy bytes as required by an integer on de
rmchine (usually 4.

§5 Grid Cel Maps

-26- -26-

n in-indepei t If cell files ae to be moved to a machine with a different cpu,
or accessed using a heterogeneous network file systm (NS), the following guidelines
should be kept in nin. All 3.0 format cell files will tinfer between nhines, with
two restrictions (1) if the fie contains negative values, the size of an integer on the
two nmchines nmst be the same; and (2) the size of the file nmst be within the seek
capability of the Iseek() call.4 The pre-3.0 con pessed format is not stored in a
machine-independent format, and canrot generally be used for rter-n Ine trander.
It will transfer if the two machires have the sae integer and long integer format

5. Cdl Heade Fcrnmt
The cell file itself has no information about how many rows and coluns of data it
contains, or which part of the earth the layer covers. This information is in the cell
header file. The format of the cell header depends on whether the map layer is a
regular nmp layer or a reclass layer.

Noe GIS Library routines which read ard write the cell header file are described in
§12.9.1 Cell Header Fe Lp. 89].

5.3.1. RM ar Fonnut
The regular map layer ceil header contains the information describing the physical
characteristics of the cell file. The cell header has the following fields:

cell header
proj: 1
zone: 18
nortt 4660000.00
South 4570000.00
east: 770000.00
west: 710000.00
e-w resIl 50.00
n-s resoI: 100.00
for0mt: 0
conpressed: 0

proj, zone
The projection field specifies the type of cartographic projectior

0 is unreferenced x,y (imagery data)
1 is UrM
2 is State Plane5

Others may be added in the furre. The zone field is the projectioti zone. In tIe

4 This usually neans that the size of a long intger on the two machires is the same.
,5 S%~te Plmae is not yet fully suppoited in GRAU*S.

§5 Grid Ced Maps

-27- -27-

exa ple above, the projection is UIJI, the zone 18.
north, south, east, west

The geogr*ic boundaries of the cell file are described by the north, south,
east, and uest fields. Tbese values describe the lines which bound ile map at its
edges. These lines do NOT pass through fir ce ter of the cells at be edge of the
map, but along the edge of the map itself.

n-s resol, e-w resol
The fields e-w resol and n-s resol describe the size of each grid cell in the map
layer in physical xnasuremnt units (e.g., meters in a UTM database). They are
also called the grid cell resolution The n-s resol is the length of a grid cell from
north to south The e-w resol is the length of a grid cell from east to west As
can be noted, cells need not be square.

format
The fornat field describes bow many bytes per cell are required to represent the
grid cell data 0 rnean 1 byte, 1 means 2 bytes, etc.

compressed
'fI copressed field indicates whethr the grid cell file is in compressed format
or not: 1 nmas it is compressed and 0 means it isn't If this field is missing,
then the grid cell was produced prior to GRASS 3.0 and the compression
indication is encoded in the grid cell itself.

rows, cols
The rows ard columns of the grid matrix are not stored in the cell header. They
are computed from the geographic boundaries as follows:

rows = (north - suth) / (ns resl)
cols = (east - wesO / (ew ire,1)

5632. Redm Fornmt
If the cell file is a reclass cell file, the cell header does not have the infornation
mentioned above. It will have the rmwn of the referenced cell file and the category
reclassification table.

icla&s cell header
reclas
name: county
npet: PRMANENT
#5 flAst category in reclass
1 5 is reclassified to 1
0 6 is recassified to 0
1 7 is reclassified to 1
0 8 is reclassified to 0
2 9 is reclassified to 2

§5 Grid Cel Map

-28-2

In this case, the library routines will use this informtion to open the referenced cell
file in place of the reclss cell file and convert the cell file data accodiing to the
reclas scheme. Also, the referenced cell header is used as the cell header.

The # as the first character of the fourth line in the file indicates tit this is a 3.0
formt reclass cell header file.

5.4. Cell Categ File Fornt
The category file contains the largest category value which occurs in the data, a title
for the map layer, an automatic label generation capability, and a one line label for
each category.

cagory file
#5 categries
title for map 1ayer
<autonmtic label fornnt>
<wmatic label pararmters>
O:m data
1:description for caLegory 1
2:decrmipion for catgory 2
3:description for category 3
5:description for cahpgory 5

The # as the first character of the first line in the file indicates that this is a 3.0 formt
category file. The numier which follows it is the largest category value in the cell
file. The next line is a title for the map layer. Tle next two lines ae used for
automatic label generation They are used to create labels for categories which do not
have explicit labels. (The automatic label capability is not norially used in most map
layers, in which case the fort lire is a blank lim and the parameters line is:
0.0 0.0 0.0 0.0.) Category labels follow on the remaining lines. The format is
cat: label.

The first four lines of the file are required. The remaining lines reed only appear if
categories are to be labeled.

Note GIS Izbrary mutines which read and write the cell category file are described
in §12.9.2 Cell Category File [p. 911.

5.5. Cell Colur Table Fcrnmt
The color table contains one line of a color description for each category of data,
including the "no data' category. TIl colors are represented as levels of red, green,
and blue, where 0 represents tie lowest intensity and 255 represents the highest
intensity.

§5 Grid CeD Map

-29- -29-

color table file
4 first color
255 255 255 color for category 0

0 128 128 color for category 4
200 128 40 color for category 5
255 0 0 color for category 6

0 255 0 color for category 7
255 color for category 8

The # as tbe first character of the first lim in the file indicates that this is a 3.0 format
color file. The number which follows is the first data value which has a color (and
should be the lowest non-zero category value in the cell file). The next line is the
color for category 0. The remaining lines are the colors for the other categories. There
are 3 columns representing the red, green, and blue levels respectively. If all 3 values
are identical (i.e., a grey scale color), only the red value need be present

Note that the color file format is a modest attempt to allow color tables for files like
elevation, which have their lowest non-zero data value above 1 (often above 1000). In
these cases the color table doesn' t have to start with 1 and create unused colors.

NoWe GIS Library routines which read and write the cell color table are described in
§12.9.3 Cell Color Table L.94].

5.6. Cell try File
The history file contains historical informtion about the cell file: creator, date of
creation, comments, etc. In most applications, the programme need not be concerned
with the history file. It is generated automatically along with the cell file. The
GRASS layer.info program all3ws the user to view this information, and the support
program allows the user to update it

Note. GIS Library routines which read and write the cell history file are described in
§12.9.4 Cell Ilstory File [p.98].

5.7. Cell Range File
The range file contains the minimum and maximum values which occur in a cell file.
It is generated automatically for all new cell files. This file lives in the cellnsc
element as "cellrnisc/narnehage" where nane is the related cell file name.

It contains one line with four integer values. These represent the minimum and
maximurn negative values, and the minimum and mxm*ium positive values in the
cell file. If there are no regative values, then the first pair of numbers will be zero. If
there are no positive values, then the second pair of numbers will be zero.

§5 Grid Cell Maps

.30- -30-

Note GIS Iibrwy rutines which read and write the cell range file are descibed in

§12.9.5 Cell Range Fde (p.991.

§5 Grid Cel Ma j

-31- -31-

ChAer 6

Vector Maps

This chapter provides an explanation of how vector map layers are accommodated in
the GRASS database.

6.1. What is a Veckr Map Layer?
GRASS vector nmps are stored in an arc-node representation, consstig of non-
intersecting curves called arcs. An arc is stored as a series of xy coordinate paixs. 1

The two erA-points of an arc are called nodes. Two consecutive xy pairs define an arc
segment. 2

The arcs, either singly, or in combination with others, form higher level map features:
lines 3 (e.g., roads or streams) or areas 4 (e.g., farms or forest stands). Arcs that form
linear features are sometimes called lines, and arcs that outline ares are called area
edges or area lines. 5

Each map feature is assigned a single integer attribute value called tie category
nunter. For example, assutr a vector file contains land cover information for a state
park. One area may be assigned category 2 (perhaps representing prairie); another is
assigned category 3 (for forest); and so orL Another vector file which contins mad
inform ion may have some rads assigned category 1 (for paved rads); other roads
may be assigned category 2 (for gravel roads); etc. See §5.1 What is a Grid Cell Afp
Lqyr? [p. 231 for more information tirout GRASS category values.

I For this reason arcs are also called uectors.
2 Am segnrents am somties called line-segrmits.

3 A line here does not mean a sb-4ght line between two poins. It only nmes a linear
feature.

4 Areas are also called polygons. The GRASS vector fonrmi does not store the polygons
explicitly. ihey are conscwted by finding the paiticular arcs which forn the polygon
perimeter.

5 Obviously, them is some confuson in the GIS vector temrilogy. Ths is pertly due to
use of terms that have a conmn meaning as well as a nmtemaical meanirg. Vector
temniology is a subject for much debate in the GIS world.

§6 Vector Mars

-32- -32-

AREAS LINES

-ARC * NODE

A vector map layer is stored in a number of daa files. The files which comprise a
single vector map layer all have the same nane, but each resides in a different
database directory under the nxpset 6 These dataase directories are:

diectniar function
dig binary am file
dig-ascii asii atv file
dig.art vector category atbIbnue file
dig-cats vector category labels
dig-plus vector irdlex/pointer file
reg digitizer registration points

For example, a map layer named soils would have th files dig/sois, digjat/soils,
digplus/soils, dig-asciilsoils, dgcats/soils, reg/soils, etc.

Note Vector files are also called digit files, since they are created and modified by
the GRASS digitizing program digit.

Note. When refenirg to one of the vector map layer files, the directory name is used.
For example, the file under the dig directory is called the dig file.

Note. Library routines which read and write vector files ae described in §13 Dig
Librwy rp. 1231.

6.2. Asi Arc File Fornmt
The arc infom-tion is stored in a binriy format in the dig file. The format of this file
is reflected in the ascii representation stored in the digascii file. It is the ascii
version which is described here. 7

" Database directories am also called e/ements. See §4.4 Mapsets [p. x61 for a description of
database elemrents.

7 Tte pmgrarn inport.to.tect, a.b.vect, and b.a.irct convert between te ascii and binary
formts.

§6 Vector Map

.33- -33.

The dbgjzscii file has two sections: a header section, and a section contning the arcs.

&.2.1. Heade Sectkm
The trader contains historical iriforrntior4 a description of the map, and its location in
the universe. It consists of fourteen enhies. Each entry has a label idertifyig the
tyrpe of information, followed by the informstioni 1e forrrxt of the header is:

label formit description
ORGANIZATION text (max 29 characters)* orgmuzabon thut digitized te data
DIGiT DATE text (max: 19 chanaters)* date the data was digitized
DIGiT NAME text (rnx 19 charater) 4 person who, digitized the data
MAP NAME ~ text (nm 40 chwwteeY' tide of the oiginal soure map
MAP DAME text (max 10 charaters)* date of the original souce map
OTHER IN4FD: text (max 72 characters)* othe corr ' nt about the map
MAP SCALE. irteger scale of the original soure map
ZONK integer zone of the map (e.g., UI'M zone)
WESI' EDGE~ real number (doule) western edge of the entlie rnap t
EASTE DGK- real numbter (double) easern edge of the entire map t
SOUII{ EDGE real numier (double) southern edge of the entire raptf
NORTH EDGE zeal numbter (double) nrr edge of the enlire mapt
MAP THREWEL real number (double) digitizing rmslutiont
VERT (w date) marks the endi of the header section

Tbe labels start in coltum 1 andi continue through column 14. Labels are uppercase,
left-justilied, end with a colon, andi blank-padded to column 14. Ile infornation starts
in colurm 15. For examiple:

*Cunrenty, GRASS programa which mead the header inforniation arm not tolernt of text
fields which exceed these limits. If the hnrits are exceeded, the ascii to binary conversin will
probably fail.

t 71-ke edges of the map describe a window which should encomps all the data in the
vector file.

t Thex MAP THRFM is set by the digt program If the data comes from outside GRASS,
this field can be set to 0.0.

§6 Vector Mapis

.34- -34-

ORGANIZATION: US AmW CERL
DIGIT DATE 03/18/88
DIGIT NAME gra
MAP NAME Uiwa, E.
MAP DATE 1975
OTHER INFO: USGS sw/4 ubaa 15 quad. N4000-W8807.5/7.5
MAP SCAL. 24000
ZONE 16
WESr EDGE 383000.00
EAST EDGK- 404000.00
SOU1IH EfDGK 4429000.00
iTI EDGE 4456000.00

MAP THRESRI 0.00
VERTE

6.2.2 Arc Setion

The arc information appem in the second section of the dg.ascii file (following
V=R- which marks the end of the header section). Each arc corssts of a
description entry, followed by a series of coordinate pir The description specifies
both the type of arc (A for area edge, or L for line8), and the -number of points
(coordinate pairs) in the arc. Then the points follow.

For example:

A5
4434456.04 388142.16
4434446.65 388202.64
4434407.49 390524.38
4434107.06 390523.59
4433326.51 390526.48

L3
4434862.31 392043.33
4434872.42 394662.14
4434871.44 398094.75

A3
4454747.38 396579.60
4454722.69 393539.73
4454703.68 390786.90

In this example, the first arc is an area edge and has 5 points. The second arc is part
of a linear feature and has 3 poiuts. The third arc is another area edge and has 3
points.

The arc description has the letter A or L in the first colunm, followed by at least one

8 Other types may be added in the future.

§6 Veebor M

-35- -35-

space, and followed by the number of points.9

Point enres start with a space, and have at least one space between the two
coodinate values. 10

Note Th points are stored as yx (i.e., nrmt east), which is the reverse of the way
GRASS usually represents geographic coordimes

Note If the di> program hs deleted an am, te arc type will be represented using a
lower case letter (i.e., I instead ofL, a instead of A). Of course, this will only be
manifest when a binary dig file with a deleted arc is converted to the ascii dg-ascii
file.

L3.Vectr Catgry At-ibt File
As was mentiomd in §6.1 What is a Vector Map Layer? [p.31], exh feature in the
vector map layer has a category number assigned to it The category nunber for each
map feature is not stored in the dig file itself, but in the dig.arU file.

The dig__att file is an ascii file that has multiple entries, each with the same format.
Each entry refers to one map featre, and specifies the feature type (area or line), an
x,y marker, and a category number.

For example:

A 389668.32 4433900.99 7
L 395103.96 4434881.19 2

In this example, an area feature is assigned category 7, and a linear feawre is assigned
category 2.

Te x,y rmarker is used to find the map feature in the dig file. It must be located so
that it uniquely identifies its related map feature. In particular, an area marker must be
inside the area, and a line marker must be closer to its related lie than to any otwr
line (prefenably on the line) and not at a node.

If multiple entries identify the sare map feature, only one will be used (currently the
last one).

A map feature which has no entry in this file is considered to be unlabeled. This
means that during the vector to raster conversion (i.e., vect.to.cell), unlabeled aros will
convert as category zero, and unlabeled lines will be ignored.

9 This can be written with the Fortan format: A!,LX,4.
10 These can be written with the Fbrtran fornat: 2(IXF12.2).

§6 Vector Maps

.36- -36-

The format of tris file is ratber strict, and is described in the following table:

colunrs dat
1 Type of map feature (A or L)*

2-3 spaces
4-15 tirg (x) of the marker, Aght justified

16-17 spaces
18-29 Nortldfa (y) of the marker, right justified
30-31 spaces
32-39 Category nurmte, right justified
40-49 spaces

50 newlinet

This fonmnt is required by programs which rmodify the vector map (e.g., digit).
Pmgrans which only read the vector map accept a looser format: the feature type
must start in column 1; the items must be separated by at least one space; and the
entries must be less than 50 charxters. Also, the pmgram support.vect will convert
the looser format to this stricter fom&

Note. The marker is specified as x,y (i.e., east, north), which is tie way GRASS
usually represents geographic coordinates, but which is reverse of the way the arcs are
stored in the dig ascii file.

6.4. Vectcr Categoy Labd File
Each category in the vector map layer may have a one-line description These
category labels are stored in the digcats file. The fonmt of this file is identical to the
grid cell category file described in §5.4 Cell Category File Fornrlt [p.281, and the
reader is referred to that section for details.

Note The program support.vect allows the user to enter and modify the vector
category labels. The program vect.to.cell copies the digcats file to the cell category
file during tie vector to raster conversion.

Note. Library routines which read and write the dig_cats file are described under
§12.10.6 Vector Category File [p. 104'.

Other types, such as point, may be allowed in the futbe.
- UNIX bext files am terminated with a newline. lhrefore, each entry will appea as 49

characters. Tie entire file size should be a multiple of 50.

k6 Vector Maps

-37- .37,

&& V tr and FbbdP F%
The digp file contains information tit accelerates vector queries. It is created by
tie program buikdvect (which is run by dg when a vector file is created or modified,
and by support.vect at user request) from the data in the dig ad di _att files.

For this reson, and since the internml stnUxtw of tie dig-plus file is complex, the
fonmt of this file will mt be described.

6.6. D Regist Tn t Fle
The reg file is an ascii file used by the dgit program to store map registration control
points. Each map registration point has one entry with the easting and mrthing of the
nmp control point Fbr example:

383000.000000 4429000.000000
383000.0O000 4456O000.00000
4040.00OO0O 4456000.OO00
40400.oo00 4429.000000

Not& This file is used by digit only. It is not used by any other program in GRASS.

&7. Vector Topology Rules
TIhe following rules apply to the vector data

1 Arcs should rt cross each other (i.e., arcs which would cross must be split at
their intersection to form distinict arcs).

2 Arcs which share nodes must end at exactly the sane points (i.e., must be
snapped together). This is particularly important since nodes are not explicitly
represented in the amc file, but only implicitly as endpoints of arcs.

3 Comnun boundaries should appear only once '(i.e., should not be double
digitized).

4 Areas must be explictly closed. This nmans that it must be possible to complete
each area by following one or more area edges that are conrected by conion
nodes, and ut such trairgs result in closed areas.

5 It is reconmnded that area features and inear features be placed in separate
layers. However if area featues and linear features must appear in one layer,
common bourdaries should be digitized only once. An area edge that is also a
line (e.g., a rad which is also a field boundary), should be digitized as an area
edge (i.e., arc type A) to complete the area. The area feature should be labeled
as an area (i.e., feature type A in the dig-att file). Additionally, the conrnmn
boundary arc itself (i.e., the area edge which is also a line) should be labeled as a
line (i.e., feature type L in the dig_.at file) to identify it as a lire feature.

§6 Vector M

-38- -38-

6.8. Imqxrinv gVeckr F mInoGRA%
TIe following files are required or recomeded for importing vector files from other
systeM irt GRASS

di&gascii
The dig-scii file, described in §6.2 Ascii Arc FVe Format [p. 321, is required.

The ci-att file, described in §6.3 Vector Category Attribute Fle [p.35], is
essentially required. While the dig__ascii file alone is sufficient for simple vector
display, the d&gatt file is required for vector to cell conversion, as well as more
sophisticated vector query.

-igcats
The dig-cats file, described in §6.4 Vector Category Label File [p. 36], while not
required, allows map feature descriptions to be imported as well.

No T he digplus file, described in §6.5 Vector Index and Pointer Fle [p. 371, is
created by the GRASS prgran iryort.to.vect when converting the igascii file to
the binary di&g file.

§6 Vector Maps

-39- .39-

lAint Dt Site liA Fies

This section describes how point data is cuently accom mdated in the GRASS
database.

7.1. What is a e Lis
Point data is currtly stored in ascii files called site lists or site fies. These files are
used by the sites1 program, which was developed as an application within GRASS to
aid in archeological site predictive rmodeling. The site list files were designed for use
by this program, but have since become the principal data structure for point data 2

7.2. Ste Fie F(Jimt
Site files are ascii files stored under the sitelists datase element 3 The fomrt of a
site file is best explained by example:

nmw [sample

deeIsamnle site list
72822015182440 1site 27
72706015181710 1 site 28
7255001 5184000 1site 29
71980015187200 Isite 30

This line contains the name of the site list file, and is printed on all the reports
gererated by the sites program The word n ne must be all lower case letters.

It is pemissible for this line to be missing, sime the sites pmgran will add a
nanm record using the narne of the site list file itself.

The GRASS User's Rejerence Manual, 1988 contains a complete description of the sites

capability.
2 Othr GPASS programs which Ypad site lists include Gsites, dsites and paint.

: See ,4.52 E/errents ip osi for an expiaation of database elements.

§7 Pbrnt Data Site List e

.40. .40.

dege
This line contiml a description of the site list file. and is ptirted on all the
reports genemted by the sites progrnm The word desc must be all lower case
letter.

It is also pemrssible for this line to be missirg, in wich case the site list will
have no description

points
Th remaining lines ae point records. Each site is described by a point record.
Te format for this record is:

east Inorth I description

7T-e east. and north fields represent the geographic coordinates (easting and
northdr) of the site. The description field provides a one line text description
(label) of the site, and is optional.

comnents
Blank lines, and lines beginning with #, are accepted (and ignored).

Note. The clracter I is used to separate the fields in the records.

7.3. Progrann Itace to Site les
The prograinrrng interffce to the site list files is described in §12.11 Ste List
Processing [p. 1051 ard fr programmer should refer to tlt section for details.

§7 Pbirt Data Ste List F le

.41- -41-

bmwDa Gru

This chapter provides an explanation of how imagery data are accommodated in the
GRASS database.

8.1. Introdudim

Remotely sensed imaes are captured for computer processing by satellite-or da-orne
sensors by filtering radiation emanating from the image into various electromgnetic
wavelength baxis, converting the overall intensity for each band to digital format, and
storing the values on computer compatible media such as magnetic tape. Color and
color infra-red photographs are optically scanned to convert tde red, green, and blue
wavelength bands in the phtograph into a digital format as well.

The digitial format used by image data is basically a raster fomat GRASS imagery
program I which extract image data from magnetic tape extract the band data into cell
files in a GRASS database. Eawh ba"d becomes a separate cell file, with stardard
GRASS data layer support, and can be displayed a"d analyzed just like any other cell
file.

However, since the band files are extracted as individual cell files, it is necessary to
have a mechanism to maintain a relationship between band files from the sae image
as well as cell files derived from the band files. The GRASS group database structure
accomplishes this goal.

8.2. What is a Grm?
The group is a database mechanism which provides the following:

(1) A list of related cell files.
(2) A place to store contrml points for image registration and rectification,

aid

See §S.4 Irmgery Prograzns [p. 4'] for a list of the major GRASS imagery programs.

§8 Im Datm Groups

-42- -42-

(3) A place to store spectrl signainms, image statistics, etc., which are
needed by image classification proceedures.

&2.1. A Li of Cel Fies

The essential feature of a group is that it has a list of cell files that belong in the
group. These can be band data extracted from the same data tape, or cell files derived
from the original bar files.2 Therefore, the group provides a convenient "hmAxle' for
related image data; i.e., refenig to the group is equivalent to referring to all the bard
files at once.

&a Image e and Rafiai
The group also provides a database mechanism for image registration anx rectification
The band data extrated from tapes are usually unregistered data This means that the
GRASS software does not know the Earth coordinates for pixels in the image. The
only coordinates kmwn at the time of extraction are the coluns and the rows relative
to the way the data was stored onthe tape.

Image registration is the process of associating Earth coordinates with pixels on the
image. Inage rectification is the process of converting the image files to the new
coordinate system based on the registration.

Image registration is applied to a group, rather than to individual cell files. The user
displays any of the cell fies in a group on the graphics nritor and then marks control
points on the image, assigning Fth coordinates to each control point The control
points are stored in the group, allowing all related group files to be registered in one
step rather than irxividually.

Image rectification is applied to individual cell files, with the control points for the
group used to control the rectification The rectified cell files ae placed into another
database 3 known as the target database. Rectification can be applied to any or all of
the cell files associated with a group.

&2.3. Image Chsfiatim
Image classification methods process all or a subset of the band files as a unit. For
example, a clusterig algorithm generates spectral signatures which are then used by a
mimum likelihood classifier to produce a landcover map.

2 Derived cell files can be the results of image classfication procedues such as clustering

and n-mcnim likelilod, or band ratios fonmd usng Gnrepcalc, etc.
,3 Other a prjected database, such as TrM, or an unregistered datbs, if the image is

being registered to another image.

§8 Ime Daf Grxxqs

-43- -43.

Sometimes only a subset of the band files are used during image clasicaion The
sigmatures must be associated only with the cell files actually used in the amlysis.
T.rrefore, within a group, subgroups can be formed which list only the band files to
be "subgrouped" for classification purposes. The signatmn are stnred vi4!i the
subgroup. Multiple subgroups can be created withn a group, which aiiows different
classifications to be run with different combirneions of band files.

8.. Te Group Stru
Groups live in the GRASS database under the grotp dabase element 4 The structure
of a group can be seen in the following diagram A trailing inicates a directory.

gnup

I I I I
mssey8/ nhVjpun88/ nhi.oct8& ...

I I I I
REF I:I)INS TARGET subgrup/

In this example, the groups are nmind mss.may8O, nhapjw88, etc.5 Note dtk each
group is itself a directory. Each group contains some files (REF, POJN1S, and
TARGET), and a subdirectory (subgroup).

8.3.1. The PEF Fle
The REF file contains the list of cell files associated with the group. The format is
illustrated below:

trnarp8. gras
tinapr8.2 gras
trnapr88.3 grms
trn r88.4 gim
ftnapr68.5 gras
traspr.7 grms

Each line of this fle cont the rer and nmpset of a cell fie. In this case, there
are six cell files in the group: tmapr88.1, tm.apr882, tnapr88.3, tmapr88.4,
tmcqar88.5 and tmapr88.7 in impset grass. (Psurnably these are bands 1-5 and 7
from an April 88 Lardsat Ternmtic Mapper imae.)

4 See §4.52 ERerrents ip. IR8 for an explanation of datae elemnt&
5 11v gmup names am chosen by the user.

§8 [m~e Deft Orwxqn

.44- -44-

8.3.2. The POINTS ine
The POINTS file contains the image registration control points. This file is created and
modfied by the i.points program Its format is illustrated below.

irnage taget sab
east mith east mith (1=ok)

504.00 -2705.00 379145.30 4448504.56 1
458.00 -2713.00 378272.67 4448511.67 1

2285.80 -2296.00 415610.08 4450456.17 1
2397.00 -2564.00 417043.22 4444757.65 0
2158.00 -2944.00 411067.79 4438210.97 1
2148.00 -2913.00 410834.61 4438656.18 0
2288.80 -2336.20 415497.19 4449671.77 1

The lines which begin with # are comnent lines. The first two columns of data (under
image) ae the column (i.e., east) and row (i.e., north6) of the registration contml
points as marked on the image. The mxt two columns (under target) are the east and
north of the marked points in tie target database coordinate system (in this case, a
UTM database). The last colum (under status) indicates whetier or not the control
point is well placed.7 (If it is ok then it will be used as a valid registration point
Otherwise, it is simply retained in the file, but not used.)

&33. The TARGEt Fle
The TARGET file contdm the nme of the target database; i.e., the GRASS database
napset into which rectified cell files will be created. The TARGET file is written by
i.target and has two lines:

Wealfsh
grass

The first line is the GRASS location (in this case spearfish), and the second is a
mapset within the location (in this case grass).

&3.4. Subgroups
The subgroup directory under a group has the following structure:

6 Note that the mow values are regalive. This is because GRASS ewpires the mrthings tD

iicrease frm soth t north Negative valu accomplish this while preservirg the mw value.
Thiu irnge mw is the abalute value.

7 The user rnaes this decision in i.points.

§8 Ifra Dat Groups

-45- -45-

aivoup/

Ii I I
123/ 234/ 1367/

1357/

[[

I I
clustr.1 cluser.2

In this example, the subgroups ame nared 123, 234, 1357, etc.8 Withn each
subgroup, there is a REF file and a sig directory. The REF file would list a subset of
the cell files from the group. In this example, it could look like:

trnapre8.1 gras
tmnar88.3 givw
tnapr88.5 gras
trn.ax.7 gram

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1988
TM scene. The files cluster.1 and cluster.29 under the sig directory contain spectral
signature information (i.e., statistics) for this combination of bard files. Te files
were generated by different runs of the clustering prgram i.cluster.

8. Iniiga'y Prgas
Tle following is a list of some of the ingery prograns in GRAS, with a brief
description of what they do. Refer to the GRASS User's Reference Mmual for more
details.

The subgroup narmes me chosen by the user (hopefily reflecting the corterts of the

subgrnp).
9 Again, these file narres ae chosen by the user.

,8 hnwe Deta Groups

-46- -46,

image extraction
i.tapeans I Atmt Multi-Spectrml Scamner dat
i.tape.tm Landsat Theantic Mapper data
i.tape.otdr other formats, such as scanmed eial photography or

SOT saotellite data

imge rectification
i.points image registration (assign control points)
i.rectfy image rectification
i.target estalish target database for the group

image classification
i.cluster unsupervised clustering
i.maxlik maximum, likelilod classifier

other
i.group group nar~enent

8.5. R Itefim fir Groups
Tle prograrnming interface to the group data is described in §14 Imagery Iibrwy
p. 137] ardi the reader is referred to that chapter for details.

§8 ftnie Dat Grotps

-47- -47-

Window aM Mad*

GRASS users ae provided with two mechwiis for specifyirg tl area of the earth in
which to view and analyze their data These are knwn in GRASS as t" uin w and
the mask The user is allowed to set a uindow which defines a rectarguAr area of
coverage on the earth, arid optionally furtber limit the coverage by specifying a
"cookie-cutter" msk The window and mask ae stored in the datime urxler the
user's current mapset GRASS progamns automatically retrieve only data tiht fall
within the window. Fnthenwre, if tiere is a nsk, only data that fall within the
mask are retained Program determine the window and mask from the datebase rather
fl= asking the user.

9.1. Wimdow
The user's cunet database window1 is set by the user using the GRASS window,
Guindow, or duindow commrwds It is stored in the WIND file in the mapset This
file not only specifies the geographic bourdaries of the window rectargie, but also the
window resolution wich implicitly grids the window into rectanglar "cells" of equal
size.

Users expect map layers to be resampled into the currext window. This implies that
map layers nmst be externded with no data for portions of the window which do not
cover the map layer, and that the map layer data be resampled to the window
resolution if the cell file resolution is different Users also expect new Map layers to

be created with exactly the same boundaries and resolution as the current window.

1 The choice of the term "window" is unforbmate. It is used in other contexts as well (e.g.,

graphics windows) leading to much user confuion. A better term would have been
coverage." When confuson arises, rffer to this window as the "database window" or the

"nieet window", and to windows on the graphics screen as "grapics windows."

§9 Wixiow and Mask

-48- -48-

The WIND file contains the following fields:

WIND

MrI& 4660000.00
south 4570000.00
east: 770000.00
West: 710000.00
e-w nml: 50.00
n-s nmzl: 100.00
pmj: 1
zone: 18

north south, east, west
The geographic boundaries of the window are given by the north, south, east,
aid uest fields. Note: these values describe the lines which bound the window at
its edges. These lines do NOT pass through the center of the grid cells which
form the window edge, but rather along the edge of the window itself.

e-w resol, n-s resol
The fields e-w resol ard h-s resol (which stand for eastwest resolution and
mrth-south resolution respectively) describe the size of each grid cell in the
window in physical measurement units (e.g., meters in a UTM datae). The e-
w resol is the length of a grid cell from east to west The n-s resol is the length
of a grid cell from north to south Note that since the e-w resol may differ from
the n-s resol, window grid cells need not be square.

proj, zone
The projection field specifies the type of cartographic projection 0 is
unreferenced x,y (inmgery data), 1 is UM 2 is State Plane.2 Qthers may be
added in the future. The zone field is the projection zone. In the exarple above,
the projection is UIM, the zone 18.

Not The WIND file fon is very similar to the format for the cell header
files. See §5.3 Cell Hecder Fornrt [p. 261 for details about cell header files.

92. Mas
In addition to the window, the user nmy set a mask using the mask commn. The
mask is stored in the user s cunent mapset as a cell file with the rne MASK 3 The
mask acts like an opaque filter when reaing other cell files. No-data cells in the mask
(i.e., category zero) will cause corresponding cells in other cell files to be read as no
data (inespective of the actual value in the cell file).

2 Ste Flane is not yet fully supported in GASS.
3 The nask progran creates MASK as a ieclm file becaus the mclms ftintion is fast and

uses less disk space, bt± it does' tatually rmatter that MASK is a reclass file. Any cell fomiat
can be used. Ile only thng that really nmters is that the cell file be called MASK

§9 W indow and Mask

.49- -49-

The following diagram gives a visual idea of how the nmsk works:

input MASK ouipit

3 4 4 0 1 1 0 4 4

3 3 4 + 1 1 0 3 3 0
233 1 0 0 2 0 0

9.3. Variaons
If a GRASS program does not obey eitir dk uindow or ti mask the variation nmst
be noted in the user documentafion for the program, and te reason for the variation
given For example, the slope.aspect program which generates aspect and slope maps
from elevation data uses the resolution of the elevation data itself, and not the current
window resolution (which may differ). The program documentalion for slope.aspect
warns the user about tins: he current uindow and rask settings are ignored The
elevation file is read directly to insure that data is not lost or inappropriately
resanpd.

§9 Window and Mo&

-51- -51-

Cbu!*a 10

Envfir mit Vwar m

GRASS progrmi ame written to be independent of which databse the uer is using,
where the datbaie resides on the disk, or where the programs themselves reside.
When programs need this informtion, they get some of it from UNIX uvironrnent
variables, and the rest from GRASS envmnnet variales.

10.1. UNIX Ehvironnt
The GRASS startup conmmns GRAS3 and grass3 set the followirg UNIX
envioment variables:1

GISBASE tkp level directory for the GRASS pngnu
GISL)C proces id of the sit-up ll script
GISRC name of the GRASS environment file

GISBAE is the top level directory for the GRASS programs. For example, if
GRASS were installed under /grass, then GISBASE would be set to /grass. The
comnnar directory would be /grass/bin, the comntmi support directory would be
/grassetc, the soune code directory would be /grasssrc, the on-line ranuml would
live in /grasshrmn, the nreni files would be found in /grass/menu, etc.

GISBAS, while set in the UNIX envimrnent, is given special hhxdlirg in GRASS
code. This variable must be accessed using th GIS Library routine Ggisbase(p. 66).

GISLOCK is tsed for various locidng mechanisms in GRASS. It is set to the
process id of the stmt-up shlll so tht locking necuniam can detect orphaned locks
(e.g., locks that were left behind during a system crash).

GISLOCK may be accessed using the UNIX getenv() routine.

GISRC is set to the nmme of te GRASS envirennet file where all otber GRASS

'Any interface to GRASS nms set these variables.

§10 Em~irnmat Vaiabks

-52- -52.

variables are stored. Under GRASS 3.0 this file is 4p c 2 in the user's home
directory.

10.2. GRASS Envhfrnnit
All GRASS users will have a file in their home direcwry named .rsw 3 which is
used to store the variables that comprise the envimrnmnt of all GRASS progrms.
This fie will always include the following variables flit define the database in which
the user is workirg.

GLSDBASE top level database directury
IDCAIIONJNAME location directory
MAPSET nspeet directory

The user sets these variables during GRASS startup. While the value of GISDBASE
will be relatively constant, the others may change each time the user rns GRASS.
GRASS progrars access these variables using the Ggisdbas(p. 67), G.jocation(p. 66),
ard G..mqet(p. 66) rutines in the GIS Libray. See §4.2 Gisdbase (p.16 for details
about GISDBASE, §4.3 Locations (p. 161 for details about database locations, and §4.4
Mapsets [p. 161 for details about mapsets.

Other variables may appear in this file. Some of these are:

MONiT R curently selected graphics rnritvr
PAINTER currently selected pant output device
DIGITIZER cumnently selected digitizer

These variables are accessed and set from C pmgramn using the general purpose
routines Ggetenv(p. 67) and Gsetenvp. 67). Tie GRASS program gisenv pmvides a
comrnd level interface to these variables.

10.3. Difference Be GRASS and UNIX Environimnns
The GRASS environ ient is similar to the UNIX environment in that program can
access information stored in "environment" variables. However, since tle GRASS
envirorment variables are stored in a disk file, it offers two capabilities not available

2 Urder previous versons of GRASS this FIe was named .gism
3 GRASS program do not have this file Yne btilt into them They look it up from the

UNIX envirumrnt variable GISRC. Nte le sinilaity in naming convention to the .cshi
'W I .exrc files.

§ 1t) Eivrirommet Variables

-53- -53-

with UNIX envirrmvit vaiu1es. Fli vaiables may be set by one pwgrmn for
later use by other progmnm. For exanple, the GRASS starup sets these vmia1es for
use by all other GRASS aplication progim Second, once the vadiales remin in
the fe uiless explicitly removed, they am available from sesmon to sessior

§ 10 Eknirormmt Variales

Iffl g GRASS Us g Gmal

GRASS prgrams are compiled using the Gruke front-end to the UNIX rake
commarxL Gnxke reads a file namd Gnukefife to construct a rmeffl and then run
frye. (It is assumed tht the prgrammer is familiar with nuke and its accompanying
Makefles.)

11.1. Gnke
The GRASS Gmake utility allows make compilation rules to be developed without
having to specify nchine- and installation-depenent ihontion. Grz k combines
pre-defined variables that specify the machir- and installation-dependent information
with the file Gnukefile, which the prgranmer must write, to create a nukeile. (Ile
pre-defmed variables and the contution of a Gnxrkefie are described below.)

Gnvke is invoked as follows:1

Gmake [sauze directory] [taiget]

If run without arments, Gmake will run in the current directory, build a nrakefi/e
from the Gnvrkefik found there, and then run rak. If run with a source directory
argunmnt, Gnrrke will change into this directory and then proceed as above. If run
with a target argument as well, then nake will be run on the specified target

11.2. Gmake Variabks
The pre-defimed Grake variables which the GRASS programmer must use when
writing a Gnrrkefile specify libraries, source and binary directories, compiler and
loader fla etc. Ile most conrwnly used variables will be defined here. Examples
of how to use them follow in §11.3 Constncting a Grikefile [p.58. 7he full set of
variables can be seen in Appercx A Annotated Gnrike Pre-defined Variabies p. 2331.

1 Grrake lives under $GISAS/m/zIMD. You nust either set your $PATH to include ths
directory, or run $GI BAS 1DNMmke. $GISBASE is the diectDry where GRASS is
installed. See §10.1 L X&uironnwnt Lp. 51] for details.

§ ll C n~U GRASS Pftgrams UqhV Gnuke

-56- -56-

Vaiables mariked with (-) ae t comninly used.

GRASS Dhetmrks The following vaiables tell Grmke where souce code and
proam directories me:

GIS (-) This is t UNIX directory where GRASS is installed. It coresponds to
the GRASS ermirnt variable GISBASE (see §10 Enivnrnent
Variables (p.511). This variable is generally not used explicitly in a
Grrvlfll. It is mostiy used by Gnrke to construct oter variables.

SRC () This is the directory where GRASS source code lives.

BIN Ths is the directory where user-accessible GRASS programs live.

ETC This is the directory where support files and pmgrarn live. These support
files a"d prograns are used by the $(BIN) prograns, and are not known
to, or run by the user.

UBDIR () This is the directory where most of the GRASS libraries and irlude
header files live. For example, "gish' can be found here. Grake
automnically specifies this directory to the C compiler as a place to find
include files.

GRASS LAx-aie& The following variables name the various GRASS libraries:

GISLIB This nams the GIS Library, which is the principal GRASS library. See
§12 GIS Library (p. 63] for details about this library, and §12.18 Loading
the GIS Librwy (p.22l for a sample Gnukefile which loads this library.

VASKUIB This names the Vask Library, which does full screen user input
VASK This specifies the Vask Library plus the UNIX curses and termcap

libraries needed to use the Vask Library routines. See §20 Vask Library
[p.187] for details about this library, and §20.4 Loading the Vask Library
(p. 1911 for a sample Grzkefi/e which loads this library.

SEGMENTLIB
Ths r~nas the Segmnt Library, which manages large matrix data See
§19 Segrent Library [p. 179] for details about this library, and §20.4
Loading the Vask Library [p. 1911 for a sample Gnvkefile which loads this
library.

RASTERLIB
This nes the Raster Graphics Library, which communicates with
GRASS graphics drivers. See §15 Poster Graphics Library [p. 1471 for

§ 11 Compiling GRASS Pmgrmm UW Gnake

-57, -57-

details about this library, and §15.9 Loading the Paster Graphics Library
[p. 1571 for a sample Gmakef which loads this library.

DISPLAYLB
This namnes the Display Graphics Library, which provides a higher level
graphics interface to $(RASIEL). See §16 Display Graphics Library
(p. 159] for details about this library, and §16.9 Loading the Display
Graphics Library [p. 1671 for a samrple Gnrmefile which loads this library.

UNIX Librkes. The following variables name some useful UNIX system libraries:

MATHLEB This names tie math library. It should be used instead of the -lim loader
option

CURS This ames both the curses and termcap libraries. It should be used instead
of the -1curses and -Itermcap loader options. Don't use $(CURSES) if you
use $(VASK).

TERMLIB This amies the tenmcap library. It should be used instead of the -Itemacap
or -Itemnlib loader options. Don't use $(TERMLLB) if you use $(VASK)
or $(CURSES).

Conviler and loade variabe The following variables ae related to compiling and
loading C prgramns.

AR This variable specifies the rule that nxist be used to build object libraries.

CFLAGS (-)
This variable specifies all the C compiler options. It should never be
necessary to use this varable. Grmke automatically supplies this variable
to the C compiler.

EXTRACFLAGS
This variable can be used to add additional options to $(CFLAGS). It has
no pre-defned values. It is usiay used to specify additional -I include
directories, or -D pre-pmcessor defines.

GMLAKE This is the full ame of the Gnimke conmmin. It can be used to drive
compilation in stbdimctories.

LDFLAGS This specifies tie loader flags. The programmer nmust use this variable
when loading GRASS programs since theme is no way to automatically
supply these flags to te loader.

§ 11 CmH GRAS lPrgmw UWW Gm e

-58- -58-

MAKEALL
This defiles a conmnd which rns GnMe in all sbdiictories tI-t have
a Grnmfe in them

11.3. Canfding aGn e
A Gnxdafile is constructed like a nrzkef. The complete syntax for a mvflle is
discussed in the UNIX documentation for make and wornt be repeated here. The
essential idea is that a target (e.g., a GRASS pgran) is to be built from a list of
dependencies (e.g., object files, libraries, etc.). The relationship between the target its
deperdencies, and the rules for constructing the target is expressed according to the
following syntax:

bfret: depedencies
actions
nrxe actions

If the target does't exist, or if any of the dependencies have a newer date than the
target (i.e., have changed), the actions will be executed to build the target

The actions must be indented using a TAB. Make is picky about this. It doesn! t like
spaces in place of the TAB.

11.3.1. Budkdh program fran source (.) fiks
To build a program from C source code files, it is only necessary to specify the
compiled object (.o) files as deperdencies for the target program, and then specify an
action to load the object files together to form the program The make utility builds .o
files from .c files without being instruted to do so.

For example, the following Gnrikefile builds the program xyz ai puts it in tie

GRASS program directory.

OBJ= nrLo subl.o sub2.o sub3.o

$(BIN)/xyz: $(OBJ $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(OJ $(GISIB)

$(GISLlB): # in case libry changes

The target xyz depends on the object files listed in the variable $(OBJ) and tie
$(GISLIB) library. TIhe action runs the C compiler to load xyz from the $(OBJ) files
and $(GISIB).

$@ is a rdrze shordr i which stards for tie target in this case xyz. Its use should be

§ 11 Conoling GRASS Pmgrwm 1U4 Gnke

-59- .-

encouraged, since the target rne can be charged without having to edit the action as
well.

$(CC) is tie C compiler. It is used as the interface to the loader. It should be specified
as $(CC) instead of cc. Make defines $(CC) as cc, but using $'CC) will allow other
C-like compilers to be used instead.2

$(BIN) is a Gn-lke variable which names tie UNJX directory where GRASS
comnands live. Specifying the target as $(BIN)Ixyz will cause Grmke to build xyz
directly into tie $(BIN) directory.

$(LDFLAGS) specify loader flags which must be passed to ti loader in this manner.

$(GIsLB) is the GIS Ibhrary. $(GISIJB) is specified on the action line so that it is
included duning ti load step. It is also specified in the dependency list so tha=
charges in $(GISLIB) will also cause the program to be reloaded.

Note dit n rules were given for building the .o files from their related .c files. In
fact. the GRASS programnmer shoiild ahnost never have to give an explicit rule for
compiling .c files. It is sufficient to list all the .o files as dependercies of tie target
The .c files will be autonraically compiled to build up-to-date .o files before the .o
files are loaded to build the target pmgra-r

Also rote that since $(GISLIB) is specified as a dependency it must also be specified
as a target Make must be told bow to build all dependencies as well as targets. In this
case a dummy rule is given to satisfy nuke.

11.3.2. Include files

Often C code uses the #include directive to include header files in the source during
compilation Header files that are included into C source code should be specified as
dependencies as well. It is the .o files which depend on therm

OBJ = main.o subl.o sub2.o

$(BN/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDF AGS) -o $@ $OW $(GISLIB)

$(OBJ: rmyheader.h

$(GISLEB1: # in case libruy changes

2 GRASS Grnhefiles presently use cc instead of $(CC. This will be modified in ftwe

wlewes.

§ 1I Conqplrig GRASS Irgrnm' UsIig Gneke

-60- -60-

In this case, it is assumed ti "nrheader.h' lives in the cunmt directory and is
included in each source code file. If "mybeader.h" changes, then all .c files will be
compiled even tkough they may not have changed. And then the target program xyz
will be reloaded.

If the header file "myheader.h' is in a differern ,Arectoi-y, then a different formulation
can be use&

EXTRA-CFIAGS = -I..
OBJ = nrrno subl.o sub2.o

$(BIN/xyz: $(OBJ) $(GISIB)
$(C) $(LDlAGS) -o $@ $OBJ) $(GISLLB)

$(GLSLJB): # in case libry changes

$(EXTRACFLAGS) will add the flag -L. to the rules that compile .c files into .o files.
This flag indicates that #include files (i.e., "myheader.h") can also be found in the
parent (..) directory.

Note that this example does not specify that "myhealer.h" is a depelency. If
"myheader.h" were to change, this would not cause recompilation here. The following
rule could be added:

$(OB&: ../myleader.h

11.3.3. Builing object lbaries

Sometimes it is desirable to build libraries of submutines which can be used in many
pmgram. Gmrrke requires that these libraies be built using the $(AR) nile as follows:

OBJ = subl.o sub2.o sub3.o

lib.a $OBJ)
VCAR)

All the object files listed in $(OD will be compiled and archived into the target
library lhb.a. The $(OB.J) variable must be used. The $(AR) assumes that all object
files are lised in $(OBJ).

11 Cxzi GRAS Pr-am ULM Gmail

-61- -61.

11.3.4. Building mm'e tian om targe
Many target: dependency lines many be giver However, it is the first one in the
Gnakefi/e which is built by Gniake. If there are more targets to be built the first
target must explicity or implicitly cause Gmake to build the others.

The following builds two prograns, ab& and xyz directly into the $(BIN) directory.

ABC = abc.o subl.o sub2.o
XYZ = xyz.o sbl.o sub3.o

all: $(BIN)/abc $(BIN)/xyz

$(BIN)/abc: $(ABC) $(G8LIB)
$(CC) $(LDILAGS) -o $@ $(ABC) $(GISLJB)

$(BIN)/xyz: $(XYZ) $(GISLIB)
$(CC) $(LDFLAGS) -o $@ $(ABC) $(GISLIB)

$(GISLIB): # in case libry changes

If it is desired to run the compilation in various subdirectories, a Grrakefie could be
constnted which simply runs Gnrike in each subdirectory. For example:

all:
$(GMAKE) subdir.1
$(GMAKE) subdir.2
$(GMAKE) subdir.3

Note that due to the way the $(AR) nde is desiged, it is not possible to construct
nre than one library in a single source code directory. Each libray must have its
own directory ar related Gnrikefie.

11.3.5. Dodt bypa .o files
If a program has only one c source file. it is tempting to compile the program directly
fom the .c file without creating the o file. Please don't do this. Them have been
problems on sone systemrs specifying both compiler and loader flags at the same time.
The .o tiles must be built first Once all the .o files are built, they are loaded with any
rnuqtfiru libraries to build the pmgrm.

I II COwpiling GI AR PUogramns I&W Gmake

.63- -63-

Ch e- 12

GIS Lrary

12.1. Tnhmducdon
The GIS Librwy is the primary programming library provided with the GRASS
system. Prograrrs nus. etlse liary to a ess database. It contains the
routines which locate, create, open, rename, ard remove GRASS database files. It
contains the routines which read and write cell files. It contains routines which
u-terface the user to the databae, including prompting the user, listing available files,
validating user access, etc. It also bas some general purpose routines (string
manipulation, user informaion, etc.) which are not tied directly to database processing.

It is assumed that the reader has read §4 Database %hructure [p. 15] for a general
description of GRASS databases, §5 Grid Cell Maps Lp.23] for details about map layers
in GRASS, and §9 Window and Mask p. 471 which discusses windowing and masking.

The mutines in the GIS Library ae presented in functional groupings, rather than in
alphabetical order. Tlh order of presenlation will, it is hoped, provide a better
understanxling of how the library is to be used, as well as show the inter-relationships
anm ng the various routines. Note that a good way to understand how to use these
routinrs is to look at the source code for GRASS programs which use therm

Most routines in this library require that the header file "gis.h' be included in any code
using these routines. 1 Therefore, programrmers should always include this file when
writing code using routines from this library:

#include "gis.h"

Noe. All routines and global variables in this library, documented or tuidocumnented,
start with the prefix G_. To avoid name conflicts, pmgrarnners should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix C. Index to GIS Library [p.2391.

T1 GRASS compilation process, described in §11 Corrpilig GRASS Prognns Using

Cjrnkerd, .l5, autnatically tells the C compiler how to find this aryl other GRASS fader files.

§ 12 GIS Library

.64- -64-

It is nkaimiy tid the system be initialized before any other library routines m
calleL

G.gisinit (progranm-.rm) inaize gis /ibry
char *pogram-name;

This routine reads the useas GRASS enviroennt file into menmory and nkes
sure that the user has selected a valid dataase and mapset It also initializes
hidden variables used by other routines. If the user's database infom-iion is
invalid, an error rnessae is printed and the program exits. The progrannmwe
is stored for later recall by G.progrnnfrzn(p. 118). It is reconuixied that
argv[0] be used for the rograamen :

rruin(wgc, argv) char *argv[];

G-gisirt(arg%[OI);
}

123. DMesic M ges
The following routines are used by other routines in the library to report warning and
error nessages. They may also be used directly by GRASS programs.

G.fatalmar (messae) print error mnessg and exit

G-warnig (message) print uwning essage and contne

char *nessage;

These mutins report errors to the user. The normal nde is to write the
nssage to the screen (on thie standard enor output) and wait a few seconds.
G-wanirg() will return and G-fatiJ-enor() will exit

If the standard error output is not a Uy device, then the message is mailed to the
user

If the file GISERRORLOG exists (with write pemission), in either the user' s
home directory or in the $GISBASE2 directory, tie messages will also be logged
to this file.

While most applications will find the nrmal error reportirg quite adequate, there will
be tines when different hardling is j eded. For example, graphics programn nmay

2 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX &xirornnnt
fp..wi for details.

§12 GIS Library

65 - -65-

want the messages displayed graphically instead of on the standard errr output If the
progrwmr wants tD handle the enor messages differety, the following routines can
be used to modify the error handbr.

G-sertriroufine (handler) chnge error handing
int (*andler)();

This routine provides a different errr handler for G.fatal-error() and
G_warning(). The hanle routine must be defined as follows:

hmdler (nessage, fatal)
char *message;
int fatal;

where nxmg is the message to be handled and fatal inlicates the type of error:
1 (fatal error) or 0 (warning).

Note The handler only provides a way to bend the message somewbhere other
than to the error output If the error is fatal, tle program will exit after the
handler returns.

G-unsdterror-roune () reset nonrd error hancding

This routine resets the error handling for G-fata-errorp. 64) and Gjurng(p. 64)
back to the default action.

G._sloep_ .-er (flag) sleep on e/7or0?

int flag;

If flag is 0, then no pause will occur after printing an error or warning message.
Otherwise the pause will occur.

Gs__4vren in (flag) sqppress t ,avngs?

int flag;

If flag is 0, then G-warning(p. 64) will no longer print waning messages. If flag
is 1, then Gwamig() will print warning messages.

Note. This mufire has no effect on Gfatal-error(p. 64).

12 GIS Librar

-66- -66.

124. Envirvumn and Databae Infrn son
The following routinies return infomation about the cumt datbe selected by the
user. Some of this information is retrieved from the user' s GRASS enviroment file.
Some of it comes from ifies in the daese itself. See §10 Emirowment Variables
(p. 511 for a discussion of the GRASS environment

The following four routines can be used freely by the progranzrer:

char *
GJoatim () curent location nane

Return the name of the current database location This routine should be used
by programs that need to display te current location to the user. See §4.3
Locations Lp. 16] for an explanation of locations.

char *
Gm d () current rzpset nanw

Returns the name of the current mapset in the current location. This routine is
often used when accessing files in the current mapset See §4.4 igsets (p. 16
for an explanation of nmpset

char *
Gjmyuie () location tide

Returai a one line tile for the database location. This title is read from the file
MYNAME in the PERMANENT npset See also §4.6 Permment Mapset [p. 19]
for a discussion of the PERMANENT mapset

char *
G-gabase () top level program drectory

Returns the full path mine of the top level directory for GRASS programs. This
directory will have subdirectories which will contain prograrm aid files required
for the runming of the system Some of these directories are:

bin conrds nm by the user
etc prgram and data files used by GRASS comrmnds
txt help files
neu files used by the goss3 menu intefae

The use of G-gisbase() to find these subdirectories enables GRASS programs to
be written independently of where the GRASS system is actually insalled on the
machine. For example, to run the program sroff in the GRASS etc directory:

char conrr3rd[200];

sprintf (comrnd, "%s/etc/smff', G-gidase));
system (conmrd);

§12 GIS Libra

-67- -67-

The following two routines retn full path UNIX directory names. They should be
used only in special cases. They are used by other outiines in the library to build full
UNIX file rnmes for database files. Tie progranmwr emuld wt use the net two
routines to bypm the nonr l datbhse ac s rmth

char *
G-(gidbase top level database directory

Returns the full UNIX path name of the directiry which holds the database
locations. See §4.2 Gisdbase (p. 16] for a full explanation of this directory.

char *
GJocai(ELpath () c'rent locaaon drectory

Returns the full UNIX path name of the current database location For example,
if the user is working in location spearfish in the Aisr/grass3/data database
directoiry, this routine will return a string which looks like
/sr/grass3/dataspearfisIL

These next routines provide the low-level magement of the infomfion in the use? s
GRASS environment file. They should not be used in plme - the hghr level
ifterfat nxithws deld a

char *
G-gte (nme) query GRASS endirorwnerzt tiab/e

char *
G-getw (rnm) query GRAS enironnent vriable

char *nanie;

Tbe-e routines look up the variable name in the GRASS environment and return
its value (which is a character string).

If name is not set, Ggetenv() issues an error message and calls exit().
G- setenv() just returns the NULL pointer.

G-setem (name, value) set GRASS entironrrent variable

G__sete v (rxme, value) set GRASS enzironrnt viable

clar *name;
char *value;

These routines set the the GRASS environment vaiable rmne to vaue. If value
is NULL, the nae is unset

Both routines set the value in program menmry. but only Gsetenv() writes the
new value to the tser? s GRASS environment file.

§ 12 GIS Librar

-68- .68-

12A 5. Fxiamea Datbae Aecem Routim
The routims described in this section provide the low-level interface to the GRASS
dalbase. They search the database for files, prompt the user for file nams, open files
for reading or writing, etc. The progmnnmr should never bypass ts level of database
interface. These roudes must be used to acce the GRASS d ae u1m t
ame eur Ngbw lee lrwy routhm wii4ch par the s n mL For
example, there are routines to process cell files which should be used instead (see
§12.8 Cell Fe Processing p.80]).

In the descriptions below, the term database eemnt is used. Elements axe
subdirectories within a mapset ad are asociated with a specific GRASS data type.
For example, cell files live in the "cell" elenent See §4.5.2 hMenwnts ip. 181 for more
details.

12.5.1. Prm4Xhn fr DoItase Fles
The following mutines interatively prompt the user for a file m n from a specific
database dkme (See §4.5.2 Elements (p.18] for an explamtion of elements.) In
each, the proix sting will be printed as the first line of the full prompt which asks
the user to enter a file rime. If prm* is the empty string "" then an appropriate
prompt will be substituted. Tle rnme that the user enters is copied into the nme
buffer.3 The short (one or two word) label describing the elenmt is used as pat of a
title when listing the files in

The user is required to enter a valid file nme, or else hit fe RTURN key to cancel
the request. If the user enters an invalid response, a message is printed, and the user
is prompted again If the user camels th request, the NULL pointer is retone&
Otherwise tie mapset where the file lives or is to be created is retmied. Both the
rme and the mapset are used in other routines to refer to the file.

An example will be given here. le G-ask-old() routine used in the example is
described a bit later. Tl1 user is asked to enter a file from the "paint/hbels" element:

char rnm[50];
char *niaps+

npset = G a,_old C"", name, "paint/labels, "labed);
if (rmpt = = NULL)

edti0); /* user canceled the req st */

The user will see the following.

3 The size of rme stld be large enough to hold any GRASS file rne. Most systens

allow file narnes tD be quite long. It is recormmended that nmxe be declared cha" n ae/501.

§12 GIS Library

Ebter the rm* of an exiting labels file
Enter 'lise for a hist of eida~ng label1 filer.

Ht REITIRN tD camel mqut

char *
G_ak-dd (prompt rane, eleme label) pronpt for existirg database fle

char *prompt;
char *name;
char *elemer4
char *label;

The user is asked to enter th name of an existing database file.

Note. This routine looks for the file in the current n-pset as well as other
rmpsets. The nmpsets that, are searched are deteminred from the use s napset
search path See §4.7.1 Mapset Search Path Lp.2O] for some more details about
the searh path

char *

G_a*-w (prompt nanm, elenent, label) prorpt for new database file

char *prompt;
char *rane;
char *element
char *label;

The user is asked to enter the nane of a new file which does rot exist in the
current mapset

Note. The file chosen by the user may exist in other mapsets. This routine does
not look in other mapsets, since the assumption is that rne will be used to
create a new file. New files are always created in the current rnapset

' his line of the prnupt can be raHfied usng G-set osk-retwi7insgi, 7o).

§12 (;IS I ibrry

-70- -70-

char*
Gadhmslp (prompt, rum, element, label) prong for enaWW dafb file

char *prompt
char *nme;
char *eement;
clr *label;

The user is asked to enter the nome ofa file which exists in the current mpset

Note The file chosen by the user may or ny not exist in otber mpsets. Ibs
routine does not look in other mapsets, since the asumplion is that nwme will be
used to modify a fie. GRASS only permits usems to modify files in the current
nmpset

char *

G-askar (prompt, name, element, label, warn) prong for any valid fie narre

char *prompt;
char *nre;
char *element
char *label;
int way;

The user is asked to enter any legal file name. If wan is 1 aid the file chosen
exists in th current mapset, then the user is asked if it is ok to overwrite the file.
If wwn is 0, then any legal name is accepted and no warnirg issued to the user if
the file exists.

G-s&A &_ttunx~mg (msg) set Hit RE7UJRN rn

char *n.g,

The "it RTURN to camel reques' part of the prompt in the prompdng
routines described above, is modified to "Hit RKURN nsgv."

char *
G.get- Wsk.rdumni () get Hit RE7lRN rrag

The current msg (as set by Gsetask-returnmg(p. 70)) is retund.

12.5.2. FUxng Fles in the DIahae
Non-interactive programs cannot make use of the interactive prompting routines
described above. For example, a conm line driven program nay require a database
file name as one of the comrnnwm argunents. GRASS allows the user to specify
database file nas either as a simple tMqualified tne, such as "xyz", or as a fully
qualified name, such as "xyz in nrpset". where niust is the mapset where the file is

§ 12 GIS LUrwy

-71- -71-

to be found. Often only the unqualified file rnme is provided on the conmand line.

The following mutines search the database for files:

char *
G-fndi e (eleneM n maet) find a da taba fle

char *
Gfmdie2 (elennt, name, nxpset) fred a database fle

char *dement;
char *namne;
char *mpt;

Look for the file rm under the specified demrt in the database. The n s
parameter can either be the empty sting "", which means search all the mapsets
in the user' s currnt mapset search path, 5 or it can be a specific mapset, which
rerans look for the file only in this one mapset (for example, in the curent
nmpset).

If found, the rmpset where the file lives is reftund. If not found, the NULL
pointer is returned.

The difference between these two routines is that if the user specifies a fully
qualified file which exists, then G-findfile2() modifies rm by removing the
"in nrrpset" while Gfind-file() does not6 Nomally, the GRASS programmer
reed not worry about qualified vs. urualified names since all library routines
handle both fomE. However, if the programmer wants the name to be returud
unqualified (for displaying the name to the user, or storing it in a data file, etc.),
then Gindmfile2() should be used.

For example, to find a "paint/labels" file anywhere in'the database:
char name[501;
char *mapset;

if f (mn t = G-find-file("paintAabels",name,"") == NULL)
t* not found */

To check that the file exists in the current nmpset:

.5 See §4.7.1 Mapset Searh Path Lp. O for more details about the search path
6 Be warrkd that Gfindj file2() should rx)t be toed direcdy on a command line argurnent

,ince modifying argvt I may not be valid. The- argument should be copied to another character
buffer which is then passed to G-firxfile2

§12 GIS Library

-72- -72-

char rue[50];

if (G_.firxifileCpaintilabel' rrm,G_,nvpsto) = = NULL)
not fou vi *

115.& LegiI Fle Names
Not all names that a user may enter will be legal files for the GRASS databases. TIe
routines which create new files require that the new file have a legal rame. Ile
routines which prompt the user for file names (e.g., G..askzeu-p. 69)) guarantee that
the rmne entered by the user will be legal. If the nrme is obtained from the comndi
fine, for example, the programmr must check that the rnue is legal. The following
routine checks for legal file names:

G-lega ilename (ne) check for legal database file narmes

char *name;

Retuins 1 if nme is ok -1 if it isn't

12.5A. Opeft an Ezifn Datidse Me for Reaing

The following routines open the file name in nmsd from the specified database
eMk t for reading (but not for writing). The file nmme and xmpset can be obtained
interactively using (Lask-old(p. 69), and non-interactively using Gfindfile(p. 71) or
G-findefil2(p. 71).

G-opejxold (element, mne, rmapet) open a database file for reading

char *element;
char *r:ne;
char *zpt;

The database file unme under the dement in the specified npet is opened for
reading (but not for writing).

The UNIX open() mutine is used to open the file. If the file doesn't exist, -1 is
retu'ned. Otierwise the file descriptor from the open() is retuned.

§12 GIS Librr'y

-73- -73-

F LE*

G-fop .odd (element, me, mnpset) open a database file for readng

char *element
char *nme;
char *mapset;

The database file nme under the demt in the specified nui is opened for
reading (but wt for writing).

The UNIX fopen() mutim, with 'r" rad mode, is used to open the file. If the
file doesn t exist, the NULL pointer is returned. Otherwise the file descriptor from
the fopert) is returned.

12.&. Openg an ExWM Databae Fie fir Update
The following routines open the file rmm in the curent mapset from the specified
database demnt for writing. The file must exist Its nmne can be obtdirnd
interacively using G-ask.in-orpset(p. 70), and non-interactively using G.find.file(p. 71)
or G.findfile2(p. 71).

GjopLupkte (element, name) open a database file for tqxkzte

char *element;
char *nme;

The database file iman under the dceet in the current mapset is opened for
reading and writing.

The UNIX open() muine is used to open the file. If the file doesnt exist, -1 is
returmd. Otherwise the file is positioned at the end of the file and the file
descriptor from the oper) is returmed.

GfoperL-appe (element, name) open a database fie for qxate

char *elerent
char *mire;

The database file rmine under the dment in the current mapset is opened for
appending (but not for reading).

The UNIX fopen() nrotine, with "d' apperd rmde, is used to open the file. If the
file doesn't exist, the NULL pointer is reumied. Otherwise the file is positioned at
the end of the file and the file descriptor fmm the fopen() is retuned.

§12 GIS Library

.74- -74.

12.5.6. Cresting and Openn a New Dekabems Ne
The following routines create the new file now in the curret mpset7 under the
specified database dkmext and open it for writixg. The database dbmt is created, if
it ioesr't already exist

The file rmmn should be obtained interwtively using Gasknew(p. 69). If obtained
non-iteractively (e.g., from the cornmm line), Glegalffierm(p.72) should be
called first to make sue ta n= is a valid GRASS file mnae.

Wm-nrg. It is not an error for name to already exist However, the file will be
remnved ard recreated empty. The interactive iuixe Gask..wup. 69) guantees
that rmmw will rot exist, but if inem is obtained from the comnmad line, imn- may
exist In this case Gfirde(p.71) could be used to see if rmu exists.

G_cpaj w (elemernt, ram) open a new database file

char *elentr
char *nane;

Tle database file nme under the delm t in the current mapset is created and
opened for writing (but not reading).

The UNIX open() routine is used to open the file. If tie file doesn't exist, -1 is
retrne& Othirwise the file is positioned at the end of the file and the file
descriptor from the open) is retmnd.

FILE *
Gj-oxniew (element, rE) open a new citabaw file

char *elerr rt;
char *rmne;

TIe database file nawe urder tie demit in the current impset is created and
opened for writing (but not reading).

The UNIX fopen() mutine, with "w" write mode, is used to open the file. If the
file doesn't exist, the NULL pointer is returd. Otherwise tie file is positioned at
the end of the file and the file descriptor from tI fopen() is refnied.

7 GRASS doesn't allow files to be created outside the cumrnt rmet; see §4.7 Database
Access Rules fp. 2o0.

§12 GI S Lfbry

-75- -75-

11.7. Duao File Mwwp s

The following mutines allow the renaming and removal of database files in the current
mapet 8

G-revom (element, old, new) renarre a databas file

char *element;
char *old;
char *new;

The file or directory old under the database demert directory in the current
mapset is renaned to new.

Returns 1 if successful, 0 if old doesn't exist, and -I if there was an error.

Bug This mutine doesn't check to see if the new nanme is a valid database file
nalne.

G-renw (element, nane) rerute a database file

char *element;
char *rame;

Tle file or directory rmwn under the database denxit directory in the current
mapset is removed.

Retnms 1 if successful, 0 if rmne doesn't exist, ard -1 if there was an error.

Note If nane is a directory, everytlhing within the directory is remved as well.

Note These functions only apply to the specific denxit and net t other "related"
elemnts. For example, if e1renit is "cell", then the specified cell file will be remove
Ior renaned), but the other support files, such as "celThd" or "cats", will not To
remove these other files as well, specific calls must be made for each related elnuert.

12.6. Memory Aflocation
The following mutirnes provide memory allocation capability. They am simply calls to
the UNIX suite of memory allocation routines malloc(), Ralloc() and calloc , except
that if there is not enough memory, they print a dianostJc message to that effect and
then call exit().

Note. Use the UNLX free() routine to release neroy allocated by these mutirnes.

These functious only apply to the current ripmt ince GRA.-S does penrit iers to
nIrdify things in rrnaps otir than the current rmaptse e §4.7 Database Access Rtdces /p 2o.

§ 12 GIS Libraru-

-76- -76-

char*

G-jmall (size) rrerniry allocation

int size;

Allocates a block of npemry at least size bytes which is aligned properly for all
data types. A pointer to the aligned block is rebzrrd.

char *
G-reloc (ptr, size) rwrnry allocation

char *ptr
int size;

Changes the size of a previously allocated block of memory at ptr and returns a
pointer to the new block of nxemry. The size may be larger or smaller than the
original size. If the original block cannot be extended "in place", then a new
block is allocated and the original block copied to the new block

Note. If Ir" is NUII then this routine simply allocates a block of sze bytes.
This is different than malloco, which does not handle a NULL ptr.

char *
G-calloc (n, size) rrny allocation

intnM
int size;

Allocates a properly aligned block of nemry nze bytes in length, initializes
the allocated memnory to zero, and returns a pointer to lte allocated block of
merory.

Note. Allocating mnory for reading and writing cell files is discussed in §12.8.5
Allocatng Cell 10 Buffers [p. 851

12.7. The Window
The window concept is explained in §9.1 Window [,o. 471. It can be thought of as a
two-dinensional matrix with known bourdaries and rectangular cells.

There are logically two different windows. The first is the database window that the
user has set in the current mapset TIhe other is tie window that is active in the
program This active program window is what controls reading and writing of cell file
data

The routines described below use a GRASS data structure Cellhead to hold window
infornaton This structure is defined in the "gis.h" header file. It is discussed in
detail under §12.17 GlS Library Data Rtructures [p 1181.

§12 GIS Lirary

.77- .77-

12.7.1. The Dabase Window
Reading and writing the use s database window ae done by the followirg routines:

GgewiIdow (window) read the databas uindow

stnct Cell_-ead *window;

Reads the database window as stored in the WIND file in the user's current
npset into widow.

An error message is printed and exit() is called if there is a problem reading the
window.

N GRASS applications that mad or write cell files should not use this
routine, sine its use implies that the active program window will not be used.
Program that read or write cell file data (or vector data) can query the active
program window using Gandow__rous(p. 78) and Gjwndow-cols(p. 78).

G-putwindow (window) usite the daabas uindow

siruct Cell-head *window;

Writes the database window file (WIND) in the user's current napset from
window.

Returns 1 if the window is written ok. Return -1 if not (no diagnostic nmssage is
printed).

Wamnwi Since this mutine actually changes the database window, it should
only be called by programs which the user kmws will change the window. It is
probably- fair to say that under GRASS 3.0 only the window, Guindow, and
d.iundow programs should call this routine.

There is another database window. This window is the default window for the
location The default window provides the user with a "starting" window, i.e., a
window to begin with and return to as a reference point The GRASS progran
uindow and Guindow allow the user to set their database window from the default
wirxow. (See §4.6 Pernmruent Mapset 1p. 191 for a discussion of the default window.)
The following routine reads this window:

S12 GIS Library

-78- -78-

G-get~de&tf window (window) read the kfaut uindow

struct CAlJa *window,

Reads the default window for the location into whidw.

An error message is printed and exit() is called if there is a problem reading the
default window.

127.2. The Active PRgram Winixw

The active program window is the one that is used when reading and writing cell file
dat. This wirow detemunes the resampling when reading cell data It also
determines the extent md resolution of new cell files

Iitially the active program window and the user' s database window are the sa ne, but
the programner can make them different The following routines manage the active
program wirow.

G_wimiowxo () number of roui in actiw .4ndow

G_indowcos () number of colwnm in active uindw

These routines return tIe nmber of rows aid colunis (respectively) in the active
program wirdow. Before cell files can be read or written, it is necessary to
known how many rows and columns are in the active window. For exaniple:

int nmws, cols;
int row, col;

nmws = Gwirniow-wws();
ncols = G-window-col);
for (row = 0; row < nrmws; row++)

read row ...

for (col = 0; col < ncols; col++)
{

process col ...

§ 12 GIS Ubrary

-79- -79.

G winjIKIJw (window) set the actioe indow
struet Cell-ba *window-

This routine sets the active window from wiiaw. Setting the active window
does not change the WIND file in the dataase. It simply changes the window
for the duration of the progrm. 9

A waming message is printed and -1 retured if wiiow is not valid. Otherwise 1
is rebTed.

Note. This routine overrides the window as set by the user. Its use should be
very limited since it changes what the user nornally expects to happen. If this
routine is not called, then the active window will be the same as what is in the
user' s WIND file.

Warning Calling this routine with already opened cell files has some side
effects. If there are cell files which are open for reading, they will be read into
the newly set window, not the window that was active when they were opened.
However, CELL buffers allocated for reading the cell files are not autonatically
reallocated. The program mst reallocate them explicitly. Also, this routire does
not change the window for cell files which are open for writing. The window that
was active when the open occurred still applies to these files.

G-ge&s indow (wirdow) get the acdve uindow

struct Celliea *window;

Gets the values of the currently active window into whinow. If
Gset-aindop. 79) has been called, then the values set by that call are retrieved.
Otherwise the user' s database window is retrieved.

Note For prograrns that read or write cell data, ard really need the full window
information, this mutire is preferred over Ggetjaindow(p. 77). However, since
Guindobwrous~p. 78) ard Gwindow-cols(p. 78) return the nutmer of rows and
colunms in the active window, the pmgrannrer should consider whether or not
the full window information is really needed before using this mutine.

The following routines rettun information about the cartographic projection and zone.
See §9.1 Window (p.471 for more information about these values.

9 liwever, thfe new window setting is rot rptained across the UNIX exec() call. This
irnplies that G setwirdow cannot be used to set the window for a prgrmn to be executed
usng the systein() or popen(rotiers.

12 GIS library

.80- .80-

Gp4ee1m () query cartograhic projection

This routine retuins a code indicating the projection for the active window. The
current values me:

0 unreferenced x,y (imagery data),1 brM
2 State Plane.1 1

Others may be added in the future.

char *
G-projectiwrne (pruj) query cartographic projection

int proj;

Returns a pointer tD a string which is a printable rame for projection code ri
(as returnd by G-projection(p.80)). Return NULL if proj is not a valid
projection.

Gzone () query cartographir zone
This routine retun the zone for the active window. The toeaing for the zone
depends on the pmjection For example zone 18 for projection. type 1 would be

JI'M zone 18.

12.8. Cel File Frocing
Cell files are the heart and soul of GRASS All analyses are performed with cell file
data Because of this, a suite of routines which process cell file data has been
provided.

The processing of cell files consists of determing which cell file or files are to be
processed (either by prompting the user or as specified on the program comarul line),
locating the cell file in the database, opening the cell file, dynamically allocating i/o
buffers. reading or writing the cell file, closing the cell file, and creating. support files
for newly created cell files.

All cell file data is of type CELL' 2 , which is defined in "gis.h".

1 State Plane is nt yet fully support d in GRASS.
12 See Ap(n&dX B. 7he CEZL Data 7e [p. 21 for a discussion of the CELL type and how

to use it (and avoid riaung it).

§12 GIS Iibr r

-81- -81-

I&L PromIft for Cdl NIs
The following routirs intertively prompt the user for a cell file nme. In ewh, the
ljWvt string will be printed as the first line of the full prompt which asks the user to
enter a cell file nare. If front is the empty string "" then an appropriate prompt
will be substituted. The rme that the user enters is copied into the nmne buffer.13

These routines have a builtAn 'lisf capability which allows the user to get a list of
existing cell files.

The user is required to enter a valid cell file name, or else hit the RETURN key to
cancel the request If the user enters an invalid response, a message is printed, and the
user is prompted aain If the user camels the request, the NULL pointer is returned.
Otherwise the mapset where the cell file lives or is to be created is retuxmd. Both the
name and the mapset are used in other rotirs to refer to the cell file.

char *
GakdL old (prompt, narm) prorrpt for existing cell file

char*prompt;
char * nane;

Asks the user to enter the mne of an existing cell file in any mapset in the
database.

char *
G Iask Urirmpset (prompt, rnm) prorr for existirg cell file

char *prompt;
char ' ame;

Asks the user to enter the nane of an existing cell file in the current mapset

char; '-
G-ask-cdtlnew (prompt, nmne) pront for new cell file

char prompt;
chakr namre;

Ask., the user tD enter a rum for a cell file which does not exist in the current
nap-et

Here is wi cxample of how to use these routines. Note that the programnvr must
hardle the NULL return properly:

The size of name should be large enough to hold any GRASS file nae. Most systems
allow file iiany- to be quite long. It is recorrrnetled that narve be declared char narre[50/.

§12 GIS library

-82- -82-

char *maps*
char rane(50;

mapset = G.a*kcelLold("Enter cell file to be processed", narm);
if (rnapset == NULL)

edt(O);

12.82 F dihg Cal Fles in the Iotae
Non-interltive pMgrMs cannot make use of 'the interactive prompting routines
described above. For example, a commarr line driven program may require a cell file
rne as one of the command argunents. GRASS allows the user tc specify cell file
rnmes (or any other database file) either as a simple unqualified name, such as "soils",
or as a fully qualified name, such as "soils in rpset", where rnpset is the mapset
where the cell file is to be foumd. Often only the unqiualified cell file name is provided
on the comnwxin line.

The following routines search the database for cell files:

chr *
G-ixbedl (narne, ruapset) find a cell file

char *
Gfixdcel2 (mine, mapset) find a cell file

char *nlame;
char *mapset;

Look for the cell file ar~ne in the database. Tl nwuxwt parameter can either be
the empty string '"', which means searrh all the mapsets in the user's current
mapset search path "' or it can be a specific mapset name, which meanm look for
the cell file only in this one mapset (for example, in the current rnapset).

If found, the mapset where the cell file lives is retunmed If not found, the NULL
pointer is retm-ed.

The difference between these two routines is that if the user specifies a fully
qualified cell file which exists, then GfidrKcell2() modifies nwrie by removing
the "in rnrpt" while G-find-cell() does not 15 Nornlly, the GRASS
prognimrrner need n)t worry about qualified vs. unqualified names since all library
routines handile both forms. lowever, if the programver wants the nme to be

14 See §4.7.1 Mapset Seacrc Path Ip. 2o] for rnon details about the search path
15 Be waned that GfirxLce1I2(, sholld not be used directly on a cornr rd line argument,

since modifying argv[I may not be valid. The argunent should be copied to anoter character
buffer which is then passed to GfirctcelI2('i.

§ 12 GIS I.bra-y

-83- -83-

rewmed unqalified (for displaying the rame to the user, or storing it in a data
file, etc.), then G-fdcell2() should be used.

For example, to find a cell file anywbere in the database:

char nwre[50];
char *fpt;

if ((rrpet = G-fircell(narne," = NULL)
/* not found */

To check that the cell file exists in the cunent mapset:

char nrkm[50];

if (G firxtcell(narr,G tapseti = NUILL)
/* not foid */

12.8. Opening an Existing Cell File
The following routine opens the cell file naw in nupset for reading.

The cell file nmane and nm can be obtained interactively using
G_askce1Lold(p. 81) or G_ask_ceU_innrmpsetp. 81), and non-interactively using
Gjfind-ce(p. 82) or GfindLcell2(p. 82).

G-openeElLold (nam, mapset) open an existing cell file

char *name;
char *mapset;

This mutine opens the cell file rmnx in naiset for reading.

A non-negative file descriptor is rttnmed if the open is successful. Otherwise a
dignostic nessge is printed and a negative value is retrred.

This mutine does quite a bit of work Swe GRASS tsers expect that all cell files
will be resampled into tl current window, the resarnpling index for the cell file
is prepared by this routine after th.k ile is opened. The resampling is based on the
active program window. 16 Prepartion required for rading the various cell file
formats 17 is also done.

SF'S also §12.7 Rhe Window P 761.
17 %, §5.2 Grid Cell File Fornat [p 241 for ain explarton of the various cell file fonmts.

§12 (GIS library

-84- .84-

12.M. Creding and Opeiii New Cl Files
The following routines create the new cell file neme in the cuimnt mapset18 and open
it for writing. The cell file ne should be obtained interactively using
G._ask_.cell.U-wp.81). If obtained non-intermfively (e.g., from the commn line),
Gega/lfenanw(p.72) should be called first to make sure that name is a valid
GRASS file name.

Note. It is not an error for now to aiready exist. New cell files are actually created
as temporary files and nved into the cell directory when closed. This allows an
existing cell file to be read at the same time that it is being re-written The interactive
routine Gjask-cell..ew(p.81) guarantees that mme will not exist, but if name is
obtained from the comm line, name may exist In this case Gfindcell(p.82) could
be used to see if arum exists.

Wanin However, there is a subtle trap. The temporary file, which is created using
Gjtenfile(p. 108), is named using the current process id. If the new cell file is opened
by a parent process which exits after creating a child process using fork(),19 the cell
file may never get created since the temporry file would be associated with the parent
process, not the child. GRASS n enent autormatically removes temporary files

- associated with processes that are no longer running. If fork() nmist be used, the safest
course of action is to create the child first, then open the cell file. (See the discussion
under Gjenpie(p. 108) for more details.)

G-fij .._x-efd nw (nm e) open a new cell file (squeqtaio)

char *mne;

Creates and opens the cell file name for writing by Gputmapjvw(p. S8) which
writes the file row by row in sequential order. The cell file data will be
comressed as it is written

A on-negaive file descriptor is retuned if the open is successful. Otherwise a
diagnostic nssage is printed and a negative value is retrred.

18 GRASS doeaf't allow files to be criatE6 ottside the currant rnapsL -See W.7 Database

Access Rules Lp. 2o.
19 See Am Gfo*(p. 1)).

§12 (;IS iibra- •

-85- -85-

GopemdL v.ewx kxn (ne) open a new cell file (randor)

char *nane;

Ceates and opens the cell file nm-e for writing by
Gput__tp__rowadom(p.88) which allows writing the cell file in a mndom
fashion. The file will be created uncompressed 2

A non-negative file descriptor is retried if the open is successful. Otherwise a
diagnostic message is printed and a negative value is retuned.

G_oper__ce WIXwconfIesed (ane) open a new cell file (worrnressed)

char *rnle;

Creates and opens the cell file name for writing by G-putmaprowp. s8) which
writes the file rmw by row in sequential order. The cell file ill be in
uncompressed format when closed.

A non-negative file descriptor is rentu-ed if the open is successful. Otherwise a
warning nessage is printed on stderr and a negative value is returned.

General use of this routine is not recommnexed.2 1 This routine is provided so the
unconpress program can create uncompressed cell files.

12.8.5. Allocating Cel 1/0 Buffes
Since there is no pre-defined limit for the nmruer of columns in the window. 22 buffers
which are used for reading and writing cell data must be dynamically allocated.

20 Nor will the file get automtically compressed when it is closed. If a compressed file is

desiid, it can be compressed explicitly after closing by a system call:
system("compress name").

21 At present automatic cell file compression will create files which, in most ca es, are
smaller than if they vere uncompressed. In certain cass, the compressed cell file may be
larger. This can happen with imagery data, which don't contss well at all. Hwever, the
ize difference is usually small. Since futa enhancements to the conpmxon method may
impnrve compression for imagery data as well, it is best in create compresd cell files in all

22 See Guindowucols(p. 7R) to find the number of coluns in the window.

§12 GIS Lfhwy

-86- -86-

CELL *
G_- aIe(delL.If () allocate a cell bufer

This routine allocates a buffer of type CELL just large enough to hold one row of
cell data (based on the number of columns in the acive window).

CELL *cell;

cell = Gadlocate.celLbufo;

If larger buffers ae requimd, the rouine G-nulIoc(p. 76) can be used.

If sufficient mernoxy is not available, an error message is printed and exit) is
called.

G-zeroJcel!buf (buf) ero a cell bqffer

CELL *buf;

This routines assigns each menber of the cell buffer array buf to zero. It
asumes that buf has been allocated using G.allocate_ceUbqp. 86).

12A6, Readn Cell Fes
Cell file data can be thought of as a two-dimnr~ional matix. Tli routines described
below read one full row of the n~mix. It should be understood, however, th the
mntemr of rows and columns in the rmhix is determined by the window, not the cell
file itself. Cell file data is always read resampled into the window.23 This allows the
user to specify the coverage of the datkase during analyses. It also allows datases
to consst of cell files wlich do nt cover exactly tR same area, or do not haveth
sane grid cell resolution When cell files are resampled into the window, they all
"look" the same.

Note. The rows and colunrs me specified "C style", i.e., stfrting with 0.

2-3 The GRAMS window is discussed from a user perspective in §9.1 WU&dw [p. 471 and from

a progrmanmr perspective in §12.7 The Win&w [p. 76). The routines wlich we commo nly used
to detemine the minter of rows and columns in the window we G_uindow-rnos(p. 78) and
Gidndow-colsp 78).

§ 12 GIS Library

-87- -87-

G-genp-ruw (fd, cell, row) read a cell file

int fd,
CELL *cell;
int row,

This routine reads the specified row from the cell file open on file descriptor fd
(as retnied by G-open-ceUoldkp. 83)) into the cel buffer. "17 cel buffer must
be dynanically allocated large enough to hold one full row of cell data It can be
allocated using G-allocate-cell_&b p.86).

Tls routine prints a diagnostic nessage and returns -1 if there is an error reading
the cell file. Otrwise a non-regative value is returned.

G-gnwp row-nrrask (fd, cell, row) read a cell file (uithot nas/irmsg

int fd,
CELL *cell;
int row;

This routine reads the specified row from the cell file open on file descriptor fd
into the cel buffer like G-geunaprow() does. The difference is that rmsldrg
is suppressed. If the user has a msk set, G-get-nprow() will apply the mask
but G-getmap-row__n sk() will ignore it

This routine prints a dianostic message and returns -1 if there is an errr reading
the cell file. Otherwise a non-negative value is returnd.

N Ignoring the nik is not generally acceptable. Users expect the mask to
be applied. However, is some cases ignoring the mask is justified For example,
the GRASS programs Gdescribe, which reads the cell ifie directly to report all
data values in a cell file, or Gslope.aspect, which produces slope ard aspect from
elevation, ignore both the mask and the window. However, the nuner of
GRASS programs which do this should be mininl. See §9.2 Mask rp.481 for
nore information about the mask

12.8.7. W riting Cell Files
The routines described here write cell file data

§ 12 GIS Ibrary

-88- -88-

Guitm _.row (fd, buf) urite a cell file (sequentica)

int fd,
CELL *buf;

This routine writes one row of cell data from buf to the cell file open on file
descriptor fd. The cell file must have been opened with G-opencell..ew~p.84).
Tbe cell bur must have been allocated large emugh for the window, pedips
using GL allocate-ceUbtu/p. 86).

If there is an eror writing the cell file, a warning message is printed and -1 is
retuned. Otfhrwise 1 is returned.

Note. The rows are written in sequential order. The first call writes row 0, the
second writes row 1, etc. The following example assumes that the cell file mnWe
is to be created:

int fd, row; nrows;
CELL *bur;

fd = G-openrcellinew (name);
if (fd < O)

/* oops - cxa't open cell file */

but = G-allocatecell-buf();
nrows = G-window-wwso;
for (row = 0; row < mows; row++)
{

/* prpare data for this row into buf */

/* write the data forti row
G-putmp-mw (fd, but);

}

Gput_3mp-row-ramIon (fd, buf, row, col, ncells) aite a cell file (ramnrr)

int fd;
CELL *buf;
int row, col, ncells;

This routine allows rardom writes to the cell file open on file descriptor fd. The
cell file rmst have been opened using G-open-cell.mwyandornp.85). The cell
buffer bu contains ncdls coluns of data and is to be written into the cell file at
the specified row, starting at column coL

§12 GIS LAiry

-89- -89-

12.8.& Clng Cll Files
All cell files ae closed by one of the following routires, whether opened for reading
or for writing.

G_closeMc1 (fd) close a cell

intfd

The cell file opernd on file descriptor fd is closed. Memory allocated for cell
processing is freed. If open for writing, skeletal support files for the new cell file
are created as well.

Noe If a program wants to explicitly write support files (e.g., a specific color
table) for a cell file it creates, it must do so after the cell file is closed. Otherwise
the close will overwrite the support files. See §12.9 Map Layer 111pport Routirnes
[p. 89] for routines which write cell support files.

O_-unopezw dl (fd) unopen a cell file

int fd,

The cell file opened on fie descriptor fd is closed. Memory allocated for cell
processing is freed. If open for writing, the cell file is not created and the
temporary file created when the cell fie was opened is removed (see §12.8.4
Creating and Opening New Cell Files p.84).

This routine is useful when errors are detected and it is desired to not create the
new cell file. While it is true tlt the cell file will mt be created if the program
exits without closing the file, the temporary file will not be renved at program
exit GRASS database manaenent will eventually remove the temporary file,
but the file can be quite large and will take up disk space until GRASS does
remove it Use this routine as a courtesy to the user.

12.9. Map Laye Supix Rouines
GRASS map layers have a number of support files associated with therm. These files
am disctsed in detail in §5 Grid Cell Maps Ip.231. The support files are the cell
header. the category file, the color table, the history file, and the range file. Each
supporl file has its own data structure and associated routines.

12.9.1. Cell Heaier File
The cell header file contains information describing the geographic extent of the map
lay'vr. the grid cell resolution, and the format used to store the data in the cell file. The
fonnat of this file is described in §5.3 Cell Header Fornryt ip.26. The routines

§ 12 GIS Lbrary

-90- -90-

described below use the Cellhead structure which is shown in detail in §12.17 GIS
Lry Data Sructures 1p. 1i].

G-gecdlld (rne, nmpset, cellhid) read the cell heackr

char *nme;
char *mapet;
struct CellHeja *celld

The cell header for the cell file nme in the specified nupset is read int the
adild strxture.

If there is an error reading the cell header file, a diarxstic message is printed
ad -1 is returned. Otherwise, 0 is rebn d.

Note. If the cell file is a reclass file, the cell header for the referenced cell file is
read instead. See §5.32 Reclass Format (p.271 for iformtion about reclass files,
and G-jseclass(p. 91) for distinguislirg reclass files from regular cell files.

Note. It is not necessary to get the cell headler for a map layer in order to read
the cell file data The mutines which read cell file data autoimaically retrieve the
cell healer information and use it for resanpling the cell file data into the active
window.24 If it is necessary to read the cell file directly without resampling into
the active window,25 then the cell healer can be used to set the active wirdow
using Gsetwindowp. 79).

G-puLcdidi (name, cellhd) urite the cell header

char *name;
stnrit Cell-head * cehll

This routine writes the information from the cdil-d strure to the cell header
file for the nmap layer rne in the current mnapset

If there was an error creating the cell healer, -1 is retuned. No diagnostic is
printed. Otherwise, 1 is retUmed to irdicate success.

Note. Progrnrnmers should have no reason to use this routine. It is used by
Gclose-ce(p. 89) to give new cell files correct cell healer files, and by the
siq)Jort program to give users a means of creating or modifying cell healers.

24 See 12.7 The Window Ip 761.

25 but se §9 Window and Mask Lp. 471 for a discusson of when this should and should mt
be done.

§l2 GIS Lrwy

-91- -91-

G.red m (rame, nmpset, r-zame, rjmpset) rec/as file?

char *nme;
char * spt;
char *r-,ae;
char *rinpt;

This function deterrines if the cell file nwne in nmset is a reclass file. If it is,
then the nmne and mapset of the referenced cell file'are copied into the r__me
and r.nmpse buffers.

Retu1 ifi nmm is a reclass file, 0 if it isnt, anr -1 if there was a problem
reading the cell healer for n

12.9.2 Cdl Cat 4vr File
GRASS map layers have category labels associated with them The category file is
structured so that each category in the cell file can have a ore-line description. The
fomit of this file is described in §5.4 Cell Category File Fonrt [p.28].

The routines described below manage the category file. Some of tfrm use the
Categories structure which is described in §12.17 GIS Library Data Structures lp. 118].

12.9.2.1. Reading and Writing the Cell Category FIle
The following mutines read or write the category file itself:

Gred.cats (name, mapset, cats) rvad cell category file

char *name;.
char *rmpset;
struct Categories :cats;

Tlv category file for cell file nwme in nqus is read into the cats structure.

If there is an emr reading the category file, a diagnostic message is printed and
-1 is retuned. Otherwise, 0 is retumed.

§12 GIS lrry

.92- -92-

G_.writ-as (mie, cab) ite cell ctgory ie

char *rmne;
stnxt Categories *cats;

Writes the category file for the cell file natne in the cunnt mapset from the ats
structure.

Retiums 0 if successful. Otherwise, -1 is rettuned (no diagnostic is printed).

char *

G-geodIeitle (mne, napset) get cell title

char *nme;
char *mapset;

If only the map layer title is needed, it isn't necessary to real the entire category
file into memory. This mutine gets the title for cell file nmne in nupset directly
from the category file, and retns a pointer to the tide. A legal pointer is always
retuned. If the map layer does' t have a tile, then a pointer to the empty string

is retm-ned.

char *
G-lut-ceifitle (name, tile) change cell title

char *yrne;
char *title;

If it is only desired to change the title for a map layer, it isn' t necessary to real
the entire category file into emory, change the title, and rewrite the category
file. This routine changes the title for the celt file nmne in the curert npset
directly in the category file. It retuns a pointer to the tile.

12.9.2. Querying and Charging the Categories Sbwrume

The following routines query or modify the information contained in the category
structure:

§12 Is Library

clr *

G-gi.ct (n, cats) get a category label

CELL n;
stnxt Categories *cats;

This routine looks up category n in the cus structure and returns a pointer to a
string which is the label for the category. A legal pointer is always retunic If
the category doesn't exist in then a pointer to the empty stri figll is

Warning The pointer that is retmned points to a hidden static buffer.
Successive calls to G-get-cati) overwrite this buffer.

char *
G-etcais-itle (cats) get title from category strwtwe

strict Categories *cats;

Map layers store a orn-line title in the category structure as well. This routine
retirns a pointer to the title contained in the cats stncture. A legal pointer is
always retur d. If the map layer doesn't have a title, then a pointer to flie empty
string "" is re~tred.

Ginit-cas (n, title, cats) iniolize category stuctwe

CELL rn
char *title;
stnct Categories *cats;

To construct a new category file, the structure must first be initialized. This
routine initializes the cats structure, and copies the title into the structure. The
number of categories is set initially to ii

For example:

shuct Categories cats;

G-init-cats ((CELL)O, "", &cats);

§12 ;iS Librry

' I I I II I I

-94- -94-

G-.o-a t (r, label, cats) set u category label

CELL rx
char *label;
stuct Categories *cats;

The label is copied into the cats struxture for category ai

G__setcatsitle (title, cats) set tide in category structe

char *tile;
strct Categories *cats;

Tle title is copied into the cats struture.

G-rew-cats (cats) free category strictwre mrmory

struct Categories *ca;

Frees memory allocated by G-eadcat*s(p.91), G-nit-cats(p.93) and
G-setcat(p. 94).

12.9.3. Cell Color Table
GRASS map layers have colors associated with them 71v color tables are structured
so that each category in the cell file has its own color. The format of this file is
described in §5.5 Cell Color Thble Format rp. 28].

T7e following routines read, create, modify, and write color tables. They use the
Colors structure which is described in detail in §12.17 GIS Li&uy Data %wrctures
1p. 1181.

G-readcors (rne, mapeet, colors) read rfnp laer color table

char *nrne;
char *nmpset;
struct Colors *colors;

rThe color table for the cell file nmne in the specified nxiset is md into the
Mors stucture.

If the data layer has no color table, a default color table is generated and 0 is
rezzned. If there is an error reading the color table, a diagnostic message is
printed and -1 is retinmd. If the color table is read ok, 1 is retwund.

§12 GiS Libray

-96- -6

G-writecols (JWne, nmpset, colors) urite nxp layr color table

char *nme;
char *nmpset;
struct Colors *colors;

The color table is written for the cell file imwn in the specified nvqmu from the
coaors stnture.

If there is an error, -1 is retum-ed. No diagnostic is printed. Otherwise, 1 is
returned.

The colors structure must be created .properly, i.e., G-initcolors(p.96) to
initialize the struxture and G.set-color(p. 96) to set the category colors.26

Nte The calling sequence for this function deserves special attenon The
nupset parameter seems to imply that it is possible to overwrite the color table
for a cell file which is in another mapset. However, this isn't what actually
happens. It is very useful for users to create their own color tables for cell files
in other mapsets, but without overwriting other users' color tables for the same
cell file. If nujus is the current nmpset, then the Color file for rmm will be
overwritten by the new color table. But if nus is not the current mapset, then
the color table is actually written in the current nmpset under the car2 element
as: colr2/1mpset/nane.

G-gjxolor (cat, red, green, blue, colors) get a category color

CELL cat
int *red,
int *green;
int *blue;

strxt Colors *colors;

The red, gree, arnd bhxe intensities for the color associated with category cat are
extracted from the colon structure. The intensities will be in the range 0-255.

26 These mutines are called by higher level routines which read or create entire color tables
axrh as G-read -olorsp ')4) or G-rmke-colorrarrp(p 97).

12 GIS Libray

-96- -96-

Gj-t-okik s (colors) iiduali color s ucte

strct Colors *colors;

The calcim strtctre is iritialized for subsequent calls t) G.set-color(p. 96).

G-set-color (cat, red, green, blue, colors) set a category color

CELL cat;
mt red,
irt green;
int blue;
struct Colors *colors;

The red, grei and blue intensities for the color associated with category cat ae
set in the colrs stnture. The iltensities must be in the range 0-255. Values
below zero are set as zero, values above 255 are set as 255.

Note. The cors structure must have been intialized by Ginitcolors(p. 96).

GJ _xwuors (colors) free color strwtue errory

struct Colors *colors;

The dynamically allocated memnory associated with the cokms structure is freed.

Note. This routine may be used after G..ea.colors(p.94) as well as after
G-initcolors(p. 96).

The following routines generate entire color tables. The tables are loaded into a colors
structure based on a range of category values from nin to nm. The range of values
can be obtained, for example, using GJead-range(p. 99).

Noe The color tables are generated without information about any particular cell file.
These color tables may be created for a cell file, but they may also be generated for
loading graphics colors.

These routines retunn -1 if nin is greater than nmx, 1 othcrwise.

*12 GIS Ubrary

-97- -97.

G.m.ke&aspedcoalr (colors, nm) nuke apect colors

strixt Colors *colors;
CELL nn, nwq

Generates a color table for aspect data

Gnmakeiolrornrw (colors, min, nm) nuke color ranp

stnct Colors *colors;
CELL min, mx;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity. This table is good for continuous data like
elevation

Gnmvkexcolcr-wave (colors, min, nmx) mike color uve

struct Colors *colors;
CELL min, rcm;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity aid back down to none. This table is good
for continuous data like elevation.

Note. This routine requires thut the $(MATHLEB) be loaded as well.

G-make-grey-scale (colors, min, max) mike lnear grey scale

struct Colors *colors;
CELL mm, nx;

Generates a grey scale color table. Each color is a level of grey, increasing from
black to white.

G-nke-_icolwrs (colors, nin, nm) nake rainbow colors

stnKt Colors *colors;
CELL min, rmx;

Generates a color table based on rairow colors. The table generated bere uses
yellow, green, blue, irtigo, violet, red. (Nornml rairow colors are red, orange,
yellow, green, blue, indigo, and violet) This table is good for continuous data
like elevation

§ 12 GIS Library

-98- -98-

G-nrke._rm-uoimcoio (colors, min, max) nud rindomcolors

struct Colors *colors;
CELL min. max

Generates rawdom colors. Good as a first pass at a color table for nominal data

G-mrakeT L gr (colors, min, max) mike redellowgreen colors

struct Colors *colors;
CELL mi, max;

Generates a color table simliar to what Grzkej-ainbow-coors(p.97) creates,
except that the table starts at red, passes through yellow, and ends with green

129.4. Cell Hstory Fe
The history file contains documentary information about the cell file: who created it,
when it was created, what was the original data source, what information is contained
in the cell file, etc. This file is discussed in §5.6 Cell Istory File p.29].

The following routines mange this file. They use the Ristory structure which is
described in §12.17 GIS Libray Data Structures Lp. 118].

Noe This structure has existed relatively iunndified since the inception of GRASS.
It is in need of overhaul. Programnmers should be aware that future versions of GRASS
may no longer support either the mutines or the data structure which support te
history file.

Geadjistory (nane, npset, history) read cell hi.ory file

char *name;
char *mapset
struct History *history;

This routine reads the history file for the cell file mnme in nu into the
histsry stncare.

A diagnostic nessage is printed and -1 is returned if there is an error reading tie
history file. Otherwise, 0 is retinied.

§12 GIS I brary

.99- .99-

G.w _ittAJsry (Wrne, history) urie ceU history fie

char *rmie;
staxt History *history,

This routine writes the history file for the cell file nmre in the current mapset
from the bitory stnxture.

A diagnostic message is printed an" -1 is retm-d if there is an error writing the
history file. Otherwise, 0 is rermvd.

Note The hisory stnxture should first be initialized using
G-shortJistory(p. 99).

Gs-lxrtistory (name, type, history) inl---ize history stn&ctwe

char *rm-L;
char *type;
struct Fistory *history;

This routine initializes the history structure, recording the date, user, program
name and the cell file nrme stnxutre. The type is an anachronism from earlier
versions of GRASS and should be specified as "cell".

Note. This routui only initializes the data stncture. It does not write the history
file.

12.9.& Cel Range Fle

The following routines rrnage the cell range file. This file contains the minimum and
maximum values found in the cell file. The format of this file is described in §5.7
Cell Range File Ip. 291.

The routines below use the Range data stnture which is described in §12.17 GIS
Library Data &,uctures [p. 1181.

G-reairag (armne. napset, range) read cell range

char *naimi:

char *mnapset
struct Range :range;

This routine reads the range information for the cell file rwm in nup d into the
rang structure.

A diagnostic massage is printed and -1 is retuned if there is an error reading the
range file. Otderwvise, 0 is returned.

112 GIS Libury

-100- -100-

G wik,_uj (nmw, rurio) twitb cell r-ge

char *rne;
strict Range *range;

This routine writes the range infornation for the cell file name in the current
mapset from the rang structure.

A diagnostic message is printed and -1 is returned if there is an error writing the
range file. Otherwise, 0 is returerd.

The range structure must be iitialized and updated using the following routines:

Gjnitrange (range) initialize range st'wtw-e

stnut Range *range;

Initializes the ra structure for updates by Gupdaterange(p. 100) and
Gjrow_ __aterange(p. loo).

G-update-razW (cat, range) bpxak range st7wtwe

CELL cat;
struct Range *range;

Compares the cat value with the niniimm and nmximnum values in the rmage
structure, nodifying the range if cat extends the range.

Grow-update-rage (cell, n, range) update range .stbrtwe

CELL *cell;
intn;
struct Range *range;

This routine updates the rang data just like Gude.range(p. 100), but for n
values from the cell anay.

12.10. Vector File Process
The GIS Libmry contains sone functions related to vector file processing. These
include prompting the user for vector files, locating vector files in the database,
opening vector files, and a few others.

Note Most vector file processing, however, is handled by routines in the Dig Library,
which is described in §13 Dig Library Ip. 1231.

§12 GIS Library

-101- -101-

12.10.1. Rmlfting for Vectw, Mks
The following routirs intemfively prompt the user for a vector file rwne. In each,
t m t sting will be printed as the first line of the full prompt which asks the
user to enter a vector file rm . If pro is the empty sing "" then an appropriate
prompt will be substituted. The rame that the user enters is copied into the nne
buffer.27 These routines have a builtin 'lise capability which allows the user to get a
list of existing vector files.

The user is required to enter a valid vector file rne, or else hit the RETURN key to
carcel le request If the user enters an invalid response, a message is printed, and the
user is prompted again If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the vector file lives or is to be created is retured. Both
the rne and the mapset are used m. other routines to refer to the vector file.

char *
G-a*- '_tr old (prompt, nane) pronpt for an e~isting vector file

char *rnme;

char *mfpset;

Asks the user to enter the name of an existing vector file in any napset in the
daase.

char *
G-askvetrd jampset (prompt, nane) prorrpt for an eiisting vector file

char *nane;
char *pset;

Asks the user to enter the name of an existing vector file in the current mapset

char *
G-ask-vecto-mw (prompt, name) pron-pt for a new vector file

char *name;
char *mapset;

Asks the user to enter a name for a vector file which does not exist in the current
mapset

Here is an example of bow to use these mutines. Note that the pmgramrmer must
handle the NULL return properly:

27 The size of name should be large enough to hold any GRASS file name. Most systems

allow file names to be quite long. It is recommiended that nare be declaed char narrr[50].

. 12 GIS Ubrary

- 102-

char rHm[50];

nvPset = G eckvectDr-old("F1ter vector file to belOcemed", nri);
if (npeet == NULL)

exit(O);

12.102 Fiing Vector Files in the Databwe
Non-interactive programs canmot make use of the interactive prompting mutires
described above. For example, a command line driven program may require a vector
file name as one of the command argun ents. GRASS allows the user to specify
vector file names (or any other database file) eithe as a simple unqualified nane, such
as "roals", or as a fully qualified name, such as "roads in napset", where mapset is
the mapset where the vector file is to be found. Often only the unqualified vector file
rme is provided on the comma line.

The following routines search the database for vector files:

G- ,Lvctor (name, rapset) fid a vector file

GJfh'vectw2 (name, pt) find a vector file

char *name.;
char *mapset;

Look for the vector file nmn in the database. The nwpset parameter can either
be the empty string "", which mean search all the mapsets in the user' s current
mapset search path,28 or it can be a specific mapset mie, which neans look for
the vector file only in this one mapset (for exanple, in the current mapset).

If fouri, the mapset where the vector file lives is retrnred. If not fourd, the
NULL pointer is returned.

The difference between these two routines is that if the user specifies a fully
qualified vector file which exists, then G_firLvector2() modifies naxe by
removing the "in nrpset" while GlfnrxLvector() does not.29 Nornally, the
GRASS pmgrammr need not worry about qualified vs. unqtalified names since
all library routines hardle both forms. However, if the pmgran-ner wants the
nan to be mturrd unqualified (for displaying the rnrne to the user, or storing it
in a data file, etc.), then GjfindLvectoQ() should be used.

28 See §4.7.1 Mapset Search Path [p.2O] for rore details about the seth path.
29 Be waned that G-findtvector2() should not be used directly on a conmand line

gtunen, since modifying argvI] ray not be valid. The argument shoidd be copied to another

character buffer which is then paswed to G-firnLvector2(.

§ 12 GIS Library

-1(3-- 103-

For example, to find a vector file anywhe in the database:

cha nmw[501;
char *maW;

if ((nmpst = G-firKLvectDr(namn,"")) == NULL)
/* ot found"*

To check that the vector file exists in the cuimnt mapset:
char nmnm[501;

if (Gfirndvect rname,Gnjpet0) = = NULL)
/* not found*/

12.10.3. Opening an Ex9ing Vetr File
The following routine oper the vector file nme in nupe for reading.

The vector file nme and nupse can be obtained interactively using
G-askectorold(p. 101) or G-askvector-inripset(p. lOl), aid non-interactively
using Gfindve ctor(p. 102) or G-findlvector2(p. 102).

FILE *

G-fopa-vector.old (name, mapet) open an eisting vector file

char *nam;
char *mapset;

Ths routine opens the vector file JnE in nupset for reading.

A file descriptor is return d if the open is successful. Otherwise the NULL
pointer is returned (no diagnostic nes e is printed).

Tle file descriptor can then be used with routines in the Dig Library to rea the
vector file. (See §13 Dig Library [p. 123].)

Note. This routine does not call any mutines in the Dig Librwy; No
initialization of the vector file is done by this routine, directly or irdirectly.

§12 GIS library

- 104- -104-

12.10.4. Creq6n and OpenimW New Vectr F1les

The following routin creates the new vector file nm in the curremt m.tOt and
opens it for writing. The vector file nwv should be obtained intera tively using
G-askvector.ew(p. 101). If obtained mn-interactively (e.g., from the commanr line),
Gilegal.flenanr(p.72) should be called fit to make sure tit im is a valid
GRASS file nme.

War7ft If nam already exists, it will be erased and re-created empty. The
interactive routine Gjask-vector-neu~p. 101) guarantees did naw will not exist, but if
Jun is obtaired from the command line, runae may exist In this case
Gfrdvector(p. 102) could be used to see if name. exists.

G-fopen-vetor-ew (nan n) open a new vector file

char *nme;

Creates and opens the vector file rmne for writing.

A file descriptor is retumed if the open is successful. Otherwise tie NULL
pointer is retuned (no dianostic nessage is printed).

TIe file descriptor can then be used with routines in the Dig Library to write the
vector file. (See §13 Dig Library [p. 1231.)

Note. This routine does not call any routines in the Dig Librcay; No
initialization of the vector file is done by this routine, directly or indirecty. Also,
only tie vector file itself (i.e., the dig file), is created. None of tie other vector
support files are created, removed, or modified in any way.

12.10.5. Reading and Wriing Vector Files

Reading and writing vector files is haniled by routines in the Dig Librwy. See §13
Dig Librcuy 1p. 1231 for details.

12.10.6. Vector Catry File

GRASS vector files have category labels associated with them The category file is
structured so that each category in the vector file can have a one-line description

.30 GRASS does't allow files to be cmated outside the current nmpot See §4.7 Database

Access Pades 1p 201.

§12 GIS Library

- 106- -106-

The routines described below read and write the vector category file. They use
Categories structure which is described in §12.17 GIS Ibrwy Data ructws fp. 1181.

Note. The vector category file has exactiy the sene struitre as the cell category file.
In fact, it exists so that the program vect.to.ceU can convert a vector file to a cell file
that has an up-to-date category file.

The routines described in §12.92.2 Querying and Changing the Categories Structure
[p. 92] which modify the Categories structure can therefore be used to set and change
vector categories as well.

GrvwLvtor_cats (name, upset, cats) read vector category file

char *name;
char *mapset;
struct Categories *cats;

Te category file for vector file nme in nxet is read into the cats stnxture.

If there is an error reading the category file, a diagmstic message is printed and
-1 is retuned. Otherwise, 0 is returnd.

G-wvitevetorcats (name, cats) urite vector category file

char *a ane;
struct Categories *cats;

Writes the category file for the vector file nare in the cu n1pset from the
Cats structure.

Returns 0 if successful. Otlerwise, -1 is ret -6d (no diagnostic is printed).

12.11. Site List Procesing
GRASS has a point database capabilitity called sites, which manages a database of
point or site informatiorL The sites program provides the majority of the analytical
capabilities within GRASS for site data The routines described here provide
programmers with nechanisrms for reading existing site list files and for crea ing new
ones. The reader shuld also see §7 Point Data t te List Files rp.391 for more details
about the site list files.

§ 12 GIS Libray,

- t(oo- -108.

The following routines interactively prompt the user for a site list file name. In each,
the prnw string will be printed as the first line of the full prompt which asks the
user to enter a site list file rune. If prmit is the empty sting '" then an appropiate
prompt will be s tutted. The mnae dtt the user enters is copied ink) the mme
buffer.3 1 These routines have a builtin 'lis capability which allows the user to get a
list of existing site list files.

The user is required to enter a valid site list file mn, or else hit the RETURN key to
camel the request If the user enters an invalid response, a nessage is prnted, and the
user is prompted agair. If the user carels the request, the NULL pointer is returmd
Otherwise the nmpset where the site list file lives or is to be created is returnd. Both
the rname ard the mapset are used in other routines to refer to the site list file.

char*
GMik-dtes-od (prompt nme) prompt for existing site list file

char *prompt;
char *nme;

Asks the user to enter the namn of an existing site list file in any mapset in the
database.

char *
G- te n qm t (prompt, rame) prorr for existing site list f/e

char *prompt;
clr *name;

Asks the user to enter the ame of an existing site list file in the cunent mapset

char
G-askdt~es-new (prompt, name) pronpt for new site list file

char *prompt;
char *nwme;

Asks the user to enter a ne for a site list file which does not exist in the
cument mapset

Here is an example of how to use these routines. Note that the progranmer must
handle the NULL return properly:

A The size of nanm should be large enough to hold any GRASS file nane. Most sys
rilow ftlp niunes M be quite long. It is recormmended that nane be declared char nane[50].

§12 GIS iUbrary

- 107- .107.

char *rmpeet
char min[501;

npset - G task-sites-old("Ertr site list file tD be procesed", nem);
if (nmpeet = = NULL)

exit(O);

1211 Opeing Ste Li& FUles
The following routines open site list files:

FILE *

G-foea-te%.new (name) open a new site list file

char *nme;

Creates an empty site list file nme in the current nmpset and opens it for
writing.

Returm an open file descriptor if successful. Otherwise, retLrn NULL

FILE*
G_f ein-Ates-old (nam, rmpset) open an exisin site list file

char *rme;
char *rmpset;

Opens the site list file rmme in nmps for reading.

Retuns an open file descriptor if successful. Otherwise, returm NULL

12.11.3. Readng aMd Wriling Ste List Files

G-get-site (fd, east, north, desc) read site list fie

FLE *fd;

double *east, ':north;
char **de;

This routine sets east and north for the next "poinCt from the site list file open
on file descriptor fd (as returned by G_fopen._sitesokM(p. 107)), a"d dc is set to
point to the description of the site.

Returns: 1 got a site; -1 no more sites.

For example:

§ 12 GIS Library

-108- -108-

double ea, nrth;
char *desc;
FILE *fd;

fd = G-fopeniaiteold (narn, rnp.et);
wlle (G-geLsite (fd, &east, &nrth, &desc) > 0)

pdirtf ("%If %If %sn", eat, noth, desc);

Note desc points to static memory, so each call overrides the description from
the previous call.

G_jmt te(fd, east, north, desc) wite site list file

FWZ *fd
double east, north;
char *desc;

Writes the east and nwth coordinates and site description desc to the site file
opened on file descriptor fd (as retumed by Gfopentsites jr(eu .107)).

12.12. Temporary HFes
Often it is necessary for programs to use temporary files to store information that is
only useful during the program rL After the program finishes, the infonriion in the
temporary file is no longer needed and the file is removed. Cornmrnly it is required
that temporary file names be unique from invocation to invocation of tie program It
would not be good for a fixed name like "/trp/rrytempfile" to be used. If the program
were run by two users at the same time, they would use the sae temporary file.

The following routine generates temporary file mines which are unique within the
program ard across all GRASS programs.

char .:
G-trqfie () ,etws a tenpoy file nare

This routine returns a pointer to a string containing a unique file rme that can be
used as a temporary file within the program Successive calls to G(tempfile()
will generate new names.

Only the file name is generated. TIe file itself is not created. To create the file,
the program mut use stadarad UNIX functions which create and open files, e.g.,
creat) or fopen().

The programmr should take reasonable care to remove (unlink) tW file before
the program exits. However, GRASS database management will eventually
remove all temporary files created by Gitempfile() that have been left behind by
the programs which created them.

§ 12 GIS Library

Note The temporary files are created in the GRASS database raher tm un__er /trp.
This is done for two reasons. The first is to increase the likelihood that enough disk is
available for large temporary files die /tmp may be a very snall file system The
second is so that abandoned temporary files can be automntically removed (but see the
warring below).

Wamkrng The temporary files me named, in part, using the process id of the progm.
GRASS data ngement will remove these files only if the program which
created them is no longer running. However, this feature has a subtle tap. Programs
which create child processes (using the UNIX fork)32 routine) should let the child
call G-tempfleo. If the parent does it and then exits, the child may find that GRASS
has removed the temporary file since the process which created it is no longer nmning.

1213. Command Lne Parsin
The following two routines provide a nechanism for comman line parsing. Use of
these routines will standardize GRASS conaixs t expect conind line
arguwents.

The routines are described first followed by a short example (on page 112) of their
usage.

G-pasew nmmul (argc, argv, keys, stash) pare con wmd line

int argc;
char *argv[];
struct Conmand-keys *keys;
int (*stash)();

This routine parses convr=A lines in any of the following fomvls:

commnd Lxduel walue2 Lvlue3 vcdue4
the options are in the conect positions

commarnd ualuel - - wdue4
the options are in the correct positions, where minuses (-) are
interpreted as "accept the default for this position"

connmand opt2=xdue2 opt4 =wdue4 opt3= xdue3 optl =zaluel
the options are in nixed order, but the correct position is
ascertained by looking for the "opt' string in the keys structure,
which contains the "correct' position for the option.

corrand mluel - opt4=zxdue4
a mixed form of the above formats

32 See aso Gfork(p 116).

12 GIS Libratry

-110- -110.

The comnml lire parameters wrgv and the numbter of paramters mrge from the
maid~) routine we~ passed directly tD Gpacomrnd 0.

The option names andi positions are specified in ky which is an arry of
Conmnd-ieys structure%, ded a:

stric CorzmmLkeys

char *siiaB;
irt podtior4

The keys army is terminated by a NULL alias. For example:
stnza Conrmlkeys keys[I

{"color', 2),
{NULL, 0)

Onc~e a position is detenined, either by actual position or by deduction, the
position nimtber and option value wre sent Wo the specified routine atm"), which
should "stash! the information somewhere for later use by the program. This
routine must be defined as

stash (position, value)
int position;
char *vale;

and returni 0 if the vahie is valid, 1 otherwise.

Gjxire-conmnd () returns the following codes:
1 There arm no argunients on the commndl line, or the first

argument is the word "belp"' (a usage messae is printed for the
user),

0 There were no errors on the comnmd line. (This doesrf t imply
that all pararneters were specified, just that those specified -were
valid).

< 0 There are errurs on the command line (nothing is printed for the
user).

§ 12 GIS librar

G..pmae.cnumxx~iw (prog=2n, keys, format) cormwi kmn usag rmssage

clw *pm~gya=f

stnrt CorrWL-keys *keyal-
int fonmt

Ths moutir prints a staxr usage rnessage for the jpagm (usually argvf 0])
based on the options described in the keys pamanter (whch is the sae as that
passed to G-pase-commnd(p. 109)). The forimt of the tniessage may either be
UTSAGESHORT for a ters fonn#, or UTSAGEJ-IONG for a longer fonnmt

§12 GIS Library

-112 - - 112-

Euan3Ie Tle Moiowing example parses a conmri whch expects two arguw ~ts a
name, "ix a color:

*include "gisN'

stnut ComnurKlkays keys[I

{"color", 2},
(NULM, 0)

static char nanm[5O];
static char colori5O];
static int have-iwr = 0;
slafic int have-color = 0;

static
stash(position, value)

int postion;
char *vle

switch (position)
f
case 1:

stmpy (naine, value);
have-name = 1;
netun 0;

cme 2:
stbrpy (color, value);
have-color = 1;
retLzn 0;

return 1;

rnain (arge, argv) char *arvt 1;

stat = G-parsecorndm (argc, argv, keys, 4t&*h;
if (stat != 0 11 !have-narre l!have-colorl

if (stt <= 0)
G-parse-sorrnanx-usage (argvf 0], keys, USAGELLONG);

excitl);

/* parsing compilete. ptmceed to finction irnpien-ntation.~

§12 GIS Library

- 113- -113-

a. Sirin Ma ilatkm Funcmw
This section describes some rutines which perform string mnipulation Stziigs have
the usual C mearing a NULL termnited arry of characters.

These next 3 routines copy characters from one sting to am4har.

char *
G_ sfrpy (dst, src) copy strings

char *dst, *src;

Copies the src string to dst up to and including the NULL which teminates the
sr strng. Retms ds

char *
G_srcpy (dst, src, n) copy stings

char *dst, *src;
int n

Copies at most n characters frm the mc string to dsL If sac contains less than n
characters, then only those characters are copied. A NULL byte is added at the
end of ds This implies that dst should be at least n+1 bytes.lorg. Returns dst

Note This routine varies from the UNIX stbxpy() in that Gstnrpy() ensures
that dst is NULL tennimted, while strncpy() does not

char *
G-sra, t (dst, src) concatentate sings

char *dst, *src;

Apperds the sc string to the end of the d string, which is then NULL
teninated. Returns dst

These next 2 routines remrove unwanted white space from a single string.

char *
G-sqexze (s) r7rreve wuneces.sa uite space

char Is;

Leading ard trailing white space is removed from the string s and internal white
space which is more than one character is reduced to a single space character.
White space here nas spaces, tabs, linefeeds, newlines, and formifeeds. Returns
s.

. 12 GIS Librry

-114- -114-

Gsrip (s) rerue leadrigbauining uhite space

char *s;

Leading and trailing white space is removed from tie string s. White space here
means only spaces and tabs. There is no return vale.

This next routie copies a string to allocated memory.

char *
G-tore (s) copy string to allocated trermry

This routine allocates enough memry to hlld the string s, copies s to the
allocated memory, axi returns a pointer to the allocat,. memory.

These 2 routines convert between upper anl lower case.

G-tolcase (s) convert string to louer case

char *s;

Upper case letters in the string s are converted to their lower case equivalent
Returns S.

G-toucase (s) convert string to qVer case

char *s;

Lower case letters in the string s are converted to their upper case equivalent
Returnssa

Axi finally a routine which gives a pfintable version of control characters.

char ':
G-u ri (c) printable version of contnl character

. unsigned char c;

This routine returns a pointer to a string which contains an English-like
representation for the character c- This is useful for non-printing characters, such
as control characters. Control characters are represented by ctrl-c, e.g., control A
is represented by ctrl-A. 0177 is represented by DELJRUB. Normal characters
remain urrhanged.

This routine is useful in combi,Aion with G-intrchar(p.117) for printing the
user s interrupt character:

§ 12 GIS Library

- 115- - 115-

char G-intr-chsri;
char *G-tnctr(;

prnf("Your intemrpt character is %sn" Gunct(GLir. chMr()));

Note Gjctrl() uses a hidden static buffer which is overwiittep from call to
call.

12.15. En nced UNIX Rou s
A nuirner of useful UNIX library routines have side effects which are sorne tis
undesirable. Tle routines here provide the sane functions as their correspording UNIX
routine, but with different side effects.

12.1M. Runif in the Badpotmnd
The stanlard UNIX fork() routine creates i child process which is a copy of the
parent process. The fork() routine is useful for placing a program into the
background. For example, a program that gathers input from the user interactively, but
knows that the processing will take a long time, might want to run in the background
after gathering all the input It would fork() to create a child process, the parent would
exit() allowing the child to continue in the background, and the user could then do
other processing.

However, there is a subtle problem with this logic. The fork() routine does not protect
child processes from keyboard interrupts even if the parent is no longer rtnning.
Keyboard interrupts will also kill backgrodnd processes that don't protect
thermselves.33 Thus a program which puts itself in the backgurd may' never finish if
the user interrupts another program which is nrming at the keyboard.

The solution is to fork() but also put the child process in a process group which is
different from the keyboard process group. Gfork() does this.

Profgnmns who use /bin/sh know tht prograrrs rn in toe background (usng & on the
command line) we not automatically protected fmm keyboard interrpts. To protect a
comnwxl that is nzi in die backgrourd, /bin/sh users rmst do nohup command&.
lrogranzrers who use the /bin/csh (or other variants) do not know, or forget that the C-shell
automatically protects backgrond processs from keyboard interripts.

§12 (IS Librry.

- 116- - 116-

G-fork() create a protected child process
This routine creates a child process by calling the UNIX fork) routine. It also
changes the process group for the child so tlt intemipts from the keyboard do
not reach the child. It does not cause the parent to exit(.

G-fork() retur what fork() returns: -1 if fork() failed, otherwise 0 to the child,
and the process id of the new child to the parent

Note. Interrupts are still active for the child. Intemipts sent using the kill
commamn, for example, will interrupt tte child. It is simply that keyboard-
generated interrupts are not sent to the child.

12.15.. Pafrially Intmrpble Systan Call
The UNIX system() call allows one program, the parent, to execute anther UNIX
command or program as a child process, wait for that process to complete, and then
continue. The problem addressed here corerns interupts. During the standard
systerm() call. the child process inheits its responses to intemrs from the parent
This mans that if the parent is ignoring intemipts, the child will ignore them as well.
If the parent is teminated by an internpt, the child will be also.

However, in some cases, this may not be the desired effect In a menu envimnment
where the parent activates menu choices by runing commands using the system()
call, it would be nice if the user could interrupt the command, but not terminate the
menu program itself. The Gsystem() call allows this.

G_sye (command) rui a shell level corrwwnd
The shell level connarl is executed. Interrupt signals for the parent program are
ignored during the call. Interrupt signals for the xmnmixl are enabled. The
interrupt signals for the parent am restored to their previous settings upon return

G__system() returns the same value as system(), which is essentially the exit
status of the cnm& See UNIX manual system(1) for details.

12.16. Miscelanms

A number of general purpose routines have been provided.

§ 12 GIS Library

-117- -117-

char *
GA " cwrent date and Ume

Retzrns a pointer to a string which is the current date and time. The format is
de sawit as that produced by the UNIX date commad .

Gg-gs (bur) get a line of inp&t (detect ctrl-z)

char *buf;

This routine does a gets () from stdin into WE It exits if end-of-file is detected.
If stdin is a tty (i.e., not a pipe or redirected) then ctrl-z is detected.

Returns 1 if the read was successful, or 0 if ctrI-z was entered.

Noe. This is very useful for allowing a program to reprompt when a program is
restarted after being stopped with a ctrl-z. If this routine returns 0, then the
calling program should re-print a prompt and call Ggets () again For example:

char buff 1024];

do {
printf(t"hter some input: ");

}while(! Ggets(buf);

char *

G-i i () user's horne directwy

Returs a pointer to a string which is the full path rme of the user's home
directory.

char
Ginrchar () return intemg char

This routine returns the user' s keyboard interrupt character. This is the character
that generates the SIGINT signal from the keyboard.

See also G(unctrl(p. 114) for converting this character to a printable format

G-pw rt (n, total, inr) print percent conplete nrssqges

int n;
int total;
it incr,

This routine prints a percentage complete message to stderr. The percentage
complete is (n/ tta)*100, and these are printed only for each ine percentage.
This is perhaps best explained by example:

§ 12 GIS Library

- 118- - 118.

#include <sdio.h>
it row;
int rim ww

nwws = 1352; /" 1352 is not a special value - example only*/
frpintf (Aderr, "Penent compiete: ");
for (row = 0; mw < nmws; mw++)

G-peroent (iow, nmws, 10);

This will print completion messaes at 101% incemet i.e., 10%, 20%, 30%,
etc., up to 100%. Each message does not appear on a new line, but rather eraes
the previous rmsmge. After 100%, a new line is printed.

char *
G-por anumn () retwn program narre

This routine retuns the name of the program as set by the call to Ggisinit(p. 64).

char *
G-whjni () user's narne

Return a pointer to a string which is the user' s login nme.

Gyes (question, default) ask a yea/o question

char *question;
int defaut

This mutine prints a question to the user, and expects the user to respond either
yes or no. (Invalid responses are rejected and the process is repeated until the
user answers yes or no.)

The defat indicates what the RETURN key alone should mean A d&fau of 1
indicates that RETURN nans yes, 0 indicates that RErURN means no, and -1
indicates that RETURN alone is not a valid resporse.

The quion will be appended with "(y/n) ", and, if ckfi l is not -1, with "Ly]
or "[n] ", depending on the dault.

G_yes () returm 1 if the user said yes, and 0 if the user said no.

12.17. GIS Library Data StrUctmes
Some of the data structues, defined in the "gis.h" header file and used by.mutines in
this library, are described in fhe sections below.

§ 12 GIS Ubra

-119- - 119.

12.17.1. srut CMha
The cell header data structre is used for two puposes. It is used for cell header
information for map layers. It also used to hold window values. The structure is:

&wct Cell-head

int formfft; n/* rmi of bytes per cell */
int compressed; t* conpiesSed() or nt conesed(O) *
int rows, cols; nunte of mws and colum *
int pmj; /* projection */
in zone; zone */
double ewres /* eastwest reslution */
double nsres; /* north-south nowlution */
double north t* rvxtbem edge */
double suth; ,/ suthem edge */
double east; t eastern edge */
double west; w* western edge */

The forma atn" compressed fields apply only to cell healers. The format field
describes the mimer of bytes per cell data value and the compressed field indicates if
the cell file is compressed or not The other fields apply both to cell headers and
windows. The geographic boundaries are described by north, south, east and uest.
The grid resolution is described by ew__es and nres. The cartographic projection is
described by proj and the related zone for the projection by zone. The rows and cols
indicate the nuber of rows and columns in the cell file, or in the window. See §5.3
Cell Header Forrat [.26 for more information about cell headers, a §9.1 Window
[p. 47] for more infomtfion about windows.

The routines described in §12.9.1 Cell Header Fde Lp. 89] use this stnuture.

12.17.2. strut Cteies
The category data strcture contains map layer title and category labels. It is used both
for cell files and vector files. The structure is:

§12 GIS Library

-120- -120-

struct egies
{

CELL ntr /* tntal numbe of categories */
char *title; a rne of data layer */
char *fn; /* prinlf-like fonmt to generate labels */
float ml; /* multiplication coefficient 1
float al; t" addition coefficient 1 */
float m2; /* nmltiplication coefficient 2
float a2; /* addition coefficient 2
satnct Caliat
{

CEL&L nun y A cateagry nruber */
char *label; A" catbegory label

} *lis
int court; A* number of labels allocated */

The Categories structure contains a tite for the map layer, the largest category in the
map layer (num), an automatic lel generation rule for missing labels (fint, ml, al,
m2, a2), and a list of category labels for count specific categories.

This stnxure should be accessed using the routines described in §12.9.2 Cell Category
File [p. 911.

12.17.3. sfruct Coim,

The color data structure holds red, green, and blue color intensitics for cell categories.
The structure is:

sruct Colors
{

CELL n-inr=; a nijnax color numbers */
uchar *red; red, green, blue (0-255) */
uchar *gin A" allocated as needed */
uchar *blu;

uchar r0,g,b, I" red, green, blue for cat 0 */

I,;

Except for category zero, the color intensities are stored in the (unsigrd char) arrays
red, gm and b1m The niinum and maximum categories which have colors are rrin
and nx.

The muuines described in §12.9.3 Cell Color Table ip.941 use this structure.

The mutine G-get-color(p.95) should be used to get individual colors from the
structure. However, for completeness, to find the colors for category rv

§12 GIS Library

-121- -121-

if (n != 0 && n >-- rnin && n <= rrm)
{

red[n-ffinI

bliu[nninl
}

The color for category zero is xpresented by rO, gO and bO.

12.17.4. swut I-mtory
The IIstory structure is used to document cell fies. The infonmation contained here
is for the user. It is not used in any operational way by GRASS The structure is:

#define MAXEILINES 25
#defir RECORDLEN 80

Artct IRstry
{

char rripid[RECORD_.L ;
char fitle R RDR SL1;
char xmpsetRECORD-LEW;
char creab foRFXRDLEN];
char nuptypeORDLENI;
char datmr-I[RECRDjEM;
char da s2[REXORDLEN;
char eywi[REC)ORDIS];
mt edlinecnt
char edhs RAXME 4 [RECORD_LEj;

The napid ard nvqst are the cell file rmne alnd mapset, title is the cell file tide,
creator is the user who created the file, ?raptype is the map type (which should
always be "cell"), datasrcl and datasrc_2 describe the original data source, keywrd
is a on-line data description and edhist contains edmecnt lines of user comments.

The routines described in §12.9.4 Ce// H-story Fie Lp.98] use this stnture. However,
there is very little support for manipulating the contents of this structure. The
progranver must manipulate the contents directly.

Note Sone of the infonmation in this structure is not meaningful. For example, if the
cell file is renamed, or copied into atrier mapset, the mapid and Mpset will no
longer be correct Also the title does not reflect the true cell file tide. The true title is
nvinmined in the category file.

Wmig This structure has remaired unchanged since the inception of GRASS.
There is a good possibility that it will be changed or elininated in future releases.

§ 12 GIS Library

-122 M -

The !ange strettre contains the minim and maxinimm values which occur in a cell
file. Te structure is:

stnut RM

CELL nnin ?I run negative */

CELL pmin; m* nin positive */
CEIL xw; /* rwx poivive */

Note that the range is divided into positive and negative ranges. The positive rarge is
represented by prrn and pmax, and the negaive rarge by nrnin and nnrmx. If tire
are no negative values in the cell file, then both nnin and nnx will be zem. Also if
there are no positive values in the file, then both pnin and prrx will be zero.

The following idiomatic expression is used to determim the full data range:

rrin winrirain : prin ;
rmx = pnx ? pn x : uirx;

The routines described in §12.9.5 Cell Range Fie [p.991 use this strucxture.

12.18. Loading the GIS Lirary
The library is loaded by specifying $(GISIB) in the Gakefile. The following
example is a complete Gndefile which compiles code thit uses this library:

Gnmkefile for $(GISLIB)
OBJ = nmn.o subl.o sub2.o

pgni $ o $(GISM)
$(CC) $(LDFLAGS) -o $@ $(OBJ) $(GISLIB)

$(GISLIB): # in caw the libray changes

See §11 Conpiling GRASS Prograr Using Gmake [p.55] for a complete discussion of
Gnukefiles.

12 GIS Ldbrary

-123- -1M,

Chit 13

Dig Liltary

13.1.
TheD Libvr y provides the GRASS progiamner with routines to process the binary
di&g vector files. It is assumed that the reader has read §4 Daitabase R ue [P. 5]
for a general description of GRASS databaes, aid §6 Vector Maps (p.311 for details
about vector files in GRASS

The routines in the Dig /brwy are presented in functionl groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
undemtanding of how the library is to be used, as well as show the inter-relationships
armong the various routineis Note that a good way to understard bow to use these
routines is to look at the soine code for GRASS programs which use than 1

Note. All routines and global variables in this library, documented or undocunnted,
start with the prefix dig_. 2 To avoid r~ne conflicts, programznrs should not create
variables or routines in their own programs which'use this prefix.

An alphabetic index is provided in §24.5 Appendx D. Index to Dig Iiwriy [p.2431.

13.1.1. Include e

The following files contain definitions ard stnctures required by some of the routines
in this library. The programner should therefore include these files in code flit uses
this library:3

1 Some of these pmgnvm are a.b.vect, b.a.Lect, Lect.to.cell, Dyect, Gpoly, Prnap, and

Vpatch.
2 Warning Th ema also 6 additiorl global variables and/or routines which do NOT

begin with this prefix: debugf, head, sarrpethresh, Linesin_Meory, MemnJinePtr, and
krrcar_.position.
3 Th' GRASS compilation pmcess, described in §11 Corpling GRAS t ogranr Using

CGnrd,, p .5.i. autotrntically tells the C compiler how to find this and other GRASS header files.

§13 Dig Library

-124- -124-

#incliuie "dglefinlinclude "dillifh

13.1.2. Veetw Arc Types
A complete discussion of GRASS vector tmninology can be found in §6.1 What is a
Vector Map Layer? L.31] and the reader should review tt section. Briefly, vector
data is stored as arcs representlig linear, area, or point4 features. These arc tpes are
coded as LINE, ARFA, and DOT respectively, (and are #def-med in the file
"e digdefines.h").

13.1.3. Leyes oAccess
There are two levels of read access to these vector files-

Level One provides simple access to the arc information contaid in the vector files.
There is no access to category or topology information at this level.

Level Tto provides full access to all the information contained in the vector file ard
its support files, including line, category, node, and area informalion. This level
requires more from the programnw, more memory, and longer startup time.

Note. The routines in this library which process arcs are named usin the word line.
They should be named using the word arc insmtea. Sce that would require modifying
a lot of existing code, the names have not been changed.

13.2. Levd One Read Access
Level One access allows the reading of arcs from a vector file. Most of the routines
require a file descriptor fd open to read a vector file, as returme by
G.fonpenvector-old(p. 103).

13.21. crdliai n wdnlmo

The following routines perform initialization and termination actions for Level One

4 Point data in vector files is not supported under GRASS 3.0, but there are plans to support
it in later versons. The mutines in this libmry are written with this upgrade in rrind.

§13 Dig Ubrary

vector access:
dloi (fd) &n/alim level one vector access

FUE *fd

Initialize for Level One access. The file descriptor fd is rewound, the header
infonmation is extracted and stored away, and fd is positioned to read the first ae
in the file.

Returns 0 if ok, or a negative value if error.

NoW This routine MUST be called before using any other Level One routines.

diyewixl (fd) ieuvnd vector file

FILE *f&

The file descriptor fd is rewound, the header information is extrated and stored
away, ard fd is positioned to read the first an in the file.

Note. This routine is the sane as digjnit(p. 125).

Re imr 0 if ok, or a negative value on errr.

dig-prinCied]er () diqlay vector header informtion

After calling d/ginit(p. 125), selected information from the vector 'le healer can
be printed to stdout using this routine.

Return value is undefind.

Warning It is permissible to have more than one vector file open for Level One
access. However, this routine prints the header information extracted by the
previous call to either digjnit(p. 125) or digeuind(p. 125).

dgii (fd) end level one vector access

FILE *fd;

Terninate Leel One access. To be called when finished accessing the vector file
with Level One mutines.

Return value is undefined.

Note This routine does not close the file descriptor fd. Use fclose() to close
the file descriptor.

§ 13 Dig Library

-126- -126-

1=..2 Bes&V Arcs
The next routines read arcs seqentially from the vector file.

99-reg(fd, np, x, y) get next am

FILE *fd
it *np;
double **x, **y;

The points constitAirg the next arc in the vector file open on fd ae read into
hidden aays. Pointers to these anays me placed in x ai y, axi np is set to the
number of points in the arc.

Retmii the arc type: LINE or AREA (as defined in "dig-definesh"), or -2 if no
more arcs, or -1 on error.

Noe The DOT type is skipped by this routine.

Note. The pmgramner must pass x and y as addresses of pointers. For example:

FILE *fd;
int rip;
double *x, *y;

dig-mad-next-line (fd, &np, &x, &y);

dig-x rxtJi type (fd, np, x, y, type) get next wr by type

FULE *f&
int 'np;
double **x, **y;
int type;

Sane as digreadnextjine(p. 126) except that it linits the search to the specified
type, which can be any combination of LINE, AREA, or DOT.

For example, to read the next LINE or AREA:
M'JE *fd;

int rip;
double *x, *y.

(igreadnext-linetAype (fd, &np, &x, &y, LINE I AREA);

Returns the arm type: LINE, AREA or DOT (as defined in "dig.defines.h"), or -2
if r more arcs, or -1 on error.

§ 13 Dig Librar

-127- .127.

digJbm (N, S K W) uit a erch in box

double N, S, E, W;

Define a window within which to search for arcs using
dig-adJinenbox(p.127). This allows the progranmar to limit the arcs
retrieved to those within the window specified by N (north), S (south), E (east),
and W (west).

The window mist have N> S and E> W.

Returns 0 if window is valid, or negative on error.

Nate. This routine does NOT change the position of the file pointer. In
particular, it does not rewind the file.

dgjmaJ-irejzJxx(fd, np, x, y) read arc in box

FIE *fd,
it *flp;
double **x, **y;

Same as dgead-next/Jine(p. 126) except that it only looks inside the bourding
box set by dig-init-box(p. 127).

Note This routine only ignores arcs which are completely outside the bourding
box. If any part of the a= falls within the bourding box, the entire art is read,
including the parts outside the box. No clipping is perfomed.

13.3. Level Two Read Access
This level provides full access to all the information contained in the vector file and its
support files. Arc, area, and node information is available, including the internal
iniexes for each entity, as well as category attributes.

The indexes are unique, and can be used to distirguish one area from another, or one
arc from another. Note, however, that different areas may have the same category
attribute (as may different arcs).

13.3.1. I niaIfrxrimnon

The following routines perform initialization and termination actions for Letvl To

§ 13 Dig Library

-128- -128-

vector access:
dig.jnt (miue, mpset, imp) zia level two vector access

char *rnwe;
char *nipset;
stuct Mapinfo *Map;

Initialize Level Thv read access to vector file mne in mapse This routine
opens any files it will need.

Retun value is urdefied. This routine will exit on any error and print a

desciption of the error.

Note. This routie MUST be called before calling any other Leel 71m routines.

g_.Pik (map) end level two Lector access

strct Map-jnfo *map;

Teminte Level 71v access for map This routine closes any files opened by
dig JPnit(p. 128).

dig UP pdose (map) tenporary close vector rmp

stmct MapJinfo *map;

Temporrily close access to nmop This is useful to free one open file while mt

needed.

Return is unlefired.

digP-tmp opm (map) reopen closed vector rmap

struct Mapinfo *map;

Reopen a nap that has been closed with digPJrp_c/ose(p. 128).

Return value is undefirnd. If n-ap->digit == NUL, then the call failed.

13.3.2. Area Retrieval

The following routines retrieve area informationL

§1:3 Dig, Iibrary

-129- 129-

digz.j. .a (map) get mtoer of areas

strct Map-info *map;

Retum total nmber of areas in the vector nmp

N The area indexes ae untmered from 1 to n, where n is the nnber of
areas in the vector file, as returned by this routine.

digPgetarlLxy (map, n, rp, x, y) get area polygon

struct Map-info *map;
intrn
imt *fnp;
double **x, **y;

Given ama index n, all tke points for the area are read into hidden arrays.
Pbirtes to these arrays ae placed in x ard y. Pbints are in clockwise order.
The pointers x a y valid until tle next call to this mutine.

Returns 0 if found, or negative on enrr.

N The programmr must pass x and y as addresses of pointers:

str'ct Map-info map;
intn, rrp;
double *x, *y;

digPgetama-xy (&nmp, n, &np, &x, &y);

diglgP_ -area (map, n, pa) get area polygon

struct Map-info *map;
int rX

PLAREA **pa;

Given area irdex n, the P_.AREA information for the area is read into a hidden
structure. A pointer to this structure is placed in pa. The pointer pa is valid
until the next call to this routine.

Returns 0 if found, or negative on ermr.

§ 1 I Pi I ibrary

-130- -130-

digP art.att (map, n) get area category altribute

struct Mup-info *mrap;
int n;

Given area index A, return its category rmrtr.

Retri 0 if nt an area or if ulabeled.

dig-P ar ax (map, A N, S E, W) get area bowxdW box

stnict Mapjrnfo *mlap;
int n
double *N, *S, *E, *W;

Given area index n, set N (north), S (south), E (east), and W (west) to tie values
of the bounding box for the area

Returns 0 if ok, or -1 on error.

13.3.3. Arc Pebieval
The following routines retrieve arc information

digPxumUhes (map) get nwrber of arcs

struct Map-info *mnap;

Retiuns total number of arcs in the vector nmxp

Note. The arc indexes are numbered from 1 to n, where n is the number of arcs
in the vector file, as returred by this routine.

dig._riIvm Te (map, 1% p) read ar

struct Map-ifo *map;
intrm
struct lire-pnts **p;

Given arc index n, the points for the arc are read into a hidden /ine-pnts
strucune. A pointer to this structure is placed in A The pointer p is valid until
the next call to this routine or to digJ'_read iext-line(p. 131).

Retwns the sam values as dig racLnextine(p. 126).

§ 13 Dig Library

- 131.- - 131 -

digP..re jdJ h (map, p) read net are

struct Mapnfo *map;
stnrt linepnts **p;

The points for the next arm in the vector np are read into a hidden inepnts
stncture. A pointer to this structure is placed in I The pointer p is valid until
the next call to this routine or to digP'eadine(p. 130).

Returns the same values a dgreadexaJine(p. 126).

digP-ewin (map) reuind next-arr pointe,"

struct Mapin.fo *map;

Resets the nextarc pointer to beginning of list. For use with
digPJreadnext/ine(p. 131).

Return is undefined.

diJJin,_qat (map, n) get arc category attribute

stuct Map-info *map;
intn;

Given arc index n, return its category number.

Returns 0 if not labeled or on error.

dig.PgdtJimebbax (map, n, N, S, FZ W) get arc boumdig box

struct Mapifo *map;
int n;
double *N, *S, *E, *W;

Given art index n, set N (north), S (south), E (east), and W (west) to the values
of the bounding box for the arc.

Returns 0 if ok, or negative on eror.

13.3.4. Area Amyss Tools
The following routines pmvide some area-related analyses.

§ 13 Dig Ubra-y

- 12l- - 132-

digpoinJ-.am (map, x, y) f area uith point

struct Mapinfo *map;
double x, y;

Retrr the index of the area containing the point xy, or 0 if none found.

double
dig-poitJlarea (map, x, y, pa) point in area

struct Map-info *map;
double x, y;
PAREA *pa;

Given a filled P-ARA structure pa, detemines if x,y is within the area The
structure pa can be filled with dig_P_get_area(p. 129).

Returns 0.0 if x~y is not in the area, the positive mimnitmm distance to the nearest
area edge if xy is inside the area, or -1.0 on error.

13.35. Arc Analyss Tools
The following routines provide some arc-related analyses.

dig._poi neoJine (map, x, y, type) find w uith point

struct Map-info *map;
double x, y;
char type;

Returns the irdex of the arc which is nearest to the point xy. The point x~y must
be within the arc' s bounding box. Set type to a conbinaion of LINE, AREA or
DOT (e.g., LINE I AREA), or (char)-1 if you want to search all ac tpes.

dig-duekdist (map, n, x, y, d) dstance to wr

struct Mapinfo *map;
intrM
double x, y;
double 'd;

Computes it the square of the minimum distance from point x,y to arc r.

Returns the number of the segment that was closest, or -1 on error. The segnent
nunber, in conbination with dig_.Pread_/ine(p. 130) can be used to determine the
end-points of the closest line-segment in the arc:

§13 Dig Lwary

.133- .133-

strut Mapinfo map;
double xy'd;
double xlylx22;

stnxt linepnts *p;

if ((s = digcheck-dist(&nAp, n, x, y, &d)) > 0)

dig-P-readlin (&nmp, n, &p);
xl = p->x[s-l];
yl = p->yts-l);
x2 = p->x[s];
y2 = p-?yis];

13.4. Writing Binary Dig fles
Tlv following routines are provided for import and export capbilities.

Note. TIe file descriptors required by these routires should be either open for writing,
or for reading, but rt for both writing and reading.

long
digWriteJine (fd, type, x, y, np) uxitL arc

FILE *fd
char type;
double *x, *y;
irt np;

Writes the are, defind by the np points in the x and y amys, to. the end of the
binary dig vector file open on file descriptor fd. he arc type must be one of
LINE, ARE4 or D(YT.

Returins the offset in the file where the arc was written. This offset can be used
with dig.Read-line(p. 133).

digJleadJir (fd, offset, x, y, np) read wr

FILE *fd;
long offset
double **x, *fy;
int *flp;

Seeks to the specified ofse on file descriptor fd and reads the arc which begins
them into hidden arrys. Pointers to these arrays are then placed into x and y and
Tp is set to the munber of points in the arc.

Return is the same as digead__nextjine(p. 126) from Level One.

§13 Dig library

-134- -134-

Note The progranmmr must pass xad y as addresses of pointers:

FILE *fd;
long offset;
mtnp;
double *x, *y,

digReadline (fd, offset, &x, &y, &rp);

d _ghewLdJ mry (fd, header) read vector header

FILE *fd;
struct dig-ead *tader,

Reads tie header from the binary dig vector file open on file descriptor fd. It
can be used to position fd ready to read the first arc in the file.

Currently only returmns 0.

Note If using Level One routines, it is unrecessary to call this routine.

dig-writh Ibiry (fd, header) uxite vector header

FILE *fd
struct di- *ader,

Writes the header information to the binary dig vector file open on file descriptor
fd This routine must be the first to write to a new vector file. After the header
has been written, arcs can be sequentially written to the file. It can also be used
to rewrite the leader inforrmation after the entire file has been written, if
necessary.

Currently only retuzw 0.

13.5. Miscelwmeous Tools

double
digd-_stanaQpoin(toJine (x, y, xl, yl, x2, y2) stamce to ine-segment

double x, y;
double xl, yl, x2, y2 ;

Computes the square of the mininum distance from point xy to the line-segment
xl,yl,x2,y2.

Retbis the distance squared.

§13 Dig Library

-135- -135-

double
digxyd_ e -pnt-to]i (xyxl,ylx2,y2) cistane to Me-mgmnt

double *x, *y;
double xl, yl, x2, y2;

Returns the square of the minimum distance fmm point xj to the line-segnmrn
xlylx2

Chages xy to the point on the segment xlyl4y2 which is closest to xy.

dig-p.run (p, threshold) prune a dense arc

struct line-pris *p;
double hreshod;

Given a filled Iinepnts structure p, prune it within the specified dtfshd This
function is used to reduce the mner of points needed to define an ar within a
given accuracy.

Rerns the new rnuer of points.

digboxunxlbx (p, N, S, , W) get arc bowinrg box

strut line-pnts *p;
double *N, *S, *E, *W;

Given a filled linepnts strixture p containing a list of XY coordirWes, compute
the bounding box of this list

Returns non-zero on error.

13.6. LOAi the Dig Lirary
The library is loaded by specifying $(DIGLIB)5 in the Gafkefile. Tl following
example is a complete Gmakefile which compiles code that uses this libray.

5 This variale was NOT defined in releases 3.0 and 3.OA. Flit the file
$GISBAS/sr/CMDAmkeJrrid and add the line: DIGL(C)Q/mapdev/lib'digtib.a at the
bottom of the file.

§13 Dig Library

-136- -136-

-nmkffie for $(DIGLB)
OBJ = rvLno subl.o ab2.o
EXTRAC.AAGS = -I&SRC)Armpdev/hb

pgn $(Q&D $(DIGL1B)
$(CC) $(LDM AGS) -o $@ $(OB) $(DIGUB)

$(DIGIUB): # in cse the hbry changes

Note EXTRACJFLAGS tells the C compiler where additional # include files are
located. This is necessary since le required #include files do not live in the nomal
GRASS #include directory.

See §11 Corrpiling GRASS Prograwn Using GnuJke [p.551 for a complete discussion of
Gmakefiles.

§ 13 Dig Ubrary

-137- -137-

Chapt 14

bg Law -y

14.1. Inrociim
The Iragery Library was created for version 3.0 of GRASS to support integrated
image processing directly in GRASS. It cont routines that provide access to the
group database structure which was also initroduced in GRASS 3.0 for the same
purpose.1

It is assumed that the reader has read §4 Database Sructure lp. 15] for a general
description of GRASS databases, §8 Irage Iata." Groups [p. 411 for a description of
imagery groups, arl §5 Grid Cell Maps [p.231 for details about map layers in GRASS.

The routines in the Imagery Librwy ae presented in functional groupings, rather than
in alphlbetical order. The order of presentation will, it is -hoped, provide a better
understanding of how the library is to be used, as well as show the inter-relatiornIips
anong the various routinies. Note that a good way to urderstand how to use these
routines is to look at the source code for GRASS programns which use tVM 2

Most routines in this ibrary require that the header file "imgery.h" be included in any
code using these mutinea 3 Therefore, progranmrs should always include this file
when wnting code using routines from this library:

#include "imagery.h"

This ealder file includes the "gis.h" header file as well.

Note All routines and global variables in this library, docunented or undocunnted,
start with the prefix 1_ To avoid narue conflicts, programniers should not create

I Since this is a new library, it is expected b grow. Iipefully, image analyss functions will
be added to complement the database functions already in the library.

2 See §8.4 Irgeiy Pwogtuns [p. 45 for a list of some imagery programs,

3 The GRASS compilation process, described in §11 Corrpiling GRASS Thograrns Using
Grmnke (p. 5.51, auomatically tells the C compiler how to find this and other GRASS header files.

§ 14 Irnvgry Library

.138- -138-

variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix E. Index to Inagery Librry Lo.2451.

14.2. Grou Procesing
The group is the key database structure which permits integration of image processing
in GRAS.

14.2.1. Pron kng fcr a GruVp
The following routines interactively prompt the user for a group name in the current
mapset 4 In each, the jxwit string will be printed as the first line of the full prompt
which asks the user to enter a group nane. If prompt is the empty string " ", then an
appropriate prompt will be substituted. The nane that the user enters is copied into
the group buffer.0 These routines have a builtin 'lise capability which allows the user
to get a list of existing groups.

The user is required to enter a valid group m n, or else hit the RETURN key to
camel the request If the user enters an invalid response, a message is prnted, and the
user is prompted again If the user camels the request, 0 is returned; otherwise, 1 is
retu:rre

LaAgwVop_ (prompt, group) prompt for an existire grOip

char *prompt;
char *group;

Asks the user to enter the name of an existing giou in the current mapset,

Iakgupnw (prompt, group) prorrpt for iew grotp

char *prompt;
char *group;

Asks the user to enter a name for a group which does not exist in the current
mapset

4 This library only works with gmups in the cunrent mapset Other mapsets, even those in
the user s arnpset search path, are ignored.

5 11 size of groip should be large enough to hold any GRASS file nane. Most systems
,llow file narmes I be quite long. It is recomiended that name be declared char groiv'50.

§14 Inag-y Library

- 139- - 139-

LLask pup-aw€ (prompt, group) pronx for ay Mid grow WrrM

char *pmp3vt;
char *group;

Asks the user to enter a valid grup nme. T group may or mray not exist in
the current mapset

Note. The user is not waried if the group exists. Ile programnr should use
Ilfmdgroup(p. 139) to determ if the group exists.

Here is an example of how to use these routines. Note that the programmer must
haxle the 0 return properly:

char group[50];

if (! Lask.gmupany ("Enter group to be processed", group)
exit(O);

142a FIlWing Groups in the Databse

Sometimes it is necessary to determin if a given group already exists. The following
routie provides this service:

I-Admgroup (group) does grow exist?

char *group;

Returs 1 if the specified group exists in the current mapset; 0 otherwise.

14.2.3. REF File

These routines provide access to the infomation contained in the REF file for groups
and subgroups, as well as routines to update this infornation They use the Ref
structure, which is defined in the "imagery.h header file; see §14.4 Irmgery Iibrwy
Data &9ructures tp. 1441.

The contents of the REF file are read or updated by the following mutines:

§14 Imgy Ibr-ary

-140- -140-

l m prd (group, ref) read grop REF file

char *group;
struct Ref *ref;

Reads the contents of the REF file for tihe specified groW irt the rd structre.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

I-p .grmouLr f (group, ref) uzt gro tq REF ie

char *group;
sbw(t Ref *ref;

Writes the contents of the ref structure to the REF file for the specified group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic emr).

Note. This routine will create the grouqp if it doesn't already exist

I-_subwWp.rd (group, subgroup, ref) read subgro W REF file

char *group;
char *subgroup;
sftnut Ref *ref;

Reads the contents of the REF file for the specified subgrop of the specified
grMp into the ref shwture.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

IputmArv _-rp (group, subgroup, ref) uxite subgml u REF file

char *group;
char *subgroup;
struct Ref *ref;

Writes the contents of the ref structure into the REF file for the specified
subgroup of the specified grop.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routir will create the subgrou, if it doesn't already exist

Thise next routines manipulate the Pef structure:

§14 Inmary Lixrary

-141- -141-

Ijxt...gijp.rd (ref) &ixiai &ef Senwture

struct Ref *rf;

This routine initializes the ref structure for other library calls which require a Ref
struture. This rouine must be called before any use of tie sructure can be
made.

Note. The routines Lget-groupreIp. 140) " I-getsubgroup_.re fp. 140) call this
routine automatically.

Iaiadfle-togroup..x (rmue, mapset ref) add fie nan to Ref siwtwe

char *name;
char *rmpset;
struct Ref *ref;

This routine adds tie file nme and n m io the list contained in the ref
stnrture, if it isn't already in the list. The ref strture must have been properly
initialized.

This routine is used by programs, such as i.mmlik to add to the group new cell
files created from files already in the group.

Returns the index into the file array within the ref struture for the file after
insertion; see §14.4 Inugery Library Data Structures (p. 144].

I_lrm egroup-r.file (srv, n, dst) copy Ref lists

struct Ref *sic;
intn
struct Ref *dst;

This routine is used to copy file nmes from one Ref structure to another. The
narm and mapset for file n from the src stntre are copied into tie dst strctre
(which must be properly initialized).

For example, the following code copies one Ref structure to another:

struxt Ref scds
int n;

' some code to get information intD sre /

Linitkgrupref (&dst);
for (n = 0; n < sm.nfiles; n++)

Lbwanergmup-Yeffile (&sin, n, &dst);

This routine is used by i.points to create the REF file for a subgroup.

§14 In Iay L'bray

-142- -142-

LAfrmprd (ref) free Ref s uwue
struct Ref *ref;

This routine frees memory allocated to the ref stnxtre.

14.24. TARGEt F&
The following two routines read and write the TARGET file.

Lgettarget (group, location mapset) read target irnfomrnion

char *group;
char *1ocation;
char *mapset;

Reads the target locatim and nxs 'from the TARGET file for the specified

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

This routine is used by i.points and i.rectify and probably shuldn't be used by
other programs.

Note- This routine does not validate the target infomation

Lpfmtarget (group, location, impet) usite target informtion

char *group;
char *location;
char *maet;

Writes the target locatim and nrraept to the TARGET file for the specified
grmw

Returns 1 if successful; 0 otherwise (but no error messages are printed).

T's routire is used by i.target and probably slxuldn't be used by other
programs.

Note- This routine does nt validate the target infonmation

§ 14 Imagry Lbr-ary

-143- -143-

14.5. POIWS Mie

The following routines read and write the POINTS file, which contains the image
regisnaeion control points. This file is created and updated by the program i.points, and
reMad by i.rectify.

These routines use the Control-Points structure, which is defird in the "imgey.h"
header file; see §14.4 Iragery Iibrary Data Strctures (p. 144].

Note The interface to the ControlPoints structure provided by the outims below is
incomplete. A routixe to initialize the structure is nLeded.

I&l- r flpaints (group, cp) read grotp control poirt

char *group;
struct ControlPoints *cp;

Reads the control points from the POINTS file for the groWp into the cp
structure.

Rebms 1 if successful; 0 otherwise (and prints a dignostic error).

Not An error message is printed if the POINTS file is invalid, or doesn' t exist

I-newmtrd~pit (cp, el, nl, e2, n2, status) add new control point

struct ControLPoints *cp;
double el, nl;
double e2, n2;
int status;

Once the control points have been read into the p structure, this routixe adds
new points to it The new control point is given by el (column) and ni (row) on
the irne, and the e2 (east) and n2 (north) for the target d-atase. The value of
status should be 1 if the point is a valid point 0 otherwise. 6

Use of this mur iniplies that the point is pmbably good, so stsas should be set tD 1.

§ 14 1Inwgery Library

-144- -144-

I-putOntr ix fits (group, cp) urite gro confrol poin

char *group;
struct ControLPoints *cp;

Writes the control points from the cp structure to the POINTS file for the
specified grWuW

Noe Points in cp with a negative status ae not written to the POINTS file.

14.3. Lovr the hrw y lirary
The library is loaded by specifying $(IMAGERYIJB) in the Gmakefile. The
following example is a complete Gnmkefile which compiles code that uses this library:

C-nakefile for $(IMAGERYLIB)
3OBJ= maio subl.o sub2.o

pgrrr $(OBJ) $(IMAGERYIEB) $(GISLIB)
$(CC) $(LDFIAGS) -o $@ V(OB $(IMAGERYLB) $(GISLIB)

$(IMAGERYIB): # in case the libry changes
$(GISLIB): # in case the libray changes

Note. This library must be loaded with $(GISUIB) since it uses mutines from that
library. See §12 GIS Librwy Lp. 63] for details on tit library.

See §11 Corpiling GRASS Progranm Using Gnrike (p.55] for a complete discussion of
Gmakefiles.

14.4. Inmgry Library Data Srwdure
Som of the data structures in the "imagery.h" header file are described below.

14.4.1. sruct Ref
The Ref structure is used to hold the information from the REF file for groups and
subgroups. The .tructure is:

§ 14 Ianery Lirary

-145- -146-

stnut Ref
{

int nfiles; /* rber of REF files */
strct Ref-FIles
{

char nare[30]; /* REF file nam *
char pst[30]; 1* REF file rmpset */

} *file;
struct RefColor
{

unsigned char *table; /* color tale for nrin-ax valu e /
ursgned char *jxtex; I* data translation irdex */
ungrd char *buf; data buffer for reading color file */
int fd; A* for iage i/o */
CELL min, max; in,mx CELL values *
int n; /* index intD RefJUles */

I red, grn, blu;

The Ref stucture has Nies (the mmber of cell ifies), fi/e (te rame and mpset of
each file), and redgMblu (color information for the group or subgroup 7).

Tlere is no function interface to the r#Ues and fi/e elements in the structure. This
means ti the pmrgramr must reference the elements of the strucTnre directly.8 The
rne and napset for the i th file are filni] . nae , and file[i].xrqset.

For example, to print out the raes of the cell files in the structure:

inti;
strut Ref ref;

/* some code to get the REF file for a group into re*/

for (i = 0; i < ef.nfiles; i++)
prinif ("%s in %s\n', reffile[i].narne, ref.file[i].mupse);

1442. strwt CunfitL& Vts
The Control-Points structae is used to hold the control points from th group
POINTS file. The structue is:

7 The redgmblu elements ate expected to change as the imagery code develops. Do not
reference them Pretend they don't exist

Ile ?#fes and file elements we not expected to change in the futtme.

§14 Ifiagery Lbr-ary

-146, -146,

stnx~t ControLIbints

int. court; nmbner of controlI points *
double *eI; t~image eas (colun)
double *nl; ~irnege north (row)
double *e2; tw aget east
double *n2; target with *
int *tt t ab of control point ~

The number of control points is count. Control point i is el [i], n1 [i], e2 [i], n2 [i],
andi its statu is status [i].

§ 14 Imngey Library

-147- -147-

Cbl tw 15

Raskr Graphk" Library

15.1. Tnhrdwdom
The Paster Graphics Librwy provides the prograrnmtr with access to the GRASS
graphics devices. All video gaphic cals are made trough tlis bry (diretly
cr imiireuly). No stanrd/portable GRASS video graplics program drives any video
display directly. This library provides a powerful, but limited nuter of graphics
capabilities to the programmer. The trmendous benefit of this approach is seen in the
ease with which GRASS graphics applications programn port to new machines or
devices. Because no device-dependent code exists in application programs, vitually
all GRASS graphics programs port without modification. Each graphics device must
be provided a driver (or translator program). At run-irne, GASS graphics progran
rendezvous with a user-selected driver program. Two significant prices are paid in this
approach to graphics: 1) graphics displays rnm significantly slower, and 2) the
progranrner does not have access to fancy (and sometimes more efficient) resident
library routines that have been specially created for the device.

This library uses a couple of simple concepts. Frst, there is the idea of a current
screen location There is mthing which appears on the graphics monitor to indicate
the current location, but many graphic cormmwais begin their graphics at this location
It can, of course, be set explicitly. Second, there is always a current color. Many
graphic commat-As will do their work in the curnently chosen color.

The pmgramrner always works in the screen coordinate system Unlike manry graphics
libraries developed to support CAD, there is no concept of a world coordinate system
The programmer must address graphics requests to explicit screen locations. This is
necessary, especially in the interest of fast raster graphics.

The upper left hand corrr of the screen is the origin The actual pixel rows and
columns which define the edge of the video surface are retum d with calls to

~screeneft(p. 150), R&.screen_-ite(p. 150), Rscreenbot(p. 15o), art
Rscreentop(p. 150).

Note All routines and global variables in this library, documented or undocumented,

§ 15 Ra9t Graphcs Libry

.148- -148-

start with the prefix RK. To avoid name conflicts, programmers should not create
variables or routires in their own program which use this prefix

An alphabetic index is provided in §24.5 Appendix G. Index to Paster Graphics
Lirawy Lp.249].

15.2. Cmneeang to the D
Before any other graphics calls can be made, a successful connection to a nning ard
selected graphics driver must be made.

R.oprtdrive () initialie graphics

Initializes connection to current graphics driver. Refer to GRASS User' s Manual
entries on the monitor command. If connection canrnot be made, the application
program sends a message to the user stating that a driver has not been selected or
could not be opened. Note that only one application program can be connected to
a graphics driver at ore.

After all graphics have been completed, the driver should .be closed.

R-dose-drivr () ternifte graphics

This routine breaks the connection with the graphics driver opened by
Ropenxdriver).

15.3. Cokrs
GRASS is highly dependent on color for disrtinguishing between different categories.
No graphic pattening is supported in any autontic way. There are two color modes.
Fixed color refers to set and imitable color look-up tables on the hardware device.
In some cases this is necessary because the graphics device does not contain
progranmir definable color look-up tables (LUT). Floating colors use the LUTs of the
graphics device often in an interactive mode with the user. The basic impart on the
user is that under the fixed mode, multiple maps can be displayed on the device with
apparently no color interference between maps. Under float mode, the user may
interctively manipulate the hardware color tables (using prograims such as d.colors).
Other than the fact that in float mode no nore colors may be used tn color registers
available on the usee s chosen driver, there are r other pmgramming repercussions.

§ 15 Puter Graphcs LIbray

-149- -149-

R-cikrtablefud () select fmd color table

Select a fixed color table to be used for ssequent color calls It is expected tflt
the user will follow this call with a call to erwe ar reinitialize the .ire
graphics screen.

Retms 0 if successful, non-zero if unsucessful.

Rk alfloet () elect floaxidW color table

Select a float color table to be used for subsequent color calls. It is expected that
the user will follow this call with a call to erase and reinitialize the entire
graphics screen

Return 0 if successful, non-zero if unsuccessful.

Colors are set using integer values in the rarge of 0-255 to set the red, green, and
bhe intensities. In float mode, these values are used to directly modify the hardware
color look-up tables and instantanously modify the appearance of colors on the
monitor. In fixed mode, these values modify secondary look-up tables in the devices
driver program so that the colors involved point to the closest available color on the
device.

RLreset-colr (red, green, blu, num) defie sigle color

unsigred char red, green, blue;
int nim;

Set color number nm to the intensities represented by red, get arA bm-

R..,esxcolors (min,mx,ed,green,blue) efne ?Tiple colors
int min, max ;
unsigrned char *red, *green, *blue;

Set color numbers nun through nux to the i ties represented in the arrays
re gre e and bho

R.color (color) select color

int color;

Selects the color to be used in subsequent draw conmirls.

§ 15 Rw" Grephcs Library

-150- -150-

Ritandjcxkl " (color) select smndard color

int color ;

Selects the stmrlard color to be used in subsequet draw commarxis. The cor
value is best reieved usirg DI late color(p. 167). See §16 Display Graphics
Library (p. 1591.

RJIGB-color (red,greenblue) select color

int red, green, blue ;

When in float mode (see R-color-tableloat(p. 149)), lis call selects the color
most closely nxtched to the red, gron, and blue intensities requested. These
values nmust be in tle range of 0-255.

15.4. Basic Graphics
Several calls are commnto nearly all graphics systems. Routines exist to determine
screen dimensions. as well as rutines for moving, drmwirg, and erasing.

Rsreen-lxt () bottom of screen

Returns the pixel mw numrber of the bottom of the screen.

R-swre -top () top of screen
Returns the pixel row number of tle top of the screen

R-saren-Jeft () screen left edge

Returns the pixel column number of the left edge of the screen

R-sremrite () screen tight edge

Returns the pixel column nuter of the right edge of the screen

Rinove-abs (x,y) rove cutrent location

int x, y;

Move the current location to tlh absolute screen coordinate xy. Nothing is
drawn on the screen.

§ 15 Raster Gr4*cs Library

-151- - 151-

Pmk ver (dxdy) nvte cwrent Iocadon

hit dx, dy,

sift the current screen location by the values in dx and c
Newx = Oldx + dx;
Newy = Oldy + dy;,

Nothing is drawn on the screen

R-eaiLabs (xy) &w line

int x,

Draw a line using the curent color, selected via R-coor(p. 149), from the current
location to the location specified by x,y. The current location is updated to xy.

R-cuntj (dxdy) &aw lie

int dx, dy,

Draw a line using the curment color, selected via &-color(p. 149), from the current
location to the relative location specified by dx a"d dy. The current location is
updated.

Newx = Oldx + dx,
Newy = Oldy + dy,

R-mx._abs (xl,ylx2,y2) fil a box

int xlyl;
irt x2,y2;

A box is drawn in the current color using tI coordimtes xyl ar x2,y2 as
opposite comers of the box. The current location is updated tox2y2

R_bwLrd (dx,dy) fil a box

int dx, dy,

A box is drawn in the current color using the current location as one comer and
the current location plus dx and dy as the opposite cormer of the box. 7he current
location is updated:

Newx = OIdx + dx;
Newy = Oldy + dy,

§ 15 Rastw Grq"ics Libray

.152- 152.

R.ame() eram screen

Erases the entire screen to black

R h() flush grqcs
Send all pending graphics connm s to the graphics driver. This is done
autonmtically when graphics input requests are made.

15.5. Moy Cans
In many cases strings of points are used to describe a complex line, a series of dots, or
a solid polygon Absolute and relative calls are provided for each of these operations.

R-PjxkAbs (xy,num) daw a series of dots
int *x, *y;
int ra

Pixels at tie mm asolute positions in the x and y arays we tmied to the
cunt color. The current position is left updated to the position of tr last dot

Rpobdoiaxel (xy,num) ctb a series of dots

t *x, *y,
int mm3;

Pixels at the mim relative positions in the x and y mays are tured to the current
color. The first position is relative to fr starting curent location; the succeeding
positions are then relative to the previous position. The current position is updated
to the position of the last dot

Rpoyg.Labs (x,y, m) &aw a closed polygon

int *x, *Y
int rn

The um absolute positions in the x and y arrays outline a closed polygon which
is filled with the cunet color. The cuent position is left updated to the position
of the last point

§15 Raskr GrWhcs Ubrmay

.153-

R-pciy d (xy,numn) drw_ a closed polygon

it *t, *y;
int nurrx

The mm relative positions in the x ani y arrays outline a closed polygon which
is filled with the currer color. The frst position is relative to the sarting cunent
location; the succeeding positions are then relative to the previous position The
cunent position is updated to the position of the last point

R-pobyimeabs (x,y,num) daw an open polygon
int *x, *Y;
intn ng,

The nm absolute positions in the x and y arrays are used to generate a multi-
segment fine (often curved). This line is drawn with the current color. The
cunwnt position is left updated to the position of the last point

Note. It is not assumed thet the line is closed, i.e., no line is drawn fmm the last
point to the first point

Rp-oiylmrd (xy,num) draw an open potygon
int *x, *y;

int nun

The um relative positions in the x and y arnays are used to generate a multi-
segment line (often curved). The first position is rlative to the strtirg current
location; the succeeding positions are then relative to the previous positionl The
curnt position is updated to the position of the last point This line is drawn
with the current color.

Nd No line is drawn between the last point and the first point

15.6. Raster Cals
GRASS, being principally a raster-based data system, requires efficient drawing of
raster information to the display device. These calls provide that capability.

§ 15 Rastr Gr#iics Lraty

-154- -154-

K-ra (nLIU wswiltlzetxoaseter) dw a rastr

imt num, mow, witdwn;
int*raster

Startixg at the current position, the rimm colors represented in the r amy ae
drawn for m consecutive pixel rows. The w1iw flag is used to indicate
wbettr 0 values we to be treated as a color (1) or should be ignored (0). If
igored, those screen pixels in these locations are ot modified. This option is
useful for graphic overlays.

RsetRGB-cokr (redgreen,blue) &iialize graphics

unsigred char red[256], green[256], blue[256];

The three 256 member arrays, red, gemm, and bh, establish look-up tables
which translate the raw image values supplied in RtGB ster(p. 154) to color
intensity values which are t en displayed on the video screen These two
comnmrds are tailor-nde for inaery data coming off sensors which give values
in the range of 0-255.

RJRGB-r r (nrowsedgreenblue,withzem) draw a raster

irt nurr, rows, withzer ;
unsigned char *red, *green, *blue;

This is useful only in fixed color mode (see R_.coIoi7table.fixed(p. 149)). Starting
at the cunent position, the unm colors represented by the intensities described in
the red, gree, and bhue arrays ae drawn for mrows consecutive pixel rows. The
raw values in tfhse arrays ae in the range of 0-255. They are used to map into
the intensity maps which were previously sent with R tJ-B color(p. 154). The
witzAero flag is used to indicate wlether 0 values are to be treated as a color (1)
or should be igmred (0). If ignored, those screen pixels in these locations are mt
nodified. This option is useful for graphic overlays.

15.7. Tet
These calls provide access to built-in vector fonts which may be sized and clipped to
the programmers specifications.

§ 15 Raster GrWMcs Lkrwy

- 1--1 -

R.sewinchow (top,bottbm,left,right) set text clippwig uindow

int top, bottom, left, right;

SQbseqtrlt Lalls to Ri xt(p. 156) will have text sthirgs clipped to the screen
wixdow defirmd by top, to Idt, rgbt

Rjmt (font) choose font

char *font;

Set current font to fbit Available fonts ae:

Fbnt Nam Description
cyrilc cyrillic
gothgbt Gothic Great Britain triplex
gotw Gotc Genmn triplex
gothitt Gothic Italian triplex

gre Greek complex
greekcs Greek conplex script
greek Greek plain

greeks Greek simplex
italicc Italian complex

italiccs Italian complex small

italict Italian triplex
rmra Ronwm complex
mmarns Ronmn complex mial
rmand Rorman duplex
rmanp Ronm plain

mnmns Romsimplex
mmant Ronm triplex

r Script complex
L ~ Script smplex

Rte&t ze (width, height) set text size
int width, height;

Sets text pixel width and height to width andixight.

§ 15 Rasr Grapics Librar

- 156- -156-

R-text (text) urite text

clmr *text;

Writes tet in the cunwt color and fon4 at the cunent text width and height,
startirg at the current screen location.

R Lted_.ux (text, top, bottom, left, right) get text extents

char *teXt ;
int *top, *bottomr, *eft, *right;

Tie extent of the area enclosing the text is retured in the integer pointers tV
bom; lt, and r it No text is actually drawn This is useful for capturirng
the text extent so that the text location can be prepared with proper background
or border.

15.8. Use Input
The raster library provides mouse (or other pointing device) input from the user. This
can be accomplished with a pointer, a rubber-band line or a rubber-band box. Upon
pressing one of three mouse buttons, the current muse location and the button pressed
are returned.

R-gveJocaftioLwithLpohta (nxnybutton) get rmuse location usin pointer

int *rD, *ny, *button;

A cursor is put on the screen at the location specified by the coordinate found at
the nx,rny pointers. This cursor trcks the mouse (or other pointing device) until
one of thee mouse buttons me pressed. Upon pressing, the cursor is removed
from the screen, the curmnt muse coordirtes are retured by the nx and ny
pointers, and the mouse button (1 for left, 2 for middle, and 3 for right) is
rebtned in the buttcm pointer.

R-gptocatkn-it_ ILE (x,ynxny,button) get rmouse location using a line

int x, y;
iit *nx, *ny, *button;

Smilar to Rget-location upointer(p. 156) except the pointer is replaced by a
line which has one end fixed at the coordinate identified by the xy values. TIe
other end of the line is initialized at the coordinate identified by the rwnr
pointers. This end then trcks the mouse until a button is pressed. TIe nouse
button (1 for left, 2 for middle, and 3 for right) is returned in the hitti pointer.

§ 15 Ras Graphics brary

-157- -157-

R...gIJocatim-wit&Ibx (xyjmj~nybutDn) get rws location using a box
intxy,
ji t *rl Y, *buttn;

Idenfical tD JRgetjocation-uith-ine(p. 156) execpt a rmbber-barxl box is used
instead of a rubber-bani line.

15.9. Loading the R~ Graphks Lirary
The library is loaded by specifying $(RASI'ERUB) in the Gimkefile. The following
example is a complete Gnakefile whch compiles code tkrt uses ths libray-

Gnmkefile for $(RASMERLIB)
OBJ = mama suabl.o sub2.o

pgr $(OBJ) $WPASRLUB) $(GILB)
$(CC) $LDFILAGS) -o $@ $(OBJ) $(RASIERIIB) $(GISLI

$(RASI'ERLEB): # in case the libramy changs
$(GISUIB): # in cawe the library changes

Note This library must be loaded with $(GISUB) sinc~e it uses jutines fi-m that
library. See §12 GIS Librwuy [p. 63] for details on that library'

Ths library is usually loaded with the $kDLSPLAYL1B). See §16 Display Graphics
Library [p. 159] for details on' that library.

See §11 Compiling GRASS Progranm Using Gnvike [p. .55,1 for a complete discussion of
Gnakefiles.

§ 15 Roba Grapiiks Library

-159- -159-

ClmpAw 16

Di~3ay Grqpm L9rr

16.1 Introduco(m
This library provides a wide assoinent of higher level graphics comms which in
tum use tl graphics raster library primitives. It is highly reconmxled that this
section be used to uinerstri how some of the GRASS 3.0 graphics commands
operate. Such programs like Dvect, Dgraph, and Dcell demstrate lw these routines
work together. Tl1 routines fall into four basic sets: 1) window creation ar
management, 2) coordinate conversion reoutines, 3) specialized efficient raster display
routines, ar 4) assorted miscellaneous mutines like command line parsing and line
clipping.

Note. All mutines and global variables in this library, documented or undocumented,
start with tlx prefix D_. To avoid rnm conflicts, programmers should not create
variables or routines in tlir own prograns which use this prefix.

An alphabetic irdex is provided in §24.5 Appenix F. Index to Display Graphics
Library [p.247].

162. Window Marag(ru
The following set of r,-ines creates, destroys, and otlerwise manages graphics
windows.

§ 16 Dis;ay Graphics Library

- 160- - 18)-

D-newwinxdw (rme, top, bottom, left, fight) creae new graphics uiuiw

char *rne ;
int top, bottDm, left, right;

Creates a new window mme with coordinates tp Ittmn, left, and right If
name is the empty string (i.e., *nm = 0), the routin reties a unique
string in name

D-secur_wimi (nae) set current graphics uindow

char *xxie;

Selects the window rmne to be tle current window. The previous current
window (if tere was one) is oulirned in grey. The selected current window is
oulirned in white.

D getctr_whd (rame) indeti5 crrent graphics uindow

char *1aame ;

Captures the name of the current window in string ne

D _qaMw-vMi ow (color) otlines current uindow

int color;

Outlines current window in cor. Appropriate colors are found in
$GJSBASE/src/D/libes/colors.h 1 and are spelled with lower-case letters.

DgrQAoerwixbduw (top, bottom, left, right) retrieve current uindow coordUntes

int *top, *bottorm, *left *figh1t;

Returns current window' s coordinates in the pointers top lxttonmi Idt, and Agi

D_dhmedmepwindvw (window) assigetrieve cwurent map uwndow

struct Cellead *window;

Graphics windows can have GRASS map windows associated with them. This
routie passes the map window to the current graplics window. If a GRASS
window is already associated with the graphics window, its information is copied
into wixkw for use by the calling program Otherwise winxow is associated
with the current graphics window.

$GISBASE is the directory where GRASS is installed. See §10.1 UNIX Thvironrnent

[p. 5in for details.

§ 16 DI*a Graph" Li-a-y

-161- .161-

D-resdsres vwixow (top, bottom, left, right) resets cwrent uindow position

int top, bottom, left, right;

Re-establisbes the screen position of a window at the location specified by top,
bottom W and Agbt

D_timest n() give current tine to uindow

Tinlstamp the current window. This is used primarily to identify which
wirows are on top of which others.

D_erasewindow () erase current uindow

Erases the wirow on screen using the currently selected color.

D-remvewindow () remove a uindow

Remove any trace of current window.

Ddear-window () clears infornrtion about current uindow

Remnoves all information about current window. This includes the map window
and the wirdow content lists.

16.3. Window Cmtntis M
This special set of graphics window managerent outines maintains lists of wirdow
contents.

D_ d_.toJist (string) add corrvmr to uindow display list

char siring ;

Adds string to list of screen contents. By convention, string is a commard
string which could be used to recreate a part of the graphics contents. This
should be done for all screen graphics except for the display of raster (grid cell)
ma- -,. T1e Dset-celnam?() routine is used for this special case.

§ 16 Display Graphics Library

- 162- - -162

D-tcelljramne (nme) acd cell f le nwW to dsp~ky i.

char *name ;

Stores thie cell file name in the infonmtion associated with the current window.

D-getcd!unwme (name) retrieve cell file nw

char *nme ;

Retuns the name of the cell file associated with the current window.

D.dearwhxlow () clear uindow display lists

Removes all display infomation lists associated with the curent window.

16.4. Coordinate Tranfornmtion Rouiiis
These routines provide coordinate tansformation information. GRASS graphics
programs typically work with the following three coordinte systen

Coordinate system Origin

Display screen upper left (NW)
Erth window lower left (SW)
Array window upper left (NW)

Display screen coordimtes are the physical coordin tes of the display screen and are
referred to as x and y. Earth window coordintes ame from the GRASS database
windows and are referred to as east and north, Array coordinates are the columns and
rows relative to the GRASS window and are referred to as column and row,

The routine Ddo-conversions) is called to establish the relationships between these
different systems. Then a wide variety of acconipaning calls provide access to
conversion factors as well as conversion routines.

D_ocmversicns (window, top, bottom, left, right) initialize conersions

start Celied *window;
int top, bottom, right, left;

TIe relationship between the earth window and the top botto n lft, and right
screen coordinates is established, which tlen allows conversions between all three
coordinate systems to be perfomed.

In the following mutines, a value in one of the coordinate systems is converted to the
equivalent value in a different coordinate system. The routines are named based on
the coordinates systems involved. Display screen coordinates are represented by d,

§ 16 Display Graphic Library

-163- -163-

array coordinates by a, and earth coordinates by u (which stands for 11M.

double
D_u-to-axrow (north) earth to aray (nort)

double north ;

Retun's a row value in the array coordinate system when provided the
conesponding north value in the earth coordinate system

double
Duato-a-col (east) earth to array (east)

double east;

Returns a column value in tl array coordinate system wln provided the
corresponding east value in the earth coordinate system.

double
Dato_-rw (row) array to screen (rowi

double row;

Returns a y value in the screen coordinate system when provided the
corresponding row value in the army coordinate system.

double
D_ato-dcol (colun) array to screen (colurm)

double colum;

Retrns an x value in tl screen coofrdinate system when provided tle
coresporxling colunm value in the array coordinate system.

double
D_.to-d-row (rl)rth) earth to screen (north)

double rorth;

Returi a y value in the screen coordinate system when provided tke
corresponding north value in the earth coordinate system.

§16 Dispay Grapfics Lbrary

-164, -164-

double
D-u-todci (east) earth to screen (eat)

double east;

Returns an x value in tie screen coodimte system when provided the
corresponding e1A value in the earth cooninate system.

double
D-dto uurow (y) screen to earth (y)

double y;

Returns a north value in the earth coordinate systam wien provided tie
correspording y value in the screen coordinate system

double
Ddtoxco (x) screen to earth (x)

double x ;

Returzs an east value in the earth coordinate system when provided the
corresonding x value in the screen coordimte system.

double
DAAo-airow (y) screen to array (y)

double y ;

Returns a row value in tle array coordinmte system wlen provided
conesponding y value in fi screen coordine system

double
Ddtoa__cd (x) screen to array (x)

double x ;

Returns a colurn value in th array coodinede system wlen provided the
corresponding x value in the screen coordimte system

If the above routines prove too inefficient, the programnrr can examine dv source
code for these routines to see how the conversions are done and create new conversion
routines.

1&5. Rster Grapliks
The display of raster graphics is very different from the display of vector graphics.
While vector graphics routines can efficiently make use of world coordinates, tie
efficient rendering of raster images requires the programnmr to work within the

§16 DitLW C A-4 L ib

coordinate system of the grap ics device. These routines make it easy to do just that.
The application of thse routines may be inspected in such commas a combine a
ueight which, under the user's option, display graphics results immediately to the
screen.

D-cdLdraw-setup (t0p, bottomn left right) prepare for raster grapcs

int top, bottom left, right ;

The raster display siiysem establisbes conversion parameters based on the
screen extent defined by top bottm, ld, and right, all of which are obtainable
from D-get..xreen-uindow(p. 160) for the cunent window.

D_drawjcdb'ow (row, rster) ren&r a raster row

int row ;
CELL *raster;

The row gives the map away row. Te ruA awray provides the categories for
each map grid cell in that row. This routine is called consecutively with the
information necessary to draw a raster image from north to south No rows can
be skipped. All screen pixel rows which represent the cunent map array row are
rendered. The routin returns the map array row which is needed to draw the
next screen pixel row.

D_owvrhaydELxow (row, raster) render a raster row uithout zeros

int row ;
CELL *raster;

Equivalent to Ddraw-cellrow() except that locations with category 0 are left
urtucbed, rather than being covered with the color for category 0.

166. Window Clipping
This section describes a routine which is quite useful in many settirgs. Wirow
clipping is used for graphics display and digitizing.

§ 16 Display Graphics Libr-y

- 166-- 166-

D-dip (s, A w, e, x, y, cx, c-y) clip coordlras to uindow

doubles, n, w, e;
double *xl, *yl, *x2, *y2;

A line represented by the coordinates xly and x2,y2 is clipped to the window
defined by s (sout), n (north), w (west), and e (east). Note flit the following
corsfraints must be true:

w<e

s <fn

The xIl d z2 are vales to be comaed to w ani e The yl ad y2 e values
to be compared to s and n.

The xl and x2 values returnd lie between w and e The yl and y2 values
retmred lie between s and nL

16.7. Pop-up Mens

D_.popup (bcolor, tcolor, dcolor, top, left, size, options) pop-v nwnu

int bcolor;
int tcolor;
int dcolor;
int left, top;
int size ;
char *options[;

This mutie provides a pop-up type nenu on the graphics screer For examples
of how to use this routine see the soine code for the GRASS 3.0 display
pmgran 2 The blor specifies the background color. The tcdkir is the text
color. The &dr specifies the color of the line used to divide the nenu items.
The top and left specify the placement of the top left cormer of the menu on the
screer 0,0 is at the bottom left of the screen, and 100,100 is at the top right
Th size of the text is given as a percentge of the vertical size of the screen
The options array is a NULL terninated array of character strings. The first is a
menu title and the rest are the nenu options (i.e., options[0] is the menu title, and
options[1], options[2], etc., are the menu options). The last option must be the
NUIA, pointer.

The coordinates of the bottom right of the menu are calculated based on the top
left coordinates, the 4ze, the nuner of opfiavs and the longest option text
length If rcessary, the menu coordinates are adjusted to make sure the menu is

2 The sotne code for display is under $GSBASE/c/D/prg-inter/display.

§ 16 Di&iy Grapkfcs Library

-16/7- - 167.-

on th screen

D..popup() does the followinrg.
1 Curment screen contents urler the nmnu are saved.
2 Area is blanked with the background color and fringed with the text color.
3 Menu options are drawn using the current font
4 User uses the mouse tD choose the desired option.
5 Menu is erased and screen is restored with the original contents.
6 Nunber of the selected option is retunnd to the calling program

16.8. C ors
D-reset&cokm (colors) set colors in &iver

struct Colors *colors;

Tum. color informaion provided in the cala structure into color requests to the
graphics driver. These colors are for raster graphics, not lines or text See
§12.9.3 Cell Color Table rp. 94] for GIS Library routiones which use this stnuture.

D_Etramlacokr (rre) color nwre to nmber

char *name;

Takes a color name in ascii and returns the color number for tha color. Returs
0 if color is not known The color mner retuned is for lines and text, not raster
graphics.

16.9. LoxdV the Display Graphics Library
The library is loaded by specifying $(DISPLAYLIB), $(RASTERL[B) and $(GISLIB)
in the Gnxkefile. The following example is a complete Gmakefile which compiles
code that uses this library:

§16 Disoay Graphics librmry

-168- -168-

OBJ = nxino ai,1.o ajb2.o

pgrnx W(OWJ $DISAYL1B) $&akSI ERI~B) $4GIL9B
$(C) $2LDFIAG) -o $@ V(OWJ $(DL 'LAYIB)N

$(RASI'ERLIB) $(GISLJ)

$DM AYUIB): *mi cas th libiny changes
$(EAS1'ERLIB): # in. case the library changes

$(GISLIB# in case the lx-ray changes

Note Tlis library uses irounebi in $(RAgPERLIB3). See §15 Raster Graphics Libray
Lp. 1471 for detais on fl-ct library. Also $(RASIERLIB) uses Mius in $(GLSUB).
See §12 GIS Iibrcy [p. 63] for details on tk~t libraiy.

See §11 COnroidzng GRAS Prmgra" Using Gnvlke [p. 55] for a complete discussion of
Gimkefiles.

§ 16 Disoay Graphics Library

-169- -169-

Cbeptw 17

Lock Lfrary

17.1. I o m
This library provides an advisory locking mechanism It is based on the idea that a
process will write a process id into a file to create the lock, and subsequent processes
will obey the lock if the file still exists and the process whose id is written in the file
is still nming.

17.2. Lock Rmd Synopses
lockjie (file, pid) create a lock

char *file;
int pid;

This routine decides if the lock can be set and, if so, sets the lock If file does
not exist,- the lock is set by creating the file and writing the pid (process id) into
the file. If fie exists, the lock may still be active, or it may have been
abandoned. To determine this, an integer is read out of the file. This integer is
taken to be the process id for the process which created ihe lock If this process is
still mnning, the lock is still active and the lock request is denied. Otherwise the
lock is considered to have been abaidoned, and the lock is set by writing the pid
into the file

Return codes:

1 ok, lock request was successful
0 sorry, another process already has the file locked

-1 enor. could not create the file
-2 error. could not read the file
-3 error could not write the file

§17 Lac* Lihary

-170- -170-

tmlodfc (file) rerme a lock

clar *fle;

This routine releases the lock by unUndng file. This routie does NOT check to
see that the process unlocking the file is the one which created the lock The file
is simply unlinked. Programn should of course unlock the lock if they created it
(Note, however, tlt the meclnism correctly harxles abandoned locks.)

Return codes:

1 ok lock file was removed
0 ok lock file was never there
-1 error. lock file renained after attempt to remove it

17.3. Use and Limitations
It is worth noting that the process id used to lock the file does not have to be the
process id of the process which actualy creates the lock It could be the process id of
a parent process. The GRASS start up shells, for example, invoke an auxiliary
"locking' program that is told the file name and the process id to use. The startup
shells simply use a hidden file in the user s hoen directory as the lock file,1 and their
own process id as the locking pid, but let the auxiliary program actuay do the locking
(since the lock must be done by a program, not a shell script). The only consideration
is that the parent process not exit and abandon the lock

Waning Locking based on process ids requires that all processes which access the
lock file run on the sane cpu. It will not work urier a network environment since a
process id alone (without some kind of host identifier) is not sufficient to identify a
process.

17.4. Loaming the Lock Library
The library is loaded by specifying $(LOCKLIB) in the Gnmkefile. The following
example is a complete Gmakefile which compiles code that uses this library.

This file is gislock urder GRASS 3.0.

§17 Lock Library

-171- 11

Gzrukefile for $(LOCKUJB)
OBJ = niro aibl.o axb2.o

pgr $(OBJ $(LOCKLIB)
$(OC) $(.TDFAGS) -o $@ V(OW $(DLOKI)

$(LOG1LXB): # in cas the libray changes

See §11 Compoiling GRASS Programs Using Gnzk Lp. 551 for a complete discussion of
Grmkefiles.

§ 17 [-a* Library

-173- -173-

Chaptw 18

Rowio Lary

18.1. inrdudtim
Sometimes it is necessary to process large files which contain data in a natrix format
andi keep more than one row of the data in mmry at a time. For example, suppose a
program were required to look at five rows of data of input to produce one row of
output (neightorhood function). It would be necessary to allocate five memory buffers,
read five rows of data into them, and process the data in the five buffers. Then the
next row of data would be read into the first buffer, overwriting the first row, and tie
five buffers would again be processed, etc. This memory managenent complicates the
programming somewhat and is peripheral to the function being developed.

The Rouio Lbrary routines handle this memry manWgement These routines need to
know the number of rows of data that are to be held in memory and bow mny bytes
are in each row. They must be given a file descriptor open for reading. In order to
abstract the file i/o from the renry manger nt, the programmer also supplies a
subroutine which will be called to do the actual reading of the file. The library
routines efficiently see to it that the rows requested by the program are in memory.

Also, if the row buffers are to be written back to the file, there is a mechanism for
handling this management as well.

Note All routines and global variables in this library, documented or undocumented,
start with the prefix rowio. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic irlex is provided in §24.5 Appendix H. Index to Rouio Libwy [p.2511.

§ 18 Rowio Library

-174- -174-

1M2. Rowio Ridte Synmpses
The routins in the iouio Library ae described below. They use a data strucive
called ROWIO which is defined in the header file "rowioH' f+t must be included in
any code using these routines:1

#include "rowio.h"

rowiosxtup (r, fd, nrows, len, getrow, putrow) cor(lure rouio strtwe

ROWIO *r
imt fd, nrws, len;
int (*getrow)();
it (*pulrow)();

Rowio-seup() initializes the ROWIO structure r and allocates the required
memory buffers. The file descriptor fd must be open for reading. The numner of
rowb to be held in memory is rrov The length in bytes of each row is lem.
The routine which will be called to read data from the file is ge~ow() and must
be provided by the pmgramner. If the application requires that the rows be
written back into the file if changed, the file descriptor fd must be open for write
as well, and the progranmrer must provide a imwo routine to write the data
into the file. If no writing of the file is to occur, specify NULL for puftrW).

Retum codes:

1 ok
-1 there is not enough memory for buffer allocation

The ge fro) routine will be called as follows:

getrow (fd, buf, n, len)

int fd,
char *buf;
int n, len;

When called, grov) should read data for row n from file descriptor fd into buf
for kli bytes. It should return 1 if the data is read ok, 0 if not

The urmrow() rotine will be called as follows:

The GRASS compilation pmces, described in §11 Conpiling GRASS Progrrzrs Using

G ike (p. 551J, automacally tells the C compiler how to find this and other GRASS header files.

§18 Hraio Library

-175- -175-

putmw (fd, buf, n, len)

int fd;
char *buf;
intn, len;

Whencalled, pubshn should write data for rown to file descriptor fd fhm buf
for le bytes. It should retum 1 if the data is written ok, 0 if mt

char *

rowio-get (r, n) read a row

ROWIO *r
intr

Rowio-geto() retuns a buffer which holds the data for row n from the file
associated with ROWIO stucture r. If the row requested is not in memory, the
grovW) routine specified in rouio-setup(p. 174) is called to read row n into
memory and a pointer to the memory buffer containig the row is returned. If
the data currently in the buffer bad been changed by rouzoxput(p. 176), the
ptrow) routime specified in rouo_.seftp(p.174) is called first to write the
changed row to disk If row n is already in memory, no disk read is done. The
pointer to the data is simply retumie.

Return codes:

NULL n is negative, or
g)b-ow(returned 0 (indicating an error condition).

!NULL pointer to buffer containing mwn

rio forge (r, n) forget a row

ROWIO *r
int n

Rowiojforget() tells the routines that the next request for row n must be satisifed
by reading the file, even if the row is in memory.

For example, tis routine should be called if the buffer returned by
rouioget(p. 175) is later modified directly without also writing it to the file. See
§ 18.3 Rouio Programning Considerations [p. 1761.

§18 Rowo Lfiary

- 176- - 176-

rOwioffle (r) get file rkriptor

ROWIO *r

Rowioifileno() etirm the file descriptor associated with the ROWIO structre.

rowio.rdease (r) free allocated yeimry

ROWIO *r

Rowio-relese() frees all the memory allocated for ROWIO structure r. It does
not close the file descriptor associated with the stnxture.

rowio-pit (r, buf, n) usi a row

ROWIO *r
char *buf;
intn

Rowio-put() writes the buffer buf which holds the data for row n, into the
ROWIO structure r. If the row requested is currently in memory, -the buffer is
simply copied into the structmre and mmked as having been changed. It will be
written out later. Oftkrwise it is written immediately. Note that when the row is
finally written to disk, the puow() routine specified in rouoetq(p.174) is
called to write row n to the fie.

rowio-jh (r) force pening ipktes to disk

ROWIO *r

Rowioflush%) forces all rows modified by rouioput(p. 176) to be written to the
file. This routine must be called before closing the file or releasing the rowio
stnxture if rowio-put() has been called.

18.3. Rowio Pmgrnming Codeations
If the contents of the row buffer retured by rowio-geto are modified, t
programmer must either write tit modified buffer back into the file or call
rowio-forget). If this is not done, the data for ie row will not be correct if
requested again The reason is that if the row is still in memory when it is requested a
second tine, the new data will be retuard. If it isr' t in memory, the file will be read
to get the row and the old data will be returned. If the modified row data is written
back into the file, these routines will behave correctly and can be used to edit files. If
it is not written back int the file, rowio-forget() must be called to force the row to be
real from the file when it is next requested.

Rowio-get) returns NULL if getrow() returns 0 (indxicating an ermr reading the file),
or if the row requested is less than 0. TIhe calling sequence for rowio-get() does not
permit error codes to be retur td. If error codes a needed, they can be recorded by

§18 Rowio library

. 177- -177-

getmw() in global variables for t rest of the prgram to check

1& Loading the Rowio Lirary
The librmy is loaded by specifying $(ROWIOLIB)2 in the Gmakefile. The following
example is a complete GMkefile which compiles code that uses this libry.

Gnakefile for $(ROWIOLTB)
OBJ = mainmo subl.o sub2.o

pgmn $(OBJ) $(ROWIOLB)
$(CC) $(LDFIAGS) -o $@ $(OBJ) $(ROWIOLIB)

$(ROWIOIB): # in case the ibrwy charges

See §11 Conpiling GRASS Program Using Grmke rp.55] for a complete discussion of
Gmakefiles.

2 This variable was NOT defined in releaes 3.0 and 3.A Edit the file

$1SBAsrCMDAni.ke .id and add the line ROWIOLIIB4(LMDR)rowio.a at the
bottom of the file.

§18 Rowio Lmry

-179- -179-

Chapter 19

-emn lirary

19.1. Infrodudim
Large data files which contain data in a matrix format often need to be accessed in a
norn-sequential or rariom manner. This requirement complicates the programming.
Methods for accessing the data are to:

(1) read the entire data file into memory and process the data as a two-
dimensional mabi ,

(2) perform direct access i/o to the data file for every data value to be accessed,
or

(3) read only portions of the data file into memory as needed.

Method (1) greatly simplifies the programrming effort since i/o is done once and data
access is simple army referencing. However, it has the disadvantage that large
anounts of menory may be required to blld the data The memory may not be
available, or if it is, system paging of the program may severely degrade performance.
Method (2) is not mich rwre complicated to code and requires no significant armunt
of merrory to hld the data But the i/o involved will certainly degrade performance.
Method (3) is a mixture of (1) and (2). Memory requirements are fixed and data is
read from the data file only when not already in memory. However the programig
is more complex.

The routines provided in this library are an implementation of method (3). They are
based on the idea that if the original matrix were segmented or partitioned into smaller
matrices these segrments could be managed to reduce both tie mermory required and
the i/o. Data access along conrected paths through the matrix, (i.e., moving up or
down one row and left or right one column) should benefit

In mrost applications, the original data is not in the segmented formaL The data must
be transformed from the non-segmented format to the segmented format This means
reading the originial data matrix row by row arnd writing each row to a new file with
the segmerntation organization. This step corresponds to the i/o step of method (1).

§ 19 Semt library

-180- -180-

Then data can be retrieved from the segment file throgh routines by specifying the
row and column of the original mtrx Behidx the scenes, the data is paged intD
memory as needed and the requested data is retmrd to the caller.

N All routines and global variables in this libraty, documented or urdocumented,
start with the prefix segment. To avoid nme conflicts, progranmrs should not
create variables or routines in their own programs which use this prefix.

An alphabetic irilex is provided in §24.5 Appendix I. Index to Sgrmrnt Library [p.253].

192. S nst Routhm
The routines in the Segment Library are described below, more or less in the order
they would logically be used in a program They use a data structure called
SEGMENT which is defire in the heer file "segmenth" that must be included in
any code using these routines:1

#include "segmenth"'

The first step is to create a file which is properly formatted for use by the Segment
Library routirs

segmenmftrnw (fd, nrows, ncols, sows, scols, len) formt a segrent file

int fd, nrows, ncols, srows, scols, len;

The segmentation routines require a disk file to be used for paging segments in
and out of memory. This routine formats the file open for write on file descriptor
fd for use as a segment file. A segmen fi:e nust be fomtted before it can be
processed by other segment routines. ThI configuration parmanters nr, iuoK
sruto sco, a"d ln are written to the beginirg of the segment file which is
then filled with zeros.

The correspording non-segmented data matrix, which is to be transfened to the
segment file, is iuwm by nook The segment file is to be fonned of segments
which ar sre s by swks The data items have length kIn bytes. For example, if
tha data type is int, kln is sizeofgint).

Retum codes are: 1 if ok; else -1 could not seek or write fd, or -3 illegal
configuration paranter(s).

The next step is to initialize a SEGMENT stniture to be associated with a segment
file formtted by segmentformat(p. 180).

I The GRASS compilation process, described in §11 Conpi'ng GRASS Programs Using
Gnize [p. 5.5!, automatically tells the C compiler how to find this and other GRASS header files.

§ 19 Segnt Libray

-181- - 181 -

segmmt.jit (seg, fd, nsegs) &itii Segnit arnetwe

SEGMETr *ser,
int fd, negs;

Initializes the seg struure. The file on fd is a segment file created by
segmentformat(p. 180) and must be open for reading and writing. The segment
file configumion parameters nrous, ncols, srows, scols, and len, as written to
the file by segrnntfbrzm p. 180), ae read from the file and stored in the seg
structure. Nsew specifies the number of segimnts that will be retained in
nmn~ry. The ninimunm value allowed is 1.

Note. TIe size of a segment is scols*srous*len plus a few bytes for imnaging
each segnmnt

Return codes are: 1 if ok; else -1 could mt seek or read segment file, or -2 out of
mory.

Then data can be written from another file to the segment file row by row:

segtxzturow (seg, buf, row) uaite row to segnent file

SEGMENT *seg,
char *buf;
int row,

Transfers non-segmented matrix dam, row by row, into a segment file. Seg is the
segment structure that was configured from a call to segnEntint(p. 181). Buf
should contain ncols*len bytes of data to be tnsferred to the segment file. Row
specifies the row from the data matrix being tmferred.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

Then data can be read or written to the segment file randomly:

segnxttt (seg, value, row, col) get value fi'om segerfile

SEGMENT *seg;
char *value;
int row, col;

Provides random read access to the segmented data. It gets len bytes of data into
vaue from tEL segment file seg for the corresporming row aid col in the original
data matrix.

Return codes are: 1 if ok; else -1 could not seek or read segment file.

§ 19 Segnxyt Ilbrary

.1 -. 1.

segm*tput (seg, vak, row, col) pit Vahe to Sesrg t fie

SEGMENT *Seg
char *value;
int row, col;

Provides random write access to the segmented data It copies len bytes of data
from value into the segment structure seg for the conesponding row and ed in
the original data matrix.

The data is not written to disk inunediately. It is stored in a menory segment
until the segnmt routins decide to page the segment to disk

Retumn codes are: 1 if ok else -1 could not seek or write segment file.

After mrdom reading ard wnting is finished, the perding updates must be flushed to
disk

egm,_tfis (seg) flush pendv qxhtes to dsk

SEWMENT *seg,

Forces all pending updates genrted by segnent~pit(p. 182) to be written to the
segment file seg Must be called after the final segmentput) to force all
pending updates to disk Must also be called before the first call to
segirnt-get__oup. 182).

Now the data in segment file can be read row by row and t&rrened to a nomml
sequential data file:

seguen.ge row (seg, buf, row) read row fr6'msegrnt file
SEGMENT *seg;

char *buf;
int row;

Transfers data from a segment file, row by row, into rmemory (wich can then be
written to a regular matrix file). Seg is the segment structure that was configured
from a call to segmentnit(p. 181). Buf will be filled with ncols*len bytes of data
corresponding to the row in the data nxirx.

Retum codes are: 1 if ok; else -1 could not seek or read segnent file.

Fimlly, memory allocated in the SEGMENT structure is freed:

§ 19 Sewnemt Lbrary

segmm.rdiwm (seg) free allocated mwory

SEGMENT *seg,

Releases the allocated m ry associated with the segmnt file s. Does not
close the file. Does not flush the data which may be pending from previous
segment.put(p. 182) calls.

19.3 How to Use the Lbrary Rwfmm
The following shouild provide the progrmmer with a good idea of how to use the
Sgent Library routines. The examples assume dint the data is integer. The first step
is the creation and formating of a segment file. A fie is created, fomated and then
closed.

fd = croat (file,0666);
segntnLfonmt (fd, =uws, ncols, sows, scols, sizeof(int));
close(fd)

TIe next step is tlh conversion of the non-segnented nxntix data into segment file
fomrt. Te segnent file is reopened for read and write, initialized, and then data read
row by row from the oiginal data file and put into the segment file:

int bufINCOLS];
SEGACEr seg;,

fd = open (file, 2);
grrnLinit (&seg, fd, nseg)

for (mw.= 0; mow < nmws; row++)
{

<code to get orginal natrix data for row into bt>

segmentput-ww (&seg, buf, mw);

Of course if the intention is only to add new values mthr than update existing values,
the step which twarwfers data from the original rmirix to the segment file, using
segnent-puLmw(), could be onidtted, since segment_forrv(p.180) will fill the
segment file with zeros.

The data can row be accessed directly using segment-getp. 181). For example, to get
the value at a given row and column

§19 Segnmet Libry

-194 -184-

irt value;-
SEGM ~g

segmentget (&Aseg, &value, row, col);

Similarly segmen _put(p. 182) can be used to change data values in the segment file:

int value;

value = 10;
spgeit-pt (&seg, &value, rw, col);

Warjin It is an easy mistke to pass a value directly to segmenLput). The
following should be avoided.

segmentput (&seg, 10, zow, col); /* this won't wo)rk */

Once the random access processing is complete, the data would be extracted from the
. segment file ari written t) a non-segmented matrix data file as follows:

N :t flush (&s*g;

for (mow = 0; row < mws row++)
{

gpwtget-mw (&seg, buf, mw);

<code to put bWf ir a rnraix data file for row>

}

Finally, the menmry allocated for use by the segment routines would be released and
the file closed-

segmenLrelease (&Aseg);
close (fd);

Note. The Segment Libry does not know the rxni of the segment file. It does not
attempt to remove the file. If the file is only temporary, the pmgrannr should remove
the file after closing it

§ 19 Sen t Libray

19.4. Loading the Sent Library
The libraiy is loaded by specifying $(SE)GMNTIB) in tkr Gnmkefie. 1e following
example is a complete Gnuefile whch compiles code ttt uses ths librmy

Grkeffie for $(SEGMENJTMI)
OBJ =nuaiao ai,1.o su2.o

pgm.x $(QBJ) $(S@GGTMLB)
$(OC) $(LDFIAGS) -o $@ $(O&D) $(SEflMEN'LIB)

$(SEGMflIU): # in ewe the ibriy changes

See §11 Compiling GRI Promn Using Grrdhe Lo. 551 for a complete discussion of
Grmkefles.

§ 19 SvMit Library

-187- -187-

Chiptw 20

Vk Lrary

20.1. Lnbroductm
The Vask Library (visual-ask) provides an easy means to communicate with a user one
page at a time. That is, a page of text can be provided to the user with information
and question prompts. The user is allowed to move the cursor 1 from prompt to
prompt answering questiors in any desired order. Users' answers are confined to the
programner-specified screen locations.

This interface is used in many interactive GRASS programs. 2 For tie user, tie Vask
Libray provides a very consistent and simple interface. It is also fairly simple and
easy for the programmer to use.

Note All routines ari global variables in this library, documented or undocumented,
start with the prefix V_. To avoid nrme conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic iiex is provided in §24.5 Appendix J Index to Vask Librwy [p.2551.

2o.2. Vask Rouine Symaes
The routines in the Vask Libray are described below, more or less in the order they
would logically be used in a program The Vosk Lbrwy mintains a private data
space for recording the screen description. With the exception of V-cal(), which does
all the screen painting andi user interaction, vask routines only modify the screen
description and do not update tle screen itself.

1 The fxctions in this librmy make use of the cnes libray ani termcap descripior. As

when uang vi, the user must have the RM vanable set
2 The GRASS uindow comndwl is a good example, as are reclass and ma*sk

§20 Vask Librwy

.188- -188-

Vd-ir () iniaii screen t&scriptin

This routiie initializes the screen description information, arid must be called
before each new screen layout description.

VJine (num, text) add line of text to screen

int nmn;
char *text;

This mutine is used to place lines of text on the screen. Row is an integer value
of 0-22 specifying the row on the screen where the text is placed. The top row
on the scree., is row 0.

WamrinV Vjline) does not copy the text to the screen description It only saves
the text address. This implies that each call to Vir () must use a different text
buffer.

Vjxfmt (value, type, row, col, len) define screen constant

V-ques (value, type, rw, col, len) defe screen question

Ctype *value; (Ctype is one of int, long, float, double, or char)
char type;
int row, col, len;

These two calls use the sane syntax. V-const() a"d V-ques() specify t&at the
contents of enory at the address of vale are to be displayed on the screen at
location row, col for het charaters. Vques() furier specifies that this screen
location is a prompt field. The user will be allowed to change the field on the
screen and thus change the vale itself. Vscons() does not define a pmMpt
field, and thus the user will not be able to change these values.

Value is a pointer M an int, long, float, double, or char string. Type specifies
what type value points to: 'i' (int), '1' (long), 'f' (float), 'd' (double), or 's'
(character string). Row is an integer value of 0-22 speCing the rw on the
screen where the value is placed. The top rmw on the screen is row 0. C is an
integer value of 0-79 specifying the column on the screen where the value is
placed. The leftmost column on the screen is column 0. Li specifies the
nurter of columns that the value will use.

Note that the size of a character array passed to V-ques() must be at least one

byte longer than the length of the prompt field to allow for NULL termimtion

Currently, you am limited to 20 constants and 80 variables.

Wwnhi These mutines store the address of value and not the value itself.
This implies that different variables must be used for different calls.
Programmers will instinctively use different variables with V- s(), but it is a

§20 Vak Lray

-189- -189-

stumbling block for Vcons(). Also, the pogrnmmer must initialize valu prior
to calling these routins. 3

VhJat-accuracy (num) set murner of deciml places
irt mtan;

Vjfloat_accuracy() defines the ntmber of decimal places in which floats and
doubles are displayed or accepted. Nwn is an integer value defmiing the nter
of decimal places to be used. This rutine affects subsequent calls to V-conso)
and Vques.). Various inputs or displayed constants can be represented with
different numters of decimal places within the same screen display by making
different calls to V-floataccuracy() before calls to Vques() or Vconsto.
V_clear() resets the mnter of decimal places to 2.

V-call () interact uith the user

V_call() clears the screen and writes the text aid data values specified by
V-lineo, Vques() and V-const() to the screen. It intexfaces with the user,
collecting user responses in the V=ques() fields until the user is satisfied. A
message is automatically supplied on line mnner 23, explaining to the user to
enter an ESC when all inputs have been supplied as desired. Vcall() ends when
the user hits ESC and retums a value of 1 (but see V-ir~pt-ok() below).

No error checking is done by Vcallo. Instead, all variables used in V=ques()
calls must be checked upon return from V-callo. If the user has supplied
inappropriate information, the user can be informed, and the input prompted for
again by further calls to V-call().

V~itrpt-ok () allow ctfr-c

V_call() normally only allows the ESC character to end the interactive input
session. Sometimes it is desirale to allow the user to camel the session. To
provide this alternate means of exit, the pmgrammer can call Vjnrptok()
before Vscall(). This allows the user to enter Ctrl-C, which causes Vscall() to
return a value of 0 instead of 1.

A message is automatically supplied to the user on line 23 saying to use Clrl-C to
carrel the input session The normal message accompanying V=call() is moved
up to line 22.

Note When VJirptok() is called, the progranmr must limit the use of
VJine(), V-ques(), and V-cort) to lines 0-21.

3 Technically value needs to be initialized before the call tn Vscall() since V-const() and
V_ques) only store " address of value V-call looks up the values and places them on the
Sc0reen.

§2D Vask Lw

.190- -190-

VhrPLiug (text) chme &1-c nsWg

char *text

A call to Vinptzwsg() clhrges the default V-inlrpLok() message from
(OR <Ctri-C> TO CANCEL) to (OR <Ctd-C> TO msg). The message is (re)set
to tie defadt by V-cleEr).

20.3. An mie Rmgma
Following is the code for a simple pmgm which will prompt the user to enter an
integer, a floating point number, aid a charater string.

#define LEN 15
rmain()

int i ;/* tihe variables *

float f;
chw sfIE;

i=0; /'* initialize the variables */
f = 0.0;
*s= 0;

Vclear; /* clear vask info */

V-line(5," Enter an Integer"); /* the te*/
Vjline(7, " Enter a Decinl ")
V-line(9, " Enter a character string");

V-ques (&i, T, 5, 30, 5) ;/* the prmpt fields *
V-ques (&f, T, 7, 30, 5);

V-ques (s, '9', 9, 30, LEN- 1);

Vinitpt-okU; /* allow ctrl-c */

if (!V-call()) /* disay and get user input */
exit(1); /* exit if ctd-c */

printf ("%d %f %sn", i, f, s); /* ESC, s print reits*/
exitO);

The user is presented with the following screen:

§20 Vak Li ry

-191- -191-

Entr an o 0--

Enter a Decifi 0.00

Enter a charater sbing-----

AF17ER COMPLflNG ALL ANSWER, HIT <ESC> TO CON1NE
(OR <Ctrl-C> TO CANCEL)

The user has several options.

<CR> moves the cursor to the next prompt field.

CTRL-K moves the cursor to the previous prompt field.

CTRL-H moves the cursor backward non-destructively within the field.
CIRL-L moves the cursor forward non-destructively within the field.

C'rRLA writes a copy of the screen to a file named tisualask in the user' s
hone directory.

ESC returns control to the calling program with a return value of 1.
CTR-C returns control to the calling program with a retur value of 0.

Displayable ascii characters typed by the user are accepted and displayed.
Control characters (other than those with special mnrig listed above) are
ignored.

20.4. Loadg the Vask Lirary
Compilations must specify the vask, curses, aid ternrap libraries. The library is
loaded by specifying $(VASK) and $(VASKLUB) in the Gmakefile. The following
example is a complete Grmkefile which compiles code that uses this library:

§20 Vask Lfirmy

- 1 - - 192-

Gnmkefile for $(VASKM

OBJ = n-uao ab.o sub2.o

pgnx $(01D $(VASKUM)
$(CC) $(LDFIAGS) -o $@ $(OBJ) $(VASFO

$(VASKLIB): # in case the hlbry changes

Note. The target pgm depends on the object files $(OBD and the Vask Iibrary
$(VASKLIB). This is done so that modifications to any of the $(OBD files or to the
$(VASKLIB) itself will force program reloading. However, the compile nile specifies
$(OBD and $(VASK), rather thn $(OBJ) and $(VASKLMJ). This is because
$(VASK) specifies both the UNIX curses and temcap libraries as well as
$(VASKLIB).

See §11 Conpiling GRASS Programs Using Gmake [p.55] for a complete discussion of
Gnkefiles.

20.5. 1rogwmmg Cmddida ons
The order of movement from prompt field to prompt field is dependent on the ordering
of calls to Vques(), not on the line nunmers used within each call.

Information cannot be entered beyond the edges of the prompt fields. Thus, the user
response is limited by the number of spaces in the prompt field provided in the call to
V-ques(). Some interpretation of input occurs during the interactive information
gathering session. When the user enters <CR> to move to the next prompt field, the
contents of the current field ae read and rewritlen according to the value type
associated with the field. For example, nn-nunec respomses (e.g., " tc") in an
integer field will get turned to a 0, and floating point mnners will be trwxcated (e.g.,
54.87 will become 54).

No error checking (other thin nmatcing input with vaiable type for that input field) is
done by V-call(). This must be done, by the progranmner, upon return from Vscall().

Calls to VJineO), V-ques(), and Vcort() store only pointers, not contents of
memory. At the time of tIe call to V-call(), the contents of memory at these
addresses are copied into the appropriate places of the screen description Care should
be taken to use distinct pointers for different fields and lines of text For example, the
following nistake should be avoided:

§20 Vask Libra

-la. -

char ext100];

Vclete);

qiintf(text, Welcome to GRASS ");
VJine(3,*ex);
spinff(ixt,' which is a product of the US Amy CERL ");
Vjline(5,mexV;

V.cali();

since this results in the following (unintended) screen:

which is a product of the US Amny CERL

which is a product of the US Ariy CERI

AFTER COWMP G ALL AT S , HIT <ESC> TO CONTINUE
(OR <Ctti-C> TO CANCEL)

Wanzin Due to a problem in a routine within the curses library,4 the Vask routires
use the curses library in a somewhat unorthodox way. This avoided the problem
within curses, but means that the programner cannot mix the use of the Vask ibraiy
with direct calls to curses routines. Any prprmn uing the Vask Libray shoud not
ca ancues i ary ro e dh iy.

4 Specifically, memory allocated by initscr) was not freed by erdwin().

§20 Vask Lbrary

.195- -195-

CuiAw 21

Writing a Digitizer Driver'

21.1. ITl roduction

A digitizer device driver consists of a library of device-dependent functions tlmt are
linked into digitizer prograsn. This chapter describes those functions that are needed
to create a digitizer device driver comptible with GRASS map development software.

Section §21.2 Writing the Ligitier Detice Driver (p. 1951 explai- how digitizer drivers
are written, while section §21.3 Discussion of the iner Points (/Mnts) Lp.203] describes
problems and pitfalls encountered during the development of the Altek driver.

21.2. Writing the DIigiiz Device I)river
Source code for the digitizer drivers is kept in

$GISBASiEsrc/napdev/digitizers
1

Separate sub-directories contain the individual drivers. When a new driver is written,
it should be placed here in a new sb-ditory.

It is helpful to exanine the source code for existing drivers located here, and to attend
a demonstration of the GRASS digitizing pmgrm diit, before developing a new
driver.

21.2.1. Fwwionm to be Writtn
This section describes the device-dependent library functions tlt must be written.
Each of these functions must be present in the library. Function descriptions are
organized by file nrse. (The file rnes ame those used by current GRASS digitizer
drivers. FNe m ess are printed in bold, along the left-Ind margin of the pe.) These

I $GISBASE is the directDry where GRASS is installed. See §10.1 UNIX h&wironnwnt
[p. 511 for details.

§21 Writing a Digitiz Drier

-196- -196-
I

files and futions can be copied from one of the edstix digitizer driver libraries and
altered to suit the needs of a particular driver.

Note. AlthDugh it is strongly reconmended tat the progmmaner use the file rmies
listed below (for reasons set forth in §212.3 Conpifiig the Device Driver [p.202]),
otker files mrnes may be used irtead

This file contains the mer that is displayed while digitizing. The mn, sbould
irdicate the purpjose of the buttons on the cursor for tfe particular digitizer. The
mere is stored in dig-mu

char *dig e] ;

An example of how the Altek driver uses this function to create a menu is given
below:

#defin dig-rnntlines 16

char *dig-n[] {

GRASS-DIGIT Verion 3.0 Digitizirg menu

ALTEK digtizer AMOUNT DIGTIZED
a"o 1283a # Um-
<0> dglize point # Areaedges:
<1L> qut digzing
<2> 1 m tr"
" <> tge p -Ishw=mode Total poin"

CURRENT DIGITIZER PARAMS "

MODE TYPE
point line
" shear area edge

Note. The nenu must be exatly as it appears here, except fl-t the text in bold
may be replaced by the appropriate text for the digitizer.

dgcursmc
This file only contains #includes. It is used to set up the digitizing renu in the
"digrnenui" file. This file must look like this:

§21 WritnW a Digitizer Drier

-197- -l97-

#include <cuseah>

*include "dig.renuMh"

#include "../../digit/digiLI"
#include "..l..digitvrnnuh"
#include "../..Aie 'eaiR'

#include "../Jdigit/cursem&c"

setudrivea.c
D-setupdriver (device)

char *device ;

This function opens the device (which is a My port) and initializes the digitizer.

Note This function should not set the origin The origin is set later by the
function D__setup-origin(p. 199).

dig-dev.c
D-get-scale scale)

float *scale;

This function sets scale to the digitizer resolution in units of lines per inch 2 For
example, on a digitizer having a resolution of 1000 lines per inch, scale would be
set to .001.

coilLptSc
#include "digit h'
#include "globals.h"

collect-points (mode, type, np, x, y)

int mode type;inlt *ip;

double **x, **y;

This routine is called to collect points tht represent a single vector (or arc) from
the digitizer.

The points should be collected into static anays or dynmically allocated armays,
trEfomnd fmm digitizer coordinates to databae coordinates using
transform-a-into-b(p.201), and plotted on the graphics nonitDr using
plot-points(p. 201). Then x and y ae set to poirt to these anays, and np set to
the numer of points collected.

2 Alost all digitizers describe their resolution in lines per inch (dpi). This is essentially

equivalent to pixels per inch, or dots per inch.

§21 Writing a Digitizer Driu-

-198- -198-

The digitizing mode may be eith SI'REAM or IOT: SIREAM indicates that
the digitizer should collect a continous stream of points POIT indicates that
the digitizer should collect points under user control (i.e., each time the user
presses a button, the foot-switch, or a key on the keyboard). The collect-points ()
function can be written to allow interactive toggling between the two modes
during a single call.

The type is set to AREA when the vector to be collected is an area edge, and to
LINE when it is is a linear feature. The type is of no interest to collectpoints ()
itself, but is passed to the fuinction plot-points(p. 201), which draws lines on the
graphics rmnitr.

This function should return 1 if digitizing in STREAM mode occurred (i.e., either
because made was initially SIREAK or becamse the user changed to STREAM
mode), and 0 otherwise. 3

Note. This routine is responsible for plotting the vector on the graphics monitor,
but it should do it responsibly. This means that while digitizing in POINT mode,
the line-segments should be plotted imnediately, while digitizing in STREAM
mode, the points should be plotted only when the digitizing is finished, or when
the user toggles to POINT mode.

Note. If the cursor has buttons, they can be used to change the digitizing nixie
as well as end the digitizing. If the digitizer has a foot-switch instead of buttons,
the foot-switch should be used to end the digitizing (toggling modes would not be
supported in this case). If the digitizer has neitier butto nor a foot-switch then
the keyboard rmust be used, even in STREAM mode. (See GeoGraphics driver for
code that polls the keyboard.)

interfacex
This file contains a number of functions. The following functions return
infonmation about digitizer capabilities:

D-cursorjbuttons)
If the digitizer cursor buttons are to be used by the digitizing program,
there must be at least five buttons. This function retuns 1 if the cursor has
five or more buttons; otherwise, it returns 0.

D-fooLswitch()
This fuinction returns 1 if there is a usable foot-switch It returns 0 if the
digitizer has no foot-switch

Nte If there are five or more buttons on the cursor, the value retuied by

SSREAM mode indicates to digit 6Athhe resulting vector should be pned.

§21 WritinW a Digitizer Drive

-199. -199-

D-foot-suitch() is ignored (i.e., it is assumed that there is no foot,-switch).
See D.cursorbuttons(p. 198).

Dstart.buttor)
This function tells the driver bow the cursor buttons ame labeled (i.e., the
labels that the user sees on the buttons). If the first button is labeled 1, then
this routine returns 1. If the first button is labeled 0, then this routine returns
0.

It should return -1 if the digitizer cursor buttons are not being used by the
driver. See Djcusorbuttonsp. 198).

For example, if the digitizer buttons are labeled 0-9, then this routine would
return 0. If the digitizer buttons are labeled 1-16, then this routine would
return 1.

The following routines perforn digitizer configuration

D-setup-origin()

This routine sets the digitizer' s origin (0,0). This routine should only return
if successful, and should return a value of 0. If it fails, an error message
should be sent to the terminal screen with Write-rqno(p.202), and the program
teminated with a call to close-douo .201).

Noe Frequently, the location of the digitizer s origin can be set to some
default value, without any input from the user. Otherwise, this routine must
ask the user to set the origin The routine Write-info(p.202) should be used
to print instructions for the user. (Refer to the GeoGrapbics digitizer driver,
which instnuts users to set the origin in the lower-left corner of thedigitizing tablet) 4

D_clear_driver()
This function clears any button presses on the digitizer tt have been
queued. (Refer to §21.3 Discussion of the Fner Points (lhnts) [p. 2 031 for an
explanation of why this is necessary.) This routine should only return if
successful, aid should return a value of 0. If it fails, an error messae
should be sent to the user with Writejio(p.202), and the program
teminated with a call to close-dounp.201).

a Due to the design of the GeoGraphics digitizer, it isr't possible to detect whether or not
the user properly sets the origin- If the origin is irnpmperly set, the map will be imropeiy
rgistered.

§21 Writir a Digitizer Driver

Th following two routines read the curnt digitizer coordiiates:

D-xead-raw (x y)
double * X, *Y;

Gets the current location of the digitizer cursor, aril places the digitizer
coordinates in the variables x andi y.

If a digitizer button was pressed, this routine retwwn the button's value. The
return value nuist be in the range of 1 through 16. This mneans that if the
first button is labeled 0 this routine must add 1 to the button numbter that is
returned.

If no button was pressed, this routine returns 0.

Flooti-switdi. If the digitizer has a foot-switch irsteai of cursor buttons,
then the foot-switch mnust be treated as if it were button 1. If the digitizer
has neither a footswitch nor cursor buttons, then. this routine should retumn
0.

D-ask-drivermyw (x, y)
double *jx, *y ;

Waits for abutton to be pressed and then gets thecurent location of the
digitizer cursor, andi places the digitizer coordinates in the variables x andl y.

This routine retuxns the button's value. The return value nust be inth
range of 1 through 16. This means that if the first button is labeled 0 this
routine mnust add 1 to the button nunber tivit is returmd.

Foot-switdi. If the digitizer has a footrswitch instead of cursor buttons,
then the foot-sgwitch nmist be treated as if it were button 1, andi this routine
should wait for the foot-switch to be pressed. If the digitizer has neither a
foot-.switch nor cursor buttons, then this routine should return 0 uithout
waiting.

21.2. FWxtIcwn Availabe For Use
There are functions which have airealy been written that can be called by the digitizer
driver. Thakse are described below.

Note These functions exist in libraries. The~ libraries tlit contain these functions are
described in §21.2.3 Compiling the Dievice Driver 1p.202].

§21 Writin a LDigitiw Driver

- 20 - -201 -

close-down (status)
int Statu;

This function gracefully exits the calling program Call this function with statu
set to -1 when an irrecoverable error has occurred (e.g., when the digitizer does
not respond, or returns an error). Otherwise, call this routine with satus set to 0.

ploLpoints (type, np, x, y, line-color, point-color)
int type, np;
double *x, *y;
int line-color, point-color;

This function is to be called by collectxoints(p. 197). It draws the vector defined
by the points in the x and y arays on the graphics monitor. The nmier of
points in the vector is np

The plot-points() function expects to receive points from collectpoints(p. 197) in
the coordinate system of the database. Digitizer coordimtes can be tr-anslated to
database coordiintes using trnsfornLa-intoib(p. 201).

The type indicates whether the vector is an AREA or a LINE AREA and UNE
are defined in the include file "dig-defmnes.h'.

The liecalor and p tcolor irdicate whether the flies and points are to be
highlighted or erased The constant CLR-JIGHLIGHT indicates highlighting,
and the constant CLRERASE indicates erae (CLRHJGHLIGHT and
CRLERASE are defined in "globals.h"). The colors actualy used to highlight or
to erase lines and points are specified by the user in digit.

transforn-ainto-b (Xraw, Yraw, X, Y)
double Xraw, Yraw;
double *X, *Y ;

This function converts the digitizer coordinates XrawYraw into the database
coordinates XY. This function is used by the driver function
collect_4oints(p. 197).

Note The transformation rule used by this mutire is generated by digit when the
user registers the map to the database. The rule is already in place by the timew
collectQ.)oints(p. 197) calls transforrLa-intob ().

§21 Writing a Digitizer [)rimr

.202- -

Wrilnfo (line, message)
intlie ;
char *message;

This function prints a nmsq in the four line window at the bottom of the
user' s ternmi in digit. The variable lie must be a number 1 through 4, which
represents the line nunber inside the window. The nx must mt exceed 76
claracters and should not contain \n

21.23. C4nrfling the Device Irimx
Prograrns (e.g., digit) that use the digitizer driver furtions ae stored in librxies.
Wben the digitizer driver is compiled, it links with those different libraries and creates
the programs. Each driver should contain a Gmakfi/e that contains compilation
irstrfctions for Gnake.5 The Grvaefe for the digitizer driver is complex. Rather
than attempting to construct a completely new Gnakfi/e, it is generally simpler to
copy an existing Gnkfile from anther driver and modify it to meet the needs of the
new digitizer driver.

The following libraries ame needed by the digitizer driver when it is compiled.

$GISBASFsrc/mapdev/digitlibdigita
$GISBASE/sr/napdev/libes/libtrs.a
$GJSBASE/src/mapdev/lib/libdig.a
$LIBDIR/ibdig-atts.a

Some include files (*.h) muist also be compiled into the driver. These files are located
in the following directories:

$GISBASE/src/maidev/libes
$GISBASE/src/mapdev/lib

Compile the device driver by executing Grake. This will create the dipt program and
any other programs dependent on the digitizer driver code.

21.14. Testing the Device Driver
There are three crucial points at which the digit program calls the digitizer driver. The
first occurs just after digit has prompted the user for a file name. Digit will try to
open the driver and initialize the digitizer, if this fails, it is because
D.setupdriverlp. 197) has failed. The second occurs when the user registers the np
to the digitizer. If the program fails at this point, there is a problem with the

5 See 811 Conpiling GRASS Pgrarrs Using Grmke p 1.s for a discusson of Grrnke and
C,ae files.

§21 Wrinmg a Digitizer Drim"

Dread-raup .200) function A final test of the driver is pexformed when the
coUectpoints(p. 197) function is called, which occurs when vectors ae being digitized.

Before testing any progmrns, review the Grass 3.0 Installation Gui&e to ensure that
the digitizer is set up correctly. If more information is needed, read the file
$GISBASEsm/mapdev/READMF

21.3. Tof f the Fbx- Pints (Hints)
This section offers several hints and pitfalls to avoid when writing the digitizer driver.
It has three subsections: Setting up the Digitizer, Program Logic, and Specific Driver
Issues.

21.Ml. Setting up the Digitize
The process of setting up a computer system ard digitizer can be divided into three
steps:

(1) Setting the iternl switches on the digitizer (hardware)
(2) Running a cable between the digitizer and the computer (harlware)
(3) Setting up the serial port on the computer (software)

21.3.1.1. Setting the internl switches

The switches on the digitizer must be set so that the digitizer will run under
request or prompt mode, which means that the digitizer will only sel output
when it is requested or prompted by the program Thus, the program controls the
timing of the output from the digitizer and will only receive information when it
is ready to process it Refer to the mxnual included with the digitizer for specific
information on its set-up.

Nat The digitizer mst be able to use an RS232 serial interface and transmit
information only when prompted by the program If the digitizer can' t transmit
information on commar, then it can' t be used as a GRASS digitizer.

21.3.1.2. Running a cable between the digitizer and computer

A cable must be made to connect the digitizer tD aR 2 serial port on the
computer. Different model computers, even when from the same maker, may
require different cable configurations. For example, one computer nmy need a
straight-through cable, while another computer may need pins 6, 8, and 20 looped
back on the computer side. A break-out box can be used to deduce digitizer
cable requirements and ensure that the digitizer is actually talking to the

§21 Wri6 a Digitizer Dive

-204- -204-

computer.

21.&1.3 Configuring the serial port

The digitizer is plugged into a serial port (/dev/tty??) on the computer, which
must be configured for a digitizer to run on it To set up the tty for the digitizer,
turn that ty' s getty off, and make the ty readable and writble by anyone.

A final suggestion: document the informaion that has been learned. The file
$GIlSF_/srcmpdev/cgitizersaltek/L7TALLALThX can be used as an
example. It contains the switch settings for the Altek, cable configurations, and
other useful information. Such documentation is invaluable when another
digitizer is added, problems arise, or if the digitizer switch settings have to be
changed because other software is using the digitizer.

21.3.2 Progrmn Logic
All digitizing programs follow the same basic steps, whether they test the digitizer, or
appear in a complex digitizing program like digit. The following sequence gives the
pmgranmr a feel for how the digitizer driver is used by the calling proarn.

(1) Link the program to the digitizer (open the tty)
(2) Set the tty to the apprpriate state (ioctl calls)
(3) Initialize the digitizer (setting resolution, setting origin, ...)
(4) Ask the digitizer for data containing a set of coordinates
(5) Read the data from the digitizer
(6) Interpret the data into usable coordinates (x, y)
(7) Display the coordinates (x, y)
(8) Loop back for more data or until user wants to quit

In order to become familiar with the architecture of a digitizer driver, it is useful tD
wite a simple program to test the digitizer. If a digitizing pmblem arises, the
diagnostic program can help isolate the cause of the problem (hardware, software,
cable, etc.).

21.3.3. Speific TDiv Ises

The writing of digitizer device drivers can be complex. This section explores four
issues in greater depth

(1) Connecting to the digitizer
(2) Initializing and reading the digitizer
(3) Synchronizing the digitizer and computer
(4) Digitizer cursors with buttons

§21 Writing a Digitizw Drive

-2056-25

Cornecting to the digitizer:
In GRASS 3.0, the computer comnmicates directly with the digitizer to which
(through the serial port ty) the digitizer is connected 1 tty to which the
digitizer is connected is opened, read, and written tD just like a file.

Dsetup-iver(p. 197) will open the tty, set file permissions to read arid write,
and set the irixing state of the tty. Some expeVimmning with the different line
disciplines (CBREAK, RAW) may be necessary to determin the best state for
the tty, butRAW seems to be the rnrm Changing the n ing state of aty
consists of charging the strtixures associated with tha particular tty and
reflecting the changes to the operating system by using /octi 0. Unfortintely,
the information is stored differently under different operafig systems

GRASS digitizer drivers have been written under the System V (AT&T) and
Berkeley (UCB) UNIX operating systems. A njor difference between these two
operating systems is the way they handle terninal interfaces (ttys). Terninal
information is contained in structures in <tennio.h> under System V, and in
<sgtty.h> under Berkeley. In other words, the structures, andi the names used in
the structures, will differ depending on the operating system All ty related
system-dependent code has C pre-processor #ifdefSYSV6 statnmnts around it in
the existing drivers. System-dependent code is defined as either being under
System V (SYSV) or Berkeley. This issue will only arise when the tty to which
the digitizer is connected is being opened, using Dsetup.driver(p. 197).

Initializing and reading the digitizer:
11i driver and the digitizer communicate by using the UNIX read() and unte ()
functions. Dsetupdriver(p. 197) sets up the digitizer software by writing
commarii strings to the tty. Since each digitizer is different, the digitizer's user
manual frequently proves to be the only source of infonmation on how to
initialize and read the digitizer.

Setting up a consistently good function to read the digitizer is the most difficult
part of writing the digitizer driver. The read() function, when reading from a
tty, may not read as many characters as requested. For example, if six bytes are
requested, read () can return anywhere from zero to six bytes.

One approach is to request six bytes, and then, if the number of bytes actually
mad isn't six, issue another read (), this time asking only for the number of bytes
remaining. In other words, if six bytes were requested but only two were
received, then arther read for four bytes is issued. If that read retuned one byte,
then another read is requested for three bytes, etc. This would continue until
either all six bytes were read, or a time-out occurred. This approach worked well
in the Altek driver.

' SYSV is defined by Grrnke. See §11 Corrfiling GRASSProginms Usirg Grrmk tp-.51.

§21 Writing a Digitizer Driver

Another approah that was tried was to request six bytes, and then, if less than
six bytes were received, the bytes were thrown away, and another six bytes were
requested. This was repeated until the read retuned six bytes. This approach
worked some of the time, but sometimes gave unreliable coordinates, and was
abandolnd. Other digitizer drivers have been written that read ascii characters
from the digitizer and use sscanf() to strip out the needed information

The nurmer of characters actually read to get one set of coordinates will depend
on the digitizer and on the infomation stated in the digitizer' s user manual.

Another problem, in the case of the Altek, is that the cursor is only active in
certain portions of the tablet This means that either there will be no output, or a
specific flag will be on/off, until the cursor is within the ative area of the tablet
Because no external narkings on the tablet delineate the active area, individuals
conirxnly attempt to digitize within the tablet s inctive area, leading them to the
false assumption that the digitizer is acting strargely. Depending on the digitizer,
this will have to be handled by fine-tuning the reads and/or checking the status
byte(s).

A word of warning - if the tty isn' t set up properly in Dsetupdiver(p. 197). the
read() function can return confusing information (i.e., it may include garbage
with the data or be unable to read the nurner of characters specified).

Synchronizing the digitizer and computer:
Driver-checking has been added to post-3.0 drivers, to warn the user when the
driver is out of sync with the digitizer. For example, the.Altek has the high bit
tuned on in the first byte of the six bytes that are read. The driver checks to
make sure that he high byte is turned on; if it is not, the digitizer ax driver are
out of sync. The driver wans the user, resets the digitizer and then re-initializes
the digitizer.

Digitizer cursors with buttons:
Drivers can be written to use the digitizer buttons or th keyboard for input while
digitizing. Where drivers use the digitizer buttons, some digitizers will queue up
any button hits. (This may depend on what ninnig state the digitizer was set up
with when it was initialized.) This mans that if a person pushes the digitizer
cursor buttos a nurer of times and then begins to digitize, the program rust
clear the queue of button hits before beginnirg to digitize. Other digitizers will
only say that a button has been hit if the button has been hit and the digitizer has
been prmpted for a coordinmte.

§21 Wriing a Digitzr Thri

2117- -207-

Cbaptw 22

Writing a Grapbks Driver

22.1. IntUoducton
GRASS 3.0 application programs which use graphics are written with the Piaster
Graphics Library. At compilation time, no actual graphics device driver code is
loaded. It is only at run-time that the graphics requests make their way to device-
specific code. At nr-time, an application program connects with a running graphics
dekce driver, typically via system level firstAin-firstout (fifo) files. Each GRASS site
may have one or more of these programs to choose fion. They are managed by the
programs monitor, Dlist.mon, Drelease.mon, Dselect.mon, Dstart.mon, Dstatus.mon,
Dstop.mon aid Dwhich morn

Porting GRASS graphics programs from device to device simply requires the creation
of a new graphics driver program Once completed and working, all GRASS graphics
programs will work exactly as they were desigred without modification (or
recompilation). This section is concerrned with the creation of a new graphics driver.

22.2. Basics
The various drivers hive source code contained under the directory
$GISBASF/srr/D/devices. 1 This directory contains a separate directory for each driver,
e.g., SNVIEW and MASS. In addition, the directory ib contains files of code which
am shared by the drivers. Tie directory GENERIC contains the beginnirgs of the
required subroutines and sample Grnkefde.

A new driver must provide code for this basic set of routines. Once working, the
programmer can choose to rewrite some of the generic code to increase the
perforniarce of the new driver. Presented first below are the required routines.
Suggested options for driver enhancement are then described.

$GISBASE is the ditmctory whee GRASS is installed. See §I0.1 UNIX Ewironent
i/, slj for details.

Z Writing a Gr'ahio; Drivr

-208- -208-

& Bc Roim
Described here am the basic routines required for conswrting a new GRASS 3.0
graphics driver. These routines me all found in the GENERIC directory. It is
suggested that the programmer create a new directry (e.g., MYDRIVER) into wich
all of the GENERIC files are copied (i.e., cp GENEEUC/, MYDRiVER).

22.31. Open(Close Device

Graqii.$ () inaie graphics
This routine is called at the start-up of a driver. Any code necessary to establish
the desired graphics envirmwit is included here. Often this means clearing the
graphics screen, establishing connection with a mouse or pointer, setting drawirg
paramEters, and establislirg the dimenions of the drawirg screerL In addition,
the global irteger variables SCREENLEF, SCREENRIGHT, SCREENTOP,
SCREEN..BOTIM, and NCOLO)RS mist be set Note that the GRASS
software presumes the origin to be in the upper lefthImd corner of the screen,

SCREENL= < SCREENRIGHT
SCREENTOP < SCREENB(YIOMM

You may need to flip the coordinate system in your device-specific code to
support a device which uses the lower left corner as the origin. Tese values
must map precisely to the screen rows and columns, For example, if the device
provides graphics access to pixel coluns 2 through 1023, then fese values ae
assigned to SCREENJLEFT arsd SCREEN__RIGHr, respectively.

NCOLORS is set to the total nuter of colors available on the device. This
rmst certainly needs to be more than 100 (or so).

GraLClose () shut cbun ckvice
Close down the graphics processing. This gets called only at driver Unminmlion
tfle.

22.3.2 Reur Edge and Color Values
The four raster edge values set in the GraphS&et() routine above ae retrieved with the
following routines.

§22 WritiW a Graphics Drim

-22.09

Screm.Ldt (index) turn left pixel colwom value

Screamtrie (index) ream right pixel colurn vlue

Sweraiop (index) reatz top pixel row mue

Sareirabot (index) mturn bottom pixel row due

iri *index ;

The requested pixel value is returned in ixxo.

These next two routines return the number of colors. There is no good reason for both
routines to exist; chalk it up to the power of anachroismr

GLnumomkls (index) retzrn nrnber of colors

int *index;

The numter of colors is returned in imIx

gdLU COiWS () retwn nunber of colors

The nunter of colors is returnd directly.

22.3. Draw Roudns
The lowest level drawing routines are drawjine(), which draws a line between two
screen coordinates, ar Polygonabs() which fills a polygon

draw mirE (xl,ylx2,y2) draw a line

int xl, yl, x2, y2 ;

This routin will draw a line in tlh current color fmm xlyl to x2,y2.

Plygon-abs (x,y,n) bvw filled polygon

int *x, *y;

int n;

Using the n screen coordinate pairs represented by the values in tl x and y
arrays, this routine draws a polygon filled with the currently selected color.

22.3.4. Colors

This first routine identifies whether the device allows the rmn-tine setting of device
color look-up tables. If it can (and it should), the next two routines set and select
colors.

§22 Writing a Griqcs Drier

-210- -210-

CLdo)signals run- im color look-ip table access

If color look-up table modification is allowed, then this routine must return 1;
ofrrwise it retuns 0. If your device has fixed colors, you must modify the
routirns in the ib directory which set and select colors. Most devices now allow
the setting of the color look-up table.

reset-clor (nmuber, red, green, blue) set a color

int nmber;
unsigned char red, green, blue;

The system's color represented by number is set using the color component
intensities found in tfe red, green, and bh* variables. A value of 0 represents
0% intensity, a value of 255 represents 100% intensity.

color (number) select a color

int nmer;

The current color is set to nunixr. This numer points to tle color combination
defined in the last call to reset-color() th-t referenced this mtr.

22.35. Mouse Input

The user provides input through the thee following routines.

G&_locadon-withbox (cx,cy,wx,wy,button) get location uith rubber box

int cx, cy;
int *wx, *w VV;
int *button ;

Using mouse device, get a new screen coordinate and button nunmer. Button
numbers must be the following values which conespond to the following software

manings:

1 - left button
2 - middle button
3 - right button

A "rubber-band" box is used. One comer is fixed at the cxy cooxdinale. 71v
opposite coordinate starts out at wxwy and then tracks the mouse. Upon button
depression, the cunent coordinate is returned in wx, wy and the button pressed is
returned in buttam

§22 Wnting a Grqphics Driver

-211- -211-

GCJejol _wkfmthJin (cxcywx,wybuttn) get location uith rubber /ne

int cx, cy ;
int *wx, *wy;
irt *button;

Using mouse device, get a new screen coordinate and button number. Button
nmirers must be the following values which conespond to the following softwarememngs

1 - left button
2 - middle button
3 - right button

A "rtber-band" line is used. One end is fixed at the ocy coordirmte. The
opposite coordinate srts out at wx,wy and then tracks the nmuse. Upon butlon
depression, the curremt coordinate is returned in wx,iwy and the button pressed is
retured in buttwn

Get.Ioc iop iinr h (wxwybuttDn) get location uith pointer

int *wx, *wy;
i *button ;

Using mouse device, get a new screen coordinate and button numter. Button
nmrbers must be the following values which correspond to the following software
neaing

1 - left button
2 - middle button
3 - right button

A cursor is used which starts out at wx, y and then tracks de mouse. Upon
button depression, the current coordinate is returned in wx, wy and the button
pressed is returned in hitm

22.3.6. Panes

The following routines cooperate to save and restore sections of the display screen.

M2 Wriin a GrapHc Drivw

-212- -212-

Pa (omne, top, bottom, left, right) me a pawl
char *rvme ;

mt top, bottom, left right;

The bit display between the rows and cols represented by tqi bowtui ldt, and
right are saved. The stirg pointed to by nm is a file ne which may be
used to save the inage.

Pan..rere (name) resore a panel

char *rnm

Place a panel saved in mne (which is often a file) back on the screen as it was
when it was saved. The m mory or file associated with Imwe is removed.

22.4. Optiorml Ruino
All of the above mist be created for any new driver. The GRASS Rasterlib, which
provides the application program routines which are passed to the driver via the fifo
files, contains mny more graphics options. There are actually about 44. Above, we
have described 19 routines, some of which do not have a counterpart in the Rasterib.
For GRASS 3.0, the basic driver library was expanded to accommodate all of the
graphics subroutines which could be accomplisbed at a device-dependent level using
the 19 routines described above. This makes driver writing quite easy and
straightforward. A price that is paid is that the .resulting driver is probably slower and
less efficient than it might be if more of the routines were written in a device-
deperdent way. This section presents a few of the primry target routines that you
would most likely consider rewritting for a new driver.

It is suggested that the driver writer copy entire files from the lib area that contain
code which shall be replaced. In the loading of libraries during the compilation
process, the entire file containing an as yet undefined routine will be loaded. For
example, say a file "ab.c" contains subroutines a() and b). Even if tte programmer
has provided subrouline a() elsewhere, at load time, the entire file "ab.c" will be
loaded to get subroutine b(. The compiler will likely complain about a mulitply-
defined extemal. To avoid this situation, do mt break routines out of their files for
modification; nxdify the entire file.

§22 WrtiW a Graphics Ieir

-213- -213-

Rasjrit (, nrows, array, witthzeros, type) raster display

intn;
int rrows;
umigned int *aray;
int witt-ems;
hit type

This is the basic routir for rendering raster images on the screen Application
programs cortruct images row by row, sendirg the completed rastersto the
device driver. The default Rasterint(O in lib draws the raster through repeitive
calls to color() and drawineO. Often a 20x increase in rendering speed is
accomplished through low-level raster calls. The raster is found in the array
pointer. It contains color infornrtion for n colors and should be repeated for
ms rows. Each successive row falls under the previous row. (Depending on
the complexity of the raster and the number of rows, it is sometimes
advantageous to render the raster through low-level box cornnrids.) The
iftmm flag indicates whether the zero values should be treated as color 0

(withzeros- =1) or as invisible (withzeros= =0). Finally, type indicates that the
raster values are already indexed to the hardware color look-up table (type= =0),
or that the raster values are indexed to GRASS colors (which must be translated
through a look-up table) to hardware look-up table colors (type= =1).

Furtber details on this routire ain related roulines Raster-chrO, and
Jtaster-def) are, of course, found in fhe definitive docunentalion: the source
code.

§22 Wrting a GrWhcs Drivr

-215- -21 -

Cheptr23

Writing a Pait Driver

23.1.
The paint system, which produces hardcopy maps for GRASS, is able to support may
different types of color printers. This is achieved by placing all device-dependent code
in a separate program called a device driver. Application programs, written using a
library of device-independent routines, communicate with the device driver using the
UNIX pipe mechanism Ihe device driver translates the device-independent requests
into graphics for the device.

A paint driver has two parts: a shell script and an executable program The executable
program is resporible for tranl9ating device-independent requests into graphics on the
printer. The shell script is responsible for setting some UNIX environment variables
that are required by the interface, and then nmnirg the executable program

The user first selects a printer usin the Pselect program (or the related paint select
option). The selected printer is stored in the GRASS environment variable
PAN'h.1 Then the user runs one of the application programs. The principal paint
applications that produce color output are Pm (and the related paint mp option)
which generates scaled maps, and Pchart (and the related paint chart option) which
produces a chart of printer colors. TI' application looks up the PAINTER and runs
the related shell script as a child process. The shell script sets the required
envimrnvti variables anl rms the executable. The application then communicates
with the driver via pipes.

See §10.2 GRASSEirimnmwnt [p. 521.

§23 Writitg a PAint Driver

-216- -216-

23.2. Creing a Somce Dwectory for the Drivr Code
The source code for paint drivers lives in

$GISBAS/sc/paint/DriveM2

Each driver has its own sub-directory containirg the source code for th executable
progran, the shell script, and a Grnkefie with rules that tell the GRASS Grnve
commnd how to compile the driver.3

233. The Paint Drive e Pogran
A paint device driver program consists of a set of mutines (defined below) that
perform the device-dependent functions. These mutires must be written for each
device to be supported.

23.3.1. Prhta 1/0 Routines
The following routines open the printer port ad perform low-level i/o to the printer.

Pop1i (port) open the printer port

char *port;

Open the printer prt for output If the part is a ty, perform any necessary tty
settings (baud rate, xon/xoff, etc.) required. No data should be written to the
port

The port will be the value of the UNIX envionment variable MAPLP,4 if set
and NULL ofrrwise. It is recommneued that device drivers use the port that is
passed to them so tha paint has a consistent logic.

The baud rate should not be hard-coded into Popen(. It should be set in the
driver shell as the UNIX environent variable BAUD. Popen() should
determine the baud rate fro -n this environment variable.

2 $GISBASE is the directory where GRASS is installed. See §10.1 UNX &wironrnt

Ip .s1 for details.
:4 See §11 Corrpiling GRAS Ptvgnrmn Using Grrike [p.5q for details on the GRASS

compilation process.
4 This, and other, environment variables am set in the driver shell script which is described

in §23.4 7he Device Driver 9 ell &S7fpt [p 2221.

§23 Writing a Paint Driver

-217- -217-

Nxt (bit,nW uxite to printer

unsigred char *buf;
int

Output the data in WE The munter of bytes to send is 11 This is a low-level
request No processing of the data is to be done. Output is simply to be sent as
is to the printer.

It is not required that data passed to this routine go immediately to the printer.
This routine can buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

Pouti (c) urite a character to printer

unsigned char c;

Serd t1k character c to the printer. This routine can be implemented as follows:
Pbtcf(c) unsigned char c;
{

Pout(c, 1);
}

PbIts (s) urite a string to printer

unsigned char *s;

Send tkxc character string s to the printer. This mutir can be implemented as
follows:

Pbuts(s) unsigned char *s;

Pout s, strlen(s) I;
}

(fl () flish pending otput

Flush any pending output to the printer. Do not close the port.

§23 Wrifing a Paint Driwr

-218- -218-

dose () close Me printer port

Flush any periiing output to the printer and close the port

Note The above routines are usually not device-dependent In most cases the printer
is connected either to a serial ty port or to a pm-allel port The paint driver library 5

contains versions of these mutixns which can be used for output to either serial or
parallel ports. Exceptions to this are the preview driver, which sends its output to the
graphics niritor, aid the NUL driver which sends debug output to stderr.

23.3a Irltilim

The following mutine will be called after Popen(p. 216) to initialize the printer:

P () initiaize the printer

Initialize the printer. Sendi whatever codes are ncessary to get the printer realy
for printing.

23.3.& Alpha-manic Mode

The following two routines allow the printer to be used for nomal text printirg.

IaIia() put printer in text mo&

Put the printer in alpha-nmnric rmode. In this mode, the driver should only
lonr Pte4(p. 218) call&

Pteid (text) print text

char *WA

Print the tet string on ti printer.

TIhe tex will mt normally have non-prinling characters (i.e., control codes, tabs,
linefeeds, returns, etc.) in it Such characters in the test should be ignored or
suppressed if they do occur. If the printer requires any linefeeds or carriage
returns, this mutine should supply them

Note If the printer does not have support for text in the hardware, it must be
simulated. The shinko635 printer does not have text, and the code from that driver can
be used.

5 See §23.6 Paint Driver Librwy Ip. 2241.

§23 Writiig a Pant Drivr

-219- -219-

2&3.4. Gra Mode

The following routies perform raster color graphics:

Pras (0) put printer in graphics rvd&

Put the printer in raster graphics mode. This implies that subsequent requests will
be related to generating color images on the printer.

Pnjxds (nrows, lxols) report printer dimensions

irt *nrows;
int *ncols;

The variable nods should be set to the nurrber of pixels across the printer page.
If the driver is conining physical pixels into larger groupings (e.g., 2x2 pixels)
to create more colors, then nols should be set the number of these larger pixels. 6

The variable nros should be set to 0. A non-zero value nmean that the output
nedia does not support arbitrarily long output and paint will scale the output to
fit into .a wirow nrms x nco. TIe only driver which should set this to a
non-zero value is the preview driver, which sends its output to the graphics
screen

Plidsze (nrows, ncols) cefawdpicture size

int nrows;
int ncols;

Prepare the printer for a picture with xnrws and niok The number of colums
noais will not exceed the number of columns returned by Pnixels(p.219).7

There is no limit on the numrber of rows iwous that will be requested. Paint
assurnes that the printer paper is essentially infinite in length Some printers (e.g.,
thermal printers like the shinko635) only allow a limited number of rows, after
which they leave a gap before the output can begin again It is up to the driver to
handle this. The output will simply have gaps in it The user will cut out the
gaps and tape the pieces back together.

The Pmap program carat make use of more than 1024 pixels. It is acceptable for
Pnpirels () tD set ntols larger than 1024, but Pimp will reset it to 1024. Wide prirters will
not (currently) be used to their fullest width When Prmp is upgraded, this lim-itation will
disappear.
7 TfL programmer should, of course, code defensvely. If the number of coluns is tDo

large, the driver should exit with an enrr rnssage.

§23 Writing a Pant Drimw

-220- M20

Pdkda (buf, n) send rasr data to printer

unsigned char *buf;
intn;

Output the raster data inmE The nunter of bytes to send is n, which will be
the neoLs as specified in the previous call to Ppictsize(p.219). The values in bu
will be printer color rnmaers, one per pixel.

Note that the color nuners in buf have full color information encoded into them
(i.e., red, green, and blue). Some printers (e.g., inkjet) can output all the colors on
a row by row basis. Odrs (e.g., dvmial) must lay down a full page of one
color, den repeat with artder color, etc. Drivers for these printers will have to
capture tie raster data into temporary files aid dmn make three passes through
the captured data, one for each color.

Prle (buf, n) send He raster data to printer

unsigned char *buf;
int n

Output the run-length encoded raster data in bu The data is in pairs:
color, count, where color is the raster color to be sent, and count is the nmier
of times the color is to be repeated (with a count of 0 neanirg 256). The
nurber of pairs is rt

Of course, all the counts should add up to ncos as specified in the previous call
to Ppictsize(p.219). If the printer can ha run-length encoded data, then the
data can be sent eidr directly or with mininml nmanipulatiorn. Odrwise, it nmst
be converted into standard raster form before sending it to the printer.

23.3.5. Color Il xmrnt
The paint system expects that the printer has a predefned color table. No attempt is
mde by paint to download a specific color table. Rather, the driver is queried about
its available colors. Tie following routiines return information about the colors
available on the printer. These routines may be called even if Popen(p:216) has not
been called.

§2- Writing a Paint Drier

-221- .-I

p(gm) nurber ofprinter colors

This routie rerms the munber of colors available. Currently, this routie must
not return a rumter larger than 255. If the prnter is able to genrate more thn
255 colors, the driver must find a way to select a subset of these colors. Also,
the paznt system works well with printers that have around 125 different colors.
If the printer only has tme colors (e.g., cyan, yellow, and nagenta), then 125
colors can be created using a 22 pixel.

Pclrevds (red, green, blue) get color leels
int *red, *green; *blue;

Retmr the nunber of colors levels. This nemar, for example, if the printer has
125 colors, the color level would be 5 for each color, if the printer has 216
colors, the color levels would be 6 for each color, etc.

PFekaxmi (red, green, blue) get color number

float red, green, blue;

This routine returns the color nuntier for the printer which most closely
approximates the color specified by the red, green, and blue intensities. These
intensities will be in the range 0.0 to 1.0.9

The pinter color nunbers must be in the range 0 to n-l, where n is the nun er
of colors retumed by Pncolors(p.221).

For printers that have cyan, yellow, and magenta instead of red, green and blue,
the conversion formulas are:

cyan = 1.0- id
yellow 1.0- blue
magenta = 1.0- green

8 See §23.8 Creating 125 Colors rom 3 Colors [p. 2271.

9 Just to be safe, those above 1.0 can be changed to 1.0, and those below 0.0 can be
changed to 0.0.

§23 Wrtig a PAint Drier

-222--222-

Pbxkrvahie (n, red, green, blue) get color intensies

int n
float *red, *green, *blue;

This routine computes the red, green, and blue iztensities for the printer color
munter jr. These intensities must be in the range 0.0 to 1.0. If n is not a valid
color number, set the intensities to 1.0 (white).

23.4. The Dei TI ivw Sb Script
The driver shell is a sniall shell script which sets some envimnment variables, and
then executes the driver. The following variables must be set: 10

MAPLP
This variable should be set to the tty port that the printer is on The tty named by
this variable is passed to Popen(p.216). Only in very special cages can drivers
justify either ignoring this value or allowing it not to be set

The drivers distributed by USACERL have MAPLP set to /dev/${PAJNTER}.
Thus each driver must have a corresponding /dev port. These are normlly created
as links to real /dev/tty ports.

BAUD
This specifies the baud rate of the output ty port This variable is only needed if
the output port is a serial RS-232 tty port. The value of the variable should be an
integer (e.g., 1200, 9600, etc.), ard should be used by Popen(p.216) to set the
baud rate of the ty port

HRES
This specifies the horizontal resolution of the printer in pixels per inch Ths is a
positive floating point mbnter.

VRES
This specifies the vertical resolution of the printer in pixels per inch This is a
positive floating point number.

NCHARS
This specifies the maximum nunber of characters that can be printed on one line
in alpha-numric mode.

Not The application programs do not try to deduce the width in pixels of text
characters.

TEXTSCALE
This positive floating point nunter is used by Pmap and paint map to set the
size of the numbers placed on the grid when maps are drawn. The normal value

in The driver shell script may set any other variables that the prgrnmynr has determined

the driver needs.

§23 Writing a Paint Drier

-223- -223-

is 1.0, but if the number should appear too large, a smaller value (0.75) will
shrink these nunbers. If they appear too small, a lager value (1.25) will enlarge
them This value must be determined by trial and error.

The rxt five variables are used to control the color boxes drawn in the map legend
for Przp and paint mop, as well as the boxes for the printer color chart created by
Pchart and paint chart. They have to be determined by trial and error in order to get
the numbering to appear under the correct box.11

This positive integer specifies the meuimurn numier of blocks txt are to be
drawn per line.

BLOCKr E
This positive integer specifies the number of pixels across the top of an individual
box.

BLOCKSPACE
This positive integer specifies the nuter of pixels between boxes

TXT ACE
This positive integer specifies the numner of space charaters to output after each
numnber (printed under the boxes).

TEXTIFTDGE
This non-negative integer provides a way of inserting extra pixels between every
other box, or every third box, etc. On some prinkrs, this will not be necessay, in
which case TEXTFJDGE should be set to 0. If you find that the nunmers under
the boxes are drifting away fmm the intended box, the solution nmy be to move
every other box, or every third box over 1 pixel. For example, to move every
other box, set TEXTRJDGE to 2.

The following is a sample paint driver shell script:

"Apologies ate offered for this adrrittedly awkward dedgn.

§23 Wriing a Paint Driver

$(PAINTR?.) $(PATDRIVER?.}

MAPI-6P/&-v/$PARNfE
BAUD=960

HRES--85.8
VRES=87.0
NCHARS= 132

TEKTSCALE-1.0

NBLOCKS-25
BLOCKSIZE=23
BLOCKSPACE13
TEITSPACE= 1
TEXTFUtXE=3

export MAPLP BAUD -RES VRES NCHARS
export TEXTSCALE TEKISPACE TEXTFJDGE
export NBLOCKS BIICKSZE BLOCKSPACE

exec $PAINTDRIVER

23.5. Propamning Co dkkrafio1
The paint driver uses its stxaird input and stariard output to conmmnicate with the
paint application progrmn It is very inmportant that ijitber tr driver shell nor the
driver program write to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to stderr. Tlre is an error routine
which driver programs can use for fatal error messages. It is defined as follows:

rr (message, perror)

char *messae;
int perror,

This routine prints the nxem on stderr. If perrur is tue (i.e., non-zero), the
UNIX routine perror() will be also called to print a system error message.
Finally, exit() is called to terminate the driver.

23.6. Paint Drivw Library
The paint system comes with some code that has aheady be written This code is in
object files under the paint driver library directory. 12 These object files are:

12 See §23.7 Corrpilig the Ddver Lp -2,5 for an example of how to load this library code.

§23 Writing a P-ant Driver

r2M o

nriin.o
Tlis file contairn the min() routine wbdh nust be loackd by every drie,
since it contains the code that interfaces with the application programn.

o.o
Tlis file contains versions of Popen(p.216), PoUt(p.217), PoItc(p.217),
Pots(p. 217), Pfsh(p. 217), and Pclose(p. 218) which can be used with printers that
are conrected to serial or parallel ports. These routines hmdle the tricky tty
interfaces for both System V and Berkeley UNIX, allowing full 8-bit data output
to the printer, with xon/xoff control enabled, as well as baud rate selection

colorsI25.o
This file contains versions of Pncolors(p. 221), Pcolorlevels(p.221),
Pcolornum(p. 221), and Pcolorxlie(p.222) for tfh 125 color logic described in
§23.8 Creating 125 Colors From 3 Colors tp. 2271.

23.7. Campiing the Driver
Paint drivers are compiled using the GRASS Gnrke utility which requires a
Grikefi/e containing compilation nles.13 Tle following is a sample Gnrkfile:

3 o*e §11 Compiling GRASS Progrnis Using Gnvke [p..551 for details on the GRASS
compilation prcess.

§23 Writing a Paint Drivr

-228- -228-

NAME m
DRIVERLIB = $(SC)Q iAnteface/diverhb
INIERFACE = $(DR ERLB)Am~no \

$(DRIVERB)Ao.o \
$(DRIVERLB)/colors125.o

DRVESHELL $(E'0) psirdiver.sh/$(NAME)
DR1VEREKI = $(-C)/piiver/$(NAME

OBJ = alphao texto raser.o rixel&o \

pictsze.o datao de.o

all: $(DRIVEREXEC) $(DRIVERSHELL)

$(DRIVER-EXIXD): $(OBJ) $(LOCKLTB)
cc $(LDFAGS) $INERFACE) $OB $(IOCKLIB -o $@

$(DRIVERSHELL): DRIVER.sh
nn -f$@
cp $.$@
chnDd +x $@

$(OBJ): P.h
$(LOCKLB): # in case 1ibrwy changes

There are some features about this Gnukef that shoild be noted

printer rne (NAME)
The printer rne sample is assigned to the NAME variable, which is then used
everywhere else.

paint driver library (DRIVERIB)
This driver loads code from the commoan paint driver library. 14 It loads mimo
containing the rnain() routine for tie driver. AN drvers nust load mrino. It
loads o.o which contains versions of Popenp.216), Pout(p.217), PoutC(p.217),
Pouts(p.217), Pflush(p.217), and Pclose(p.218) for serial and parallel ports. It also
loads colors125.o which contains versions of Pcolors(p.221), Pcolorlevels(p. 221),
Pcolornun p. 221), and Pcolorclue(p. 222) for 125 colors.

lock library (LOCKLIB)
The driver loads the lock libary. This is a GRASS library which must be loaded
if the Popen(p.216) from the driver library is used.

homes for driver shell and executable
Tho driver executable is compiled into the driver directory, and the driver shell is

copied into the diiver.sh directory. This nearE that the driver executable is

14 Sv Aso §23.6 Paint Driver Libiwy Lp. 2241).

§23 Writing a Pdft Drimr

-227- .227-

plaed in

$GISBASE/etc/pindriver'
5

and the driver shell in

$GIAEetcaint/diriver. sh

2&8. Creaft 125 Colrs From 3 Colrs
Te paint system expects that the printer will have a reasonably large hunter of
colors. Some prirters support a large color table in the haniware. But others only
support three prinry colors red, green, and blue (or cyan. yellow, and magenta). If
the printer only has three colors, tie driver must simulate more.

If the printer pixels are grouped into 2x2 contiAmtions of pixels, then 125 colors can
be simulated. For example, a color with 20% red, 100% green, and 0% blue would
have one of the four pixels painted red, all four pixels painted green, and none of the
pixels painted blue.

Tihe following code converts % color intensity in the range 0.0 to 1.0 into a nmunber
from 0-4 (i.e., lie nun* - pixels to "turn od for that color):

rgizels = (inte, s" 5);
if (npixels > 4)

npixels = 4 ;

This logic will agree with the 125 color logic used by the paint driver library 16

routines Pncolors(p. 221), Pcolorlevels(p. 221), Pcolornum(p. 221), and Pcoloralue(p. 222),
provided that the color numbers are assigned as follows:

colornunier = idpixels * 25 + green-pixels 5"+ blue-pixels;

15 $GISBASE is the directory where GRASS is instaled. See §10.1 UNIX Fwironnnt

Ip..511 for details.
16 See §23.6 Paint Diver Librwy [p. 2241.

§23 Writing a Pa" Drier

-229- m29

Chaptw 24

Wridng GRASS Shl Swips

This section describes some of the things a programmer should consider when writing
a shell script that will become a GRASS conma3rn.

24.1. Use the Bu-ne BShal
The Bourne Shell (/bin/sh) is the original UNIX conmmnd interpreter. It is avaible
on most (if not all) versions of UNIX. Othr conmid interpreters, such as the C-
Shell (ibin/csh), are not as widely available. Therefore, pmgrmuners are strongly
encouraged to write Bourne Sll scripts for nwinmm portability.

The discussion that follows is for the Bourne Sll only. It is also assumed that the
reader knows (or can learn) how to write Bourne Sll scripts. This chapter is intended
to provide guidelines for ialdng them work properly as GRASS commars.

24.2. How a Sarit Soud Start
There are sone things that should be done at the beginning of any GRASS shell
script:
(1) Verify that tie user is nrning GRASS, and

(2) Cast the GRASS envirmient variables into the UNIX enviromentl1 and
verify that the variables needed by the shell script are set

The following acco ilishes these two things:

See §10 Emironment Variables fp. 511

§24 Writing GRASS Sd Scripts

if ts "$GI.SI " =
then

echo "Sony, you ae not nrmring GRASS" >&2
exit 1

fi
eval 'gisenv'
: $(GISBASE?} ${GLSBASE?.} $(LOCATIONNAME?} $(MASPE)}

Note the use of the: command. This comndn simply evaluates its arguments. The
first use is as the first character of the file, which signals to UNIX that the script is in
fact a Boune Sll script (see §24.5 Don't Use. # !bin'sh [p.2311). The seconl use
checks to see that variables are set The syntax ${GISBASE?} mar that if GISBASE
is not set, issue an error messae to standard error and exit the shell script

243. Gask
The GRASS comn l Cask emulates the prompting found in all other GRASS
commls, and should be used in shell scripts to ask the user for files from the
GRASS database. The user s response can be cast into shell variables. The following
example asks the user to select an existing cell file:

Gask old "Select a cell file" cell cell /tmp$$

. /rnp$$
rm -f /txp/$$
if ter't " $n~ame=..
then

exit 0

The (ask nmnual entry in the GRASS User's Reference Manual describes this
comrmn in detail. Here, the reader should note the followirg.

(1) The temporary file used to hold the user's response is nbp/$$. The
Bourne Shell will substitute its process id for the $$ thus creating a
unique file rne;

(2) The next line, which begins with a dot sources the commands contained
in the temporary file. These commnrls are:

nanesomething
mpset=-something
file=something

Therefore, the variables $name, $mapset ad $flile will contain the nmne,
mapset and full UNIX file name of the cell file selected by the user,

(3) T e temporary file is removed; and

(4) If $rme is empty, this means that the user changed his or her mind and
didn't select any cell file.2 In this case, sonething reasonable is done, like

2 1he other variables will be empty as well.

§24 Wring GRASS Shefl Scripts

-231- -231-

eiting.

24A. Gfindfile
The Gfinc 4e conm l'd can be used to locate GRASS files that were specified as
arguments to the shell script (instead of prompted for with Gask). Assuming that the
variable $request contains the rne of a cell file, the following checks to see if the file
exists. If it does, the variables $rmne, $mapset and $le will be set to the mnze,
mapset and full UNIX file nme for the cell file:

eval "Gfifile cell "$request""
if test m$rap st" =

echo ERROR: cell file "$Iquest" not found >&2
exit 1

fi

Note. The programmer should use quotes with $mqnest, since it may contain spaces.
The user can request a file on the command line of the form "name in napset' '3

(quotes will preserve the full request). Gfinc4'U accepts this form and, if fourd,
outputs $rnme as the nane part and $rmpset as the mapset part See the Gfin4'ile
manual entry in the GRASS User's Reference Manual for more details.

24.5. Don't Use #./bin/sh

When a user runs a shell script, he or she simply types the ame of the shell script just
as if it were a compiled program On systens that have more than one shell, it is the
responsibility of UNIX to figure out which shell should interpret the Commands in the
script This decision must be made on the basis of the shell for which the script was
written

On systems that have both /bin/sh and /bin/csh, the rule has been if the first character
of the file is #, then the script is given to /bin/csh to interpret; otherwise, it is given to
/bin/sh As the number of shells available grew, the mechanism was expanded to
allow the shell script to explicitly specify the interpreter. TIe rule was modified so
that if the first fine of the file is:

#!command [args]

then the corrntnd (with the specified argnuents) is invoked as the script interpreter.

This led to /bin/sh scripts starting with ./bin/sh However, the authors have found
UNIX systems which do not recognize this rule. They simply see the # as the first
charmcter, and turn the script over to /bin/csh instead of /bin/sh Therefore, scripts for

I This form for GRASS fle nams is discussed under §12.52 Fnding Files in the Database

§24 Writing GRASS Sh Scripts

/Wh~ shim never stort with #. A way to start Bouie Rll script tut has
worked well on all system with which the autiors have experience, is to use the:
commn (see §24.2 How a Sript Should &art [p.2291).

§24 Wriig GRASS Shel Scripts

.233- -233-

Appmliix A

Annotated Gnmal P~red fined Variables

The pre-deflned Gmake variables ame defined in the files nrkehead and mke.nid
These files can be fouri urier $GISBASE/src/CMD. 1

Note The variables slown here are described in more detail in §11 Conpiling GRASS

Programs Using Gmake rp. 551.

ndkead

TI mzkehead file contains mchirk-dependent and installation-dependert infonatior
It is created by system personnel when GRASS is ied on a system prior to

compilatior This file varies from system to system

$GtSBASE is the directory wheir GRASS is installed. See §10.1 UNIX viroumnwnt
1p. 511 for details.

Annotated Gmake Ph-defnd Variables

Anrmtet~d sample makehead file

Variable value Description

GIS= /gras GRASS instalaion directory
GISDBASE =/1rwJdata. GRASS databwe directory

UNIX-BIN = /tuAocalbin UNIX corruwid, bin direcory
DEFAULTM)OCAT[ON = spearf ish Default Ldcation for new usei

OS = SYSV Thy intexfaze flag
#O5 = BERK
OMPILEJIAGS = -0 Comp~iler options

LDFLAGS = -8 Loader options
DIGIT-RAGS -Digitizer comp:ile firne flag
#DIGITTFLAGS = -DA'T
DIG1T FlAGS =-DMASSCOMP
MATHLIB = -IM Math library
7ERMLIB =-ltenmlib Tero/temiwap libaiy

CLEAR = oA Can use temnlib to clear screen
#CLEAR = M)

AR = ar ruv $@ V?;\ Ubnuiry archve nile for
ranlib $@ sbuns with ranib

#AR ~ = er re$@ Libray archve rule for
'lorder $(OBJ) jtsuiif sns without ranlib

Anixtawd Ginake Pte-defied Variitks

The nmzke.nid file uses the varmbles mn nrzkelead tD corsuixt other vaiab1es tl~t we~
useful for compilation niles. Me~ contents of tlis Mie arm usually undm~red from
system to system.

AxrKtated nuk.nid fie

Variabe Value Description

OFIAGS = $(COMPHLEJIAGS) -I$(U[BDIR)\ Coniiler flags
-D$(OS) $(ETRA.CFLAGS)

GMAIKE = $(GIS)/stz/CMD/Grnake Grnake cornmwid
MAKEALL = set -*; for ddo\ Grnake "aI1"

test -f $$/Grnakeffle && $(GMAKE) $$d;\
done; eit 0

MANROFF = tbl. -TX \ Nruff rule for newal pages
$(GIS)/r/nmbelp/nmw~ir $?\
1 nrf -'lp, I col -b > $@

CURSES = -icurses $(TERMLIB) Cures libraries

MANI = $(GIS)/narV1 Man directory, section 1
MAN2 = $(GlS/nian/2 Man directory, section 2
HELP = $(GIS)/nwv/1elp Help directry

BIN = $(GIS)/bin GRASS corrnmxxI directory
ETC = $(GIS/etc GRASS con i aippot directory
SRic = $(I/mGRASS sotire directrxy

LIBDIR = $(GIS)/srt/libes GRASS library directory
GISLIB = $(LIBDIR)Aibgis.a GIS library
EIAGERYLIB =$(LIBDIR)AibLa Ifrogery library
LOCKLIB = $(LLBDIR/iblocka Lock library
SEX3MEN'TLB = $(LIBDIR)Alibsegmnta Segment library
DLGLLJB = $(UBDIRAIbdlg.a. Dig library
RASTERLIB = $(SRC)/D/1ibes/rasteriib.a Raster library
DISPLAYLIB = $(SRC)/D/libesdisplaylib.a Display library
VASKJB = $(LLIBDIR)AIibvaska Vask library
VASK = $(VASKLIBR $(CURSES) Vask + curses library

Annotated Gffwalc Precddir Variat~es

-237- -237.

Appendix B

The CELL Data Type

GRASS cell file data is defined to be of type CELL This data type is defined in the
"gis.h' header file. Pkogramnen mst declare all variables and buffers which will
hold cell file data or category codes (wich are CELL values as well) as type CELL.

Under GRASS 3.0 the CELL data type is declared to be int, but the progranmr
should not assurm this. What should be assumed is that CELL is a signed integer
type. It may be charged sometime to short or long. This implies that use of CELL
data with routines which do not know about this data type (e.g., printf(, sscanf(), etc.)
must use an internediate variable of type long.

To print a CELL value, it nmust be cast t long. For example:

CELL c; /* cell value to be printed*/

/* some code to get avalue for c"*/

printf ("%ldfn", (long) c); /* cast c to long to print*/

To read a CELL value, for example from user-typed input, it is necessary to read into
a long variable, and then assign it to the CELL variable. For example:1

char userbuf1281;
CELL c;
long x;

printf ("Which category? "); /P pxrrpt user
gets(userbuf); /* get user mr nse */
sanf (userbuf,"%ld", &x); /* scan category into long variable */
c = (CELL) x; /* assgn long value to CELL value*/

Of course, with GRASS library mutines that are designed to hardle the CELL type,
this problem does not arise. It is only when CELL data must be used in rutines
which don' t know about the CELL type, that the values must be cast to or from long.

This example does not check for valid inputs, EOF, etc., which good code must do.

Wh CELL Daa Type

-239- .239-

Apjxmdi C

Index to GIS Lbrary

Hee is an index of GIS Library outines, with calling sequences and short function
descriptions.

GIS Library

routine param ters description
G-allocatecelLbuf () allocate a cell buffer 86
G_askany (prompt, name, element, label, wani) prompt for any valid file name 70
G_ask-celL-inmapset (prompt, name) prompt for existing cell file 81
G_ask-cell-new (prompt, name) prompt for new cell file 81
G-ask.celLold (prompt, name) prompt for existing cell file 81

G-ask-in-mapset (prompt, name, element, label) prompt for existing database file 70
Gak-new 'pmmpt, name, element, label prompt for new drabke file 69
Gask-old (prompt, name, element, label) prompt for existing database file 69
GQaskrtesinmapet (prompt name) prompt for existing site list file 106
G-assitesnew (prompt, name) prompt for new site list file 106

GQask-sites-old (prompt, name) prompt for existing sate list file 106
Caslkvectorrin-mwet (prompt, name) prompt for an existing vector file 101
G-ask-vector.new (promrnl name) prompt for a new vector file 101
Gaskvectorold (prmpt, name) prompt for an existing vector file 101
G-calloc (n, size) memory allocation 76

Gclosescell (fd) close a cell file 89
(Gdate () current date and tire 117
G-fataLermr (mee) print error mes;Te and exit 64
G-findcell2 (name, mapset) find a cell file 82
G-fincLcell (name, mapset) find a cell file 82

Qfind__file2 (element, name, mapset) find a database file 71
GCfind-file (element, nane, mapset) find a database file 71
G;find-vectoz2 (name, mapset) find a vector file 102
(G-indvector (name, mapset) find a vector file 102
G-fopen-append (element, name) open a database file for update 73

G-lown-new (element, name) open a new database file 74
Gjbpen-old (element, name, apsetL. open a database file for reading 73
Gtbwn.sitesnew (narme) open a new site list file 107
Glopernqtes old (name, mpt) open an existing site list file 107
G-lbpnevector new (name) open a new vector file 104

(;_Ioxn_ \vctl)rjold (nane, mapset) open an existing vector file 103
(;Jl(M () create a protected child process 116
(_tvcat. (cats) free category structure memory 94
1 it'c co,rm (colors) free color strture memory 96

(;_gvtLslttuiTL msg () get Hit RRT'URN msg 70

(igetcat (n, cats) get a category label 93
(_get.ca $_iUle (cats) get tite from category Atnrcture 93
G(getcellhd (name, map.-*t, cellhd) read the cell header 9)
(LgeLce!fltitle (name, a 'p*.t) get cell title 2
(;-geLcolor (cat, itvd, gieen, blue, colors) get a category color 95
(;_.getdefault window (window) read the default window 78

Index to GIS Lil-ary

.240- -240-

GIS Library

routine Parameters descripton PW
0.. getenv (name) query GRASS environment variable 67
G.getenv (name) query GRASS environment variable 67
Gget.maprow (fd, cell, row) read a cell file 87
G-geLmaprow-nomask (fd, cell, row) read a cell file (without masking) 87
G-.gets (buf) get a line of input (detect ctz-z) 117
G__get..seLwindow (window) get the acive window 79
G-geLsite (fd, east, north, desc) read site list file 107
G-get-window (window) read the database window 77
G-gisase () top level program directory 66
G-gisdbase () top level database directory 67
G-gisinit (progrant..narm) initialize gis library 64
G-home () user's home directory 117
G-iniLcats (n, tide, cats) initialize category stnucture 93
G-iniLcolors (colors) initialize color srczture 96
GjniLrange (range) initialize range strcture 100
G-intr char () return interrupt char 117
G_is_reclam (nae, mapeet, r-name, r-mapset) reclas file? 91
G-legal.filename (name) check for legal database file names 72
Gilocaion () current location name 66
G-location-path () current location directorv 67
G-makepastec colors (colors, rain, max) make aspect colors 97
G-makecolorrarp (colors, rn, max) make color ramp 97
G-make-color-wave (colors, min, mac) make color wave 97
Gmake-grey-scale (colors, min, max) make linear grey scale 97
G-make_rainbowcolors (colors, rin, max) make rainbow colors 97
G-make-rwndomrcolors (colors, mnn, max) make random colors 98
G-make-rd-yel-grn (colors, rmin, ma) make red,yellow,green colors 98
G-malloc (size) memory allocation 76
G-m set () cunt mapeet name 66

Gmyname () location tide 66
G-open-celLnew (nine) open a new cell file (sequential) 84
G(op en-celLnew-raldom (name) open a new cell file (random) 8.5
G_open_cell-new-uncompressed (nnme) open a new cell file (uncompressed) 85
(opencell-old (name, mapet) open an existing cell file 83
(;opennew (element, name) open a new databse file 74
(;o)pen-old (element, name, maet) open a database file for reading 72
(Gopen_update (element, name) open a database file for update 73
(-parse-command (argc, argv, keys, stash) paw command line 109
(parse-command-usage (program, keys, format) command line usage mersae Ill
(;percent (n, total, incr) print percent complete rnessages 117
(K;prugrnname () return program name 118
(pmjection-nane (pmj) query cartographic projection 80
II piujection () query cartographic projection 80

puLctNhd (nme, cellhd) write the cell header 90

(GpuLtcellutite (name, title) change cell title 92
(;puLtrnapr)w (Id, buf) write a cell file (sequential) 88
(;_putnap-rowr-andom (fd, buf, row, col, ncells) write a cell file (random) . 88
G. pu site (fd, east, north, desc) write Ste list file 108
(;_puLwindow (window) write the databae window 77

r; ,arl cats (name, mapet, cats) read cell category tile 91
t ,vrdcolors (name, mapet, colors) read map laver color tabl 94

Index to GIS Lilrary

-241- -241-

GIS library

-unNarrrnu~temr - d:nprion
.G realhistory (name, mapset, history) read cell history file 98
G-eadrange (nare, mapset, range) read cell range 99
G-readvector-cats (narme, rmreet, cats) read vector category file 105
Gjealloc (ptr, Sze) memory allocation 76Gjerrove (elemetn, naee) remove a database file 75G-enarme (element, old, new) rename a databae file 75G.row-updater'ae (cell, n, range) update range strucwme 100G_seLasletuzmsg ("13) set Hit REPRN msg 70
G_setcat (n, label, cats) set a category label 94GseLcatsjitle (tile, cats) set tide in category structure 94G_setcolor (cat, red, green, blue, colors) set a category color 96Q- _setenv (nare, value) set GRASS envimrrnent van able 67
G_setenv (name, value) set GRASS environment variable 67
G_seterrroutine (handler) change error handling 65
Gsetwindow (window) set the active window 79G_shorLhistry (rane, type, history) initialize history stucture 99Gsleep-on-ermr (flag) sleep on erro? 65
Csqueeze (s) remove unnecessary white space 113
G_store (s) copy string to allocated memory 114G_sirckt (dst, sie) concatentate strings 113G stcpy (dst, sre) copy strings 113

-strip (s) remove leading/training white space 114
Glstrnpy (dstse, n) copy strings 113
Gsuppresswarngs (flag) suppre warnings? 6G_system (command) run a shell level command 116Qtempfile () returns a temporary file naTe 108G-tolcae (s) convert string to lower case 114Gtoucase (s) convert string t uppercase 114
Gunclri (c) printable version of control character 114Gunopen-cell (fd) unopen a cell file 89G_unset-error-routine () reset normal error handling 65G-update-rage (cat, rnge) update range structme 100G_warning (message) print warning mesage and continue 64
G-whoami () user s name 118GQwindow-cols () number of columans in active window 78
G-window-rows () number of rows in active window 78(Cwritecats (nane, cats) write cell category file 92
GwWritescolors (name, maset, colors) write map layer color table 95
C_writehistory (nae, history) write cell history fle' 99G-wnte range (name, range) write cell range 100C_ rite-vector cats (name, cats) write vector category file 105_yes (question, default) ask a yes/no question 118(;_zer cell buf (buf) zero a cell buffer 86
(.-zone () query cartographic 7A)ne 80

Inxc to GIS Library

.243- -243-

Appmfti D

I to Dig Library

Here is an index of Dig Library routines, with caling sequences and short function
descriptions.

Dig Library

routine paramieters description pe
dig-boundaLbox (p, N, S, K W) get arc bounding box 135
dicgcheck-dist (map, n, x, y, d) distance to am 132
digdistance2_point_tDJine (x, y, xl, yl, x2, v2) distance to line-segment 134
dig-fini (fd) end level one vector access 125
dig.iniLbox (N, S, K W) limit am search in box 127

dig-init (fd) initialize level one vector access 125
digP-area.att (map, n) get area category attribute 130
digP-fini (map) end level two vector access 128
digP-getarea-bbox (map, n, N, S, K W) get area bounding box 130
digP-getLaiea (map, n, pa) get area polygon 129

dig_P_get_area_xy (map, n, np, x, y) get area polygon 129
digPget-line-bbox (map, , N, S, K W) get arc bounding box 131
digP-int (name, rapset, map) initialize level two vector access 128
digP-lineatt (map,) get or category attribute 131
lig.PFntunareas (map) get number of areas 129

ligP-num-lines (map) get number of arcs 130
dig-point-inarea (map, x, y, pa) point in area 1:32
dig-poin~toazea (map, x, y) find area with point 132
dig-pointtoline (map, x, y, type) find am with point 132
digP-eadline (map, n, p) read arc 1,30

dig-P-read-next-line (map, p) read next am 131
dig__lrewind (map) rewind nextartc pointer. 131
dig pn nLheader () display vector header information 125
dig-piune (p, threhold) prune a dense art 135
digP_tmpsclo., (map) temporary close vector map 128

dII I Utrnp opn (map) reopen closed vector map 128
dig-ral headh binrv (fd, header) read vector header 134
diVg._)iXLhne (fd, offset, x, y, np) read arr 1.33
(iigttvJ. line ut hox (fd, np, x, y) read am in box 127
dig tadl .xt lrin (fd, np, x, v) get next ar 126

dig Ivad -. l IIIX'_oqx" d, np, x, y, type) get next art by type 126
dinL 11% 1 lit (Id) reOnd vector file 125

, n li itt,'al hin.iI id, header) write vector header 1.34
ik , ir,, (fd, type, x, y, np) write air 13

dn- n(% . 2 dIir I _lie (x,.v,xl,y1,x2,.V2) distance to line-genent 135

Index to Dig Library

-245- -246.

Appmdix E

Lheei to JnWy Libray

Here is an itex of Dig Imagery routines, with calling sequences arn shaft function

desciptions.

Dig Imagery

routine parameters description pae
dig-bound-box (p, N, S, E, W) get an bounding box 135
dig-check-dist (map, n, x, y, d) distance to ar 132
dig-distance2 pointtoJine (x, y, xl, yl, x2, y2) distarce to line-segment 134
dig-fini (d) end level one vector access 125
diginiLbox (N, S, K W) limit arc seah in box 127

dig-init (fd) initialize level one vector access 125
digPaea._att (map, n) get rea category attribute 130
dig_ fini (map) end level two vector access 128
digP-geLarea-bbox (map, n, N, S, E, W) get area bounding box 130
digP aeLaea (map, n, pa) get aea polygon 129

dig_.geLareaxy (map, n, rip, x, y) get area polygon 129
dig.P-getJine-bbox (map, ri, N, S, E, W) get am bounding box 131
digjPiinit (nane, nipet, map) initialize level two vector acces 128
digP-line-att (map, n) get ac category attribute 131
digP-n Lareas (map) get number of areas 129

digP-nurrlines (map) get number of arcs 130
digpoint-in-ara (map, x, y, pa) point in area 132
dig-poinLto.area (map, x, y) find area with point 132
dig-pointb-line (map, x, y, type) find arc with point 132
digP-ealine (map, n, p) read arc 130

digPeadnextline (map, p) read next arc 131
dig-Pjewind (map) rewind next.mr pointer 131
dig-print-header () display vector header information 125
dig-prune (p, threshold) prune a dense at 13.5
digPtmp-close (map) temporary close vector map 128

digPjtrpTopen (map) reopen closed vector map 128
digjttheaLbinary (Cd, header) read vector header 1:34
dig-Readline (fd, offset, x, y, np) read at 1.33
digrealfine-in-box (fd, np, x, y) read ac in box 127
dig-read-next-line (fd, np, x, y) get next ar 126

dig-.ead-next-linetypx (fd, np, x, y, type) get next at by type 126
dig-rewind (fd) rewind vector file 125
dig writehcx adbi nin (W, header) write vector header 1:4
digWnte-line (Od, type, x, Y, np) write am 133
dig-xyvdince2j_)tnt toj ine (x,y,xl,yl,x2,v%2) distance to line-segment 135

IwKWX to Ima iy Library

-247- -247-

Idcto Display Graphkm Libray

Here is an index of Display Graphics IAbrary mutines, with caling sequences and
short function descriptiorn.

Display Graphics Library

routine PanIters description page

Jadd-tDmlist (sting) add command toi window display list 161
D-a&to&d-col (colunm) army to screen (column) 163
D-a__todLrow (row) aray to screen (row) 163
Dscell-draw-setup (top, bottom, left, right) prepare for raster graphics 165
D-check-map-window (window) assgn/rtrieve current map window 160

Dsclear-winow () clear window display lists 161
Tclearwindow () clear information about currni window 161

D-clip (s, n, w, e, x, y, c-x, c-y) clip coordinates to window 166
D-do-converions (window, top, bottom, left, right) initialize conversions 162
D_draw-cell-row (row, raster) render a raster row 165

D -do&a-col (x) screen to army (x) 164
DjLdato-arow (y) screen to ray (y) 164
Dd-to-u-col x) screen to earth (x) 164
DLdwourw (y) screen to earth (y) 164
DRersewindow () erase current window 161

D.geLcellnamne (nane) retrieve cell file name 162
D.get-cur.wind (name) identify current graphics window 160
D-getscreen-window (top, bottom, left, right) retrieve current window coordinates 160
DJnew-window (name, top, bottom, left, right) creae new graphics window 160
Doveday-celrow (row, raster) render a raster mw without zeros 165

D-popup (bcolor, tcolor, dcolor, top, left, size, options) pop-up menu 166
Demmove-winow () remove a window 161
D~jesetcolors (colors) get colors in driver 167
Drset-scren-window (top, bottom, left, right) resets current window position 161
Dsertcell-nane (name) add cell file name to display, list 162

D-seLcur-wind (name) get current graphics window 160
D-show-window (color) outlines current window 160
D-rstamp () give currnt time to wirrlow 161
D)translate-color (name) color name to number 167
D-u-to-acol (east) earth to array (cast) 163

D)u-to-a-mw (orth) earth to arrav (north) 163
l)_u-todclsol (east) earth to screen (east) 164
I)_utjodrow (noth) earth to reen (north) 163

Index to Display Gr#ics [ibrary

hIeKr to Rse Graphks Lflwary

Here is an index of Raster GxA-plis Ubry routines, with caling sequences arid sbolt
function descripions.

Raster Graphics Library

muuune Paramneters description

Wbox-abs (xl,ylx2,y2) fill a box 151
R-box-rel (dxdy) fill a box 151
Rs-lose-diver () teminabe graphics 148
R-color (color) select color 149
v.,colortalefxed ()select fixed color abfr 149

R-colortable-float ()select floating color table 149
R-cont-a2s (X~y) draw line 151
R-cont-rel (dxdy) draw line 151
R-erase erase~ screen 152
R-ilush ()flush graphics 152

RJ'font (font) choose font 155
R-geLlocaionwithbox (X~ylrx,ny,btftn) get rmuse location using a box 157
R-get-ocatiortwith-line (xy,nx,ny,butbon) get rmuse location usirg a line 156
R-ge~locaon-wdtxpointer (nxny,butbon) get rn~use location uinrg pointer 156
R-getext-box (text, top, bottom, left, right) get text extents 156

ljwve-abs tX~y) rmve current location 150
Rniove-rei (dxdy) rnov current location 151
R-open-driver ()initialize graphics 148
R-polydotst-abs (xy,num) draw a series of dots 152
lRLpolydos.rel (xy,nun) draw a series of dots 152

R-polygorn-aho (xy,num) draw a closed polygon 152
Wcpolygortjel (xy,num) draw a closed polygon 15.3
R-polyline-abs (x'y'num)- draw an open polygon 153
R-pol v linejiil (x,y,num) draw an open polygon 153
RIlater (numrnmws,wthzem,raser) draw a raser 154

lUreset-color (red, green, bit,, num) define single color 149
IkjeseL-(.ols (minmrax,red,green,blue) define multiple colors 149
iIRGB-color (redgenblue) select color 1150
l?1RWI'tr (numnrwsred,greenblue,withzerm) draw a raser 154
R-sci~vn-bot ()bottom of screen 1.50

I_,4rjun.Icjt se)sreen left edge 150
I? Sk'1111I I tt (sc reen night edge 150
I? 4CIven-top ()top of screen 1150
k -,4lt(10A ol (rt'd,green,bla) initialize graphics 154
1? 111(10%%lo (top,bottornleftright) set text clipping wirndow 5

14-ld rwrJcolor (color) select standard color 150
Rkjextsize (width, height) set text size 1,55
Rtext (text) write text 1156

Index to Raster Graplucs library

-251--

Tikzto Rowio Lfbray

Here is an index of Rowio Librar routines, with callihg sequences and short function
descriptions.

Rowio Library

routine paraneters description page

mwio-flem (r) get file descriptor 176
mwio-flush (r) fome pending updates to disk 176

owioorget (r, n) forget a row 175
rowio._get (r, n) read a row 175
rowioput (r, buf, n) write a row 176

rowio-release (r) free allocated memnory 176
rowiosetup (r, fd, nrows, len, getrow, putrow) configure rowio stnxture 174

lrxId to Rowio Library

Appmdix I

TIexr to SegWmat Library

Her is an index of Segnent Library routines, with calling sequences anxd short
function descriptior.

Segment Library

routine parameters description page

segmentflush (seg) flush perxfing updates to disk 182
segment-format (fd, nmws, ncols, sws, scols, len) fonat a segment file 180
segment-geLrw (seg, buf, row) read raw from segment file 182
segnenLget (seg, value, row, col) get value from segment file 181
segmentinit (seg, fd, nsegs) initialize segment strcture 181

segmenLpuLraw (seg, buf, row) write row to segment file 181
egmenLput (seg, value, row, col) put value to segment file 182

gegmenLrelease (seg) free allocated memory 183

index to Segmft Libary

-255- .25-

Appixiix J

lIn to Vask Liary

Here is an irdex of Vask Library mutines, with calling sequences and short function

descriptions.

Vask Libray

routine paraneters description pae
Vscall () interact with the user 189
Vsclear () initialize screen description 188
V const (value, type, row, col, len) define screen constant 188
V_floaLtaccuracy (num) set number of decimal places 189
V-int mpn (text) change ctrl-c mesage 190

VjintrLok () allow ctri-c 189
V-line (num, text) add line of text to screen 188
V ques (value, type, row, col, len) define screen quiestion 188

Index to Vask Library

-257- -27-

1Pniuted Li~for Liirary Suhutiam

end level one vector access digjfini() 125
initiahze level one vector access digjnit() 125

end level two vector access digPii() 128
initialize level two vector access digPjinit() 128

get the active window G-geLsetwindow() 79

set the active window Gsetwindow() 79
number of columns in active window G-window cols() 78

number of rows in active window G-windowrows() 78
add cell file name to display list D-seLcelLnare() 162
add command to window display list D-addtoJist() 161

add file name to Ref stictuie _add-filejtogrupref() 141
add line of text to screen Vjline() 188
add new control point Lnew-contloLpoint() 143
allocate a cell buffer GQallocatecellbuf() 86

copy string to allocated memory G-Stole(114

free allocated memory mwiorelease() 176
free allocated memory segment-elease() 183

memory allocation G-caloc() 76
memory allocation G-malloc() 76
memory allocation Grealloc(• 76

allow ctrl-c VjinrpLok() 189
distance to amt digcheck-dis) 132

read at digPea ine() 130
read next am digPJread-next-ine() 131

prune a dense art digprime) 135

read r dig..ReadUine() 133
get next am digjead-nextine() 126

write am digWriteline() 133
get art bounding box dig-boundbox() 1.3-5
get am bounding box digP-getlineIbox() 131

get next ar by type dig.jeadnextline-type() 126
get art category attribute dig.P-lineatt() 131

read am in box digread-line-inbox() 127
limit at searh in box diginit.box() 127
find arc with point dig-point.toJline() 132

get number of ars dig.P-numirnes) 130
point in area digpoint-iarea() 132

get nvea bounding box digP-getarebbox() 130
get area category attribute digP-area__at() 130
get wra polygon digP.get-aea() 1219

get area polygon digP-get-aeaxy() 129
find ara with point digpointto-area() 132

get number of areas dig_PnuLareas() 129
earth to arry (east) D-utoacol() 163
earth to array (north) Du~toarvw(16:3

anay to screen (column) Dajnsd-col() 163
av~y to semen (mw) D-ato-d-rw() 163

sc-ren to armY (x) D-d-to-a-col() 164

PRrnuted Index ftr Lir-ary SLbrd

-28- -258-

screen to array (y) D_d._t_auw(164
ask a yesrno question Gyes() 118

make aspect colors G-makeaspect-colors() 97
asign/retzeve current map window D-check-mapwindow() 160

get area category attribute dig..aP eaat() 130
get arc category attribute digPlinealt() 131

bottom of screen R-screenbot) 150

get am bounding box dig-bouwx~box() 135
get area bounding box dig_.Pge-area.bbox() 130
get arc bounding box dligPget-line-bbox() 131

get arc bounding box dig-bound.box() 135
limit arc seamh in box dig-init-box() 127

get area bounding box dig_P._getaea.bbox() 130
get am bounding box dig_Pgetlirnebbox() 131

read am in box dig-ealdlinein-box() 127
fill a box R-box-abs() 151
fill a box R-box__el() 151

get mouse location usng a box R-geLtlocation-with-box() 157
allocate a cell buffer G-allocate-clLbuf() 86

zero a cell buffer GzemcelLbuf() 86
query cartographic projection G-prjection() 80
query cartograhc projection Gpmjetion.name(80

query cartograhic zone G-zone() 80
convert string to lower cage Gtolcase() 114
convert string to upper case Gtoucase() 114

get area category attribute digP-area-awt' 130
get ar category attribute digPline-att() 131

get a category color G(getscolor() 95
set a category color G-set-colori) 96

read cell category file GreaclLcat ,) 91
read vector category file GjeaiLvector_cats(105

write cell category file G_writecats() 92

write vector category file G_writevectrcatst 105
get a category label Ggetcat 93
set a category label Gretscat() 94

get tide frm category structure G-get-cats-tide() 93
initialize category sructure G-initcats() 93

set title in category structure G-sets atstide) 94
free category stuctre memory Gjfreecats() 94

allocate a cell buffer GIallocate-cellbuf() 86
zero a cell buffer G-zermcell-buf() 86

read cell category file G-reaLcats) 91

write cell category file Gwritecats() 92
prompt for existing cell file G-ask cell-imapset(81

piompt lor new cell file G askcell_nek(H 81
prompt for existing cell file G-asklcell-oldt) 81

close a cell file Gcloscell() 89

find a cell file Gjfirwl-cell2() 82
find a cell file GfiMl_cell() 82

read a cell file Gget map mw() 87
open a existing cell file G-open-cell-oldo 83

unopen a cell file Gurnopencelh() 89

retrieve cell file name De-tcell-narre(162
acd cell file nare to display list D_.vt- cell -name(162

a 'mtt IndeX for Lbr y S thrxe

.259 -59

open a new cell file (raidom) G-operu-cellnw-andom() 85
write a cell file (randomn) G-uLiaporowrrnom() 88

open a new cell file (sequential) G-open..celLnew() 84
write a cell file (sequential) G-jxrtjriap-row() 88

open a new cell file (rucompresd) G-open-cieILrtw-uncompriesed() 85
read a cell file (without maslirg) Gxget..ap-ow - masMf 87

read the cell header G-&Lcelhd() 90
write the cell header G-putsehd() 90

read cell history ifie G-reaLhistoiy() 98
write cell history fie G-writejistory() 99
read cell range Giread-rnge() 99

write cell range G-rterange(100
get cell title Ggeccellideo 92

change cell title G-puLcell-title(92
charge cell tide G-putsell-tide() 92
charge ctrl-c mesae V-itirrms() 190
charge ermr handling G-seLenrr-rutire(65

return intermpt char Gitr-cha) 117
printable version of* control character G..uncti() 114

check for legal database Mie names GLegaLfiMenanm() 72
create a protected child procs G-fork() 116

choose font R-font() 155
clear wuidow display lists D-clear-window() 161
clears mnfonnation about current window D-slearwixiow() 161
clip coordinates to window D-.clip() 166

set text clipping window R-setwixldow() 156
close a cell file G-cose-cell() 89

temporary close vector map dig-Pjnp-close() 128
draw a closed polygon R..polygon-uabs) 152
draw a closed polygon R-polygon-jel() 153
reopen closed vector map dig-P-mp-open() 128

get acategory color G-geLcolor() 95
ret a category color G-set~coloi) 96

select color R-color() 149
define single color R&reseLcolor() 149

select color Rj1GIBcolorl) 150
.xkct standard color R-sandard-color 150

color name to number I)_translate-colonl) 167
make color ramp Gjnake-color-ramp() 97

initialize color strixture G-init-colorso 96
t ,ree color strizture mremory G-frwcolors) 96

read map layver color table GQreat-colors() 94
write map lawer color table G-wiite-colors 95

select fixed color table R-color-table-fixed() 149
select floating color table Rscolorjable floati) 149

make color wave Grnakecolor -wavet 97
make aspeet colors G-make-apct-colONs) 97

make rainbow colors G-iake-rainbow-colorsu 97
make random colors Gmnake-randon--colorstt 98

mahe red,vellow,giren colors. G make-red-yel-gm 98
define multiple colors R.tieset-colors() 149

set colors in driver D-irseLcolors) 167
amr-v to sciven (column) D-itto-dcolft 16

number of columns in active windoA (Lwindowcolst) 78

PFWnTa Inidex for LNbry Subrue

-200- -2M0-

run a shell level command (3-z Astm() 116
paw command line G-parse.co (manl) 109

command line usage message G-paecommandnusage() 111
add command to window display list Dadd.tDJiSt() 161

print pement complete rmessag G-perent) 117

concatentate stings G-stat() 113

configure rowio structure rwio.setup() 174

define screen constant Vcois() 188

print warning message and continue Gwaning() 64

printable version of control character G-unctr() 114

add new control point Lnew-controlpoint() 143

read group control points LgeLcontrolpoints) 143

write group control points LpuLcontmLpoints) 144

initialize conversons D-do-conversions() 162

convert string to lower case G_lcase() 114

convert string to upper case Goucase() 114

retrieve current window coordinates D-get-screerx.window() 160

clip coordinates to window Dclip() 166

copy Ref lists Ltnrnsfer-group-reffile) 141

copy string to allocated memory Gstore() 114

copy strings G-stipy() 113

copy strings G-stmcP() 113

create a lock lock-file() 169

create a protected child process G-fork() 116

create new graphics window D__newwindow() 160

allow ctrt-c Vntrptok() 189

change ctri-c message Vjintrp(msg) 190

get a line of input (detect ctrl-z) G.gets() 117

current date and time Gdate() 117

identify current graphics window D..gectcur-wind() 160

set current graphics window D-set~curwind() 160

move current location R-mave-abs() 150

move current location. Rmove-rel() 151

current location directory Gjlocationpath() 67

current location name Gjlocation() 66

assign/retieve current map window Dcheckn apwidow() 160
current mapset name Gmanset) 66

give current time to window Dinestarp) 161

clears informion about curent window Dclear.window() 161

era-- current window D_erasewindow() 161

outlines curnt window Dshow-window() 160

retrieve current window coordinates Dget.creerwindow() 160

resets current window position Djeset-screnwndow(161

top level database directory G..gisdbe() 67

prompt lor existing databa-' file Gkjanmapsett) 70

pn)mpt lar new databae file Gjask-new) 69

pminpt Io' existing (labase lil' G-ask_old() 69

find a database file Gfind-file2() 71

find a databae file G-frendfileo) 71

open a new database file G-fopennew() 74

open a new database file G-open-new() 74

erneve a databa e file Gremoveo) 75

rtname a database file Grename() 75

open a datiabae file for reding Gfoperold() 73

Permate Index fir Ubrpat, &troudm

- 281- -281.-

open a datae file for reading G-open.old() 72
open a dazmw file for update Gfopenappend() 73
open a datbse file for update Gopen_updabe() 73

check for Ikgni dltab w file rwru (Llegal-fllenarr() 72
read the database window G.geLwi ow() 77

write the databae window GpuLwindow() 77
cu nent date and time G.dat () 117

set number of decimal places VjtioaLaccuracy) 189
read the default window G eLdefLt~window() 78

define multiple colors RieseLcolors() 149

define scren constant V-const{) 188
define screen question V-queg() 188
define ingle color ReseLcolor() 149

prur a dense arc dig.prune() 135
initialize screen description V-clear() 188

get file descriptor rowiojfileno() 176
get a line of input (detect cit-z) G-ges() 117
top level program directory Ggis(ase) 66
top level database directory G(gisdbas() 67

user's home directory Ghome() 117

current location directory Gjocaionipath() 67
force pending updates to disk rowiofluah() 176
flush pending updates to disk segrrtflush() 182

add command to window display list D-aditDlist() 161
add cell file name to display list DseLcellnane() 162

clear window display lists D_clearwindow() 161
display vector header information dig-print-heaerf) 125
distace to ar dig-checkldi)st 1.32
distance to line-segment dig-distace2_poinLttoine() 134
distance to line-segment dig xy-distane2_poinLtine() 135

does group exist? find.gmupo) 139
draw a series of dots Rpolydots-abs(152
draw a series of dots Rpolydotsiel() 152

draw a closed polygon RpolygorLabs) 152
draw a closed polygon R-polygorLel(15.3

draw a raster R-rasr() 154
draw a raster R RGBLra~sti 154
draw a series of dots Rpolydots-abs() 152
draw a series of dots R-polydotsrel(1 152
draw an open polygon R-polyline-abs(153

draw an open polygon Rpolylinerel(?) 1.53
draw line R-cont_abs() 151
draw line R.cont__el() 151

'vt colors in driver Dreset coloNsU 167
earth to aray (est) D-u-to-a-col(16.3

earth to array (north))_uto a_omw(163
varth to screen (east Durtojd_col() 164
earth to screen (north) Dju-toJdjrow(16.3

.cren to earth (x Dd.to-ucol(164

.ctren Lo earth (Y) D-d-to-u-jwU 164

earth to array (east) Dujto-a-col() 163
carth to .-cren (cast))_L-todcol() 164

ctx.en left edge t.sreenlect() 150
.. w'.n right edge Rscreen-rite(1 150

P-mwtd Index for .bray SouAines

end level one vector access digftin() 125

end level two vector access digPfini() 128
query GRASS envirnment variable G..getenv() 67

query GRASS environment vaiable G-getenv() 67

set GRASS envionment vaiable G_ .setenv() 67

set GRASS envionment variable G.setnv() 67

erae current window D-erae-window() 161

erase screen Rerae() 152

sleep on error? Gsleep-onerorO) 65

change error handling G-set-errurroutir() 66

reset normnal error handling Gtuset-erroutine() 65

print error message and exit GJfatal-error() 64

does group exist? l-fin-group() 139

prompt for existing cell file Gak.sell in..mapset() 81

xprompt for existing cell file G-ask-cell-old() 81

open an existing cell fie G-opencellold() 83

prompt for existing database file G-akin-rmapset) 70

prompt for existing dabe file GM1askold() 69

prompt for an existing group LasLgroup-old() 138

prompt for existing site list file G-ask-sitesR.n aset) 106

prompt, for existing ste list file G-ask-sitesold() 106

open an existing ste list file G-fopen-stes-old() 107

prompt for an existing vector file Glak-vector-inmape) 101

prompt for an existing vector file Gaskvector-old() 101

open an existing vector file Gfopen-vector_old() 103

print error messae and edt Gfatal-err() 64

get text extents Rgetexbox() 1.56

rewind vector file digjrwind) 125

prompt for existing cell file Gaslk.cell-inmapte) 81

prompt for new cell file G-ashkcellnew() 81

prompt for existing cell file Gask-cell_old() 81

prompt for existing database file Gask-inmapset) 70

prompt for new database file G-asknew() 69

prompt for existing database file GQask-old(69

prompt for existing ste list file Geasksitesin-maps(e) 106

prompt for new ste list file G-ask-sitesnew() 106

prompt for existing ste list file G-ask-sitesold() 106

prompt for an existing vector file CGasLvector-in-mapet() 101

prompt for a new vector file G-askjvectorinew() 101

prompt for an existing vector file GQaskvectorold() !01

close a cell file Gclose-cell() 89

find a cell file Gfind-cell2() 82

find a cell file G-findcel]) 82

find a database file (,fincLfile2() 71

find a databae file G-finfile) 71

find a vector file Gfind-vectr2() 102

find a vector file (';find-vectorf) 10'2

open a new database file (_topen_new() 74

open a new .ite list file Gjfopenntesnew(107

open an existing site list file Gjopensites-old() 107

open a new vector file G-tbpenvtornew() 104

open an existing vector file G_tpen_vvtor-old() 103

read a cell file (;geLrmapmw) 87

read qte list file (_getsite(107

Permuted Inde for libm-y 90m tize

-263- -263-

recla file? Gis_.eclas() 91
open an eisting cell file G-ope..celLold() 83
open a new dame file G.operx.ww() 74

write te list file x.PtLaite) 108
read cell category file G-reaLcms() 91

read cell hisory file GjeaLhiSkry() 98
read vector category file G.,ead-vectorcat() 106

rermve a database file G-jemo () 75
rename a databae file G-ename() 75

unopen a cell file G-uropercell() 89
write cell category file GCwitecats) 92

write cell history file Q-wfitehistory() 99
write vector category file Gwite vectDrcats) 105

read group REF file L.get.groupref() 140
read subgroup REF file L-get-subgroupref() 140

write group REF file LpuLgroup-jef() 140write su iup REF file LpuLsubgroup-nf() 140
format a segment file segment,_format) 180get value fmm segmnt file segre&.get() 181

read row from segment file segmnge ow() 182
put value to segment file segment Pt) 182write row to segment file segmen -imt-ow() 181

get file descriptor mwiojleno() 176
open a databae file for reading Gfopenold() 73
open a database file for reading 'Gopen.old() 72
open a database file for update Q-fopenrapend() 73
open a database file for update G-openuipdate() 73

retrieve cell file name D-geLcelLname) 162prompt for any valid file nmAe G-xkany() 70
returns a temporary file name Gjtempfile() 108

add cell file name to display list DJseLcell.nae() 162
add file name to Ref structure Iadldfiletogroup-ref() 141

check for legal database file names Gnlegalfilenare) 72open a new cell file (random) Gopencell-newmn omn(8.5
write a cell file (raidom) Gpumap-row-random() 88

open a new cell file (sequential) Gopencell-new() 84
write a cell file (sequential) G-put-map-rw() 86

open a new cell file (uncomressed) Gopencellnewuncompressed() 85
read a cell file (without masking) G-getmap row no)ask 87

fill a box R-box.s() 151
fill a box Rjboxrel() 151
find a cell file GjifniLcell2() 82
find a cell file Gjfindcell() 82
find a database file Gjfidle2() 71
fird a databae file GCfindjfile() 71
find a vector tile Gfind.vectoi2() 102
find a vector file Gfindvectori) 102
find arc with point dig-pointjto-line() 132
find area with point dig-pointto-area() 132

select fixed color table R-color-tablefixed() 149
select floating color table R-color-table floatf) 149

flush graphics Rflush() 152
flush pending updates to disk segymenLflushl) 182

choose tont RLbn) 15.-

Pwmuted Index fir Lilwwy &troines

-264- -264-

force pending updates to disk rowio-flus(h) 176
forget a row mwio-forget() 175
format a segment file segn.Lforrat() 180

free allocae medmry rowiojelease() 176

free allocated memory segr .ereleae) 183

free category structure memory Gf~iecats) 94

free color stucture memory G-freecolors) 96

free Ref structue Lfme.grup3ef) 142

initialize gis library G&ginit) 64

give currnt time to window Djlimestamp() 161

prepare for raster graphics D-cell-draw-setup() 165

terminate graphics RclosediverI) 148

flush graphics R-flusht) 152

initialize graphics RIopen-driveri) 148

initialize graphics R-setRGBcolori) 154

identify current graphics window DWgcurwind() 160

create new graphics window D-new-window() 160

set current graphics window D-set-cur-wind() 160

query GRASS environment variable G_ getenv() 67

query GRASS environment variable G_getenv() 67
set GRASS environment variable G_ etenv() 67

set GRASS envionnent variable G-setenv() 67

make linear grey scale G-make.grey-scale(97

prompt for new group Las.group-new() 138

prompt for an existing group L[idgroup-old() 138

read group control points Lget-cont)Lpoints(143

write group control points LpuLtcontrol-points() 144

does group eist? Lfinidgoup() 139

prompt for any valid group name Lak&gmupany() 139

read group REF file Lget-groupjref() 140

write group REF file Lputgroup-ref() 140

change error handling Gset_eor_routine() 65
reset rinrmal error handling GunseLerrorirutne() 65

read vector header dig-readhead-binary() 1,34

write vector header dig_write_head_binay() 1.34

read the cell header G&geLcellhd() 90

write the cell -header G_putjcellhd() 90

display vector healer information dig-prinLheaderi) 125

read cell history file G-read-historv() 98
writL cell history file _Wft(_history() 99

initialize history struczure G-shoit-history() 99

get Hit RgIURN msg G_gea retung() 70

set Hit RETURN msg G_etaskmrmnng() 70

user's home directory G-home) 117

identifv current graphics window [)_geL_(,urwinl() 160

display vetor hvader inlbrmation dig-pninLheaderl) 125
read Urget intbmaion ILgetitugett) 142

writet Larget inforrnation l puLtirgett) 142

cleas information about current window DRcleaiiwindow() 161
initialize category structure _initcat0() 93
initialize color structure Gjnitcolors) 96

initialize conversions D doconversions() 162
initialize gis library (gi.rIL() 64

initialize graphics R-opn di veil) 148

Pmuated Ihulex for Uaa1I y & vttouies

initialize grahics RseLRGBcolorn 154
initialize history stniture Gshod-iitory(99
initialize level one vector access diginit) 125
initialize level two vector access digP-init) 128

initialize range stricture Ginit-arge() 100
initialize Ref strctie Linitgroup-ref) 141
iitualize screen description Vsclear() 188
initialize segment strcture segnmntnit) 181

get a line of input (detect ctzl-z) G.gets() 117

interact with the user V.call() 189
return interrupt char Gjintrchar,) 117

get a category label G-get-cat) 93
set a category label G-setca t 94

read map layer color table Gjread.colors() 94

write map layer color table Gwrite-colors(f 95
remove 'eading/training white space G(_strip() 114
screen left edge Lsc reenefti) 150

check for legal database fde nares G-legal-filename(72
run a shell level command G(system() 116

top level daabase directory Ggisdbase 67
end level one vector access digfinit) 125

initialize level one vector access diginit) 125
top level pmgram directory G-gisbase() 66
end level two vector access digP fini(128

initialize level two vector access digP-initl) 128
initialize gis ibirary G-gisinit() 64

limit arm search in box dig-iniLbox() 127
parse command line G-parie-command() 109

draw line R-contabs() 151

draw line R-contjel() 151
get mouse location using a line R-getlocation-withlineo) 156

get a line of input (detect ctrl-z) Ggets() 117
add line of text to screen V_line() 188

command line usae message e Lparse-commancLusge(1I1

maki-e lineav- grey scale GQmake-grey-scale) 97
distkure to line-segrrnt dig-distance2point-to-line() 134
dis t e to line-s grent digxydisxance2xnnt__in'() 135

add command to "indow display list D-add-to-tist) 161
add cell file name to display list D-set-cellname() 162

prompt lor existing site list file G(_ak_sitesinmaprt 106
prmpt for new site list file G-ask.sites-new(I 106

prompt Imr exising site list file G_,ksites-old() 106
open a ncw site list file G iopen tesnewi) 107

open an existing site list file G(opensitesold(107
read site list file G(get.site() 107
wnte site list file G(iputsite() 108

clear indow display lists D_clearwindow(1 161
copy Ref lisL,; L-transfergmupuwij-ile(141

move current location R__move-abs() 150

move curent location Rmove_,el(151
cunrnt location dinctorv (location-path(67
(unent loction narme G-location() 66

h ,ciuon title (;_mynaie) 66
get noui*, 4)cauon u-ng x IgeLt_locationx% ithbox(1

T)Wiu*ed Index fibr Libhrary S~trodn

get mouse location using a fine R..geUo~Catiort.wthjit) 16
girt mouiu location upir pointvr Rdgtocatiowit.pointeif) 156

createa !i luk lockjflle() M69
remove a lock unlockfie(170

convert string to lower case Gjtolcase() 114

temporay close vector map digPmp-los()12
reopen closed vector map dlig-p....popeni(128

read map layer color table G-jmadcolors() 94
write map layer color table G-write..colors) 95

asig/retheve current map w~indow Dcbe-apwixlow) 160

current mapset name G-mapset() 66
real a cell fle (without masking) G-getmmw. nmak) 87
free category sbirttwe ff emory Gjree-cats() 94

free color strtre memory Gj'ree-colors) 96
copy string to allocated memory (l-store() 114

free alocated memory roio~release() 176
free allocated rramory segrnen-eleare() 18:3

memory allocation GCaloc() 76
memory allocation G-malloc() 76
memory allocation G-realloc() 76

pop-up menu D-popup() 166
command line usage mesge G-parse-command-usage()1

change ctrl-c messae V-intrfLnV~) 190
print warning messae and continue G-warrng() 64

print entr nem3e and exit G-fatal-emril) 64

print pervent complete mressages (I-percento 117
get mouse location using a box Wgelocation-,ittLbox() 157
get moiuse location using a line R-e~ocation-with-line() 156
get mouse location using pointer &ge~location-wtkLpointeri) 1,56

move current location Rnxove-ams(150

move current location R-rwve-rel() 151
get Hit RETURN msg G&get-etumjrsg) 70
set Hit RETURN msg G-set-askketun-rusg() 70

define multiple colors R-jeseLcolors() 149
retrieve cell file name D.get-cellname() 162

prumpt for any valid file namne (I-arkany() 70)
current location rne Gjlocation() 66

current mapeet namne (I-mapsettl 6T,

return program namne G..pmgramnnare() 118

tur'r a temporary file name G.Sempfile()10

user - namer Gwoamni(118

pnrompt for anY valid group namre L,.gioup.any() 139
aid cell file nam to dwplay li , D-setLcell-nane() 162

color namre to number D-tmnslatescolor() 1(37
aid file name to Rflo'.qc Lure Ladd-fie-togrup-ref() 141

cbeck lor legal databs file nameus G-jegal~lename() 72
reaKl next ar dig-P-read-nex-ine() 1.1
get next at dligjeacLnext-ine(126
get next art by type dig-read-nextliw-ypie(126

rewind nuxtar pointer dig-P-rewird() 131

rese-t normna emw handling Gunsiet-entnurutitne() 65
earth to ara ' (north) D-u-to-arw() 163~

earth to s;crven (north) Du-oAd-rw(163
color- nmmei number D-raslate-.color() 1(37

,ftnutg Index fftw LAIbRary Subroxtine

-267- -267-

get number of arcs digP-num ines) 130

get number of arra- dig P-numnarea() 129
number of coluuis in ctive window G-window-cols() 78

set number of decimal places V-floatarcuracy) 189
number of rows in active window GQwindowrows() 78
open a databse file for reading G-fopen..old() 73

open a database file for reading G-open.old() 72
open a database file for update GJ'open-append() 73
open a databae file for update G-openupdae() 73
open a new cell file (random) G-open-cell-new-random() 5
open a new cell file (sequential) Gopen-cell-new() 84

open a new cell file (uncompresied) G-open-cell-new-uncomprssed() 85
open a new database file G-fopennew() 74
open a new database file G-open-new() 74
open a new site list file Gfbpen-sites-new() 107
open a new vector file Gobpen-vrctor-new(104

open an existing cell file G-opencell_old() 83
open an existing site list file G-Iopen, tes-old() 107
open an existing vector file Gjfbpenvectnr-old() 103

draw an open polygon Rpolylineabs() 153
draw an open polygon RWpolylinerel() 153

outlines current window [_showwindow() 160
parse command line Gparmcommand() 109

force pending updates to disk mwioflush() 176
(lush pending updates to disk segryntflush() 182
print percent complete messages Gpement() . 117

.set number of decimal places Vjfloataccuracy() 189
find area with point dig-point-to-area() 132
find art with point ig-point-to-line() 132

add new control point lnew-controlpoint(f 14,3
point in a na dig-pointin-area() 132

rewind next-amt pointer digPewind() 131
get mouse location using minter IgetjlocationwitiLpointerl) 156

wad goup control points I getcontrxl-points) 143
wA te group conUol points lputcontml-points() 144

get area polygon digP-getarea() 129

get ura polygon dig-P-getarea-xy() 129
draw a clo.ed polygon R-polygorLabs() 152
draw a closed polygon IZp)olvgon-rl() 153
draw an open polygon lI-polylineabs() 153
draw an open polygon Iox)lylinerel(1 153

pp-up menu)_opup() 166
rnx-is cununt win(lo position 0I) vvt_cr%, en_window() 161

prepare for rastvr graphics lPcel-daw .stup() 165
pnnt enor res.&ge and cxit (_lftal-erml 1 64
print percent complete mt., s (_peentu 117

print warning rmkssage and conUinue (Lwarning(64
printable version of conuol chaacter (Gunctrl() 114

cruatc a protecte-d child pmcess (101Mk) 116
U)p level pogria direct)v (_,isba() 66

rttum prugram name G- prugramnamet() 118

q(4Mr carngrziphi pinjtpctjon L pin)jection S ,O
' t') (alr)gr;iph pnjection (; pmjectionnarne() 80

,rrompt for a ntvtn tlile (;_tkvetornew(101

Irrntaid Index for Library SdMxtines

-268- -268-

prompt for an existing group Lagroup-old() 138
pitompt for an existing vector file G.ask.vectorjin-mapseo 101

prompt for an existing vector file GLaskvector-old() 101
prompt for any valid file name GasLany() 70
prompt for any valid group name Lakgroupany() 139
prompt for existing cell file G.-askcell-in-mapse) 81
prompt for existing cell file G-ask-cell-old() 81

prompt for existing database file G-askuinnmapet() 70
prompt for existing database file GQask-old() 69
prompt for existing ste list file G_ask_sitea_in_mpset() 106
prompt for existing ste list file G_ask_sitesold() 106
prompt for new cell file G-ask-cellniew() 81

prompt for new database file Gask-new() 69
prompt for new group Las-group-new() 138
prompt for new site list file Gask-sitsnew() 106

create a protected child process G fork() 116
prune a dense am dig-prune(135

put value to segment file segmntputl) 182
query cartographic projection Gxpmjecton(80
query cartographic projection Guprjection-nameo 80
query cartographic zone Gzone() 80
query GRA& environment variable G _getenv() 67

query GRASS environment variable (.getenv() 67
ask a yes/no quesion Gyes() 118

define screen question V-ques) 188
make rainbow colors Gmake-rainbowcolors) 97

make color ramp G_make_colorrampo 97

open a new cell file (random) Gopen.celLnewrandrom(I 85
write a cell file (random) Gputmaprw_randomO 88

make random colors Gjmake-randorncolors() 98
read cell range G-read-range) 99

write cell range G(writerange() 100

initialize range structure Ginitjange() 100
update range structure Gjrow-update-range(100
update range structure Gjupdaterarge() 100
draw a naster R-raster) 154
diaw a taster RBRG3rastel) 154

prepar, for ns-r graphics l)cell-draw-seti p) 16.5
render a rastejr row Dldraw-cellrow() 165
render a raster row without zeros Doveiay-celLrow() 16.5

wad a cell file C-getmap-row() 87
wead a cell file (without masking) Ggetmapownomask) 87

itad a row mwio-get() 175
itad arr dig-Pmead-line() 130
icad arc digRead-line() 13.3
wad art in box digea_linein_box() 127
itad cell categor% file G-reaLcats() 91

wad cell historv file Gread-historv() 98
it-ad cell range (_reat nrge) 99
iaad group control points IgeLcontml-points() 143
read group RIF file LgeLgmupjef() 140
mad map layer color table G-rea ._olors() 94

itad next ar: dig_P xLnextline) 131
alad tow f'om s i-gntnt file scgmentget-mw() 182

Pw tnmJd Index for Ubrary tXtimns

read ite list file GgeLsite() 107
read subgrourp REF file L..g&.subgnoup-ref() 140
read target information 1.gLtarget() 142

read the cell header (-LeUhllo(90
read the dataas wiridow G...gLwindow() 77
read the default window G...g-default~window() 78
real vector category file G-rtavec~r-aS() 105
read vector header digjeadheadbinary() 134

open a database file for rearirg GJ'open-old() 73
open a database file for reading G-opertold() 72

reclw file? G-is-rcls) 91
make red,yellow,green colors GCrnakie-reyel-gm(98

read group REF file L-getzgroup-tef() 140

read subgroup REF file L-getcsubgroup-ref() 140
wriite group REF file L-putripefl 140

write subgroup REF file Lput-subgroup-ref() 140
copy Ref lists Ltr-ansfer-groupreflfle() 141

add file name to Ref sirture L-addfile-to-grupref() 141

free Ref structure L-fr..-group-ref() 142
initialize Ref structure Linitgroup-ef() 141

rerove a database file G-ferwVe(75
remove a lock unlockjfile() 170
remove a window D-remove-window(161

ren-ove leading,%rainng white space G-stnp(114
removve unnecessary white space G-9ueeze() 113
rename a database file Griename() 75
render a raster row [Ldraw-cellrow() 1615
render a rater row without zeros D-overiavcelL-mo(165

reopen closed vector map dig-Pjmp-open() 128
reset normal error handling G-useterro ruine() 65
resets current window position D-reset-screen.window() 161
retrieve cell file name Dget-celLname{) 162
retrieve current window coordinates D-get-scree-window() 160

leturn interrupt char Gjintrs-harf) 117
g,,t Hit RKTIURtN meg G--etaskketumnmg 70
scL Hit RMIURN msg Gset-sretumimeg(70

retum prgramn name G3prograrnname() 118
ieturnis a temporary file name G-tempfile() 108

rew'ind next-amt pointer digJP-rewirvl(131
rewind vector file dig-rewind() 125

.army. to screen (M"w) D-an..cdrow() 163
rundur- a raster roW D-draw-selL-nowt) 1615

thi1gCt) 10"w rowio~orget() 175

real a row rowio-get() 175
write aI 11)w ruwwput() 176

It-o mlrw frm segmnent file segmnttget-rxw(1 182
write ixUA to segmnent file segmentputruw() 181

rder a raster n-w" without zeros D-overiay-cell-towt) 165

conifigure lowio structu rowio-setup() 174
number of' trows 'in active window G-window-ruwst) 78

run a shell level cormand LsystM() 116
makd I ew l rirv ,cale GLmake-grry-scalet) 97

erIIS civeen R-erage(152

bottm oft ,cwen R-screen--hot) 150

Permted Iridex for Library Stfroubnes

,270- -270-

top of 9creen K-screen-top(150
aid ine of text to screen V-jine() 188

array to screen (column) D-a-tosdcoI() 163
define screen constant V-constfl 188

initialize screen descniption Vsclearl) 188
earth to screen (cas) D-tujnjcol(164

rgreen left edge URsreenieftf 150
earth to screen (north) D-u.jodj-ow(1,163

define screen question V-ques() 188

screen right edge ftscreennte() 150
array to screen (row) D-ajntc)-mrw) 163

screen to army (x) lbcLtoa_-col1 164
screen to army v) MIL-to..ajtuwu 164
3creen to earth Wx DA-to -ucolt) 164

scrven to earth ' v) l-d-otow). 164
Simnit air search in box dig-jibox(1 127
ton-net a segmernt file segmrnn-fonnat(180)

get vAlue from segment file -segnerit-gett 181
read row from se~gmnt, file segmnt-getrow() 182

put val~ue to segrment file segnent-put()1 182
write row to segment file segment-putrow() 181

tnitialize segiment stiture segmentinit(181
select color W-color() 149
.elect color RRGB3coloi) 150

seetfixed color table R-coloriialeiixed() 149
select floating color table R-color-tablejfoati) 149
selet ta-ndlard color R-stancdard-coloi) 150

open a new cell file (sequential) G(Lopen-cell-nev() 84
write a cell file (sequential) GQput-map-row 88

draw a series of dots lipolydofsabs() 152
draw a series of dots R1-xovdotsn-l() 152

sta category color G-sesolorl 1 96
set a category label (i-7et-cat() 94
set colors in driver D-reset-colori 167

se~t cununt graphics window D-SCL-curwind(1 160)
set GlAS environment vanable (1-setenv') 67
set GR{ASS environment variable Ii setenvt 67
set Hit w.ETURN rng se-Lt M sng(1 7 0

set number of decimal places Vjfloat-acuicv') 189

s4t text clipping windo" 1?seLwndo%%(155
set text size RWtcxit-srz 155
*1t the active window I LsetLindoto 79
stet UtcIr n catigorv stItI(UIX saLtte 94

IUn1 * hel 1l-%(, command te stm (1 116

n-ii 4rglc co~lor liscor 149

Imoinpt or existing s ite list ile G-asLsites- in-napett 1 106
prINIT lot, nck% ,Iit- list tile) ~stsie 10)6

pin ipt I I) r x Isu n,_ si1te li.t tile G aLsk-itesJoll 1, 1016

on a nt sit isLtfile G-1fiipenbstes_ new'() 107

ripen n u xi~tun, Ste lisi tile G(loperusites old(107
lrit sie lis1,t tile GQget-site(1 107

wrIitr ; ite list lfie GLput-sito 108
-41I ext SiWt lIt (XtsIXAeI 155

Atvp oin i-no? I _ sleep oft ililiri165

ftrmuted lIndex for LI.brary Sthn *tines

.271- -271 -

remove unnecesary white space GsuzeO) 113
remo~ve leadlug/ining white spae G-strip) 114

select staxld color R.-sandarLcolor() 150
copy string to allocated memory G-store() 114

convert suring to lowercase G-tlcas() 114

convert suing to upper case G-~cg114
concatentate stiings Gstvat() 113

copy strings G-sipyo) 113
copy strings G...stntv() 113

get title fmm, category strixtiire G-g.tcats-itle() 93

initialize category stnicture Gjnit-cats() 93
initialize color stritflre Gjinit-colors() 96
initialize range stnxtme G-iniLrange() 100

update range stnicture Gmrw-update-rangel) 100
set title in category stnictuie G-se~cats-ide() 94

initialize history structure G-short-history() 99
update range structure G-updaiejrge() 100

add file name to Ref stnixtuxe Ladd-file-to-group-reR 141
free Ref stuiew Lfree-gmoup-jeR 142

initialize Ref stricture Linitgroupjef() 141

configure ittwio structure rowiok-setiip() 174
initialize segment strucotue gegrrent-init() 181

free category stiuctre memory G~free-cats() 94
free color stnictuire nmmry G-fresolors) 96

read subgroup REF file Lget-subgroup-ref(140)

write subgroup REF file L-pu-subgrup-jef() 140
suprs warnings? G suppm-;swamingst) 65

read map laver color table G-read-colors() 94
write map layer color table Gwiite&coloN) 95

select fixed color table W-colorj-ablejiixed(l 149

select floating color table W-colortablefloat) 149
read target information Lget-target() 142

wr6te target information Lput-target() 142
tempor-aly close vector map dgPmp-close) 128

ruturns a temporary file name G-temptile() 108

tenininate graphics F(close-dnverIl 148
~wt text R-textX) 156

Set text clipping wvindow Rsgetwindowo 155
get text extents R-geLtext-box() 156

st text size Retz~ 5

add line of' text to screen VlIine() 188
get, Cell tide (ge-tsceH-ttie 92
location tide G-mvnarneo 66

change cell ii te (Lput-cell-tile 92
get tU id 1 category Stictull, Gget-cat-titleu 9:3

srL tde in catigory ,;tjucwuie G-set-cariide() 94
top level database diiixtor-v G-gistibasEv 67
top level pmgrarn (hiectorv% Gg0bi) 66
top 01' ,LIten Rreen-op() 150

get nexi arc~ by ty pe ig-readnext-jine-tve(126

open a new cell tile (uncomprussed) Q open-cell-new-uncompirx,-ed K5
remove un necesiuv white spxe (L flueezet) 1 13

unopen ii cell file G. unopenjell()89
open a database file lot- upd~ate Gxfopenuapperxll 73

Permta I rKp- foir libary St"xtx~me

-272- -272-

open a datbase file for update G-openupdate) 73

update range strture Grow updaterange() 100

updae rage sxtinure Gupdate.are() 100

force pending updates to disk rwioflush() 176

flush pending updates to disk egrmentJflush() 182

convert string to upper caw Gtoucase() 114

command line usage message G-parse-commandusage() .111

interact with the user Vcall() 189

users home directory G-home() 117
use? s name G-whoami() 118

get mouse location using a box R-getlocafionwithJbox() 157

get mouse location using a line Rgetlocationwithllne() 1,56

get mouse location using pointer R-get-location.with-poiner() 156

prompt for any valid file name G-ask-any() 70

prompt tbr any valid group name Lasklgroupany() 139

get value from segment file segnent.gett) 181

put value to segment file segsienLput) 182

query GRASS environment variable G getenv() 67

query GRASS environment vanable Ggetenvo) 67

set GRASS, environment variable G_ setenv() 67

set GRASS environment variable G setenvt) 67

end level one vector access digfini() 125

initialize level one vector access diginit) 125

end level two vector access dig_-fini() 128

initialize level two vector access digPinit() 128

read vector category file Grtad-vector-cats(-) 105

write vector category file Giitevector-cats) 105

rerind vector file digjrewind() 125

prompt for an existing vector file Gaskvectoriin-mapsed) 101

prompt for a new vector file Gask._vectornew() 101

prompt for an existing vector file G-ask vector-oldo) 101

find a vector file Gjfind-vectrr'2() 102

find a vector file Gjfind-vectort) 10'2

open a new vector file Gjlbpenvectornew() 104

open an existing vect)r file G(fopen_vector-old() 103

read vector header dig__VaLheadbinav(1:34

wnte vector header digwiite hea_binarv 134

display vector header information dig-pint-headeri) 125
tempoary close vector map digjtjmpclose) 128

reopen closed vector map digjl' tmpopen() 128

pnntable version of control c h; iarter (_unctri() 114

print warning me,;ge and (ontJnuC Gw~u'ning() 64

suppress warnings? C supprxwanings(6-5

make color wave (m~dccolorwa'e(97

nITnvc unn ec.sarv whitv space (L_4tueze() 113

rurrOVe leadIing/-truning whiti space)Lsup() 114

a-;sign/ietiieve curwnt map window D)checl,_map_indow() 160

clean. inlormation about cunent w indow I)_clearwindowi) 161

clip coordinates to window DsClip() 166

eraie cumrnt "indow l)_ei+r*,win ko() 161

id-nifv curntgraphics window Dgets urAind() 160

cltatt nt'% gnaphics winodow I)_t' indo" I 160)

iuimve a window I)inei -ve-windoW(161

se't (IIIWIt'11 graphics window I)_ '-t'ur_winl(i 16

lkItiad Index for Library 'tikris

-273- -273-

outlines curent window Dsowwindow() 160
give curent tine to window Djimestamp() 161

read the default window G_.geLdefaulLwindow() 78
get the active window QgWseLwindow() 79

read the daabase window GgeLwindow() 77
write the databae window Gitwi,'ndow() 77

set the active window GCseLwindow() 79

number of columns in acive window G-windowcols() 78
number of rows in active window G-window-rows() 78

set text clipping window RIseLwindow() 155
retrieve current window coordinates D-geLscree-window() 160

add command to window display list add-to-list() 161

clear window display lists D_clearn_window() 161
resets current window position Dreset-screenwindow() 161

read a cell file (without masldng) GgetLmaprow nomask) 87
render a master row without zeros D-overlay-cellrow() 165

write a cell file (random) G-puLmaprowrandom() 88

write a cell file (sequential) GpuLmapjrow() 88
write a row rowio-putl) 176
write arc dig_Writejine() 133
write cell category file G-writecats() 92
write cell history file Gwritehisry() 99

write cell range Gwriterar() 100
write group contol points L-putcontmrlpoints() 144
write group REF file Lputgroup-ref() 140
write map layer color table Gwritecolors() 95
write row to segment file segnrt-put-row() 181

write site list file G-puLsite() 108
write subgroup REF file LpuLsubgroupjef() 140
write target information Iputtarge) 142
write text R&textl) 156
write the cell header Gputcellhd() 90

write the database window GCput-window() 77
write vector category file Gwrite_vectorcats() 105
write vector header dig-wfite-headtbinary() 134.

screen to array (x) D_d_toasol() 164
sceten to earth (x) DAdtortsol() 164

screen to array (y) Ddjo-a-mw() 164
screen to earth (y) D -dtouow() 164

ask a yes/no question Gyes() 118
zero a cell buffer Gzerocell-buR) 86

rwnder a nr tr row without zeros l)_oveiavcellrow) 165

quety cartographic zone C -zone() 80

pimbei Indiex fir Ubrary Submudfis

.275- -275-

Irdex

$ firdfr8
history file 29, 98

$GISBASE 51 opening (new) 84
$GISDBASE 16 opening (read) 83
$GISRC 51 pmgrmnring inteifae 24, 80
$GIS_.OCK 51 prornpting for 81
$LOCATION.NAME 16 rage file 29, 99
$MAPSET 16 eading 86

zecl1s fomrt 27
. resolution 27

wrting 87
.gislock 170 cell header.
.grasv 15, 52 see: cell files

giadbse 52 color table:
location 52 see: cell files
np t 52 colors

.h files: see: cell files
see: include files see: Display Graphics Libray

see: Raster Graphics ibrary
A colorsh 160

comriling.
acces pemusons: Gnuke 55, 122, 135, 144, 157, 167, 170, 177, 15,

GRASS 20 191
UNIX 20 curss

Approach I Gnl% 5"7
Vask Library 187, 191,193.

B
D

Bakgrund 1
band files 41 database:
Bourn Shell: access permissions 20

slell scripts 229 progrmainrg interface 15, 68
searh path 20

C title 19, 66
database struxtui 15

category file: $GISDBASE 16
see: cell files, vector files location 16

category number. $LOCATIONNAME 16
cell 23 $MAPSE' 16
vector 31 npset 16

CELL 79, 80, 6, 87, 8, 93, 94, 95, %, 97, s, 100, date:
u6,, 237 Gdate(117

cell files 23 DEFAULTVIND 19
see also: GIS Ubrary diagnostics:
allocate CELL buffer 85 see: error me es
and the database 24 Dig library 12, 123
category file 28, 91 arc types 124
category number 23 include files 123
cell file fonrat 24 INDEX of routines 243
cell header 26, 89 INDEX, permted 2N7
closing 89 level one access 124
color file 28, 94 level two access 127

-276- -276-

levels of access 124 F
LOADING the library 135
writing vectrr files 133 fork() 84

digit files: Gforkd() 115
see: vector files

dig-: G
index of dig- mutines (Dig Library) 243

dig-defins.h 124, 126 cask
dig-snrts~h 124 and sll Scripts 230
Display Graphics hrary 12,57, 159 getso:

colors 167 G-getN() 117
coordinate tradormation 162 Gfindfile:
INDEX of mutines 247 ad shell scripts 2:31

INDEX, pemuted 257 GIS Library 11, 56, 63
LOADING the library 167 allocate CELL buffer 85
popup menus 166 ad UNIX 115
raster graphics 164 cell category file 91
window clipping 165 cell color table 94
window contents 161 cell file support 89
windows 159 cell files 80

drivers: cell header 89
writing a digitizer driver 195 cell history file 98
writing a graphics driver 207 cell range 99
writing a paint driver 215 closing cell files 89

D_: corrrand line par~ng 109
index of D_ routines (Display Graphics data structres 118

Library) 247 database access 68
database informtion 66

E database m errent 75
environrrLnt infonration 66

elements 17, 18 enror messages 64
environnt 15, 51, 66 finding cell files 82

G-getenv(67 flxring database files 70
G-getenvo 67 finding vector files 102
G-gisbase) 66 fork() 115
G-gisdbase() 67 gets() 117
$GISBASE 51 INDEX of routines 239
gisabase .52 INDEX, pennuted 257
$GLS-IJCK 51 initialization 64
$GISRC 51 legal file names 72
Gilocation(66 LOADING the library 12
G-mapsvtI) 66 memory allocation 75
GRASS 52 open cell file (new) 84
.gmsr 52 open cell file (read) 83
G -,tenv(67 opening a vector file (read) 103
G ,.tenv() 67 opening database files (read) 72

1ocation 52 opening database files (update) 73
nopst 52 opening database files (write) 74
L"X Is opening site files 107

enur messages 64 opening vector files (new) 104
GIS-ERROR LOG 64 projection 79

prompting for cell files 81
prompting for database files 68
proirpting for ste files 106
promipting for vector files 101

-277- -271-/

reading and witing ste files 107 TARGr file rutines 142
mading cell files 88 Guidelines 5
sites 105 (IL:
sting routre 113 index of G_ r nutine ((ES Lirary) 239
shuct Categories 119
struct Cell-head 119 H
strt Colors 120
struct Hitory 121 firdy file:
stnct Range 122 see: cell files
sysem() 116 lome diectory
tempfiles 108 GJln() 117
vector category file 104
vector files 100 I
window 76
writing cell files 87 irngery:

gis.h 56, 63, 76, 80, 118, 137, 237 bard files 41
gidlb e 52 umge clasic~ation 42

.graiC 52 inmge rectification 42
GISERRORLOG 64 image registraion 42
Gmake 11, 55,202, 216, 225 programs 45

variables .56, 233 x~y projection 26, 42, 48,80
Gmakefile 11, 55, 202, 207, 216, 225, 226 Inugery brary 137

and Dig hibrary 135 data slnztr*es 144
and Display Graphics Library 167 finding groups 139
and GIS Library 122 group 138
and Imagery Library 144 group OINTS files 443
and Lock Lirary 170 group REF file 139
and Raster Grpics Library 157 grup TARGET file 142
and Rowio Library 17" INDEX of routines 245
and SegnxNt iAbrary 185 INDEX, penrued 257
and Vasd Libray 191 LOADING the library 144
constrction of 58 prompting for a group 138

graphics: shrct ContrmlPoints 145
see: Dis lay Graphics Librwy stnct REF 144
see: Rast-r Graplics Library inFgery~h 137, 139, 143, 144

GRASS: inmport
Infodob n Center 2, 3, 4 vector files 38
Inter-Agc vy Steering Cormitee 3 include files:
User Group Meeting 3 coloramh 160

GRASSCIi, ings 3 digdefinesh 124, 126
GRASSNE" 3 dig-s.ucts.h 124
grid cell: gis.h 56, 63, 76, 80, 118, 137, 237

see: cell ties irmigery.h 137, 139, 143, 144
group 41, " 7, 13 rowio.h 174

see also: imagery Library segnenLh 180
finding L2 index:

I S ftle 44 Dig Libray 243
POINTS file routines 143 Display Graphics Libray 247
prugraring interface 4 GIS Library 239
prompting for 138 Imagery ibrary 245
REF file 43 pemuted 257
REF file routines 139 Raster Graphics Libray 249
strxture of a group 43 Rowio Library 251
subgroup 44 Segrent Library 253
TARGET file 44 Vask Library 255

,278- -278-

ifltemq)t chnrtpr, mthlib:

L MYNAME 19
index of L routines (Irmagery Libray) 245 Gn anwm() 66

L 0

library. Objective I
see: Dig Library
see: Display Graphics Library P
see: GIS Library
see: Imagery Ubrary parsg:
see: Lock Library G-parse-comnmwds(109, 111
see: Raster Graphics library PERMANET 17, 19
see: Rowio Library access permisons 21
see: Segment Library default window 19
see: Vask Library DEFAULTWIND 19
how to build 60 MYNAME 19,66
pemuted index 257 pemirted index 257

location 52 point data
G-locationI) 66 see: site files
.grassI 52 Pw grammr

Lock Library 169 drivers 12
INDEX, permuted 257 GRASS 10
LOADING the library 170 system desgner 13

login narne: POgrmrning:.
G.whoni() 118 compiling 55

longitide/latitidxe: interface to cell files 24, 80
see: pojection interface to gmups 46

inlerfae to site files 40, 105
M inrzrfae to the database 15, 68

interface to vector files 32, 100, 123
map: pmr:gramnng:

see: cell files, vector files stamlds 6
map layer prjection 26, 48

see: cell files, vector files GIS library 79
rmpat 16, 24, 32, 52 imgery (xy) 26,42, 48, 80

acces ' pemissions 20 longitude/latitide 5
cell files 4 State ane 26, 48, 80
cumvnt rmap,t 16. 2), 47, 48, ti, 69, 70, 71, 73, JuM 5, 26, 27, 42,44, 46, 80, 16 3

7-1)7, 77, st, h2, K-i, 8,4, 4o, .r2,6 .95 9, IM , 101, zonle 26, 48

012Z, 1t, 104, 11)5, 11*i, 10}7, 1389 13.9

elements i7. 1 R
files 17
Gboapset 1 66 range file:
.grnsr 52 see: cell files
$MANSE' 16 raster files:
msk- 4 see: cell files
PER.MANNT 17, 19 Raster Graphics Library 12, 56, 147
searh path 17, 20, 69, 71. 82.,3, : basic graphics 150
strctiun of a moapt 17 colors 148
subd:irctoiies 17 connecing to the driver 148
vecU)r fies :12 INDEX of routines 249
wirtlow 17, 47 INDEX, permxld 257

rm w.k LOADING the library 157

-27. -279-

mouse 156 strut CorLthkloinrs 143, 144, 146
poly calls 152 snt digbad 134
ratercalls 153 struct THury o, 99, 121
text 154 sbrct liraiM te 130, 131, 133, L35

reclass files: 8trUt MWpirO 1, 129, 130, 131, 132, 133
see: cell files start Range s, iOO, 12resolution: 2t1Ut l 139, 140, 141, 142, 144

cell file 27 ubgroup 44
window 48 systero):

Rowio Library 173 G_.syate) 116
INDEX of routines 251
INDEX, permted 257 T
LOADING the library 177

mwio.h 174 target
mwio-: see: group

index of mwio_ routines (Rowio Libray) 251 Technology Trader 2
R_: terncap,te nib:

index of R. routines (Raster Graplics Gnuke 67
Library) 249 Vask* brary 187, 191

S U

Scope 2 UNIX:
search path 17, 20, 69. 71, 82, 83, 102 access permissions 20
Segment Library 11, 56, 179 envirormnt 51

INDEX of routines 253 fork() 84, 115
INDEX, pemuted 257 gets() 117
LOADING the library 185 systemn() 116

segrnenLh 180 Usr
segment-: general 9

index of segment- routines (Segment tTM:
Library) 253 see: projection

shell scripts 15, 229

Bourm Shell 229 V
Cask 2m
Gfrndfile 231 Vask library 56, i87

site files 39 INDEX of routines 255
file format 39 INDEX, permted 257
opening 107 LOADING the library 191
progranrrung interace 40, 105 vector files 31
pmmpting for 106 see also: Dig Library
reading and writing 107 ascii format 32

Standards: attribute file 35
documentation 7 category file 36, 104
prograrring 6 category number 31

State Plare: digitizer registation 37
see: projection finding 102

string muties: inort 38
GIS library 113 index and pointer file 37

structures: opening (new) 104
PAREA 2), :2 opening (read) 103
stnrt Categories 91, 9,, im, 94, ior, 119 progranm-ing interface 2, 100, 123
struct Cell-head 76, 77, 78, 79, so, 119, 160, 10- prompting for 101
strut Color 94, 96, 96, 47, 9, 120, 167 reading and writing m04
structCorrnarkeys 109, 110, 111, 113 topology rules 37

