-

A252 461 OACERL AT eptomber 1963

of Engineers

Construction Engineering
Research Laboratory

" Us Ay Cos H\l \I\I ll\l‘\\i\\l“l‘|‘||‘li"\|.\|l~ @

‘ GRASS 3.0 Programmer’s Manual

o DTIC
Michael Shapiro

James Westervelt ELECTE &%

Dave Gerdes %
Michael Higgins JULOG1992 | ¥

Marjorie Larson A

This manual introduces the reader to the
Geographic Resources Analysis Support System from
the programming perspective. Design theory, system
support libraries, systems maintenance, and system
enhancement are all presented.

92-16401
IRREIRA

Approved for public release; distribution is unlimited.

9z © . o

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

age 1 houv per mpomo including the time for reviewi hing existing data
¢ and mai g the data needed, and completing and revi (ho it o i L Send s regarding thl burden estimate or any olhu aspect of this
conoctnon of information, mcludmg suggestions for reducing this burd: lo i Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Otfice of Mnmgom-m and Budget, Paperwork Reduction Project (0704-0188), Washingion, DC 20500,

Public reporting buvdon for this coftection of i ll ‘to

1. AGENCY USE ONLY (Leave Biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1989 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
GRASS 3.0 Programmer’s Manual

WU A896-NN-TS9
WU A896-NN-TF9
WU A896-NN-TJ9

6. AUTHOR(S)

Michael Shapiro, James Westervelt, Dave Gerdes, Michael Higgins, and
Marjorie Larson WU RD8P6INVCSE

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

U.S. Army Construction Engineering Research Laboratory (USACERL)
PO Box 9005 ADP N-89/14

Champaign, IL. 61826-9005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
U.S. Army Engineering and USDA-Soil Conservation Service
Housing Support Center Cartographic and Geographic
ATTN: CEHSC-FN Information Systems Division
Kingman Building 14th & Independence Avenue SW
Fort Belvoir, VA 22060-5580 Washington, DC 20013
11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This manual introduces the reader to the Geographic Resources Analysis Support System from the
programming perspective. Design theory, system support libraries, systems maintenance, and system
enhancement are all presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES
GRASS v 290
geographic information system 16. PRICE CODE
Geographic Resources Analysis Support System

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20, LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 208 (Rev. 2 89)

Prescnbed by ANS! Std 239.18
208102

Notice to Program Recipients

This program is furnished by the U.S. Govemnment and is accepted and used by the recipient
with the express understanding that the Government makes no warranty, expressed or implied,
conceming the accuracy, completeness, reliability, usability, or suitability for any particular
purpose of the information and data contained in this program or furnished in connection
therewith, and the United States shall be under no liability whatsoever to any person by reason
of any use made thereof.

The program belongs to the Government. Therefore, the recipient further agrees not to assert
any proprietary rights therein or to represent this program to anyone as other than a Government
program. The recipient also agrees that the program and all documents related thereto, including
all copies and versions (except when expressly authorized otherwise) in possession thereof, will
be discontinued from use or destroyed upon request by the Government.

The program is to be used only in the public interest and/or the advancement of science and
will not be used by the recipient to gain unfair advantage over any client or competitor.
Whereas the recipient may charge clients for the ordinary costs of applying the program, the
recipient agrees not to levy a charge, royalty or proprietary usage fee (except to cover any
normal copying and/or distribution costs) upon any client for the development or use of the
received program. Recipients desiring to modify and remarket the program will be required to
comply with a separate agreement. Only minor or temporary modifications will be made to the
program (e.g., necessary corrections or changes in the format of input or output) without written
approval from the Government. Should the program be furnisted by the recipient to a third
party the recipient is respensible to that third party for any support and upkeep of the program.
Information on the source of the program will be fumished to anyone requesting such
information.

The accuracy of this program depends entirely on user-supplied input data. It is the user’s
responsibility to understand how the input data affects the program output and to use the output
data only as intended.

All documents and reports conveying information obtained as a result of the use of the program
by the recipient will acknowledge the Corps of Engineers, Department of the Army, as the
origin of the program. All such documentation will state the name and version of the program
used by the recipient.

Accesion Fer

[e — . c—
NTIS CRA&I 4]
DTIC iAB]
Unainoniiced U
Justification o
BY
Dist ibution | h
S—

Availability Cades

Dist Avaﬁ'! anditor
1S Specal

A-

This work was performed for the US. Amy Engineering and Housing Support
Center (USAEHSC) under the work units AS96-NN-TS9 entitled "Imagery Data for
Training Area Management,” A896-NN-TF9 entitled "Terrain Modeling for Plarming
Training Events and Natural Resources Management," and A896-NN-TJ® entitled
"GRASS Application Macros." Additional sponsorship came from the U.S. Department
of Agriculture Soil Conservation Service (SCS) Cartographic and Geographic
Information Systems Division under the. work unit RDSP6ONVCS entitled
"Enhancements to SCS-GRASS." The USAEHSC Technical Monitor was Ms. Jamie
Clark of the Natural and Cultural Resources Division. The SCS Technical Monitor was
Mr. Dick Liston.

 The authors would like to acknowledge Ms. MmyMarhnforherasnstancem
reviewing, editing, and preparing this document.

This work was performed by the Environmental Division (EN) of the US. Amy
Construction Engineering Research Laboratory (USACERL). Dr. RK. &ain is Chief of
USACERL-EN.

COL Cad O. MagnelllsCorrmﬂerandDuectnrofUSACERL, and Dr. LR
Shaffer is Technical Director.

Table of Contents

Chapter 1. INMPOQUCHONccoveeeeeeceiirrresese sttt sssssaenesss s ssssssassssens 1
1.1, Backgroundcocovvireeeenressnsnreseenenesesssnesaresassesssnseenseescrsnsssssses 1
1.2, OBJECHIVEcucveeeeerrierererernereaesesesesssscenssessnssesnsssasassasssesnsecseneasnsesnsssse 1
1.3, APDIOACH ...ttt st ssesne b e sese e sesn s sesmnanaenes 1
1.4, SCOPE .ot estre e s esnees e nasses sessarsnantsse s sesuasassnessssnensantones 2
1.5. Mode of Technology Transferc..coccovvrirerenieienreceenineneeresenereneseees 2
1.6. GRASS Information Cemtercocooceruevennnurnennsiencscesnrensneseseenesaens 4
Chapter 2. Development GUIAEHNESovvvcemeremiorrisnicissciisnitsssissciniseneiseseens 5
2.1. Intended GRASS AUBIENCEccoecvveerermnrnneenrnreecsteseseeceseseseseeneseses 5
2.2. Programming Standandsccceerieicenrnniicnnnnnes reueesereasnesaeseseneasaenes 6
2.3. Documentation SENAANSc.cooeeeemirineininniinisssece s 7
Chapter 3. MUlti-Levelc.ciiiirinrnrnerieeeiincntenesnssesenssessessnsesesnesessesssons 9
3.1. General USerccvnnenrccerencnstonissnanisssssesssenns ceeeeneanesesnsaanenes 9
3.2. GRASS PrOSIaimercccoveveesmereerensecsserasnssnosssensessasssseenenessmsessssa 10
3.3. Driver Progralimercovnissnnmienennesesseeseesnresesesssssasesseseonsenssens 12
3.4. GRASS System DEeSIENETccocerereeenrerenirerennrinssessesaseeesessssssessensesss 13
Chapter 4. Database SHUCHIITEcccccvrriernrnrceneenesnsiesenecnnnnessessssssssssssesssssssesss 15
4.1. Programming INErfaceccceevecrnvenrnnnmncnnnrreneneccnsicrenceseessnssens 15
4.2. GISADASEooueveecreeiiecrrieertre et ssee et sesasssesssssssessesesssanenssneseeseassnmanens 16
4.3. LOCAHOMSooveeeinrieetrseeeiesacesesoeeecersasene s eanasesare s ssassenvscnsasersrasassesss 16
4.4, MAPSELSc.ccouicrereerereiecniieneesrssesseseesseeeseestesatsssen st esnesenssstesuressensesnnseses 16
4.5. Mapset STUCIITEcoecveereeeirrconeecrrcrrsenresiesessesseescestoncenesesnsnnesssnes 17
451, MAPSEE FUES ..oooeeeeoeeeeeeee oo eemeeseesresssesesesesesssmmssseeeeseesseessens 17
4.52. FIEIDENLS ..ot s ssa s en e e 18
4.6. Permanent Mapsetcocoeeieeecienenieerneiceneneecncesstssecn e ceenseesassens 19
4.7. Database Access RUlescccceveririenennnicini et 20
4.7.1. Mapset Search Path ... 20
4.7.2. UNIX Flle PermiSSionscccoceeeecennereniesennieesensessesecseesesansenesees 20
Chapter 5. Grid Cell MAapsccooeieieeccierene ettt esssesan e ss e s eaareses 23
5.1. What is a Grid Cell Map Layer?cooeeveeiiennrencrneeeeeenenene 23
5.2. Grid Cell File Formatooovveeriieviiinrrnneeesesreereenn e sesseseens 24

5.3. Cell Header FOIMALooeeeeeeieieseeeeeee e eeeeeeere e sesesteseeeeseenssesanneen 26

5.3.1. Regular FOIDAL ... cenrcetssssesesssnessassenssesassrssassees 26
5.3.2. Reclass FOIMBLc.ccceevenenernereenienennesaseesssesesessssssessssssssresesesssens 27
5.4. Cell Category File Formatccouvemvcennnnnecrnnnesennnencesncnsesescsensnnes 28
5.5. Cell Color Table Formatccccoveerrerevenneirerereenenene eeeseereesemessasssnes 28
5.6. Cell HiStOry FIlEcconeererreeeerecrnneseresessssensresnessssasssssssesesnsssssasses 29
5.7. Cell RaNge FIleocvevreeeereneeeerenenieniecereeserseesesssssssssesensssssssesessasenes 29
Chapter 6. Vector MADSccccocvvrrrnrrcecmenerenennneesisessesssesssssssssssasssssscsssessasssssssssssencses 31
6.1. What is a Vector Map Layer?cvvveveeecivenenessensensesessesssenes 31
6.2. Ascii Arc File FOrmatc.ccovvevriemienecceeseensrencniessessesesesessessssans 32
6.2.1. Header SECHOMovvvvvvevsresessssssreesesssnssssssssssnssssssssssasnssssssssassssnsssses 33
6.2.2. AXC SECHOM ..oeoveeerrereeeerierrinrecrrecreesereseesseseessessessessessesssssesassssessrnsnenes 34
6.3. Vector Category Attribute Fllecccoovvemvvneeeeeeeieecne e 35
6.4. Vector Category Label File ...t 36
6.5. Vector Index and Pointer Fllecvvvieevenrenvenneevcrereceenreeeneens 37
6.6. Digitizer Registration Points Filecccooerveerivnceneeennne. eeerrenes 37
6.7. Vector Topology Rulesccceoeeeerenrrenreneerreneenanns reeeerennereenenteararensnans 37
6.8. Importing Vector Flles Into GRASSccoeevevereveirereereeeseeennnas 38
Chapter 7. Point Data: Site List FIES ...oouevereeeeeeeeeceeeeeeeeesesenesenes frernenssensssenannas 39
7.1. What is @ Site LiSt?eceeooeeeeeece et v sr e e nensesenssasaeneas 39
7.2. Site File FOmaLcovoiiveoeiierccieirrercteneeneetesesnesesnssssssssesnssessssnas 39
7.3. Programming Interface to Site Fllesccovevveveveveeccrececececenenes 40
Chapter 8. Image Data: GIOUPSc.ccceeecverererennirerersesenssnsssssressessssssensensssessssesssesns 41
8.1. INIOAUCHIONccooveeerereererieertceeeceraerrresesrsesesessessse s e saenssseserestenansonssens 41
8.2. What is @ GIOUP? coeeeiceertceteiete e e ssesseseses s st b snesesnesesasssenennas 41
8.2.1. A List of Cell FUIEScooveiuiereeeeerereeereee et esnanesnnes 42
8.2.2. Image Registration and Rectificationccccoereverrirerrvcecnncncennnne 42
8.2.3. Image ClasSificationcccvveverererrenrereeeeessneee e ss e eeeeemenennens 42
8.3. The GIoup SIUCHTEoeoveireireceecereeeeee e e s eeereneenene 43
8.3.1. The REF FIlE ...ttt rrveresaense e s sne e sa s eseeeseeas 43
8.3.2. The POINTS HUE ..ottt 44
8.3.3. The TARGET HIlE ..ottt e eraseasnanens 44
8.3.4. SUDETOUPSccvvrmieencieicrreeiirereeetine s eteseses s e sneassnsseess seesanaseseneesaneenes 44
8.4. Imagery PYOGIaINSccccooiiiiiieeicricceecectertr e rseeseee e e saen e e enenanes 45
8.5. Programming Interface for Groupsoccovveeeeverenncrisneeeemrrerennene 46
Chapter 9. Window and MasKc.cc.eoiiiiiieiieceiee ettt cee st eee et eeseesstesaenssssans 47
9.1, WINAOWeoiiiricctrteitee s ettt v st s s s bsenesnese s snsase e rassaesenes 47
0.2, MK ...t e et en et s er et enenen e 48

- i - ' - iii -

Chapter 10. Environment Vaniablescocovniecniniminiecnenssisisssssncssensssssens b1
10.1. UNIX Envirommentcccvevencreronsssnsnsnsescrarenssssssssssssscssssnanssssens 51
10.2. GRASS EXNVITONINEILc.cvveinieremenssrenesenisssisssseessessssesssessssssessaees 52
10.3. Difference Between GRASS and UNIX Environments 52

Chapter 11. Compiling GRASS Programs Using Gmakeccccecvurevcrcincnscrnan 55
11.1. GINAKEcoevencrevcrecnrienerenese st ssesesesensasasssnsssssssssssssasssssssesasssassasasensaense 55
11.2. Gmake Variablesccccovevrccrnncrineninenens reeeteneeseter ettt sassarenes 55
11.3. Constructing a Gmakefilec..oceeevvevercrreninnneesencrnensessssesesnesenss 58
11.3.1. Building programs from source (C) fAleS oo 58
11.3.2. Include fIlESccoeeueeereeerereee et e saeseeesesesecssnensaeseseranes 59
11.3.3. Builing object Librariescccocevvrvienvcnmineesecssec e seeneesessionnenas 60
11.3.4. Building more than one target ..., 61
11.3.5. Don’t bypass .0 filescceeeeieevrcireennrnneciseesereeesesesssnesesnssnanas 61

Chapter 12. GIS LIDIaAIYcccccooverrenrrierecieeresecenenesrseeneressneeesssesssssesesassessusssssssssssens 63
12.1. Introductioncccceevveineeeiereeennnnes teeneueesetetereneeneeasenesserenseasseenarnens 63
12.2. Library Initializationccccerererrererereresmnrerensenssessesnssesesassssessssnnees 64
12.3. Diagnostic MESSAZEScceveceeencmisiienisenccesessnsscssessescensssnesessessones 64
12.4. Environment and Database INfOrMationeeeeereesesessssressee 66
12.5. Fundamental Database Access ROULINESc.cceeeieviineicnniecnnecnneeans 68
12.5.1. Prompting for Database Filesccoovvvnnevvecncnecrecereneeereeenne 68
12.5.2. Finding Files in the Databaseccccceemrverrncrninnccccinnienerecresnnrenns 70
12.5.3. Legal File NamESc.ccocveercrecenicsrneecenenseeenseseseescseerseesraene 72
12.5.4. Opening an Existing Database File for Readingccocccceveuennene 72
12.5.5. Opening an Existing Database File for Update coereesseeees 73
12.5.6. Creating and Opening a New Database Fileccccooovuverninnnnns 74
12.5.7. Database File Managementccoceenueeerinenenseniencccnensenssenesseseenns 75
12.6. Memory AllOCtONc.cvovviiiiiiinncnec et evenes 75
12.7. The Windowcccceeeermreerernnnes enreterete e an et st stsseaeser e st re e nens 76
12.7.1. The Database WINAOWcccocereeenreniemrinisreincceeeeessessesesesanssnns 77
12.7.2. The Active Program Windowccccceoenvnnnrcnncceniennccnencnas 78
12.8. Cell Flle Processingccocooveeeenemieeniniecvtrnnsenesee e seenesesessessesasnnens 80
12.8.1. Prompting for Cell Filesccccoorceneniniirivecrcieereetrre e 81
12.8.2. Finding Cell Files in the Databasecccccocvvrereerirericinenecrnrennnas 82
12.8.3. Opening an Existing Cell Fleccccoeinmvrnecriceirennenecsieserennenns 83
12.8.4. Creating and Opening New Cell Filesccccovveevivevenivrvrecnnnen. 84
12.8.5. Allocating Cell I/O BUfferscocovvviierrnienenecscenieenieeree e 85
12.8.6. Reading Cell FIlesccoovvveveeecerrrctrcesece e 86

12.8.7. Writing Cell Filesovovvvrvrerieenne. ceeeeeees e eeeraee 87

12.8.8. Closing Cell FUEBcccceveeireirmivccrinerninniinseessseesensnsssesssessseessessaens 89
12.9. Map Layer Support ROULINEScccovueveverevneerenncccenincnesssnsennanensssens 89
12.9.1. Cell Header FIleccccccvvrrrnnrnenennnrirencnsnsnssessessmesesessssesssssssnes 89
12.9.2. Cell Category FIleciirnenennnnenereesesnaesenssstssssnssesessesasssesse 91
12.9.3. Cell Color Tablec.ccveeveeeerireresreneserersennsssseressesssssnssssessesessssssess 94
12.9.4. Cell HIStory FIecoucceeeeeeceneeeneesenesesnnseeeneseseesssassesnessssenees 98
12.9.5. Cell Range FIlecooiiivririeeenrevenererenennseenesesssssessssseeseasssasessnens 9
12.10. Vector File ProCessingccceceeeeemeresennncnnssessessessesessesassesssonssesns 100
12.10.1. Prompting for Vector Fllesccccovvevmeicnveceernsenenenreseencscsncncens 101
12.10.2. Finding Vector Files in the Datdbasecccoeevevveeenrreeeensecenens 102
12.10.3. Opening an Existing Vector Hle ereetreresteteeretene e areanestentens 103
12.10.4. Cregting and Opening New Vector Filesccovvevevevveviccincnene 104
12.10.5. Reading and Writing Vector FIlescooevruvemmmersesnesreeennes 104
12.10.6. Vector CABEOrY FIleovvremesmssesssssssmmsnsmsseeresssssssssssssessssnss 104
12.11. Site List PIOCESSINEccccceverererererereeneerenesensessesessesesesssssssssessenesese 105
12.11.1. Prompting for Site List Filesccccceververeererenrerncenne S— 106
12.11.2. Opening Site List FIIescccoevnimnrenriecreresereceerneneeeeessnesasesone 107
12.11.3. Reading and Writing Site List Filesccccocoevveerrcceerenrccncnnnennee 107
12.12. Temporary FIESccoceeiereceecninnenerencseneisene s seseescsscnenseccsssasnenes 108
12.13. Command 1ine Parsingccocvoveeevveeerrerrenesienerereeneseeseessesssssacsens 109
12.14. String Manipulation FUNCHODScccoveveeecrerercrcnerneesnnsscenscnnccsecens 113
12.15. Enhanced UNIX ROULDNEScccccorermeuererrenirereruerersessessesnsassesasneseeens 115
12.15.1. Rurming in the Backgroundccoeeeveevevevecreennecrcnressecaeens 115
12.15.2. Partially Interruptible System Callccourverervvervcrririennnnes 116
12.16. MISCELlANEOUSccoeiirieeeeececrcecece sttt e e er e snaesae e se e ones 116
12.17. GIS Library Data SHUCHUIESc.ccverereereeerireereeeeeerseesessesareens 118
12.17.1. struct Cell_headccoovrerieeeeeeereeeere et e 119
12.17.2. Struct CAEEOMIESocveceeeicerertecieteectesaesrannees seereseae e snesnesnens 119
12.17.3. SHUCE COIOTS ..ooococe oo 120
12.17.4. SUCt HISIOTY ..ot e e e et e e srae v e 121
12.17.5. SIUCE RANEE .oooeeeeeee e eeeseeeseveeneseeesensesessesseseesmmsseesceesesssens 122
12.18. Loading the GIS LibIAryccccommmrveeenimmresssnmssssesnresssssssnsssesssseeses 122
Chapter 13. Dig LibIary ...t rvcsernsseseesresnssne e snsssesesscsasesssesss 123
13.1. INBOAUCHONc.oocviieceeiecerieetnaeereeeeesessessessnesaee e sssesnsansanasnsaneees 123
13.1.1. Include FUES ...ttt st 123
13.1.2. VeCtor ArC TYPES ..oceeeriieete e et seerene e ensessae s sessneseaens 124

13.1.3. Levels of Access et et e s bbb 124

-v- v-
13.2.1. Initialization/TermINAtIONccccevveeeirerrerenriseerssnesessesssassersesensosesens 124
13.2.2. ReadiNg AXCS ...c.coeeuvecierrimrcenesiisennsnesesesseienssesssnsssssnsnssssssssssessassssases 126
13.3. Level Two Read ACCESScccvererereernrerenneenneenenssesenssssnesssssssassasenees 127
13.3.1. Initialization/TeNMNGHONcccveeeeerrrerrrersenennsererseseasessrarsssesrsesnsasees 127
13.3.2. Area Retrievalcccvvevcvererecrernceienseersenssesnessssessssssssesssssssssssasares 128
13.3.3. ArC RetrieVvalcoooeviciirecreencencnenrnnccse s sessestesssnseenssssssisssassenesnes 130
13.3.4. Area Analysis TOOLSccccceuererrrnirenreenereersesrssssescsresenmmenssssasessenesses 131
13.3.5. Arc Analysis T0OIScccccoeveemievnnrereresesnannnesesesssnsssassssesessssanaons 132
13.4. Writing Binary Dig filescccocvirveireeinicerecenrneneceereeeeeeenceencrenenenes 133
13.5. Miscellaneous TOOLScccccoeivvceivmnrerieineeneeneereneseesesssssassesssnessesseares 134
13.6. Loading the Dig LIbraryccccovoemereseeeneeeseeesesennsrenesesessssenennne 135
Chapter 14. Imagery LIDIarycocccieeiinniinncirree e sesnseeneeesssesescnsecscens 137
14. 7. INOAUCHON ..covveeiieeerc et eserete et esesaese s sasresssaesesesrnanesannasasene 137
14.2. GIOUD PIOCESSINGcoevereirirerrrirsaenersesesseseenseseseessesessasanessesesesconss 138
14.2.1. Prompting for @ GIOUDccccovevevenerunncrenccnsenreseesesesmnesessssstssseceenses 138
14.2.2. Finding Groups in the Databaseccoewevveememmmeesmsassmseessessnnnes 139
14.2.3. REF FHIEu.ooeveeirecretretrreietecenteea e sssasssn s et esssssassssnsssesaesesssnses 139
14.2.4. TARGET HHE ..ot seeeneese e eseresesssssssessesssscacnens 142
14.2.5. POINTS FIIEcvvvirereiieeeeietreeesee s eeesesasssesesessesasssssossesssessaneans 143
14.3. Loading the Imagery Libraryocvevccimmicnnccccecincaccenen 144
14.4. Imagery Library Data Structimesc.ococovveevieeccnencnincensnnccsccnnenens 144
14.4.1. SHUCLRES ..ottt e e e e e eres s e sssnnesnes 144
14.4.2. struct Comtrol_POINEScocvveeeecreierieiriienreereeieeneseersneseessessessassees 145
Chapter 15. Raster Graphics Libraryccccovceverevevrenrecnesenncinsnscsesecnncncenens 147
15.1. INIOQUCHONvvvooeeeeeeeeeseeesseaasenssssssssssessssssssssssesesssssssmseseseseasesnacs 147
15.2. Connecting to the DIverccveeveerevineecenenes reeereeeeeeseneenannens 148
15.3. COIOTS ueeueriiecreceeieereeecteee et eeee e ssss e e seerne e sses e e saessoansssesasnensenes 148
15.4. Basic GIaphiCScccccvvrveireierineeicecrerese e cees s sessnssan st e sesssssesens 150
15.5. POly CallSoeveniieeireeeite ettt et sesnese s esestssansesemenss 152
15.6. Raster CallScooeoeiviieieeriieeciececreteceeeiee st e s e sesve v saesseesassessanes 153
15.7. TEXL o eeeeeieeeeecereetteee s ste et e stve e e e e ee s ressbesene s s e sressneaaraasasessnssntasnes 154
15.8. USEr INPULc.ooeeriiireieccrecnecer st cresseeveae et easnsasnsesesnesesasees 156
15.9. Loading the Raster Graphics Libraryccccccoeeevvrneernenenecnnnenees 157
Chapter 16. Display Graphics Library ..o 159
16.1. INBOdUCHIONcoviniieieicctee ettt e e srseesencess 159
16.2. Window Managementccoeeoeeeeeeeereeicveeereeesetesee e csessessesessnenes 159
16.3. Window Contents Managementccoveeveveiirreneeneerveenienseneenseens 161

16.4. Coordinate Transformation Routines oottt reaare e s e annens 162

16.7. Pop-up Memuss
16.8. Colorsccccouemnrenensuonens

--

--

--

16.9. Loading the Display Graphics Librarycccoceevvvevvverevcreenns

Chapter 17. Lock Librarycccoener..
17.1. Introduction

17.2. Lock Routine Synopses

17.3. Use and Limitations

--

--

--

17.4. Loading the LOCK LIBIY we.cuueeueunereeeeererecereneeeeeeeeeseeseeessesseeneeeneeneens

Chapter 18. Rowio Library
18.1. Introduction

--

..

18.2. Rowio Routine Synopeescec.ceeeeemveeeerenneeenen. ceeeevrees s s seesaeserane
18.3. Rowio Programming Considerationsc.eeeuveeseveeviervcensnnrnenens
18.4. Loading the Rowio Libraryccceoecevevevvmevierneeecrneerereseenr e

Chapter 19. Segment Library
19.1. Introduction

19.2. Segment Routines

--

--

--

19.3. How to Use the Library Routinesc.ccccoooveevvernennnienrcveirenenenens
19.4. Loading the Segment Libraryccceemeieeereinreeieesererenenenerenns

Chapter 20. Vask Libraryc.cc....e.
20.1. Introduction

20.2. Vask Routine Synopses

20.3. An Example Program ...

..

..

--

..

20.4. Loading the Vask Library et s
20.5. Progranmming Considerationsccoceeeiiecceeeecrenicieeeee e

Chapter 21. Writing a Digitizer Driver

21.1. Introduction

..

21.2. Writing the Digitizer Device Driverc.coceveeveveneenninnn. evernens
21.2.1. Functions to be Writtenccoooeviemeeviviieiicieceece e
21.2.2. Functions Available For Usecccoeeeeruienreceeeeereseeeeennes
21.2.3. Compiling the Device Drivercococoeviiieeriniieeeeeereeeee e
21.2.4. Testing the Device DHivVerocoveveeiivccvciiceeeeereeee s
21.3. Discussion of the Finer Points (Hints)cccocoveeeveneereerrereeeenenenns
21.3.1. Setting up the DIgitizercoovevieiniiecercee et

21.3.2. Program Logic

21.3.3. Specific Driver Issues
Chapter 22. Writing a Graphics Driver

..

..

...

164
166
166
167
167
169
169
169
170
170

173

173
174
176
177
179
179
180
183
185
187
187
187
190
191
192
195
195
195
195

202

203

203

207

22.1. INOAUCHON ...c.cevvenenirernieereectesenseesssnsssesnssssossessesessesssssassosansessesansaseas 207
22.2. BASICSceveveverrerreranaensssessisensaessessssssansensasssssssessessessansesssssssasesnssssasnenes 207
22.3. BasiC ROULINEScc.ccoveeneereeerrererrennenieseesessesnsesssssssssesesssssesssssesssssnes 208
22.3.1. Open/Close Devicecccovereevenenrevicrerencccsveneennns eeeeneeenrssensasanenas 208
22.3.2. Return Edge and Color Valuesccovvevivevenenneneeesrecesccennnnas 208
22.3.3. Drawing ROULINESccovvvectecerceiie e seeee e seseeesetesessnaeesesesasnenes 209
22.3.4. COIOTSuocereeererreeceeetereesinentestessassesssessssasassansesatesesssessasssssessessasnsas 209
22.3.5. MOUSE INPUL ...ttt seessessennne e sveseesnass s s e sasasnnnse 210
22.3.6. PANELScvvereeetereceeeeeetn vttt sa e et es e ae e stanen 211
22.4. Optional Routinesccccccc.... reereererebess et raeaa e stesenresneres et retens 212
Chapter 23. Writing a Paint DIVer ..ot 215
23.1. INOAUCHONocverieieveeie et ceeieeet et e e e eseetssaeseer e sestesaesesessnseeseans 215
23.2. Creating a Source Directory for the Driver Codeccune...... 216
23.3. The Paint Driver Executable Programccocoveeeveeereeeveceecenrennnee. 216
23.3.1. Printer I/O ROUBDEScoovveirrreeeeeineseeereeeeereriseseeseae e er e nesessssens 216
23.3.2. IHHAlZAHONvcvvevvereesesssssssssesssssssssessnenenn S I 218
23.3.3. Alpha-numeric Modeccceieveeeiicnerecccetresre e 218
23.3.4. Graphics MOodecccoveverierievenineiieerreneeseeescsegeeeeses suresecseeessnnes 219
23.3.5. Color INformationccccecceeeeerieccnneneneereneeene e seerestesae e ssesesanens 220
23.4. The Device Driver Shell SCriptccoovemviiviieeeeeerce e 222
23.5. Programming Considerationsccccoeeevrereereneievesecrenensereescseesnennns 224
23.6. Paint DIver LIDIArYooovocveeerinciieereeie s esesesenesesssessserans 224
23.7. Compiling the DIVETcccecvrveverreeeereeree et saeees e s e eeesenes 225
23.8. Creating 125 Colors From 3 Colorsccoceeveveeeeceivencenreieceniennen. 227
Chapter 24. Writing GRASS Shell SCHDIScoovoooovoeeeereseceoeverssssenseeesre e 229
24.1. Use the Bourne Shell ..o 229
24.2. How a Script Should Startcvveiiveeiereneeeenene e 229
24.3. GASK ...ttt re e e sr e se s e sa e sr et e e s s e ne s e aaantes 230
24.4. GANALIleE ...ttt e er s 231
245 Dot Use #/DIinVshccoovveevieeeeeretetee e, 231
Appendix A. Annotated Gmake Pre-defined Variablesccoveevevevieiiicnennenn. 233
Appendix B. The CELL Data TYPEcceceeviiiueeecriierireeeereeneeseseseesesesens s e sssaenis 237
Appendix C. Index to GIS LIDIAIYccocouovvvveeiiiieeicieeeteeeeteceenterenteeaeee e 239
Appendix D. Index to Dig Librarycccccoovvvmvveieriicreee e cee e 243
Appendix E. Index to Imagery Library ..o eseereenee 245
Appendix F. Index to Display Graphics Libraryccoooeiivvveivevevceieeieeeen 247
Appendix G. Index to Raster Graphics Libraryccccoeeeieiieeeceiiccceerernene. 249

Appendix H. Index to Rowio Lbraryccocoooeoiieeiiieeeieeeeeeeeeeese e, 251

- viid - viii

Appendix I. Index to Segment LIbrarycccovcvemninmnniinsssessenssnnensensssissssnnes 253
Appendix J. Index 0 Vask LIDIary ..ot sssssssssssssssssssssessssscnss 255
Appendix K. Permuted Index for Library Subroutinesovoeenneicneinennisencans. 257
IIAEX oooooeeeeeeeeeeeesereeseset et sessessasesssssaansentossressssessassassasasassessaasesstesessnsrensenssssssasansssess 275

Chapter 1

Introduction

1.1. Background

The Geographic Resources Analysis Support System (GRASS) is a geographic
information system (GIS) designed and developed by researchers at the US. Amy
Construction Engineering Research Laboratory (USACERL). GRASS provides
software capabilities suitable for organizing, portraying and analyzing digital spatial
data

Since the first release of GRASS software in 1985, the mmmber of users and
applications has rapidly grown. Because GRASS is distributed with source code, user
sites (including many govermment organizations, educational institutions, and private
firms) are able to customize and enhance GRASS to meet their own requirements.
While researchers at USACERL still maintain and support GRASS, ard still develop
and organize new versions of GRASS for release, programmers at mmerous sites now
work directly with GRASS source code.

1.2. Objective

Those who work with GRASS source code need detailed information on the structure
and organization of the software, and on procedures and standards for programming
and documentation. The objective of this mamual is to provide the necessary
information for programmers to understand and enhance GRASS software.

1.3. Apmroach

GRASS software is continuously updated and improved. Software enhancements are
developed at various sites, and submitted to USACERL to be shared with other sites
and included in future releases of GRASS. Improvements to the code are periodically
incorporated into new releases (which occur approximately once per year).

With each new release of GRASS, more and more sites have begun working directly
with GRASS source code. Sites are encouraged to use standard procedures in

$1 Introduction

.2. -2.

development of new GRASS capabilities. Sites that develop GRASS software are
encouraged t leam and use GRASS programming libraries, and to use standard
procedures for coding, commenting and documenting software. The use of GRASS
libraries and conventions will:

(1) Eliminate duplication of functions that already exist in GRASS
libraries;
(2) Increase the capability of multiple sites to share enhancements;

(3) Reduce problems in adapting contributed GRASS capabilities to new
data structures and new versions of GRASS software;

(4) Provide some common elements (such as documentation and user
interfaces) for users who use code contributed from multiple sites,
and reduce the leaming curve associated with each contributed

capability.

The first GRASS Programmer' s Manual was developed for GRASS 2.0 (released by
USACERL in 1987). However, there were mmerous and fundamental changes made
in GRASS 3.0 (released in 1988). Rather than revise the existing Programmer's
_ Mamual, USACERL researchers elected to draft a new and more complete GRASS
Programmer's Reference Marmal for GRASS 3.0. The approach used in the
development of this mamual involves a systematic effort to describe GRASS
development guidelines, user interfaces, data structures, programming libraries and
peripheral drivers.

1.4. Scope

Information in this mamual is valid for GRASS version 3.0, released in November,
1988. As changes are made to GRASS libraries, data structures, and user interfaces,
elements in this manual will require updating. Plans to perform updates, and the
availability of these updates, will be announced in the newsletter GRASClippings and
other GRASS information forums.

1.5. Mode of Technology Transfer

Amy and Corps of Engineer organizations can aquire GRASS software from
USACERL. Several other federal organizations provide distribution and support
services for GRASS within their own agencies, and several educational institutions and
private firns also provide distribution, training and support services for GRASS.
Current information on the status and availability of services for GRASS can be
obtained from the GRASS Information Center.!

! See §1.6 GRASS Information Center [p. 4 for phone numbers and mail addresses.

§1 Introduction

-3- -3-

This manual should prove to be a valuable resource facilitating GRASS software
development efforts at the mmerous govermment agency, educational institutions and
private firms that now use GRASS and plan to modify, enhance or customize the
software. Sites that develop new analytical capabilities or peripheral drivers for
GRASS are encouraged to share their products with others in the GRASS/GIS user
commumnity. To facilitate this sharing process among user, support and development
sites, several forums have been established. These include the following:

The GRASS Information Center,
The GRASS Inter-Agency Steering Committee,
An armual GRASS/GIS User Group Meeting,
. GRASSClippings , a quarterly newsletter, and
GRASSNET, an electronic mail and software retrieval forum.

The GRASS Infarmation Center maintains: (1) a set of publications on GRASS and
GRASS-related iterns, (2) updated information on locations that distribute and support
GRASS software and on training courses for GRASS, (3) the mailing list for the
newsletter GRASSClippings , and (4) updated information on the status of GRASS user
group meetings and software releases. ' .

The GRASS Inter-Agency Steering Committee is an informal organization with
members from govermment agencies and other organizations that use, support and
enhance GRASS. This organization sponsors the anmmal User Group Meeting and the
quarterly newsletter. It holds at least two meetings annually to share and coordinate
GRASS plans among the participating agencies.

The annual GRASS'GIS User Group Meeting is hosted each year by one of the
member agencies of the Steering Committee. Fapers, demonstrations, and discussion
panels present GRASS applications and software development issues. The meeting
provides opportunities for current and potential users to share and demonstrate new
GRASS software.

The GRASSClippings newsletter is published, approximately four times a year, to
provide information to anyone interested in GRASS software. The newsletter includes
articles on software development, hardware options and applications of GRASS.

GRASSNET is an electronic mail forum that provides a mechanism through which
GRASS user and development sites can exchange messages. It can be reached via
Arpanet, Intermet and other networks. GRASSNET adlso includes a library of
contributed software available for users to retrieve and review. Thus, new software is
available before it is integrated into a formal release of GRASS code.

¥ Introduction

- 4. - 4.

1.6. GRASS Information Center

Sites wishing to contribute code to GRASS, or wanting to participate in any of these
GRASS/GIS user commumity forums, should contact the GRASS Information Center
by phone at: (800)-USA-CERL, extension 220 or (217)-373-7220; by U.S. mail at:
GRASS Information Center, USACERL, P.O. Box 4005, Champaign, IL, 61824-4005;
or by electronic mail at: grass@cerl.cecer.army.mil.

§1 Introduction

Chapter 2

Development Guidelines

GRASS contimues its development with several key objectives as a guide. The
programmer should be aware of these and strive to write code that blends well with
existing capabilities. All objectives are based on an understanding of the needs of the
end-users of GRASS.

2.1. Intended GRASS Audience
GRASS is a general purpose geographic information system. Its intended users are
regional land plammers, ecologists, geologists, geographers, archeologists, and landscape
architects. Used to evaluate broad land use suitability, it is ideal for siting large
projects, managing parks, forest, and range land, and evaluating impacts over wide
areas. These users are generally NOT equipped to write programs or design a system.
In many cases they have never used a computer or even a keyboard.
REGIONAL PLANNING TOOL -
GRASS is designed for plaéming at the county, park, forest, or range level. It is
suitable for planming at a macro scale where the land uses are larger than 30
meters (or so, depending on the database resolution). As yet, no. GRASS tools
exist for the modeling and simulation of traffic, electrical, water, and sewage
infrastructure loads, or for the precise positioning of urban structures.
- UTM-REFERENCED -
To facilitate area calculations, a planimetric projection was desired for initial
GRASS development. Funding was provided through Army military installations
which were familiar with the Universal Transverse Mercator (UTM) projection.
Due to these factors, GRASS developed around the UTM coordinate system.!

INTERACTIVE -
GRASS has a strong interactive component. Its multi-level design allows users to
work either at a very user-friendly level, at a more flexible command level, or at

! The UTM projection allows GRASS to assume equal area cells anywhere in the database.
It also makes distance calculations smple and straightforward. This will change as future
releages allow other coordinate systems (e.g., longitude/latitude). The changes will probably
mot affect overlay operations, but will most likely change the methodology for distance and
area calculations.

§2 Development Guidelines

a programming level.
GRAPHIC-ORIENTED -
Many of the functions can be accompanied by graphic output results.

FOR NON-PROGRAMMER -
Users of GRASS are often first-time users of a computer. To this end, it is
important that the programmer take the extra time to provide on-line help, clear
prompts, and user tutorials.

INEXPENSIVE -
GRASS can nmn on microcomputers in the under-$10,000 range. Higher-cost
equipment should be necessary only for prov1d1rg faster analyses, and more disk
and memory space.

PORTABLE -
This system is intended to be as portable as possible. At the November 1986
User Group meeting, groups interested in GRASS resoundingly stated that
portability was the mmnber one concem, ranking firmly above speed and user-
friendliness. GRASS code must be compilable on a wide variety of hardware

configurations.

22. Programming Standards

Programming is done within the following guidelines.

UNIX-ORIENTED -
Primarily for the purpose of portability, GRASS will continue its development
under the UNIX operating system envionment. Programmers should
accommodate both AT&T (System 5) and Berkeley (UCB 4.2) UNIX.

C LANGUAGE -
All code is written in the C programming language. Some Fortran 77 code has
occasionally been adopted into the system, but problems with portability,
efficiency, and legibility have resulted in most Fortran programs being rewritten
inC.

FUNCTION LEVELS -
GRASS is designed within a functional level scheme. Each level is designed to
perform particular functions. Programming must be done within this scheme.
Briefly, these levels are as follows:

Full Interactive Level -
The new and occasional user works at this level. As of the first writing of
this document, only one program, the GRASS mem, exists at this level. It
is expected that specialized models, natural langusge interfaces, graphic
popup mem front-ends, and fancier menus will be developed in the future.
Programs developed at this level may be specifically designed for one
hardware arrangement.

Command Interactive Level -
This is the level most used. Using the user's login shell, GRASS commands
are made available through modification of the PATH variable. Commands

§2 Development Guidelines

-7. -7.

at this level are highly interactive. Help and on-line mamual commands are
availsble. Historically, these programs have included both user interface and
program function capabilities. In the future, more and more commands at
this level will actually contain only user interface .code; after the user is
thoroughly interrogated, a command line will be constructed which then
drives a program at the Comxmand Level:

Cormmand Level -
Commands at this level form the G, D, P, etc. languages. They are
distinguished by being norrinteractive. All information necessary for the
execution of the command is provided either in the command line or in the
standard input stream (with no prompting). Built on top of these cormmands
may be commands at either of the above two levels. The advanced user
who wants greater flexibility in the analysis options may use these directly.
Further, the system analyst can use these commands as a high-level GIS
programming language in concert with other UNIX utilities.

Programming Level -
For even greater flexibility in the application of GRASS, a user has the
opporamity to program GRASS functions in the C language. The main
restrictions here are that the programmer use the existing GRASS function
libraries to the greatest extent possible, and support both AT&T and
Berkeley UNIX.

Library Level -
Work at the library level should be done with the cooperation and approval
of one group. At this writing, that group is the GRASS programming staff
at USACERL. Those functions most critical are those that interface the
data. It is believed that these functions will be more permanent than the
database. Though the database may change, these functions (and the
programming environment) will not.

2.3. Documentation Standards
GRASS is a public domain system. While such systems are usually inexpensive to new
sites wishing to adopt them, costs incurred in putting up the system, modifying the
code, and understanding the product can be very high. To minimize these costs,
GRASS programs shall be thoroughly documented at several levels.
Source code -
The source code for the functions should be liberally sprinkled with
descriptive variables, algorithm explanations, and function descriptions.
Orrline help -
Brief help/information will be available for the new user of a program.
Onrline manual -
Manual entries in the style of the UNIX manual entries will also be available
to the user.

§2 Development Guidelines

Tutorial -
The tools that are more involved or difficult to use shall be accompanied by
tutorial documents which teach a user how to use the code. These have
been written in nroff/troff using the ms macro package.? Final documents
have been kept separate from the GRASS directories, though it is suggested
that they appear with appropriate "makefiles” under $GISBASE/tutorials.3

2 This package, invoked with the -me option to nroff, is documented in section 7 of the
UNIX -menual.

3 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Enwironment
(p.51 for detrils.

§2 Development Guidelines

Chapter 3

Multi-Level

As introduced in the previous section, the overall GRASS design incorporates several
levels:

Full Interactive Level
Command Interactive Level
Command Level
Programming Level
Library Level

Each level is associated with a different type of user interface.

3.1. General User

The general GRASS user is someone with a skill in some resource area (e.g., planming,
biology, agronomy, forestry, etc.) in which GRASS can be used to support spatial
analysis. Such users have no significant computer skills, may be afraid of keyboards,
know nothing of UNIX, and may struggle with the leamning curve for GRASS. Such
users should select the Full Interactive Level, where they are guided through the
options in a friendly way. Programs written at this level may take many forms in the
fuhare. The promise of a natural language capability may take form here. Current
success with graphic memu systems in other applications will lead to pleasant graphic
screens with pull-down menus. Interfaces developed at this level (and this level only)
may be hardware-specific. GRASS may take the form of a voice-activated system
with fancy Al capabilities on one machine, while it is driven by a pull-down menu
system which is also tightly interfaced to an RDBMS on another. All versions,
however, will rely heavily on the consistent commands available at the Command
Level. As of this writing the menu version of GRASS is the sole representative of
this interface. It is anticipated that specialized analysis models using little or no user
input will be developed shortly, making use of UNIX shell scripts and Command
Level commands. These will be written by system analysts and will require no
knowledge of C programming. Until improvements in speed and cost of hardware and
flexibility of software are available, most general users of GRASS interface the system
through the Command Interactive Level level.

$3 Muiti- Leved

-10- -10-

The Command Interactive Level requires some knowledge of UNIX. The user starts
up the GRASS tools individually through the UNIX shell (commonly Bourne or Csh).
Once a GRASS tool is started, the user enters a very friendly and interactive
environn.>nt, Users are not prompted through graphics. Prompting is restricted to
written interaction.

32. GRASS Programmer

The GRASS programmer, using an array of programming libraries, writes interactive
tools and command line tools. Programmers mustkeep in mind that Full Interactive
Leve tools will be:

Written for the occasional user;
Verbose in their prompting;
Have available lots of help; and
Give the user few options.

Ao o

The programmer also writes Command Leve tools. These:

Can num in batch (background) mode; :

Take input from the commarnd line, standard input, or a file;
Can run from a shell; and

Operate with a standard interface.

e op

GRASS programmers should keep the following design goals in mind:

Consistent user interface;
Consistent database interface;
Functional consistency;
Installation consistency; and
Code portability.

® a0 op

As much as possible, interacting with the user (e.g., prompting for database files, or
full screen input prompting) must not vary in style from program to program. All
GRASS programs must access the database in a standard manner. Functional
mechanisms (such as automatic windowing and masking of cell data) which are
independent of the particular algoritm must be incorporated in most GRASS
programs. Users must be able to install GRASS (data, programs, and source code) in
a consistent manner. Finally, GRASS programs must compile and run on most (if not
all) versions of UNIX. To achieve these goals, all programming must adhere to the
following guidelines: :
Use C language -
This language is quite standard, ensuring very good portability. All of the
GRASS system libraries are written in C. With very few exceptions, the GRASS
programs are also written in C. While UNIX machines offer a Fortran 77,

§3 Multi-Leve

-11- -11-

experience has shown that F77 code is not as portable or predictable when moved
between machines. Existing Fortran code hes occasionelly been adopted, but
programmers often prefer to rewrite the code in C.

Use Bourne shell -
GRASS also makesweofﬂleUND(commndmlexpmhm-m implement various
function scripts, such as mem front-ends to a suite of related functions, or
application macros combining GRASS command level tools and UNIX utilities.
Portability requires that these scripts be written using the Bourme Shell (/bin/sh)
and no other. See §24 Writing GRASS Shell Scripts [p.229).

Do not access data directly -
The GRASS datdbase is NOT guaranteed to retain its existing organization and
structure. These have changed in the past; however, the library function calls to
the data have remained more consistent over time. Plans do exist to significantly
change the data organization. While the programmer should be aware of the data
-capabilities and limitations, it should not be necessary to open and read data files
directly.

Use Gmake -

GRASS code is compiled using the Grmake command, which is a front-end to the
UNIX rmake utility. Grake combines some pre-defined varisbles with a file
called Grakefile in the source directory to create a proper makefile, and then
runs make to compile the program. Each source code directory must have a
Gruokefile, written by the programmer, containing instructions for making the
binary executables, manual and help entries, and other items from the directory’s
contents. The Grakefile does not contain hard-coded references to programs,
libraries, or directories outside the current directory. Variables defining these
items are used instead. Grakefiles remain identical system to system thus
providing consistency for system installation and compilation. See §11 Compiling
GRASS Programs Using Gmake [p.55] for more detzils.

Use GRASS libraries -

Use of the existing GRASS programming libraries speeds up programming
efforts. While user and data interface may make up a large part of a new
program, the programmer, using existing library functiors, can concentrate
primarily on the analysis algorithms of the new tool. Such programs will
maintain a consistency in data access and (more importantly) a degree of
consistency in the user interface. Each library has a definition in Gmake to aid in
linking the library during program compilation and loading. The libraries are
listed briefly below.

GIS Library. This library contains all of the routines necessary to read and
write the GRASS grid celldatalayetsamiﬂ'xelrsmpoxtﬁlos. A standardized
method to prompt the user for map names is available. The library also provides
some general purpose tools like memory allocation, buffer zerving, string
analysis, and data searching. Ninety-nine percert of all GRASS programs use
routines from this library. See §12 GIS Library [p. 63.

Segment Library. For programs that need random access to an entire map layer,

§3 Muti-Level

-12-

the segment library provides an efficient paging scheme for grid cell maps.
While virtual memory operating systems perform paging, this library provides
better control and efficiency of paging. See §19 Segment Library {p. 179).

Dig Library. While GRASS is primarily a grid cell analysis and display system,
it also has some vector capabilities. The principal uses of GRASS vector files are
to generate raster maps and to plot base maps on top of grid cell displays.
However, it is anticipated that additional analysis and data import capabilities will
be added to the vector datdbase. Many vector formats exist in the GIS world, but
GRASS has chosen to implement its own intemal vector format. The format is a
variant of arc-node. The Dig Library provides access to the GRASS vector
database. See §13 Dig Library [p. 123]. :

Vask Library. This screen-oriented user interface is widely used in the GRASS
programss. It provides the prograramer with a simple means for displaying a
particular screen layout, with defined fields where the user is prompted for

answers. The user, using the carriage retum (or line-feed) and ctrd-k keys, moves

from prompt to prompt, filling an answer into each field. When the ESC (escape)
key is struck, the answers are provided to the program for amalysis. Users have
found this interface pleasant and consistent. See §20 Vask Library [p. 187).

Graphics Libraries. Graphics design has been a difficult issue in GRASS
development. To ensure portability and competitive bidding, GRASS has been
designed with graphics flexibility in mind. This has meant restricting graphics to
a minimal set of graphics primitives, which generally do not make full use of the
graphics capabilities on all GRASS machines. Two libraries, displaylib and
rasterlib, are involved in generating graphics. The rasterlib contains the
primitive graphics commands used by GRASS. At run time, programs using this
library commmmicate (through fifo files) with another program which translates the
graphics commands into graphics on the desired device. Each time the program
runs, it may be talking to a different graphics device. Functions available in the
rasterlib include color setting and choosing, line drawing, mouse access (with
three types of cursor), raster drawing operations, and text drawing. Generally,
this library is used in conjunction with the displaylib. The displaylib provides
graphics window management routines, coordinate conversion capabilities, and
gnid cell data to raster graphic conversions. See §16 Display Graphics Library
(p. 159] and §15 Raster Graphics Library |p. 147).

3.3. Driver Programmer

GRASS programs are written to be portable. To this end, a tremendous amount of
modularity is designed into the system. Throughout its development, GRASS
programs have become increasingly ‘pecialized. The original monolithic approach
continues to fragment into ever smaller pieces. Smaller pieces will allow future

developers and users ever more variability in the mixing of the tools.

33 Multi-Leve

This modularity has been manifested in the graphics design. A graphics-oriented tool
comnects, at run time, to a graphics driver (or translator) program. This separate
process understands the standard graphics commands generated by the GRASS tool,
and makes the appropriate grephics calls to a particular graphics device. Each
graphics device available to a user is accompanied by a driver program, and each
program understands the graphics calls of the application program. Porting of GRASS
to a new system primarily means the development of one new graphics driver. See
§22 Writing a Graphics Driver [p.207).

Those sites using the digitizing software of GRASS must also provide driver routines
for their digitizer. These routines, unlike the above graphics calls, are compiled
directly into the digitizing programs. See §21 Writing a Digitizer Driver [p. 195].

Similarly, GRASS sites may wish to write code to support different hardcopy color
printers (inkjet, thermal, etc.). See §23 Writing a Paint Driver [p.215).

. 34. GRASS System Designer _

To date, GRASS system design has been done at one locationn USACERL. One, and
only one site must be responsible for the design of the system at the database and
fundamental library level. As the software is public domain, sites are free to do their
own work. However, the strength of futuire GRASS releases depends on cooperation
and sharing of software. Therefore, it is strongly encouraged that database design
and database library deveopment be fully coordinated with GRASS staff at
USACERL.

§3 Multi-Level

-15- -15-

Chapter 4

Database Structure

This section presents the programmer interested in developing new applications with
an explanation of the structure of the GRASS databases, as implemented under the
UNIX operating system.

4.1. Programming Interface

GRASS Programmers are provided the GIS Library, which interfaces with the GRASS
database. It is described in detail in §12 GIS Library [p.63]. Programmers should use
this library to the fullest extent possible. In fact, a programmer will find that use of
the library will make knowledge of the database structr. c wnost unnecessary.

GRASS programs are not written with specific database names or directories hard-
coded into them The user is allowed to select the database or change it at will. The
datsbase name, its location within the UNIX file svstem, and other related datzbase
information are stored as varisbles in a hidden file in the user's home directory.l
GRASS programs access this information via routines in the GIS Library. The
variables that specify the database are described briefly below; see §10 Enwonment
Variables [p.51] for more details about these and other environment variables.

- Note. These GRASS environment varigbles may also be cast into the UNIX
environment to make them accessible for shell scripts.> In the discussion below, these
vanables will appear preceded by a dollar sign ($). However, C programs should not
access the GRASS environment variables using the UNIX getenv() since they do not
originate in the UNIX environment. GIS Library routines, such as G_geteni(p.67),
must be used instead.

1 This file is grassre under GRASS 3.0.
2 using gisenv; see §24 Writing GRASS Shell Sripts (p. 229)

§4 Databese Structure

-16- . -16-

42. Gisdbase

The database for GRASS makes use of the UNIX hierarchical directory structure. The
top level directory is known as GISDBASE. Users specify this directory when
entering GRASS. The full name of this directory is contmined in the UNIX
envionment variable $GISDBASE, and is retmmed by library routine
G _gisdbase(p. 67).

4.3. Locations

Subdirectories under the GISDBASE are known as locations. Locations are
independent databases. Users select a location when entering GRASS. All database
queries and modifications are made to this location only. It is not possible to
simultaneously access multiple locations. The currently selected location is contained
in the environment variable $LOCATION_NAME, and is retumed by the library
routine G_location(p. 66).

GISDBASE
l
l | | |

location.1 location.2 location.3

When users select a location, they are actually selecting one of the location directories.

4.4, Mapsets

Subdirectories under any location are known as mapsets. Users select a mapset when
entering GRASS. New mapsets can be created during the selection step. The selected
mapset is known as the current mapset. It is named in the environment variable
$MAPSET and retumed by G_mapset(p. 66).

LOCATION
I -

| | T |
mapset.] mapset2 mapeet3 ... PERMANENT

Modifications to the database can only be made in the current mapset. Users may only
select (and thus modify) a mapset that they own (i.e., have created). However, data in
all mapsets for a given location can be read by anyone (unless prevented by UNIX file
permissions). See §4.7 Database Access Rules [p.20] for more details.

When users select a mapset, they are «:tually selecting one of the mapset directories.

Notee. The full UNIX directory name for the cumrent mapset is
$GISDBASE/SLOCATION_NAMESMAPSET and is returned by the library routine

§4 Database Structure

-17. -17-

G _location_path(p. 67).

Note. Each location will have a special mapset called PERMANENT that contsins
non-volatile data for the location that all users will use. However, it also contains
some information about the location itself that is not found in other mapsets. See §4.6
Permanent Mapset [p. 19).

4.5. Mapset Structure
Mapsets will contain files and subdirectories, known as database elements. In the
diagram below, the elements are indicated by a trailing /.

MAPSET
I

| | | I I I |
SEARCH PATH WIND caty/ cell/ paint/ windows/ ..

4.5.1. Mapset Flles

" The following is a list of some of the mapset files used by GRASS programs:

files function

GROUP current imagery group
SEARCH PATH mapeet search path
WIND current window

This list may grow as GRASS grows. The GROUP file records the current imagery
group selected by the user, and is used only by imagery functions. The other two files
are fundamental to all of GRASS. These are WIND and SEARCH_PATH.

WIND is the current window. This file is created when the mapset is created and is
modified by the window command. The contents of WIND are retumed by
G_get_windoufp.77). See §9.1 Window (p.47] for a discussion of the GRASS window.

SEARCH_PATH contains the mapset search path. This file is created and modified by
the mapsets command. It contains a list of mapsets to be used for finding database
files. When users enter a database file name without specifying a specific mapset, the
mapsets in this search path are searched to find the file. Library routines that look for
database files use the mapset search path to find database files. See §4.7.1 Mapset
Search Path (p.20] for more information about the mapset search path.

§4 Database Structure

- 18- - 18-

4.52. Elements

Subdirectories under a mapset are the database elements. Elements are not created
when the mapeet is created, but are created dynamically when referenced by the
application programs.3 Mapset data reside in files under these elements.

The dynamic creation of database elements makes adding new datsbase elements
simple since no reconfiguration of existing mapsets is required. However, the
programmer must be aware of the database elements already used by currently existing
programs when creating new elements. Furthermore, as development occurs outside
USACERL, guidelines must be developed for infroducing new element names to avoid
using the same element for two diverse purposes.

Programmers using shell scripts must exercise care. It is not safe to assume that a
mapset has all, or any, database elements (especially brand new mapsets). Certain
GRASS commands automatically create the element when it is referenced (e.g., Gask).
In general, however, elements are only created when a new file is to be created in the
element. It is wise to explicitly check for the existence of database elements.

3 See §12.5.6 Creating and Opening a New Database File (p. 74).

§4 Database Structiure

-19- -19-

Here is list of some of the elements used by GRASS programs written at USACERL:

element function _

cell data layers (cell filee)

cellhd header files for datn layers

cats category informetion for data layers
colr color table for data 1ayers

colr2 secondary color tsbles for data layers
cell_miac miscellaneous cell support files

hist history information for data layers
dig binary vector data

dig_secii ascii vector data

dig ait vector attribute support

dig plus vector topology support
dig cats vector category label support

reg digitizer point registration

bdig binary dlg files

dig ascii dig files

icons icon files used by paint

paint label and cormment files used by paint
group imagery group support data

site_lists site lists for sites program
windows pre-defined windows
COMBINE condbine scripts
WEIGHT ueight scripts

Note. The mapset database elements can be simple directory names (e.g., cats, colr)
or multi-level directory names (e.g., paint/labels, group/xyz/subgroup/abe). The library
routines that create the element will create the top level directory and all subdirectories
as well.

4.6. Permanent Mapset

Each location must have a PERMANENT mapset. This mapset not only contains
original map layers and vector files that must not be modified, but also two special
files that are only found in this mapset These files are MYNAME and
DEFAULT_WIND and are never modified by GRASS software.

MYNAME contains a single line descriptive name for the location. This name is
returned by the routine G_myname(p. 66).

DEFAULT_WIND contains the default window for the location. This file is used to

initialize the WIND file for new mapsets. The contents of this file are retirned by
G_get_default_rindousp. 78).

§4Da2bm8nnme

-20- -20-

4.7. Database Access Rules
GRASS database access is controlled at the mapset level. There are three simple
rules:
1 A user can select a mapset as the current mapset only if the user is the
owner of the mapset directory (see §4.4 Mapsets [p. 16)).
2 GRASS will create or modify files only in the current mapset.
3 Hiles in all mapsets may be read by anyone (see §4.7.1 Mapset Search Path

[p.20]) unless prohibited by normal UNIX file permissions (see §4.7.2 UNIX
File Pernissions (p. 20)).

4.7.1. Mapset Search Path

When users specify a new data file, there is no ambiguity about the mapset in which to
create the file: it is created in the current mapset. However, when users specify an
existing data file, the database must be searched to find the file. For example, if the
user wants to display the "soils" cell file, the system looks in the various database
mapsets for a cell file named "soils.” The user controls which mapsets are searched by
setting the mapset search path, which is simply a list of mapsets. Each mapset is
examined in tum, and the first "soils” cell file found is the one that is displayed. Thus
users can access data from other users’ mapsets through the choice of the search path.

Users set the search path using the mapsets or Grapsets commands.

Note. If there were more than one "soils” file, the mapset search mechanism retumns
the first one found. If the user wishes to override the search path, then a specific
mapset could be specified along with the file name. For example, the user could
request that "soils in PERMANENT" be displayed.

4.7.2. UNIX File Permissions

GRASS 3.0 creates all files with read/write permission enabled for everyone and
directories with read/write/search permission enabled for everyone.# This implies that
all users can read anyone else’s data files.®

4 This means -rw-rw-rw for files, and drwxawxxwx for directories. It is accomplished by
setting the umask to 0 in all GRASS programs.

5 It alo implies that all users can modify and remove anyone else’s files. Although GRASS
code won't create or modify files in other users’ mapsets, the database is wide open to standard
UNIX access. A plammed improvement will be to set the umask to 022 so that the permissions
are -rw-r--r-- for files and drwxr-xr-x for directories. This will allow complete control of
access to the database.

§4 Database Structure

-21- _ -21-

While there is no mechanism currently in GRASS to modify these access permissions,
access to a mapset can be controlled by removing (or adding) the read and search
permissions on the mapset directory itself using the UNIX chimod command, without
adversely affecting GRASS programs. For example, suppose that the full UNIX name
of the mapset is fgrasstiataspearfish/cyz. To set the permissions so that only the
mapset owner can access the xyz mapset:

chmod 0700 /grass/data/spearfish/xyz
To reset the permissions so that everyone can read from the mapset:
chmod 0755 /gress/data/spearfish/xyz

Warning. Since the PERMANENT mapset contzins global datsbase information, all
users must have read and search access to the PERMANENT mapset directory.6 Don't
remove the read and search permissions from PERMANENT.

6 PERMANENT has the DEFAULT_WIND and MYNAME files. This is a minor design
flaw. Global database information should be kept in the database, but not in any of the
mapeets. All mapeets could then be treated equally.

§4 Database Structure

Chapter 5

Grid Cell Maps

This chapter provides an explanation of how grid cell map layers are accommodated in
the GRASS database.1

5.1. What is a Grid Cell Map Layer?

GRASS grid cell map layers can be conceptualized, by the GRASS programmer as
well as the user, as representing information from a paper map, a satellite image, or a
map resulting from the interpretation of other maps. Usually the information in a map
layer is related by a common theme (e.g., soils, or landcover, or roads, etc.).

GRASS grid cell data are stored as a matrix of grid cells. Each grid cell covers a
known, rectangular (generally square) patch of land. Each cell is assigned a single
integer attribute value called the category mmmber. For example, assume the land
cover map covers a state park. The grid cell in the upper-left comer of the map is
category 2 (which may represent prairie); the next grid cell to the east is category 3
(for forest); and so on.

land cover

213/3| 3|44
2{2(3(3/[44
2213|3144
112133 |31]4
11111} 3 3| 4
11113} 3 4 | 4
1 = urban 3 - forest

2 = praire 4 = wetlands

In addition to the cell data file itself, there are a munber of support files for the grid
cell map layer. The files which comprise a grid cell map layer all have the same
name, but each resides in a different database directory under the mapset. These

! The descriptions given here are for GRASS 3.0 data formats only. Previous formats, still
supported by GRASS but no longer generated, are described in documents from earlier releases
of GRASS,

§5 Grid Cell Maps

database directories are:

directory _ function

cell grid cell data files

cellhd grid cell header files

cats map layer category information
colr map layer color tebles

colr2 altemate map layer color tables
hist map layer history information

cell misc miscellaneous map layer support information

For example, a map layer named soils would have the files cell/soils, cellhd/soils,
colrisoils, cats/soils, etc.

Note. Database directories are also known as database elements. See §4.4 Mapsets
(p. 16] for a description of database elements.

Note. GIS Library routines which read and write cell files are descnbed in §12.8 Cell
File Processmg (p.801.

52. Grid Cell File Format

The programmer should think of the grid cell data file as a two- dlmemlonal matrix
(i.e., an array of rows and columms) of integer values. Each cell is stored in the file as
one to four 8bit bytes of data An NxM cell file will contain N rows, each row
containing M columns (or bytes) of data.

The physical structure of a cell file can take one of 3 formats: uncompressed,
compressed, or reclassed.

Uncompressed format. The uncompressed cell file actually looks like an NxM
matrix. Each byte (or set of bytes for multi-byte data) represents a cell of the map
layer. The physical size of the file, in bytes, will be rous*colsxbytes-per-cell.

Conpressed format. The compressed format uses a run-length encoding schema to
reduce the amount of disk required to store the cell file. Run-length encoding means
that sequences of the same data value are stored as a single byte repeat count followed
by a data valve. If the data is single byte data, then each pair is 2 bytes. If the data is
2 byte data, then each pair is 3 bytes, etc. (see Multi-byte data format below). The
rows are encoded independently; the number of bytes per cell is constant within a row,
but may vary from row to row. Also if run-length encoding results in a larger row,
then the row is stored non-rurrlength encoded. And finally, since each row may have
. a different length, there is an index to cach row stored at the beginning of the file.

Reclass layers. Reclass map layers do not contain any data, but are references to
another map layer along with a schema to reclassify the categories of the referenced

§6 Grid Cell Maps

map layer. The reclass cell file itself contsine no useful information. The reclass
information is stored in the cell header file.

Multi-byte data format. When the data values in the cell file require more than one
byte, they are stored in big-endian format,2 which is to say as a base 256 mmmber with
the most significant digit first.

Exaraples:
cell value base 256 stored as
868 = 3*256 + 100 ' 3] 100]
137,304 = 2*256° + 24*256 + 88 | 2] 24| s8] |
174,658,106 = 10%256° + 952567 + 234*256 + 122 | 10 | 95 | 234 | 122!

Negative values are stored as a signed quantity, i.e., with the highest bit set to 1:3

cell value base 256) stored as
1 = - Lol o] of 1
-868 = -(3*256 + 100) (o] o] 37100
37304 = -(2*256% + 24256 + 88) 10] 2] 24| sg
174,058,106 = -(10*256° + 95+256% + 234*256 + 122) | 1/10 | 95 | 234 | 122}

All data values in a given row are stored using the same number of bytes. This means
. that if the value 868, which uses 2 bytes, occurred in a row that uses 3 bytes to
represent the largest data value, 868 would be stored as

Also, one row may only require 2 bytes to store its data values, another 4 bytes, and
yet another 1 byte. The rows are stored independently and would be stored using 2

bytes, 4 bytes, and 1 byte respectively.
File portability. The multi-byte format described above is, except for negative values,

> The fact that the values are stored big-endian should not be construed to mean that the
machine architecture must also be big-endian. The programs which read cell files perform the
necessary anithmetic to construct the value. They do NOT assume anything about byte ordering
in the cpu.

1 This means that the value is stored using as many bytes as required by an integer on the
machine (usually 4).

§5 Grid Cell Maps

machine-independent. If cell files are to be moved to a machine with a different cpu,
or accessed using a heterogeneous network file system (NFS), the following guidelines
should be kept in mind. All 3.0 format cell files will transfer between machines, with
two restrictions: (1) if the file contains negative values, the size of an integer on the
two machines must be the same; and (2) the size of the file must be within the seek
capability of the lIseek() call.* The pre-3.0 compressed format is not stored in a
machine-independent format, and cannot generally be used for inter-machine transfer.
It will transfer if the two machines have the same integer and long integer format.

5.3. Cdl Header Format

The cell file itself has no information about how many rows and columns of data it
contains, or which part of the earth the layer covers. This information is in the cell
header file. The format of the cell header depends on whether the map layer is a
regular map layer or a reclass layer.

Note. GIS Library routines which read and write the cell header file are described in
§12.9.1 Cell Header File [p.89).

5.3.1. Regular Format

The regular map layer ceul header contains the information describing the physical
characteristics of the cell file. The cell header has the following fields:

cell header
proj: 1
ZOne: 18
north: 4660000.00
south: 4570000.00
east: 770000.00
west : 710000.00
e-w resol: 50.00
n-s resol: 100.00
format : 0
compressed: 0

proj. zone
The projection field specifies the type of cartographic projection:
0 is unreferenced x,y (imageryv data)
1is UTM
2 is State Plane®

Others may be added in the future. The zone field is the projection zone. In the

4 This usually means that the size of a long integer on the two machmes is the same.
5 State Plane is not yet fully supported in GRASS.

§5 Grid Cell Maps

.27- .27-

example above, the projection is UTM, the zone 18.

north, south, east, west
The geographic boundaries of the cell file are described by the north, south,
east, and west fields. These values describe the lines which bound the map at its
edges. These lines do NOT pass through the center of the cells at the edge of the
map, but along the edge of the map itself.

n-s resol, e-w resol
The fields e-w resol and n-s resol describe the size of each grid cell in the map
layer in physical measurement umits (e.g., meters in a UTM database). They are
also called the grid cell resolution. The n-s resol is the length of a grid cell from
north to south. The e-w resol is the length of a grid cell from east to west. As
can be noted, cells need not be square.

format
The format field describes how many bytes per cell are required to represent the
grid cell data. 0 means 1 byte, 1 means 2 bytes, etc.

compressed
The conmpressed field indicates whether the grid cell file is in compressed format
or not: 1 means it is compressed and 0 means it isn't. If this field is missing,
then the grid cell was produced prior to GRASS 3.0 and the compression
indication is encoded in the grid cell itself.

rows, cols
The rows and colunms of the grid matrix are not stored in the cell header. They
are computed from the geographic boundaries as follows:

rows = (north — south) / (ns resol)
cols = (east — west) / (ew resol)

5.3.2. Redass Format

If the cell file is a reclass cell file, the cell header does not have the information
mentioned above. It will have the name of the referenced cell file and the category
reclassification table.

reclass cell header

reclass

nare: county

mapeet: PERMANENT

#5 first category in reclass
1 5 is reclassified to 1

0 6 is reclassified to 0

1 7 is reclassified to 1

0 8 is reclassified to 0

2

9 is reclassified to 2

§5 Grid Cell Maps

.28- .YB-

In this case, the library routines will use this information to open the referenced cell
file in place of the reclass cell file and convert the cell file data according to the
reclass scheme. Also, the referenced cell header is used as the cell header.

The # as the ﬁlstclmacterof&lefomﬁljmmﬂleﬁleirﬂicatés&ntﬁﬁs is a 3.0
format reclass cell header file.

5.4. Cell Category File Format

The category file contains the largest category value which occurs in the data, a title
for the map layer, an automatic label generation capability, and a one line label for
each category.

category file
5 categonies
title for map layer
<gutomutic label format>
<aqutoratic label parameters>
O:no data .
1:description for category 1
2:description for category 2
3:description for category 3
5:description for category 5

The # as the first character of the first line in the file indicates that this is a 3.0 format
category file. The mumber which follows it is the largest category value in the cell
file. The next line is a title for the map layer. The next two lines are used for
automatic label generation. They are used to create labels for categories which do not
have explicit labels. (The automatic label capability is not normally used in most map
layers, in which case the format line is a blank line and the parameters line is:
0.0 0.0 0.0 0.0.) Category labels follow on the remaining lines. The format is
cat: label.

The first four lines of the file are required. The remaining lines need only appear if
categories are to be labeled.

Note. GIS Library routines which read and write the cell category file are described
in §12.9.2 Cell Category File [p.911.

5.5. Cdl Colar Table Format

The color table contains one line of a color description for each category of data,
including the "no data” category. The colors are represented as levels of red, green,
and blue, where O represents the lowest intensity and 255 represents the highest
intensity.

§5 Grid Cell Maps

color table file
4 first color
255 256 255 | color for category O
0 128 128 | color for category 4 -
200 128 40 | color for category 5
255 0 0 | color for category 6
0 255 0 | color for category 7
255 color for category 8

The # as the first character of the first line in the file indicates that this is a 3.0 format
color file. The mumber which follows is the first data value which has a color (and
should be the lowest non-zero category value in the cell file). The next line is the
color for category 0. The remaining lines are the colors for the other categories. There
are 3 colummns representing the red, green, and blue levels respectively. If all 3 values
are identical (i.e., a grey scale color), only the red value need be present.

Note that the color file format is a modest attempt to allow color tables for files like
elevation, which have their lowest nonr-zero data value above 1 (often above 1000). In
these cases the color table doesn’t have to start with 1 and create urused colors.

Note. GIS Library routines which read and write the cell color table are described in
§12.9.3 Cell Color Tuble [p.94. i

5.6. Cédl Histary File

The history file contains historical information about the cell file: creator, date of
creation, comments, etc. In most applications, the programmer need not be concemed
with the history file. It is generated automatically along with the cell file. The
GRASS layer.info program allows the user to view this information, and the support
program allows the user to update it.

Note. GIS Library routines which read and write the cell history file are described in
§12.9.4 Cell History File [p.98).

5.7. Cdl Range File
The range file contains the minimum and maximum values which occur in a cell file.

It is generated automatically for all new cell files. This file lives in the cell_misc
element as “cell _misc/name/range” where name is the related cell file name.

It contains one line with four lnteger values. These represent the minimum and
maximum negative values, and the miniowm and maxmimum positive values in the
cell file. If there are no negative values, then the first pair of mmbers will be zero. If
there are no positive values, then the second pair of mumbers will be zero.

§5 Grid Cell Maps

Note. GIS Library routines which read and write the cell range file are described in
§12.9.5 Cell Range File (p.99.

§5 Grid Cell Maps

-31- _ | -31-

Chapter 6

Vector Maps

This chapter provides an explanation of how vector map layers are accommodated in
the GRASS database.

6.1. What is a Vector Map Layer?

GRASS vector maps are stored in an arc-node representation, consisting of non-
intersecting curves called arcs. An arc is stored as a series of x,y coordinate pairs.!
The two end-points of an arc are called nodes. Two consecutive x,y pairs define an arc

segment. 2

The arcs, either singly, or in combination with others, form higher level map features:
lines3 (e.g., roads or streams) or areas* (e.g., farms or forest stands). Arcs that form
linear feahures are sometimes called Lnes, and arcs that outline areas are called area
edges or area lines. ®

Each map feature is assigned a single integer attribute value called the category
number. For example, assume a vector file contains land cover information for a state
park. One area may be assigned category 2 (perhaps representing prairie); another is
assigned category 3 (for forest); and so on. Another vector file which contains road
inforrnation may have some roads assigned category 1 (for paved roads); other roads
may pe assigned category 2 (for gravel roads); etc. See §5.1 What is a Grid Cell Map
Layer? (p.23) for more information about GRASS category values.

1 For this reason arcs are also called vectors.

2 Arc segnents are sometimes called line-segments.

3 A line here does not mean a straight line between two points. It only means a linear
feature.

4 Areas are also called polygons. The GRASS vector formet does not siore the polygons
explicily. They are constructed by finding the particular ares which form the polygon
perimeter. _ .

5 Obviously, there is some confusion in the GIS vector terminology. This is pertly due to
use of terms that have a common meaning as well as a methematical meaning. Vector
terri. wlogy is a subject for much debate in the GIS world.

$6 Vector Maps

A vector map layer is stored in a mumber of data files. The files which compnise a
single vector map layer all have the same name, but each resides in a different
database directory under the mapset.® These database directories are:

directory _ function
dig binary arc file

dig_ascii ascii arc file

dig_att vector category atiribute file
dig cats vector category labels

dig plus vector index/pointer file

reg digitizer registration points

For example, a map layer named soils would have the files dig/soils, dig_att/soils,
dig_plus/soils, dig_ascii/soils, dig_cats/soils, reg/soils, etc.

Note. Vector files are also called digit files, since they are created and modified by
the GRASS digitizing program digit.

Note. When referring to one of the vector map layer files, the directory name is used.
For example, the file under the dig directory is called the dig file.

Note. Library routines which read and write vector files are described in §13 Dig
Library p. 123).

6.2. Ascdii Arc File Format

The arc information is stored in a binary format in the dig file. The format of this file
is reflected in the ascii representation stored in the dig_ascii file. It is the ascii
version which is described here.”

% Database directories are alao called elements. See §4.4 Mapsets (p. 16] for a description of
database elements.

" The programs import.to.vect, a.b.vect, and b.a.vect convert between the ascii and binary
formats. ’

{6 Vector Maps

-33- -33-

The dig_ascii file has two sections: a header section, and a section containing the arcs.

~ 6.21. Header Section

The header contains historical information, a description of the map, and its location in
the universe. It consists of fourteen entries. Each entry has a label identifying the
type of information, followed by the information. The format of the header is:

label format description

ORGANIZATION: text (mex 29 characters)* organization that digitized the data
DIGIT DATE: text (max 19 characters)* date the data was digitized

DIGIT NAME: text (max 19 characters)* ~ person who digitized the data
MAP NAME: text (max 40 characters)* title of the original source map
MAP DATE: text (mex 10 characters)* date of the original source map
OTHER INFO: text (mex 72 characters)* other comments about the map
MAP SCALE: integer scale of the original source map
ZONE: integer zone of the map (e.g., UTM zone)
WEST EDGE: real mumber (double) western edge of the entire map t
EAST EDGE: real nurmber (double) eastern edge of the entire map 1
SOUTH EDGE: real nurrber (double) southern edge of the entire map 1
NORTH EDGE: real murber (double) northem edge of the entire map ¥
MAP THRESH: real number (double) digitizing resolution {

VERTL (no data) marks the end of the header section

The labels start in column 1 and continue through columm 14. Labels are uppercase,
left-justified, end with a colon, and blank-padded to column 14. The information starts
in column 15. For example:

* Currently, GRASS programs which read the header information are not tolerant of text
fields which exceed these limits. If the limits are exceeded, the ascii to binary conversion will
probably fail.

+ The edges of the map describe a window which should encompass all the data in the
vector file.

1 The MAP THRESH is set by the digit program. If the data comes from outside GRASS,
this field can be set to 0.0.

§6 Vector Maps

ORGANIZATION: US Army CERL
DIGIT DATE: 03/18/88
DIGIT NAME: gress
MAP NAME: Urbena, IL.

" MAP DATE: 1975
OTHER INFO: USGS sw/4 ubana 15 quad. N4000-W8807.5/7.5
MAP SCALE: 24000
ZONE: 16
WEST EDGE: 383000.00
EAST EDGE: 404000.00
SOUTH EDGE: 4429000.00
NORTH EDGE: 4456000.00
MAP THRESH: 0.00
VERTL

6.2.2. Arc Section

The arc information appears in the second section of the dig_ascii file (following
VERTI: which marks the end of the header section). Each arc consists of a
description entry, followed by a series of coordinate pairs. The description specifies
both the type of arc (A for area edge, or L for line8), and the- mmber of points
(coordinate pairs) in the arc. Then the points follow.

For example:

ASb
4434456.04 388142.16
443444665 388202.64
443440749 390524.38
443410706 3905623.59
4433326.51 390526.48
L3
443486231 392043.33
443487242 394662.14
443487144 398094.75
A3
445474738 396579.60
4454722.69 393539.73
4454703.68 390786.90

In this example, the first arc is an area edge and has 5 points. The second arc is part
of a linear feature and has 3 points. The third arc is another area edge and has 3
points.

" The arc description has the letter A or L in the first column, followed by at least one

8 Other types may be added in the future.

§6 Vector Maps

space, and followed by the number of points.?

Point entries start with a space, and have at least one spacebetweenthetwo
coordinate values.10

Note. The points are stored as y,x (i.e., north, east), which is the reverse of the way
GRASS usually represents geographic coordinates.

Note. If the digit program has deleted an arc, the arc type will be represented using a
lower case letter (ie., [instead of L, a instead of A). Of course, this will only be
manifest when a binary dig file mthadele&d arc is converted to the ascii dig_ascii
file.

6.3. Vector Category Attribute File

As was mentioned in §6.1 What is a Vector Map Layer? [p.31), each feature in the
vector map layer has a category mumber assigned to it. The category number for each
map feature is not stored in the dig file itself, but in the dig_ott file.

The dig_att file is an ascii file that has multiple entries, each with the same format.
Each entry refers to one map feature, and specifies the feature type (area or line), an
x,y marker, and a category number.

For example:
A 389668.32 4433900.99 7
L 395103.96 4434881.19 2

In this example, an area feature is assigned category 7, and a linear featime is assigned.
category 2.

" The x,y marker is used to find the map feature in the dig file. It must be located so

that it uniquely identifies its related map feature. In particular, an area marker must be
inside the area, and a line marker must be closer to its related line than to any other
line (preferrably on the line) and not at a node.

If multiple entries identify the same map feature, only one will be used (cumrently the
last one).

A map featire which has no entry in this file is considered to be unlabeled. This

-~ means that during the vector to raster conversion (i.e., vect.to.cell), unlabeled areas will

convert as category zero, and unlabeled lines will be ignored.

9 This can be written with the Fortan format: Al I1X /4.
10 These can be written with the Fortran format: 2(1X,F12.2).

§6 Vector Maps

-38- , -3-

The format of this file is rather strict, and is described in the following table:

colums dsta

1 | Type of map feature (A or L)*
2-3 | spaces
4-15 | Easting (x) of the marker, right justified
16-17 | spaces
1829 | Northing (y) of the marker, right justified
30-31 | spaces
32-39 | Category mmnber, right justified
40-49 | spaces
50 | newlinet

This format is required by programs which modify the vector map (e.g., digit).
Programs which only read the vector map accept a looser format: the feature type
must start in colunm 1; the items must be separated by at least one space; and the
entries must be less than 50 characters. Also, the program support.vect will convert
the looser format to this stricter format.

Note. The marker is specified as xy (i.e., east, north), which is the way GRASS
usually represents geographic coordinates, but which is reverse of the way the arcs are
stored in the dig_ascii file.

6.4. Vector Category Label File

Each category in the vector map layer may have a one-line description These
category labels are stored in the dig_cats file. The format of this file is identical to the
grid cell category file described in §5.4 Cell Category File Format [p.28), and the
reader is referred to that section for details.

Note. The program support.vect allows the user to enter and modify the vector
category labels. The program vect.to.cell copies the dig_cats file to the cell category
file during the vector to raster conversion.

Note. Library routines which read and write the dig_cats file are described under
§12.10.6 Vector Category File [p.10<".

* Other types, such as point, may be allowed in the future,
7 UNIX text files are terminated with a newline. Therefore, each entry will appear as 49
characters. The entire file size should be a multiple of 50.

¥6 Vector Maps

6.5. Vectar In”° ~ and Pointer File
The dig_plus file contains information that accelerates vector queries. It is created by

the program build.vect (which is run by digit when a vector file is created or modified,
and by support.vect at user request) from the data in the dig and dig_att files.

For this reason, and since the internal structure of the dig_plus file is complex, the
format of this file will not be described.

6.6. Digitizer Registration Points File -

The reg file is an ascii file used by the digit program to store map registration control
points. Each map registration point has one entry with the easting and northing of the
map control point. For example:

383000.000000 4429000.000000
383000.000000 4456000.000000
404000.000000 4429000.000000

Note. This file is used by digit only. It is not used by any other program in GRASS.

6.7. Vector Topology Rules
The following rules apply to the vector data:

1 Arcs should not cross each cther (i.e., arcs which would cross must be split at
their intersection to form distinct arcs).

2 Arcs which share nodes must end at exactly the same points (i.e., must be
snapped together). This is particulady important since nodes are not explicitly
represented in the arc file, but only implicitly as endpoints of arcs.

3 Common boundaries should appear only once "(i.e., should not be double
digitized).

4 Areas must be explictly closed. This means that it must be possible to complete
each area by following one or more area edges that are comnected by common
nodes, and tiat such tracings result in closed areas.

5 It is recommended that area feahmes and linear features be placed in separate
layers. However if area features and linear features must appear in one layer,
common boundaries should be digitized only once. An area edge that is also a
line (e.g., a road which is also a field boundary), should be digitized as an area
edge (i.e., arc type A) to complete the area. The area feature should be labeled
as an area (i.e., feature type A in the dig_att file). Additionally, the common
boundary arc itself (i.e., the area edge which is also a line) should be labeled as a
line (i.e., feature type L in the dig_att file) to identify it as a linear feature.

$6 Vector Maps

.38- -38-

6.8. Imparting Vectar Files Into GRASS

The following files are required or recommended for importing vector files from other
systems into GRASS:

The dig_ascii file, described in §6.2 Ascii Arc File Format [p.32], is required.

dig_att
The dig_att file, described in §6.3 Vector Category Atiribute File [p.35), is
essentially required. While the dig_ascii file alone is sufficient for simple vector
display, the dig_att file is required for vector to cell conversion, as well as more
sophisticated vector query.

dzé_cats
The dig_cats file, described in §6.4 Vector Category Label File {p. 36], while not
required, allows map feature descriptions to be imported as well.

Note. The dig _plus file, described in §6.5 Vector Index and Pointer File [p.37), is

created by the GRASS program import.to.vect when converting the dig_ascii file to
the binary dig file. :

§6 Vector Maps

Chapter 7

This section describes how point data is currently accommodated in the GRASS
database.

7.1. What is a Site List?

Point data is currently stored in ascii files called site lists or site files. - These files are
used by the sites! program, which was developed as an application within GRASS to
aid in archeological site predictive modeling. The site list files were designed for use
by this program, but have since become the principal data structure for point data.?

7.2, Site File Farmat

Site files are ascii files stored under the site lists database element.3 The format of a
site file is best explained by example:

name |sample

desc |sample site list

728220 | 5182440 |site 27

7270605181710 [site 28

725500 | 5184000 |site 29

719800 | 5187200 |site 30

name
This line contains the name of the site list file, and is printed on all the reports
genrerated by the sites program. The word namme must be all lower case letters.

It is permissible for this line to be missing, since the sites program will add a
name record using the name of the site list file itself.

! The GRASS User’s Rejerence Manual, 19SS contains a complete description of the sites
capability.

2 Other GRASS programs which read site lists include Gsites, d.sites and paint.

3 See §4.5.2 Elenents (p. 18] for an explanation of database elements.

¥7 Point Datx Site List Files

.40 - -40-

desc
This line contains a description of the site list file, and is printed on all the
reports generated by the sites program. The word desc must be all lower cese
letters. '

It is also permissible for this line to be missing, in which case the site list will
have no description.

points
The remaining lines are point records. Each site is described by a point record.
The format for this record is:

east |north |description

The east and north fields represent the geographic coordinates (easting and
northing) of the site. The description field provides a one line text description
(l1abel) of the site, and is optional.

comments
Blank lines, and lines beginning with #, are accepted (and ignored).

Note. The character | is used to separate the fields in the records.

7.3. Programming Interface to Site Files
The progranming interface to the site list files is described in §12.11 Ste List
Processing [p.105] and the programmer should refer to that section for details.

§7 Paoint Data Site List Files

- 41 - _ -41 -

Chapter 8

Image Data: Groups

This chapter provides an explanation of how imagery data are accommodated in the
GRASS database.

8.1. Introduction

Remotely sensed images are captured for computer processing by satellite-or airbome
sensors by filtering radiation emanating from the image into various electromagnetic
wavelength bands, converting the overall intensity for each band to digital format, and
storing the values on computer compatible media such as magnetic tape. Color and
color infra-red photographs are optically scarmed to convert the red, green, and blue
wavelength bands in the photograph into a digital format as well.

The digitial format used by image data is basically a raster format. GRASS imagery
programs! which extract image data from magnetic tape extract the band data into cell
files in a GRASS database. Each band becomes a separate cell file, with standard
GRASS data layer support, and can be displayed and analyzed just like any other cell
file. :

However, since the band files are extracted as individual cell files, it is necessary to
have a mechanism to maintain a relationship between band files from the same image
as well as cell files derived from the band files. The GRASS group database structure
accomplishes this goal. ‘

8.2. What is a Group?
The group is a database mechanism which provides the following:
(1) A list of related cell files.

(2) A place to store control points for image registration and rectification,
and

1 See §S.4 Inngery Programs (p. 45) for a list of the major GRASS imagery programs.

§8 Image Data Groups

(3) A place to store spectral signatures, image statistics, etc., which are
needed by image classification proceedures.

8.2.1. A List of Cdl Files

The essential feature of a group is that it has a list of cell files that belong in the
group. These can be band data extracted from the same data tape, or cell files derived
from the original band files.2 Therefore, the group provides a convenient “handle" for
related image data; i.e., referring to the group is equivalent to referring to all the band
files at once.

8.2.2. Image Registration and Rectification

The group also provides a database mechanism for image registration and rectification.
The band data extracted from tapes are usually unregistered data. This means that the
GRASS software does not know the Earth coordinates for pixels in the image. The
only coordinates known at the time of extraction are the columns and the rows relative
to the way the data was stored on the tape.

- Image registration is the process of associating Earth coordinates with pixels on the
image. Image rectification is the process of converting the image files to the new
coordinate system based on the registration.

Image registration is applied to a group, rather than to individual cell files. The user
displays any of the cell files in a group on the graphics monitor and then marks control
points on the image, assigning Earth coordinates to each control point. The control
points are stored in the group, allowing all related group files to be registered in one
step rather than individually.

Image rectification is applied to individual cell files, with the control points for the
group used to control the rectification. The rectified cell files are placed into another
database3 known as the target database. Rectification can be applied to any or all of
the cell files associated with a group.

82.3. Image Classification

Image classification methods process all or a subset of the band files as a unit. For
example, a clustering algorithm generates spectral signatires which are then used by a
maximum likelihood classifier to produce a landcover map.

2 Derived cell files can be the results of image classification procedures such as clustering
and maximum likelihood, or band ratios formed using Gropeale, etc.

3 Hther a projected database, such as UTM, or an unregistered database, if the image is
being registered to another image.

P

\8 Image Datx Groups

-43 - -43-

Sometimes only a subset of the band files are used during image classification The
signatures must be associated only with the cell files actually used in the analysis.
Therefore, within a group, subgroups can be formed which list only the band files to
be "subgrouped" for classification purposes. The signatures are stored wi%h the
subgroup. Multiple subgroups can be created within a group, which aiiows different
classifications to be run with different combinations of band files.

8.3. The Group Structure

Groups live in the GRASS database under the group database element. The structire
of a group can be seen in the following diagram. A trailing / indicates a directory.

group/

|
| | I I I
mesmay80/ nhapjun88/ nhapoct88/ tmap88/ ..

tm.apré8/
|

I I l I
REF POINTS TARGET subgrouy

In this example, the groups are named mss.may80, nhapjun88, etc.® Note that each
group is itself a directory. Each group contains some files (REF, POINIS, and
TARGET), and a subdirectory (subgroup).

83.1. The REF File

The REF file contains the list of cell files associated with the group. The format is
illustrated below:

tmapr88.1 grass
tmapr88.2 grass
tmapr88.3 grass
tmapr884 grass
tmap88.5 grass
tmapr88.7 gress

Each line of this file contains the name and mapset of a cell fiie. In this case, there
are six cell files in the group: tmapr88.1, tmapr88.2, tmapr88.3, tmapr884,
tm.apr88.5 and tm.apr88.7 in mapset grass. (Presumably these are bands 1-5 and 7
from an April 88 Landsat Thematic Mapper image.)

4 See §4.5.2 Elerrents ip. 18] for an explanation of database elements.
" The group names are chosen by the user.

§8 Image Datee Groups

-44- -44-

832 The POINTS File

The POINTS file contains the image registration control points. This ﬁle is created and
modfied by the i.points program. Its format is illustrated below:

* image target status
east north east north (1=0k)
#
504.00 -2705.00 37914530 4448504.56
458.00 -2713.00 378272.67 4448511.67
2285.80 -2296.00 415610.08 4450456.17
2397.00 -2564.00 417043.22 4444757.65
2158.00 -2944.00 411037.79 443821097
214800 -2013.00 410834.61 4438656.18
2288.80 -2336.20 415497.19 4449671.77

—_ O O

The lines which begin with # are comment lines. The first two columns of data (under
image) are the column (i.e., east) and row (ie., north) of the registration control
points as marked on the image. The next two columns (under target) are the east and
north of the marked points in the target database coordinate system (in this case, a
UTM database). The last column (under status) indicates whether or not the control
point is well placed.” (If it is ok, then it will be used as a valid registration point.
Otherwise, it is simply retained in the file, but not used.)

8.3.3. The TARGET File

The TARGET file contains the name of the target database; i.e., the GRASS database
mapset into which rectified cell files will be created. The TARGET file is written by
i.target and has two lines:

spearfish
grass

The first line is the GRASS location (in this case spearfish), and the second is a
mapset within the location (in this case grass).

8.3.4. Subgroups
The subgroup directory under a group has the following structure:

5 Note that the row values are negative. This is because GRASS requires the northings to
- increase from sovth to north. Negative values, accomplish this while preserving the row value.
The true image row is the absolute value.

7 The ueer makes this decision in i, points.

§81nﬁgeDaIxGroq:s

45 - -45-
abﬂoup/
I | I |
123/ 234/ 1357/
1357/
|
| I
REF sig/
i
| : I
cluster.1 cluster.2

In this example, the subgroups are named 123, 234, 1357, etc.3 Within each
subgroup, there is a REF file and a sig directory. The REF file would list a subset of
the cell files from the group. In this example, it could look like:

tmap88.1 grass
tmap88.3 grass
tmapr88.5 grass
tmanB8.7 grass

indicating that the subgroup is composed of bands 1, 3, 5, and 7 from the April 1988
TM scene. The files cluster.l and cluster.29 under the sig directory contain spectral
signature information (i.e., statistics) for this combination of band files. The files
were generated by different runs of the clustering program i.cluster.

8.4. Imagery Programs

" The following is a list of some of the imagery programs in GRASS, with a brief-
description of what they do. Refer to the GRASS User’s Reference Manual for more
- details.

8 The subgroup names are chosen by the user (hopefully reflecting the contents of the

subgroup).
9 Agpin, theee file names are chosen by the user.

{8 Image Datax Groups

image extraction
i.tape.mss lLaandsat Multi-Spectral Scunner dutn
i.tape.tm Landsat Thematic Mapper data
i.tape.other other formats, such as scarmed aerial photogwaphy or

. SPOT satellite data
image rectification
i.points image registration (assign control points)

i.rectify image rectification

i.target establish target database for the group
image classification

i.cluster unsupervised clustering

i.maxlik maxinmum likelihood classifier

other
i.group group mana_gement

8.5. Programming Interface for Groups
The programming interface to the group data is described in §14 Imagery Library
[p. 137] and the reader is referred to that chapter for details.

§8 Image Data: Groups

-47. - 47 -

Chapter 9

Window and Mask

GRASS users are provided with two mechanisms for specifying the area of the earth in
which to view and analyze their data. These are known in GRASS as the window and
the mask. The user is allowed to set a window which defines a rectangular area of
coverage on the earth, and optionally further limit the coverage by specifying a
"cookie-cutter' mask. The window and mask are stored in the database under the
user's current mapset. GRASS programs automatically retrieve only data that fall
within the window. Furthermore, if there is a mask, only data that fall within the
mosk are retained. Programs determine the window and mask from the database rather
than asking the user.

9.1, Window

The user's current database window! is set by the user using the GRASS window,
Guindow, or d.window commands. It is stored in the WIND file in the mapset. This
file not only specifies the geographic boundaries of the window rectangle, but also the
window resolution which implicitly grids the window into rectangular "cells" of equal
size.

Users expect map layers to be resampled into the current window. This implies that
map layers must be extended with no data for portions of the window which do not
cover the map layer, and that the map layer data be resampled to the window
resolution if the cell file resolution is different. Users also expect new map layers to
be created with exactly the same boundaries and resolution as the current window.

1 The choice of the term "window" is unfortunate. It is used in other contexts as well (e.g.,
graphics windows) leading to much user confusion. A better term would have been
“coverage.” When confusion arises, refer to this window as the "database window” or the
"mapeet window", and to windows on the graphics screen as "graphics windows.”

§9 Window and Mask

-48- - 48 -

The WIND file contains the following fields:

WIND
north: 4660000.00
south: 4570000.00
east: 770000.00
west 710000.00
e-wresol: 50.00
n-8 resol: 100.00
proj: 1
zZone: 18

north, south, east, west
The geographic boundaries of the window are given by the north, south, east,
- and west fields. Note: these values describe the lines which bound the window at
its edges. These lines do NOT pass through the center of the grid cells which
form the window edge, but rather along the edge of the window itself.

e-w resol, n-s resol
The fields e-w resol and nh-s resol (which stand for east-west resolution and
north-south resolution respectively) describe the size of each grid cell in the
window in physical measurement units (e.g., meters in a UTM database). The e-
w resol is the length of a grid cell from east to west. The n-s resol is the length
of a grid cell from north to south. Note that since the e-w resol may differ from
the n-s resol, window grid cells need not be square.

proj, zone
The projection field specifies the type of cartographic projection: 0 is
urreferenced x,y (imagery data), 1 is UTM, 2 is State Plane.? Others may be
added in the future. The zone field is the projection zone. In the example above,
the projection is UTM, the zone 18.

Note. The WIND file format is very similar to the format for the cell header
files. See §5.3 Cell Header Format [p. 26) for details about cell header files.

92. Mask

In addition to the window, the user may set a mask using the mask command. The
mask is stored in the user's current mapset as a cell file with the name MASK.3 The
mask acts like an opaque filter when reading other cell files. No-data cells in the mask
(i.e., category zero) will cause corresponding cells in other cell files to be read as no
data (irrespective of the actual value in the cell file).

2 State Plane is not yet fully supported in GRASS.

3 The mask program creates MASK as a 1eclass file because the reclass function is fast and
uses less disk space, but it doesn't actually matter that MASK is a reclass file. Any cell format
can be used. The only thing that really matters is that the cell file be called MASK.

§9 Window and Mask

.49 - -49-

The following diagram gives a visual idea of how the mask works:

input MASK output
3[a]4 0[1]1 0]4]4
3lsl4a] + [2]1]0] = [3]38]0
233 1]o]o 200

9.3. Variations

If a GRASS program does not obey either the window or the mask, the variation must
be noted in the user documentation for the program, and the reason for the variation
given. For example, the slope.aspect program which generates aspect and slope maps
from elevation data uses the resolution of the elevation data itself, and not the current
window resolution (which may differ). The program documentation for slope.aspect
wams the user about this: The cwrrent window and mask settings are ignored. The
elevation file is read directly to insure that data is not lost or inappropriately
resampled.

§9 Window and Mask

-51- . -51-

Chapter 10

Environment Variables

GRASS programs are written to be independent of which database the user is using,
where the database resides on the disk, or where the programs themselves reside.
When programs need this information, they get some of it from UNIX environment
vanables, and the rest from GRASS environment variables.

10.1. UNIX Environment

The GRASS start-up commands GRASS3 and grass3 set the following UNIX
environment variables:!

GISBASE top level directory for the GRASS programs
GIS_LLOCK process id of the start-up shell script
GISRC name of the GRASS environment file

GISBASE is the top level directory for the GRASS programs. For example, if
GRASS were' installed under /jgrass, then GISBASE would be set to /grass. The
command directory would be /grass/in, the command support directory would be
/grasssetc, the source code directory would be /jrassérc, the onrline marmal would
live in /grass/man, the memu files would be found in jgrass/menu, efc.

GISBASE, while set in the UNIX environment, is given special handling in GRASS
code. This variable must be accessed using the GIS Library routine G_gisbase(p. 66).

GIS_LOCK is used for various locking mechanisms in GRASS, It is set to the
process id of the start-up shell so that locking mechanisms can detect orphaned locks
(e.g., locks that were left behind during a system crash).

GIS_LOCK may be accessed using the UNIX getenv() routine.

GISRC is set to the name of the GRASS environment file where all other GRASS

1 Any interface to GRASS must set these variables.

§10 Environment Variables

.52. -52-

varisbles are stored. Under GRASS 3.0 this file is .grassrc? in the user's home
directory.

102. GRASS Environment

All GRASS users will have a file in their home directory named .grassrc® which is
used to store the variables that comprise the environment of all GRASS programs.
This file will always include the following variables that define the database in which
the user is working:

GISDBASE top level database directory

LOCATION_NAME location directory
MAPSET mapeet directory

The user sets these varigbles during GRASS start-up. While the value of GISDBASE
will be relatively constant, the others may change each time the user runs GRASS.
GRASS programs access these variables using the G_gisdbase(p. 67), G_location(p. 66),
. and G_mapset(p.66) routines in the GIS Library. See §4.2 Gisdbase [p.16] for details
about GISDBASE, §4.3 Locations (p. 16] for details about database locations, and $4.4
Mapsets (p. 16) for details about mapsets.

Other variables may appear in this file. Some of these are:

MONITOR currently selected graphics monifor
PAINTER currently selected paint output device
DIGITIZER cunrently selected digitizer

These varidbles are accessed and set from C programs using the general purpose
routines G_geteniAp.67) and G_setenv(p.67). The GRASS program gisenv provides a
command level interface to these variables.

10.3. Difference Between GRASS and UNIX Environments

The GRASS enviromment is similar to the UNIX environment in that programs can
access information stored in "environment' varigbles. However, since the GRASS
environment varigbles are stored in a disk file, it offers two capabilities not available

2 Under previous versions of GRASS this fle was named .giarc

3 GRASS programs do not have this file name built into them. They look it up from the
UNIX environment vaniable GISRC. Note the similarity in naming convention to the .cshrc
and .exre files.

§10 Environment Variables

-53- -53-

with UNIX environment varisbles. First, variables may be set by one program for
later use by other programs. For example, the GRASS start-up sets these variables for
use by all other GRASS application programs. Second, since the varisbles remain in
the file unless explicitly removed, they are available from session to session

§10 Envirorment Variables

Chapter 11

Compiling GRASS Programs Using Gmake

GRASS programs are compiled using the Gmuke frontrend to the UNIX make
command. Grake reads a file named Grmkefile to construct a makefile and then nms
make. (It is assumed that the programmer is familiar with make and its accompanying
makefiles.)

11.1. Gmake :

The GRASS Grmake utility allows make compilation rules to be developed without
having to specify machine- and installation-dependent information. Grmake combines
pre-defined variables that specify the machine- and installation-dependent information
with the file Gmakefile, which the programmer must write, to create a rukefile. (The
pre-defined variables and the construction of a Gmakefile are described below.)

Gnuke is invoked as follows:!
Gmake [source directory] [target]

If run without arguments, Gmake will nm in the cumrent directory, build a makefile
from the Grmakefile found there, and then run make. If nun with a source directory
argument, Gnake will change into this directory and then proceed as above. If nn
with a target argument as well, then make will be run on the specified target.

11.2. Gmake Variables

The pre-defined Gmake variables which the GRASS programmer must use when
writing a Grukefile specify libraries, source and binary directories, compiler and
loader flags, etc. The most commonly used variables will be defined here. Examples
of how to use them follow in §11.3 Constructing a Gmakefile [p.58]. The full set of
variables can be seen in Appendix A. Annotated Gmake Pre-defined Variables [p.233).

1 Grake lives under $GISBASE/src/CMD. You must either set your $PATH to include this
directory, or nin $GISBASE/arc/CMD/Gmeke. $GISBASE is the directory where GRASS is
installed. See §10.1 UNIX Environment [p. 51] for details.

§11 Conpiling GRASS Programs Using Gmale

- 56 - - 56 -

Varigbles marked with (-) are not commonly used.

GRASS Directories. The following variables tell Grake where source code and
pmgxam directories are:

GIS(-) This is the UNIX directory where GRASS is installed. It corresponds to
the GRASS envirorment varisble GISBASE (see §10 Environment
Variables (p.51). This varigble is generally not used explicily in a
Gmakefile. Tt is mostly used by Grake to construct other variables.

SRC (-) This is the directory where GRASS source code lives.
BIN This is the directory where user-accessible GRASS programs live.

ETC This is the directory where support files and programs live. These support
files and programs are used by the $(BIN) programs, and are not known
to, or run by the user.

LIBDIR (-) This is the directory where most of the GRASS libraries and irclude
' header files live. For example, "gish' can be found here. Gruke
automatically specifies this directory to the C compiler as a place to find

include files.

GRASS Libraries. The following variables name the various GRASS libraries:

GISLIB This names the GIS Library, which is the principal GRASS library. See
§12 GIS Library (p.63] for details about this library, and $12.18 Loading
the GIS Library (p. 122] for a sample Gmakefile which loads this library.

VASKLIB This names the Vask Library, which does full screen user input.

VASK This specifies the Vask Library plus the UNIX curses and termcap
libraries needed to use the Vask Library routines. See $20 Vask Library
[p. 187) for details about this library, and $20.4 Loading the Vask Library
[p. 191 for a sample Gmakefile which loads this library.

SEGMENTLIB
This names the Segment Library, which manages large matrix data See
§19 Segment Library [p.179] for details about this library, and $20.4
Loading the Vask Library [p. 191} for a sample Grakefile which loads this
library.

RASTERLIB

This names the Raster Graphics Library, which commumicates with
GRASS graphics drivers. See §15 Raster Graphics Library [p. 147 for

§$11 Compili ngGRASPNg-amstg Gmake

-57- . -57-

details about this library, and §15.9 Loading the Raster Graphics Library
(p. 157) for a sample Gmakefile which loads this library.

DISPLAYLIB A
This names the Display Graphics Library, which provides a higher level
graphics interface to $(RASTERLIB). See §16 Display Graphics Library
(p.159] for details about this library, and §16.9 Loading the Display
Graphics Library {p.167] for a sample Gmakefile which loads this library.

UNIX Libraries. The following variables name some useful UNIX system libraries:

MATHLIB This names the math library. It should be used instead of the -lm loader
option.

CURSES This names both the curses and termcap libraries. It should be used instead
of the -lcurses and -ltermcap loader options. Don’t use $(CURSES) if you
use $(VASK).

TERMLIB This names the termcap library. It should be used instead of the -ltermcap
or -ltermlib loader options. Don't use $(TERMLIB) if you use $(VASK)
or $(CURSES).

Caompiler and loader variables. The following variables are related to compiling and
loading C programs:

AR This variable specifies the rule that must be used to build object libraries.

CFLAGS (-)
This variable specifies all the C compiler options. It should never be
necessary to use this variable. Grake automatically supplies this variable
to the C compiler.

EXTRA_CFLAGS
This varigble can be used to add additional options to $(CFLAGS). It has
no pre-defined values. It is usually used to specify additional -I include
directories, or -D pre-processor defines.

GMAKE This is the full name of the Gruke command. It can be used to drive
compilation in subdirectories.

LDFLAGS This specifies the loader flags. The programmer must use this variable
when loading GRASS programs since there is no way to automatically
supply these flags to the loader.

§11 Compiling GRASS Programs Using Gmake

-58 - ' -58-

MAKEALL
This defines a commeand which runs Grmake in all subdirectories that have

a Gmakefile in them.

11.3. Constructing a Gmakefile |
A Gmuakefile is constructed like a mukefile. The complete syntax for a makefile is
discussed in the UNIX documentation for maoke and won't be repeated here. The
essential idea is that a target (e.g., a GRASS program) is to be built from a list of
dependencies (e.g., object files, libraries, etc.). The relationship between the target, its
dependencies, and the rules for constructing the target is expressed according to the
following syntax: -
target: depedencies

actions

more actions _
If the target doesn't exist, or if any of the dependencies have a newer date than the
target (i.e., have changed), the actions will be executed to build the target.

The actions must be indented using a TAB. Make is picky about this. It doesn’t like
spaces in place of the TAB.

11.3.1. Building programs from source (.c) files
To build a program from C source code files, it is only necessary to specify the
compiled object (.0) files as dependencies for the target program, and then specify an
action to load the object files together to form the program. The make utility builds .o
files from .c files without being instructed to do so.

For example, the following Gmakefile builds the program xyz and puts it in the
GRASS program directory.

OBJ = maino subl.o sub2.0 sub3.0

$(BIN)/xyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ $(GISLIB)

$(GISLIB): # in case library changes

The target xyz depends on.the object files listed in the variable $(OBJ) and the
$(GISLIB) library. The action nns the C compiler to load xyz from the $(OBJ) files
and $(GISLIB).

$@ is a make shorthand which stands for the target, in this case xyz. Its use should be

§11 Compiling GRASS Programs Using Gmale

-59. -59-

encouraged, since the target name can be changed without having to edit the action as
well.

$(CC) is the C compiler. It is used as the interface to the loader. It should be specified
as $(CC) instead of cc. Make deﬁn% $(CC) as cc, but using $CC) will allow other
C-like compilers to be used instead.?

$(BIN) is a Gmake variable which names the UNIX directory where GRASS
commands live. Specifying the target as $(BIN)/xyz will cause Gmuke to build xyz
directly into the $(BIN) directory.

$(LDFLAGS) specify loader flags which must be passed to the loader in this manner.

$(GISLIB) is the GIS Library. $(GISLIB) is specified on the action line so that it is
included during the load step. It is also specified in the dependency list so that
changes in $(GISLIB) will also cause the program to be reloaded.

Note that no rules were given for building the .o files from their related .c files. In
fact, the GRASS programmer should almost never have to give an explicit rule for
compiling .c files. It is sufficient to list all the .0 files as dependercies of the target.
The .c files will be automatically compiled to build up-to-date .o files before the .0
files are loaded to build the target program.

Also note that since $(GISLIB) is specified as a dependency it must also be specified
as a target. Make must be told how to build all dependencies as well as targets. In this
case a dummy rule is given to satisfy nake.

11.3.2. Indude files

Often C code uses the #include directive to include header files in the source during
compilation. Header files that are included into C source code should be specified as
dependencies as well. It is the .o files which depend on them:

OBJ = main.o subl.o sub2.0

$(BINy/xyz: $(OBJ) $(GISLIB)
$(CO $(LDFLAGS) -0 $@ $(OBJ $(GISLIB)

$(OBJ): myheader.h

$GISLIB): # in case library changes

2 GRASS Grukefiles presently use cc instead of $(CC). This will be modified in future
releages.

$11 Compiling GRASS Programs Using Gmake

- 60 - - 60 -

In this case, it is assumed that "myheader.h” lives in the curmrent directory and is
included in each source code file. If "myheader.h” changes, then all .c files will be
compiled even though they may not have changed. And then the target program xyz
will be reloaded.

If the header file "myheader.h’ is in a differeni .irectory, then a different formulation
can be used:

EXTRA_CFLAGS = -I..
OBJ = main.o subl.o sub2.0

$BIN)Axyz: $(OBJ) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(ORBRJ) $(GISLIB)

$(GISLIB): # in case library changes

$(EXTRA_CFLAGS) will add the flag -1.. to the rules that compile .c files into .o files.
This flag indicates that #include files (i.e., "myheaderh”’) can also be found in the
parent (..) directory.

Note that this example does not specify that "myheader.h” is a dependency. If
"myheader.h” were to change, this would not cause recompilation here. The following
rule could be added:

$(OBJ): ../myheader.h

11.3.3. Builing object libraries

Sometimes it is desirable to build libraries of subroutines which can be used in many
programs. Gmake requires that these libraries be built using the $(AR) rule as follows:

OBJ = subl.o sub2.0 sub3.0

lib.a: $(OBJ)
$(AR)

All the object files listed in $(OBJ) will be compiled and archived into the target
library lib.a. The $(OBJ) varigble must be used. The $(AR) assumes that all object
files are listed in $(OB.)).

3 11 Compiling GRASS Programs Using Gmake

- 61 - -61-

11.3.4. Building more than one target

Many target: dependency lines many be given. However, it is the first one in the
Gmakefile which is built by Gmake. If there are more targets to be built, the first
target must explicity or implicitly cause Gmake to build the others.

The following builds two programs, abc and xyz directly into the $(BIN) directory:

ABC = abc.o subl.o sub2.0
XYZ = xyz.0 subl.o sub3.0

all: $(BIN)/abe $(BIN/xyz

$(BIN)/abe: $(ABC) $(GISLIB)
$(CO) $(LDFLAGS) -0 $@ $(ABC) $(GISLIB)

$(BIN/xyz: $XYZ) $(GISLIB)
$CO) $(LDFLAGS) -0 $@ $(ABC) $(GISLIB) |

$(GISLIB): # in case library changes 4’

If it is desired to run the compilation in various subdirectories, a Grakefile could be
constructed which simply runs Gmake in each subdirectory. For example:

all:
$(GMAKE) subdir.1
$(GMAKE) subdir.2
$(GMAKE) subdir.3

Note that due to the way the $(AR) rule is designed, it is not possible to construct
more than one library in a single source code directory. Each library must have its
own directory and related Grmakefile.

11.3.5. Dorr’t bypass .o files

If a program has only one .c source file, it is tempting to compile the program directly
from the .c file without creating the .0 file. Please don't do this. There have been
problems on some systems specifving both compiler and loader flags at the same time.
The .o files must be built first. Once all the .o files are built, they are loaded with any
required libranes to build the program.

$ 11 Compiling GRASS Programs Using Gmake

Chapter 12

GIS Library

12.1. Introduction

The GIS Library is the primary programming library provided with the GRASS
system. Programs must use this libary to access the database. It contains the
rcutines which locate, create, open, rename, and remove GRASS database files. It
contains the routines which read and write cell files. It contains routines which
interface the user to the database, including prompting the user, listing available files,
validating user access, etc. It also has some general purpose routines (string
manipulation, user information, etc.) which are not tied directly to database processing.

It is assumed that the reader has read §4 Database Sructure (p.15) for a general
description of GRASS databases, §5 Grid Cell Maps [p.23) for details about map layers
in GRASS, and §9 Window and Mask {p.47} which discusses windowing and masking.

The routines in the GIS Library are presented in functional groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the inter-relationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them.

Most routines in this library require that the header file "gis.h" be included in any code
using these routines.! Therefore, programmers should always include this file when
writing code using routines from this library:

#include "gis.h"

Note. All routines and global variables in this library, documented or indocumented,
start with the prefix G_. To avoid name conflicts, programmers should not create
vanables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix C. Index to GIS Library (p.239).

! The GRASS compilation process, described in §11 Conpiling GRASS Prograns Using
Grmake | 551, automatically tells the C compiler how to find this and other GRASS header files.

$12 GIS Library

-64- -64-

m I ﬂ . I .I. m‘ I.
It is mandatory that the system be initialized before any other library routines are
called.

G_gisinit (program_name) initialize gis library
char *program_name;
This routine reads the users GRASS environment file into memory and makes

sure that the user has selected a valid database and mapset. It also initializes
hidden varisbles used by other routines. If the user's database information is
invalid, an ermor message is printed and the program exits. The program name
is stored for later recall by G_program name(p.118). It is recommended that
argv{0] be used for the program_name:

mein(arge, argv) char *argv{ J;

{
G_gisinit(argv{0]);
}

The following routines are used by other routines in the library to report warning and
error messages. They may also be used directly by GRASS programs.

G_fatal_error (message) print error message and exit
G_warning (message) print warning message and continue
char *message;

These routines report emrors to the user. The normmal mode is to write the
message to the screen (on the standard emor output) and wait a few seconds.
G_waming() will reiurn and G_fatal_error() will exit.

If the standard error output is not a tty device, then the message is mailed to the
user instead.

If the file GIS_LERROR_LOG exists (with write permission), in either the user's
home directory or in the $GISBASE? directory, the messages will also be logged
to this file.

While nost applications will find the normal error reporting quite adequate, there will
be times when different handling is 1eeded. For example, graphics programs may

2 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Environment
{p.51 for details.

§12 GIS Library

-65- -65-

want the messages displayed graphically instead of on the standard enor output. If the
programmer wants to handle the ervor messages differently, the following routines can
be used to modify the error handling:

G_set_error_routine (handler) change error handling
int (*handler)();

This routine provides a different eror handler for G_fatal error() and
G_waming(). The handler routine must be defined as follows:

handler (message, fatal)
char *message;
int fatal;

where message is the message to be handled and fatal indicates the type of error:
1 (fatal error) or O (warning).

Note. The handler only provides a way to send the message somewhere other
than to the emor output. If the emor is fatal, the program will exit after the
handler retumns.

G_unset_exrror_routine () reset normul error handling

This routine resets the error handling for G_fatal_error(p. 6¢4) and G_uwarning(p. 64)
back to the default action.

G_sleep_on_error (flag) sleep on error?
int flag;
If flag is 0, then no pause will occur after printing an error or waming message.
Otherwise the pause will occur.
G_suppress_warmn@ (flag) ‘ suppress wanings?
int flag;
If flag is 0, then G_warning(p.64) will no longer print waming messages. If flag
is 1, then G_waming() will print waming messages.

Note. This routine has no effect on G_fatal_error(p. 64).

$12 GIS Library

—

.68 - -68-

124. Environment and Database Infarmation

The following routines return information about the current database selected by the
user. Some of this information is retrieved from the user's GRASS environment file.
Some of it comes from files in the database itself. See §10 Environment Variables
(p.51] for a discussion of the GRASS environment.

The following four routines can be used freely by the programmer:

char *
G_location () current location name
Retums the name of the current database location. This routine should be used

by programs that need to display the current location to the user. See §4.3
Locations [p. 16] for an explanation of locations.

char *

G_mapeet () current mupset name
Retumms the name of the current mapset in the current location. This routine is
often used when accessing files in the current mapset. See §4.4 Mapsets [p. 16}
for an explanation of mapsets.

char * .

G_myname () location title
Retumns a one line title for the database location. This title is read from the file
MYNAME in the PERMANENT mapset. See also §46PerrmnentMamet[p19]
for a discussion of the PERMANENT mapset.

char *

G_gisbase () : top level program directory
Returns the full path name of the top level directory for GRASS programs. This
directory will have subdirectories which will contain programs and files required
for the nmning of the system. Some of these directories are:

bin cormmands run by the user

etc programs and data files used by GRASS commands
txt help files

mem files used by the grass3 mem interface

The use of G_gisbase() to find these subdirectories enables GRASS programs to
be written independently of where the GRASS system is actually installed on the
machine. For example, to run the program sroff in the GRASS etc directory:

char command[200];

sprintf (cormmand, "%s/etc/aoff”, G_gisbase());
System (cormmand);

§12 GIS Library

-67- . - 67 -

The following two routines retum full path UNIX directory names. They should be
used only in special cases. They are used by other routines in the library to build full
UNIX file names for database files. The progranmmer should not use the next two
routines to bypass the normal database access routines,

char *

G_gisdbase () top level database directory
Returns the full UNIX path name of the directory which holds the database
locations. See §4.2 Gisdbase [p. 16] for a full explanation of this directory.

C}B.r % .

G_Jocation_path () ' current location directory
Returns the full UNIX path name of the current database location. For example,
if the user is working in location spearfish in the Ausr/grass3/data database
directory, this routine will reirmm a sting which looks like
Ausr/grass3/dataSpearfish.

These next routines provide the low-level management of the information in the user's
GRASS environment file. They should not be used in place of the higher level
interface routines described above.

char *

G_getenv (nare) query GRASS erwironment variable

char *

G_ _getenv (name) query GRASS environment variable
char *name;

The. e routines look up the variable name in the GRASS environment and retun
its value (which is a character string).

If name is not set, G_getenv() issues an error message and calls exitl).
G_ setenv() just retumns the NULL pointer.

G_setenv (name, value) set GRASS eruironment variable
G_ _sete .v (name, value) set GRASS eruironment variable
char *name;
char *value;

These routines set the the GRASS environment variable name to value. If value
is NULL, the name is unset.

Both routines set the value in program memory. but only G_setenv() writes the
new value to the user s GRASS environment file.

§12 GIS Library

-68- S -68-

125. Fundamental Database Access Routines

The routines described in this section provide the low-level interface to the GRASS
database. They search the database for files, prompt the user for file names, open files
for reading or writing, etc. The programmer should never bypass this level of database
interface. These routines must be used to access the GRASS database unless there
are other higher leved library routines which perform the same function. For
example, there are routines to process cell files which should be used instead (see
§12.8 Cell File Processing (p.80]).

In the descriptions below, the term database element is used. FElements are
subdirectories within a mapset and are associated. with a specific GRASS data type.
For example, cell files live in the "cell”" element. See §4.5.2 Flements [p. 18] for more
details.

12.5.1. Prompting for Database Files

The following routines interactively prompt the user for a file name from a specific
database dlement. (See §4.5.2 Elements [p.18] for an explanation of elements.) In
each, the prompt string will be printed as the first line of the full prompt which asks
the user to enter a file name. If prompt is the empty string """ then an appropriate
prompt will be substituted. The name that the user enters is copied into the name
buffer.3 The short (one or two word) label describing the element is used as part of a
title when listing the files in element.

The user is required to enter a valid file name, or else hit the RETURN key to cancel
the request. If the user enters an invalid response, a message is printed, and the user
is prompted again If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the file lives or is to be created is returned. Both the
name and the mapset are used in other routines to refer to the file.

An example will be given here. The G_ask old() routine used in the example is
described a bit later. The user is asked to enter a file from the "paint/labels” element:
char name(50};
char *mapeet;

nupset = G_ask_old (", name, "paint/labels’, “labels");
if {mapset == NULL)
exitt0); /* user canceled the request */

The user will see the following:

3 The size of name should be large enough to hold any GRASS file name. Most systems
allow file names to be quite long. It is recommended that name be declared char name/50].

§12 GIS Library

Enter the name of an existing labels file
Enter’list’ for a list of existing labels files
Hit RETURN to cancel raqmd.4

>

char *
G_ask_old (prompt, name, element, label) pronpt for existing database file
char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of an existing database file.

Note. This routine looks for the file in the current mapset as well as other
mapsets. The mapsets that are searched are determined from the user's mapset
search path See §4.7.1 Mapset Search Path [p.20] for some more details about
the search path.

char *
G_ask_new (prompt, name, element, label) pronpt for new database file
char *prompt;
char *name;
char *element;
char *label;

The user is asked to enter the name of a new file which does not exist in the
current mapset.

Note. The file chosen by the user may exist in other mapsets. This routine does
not look in other mapsets, since the assumption is that name will be used to
create a new file. New files are always created in the current mapset.

4 'This line of the prompt can be modified using G _set_ask_rettan_nwsgip. 7).

$12 GIS Library

-70 - -70-

char *
G_ask_in_mapset (prompt, name, element, label) pronpt for existing database file
~ char *prompt;
char *name;
char *element;
char *1abel;

The user is asked to enter the name of an file which exists in the cunrent mapset.

Note. The file chosen by the user may or may not exist in other mapsets. This
routine does not look in other mapsets, since the assumption is that name will be
used to modify a file. GRASS only permits users to modify files in the current

mapset.

char *
G_ask_amy (prompt, name, element, label, warn) pronpt for ary valid file name
char *prompt;
char *name;
char *element;
char *1abel;
int warn;
The user is asked to enter any legal file name. If warn is 1 and the file chosen
exists in the current mapset, then the user is asked if it is ok to overwrite the file.
If wamn is 0, then any legal name is accepted and no waming issued to the user if
the file exists.

G_set_ask_return_msg (msg) set Hit RETURN msg
char *msg;

The "Hit RETURN to cancel request’' part of the prompt in the prompting
routines described above, is modified to "Hit RETURN msg."

char * ,
G_get _ask_return_msg () get Hit RETURN msg
The current msg (as set by G_set_ask_return_msg(p. 70)) is returmed.

12.5.2. Finding Files in the Database

Normrinteractive programs cannot moke use of the interactive prompting routines
described above. For example, a command line driven program may require a database
file name as one of the command arguments. GRASS allows the user to specify
database file names either as a simple unqualified name, such as "xyz", or as a fully
qualified name, such as "xyz in mapset”’. where mapset is the mapset where the file is

-71- -71-

to be found. Often only the unqualified file name is provided on the command line.

The following routines search the database for files:

char *
G_find_fie (element, name, mapset) find a database file
char * i
G_find_file2 (element, name, mapset) find a database file
char *element;
char *name;
char *mapset;

Look for the file rame under the specified element in the database. The mapset
parameter can either be the empty string "", which means search all the mapsets
in the user's current mapset search path,® or it can be a specific mapset, which
means look for the file only in this one mapset (for example, in the current
mapset).

If found, the mapset where the file lives is retumed. If not found, the NULL
pointer is retumed.

The difference between these two routines is that if the user specifies a fully
qualified file which exists, then G_find_file2() modifies name by removing the
"in mapset”" while G_find_file{) does not® Normmally, the GRASS programmer
need not worry about qualified vs. unqualified names since all library routines
handle both forms. However, if the programmer wants the name to be retumed
unqualified (for displaying the name to the user, or storing it in a data file, etc.),
then G_find_file2() should be used.

For example, to find a "paint/labels” file anywhere in the database: '

char name{50|;
char *mapset;

if ((mapset = G_find_file("paint/labels”,name,” ")) == NULL)
’* not found */

To check that the file exists in the current mapset:

5 See §4.7.1 Mapset Search Path (p.20) for more details about the search path.
5 Be wamed that G_find_file2() should not be used directly on a command line argument,

since modifying argv] | may not be valid. The argument should be copied to another character
buffer which is then passed to G_find_file2().

$12 GIS Library

char name[50];

if (G_find_file("paint/1abels"’ ,name,G_mapeet()) == NULL)
/* not foud */

12.5.3. Legal File Names

Not all names that a user may enter will be legal files for the GRASS databases. The
routines which create new files require that the new file have a legal name. The
routines which prompt the user for file names (e.g., G_ask_neu(p.69)) guarantee that
the name entered by the user will be legal. If the name is obtained from the command
line, for example, the programmer must check that the name is legal. The following
routine checks for legal file names:

G_legal_filename (name) check for legal database file nares
char *name;

Retumns 1 if name is ok, -1 if itisn't

12.5.4. Opening an Existing Database File for Reading

The following routines open the file name in mapset from the specified database
element for reading (but not for writing). The file name and mapset can be obtained
interactively using G_ask_old(p.69), and non-interactively using G_find_file(p.71) or
G_find_file2(p. 71).

G_open_old (element, name, mapset) open a database file for reading
char *element; |
char *name;
char *mapset; -
The database file name under the element in the specified mapset is opened for
reading (but not for writing).

The UNIX open() routine is used to open the file. If the file doesn’'t exist, -1 is
returned. Otherwise the file descriptor from the open() is retumed.

§12 GIS Library

-73- -73.

FILE *

G_fopen_dld (element, name, mapset) open a database file for reading
char *element;
char *name;
char *mapset;

The database file name under the dement in the specified mapset is openad for
reading (but not for writing).

Thé UNIX foper() routine, with "r' read mode, is used to open the file. If the
file doesn't exist, the NULL pointer is returmed. Otherwise the file descriptor from
the foperd) is returned. '

12.5.5. Opening an Existing Database File for Update

The following routines open the file name in the cumrent mapset from the specified
database element for writing. The file must exist Its name can be obtained
interactively using G_ask_in_mapset(p.70), and norrinteractively using G_find_file(p.71)
or G_find_file2(p.71).

G_open_update (element, name) open a database file for update
char *element;
char *name;
The database file name under the element in the current mapset is opened for
reading and writing.

The UNIX open() routine is used to open the file. If the file doesn’t exist, -1 is
retmed. Otherwise the file is positioned at the end of the file and the file
descriptor from the open() is returned.

G_fopen_append (element, name) - open a database file for update
char *element;
char *name;

The database file name under the edlement in the current mapset is opened for
appending (but not for reading).

The UNIX fopen() routine, with "a"* append mode, is used to open the file. If the
file doesn’t exist, the NULL pointer is returned. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopen() is retumed.

{12 GIS Library

-74- -4 -

12.5.68. Creating and Opening a New Databese File

The following routines create the new file name in the current mapset’ under the
speciﬁeddatzbasedamltaniopenitforwﬁﬁ:g. The database dement is created, if
it Joesn’t already exist. '

The file name should be obtained interactively using G_ask_neufp.69). If obtained
rorrinteractively (e.g., from the command line), G _legal_filename(p.72) should be
called first to make sure that name is a valid GRASS file name.

Warning. It is not an error for name to already exist However, the file will be
removed and recreated empty. The interactive routine G_ask_new(p.69) guarantees
that name will not exist, but if name is obtained from the command line, name may
exist. In this case G_find_file(p.71) could be used to see if name exists.

G_open_new (element, name) open a new database file

The database file name under the dement in the current mapset is created and
opened for writing (but not reading).

The UNIX open() routine is used to open the file. If the file doesn't exist, -1 is
retumed. Otherwise the file is positioned at the end of the file and the file
descriptor from the open() is returned.

FILE *
G_fopen_new (element, name) open a new database file

char *element;
char *name;

The database file name under the element in the current mapset is created and
opened for writing (but not reading).

The UNIX foper() routine, with "w" write mode, is used to open the file. If the
file doesn’t exist, the NULL pointer is reammed. Otherwise the file is positioned at
the end of the file and the file descriptor from the fopen() is returned.

7 GRASS doesn't allow files to be created outside the current mapset; see §4.7 Database
Access Rudes [p. 20).

$12 GIS Library

- 75 - 75 -

12.6.7. Databssc Flle Management
The follé)wing routines allow the renaming and removal of database files in the current
mapset.

G_rename (element, old, new) remane a database file

char *element;

char *old;

char *new,
The file or directory old under the database dlement directory in the current
mapset is renamed t new.

Returns 1 if successful, 0 if old doesn’t exist, and -1 if there was an error.

Bug This routine doesn’t check to see if the new name is a valid database file
name.

G_renove (element, name) renmove a database file

char *element;
cha_r *name;

The file or directory name under the database element directory in the current
mapset is removed.

Returns 1 if successful, 0 if name doesn't exist, and -1 if there was an enror.

Note. If name is a directory, everything within the directory is removed as well.

Note. These functions only apply to the specific dement and not o other "related”
clements. For example, if element is “cell", then the specified cell file will be remove
tor renamed), but the other support files, such as "cellhd” or "cats”, will not. To
remove these other files as well, specific calls must be made for each related element.

12.6. Memoary Allocation

The following routines provide memory allocation capability. They are simply calls to
the UNIX suite of memory allocation routines malloc(), realloc() and calloct), except
that if there is not enough memory, they print a diagnostic message to that effect and
then call exat().

Note. Use the UNIX free() routine to release memory allocated by these routines.

% These functions only apply to the current mapset since GRASS does permit users to
mndify things in mapsets other than the current mapset; see $4.7 Database Access Rules ip 2ir..

§$12 GIS Library

-76 - -76 -

char *
G_malloc (size) menory allocation
int size;

Allocates a block of nemory at least size bytes which is aligned properly for all
data types. A pointer to the aligned block is returned.

char *
G_realloc (ptr, size) menory allocation
char *ptr;
int size;
Changes the size of a previously allocated block of memory at ptr and retumns a
pointer to the new block of memory. The size may be larger or smaller than the

original size. If the original block carmot be extended "in place”, then a new
block is allocated and the original block copied to the new block.

Note. If ptr is NULL, then this routine simply allocates a block of size bytes.
This is different than malloc(), which does not handle a NULL ptr.

char * _
G_calloc (n, size) menory allocation
int m;
int size;
Allocates a properly aligned block of memory n«size bytes in length, initializes
the allocated memory to zero, and retums a pointer to the allocated block of
memory.

Note. Allocating memory for reading and writing cell files is discussed in §12.8.5
Allocating Cell 1/0 Buffers [p.85)

12.7. The Window

The window concept is explained in §9.1 Window [p.47). It can be thought of as a
two-dimensional matrix with known boundaries and rectangular cells.

There are logically two different windows. The first is the database window that the

user has set in the current mapset. The other is the window that is active in the

program. This active program window is what controls reading and writing of cell file
data

The routines described below use a GRASS data structure Cell_head to hold window

information. This structure is defined in the "gis.h" header file. It is discussed in
detail under §12.17 GiIS Library Data Structures (p. 118).

312 GIS Library

-7 - -77-

12.7.1. The Database Window
Reading and writing the user’ s database window are done by the following routines:

G_get_window (window) * read the database window
struct Cell_head *window;

Reads the database window as stored in the WIND file in the user's current
mapset into window.

An error message is printed and exit() is called if there is a problem reading the
window. .

Note. GRASS applications that read or write cell files should not use this
routine, since its use implies that the active program window will not be used.
Programs that read or write cell file data (or vector data) can query the active
program window using G_uindow_rous(p.78) and G_window_cols(p.78).

G_put_window (window) write the database window
struct Cell_head *window;

Writes the datsbase window file (WIND) in the user's current mapset from
window.

Returns 1 if the window is written ok. Retums -1 if not (no diagnostic message is
printed).

Warning. Since this routine actually changes the database window, it should
only be called by programs which the user knows will change the window. It is
probably- fair to say that under GRASS 3.0 only the window, Guindow, and
d.uindow programs should call this routine.

There is another database window. This window is the default window for the
location. The default window provides the user with a "starting” window, i.e., a
window. to begin with and returmn to as a reference point. The GRASS programs
utndow and Guindow allow the user to set their database window from the default
window. (See §4.6 Permanent Mapset |p. 19] for a discussion of the default window.)
The following routine reads this window:

{12 GIS Library

.78 - . -78-

G_get_default window (window) read the default uindow
struct Cell_head *window;
Reads the default window for the location into window.

An error message is printed and exit() is called if there is a problem reading the
default window.

12.7.2. The Active Program Window :

The active program window is the one that is used when reading and writing cell file
data. This window determines the resampling when reading cell data It also
determines the extent and resolution of new cell files.

Initially the active program window and the user’s database window are the same, but
the programmer can make them different. The following routines manage the active
program window. '

G_window_rows () ruarber of rows in active uindow
G_window_cols () rumber of colurms in active window

These routines return the mumber of rows and columms (respectively) in the active
program window. Before cell files can be read or written, it is necessary to
known how many rows and columns are in the active window. For example:

int nrows, cols;
int row, col;

nrows = G_window_rows();
ncols = G_window_cols();
for (row = 0; row < MOws; row++)
{
read row ...

for (col = 0; col < ncols; col++)

{

}
4

process col ...

%12 GIS Library

-79. .79.

G_set_window (window) set the active window
struct Cell_head *window;

This routine sets the active window from window. Setting the active window
does not change the WIND file in the database. It simply changes the window
for the duration of the program.?

A waming message is printed and -1 returned if window is not valid. Otherwise 1
is returned.

Note. This routine overrides the window as set by the user. Its use should be
very limited since it changes what the user normally expects to happen. If this
routine is not called, then the active window will be the same as what is in the
user’ s WIND file.

Warning. Calling this routine with already opened cell files has some side
effects. If there are cell files which are open for reading, they will be read into
the newly set window, not the window that was active when they were opened.
However, CELL buffers allocated for reading the cell files are not automatically
reallocated. The program must reallocate them explicitly. Also, this routine does
not change the window for cell files which are open for writing. The window that
was active when the open occurred still applies to these files.

G_get_set_window (window) get the active window
struct Cell_head *window;

Gets the values of the cumently active window into window. If
G _set_windouXp. 79) has been called, then the values set by that call are retrieved.
Otherwise the user' s database window is retrieved.

Note. For programs that read or write cell data, and really need the full window
information, this routine is preferred over G_get_windouxp.77). However, since
G_uindow_rous(p.78) and G_uindow_cols(p.78) return the number of rows and
columns in the active window, the programmer should consider whether or not
the full window information is really needed before using this routine.

The following routines retum information about the cartographic projection and zone.
See §9.1 Windouw (p.47! for nore information about these values.

Y However, the new window setting is not retained across the UNIX exec() call. This
implies that G_set_window() cannot be used to set the window for a program to be executed
using the systein() or popen!) routines.

312 GIS Library

-80- -80-

G_prqgjection () query cartographic projection
This routine returns a code indicating the projection for the active window. The
* current values are:

0 umreferenced x,y (imagery data),
1 UM,
2 State Plane.!!

Others may be added in the future.

char * _
G_prgjection_name (proj) query cartographic projection

int proj;
Returns a pointer to a string which is a printable name for projection code proj

(as retumed by G_projection(p.80)). Retuns NULL if proj is not a valid
projection. :

G_zone () query cartographic zone

This routine retums the zone for the active window. The meaning for the zone
depends on the projection. For example zone 18 for projection: type 1 would be
UTM zore 18.

12.8. Cell File Processing ,

Cell files are the heart and soul of GRASS. All analyses are performed with cell file
data Because of this, a suite of routines which process cell file data has been
provided.

The processing of cell files consists of determining which cell file or files are to be
processed (either by prompting the user or as specified on the program commard line),
locating the cell file in the database, opening the cell file, dynamically allocating i/o
buffers, reading or writing the cell file, closing the cell file, and creating.support files
for newly created cell files.

All cell file data is of type CELL!2, which is defined in "gis.h".

11 State Plane is not yet fully supported in GRASS.
12 See Appendix B. The CELL Data Type (p. 237 for a discussion of the CELL type and how
to use it fand avoid misusing iv.

§12 GIS Library

- 81- ' -81-

1281. Prompting for Cell Files

The following routines interactively prompt the user for a cell file name. In each, the
prompt string will be printed as the first line of the full prompt which asks the user to
enter a cell file name. If prompt is the empty string "" then an appropriate prompt
will be substituted. The name that the user enters is copied into the name buffer.13
These routines have a built-in 'list capability which allows the user to get a list of
existing cell files.

The user is required to enter a valid cell file name, orelse hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the cell file lives or is to be created is retumed. Both the
name and the mapset are used in other routines to refer to the cell file.

char *

G _ask_cdl_old (prompt, name) prompt for existing cell file
char *prompt;
char *name;

Asks the user to entertl‘nemmeofanemsungcellﬁlemanynnpsetmt}e
database.

char *

G_ask_cell_in_mapset (prompt, name) pronpt for existing cell file
char *prompt;
char *name;

Asks the user to enter the name of an existing cell file in the current mapset.

char *
G_ask_cell_new (prompt, name) pronpt for new cell file

char * prompt;
char * name;

Asks the user to enter a name for a cell file which does not exist in the current
mapset.

Here is un example of how to use these routines. Note that the programmer must
handle the NULL return propery:

It The size of name should be large enough to hold any GRASS file name. Most systems
allow file names to be quite long. It is recommended that name be declared char narme{ 50/

312 GIS Library

char *mapeet;
char name{50};

mapset = G_ask_cell_old("Enter cell file to be processed”, name);
if (mapeet == NULL)
exitt0);

12.8.2. Finding Céll Files in the Database

Norrinteractive programs canmot make use of the interactive prompting routines
described above. For example, a commard line driven program may require a cell file
name as one of the command arguments. GRASS allows the user to specify cell file
names (or any other database file) either as a simple unqualified name, such as "soils”,
or as a fully qualified name, such as "soils in mapset”, where mapset is the mapset
where the cell file is to be found. Often only the unqualified cell file name is provided
on the command line.

The following routines search the database for cell files:

char *
G_find_cell (name, mapset) find a cell file
char *
G_find_cell2 (name, mapset) find a cell file
char *name;
char *mapset;

Look for the cell file name in the database. The mapset parameter can either be
the empty string """, which means search all the mapsets in the user's current
mapset search path,14 or it can be a specific mapset name, which means look for
the cell file only in this one mapset (for example, in the current mapset).

If found, the mapset where the cell file lives is retumed. If not found, the NULL
pointer is retumed.

The difference between these two routines is that if the user specifies a fully
qualified cell file which exists, then G_find_cell2() modifies name by removing
the "in rapset” while G_find_cell() does notl® Normally, the GRASS
programmer need not woiry about qualified vs. unqualified names since all library
routines handle both forms. However, if the programmer wants the name to be

14 See §4.7.1 Mapset Searc!) Path (p. 20) for more details about the search path.

15 Be wamed that G_find_cell2(1 should not be used directly on a command line argument,
since modifying argvi | may not be valid. The argument should be copied to another character
buffer which is then passed to (;_find_cell2().

§12 GIS Library

-83- -8-

retumed unqualified (for displaying the name to the user, or storing it in a data
file, etc.), then G_find_cell2() should be used.

For example, to find a cell file anywhere in the database:

char name[50];
char *mapeet;

if ((mapset = G_find_cell(name,"")) == NULL)
/* not found */

To check that the cell file exists in the current mapset.:
char name({50];

if (G_find_cell(name,G_mapset()) == NULL)
7* not found */

12.8.3. Opening an Existing Cell File
The following routine opens the cell file name in mapset for reading.

The cell file nmame and mapset can be obtained interactively using
G_ask_cell_old(p.81) or G_ask_cell_in_mapset(p.81), and norrinteractively using
G_find_cell(p.82) or G_find_cell2(p.82).

G_open_cell_old (name, mapset) open an existing cell file
char *name;
char *mapset;

This routine opens the cell file name in mapset for reading.

A non-negative file descriptor is returned if the open is successful. Otherwise a
diagnostic message is printed and a negative value is returned.

This routine does quite a bit of work. Since GRASS users expect that all cell files
will be resampled into the current window, the resampling index for the cell file
is prepared by this routine after the file is opened. The resampling is based on the
active program window. '8 Preparation required for reading the various cell file
formats!7 is also done.

16 See also §12.7 The Window (p. 76).
17 See §5.2 Grid Cell File Formut [p. 24) for :n explanatnon of the various cell file formats.

$12 GIS Library

-84 - -84 -

12.84. Creating and Opening New Cell Files

The following routines create the new cell file name in the current mapset!8 and open
it for wrting. The cell file name should be obtained interactively using
G_ask_cell_neu(p.81). If obtained norrinteractively (e.g., from the command line),
G_legal_filename(p.72) should be called first to make sure that name is a valid
GRASS file name.

Note. It is not an error for name to already exist. New cell files are actually created
as temporary files and moved into the cell directory when closed. This allows an
existing cell file to be read at the same time that it is being re-written. The interactive
routine G_ask_cell_neuxp.81) guarantees that name will not exist, but if name is
obtained from the command line, name may exist. In this case G_find_cell(p.82) could
be used to see if name exists.

Warning. However, there is a subtle trap. The temporary file, which is created using
G_termpfile(p. 108), is named using the current process id. If the new cell file is opened
by a parent process which exits after creating a child process using fork(),19 the cell
file may never get created since the temporary file would be associated with the parent
process, not the child. GRASS management automatically removes temporary files
- associated with processes that are no longer running. If fork() must be used, the safest
course of action is to create the child first, then open the cell file. (See the discussion
under G_termpfile(p. 108) for more details.)

G_open_cdl_new (name) open a new cell file (sequential)
char *name;
Creates and opens the cell file name for writing by G_put_map_roup. 88) which

writes the file row by row in sequential order. The cell file data will be
compressed as it is written.

A non-negative file descriptor is retirmed if the open is successful. Otherwise a
diagnostic message is printed and a negative value is returned.

18 GRASS doesn't allow files to be createdi outside the current mapset. See §4.7 Database
Access Rules (p. 20}.

19 See also G_forkip. 116).

$12 GIS Library

-85 -

.85 -

G_open_cell_new_random (name) open a new cell file (random)

char *name;
Creates and opens the «cell file name for writing

by

G_put_map_row_randomi(p.88) which allows writing the cell file in a random

fashion. The file will be created uncompressed. 20

A non-negative file descriptor is retumed if the open is successful. Otherwise a

diagnostic message is printed and a negative value is returned.

G_open_cell_new_uncompressed (name)

char *name;

open a new cell file (uncormpressed)

Creates and opens the cell file name for writing by G_put_map_row(p.ss) which
writes the file row by row in sequential order. The cell file will be in

uncompressed format when closed.

A nonrnegative file descriptor is returned if the open is successful. Otherwise a

warming message is printed on stderr and a negative value is retumed.

General use of this routine is not recommended.2! This routine is provided so the

uncompress program can create uncompressed cell files.

12.8.5. Allocating Cell 'O Buffers

Since there is no pre-defined limit for the mumber of columns in the window,22 buffers

which are used for reading and writing cell data must be dynamically allocated.

20 Nor will the file get automatically compressed when it is closed. If a compressed file is
desired, it can be compressed explicitly after closing by a system call:
systerx " compress name"”).

21 At present, autormatic cell file compression will create files which, in most cases, are
smaller than if they were uncompressed. In certain cases, the compressed cell file may be
larger. This can happen with imegery data, which don’t compress well at all. However, the
sze difference is usually small. Since future enhancements to the compression method may
improve compression for imagery data as well, it is best to create compressed cell files in all
caees.

22 See G_window_cols(p. 78) to find the number of colurmns in the window.

' §12 GIS Library

-86- -88-

CELL *

G_allocate_cell_buf () allocate a cell buffer
This routine allocates a buffer of type CELL just large enough to hold one row of
cell data (based on the mumber of columns in the active window).

CELL *cell;
cell = G_allocate_cell_buf();

If larger buffers are required, the routine G_malloc(r. 76) can be used.

If sufficient memory is not available, an error message is printed and exit() is
called.

G_zero_cdl_buf (buf) zero a cell byffer
CELL *buf;

This routines assigns each member of the cell buffer array buf to zero. It
assumes that buf has been allocated using G_allocate_cell_buf(p.86).

12.8.6. Reading Cell Files _

Cell file data can be thought of as a two-dimensional matrix. The routines described
below read one full row of the matrix. It should be understood, however, that the
mmnber of rows and columns in the matrix is determined by the window, not the cell
file itself. Cell file data is always read resampled into the window.23 This allows the
user to specify the coverage of the database during analyses. It also allows databases
to consist of cell files which do not cover exactly the same area, or do not have the
same grid cell resolution. When cell files are resampled into the window, they all
"look” the same.

Note. The rows and colurns are specified "C style", i.e., starting with 0.

23 The GRASS window is discussed from a user perspective in §9.1 Window (p. 47 and from

a programmer perspective in §12.7 The Window [p. 761. The routines which are commonly used
to determine the number of rows and columns in the window are G wundow_rous(p. 78) and
G_uindow_cols(p. 78).

§12 GIS Library

-87- .87 -

G_get_map_row (fd, cell, row) read a cell file
int fd;
CELL *cell;
int row;

This routine reads the specified row from the cell file open on file descriptor fd
(as returned by G_open_cell_old(p.83)) into the cell buffer. The odl buffer must
be dynamically allocated large enough to hold one full row of cell data. It can be
allocated using G_allocate_cell_bufp.86).

This routine prints a diagnostic message and retumns -1 if there is an error reading
the cell file. Otherwise a norn-negative value is retumed.

G_get_map_row_nomask (fd, cell, row) read a cell file (without masking)
" int fd;
CELL *cell;
int row;

This routine reads the specified row from the cell file open on file descriptor fd
into the cell buffer like G_gewmap_row() does. The difference is that masking
is suppressed. If the user has a mask set, G_get_map_row() will apply the mask
but G_get_map_row_nomask() will ignore it.

This routine prints a diagnostic message and retumns -1 if there is an error reading
the cell file. Otherwise a non-negative value is retumed.

Note. Ignoring the mask is not generally acceptable. Users expect the mask to
be applied. However, is some cases ignoring the mask is justified. For example,
the GRASS programs Gdescribe, which reads the cell file directly to report all
data values in a cell file, or Gslope.aspect, which produces slope and aspect from
elevation, ignore both the mask and the window. However, the mumber of
GRASS programs which do this should be minimal. See §9.2 Mask [p.48) for
more information about the mask.

12.8.7. Writing Cdll Files
The routines described here write cell file data.

§12 GIS Library

-88- . -88-

G_put_map_row (fd, buf) urite a cell file (sequential)
int fd;
CELL *buf;,

This routine writes one row of cell data from buf to the cell file open on file
descriptor fd. The cell file must have been opened with G_open_cell_neuxp.84).
The cell buf must have been allocated large enough for the window, perhaps
using G_allocate_cell_bufip.86).

If there is an emor writing the cell file, a waming message is printed and -1 is
returned. Otherwise 1 is returned.

Note. The rows are written in sequential order. The first call writes row 0, the
second writes row 1, etc. The following example assumes that the cell file name
is to be created:

int fd, row; nrows;
CELL *buf;

fd = G_open_cell_new (name);
if (fd < 0)
/* oops - can't open cell file */

buf = G_allocate_cell_buf();
nrows = G_window_rows();
for (row = 0; row < MOWS; row++)
{
/* prepare data for this row into buf */

/* write the data for the row */
G_put_map_row (fd, buf);
})

G_put_map_row_random (fd, buf, row, col, ncells) | write a cell fle (random)
int fd;
CELL *buf:
int row, col, ncells;

This routine allows random writes to the cell file open on file descriptor fd The
cell file must have been opened using G_open_cell_new_random(p.85). The cell
buffer buf contains noells columns of data and is to be written into the cell file at
the specified row, starting at column col.

§12 GIS Library

-89- -89-

12.88. Closing Cell Files

All cell files are closed by one of the following routines, whether opened for reading
or for writing.

G_close_cell (fd) close a cell fle
int fd; ’

The cell file opened on file descriptor fd is closed. Memory allocated for cell
processing is freed. If open for writing, skeletal support files for the new cell file
are created as well.

Note. If a program wants to explicitly write support files (e.g., a specific color
table) for a cell file it creates, it must do so after the cell file is closed. Otherwise
the close will overwrite the support files. See §12.9 Map Layer Support Routires
[p.89) for routines which write cell support files.

G_unopen_cell (fd) ' : unopen a cell fle
it fd;

The cell file opened on file descriptor fd is closed. Memory allocated for cell
processing is freed. If open for writing, the cell file is not created and the
temporary file created when the cell file was opened is removed (see §12.84
Creating and Opening New Cell Files (p.84)).

This routine is useful when enors are detected and it is desired to not create the
new cell file. While it is true that the cell file will not be created if the program
exits without closing the file, the temporary file will not be removed at program
exit. GRASS datdbase management will eventually remove the temporary file,
but the file can be quite large and will take up disk space until GRASS does
remove it. Use this routine as a courtesy to the user.

12.9. Map Layer Support Routines

GRASS map layers have a mumber of support files associated with them. These files
are discussed in detail in §5 Grid Cell Maps (p.23]. The support files are the cell
header. the category file, the color table, the history file, and the range file. Each
support file has its own data structure and associated routines.

12.9.1. Cell Header File

The cell header file contains information describing the geographic extent of the map
laver, the gnd cell resolution, and the format used to store the data in the cell file. The
format of this file is described in §5.3 Cell Header Format |p.26]. The routines

§12 GIS Library

.90 - : -90-

described below use the Cell_head structure which is shown in detail in §12.17 GIS
Library Data Structures (p. 118).

G_get_cdlhd (name, mapset, cellhd) " read the cell header
char *name;
char *mapset;
struct Cell_Head *cellhd;

The cell header for the cell file name in the specified mapset is read into the
cellhd structure.

If there is an error reading the cell header file, a diagnostic message is printed
and -1 is reummed. Otherwise, 0 is retumed.

Note. If the cell file is a reclass file, the cell header for the referenced cell file is
read instead. See §5.3.2 Reclass Format (p.27) for information about reclass files,
“and G_js_reclass(p.91) for distinguishing reclass files from regular cell files.

Note. It is not necessary to get the cell header for a map layer in order to read
the cell file data. The routines which read cell file data automatically retrieve the
cell header information and use it for resampling the cell file data into the active
window.24 If it is necessary to read the cell file directly without resampling into
the active window,2° then the cell header can be used to set the active window
using G_set_windouXp.79).

G_put_cellhd (name, cellhd) write the cell header

char *name;
struct Cell_head *cellhd,;

This routine writes the information from the odlhd structure to the cell header
file for the map layer name in the current mapset.

If there was an error creating the cell header, -1 is retrned. No diagnostic is
printed. Otherwise, 1 is retumed to indicate success.

Note. Programmers should have no reason to use this routine. It is used by
G close_cell(p.89) to give new cell files correct cell header files, and by the
support program to give users a means of creating or modifying cell headers.

24 SeeA $12.7 The Window \p. 76).
25 but see §9 Windotw and Mask [p.47) for a discussion of when this should and should not
be done.

{12 GIS Library

-91- -91-

G_is_recdass (name, mapset, r_name, r_mapset) reclass file?
char *name;
char *mapset;
char *r_name;
char *r_mapset;
This function determines if the cell file name in mapset is a reclass file. If it is,

then the name and mapset of the referenced cell file are copied into the r_name
and r_mapset buffers.

Returns 1 if name is a reclass file, 0 if it isn't, and -1 if there was a problem
reading the cell header for name. '

129.2. Cell Category File

GRASS map layers have category labels associated with them. The category file is
structured so that each category in the cell file can have a one-line description. The
format of this file is described in §5.4 Cell Category File Format [p. 28].

The routines described below manage the category file. Some of them use the
Categories structure which is described in §12.17 GIS Library Data Structures [p. 118).

12.9.2.1. Reading and Writing the Cell Category File
The following routines read or write the category file itself:

- G_read_cats (name, mapset, cats) ' read cell category file

char *name; .

char *mapset;
struct Categories “cats;

The category file for cell file name in mapset is read into the cats structure.

If there is an error reading the category file, a diagnostic message is printed and
-1 is retumed. Otherwise, O is retumed.

3§12 GIS Library

-92- .92

G_write_cats (name, cats) write cell category file

char *name;
struct Categories *cats;

Whrites the category file for the cell file name in the current mapset from the cats
structure.

Retumns 0 if successful. Otherwise, -1 is returned (no diaénostic is printed).

char *
G_get_cell_title (name, mapset) : get cell title
char *name;
char *mapset;
If only the map layer title is needed, it isn't necessary to read the entire category
file into memory. This routine gets the title for cell file name in mapset directly
from the category file, and retums a pointer to the title. A legal pointer is always
returned. If the map layer doesnthave a title, then a pointer to the empty string
e iS ml]

char *
G_put_cell_title (name, title) change cell title
char *name;
char *title; '
If it is only desired to change the title for a map layer, it isn't necessary to read
the entire category file into memory, change the title, and rewrite the category

file. This routine changes the title for the cell file name in the current mapset
directly in the category file. It returns a pointer to the title.

12.9.2.2. Querying and Changing the Categories Structure

The following routines query or modify the information contained in the category
structure:

§12 GIS Library

.93- .93.

char *
G_get_cat (n, cats) get a category label

CELL n;
struct Categories *cats;

This routine looks up category n in the cats structure and returns a pointer to a
string which is the label for the category. A legal pointer is always retumed. If
the category doesn’'t exist in cats, then a pointer to the empty string " is
returned.

Waming. The pointer that is retumed points to a hidden static buffer.
Successive calls to G_get_cat() overwrite this buffer.

char *
G_get_cats_title (cats) get title from category structwe

struct Categories *cats;
Map layers store a one-line title in the category structure as well. This routine
retumns a pointer to the title contained in the cats structure. A legal pointer is

always retumed. If the map layer doesn’t have a title, then a pointer to the empty
I o " is ml 1

G_init_cats (n, title, cats) initialize category structure

CELL n;
char *title;
struct Categories *cats;

To construct a new category file, the structire must first be initialized. This
routine initializes the cats structure, and copies the title into the structure. The
mumber of categories is set initially to n.

For example:
struct Categories cats;

G_init_cats ((CELL)O, "", &cats);

$12 GIS Library

e —

.94- .94 .

G_set_cat (n, label, cats) set u category label

CELL n;
char *1abel;
struct Categories *cats;

The label is copied into the cats structure for category n.

G_set_cats,_title (title, cats) set title in category structure
char *title; '
struct Categories *cats;

The title is copied into the cats structure.

G_free_cats (cats) free category structure memory
struct Categories *cats;

Frees memory allocated by G_read_cats(p.91), G_jnit_cats(p.93) ard
G_set_cat(p.94).

12.9.3. Cell Color Table

GRASS map layers have colors associated with them. The color tables are structured
so that each category in the cell file has its own color. The format of this file is
described in §5.5 Cell Color Tuble Format [p.28).

The following routines read, create, modify, and write color tables. They use the
Colors structure which is described in detail in §12.17 GIS Library Data Structures
Ip. 118). '

G_read_ocolors (name, mapset, colors) read map layer color table
char *name;
char *mapset;
struct Colors *colors;

The color table for the cell file name in the specified mapset is read into the
oolors structure.

If the data layer has no color table, a default color table is generated and O is

remed. If there is an error reading the color table, a diagnostic message is
printed and -1 is returned. If the color table is read ok, 1 is retumed.

{12 GIS Library

-95- -95.-

G_write_colors (name, mapset, colors) write mop layer color table
char *narne;

char *mapset;
struct Colors *colors;

The color table is written for the cell file name in the specified mapset from the
colors structure. ‘

If there is an enor, -1 is retrned. No diagnostic is printed. Otherwise, 1 is
returned.

The ocolors strucmre must be created -propery, i.e., G_init_colors(p.96) to
initialize the structure and G_set_color(p.96) to set the category colors.28

Note. The calling sequence for this function deserves special attention. The
mapset parameter seems to imply that it is possible to overwrite the color table
for a cell file which is in another mapset. However, this isn’t what actually
happens. It is very useful for users to create their own color tables for cell files
in other mapsets, but without overwriting other users’ color tables for the same
cell file. If mapset is the current mapset, then the color file for name will be
overwritten by the new color table. But if mapset is not the current mapset, then
the color table is actually written in the current mapset under the colr2 element
as: colr2/mapset/name. '

G_get_ocolor (cat, red, green, blue, colors) get a category color

CELL cat;

int *red;

int *green;

int *blue;

struct Colors *colors;

The red, green, and blue intensities for the color associated with category cat are
extracted from the colors structure. The intensities will be in the range 0-255.

25 These routines are called by higher level routines which read or create entire color tables,
such as G_read _colorsip 94 or G_muke_color_rampip. 97).

'§12 GIS Library

-98- - 96 -

G_init_colors (colors) initialize color structure
struct Colors *colors;

The colors structure is initialized for subsequent calls to G_set_color{(p. 96).

G_set_oolar (cat, red, green, blue, colors) set a category color

CELL cat;

int red;

int green,

int blue;

struct Colors *colors;

The red, green, and blue intensities for the color associated with category cat are
set in the colors structure. The intensities must be in the range 0-255. Values
below zero are set as zero, values above 255 are set as 255.

Note. The colors structure must have been initialized by G_init_colors(p. 96).
G_firee_colors (colors) ' free color structure menory
- struct Colors *colors; '
The dynamically allocated memory associated with the colors structure is freed.

Note. This routine may be used after G_read_colors(p.9¢) as well as after
G_init_colors(p. 96).

The following routines generate entire color tables. The tables are loaded into a colors
structure based on a range of category values from min to max. The range of values
can be obtained, for example, using G_read_range(p. 99).

Note. The color tables are generated without information about any particular cell file.
These color tables may be created for a cell file, but they may also be generated for

loading graphics colors.

These routines return -1 if min is greater than max, 1 otherwise.

§12 GIS Library

-97. o -97.

G_make_aspect_color's (colors, min, max) make aspect colors
struct Colors *colors;
CELL min, max;
Generates a color table for aspect data.

G_make_colar_ramp (colors, min, max) moke color ramp
struct Colors *colors;
CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity. This table is good for continuous data like
elevation.

G_n‘nke_a)l(l'_m (COIOIS,-min, max) . make color wave
struct Colors *colors; '
CELL min, max;

Generates a color table with 3 sections: red only, green only, and blue only, each
increasing from none to full intensity and back down to none. This table is good
for contimious data like elevation.

Note. This routine requires that the $(MATHLIB) be loaded as well.

G_make_grey._scale (coiors, min, max) make linear grey scale
struct Colors *colors;
CELL min, max; .

Generates a grey scale color table. Each color is a level of grey, increasing from
black to white.

G_make_rainbow_colors (colors, min, max) make rainbow colors

struct Colors *colors;
CELL min, max;

Generates a color table based on rainbow colors. The table generated here uses
vellow, green, blue, indigo, violet, red. (Normal rainbow colors are red, orange,
vellow, green, blue, indigo, and violet.) This table is good for continuwus data
like elevation.

$12 GIS Library

-98- ‘ -98 -

G_meke_random_colars (colors, min, max) rmoke random colors

struct Colors *colors;
CELL min, max;

Generates random colors. Good as a first pass at a color table.for nominal data.

G_make_red_yel_grn (colors, min, max) make redyellowgreen colors

struct Colors *colors;
CELL min, max;

Generates a color table simliar to what G_make_rainbow_colors(p.97) creates,
except that the table starts at red, passes through yellow, and ends with green.

12.9.4. Cell History File

The history file contains documentary information about the cell file: who created it,
when it was created, what was the original data source, what information is contained
in the cell file, etc. This file is discussed in §5.6 Cell History File (p.29).

The following routines manage this file. They use the History structure which is
described in §12.17 GIS Library Data Structures [p. 118).

Note. This structure has existed relatively unmodified since the inception of GRASS.
It is in need of overhaul. Programmers should be aware that future versions of GRASS
may no longer support either the routines or the data struchme which support the
history file.

G_read_history (name, mapset, history) read cell history file
char *name;
char *mapset;
struct History *history;
This routine reads the history file for the cell file name in mapset into the
histiry structure.

A diagnostic message is printed and -1 is retumed if there is an emor reading the
history file. Otherwise, 0 is retumed.

$12 GIS Library

-99. .99.

G_write_history (name, history) write cell history file
char *name;
struct History *history;

This routine writes the history file for the cell file name in the current mapset
from the history structure.

A diagnostic message is printed and -1 is returned if there is an error writing the
history file. Otherwise, 0 is reuurned.

Note. The history structure shouldﬁxstbe initialized using
G_short_history(p.99).

G_short_history (name, type, history) initialize history structure
char *name;
char *type;
struct History *history;
This routine initializes the history structure, recording the date, user, program
name and the cell file name structire. The type is an anachronism from earlier
versions of GRASS and should be specified as "cell".

Note. This routine only initializes the data structure. It do'es not write the history
file.

12.9.5. Cell Range File

The following routines manage the cell range file. This file contains the minimum and
maximum values fourd in the cell file. The format of this file is described in §5.7
Cell Range File |p.29).

The routines below use the Range data structure which is described in §12.17 GIS
Library Data Structures (p. 118).

G_read_range (nane, mapset, range) read cell range
char *name;
char *mapset;
struct Range *range;

This routine reads the range information for the cell file name in mapset into the
range structure.

A diagnostic message is printed and -1 is retumed if there is an error reading the
range file. Otherwise, 0 is returned.

" §$12 GIS Library

- 100 - - 100 -

G writc_runge (nome, rango) write cell range
char *name;
struct Range *range;
This routine writes the range information for the cell file name in the current
mapset from the range structure.

A diagnostic message is printed and -1 is retumed if there is an error writing the
range file. Otherwise, 0 is remed.

The range structure must be initialized and updated using the following routines:

G_init_range (range) initialize range structure
struct Range *range;

Initializes the range structure for updates by G_update_range(p.100) and
G_row_update_range(p. 100). -

‘G_updategrange (cat, range) ' update range structure
CELL cat;
struct Range *range;

Compares the cat value with the minimum and maximum values in the range
structure, modifying the range if cat extends the range.

G_row_update_range (cell, n, range) update range structure
CELL *cell;
int n;
struct Range *range;

This routine updates the range data just like G_update_range(p. 100), but for n
values from the cel amay.

12.10. Vector File Processing

The GIS Library contains some functions related to vector file processing. These
include prompting the user for vector files, locating vector files in the database,
opening vector files, and a few others.

Note. Most vector file processing, hovever, is handled by routines in the Dig Library,
which is described in §13 Dig Library |p. 123].

312 GIS Library

- 101 - . - 101 -

12.10.1. Prompting for Vector Files

The following routines interactively prompt the user for a vector file name. In each,
the prompt string will be printed as the first line of the full prompt which asks the
user to enter a vector file name. If prompt is the empty string " then an appropriate
prompt will be substitited. The name that the user enters is copied into the name
buffer.2” These routines have a built-in ’list capability which allows the user to get a
list of existing vector files.

The user is required to enter a valid vector file name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, the NULL pointer is returmed.
Otherwise the mapset where the vector file lives or is to be created is returned. Both
the name and the mapset are used in other routines to refer to the vector file.

char *
G_ask_vector_old (prompt, name) . pronpt for an existing vector file
char *name;
char *mapset; -
Asks the user to enter the name of an existing vector file in any mapset in the
database.

char *
G_ask_vector_in_mapset (prompt, name) pronpt for an existing vector file

char *name;
char *mapset;

Asks the user to enter the name of an existing vector file in the current mapset.

char *
G_ask_vector_new (prompt, name) pronpt for a new vector file
char *name;
char *mapset;
Asks the user to enter a name for a vector file which does not exist in the current
mapset.

Here is an example of how to use these routines. Note that the programmer must
handle the NULL return propenry:

27 The size of name should be large emough to hold any GRASS file name. Most systems
allow file names to be quite long. It is recommended that name be declared char name(50].

§12 GIS Library

- 102- -102.

char *mapeet;
char name([50];

mapset = G_ask_vector_old("Enter vector file to be processed”, name);
if (mapeet == NULL)
exit(0);

12.10.2. Finding Vector Files in the Database

Norrinteractive programs cannot make use of the interactive prompting routines
described above. For example, a command line driven program may require a vector
file name as one of the command arguments. GRASS allows the user to specify
vector file names (or any other database file) either as a simple unqualified name, such
as "roads”, or as a fully qualified name, such as "roads in mapset”, where mapset is
the mapset where the vector file is to be found. Often only the unqualified vector file
name is provided on the command line.

The following routines search the database for vector files:

G_find_vector (name, mapset) ' find a vector file
G_find_vectar2 (name, mapset) find a vector file
char *name;
char *mapset;

Look for the vector file name in the database. The mapeet parameter can either
be the empty string "", which means search all the mapsets in the user's current
mapset search path,? or it can be a specific mapset name, which means look for
the vector file only in this one mapset (for example, in the current mapset).

If found, the mapset where the vector file lives is returmed. If not found, the
NULL pointer is returned.

The difference between these two routines is that if the user specifies a fully
qualified vector file which exists, then G_find_vector2() modifies name by
removing the "in mapset” while G_find_vector() does not.?° Normally. the
GRASS programmer need not worry about qualified vs. unqualified names since
all library routines handle both forms. However, if the programmer wants the
name to be retumed unqualified (for displaying the name to the user, or storing it
in a data file, etc.), then G_find_vector2() should be used.

28 See $4.7.1 Mapset Sarch Path (p. 20) for more details about the search path.

2% Be wamed that G_find_vector2() should not be used directly on a command line
argument, since modifying argv|] may not be valid. The argument should be copied o another
character buffer which is then passed to G_find_vector2().

$12 GIS Library

- 103 - - 108 -

For example, to find a vector file anywhere in the database:

char name[50};
char *mapeet;

if ((mapeet = G_find_vector(name,”")) == NULL)
/* not found */

To check that the vector file exists in the current mapset:
char name(50};

if (G_find_vector(name,G_mapset()) == NULL)
/* not found */

12.10.3. Opening an Existing Vectar File
The following routine opens the vector file name in mapset for reading.

The vector file name and mapset can be obtained interactively using
G_ask_vector_old(p. 101) or G_ask_vector_in_mapset(p.101), and non-interactively
using G_find_vector(p. 102) or G_find_vector2(p. 102).

FILE *
G_fopen_vector_old (name, mapset) open an existing vector file
char *name;
char *mapset;
This routine opens the vector file name in mapset for reading.

A file descriptor is retumed if the open is successful. Otherwise the NULL
pointer is returmed (no diagnostic message is printed).

The file descriptor can then be used with routines in the Dig Library to read the
vector file. (See §13 Dig Library [p.123).)

Note. This routine does mnot call any routines in the Dig Library; No
initialization of the vector file is done by this routine, directly or indirectly.

§12 GIS Library

- 104 - - 104 -

12.104. Creating and Openiing New Vector Files

The following routine creates the new vector file name in the current mapset® and
opens it for writing. The vector file name should be obtained interactively using
G_ask_vector_neufp. 101). If obtained non-interactively (e.g., from the command line),
G_Jegal_filename(p.72) should be called first to make sure that name is a valid
GRASS file name.

Warning. If name already exists, it will be erased and re-created empty. The
interactive routine G_ask_vector_neuXp. 101) guarantees that name will not exist, but if
name is obtained from the command line, name may exist In this case
G_find_vector(p. 102) could be used to see if name exists.

FILE *
G_fopen_vector_new (name) open a new vector file

char *name;

Creates and opens the vector file name for writing.

A file descriptor is .reumnd if the open is successful. Otherwise the NULL
pointer is retirmed (no diagnostic message is printed).

The file descriptor can then be used with routines in the Dig Library to write the
vector file. (See §13 Dig Library (p. 1231.)

Note. This routine does not call any routines in the Dig Library; No
initialization of the vector file is done by this routine, directly or indirectly. Also,
only the vector file itself (i.e., the dig file), is created. None of the other vector
support files are created, removed, or modified in any way.

12.10.5. Reading and Writing Vector Files

Reading and writing vector files is handled by routines in the Dig Library. See §13
Dig Library |p. 123] for details.

12.10.6. Vector Category File

GRASS vector files have category labels associated with them. The category file is
structured so that each category in the vector file can have a one-line description.

30 GRASS doesn’t allow files to be created outside the current mapset. See §4.7 Database
Access Rules 1p 201,

§12 GIS Library

- 105 - - 105 -

The routines described below read and write the vector category file. They use the
Categories structure which is described in §12.17 GIS Library Data Structures [p. 118).

Note. The vector category file has exactly the same structure as the cell category file.
In fact, it exists so that the program vect.to.cell can convert a vector file to a cell file
that has an up-to-date category file.

The routines described in §12.9.2.2 Querying and Changing the Categories Structure
ip.92]1 which modify the Categories structure can therefore be used to set and change
vector categones as well.

G_read_vector_cats (name, mapset, cats) ' read vector category file
char *name; ‘
char *mapset;
struct Categories *cats;

The category file for vector file name in mapset is read into the cats structure.

If there is an error reading the category file, a diagnostic message is printed and
-1 is retumed. Otherwise, O is retumed.

G_write_vector_cats (name, cats) write vector category file

char *name;
struct Categories *cats;

Writes the category file for the vector file name in the curent mapset from the
cats structure.

Returns 0 if successful. Otherwise, -1 is returned (no diagnostic is printed).

12.11. Site List Processing _

GRASS has a point database capabilitity called sites, which manages a database of
point or site information. The sites program provides the majority of the analytical
capabiliies within GRASS for site data. The routines described here provide
programmers with mechanisms for reading existing site list files and for creating new
ones. The reader should also see §7 Point Data: Ste List Files (p.39] for more details
about the site list files.

$12 GIS Library

- 100 - - 108 -

12.11.1. Pronmpting for Site List Fliles

The following routines interactively prompt the user for a site list file name. In each,
the prompt string will be printed as the first line of the full prompt which asks the
user to enter a site list file name. If prompt is the empty string ""* then an appropriate
prompt will be substituted. The name that the user enters is copied into the name
buffer.3! These routines have a built-in ’list capability which allows the user to get a
list of existing site list files.

The user is required to enter a valid site list file name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, the NULL pointer is returned.
Otherwise the mapset where the site list file lives or is to be created is returned. Both
the name and the mapset are used in other routines to refer to the site list file.

char *
G_ask_sites old (prompt, name) _ pronpt for existing site list file
char *prompt;
char *name; ‘
Asks the user to enter the name of an existing site list file in any mapset in the
database.

char *

G_ask_sites_in_mapset (prompt, name) prompt for existing site list file
char *prompt;
char *name;

Asks the user to enter the name of an existing site list file in the current mapset.

char *
G_ask_sites new (prompt, name) pronpt for new site list file

char *prompt;
char *name;

Asks the user to enter a name for a site list file which does not exist in the
current mapset.

Here is an example of how to use these routines. Note that the programmer must
handle the NULL return properly:

41 The size of name should be large enough to hold any GRASS file name. Most systems
allow file naimes to be quite long. It is recommended that name be declared char narmef50].

§12 GIS Library

07 - - 107 -

char *mapset;
char name(50};

mepeet = G_ask_sites_old("Enter site list file to be processed”, name);

if (mapeet == NULL)
exdit(0);

12.11.2. Opening Site List Files
The following routines open site list files:

FILE *
G_fopen_sites new (name) open a new site list file

char *name;
Creates an empty site list file name in the current mapset and opens it for
Retumns an open file descriptor if successful. Otherwise, reurms NULL.
FILE *
G_fopen_sites_old (name, mapset) open an existing site list file

char *name;
char *mapset;

Opens the site list file namme in mapset for reading.

Returns an open file descriptor if successful. Otherwise, returms NULL.

12.11.3. Reading and Writing Site List Files
G_get_site (fd, east, north, desc) read site list file

FILE *fd;
double *east, *north;
char **desc;

This routine sets east and north for the next "point” from the site list file open
on file descriptor fd (as returned by G_fopen_sites_old(p. 107)), and desc is set to
point to the description of the site,

Returns: 1 got a site; -1 no more sites.

For example:

§12 GIS Library

- 108 - . - 108 -

double east, north;

char *desc;

FILE *{d;

fd = G_fopen_site_old (name, napset);

while (G_get_site (fd, &east, &north, &desc) > 0)
printf ("%If %If %s\n", east, north, desc);

Note: desc points to static memory, so each call overrides the description from
the previous call.

G_put_site (fd, east, north, desc) . urite site list file

FILE *fd;
double east, north;
c_har *desc;

Writes the east and north coordinates and site description desc to the site file
opened on file descriptor fd (as returmed by G_fopen_sites_neuxp. 107)).

12.12. Temporary Files

Often it is necessary for programs to use temporary files to stom information that is
only useful during the program nin. After the program finishes, the information in the
temporary file is no longer needed and the file is removed. Commonly it is required
that temporary file names be unique from invocation to invocation of the program. It
would not be good for a fixed name like "/tmp/mytempfile” to be used. If the program
were run by two users at the same time, they would use the same temporary file.

The following routine generates temporary file names which are unique within the
program and across all GRASS programs.

char *

G_tenypfile () retwrns a termporary file name
This routine retums a pointer to a string containing a unique file name that can be
used as a temporary file within the program. Successive calls to G_tempfile()
will generate new names.

Only the file name is generated. The file itself is not created. To create the file,
the program must use standard UNIX functions which create and open files, e.g.,
creat!) or fopen().

The programmer should take reasonable care to remove (unlink) thé file before
the program exits. However, GRASS datadbase management will eventually
remove all temporary files created by G_tempfile() that have been left behind by
the programs which created them.

§12 GIS Library

-109 - -109 -

Note. The temporary files are created in the GRASS database rather than under /mp.
This is done for two reasons. The first is to increase the likelihood that enough disk is
available for large temporary files since Amp may be a very small file system. The
second is so that abandoned temporary files can be automatically removed (but see the
wamming below).

Warning. The temporary files are named, in part, using the process id of the program.
GRASS database management will remove these files only if the program which
created them is no longer running. However, this feature has a subtle trap. Programs
which create child processes (using the UNIX fork()32 routine) should let the child
call G_tempfile(). If the parent does it and then exits, the child may find that GRASS
has removed the temporary file since the process which created it is no longer running.

12.13. Command Line Parsing
The following two routines provide a mechanism for command line parsing. Use of
these routines will standardize GRASS commands that expect command line

The routines are described first, followed by a short example (on page 112) of their
usage. :

G_parse_command (arge, argv, keys, stash) parse conrmand line
int argc;
char *argv(];
struct Cormand_keys *keys;
int (*stash)();

This routine parses command lines in any of the following formats:

command valuel value2 value3 value4
the options are in the correct positions

command valuel - - value4
the options are in the correct positions, where minuses (-) are
interpreted as "accept the default for this position”

conmand opt2=value?2 opt4=value4 opt3=talue3 optl =valuel
the options are in mixed order, but the comect position is
ascertained by looking for the "opt' string in the keys structure,
which contains the "comect’ position for the option.

command valuel - optd=valued
a mixed form of the above formats

12 See also G_fork(p. 116).

$12 GIS Library

- 110 - - 110 -

The command line parameters argv and the mmber of parameters arge from the
main() routine are passed directly to G_parse_command ().

" The option names and positions are specified in keys, which is an aray of
Command_keys structures, defined as:
struct Command_keys
{
char *dlias;
int position;
1N

The keys array is terminated by a NULL alias. For example:

" struct Command_keys keys]] =
{
{"name", 1},
{"color", 2},
{NULL, 0}
|5

Once a position is determined, either by actual position or by deduction, the
position mmnber and option value are sent to the specified routine stash(), which
should "stash” the information somewhere for later use by thé program. This
routine nmust be defined as:
stash (position, value)

int position;

char *value;
and return 0 if the value is valid, 1 otherwise.

G_parse_conmmand () returns the following codes:

1 There are no arguments on the command line, or the first
argument is the word "help” (a usage message is printed for the
user),

0 There were no errors on the command line. (This doesn’t imply
that all parameters were specified, just that those specified .were
valid).

< 0 There are errors on the command line (nothing is printed for the
user).

¥12 GIS Library

-111- - 111 -

G_parse_ocommand_usage (program, keys, format) command line usage message
char *program;
struct Comrand_keys *keys;
int format;

This routine prints a standard usage message for the program (usually argvi0])
based on the options described in the keys parameter (which is the same as that
passed to G_parse_command(p.109)). The format of the message may either be
USAGE_SHORT for a terse format, or USAGE_LONG for a longer format.

§12 GIS Library

-112 -

-112-

Example. The following example parses a command which expects two arguments: a
name , and a color :

#include "gish"

struct Command_keys keys{] =
{

{"name", 1},

{"color", 2},

{NULL, 0}
I

static char name(50];
static char color{50];
static int have_name = 0,
static int have_color = 0;

static

stash(position, value)
int position;
char *value;

switch (position)

{

case 1:
strepy (name, value);
have_name = 1,
retumn 0;

case 2:
strepy (color, value);
have_color = 1;
retum O;

}

rem 1;

}

main (arge, argv) char *argvl |;

{ int stat;
G_gisinit (argviO);
stat = G_parse_command (argc, argv, keys, stash);
i{f (stat != O || thave_name || 'have_colon

if (stat <= 0)
G_parse_command_usage (argv{0], keys, USAGE_LONG);

exiti 1);
}
7* parsing complete. proceed to function implementation */

exit(0);

§12 GIS Library

-113- - 113 -

12.14. String Manipulation Functions
This section describes some routines which perform string manipulation. Strings have
the usual C meaning: a NULL terminated array of characters.

These next 3 routines copy characters from one string to another.

char *
G_strepy (dst, src) copy strings
char *dst, *src;
Copies the sre string to dst up to and including the NULL which terminates the

char *
G_strnepy (dst, sre, n) ' copy strings
char *dst, *src;
int ny
Copies at most n characters from the sre string to dst. If sre contains less than n.

characters, then only those characters are copied. A NULL byte is added at the
end of dst. This implies that dst should be at least n+1 bytes long. Retums dst.

Note. This routine varies from the UNIX stmepy() in that G_strmepy() ensures
that dst is NULL terminated, while strmcpy() does not.

char *
G_streat (dst, sre) ‘concatentate strings

char *dst, *src;

Appernds the src string to the end of the dst string, which is then NULL
terminated. Returns dst.

These next 2 routines remove unwanted white space from a single string.

char *
G_squeeze (s) remove unnecessary white space
char *s;
Leading and trailing white space is removed from the string s and internal white
space which is more than one character is reduced to a single space character.

- White space here means spaces, tabs, linefeeds, newlines, and formfeeds. Retums
S

V12 GIS Library

-114 - - 114 -
G_strip (s) rerove leading/Araining white space
char *s;

Leading and trailing white space is removed from the string . White space here
means only spaces and tabs. There is no return value.

This next routine copies a string to allocated memory.

char *
G_store (s) ‘ copy string to allocated merory

This routine allocates enough memory to hold the string s, copies s to the
allocated memory, and returns a pointer to the allocated memory.

These 2 routines convert between upper and lower case.

G_tolcase (s) corwert string to lower case
char *s;

Upper case letters in the string s are converted to their lower case equivalent.
Retumns s

G_toucase (s) convert String to upper case
char *s;

Lower case letters in the string s are converted to their upper case equivalent.
Returns s

And finally a routine which gives a printable version of control characters.

char *
G_unctrl (c) printable version of control character

- unsigned char c;

This routine retums a pointer to a string which contains an English-like
representation for the character ¢. This is useful for non-printing characters, such
as control characters. Control characters are represented by ctrl-c, e.g., control A
is represented by ctrd-A. 0177 is represented by DEL/RUB. Nommal characters
remain unchanged.

This routine is useful in combi,ation with G_intr_char(p.117) for printing the
user' s interrupt character:

§12 GIS Library

- 115 - - 115 -

char G_intr_char();
char *G_unctrl();

printf("Your interrupt character is %s\n", G_unctrd (G_intr_char()));

Note. G_unctrl() uses a hidden static buffer which is overwritter from call to
call.

12.15. Enhanced UNIX Routines

A number of useful UNIX library routines have side effects which are sometimes
undesirable. The routines here provide the same functions as their corresponding UNIX
routine, but with different side effects.

12.15.1. Running in the Background

The standard UNIX fork() routine creates 1 child process which is a copy of the
parent process. The fork() routine is useful for placing a program into the
background. For example, a program that gathers input from the user interactively, but
knows that the processing will take a long time, might want to run in the background
after gathering all the input. It would fork() to create a child process, the parent would
exit() allowing the child to continue in the background, and the user could then do

other processing.

However, there is a subtle problem with this logic. The fork() routine does not protect
child processes from keyboard interrupts even if the parent is no longer running.
Keyboard interrupts will also kill background processes that don't protect
thernselves.33 Thus a program which puts itself in the background may never finish if
the user interrupts another program which is rurming at the keyboard.

| The solution is to fork() but also put the child process in a process group which is
different from the keyboard process group. G_fork() does this.

i Programmers who use /bin/sh know that programs nn in the background (using & on the
command line) are not automatically protected from keyboard intermupts. To protect a
command that is nm in the background, din/sh users must do nohup comrmndé&.
Programmers who use the /bin/csh (or other variants) do not know, or forget that the C-shell
autornatically protects background processes from keyboard interrupts,

$12 GIS Library

- 116 - - 116 -

G_fark () create a protected child process

This routine creates a child process by calling the UNIX fork() routine. It also
changes the process group for the child so that interrupts from the keyboard do
not reach the child. It does not cause the parent to exit().

G_fork() returns what fork() retumns: -1 if fork() failed; otherwise O to the child,
and the process id of the new child to the parent.

Note. Interrupts are still active for the child. Interrupts sent using the kll
command, for example, will interrupt the child. It is simply that keyboard-
generated interrupts are not sent to the child. |

12.152. Partially Interruptible System Call

The UNIX system() call allows one program, the parent, to execute another UNIX
command or program as a child process, wait for that process to complete, and then
continuie. The problem addressed here concemns interrupts. During the standard
system() call; the child process inherits its responses to interrupts from the parent.
This means that if the parent is ignoring intenrupts, the child will ignore them as well.
If the parent is terminated by an interrupt, the child will be also.

However, in some cases, this may not be the desired effect. In a memu environment
where the parent activates menu choices by rumning commands using the system()
call, it would be nice if the user could interrupt the command, but not terminate the
memu program itself. The G_system() call allows this. '

G_system (command) run a shell level command

The shell level command is executed. Interrupt signals for the parent program are
ignored during the call. Interrupt signals for the commmand are emabled. The
interrupt signals for the parent are restored to their previous settings upon return.

G_system() retumns the same value as system(), which is essentially the exit
status of the command. See UNIX manual system(1) for details.

12.16. Miscellaneous
A number of general purpose routines have been provided.

§12 GIS Library

- 117 - - 117 -

char *
G_date () current date and time

Returns a pointer to a string which is the current date and time. The format is
the same as that produced by the UNIX date cormand.

G_gets (buf) get a line of input (detect ctrl-2)
char *buf;

This routine does a gets () from stdin into buf. It exits if end-of-file is detected.
If stdin is a tty (i.e., not a pipe or redirected) then ctd-z is detected.

Returns 1 if the read was successful, or 0 if ctrl-z was entered.

Note. This is very useful for allowing a program to reprompt when a program is

restarted after being stopped with a ctrd-z. If this routine returns O, then the

calling program should re-print a prompt and call G_gets () again. For example:
char buf{1024];

do {
printf(" Enter some input: ") ;
} while (! G_gets(buf)) ;

char *
G_home () user’s hore directory

Retioms a pointer to a string which is the full path name of the users home
directory.

char
G_intr_char () ‘ return interrupt char

This routine retumns the user' s keyboard interrupt character. This is the character
that generates the SIGINT signal from the keyboard.

See also G_unctrl(p. 114) for converting this character to a printable format.

G_percent (n, total, incr) print percent conplete messages
int g '
int total;
int incr;
This routine prints a percentage complete message to stderr. The percentage
complete is (1/ total)*100, and these are printed only for each incr percentage.
This is perhaps best explained by example:

§$12 GIS Library

- 18- , -18-

#include <stdio.h>
int row;
int nrows;

nrows = 1352; /* 1352 is not a special value - exarmple only */
fprintf (stderr, "Percent complete: *);
for (row = 0; row < nrows; row++)

G_percent (row, nrows, 10);

This will print completion messages at 10% increments; ie., 10%, 20%, 30%,

etc., up to 100%. Each message does not appear on a new line, but rather erases
the previous message. After 100%, a new line is printed.

char *

G_program_name () return program name
This routine returns the name of the program as set by the call to G_gisinit(p. 64).

char *

G_whoami () : user’s name

Returns a pointer to a string which is the user' s login name.

G_yes (question, default) ask a yes/o question
char *question;
int default;
This routine prints a question to the user, and expects the user to respond either

yes or no. (Invalid responses are rejected and the process is repeated until the
USer answers yes or no.)

The defandt indicates what the RETURN key alone should mean. A defamit of 1
indicates that RETURN means yes, 0 indicates that RETURN means no, and -1
indicates that RETURN alone is not a valid response.

The question will be appended with "(y/n) *, and, if default is not -1, with "[y] "
or "[n] ", depending on the default.

G _yes () returns 1 if the user said yes, and O if the user said no.

12.17. GIS Library Data Structures

Some of the data structures, defined in the "gis.h" header file and used by routines in
this library, are described in the sections below.

§12 GIS Library

-119- -119.

12.17.1. struct Cell_head

The cell header data structure is used for two purposes. It is used for cell header
information for map layers. It also used to hold window values. The structure is:

struct Cell_head

{
int format; ¥ munber of bytes per cell */
int compressed; /* compressed(1) or not compressed(0) */
int rows, cols; 7 mmmber of rows and colunmns */
int proj; /* projection */
int zone; /* zone */
double ew_res; /* east-west resolution */
double ns_res; /* north-south resolution */
double north; /* rorthem edge - */
double south; /* southem edge */
double east; /* eastem edge : */
double west; 7* western edge */

H

The format and compressed fields apply only to cell headers. The forrat field
describes the mmber of bytes per cell data value and the compressed field indicates if
the cell file is compressed or not The other fields apply both to cell headers and
windows. The geographic boundaries are described by north, soith, east and west.
The grid resolution is described by ew_res and ns_res. The cartographic projection is
described by proj and the related zone for the projection by zone. The rous and cols
indicate the mmmber of rows and colummns in the cell file, or in the window. See §5.3
Cell Header Format {p.26} for more information about cell headers, and §9.1 Window
(p-47] for more information about windows.

The routines described in §12.9.1 Cell Header File (p.89] use this structure.

12.17.2. struct Categories

The category data structure contains map layer title and category labels. It is used both
for cell files and vector files. The structure is:

$12 GIS Library

giruct Categories
{
CELL mm; ©~ 7+ total mmnber of categories */
char *title; /¢ name of data lgyer */
char *fmt; 7/ printf-like format to generate labels */
foat mi; /* mutiplication coefficient 1 */
float al; /* addition coefficient 1 */
foat m2; 7% multiplication coefficient 2 */
float a2; 7* addition coefficient 2 */
struct Cat, List
{
CELiL mmy; /* category number */
char *label; 7+ category label . */
} *list;
int count; /* mmmber of labels allocated */

Y

The Categories structure contains a title for the map layer, the largest category in the
map layer (num), an automatic label generation rule for missing labels (fmt, mi, al,
m2, a2), and a list of category labels for count specific categories.

_ This structure should be accessed using the routines described in §12.9.2 Cell Category
File [p.o1.

12.17.3. struct Colars

The color data structure holds red, green, and blue color intensitics for cell categonies.
The structure is:

struct Colors

{
CELL minmax; /A minmax color mumbers */
uwchar *red; /* red, green, blue (0-255) */
uchar *gm; " allocated as needed */
uchar *bly;
whar r0,g0b0; /* red, green, blue forcat 0 */

_ b

Except for category zero, the color intensities are stored in the (unsigned char) amrays
red, grn, and blu. The mininum and maximum categories which have colors are min
and mox. :

The routines described in §12.9.3 Cell Color Tuble (p.94] use this structure.

The routine G_get_color(p.95) should be used to get individual colors from the
structure. However, for completeness, to find the colors for category n:

§12 GIS Library

121 - - 121 -

if (n!= 0 && n>= min && n <= max)
{
red[n-min|

gm{n-mmin]
bluln-min}

The color for category zero is represented by 70, g0 and b0.

12.174. struct History

The History structure is used to document cell files. The information contsined here
is for the user. It is not used in any operational way by GRASS. The structure is:

#define MAXEDLINES 25
#define RECORD_LEN 80

struct History

{
char mapid(RECORD_LEN];
char title[RECORD_LEN];
char mapsetf RECORD_LEN],
char creator{f RECORD_LEN];
char maptype[RECORD_LEN];
char datsrc_1(RECORD_LEN];
char datsre_ 2[RECORD_LEN];
char keywrd{ RECORD_LEN];
int edlinecnt;
char edhistf MAXEDLINES)[RECORD_LEN];

}s

The mapid and mapset are the cell file name and mapset, title is the cell file title,
creator is the user who created the file, maptype is the map type (which should
always be “cell™), datasrc_1 and datasrc_2 describe the original data source, keywrd
is a one-line data description and edhist contains edlinecnt lines of user comments.

The routines described in §12.9.4 Cell History File (p.98] use this structure. However,
there is very little support for manipulating the contents of this structure. The
programmer must manipulate the contents directly.

Note. Some of the information in this structure is not meaningful. For example, if the
cell file is renamed, or copied into another mapset, the mapid and mapset will no
longer be comrect. Also the title does not reflect the true cell file title. The true title is
maintained in the category file.

Warmning This structure has remained unchanged since the inception of GRASS.
There is a good possibility that it will be changed or eliminated in future releases.

§12 GIS Library

-122- -122.

12.17.5. struct Range

The Range structure contains the minimum and maxinum values which occur in a cell
file. The structure is:

struct Range

{
CELL nmin; /~ min negative */
CELL nmex; / mex negative */
CELL pmin; /* min positive */
CELL pmax; / mex posivive */

h
Note that the range is divided into positive and negative ranges. The positive range is
represented by pmin and pmax, and the negative range by nmin and nmax. If there
are no negative values in the cell file, then both nmin and nmax will be zero. Also if
there are no positive values in the file, then both pmin and pmax will be zero.

The following idiomatic expression is used to determine the full data range:
min = nmin ? nmin : pmin ;
nnx=pnnx?pmn:umx;

The routines described in §12.9.5 Cell Range File [p.99) use this structure.

12.18. Loading the GIS Library |
The library is loaded by specifying $(GISLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(GISLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(GISLIB)
$(CO $(LDFLAGS) -0 $@ $(OBJ) $(GISLIB)

$(GISLIB): # in case the library changes

See §11 Conpiling GRASS Programs Using Gmake [p.55) for a complete discussion of
Gmakefiles.

V12 GIS Library

Chapter 13

Dig Library

13.1. Introduction

The Dig Library provides the GRASS programmer with routines to process the binary
dig vector files. It is assumed that the reader has read §¢ Database Structure [p. 15]
for a general description of GRASS databases, and §6 Vector Maps (p.31] for details
about vector files in GRASS,

The routines in the Dig Library are presented in functional groupings, rather than in
alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the inter-relationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them.!

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix dig .2 To avoid name conflicts, programmers should not create
variables or routines in their own programs which'use this prefix.

An alphabetic index is provided in §24.5 Appendix D. Index to Dig Library (p.2431.

13.1.1. Indude Files

The following files contain definitions and structures required by some of the routines
in this library. The programmer should therefore include these files in code that uses
this library:3 :

! Some of these programs are a.b.vect, ba.ect, vecttocell, Dvect, Gpoly, Pmap, and
Vpatch.

? Warning Theie are also 6 additional global variables and/or routines which do NOT
begin with this prefix: debugf, head, sarrple_thresh, Lines_In_Memory, Mem Line_Ptr, and
Mem,_ctar_position.

3 The GRASS compilation process, described in §11 Conpiling GRASS Programs Using
Gruke'(p 551, autornatically tells the C compiler how to find this and other GRASS header files.

§13 Dig Library

#include "dig_defines.h"
#include "dig_structs.h”

13.1.2. Vector Arc Types

A complete discussion of GRASS vector terminology can be found in §6.1 What is a
Vector Map Layer? (p.31] and the reader should review that section. Briefly, vector
data is stored as arcs representing linear, area, or point? features. These arc types are
coded as LINE, AREA, and DOT respectively, (and are #defined in the file
"dig_defines.h").

13.1.3. Levds of Access
There are two levels of read access to these vector files:

Level One provides simple access to the arc information contained in the vector files.
There is no access to category or topology information at this level.

Level Tuo provides full access to all the information contained in the vector file and
its support files, including line, category, node, and area information. This level
requires more from the programmer, more memory, and longer startup time.

Note. The routines in this library which process arcs are named using the word line.
They should be named using the word arc instead. Since that would require modifying
a lot of existing code, the names have not been changed.

13.2. Level One Read Access

Level One access allows the reading of arcs from a vector file. Most of the routines
require a file descriptor fd open to read a vector file, as retumed by
G _fopen_vector_old(p. 103).

13.2.1. Initialization/Termination
The following routines perform initialization and termination actions for Level One

4 Point data in vector files is not supported under GRASS 3.0, but there are plans to support
it in later versions. The routines in this library are written with this upgrade in mind.

§13 Dig Library

<125 - - 125 -

vector access:
dig init (fd) initialize level one vector access

FILE *{d,

| Initialize for Level One access. The file descriptor fd is rewound, the header
information is extracted and stored away, and fd is positioned to read the first arc
in the file.

Retumns 0 if ok, or a negative value if enror.

Note. This routine MUST be called before using any other Level One routines.
dig_rewind (fd) reuxnd vector file
FILE *fd;

The file descriptor fd is rewound, the header information is extracted and stored
away, and fd is positioned to read the first arc in the file.

Note. This routine is the same as dig_init(p. 125).
Returns 0 if ok, or a negative value on error.

dig_print_header () display vector header informution
After calling dig_init(p. 125), selected information from the vector 4le header can
be printed to stdout using this routine.

Retumn value is undefined.

Warning. It is permissible to have more than one vector file open for Level One
access. However, this routine prints the header information extracted by the
previous call to either dig_init(p. 125) or dig_reuind(p. 125).

dig fini (fd) end level one vector access
FILE *fd;

Terminate [evel One access. To be called when finished accessing the vector file
with Level One routines.

Return value is undefined.

Note. This routine does not close the file descriptor fd. Use fclose () to close
the file descriptor.

$13 Dig Library

13.22. Reading Arcs
The next routines read arcs sequentially from the vector file.

dig read _next_line (fd, np, x, y) . get next arc
FILE *fd;
int *np;
double **x, **y;

The points constituting the next arc in the vector file open on fd are read into
hidden arrays. Pointers to these arrays are placed in x and y, and np is set to the
number of points in the arc.

Retumns the arc type: LINE or AREFA (as defined in "dig_defines.h"), or -2 if no
more arcs, or -1 on error.

Note. The DOT type is skipped by this routine.

Note. The programmer must pass x and y as addresses of pomters For example:
FILE *fd;
int np;
double *x, *y;

dig_read_next_line (fd, &np, &x, &y);

dig _read_next_line type (fd, np, x, y, type) get next arc by type
FILE *{d; '
int “np;
double **x, **y,
int type;
Same as dig_read_next_line(p. 126) except that it limits the search to the specified
type, which can be any combination of LINE, AREA, or DOT.

For example, to read the next LINE or AREA:
FILE *fd;

int np;
double *x, *y:

dig_read_next_line_type (fd, &np, &x, &y, LINE | AREA);

Returns the arc type: LINE, AR¥A or DOT (as defined in "dig_defines.h™), or -2
if no more arcs, or -1 on enor.

§13 Dig Library

dig init box (N, S, E W) limit arc search in box
dowble N, S E W;

Define a window within which to seacch for arcs using

dig_read_line_in_box(p.127). This allows the programmer to limit the arcs

retrieved to those within the window specified by N (north), S (south), E (east),
and W (west).

The window must have N> S, and E> W.
Returns 0 if window is valid, or negative on error.

Note. This routine does NOT change the position of the file pointer. In
particular, it does not rewind the file.

dig read_line_in_box (fd, np, x, y) read arc in box
FILE *fd;
int *np;
double **x, **y;

Same as dig_read_next_line(p. 126) except that it only looks inside the bounding
box set by dig_init_box(p. 127).

Note. This routine only ignores arcs which are completely outside the bounding
box. If any part of the arc falls within the bounding box, the entire arc is read,
including the parts outside the box. No clipping is performed.

13.3. Leve Two Read Access

This level provides full access to all the information contained in the vector file and its
support files. Arc, area, and node information is available, including the intemal
indexes for each entity, as well as category attributes.

The indexes are unique, and can be used to distinguish one area from another, or one

arc from another. Note, however, that different areas may have the same category
attribute (as may different arcs).

13.3.1. Initialization/Termination
The following routines perform initialization and termination actions for Level Tuo

© §13 Dig Library

vector access:
dig P_init (name, mapset, map) initialize level tuwo vector access
char *name;

char *mapset;
struct Map_info *map;

Initialize Level Two read access to vector file name in mapset. This routine
opens any files it will need.

Return value is undefined. This routine will exit on any ermror and print a
description of the error. ,

Note. This routine MUST be called before calling any other Level Tuwo routines.

dig P_fni (Hﬂb) end level two vector access
struct Map_info *map;
Terminate Level Tuwo access for map. This routine closes any files opened by
dig_P_init(p. 128).
dig P_tmp_close (map) . temporary close vector map
struct Map_info *map;

Temporarily close access to map. This is useful to free one open file while not
needed. :

Return is undefined.

dig P_tmp_open (map) " reopen closed vector map
struct Map_info. *map;

Reopen a map that has been closed with dig_P_tmp_close(p. 128).

Retun value is undefined. If map —>digit == NULL, then the call failed.

13.3.2. Area Retrieval
The following routines retrieve area information.

$13 Dig Library

dig P_mm_areas (map) get rumber of areas
struct Map_info *map;
Retum total mmber of areas in the vector map.

Note. The area indexes are mmmbered from 1 to n, where n is the mmber of
areas in the vector file, as returned by this routine.

dig P_get_area_xy (map, n, np, x, y) get area polygon

struct Map_info *map;
int n;

int *np;

double **x, **y;

Given area index n, all the points for the area are read into hidden amays.
Pointers to these arrays are placed in x and y. Points are in clockwise order.
The pointers x and y are valid until the next call to this routine.

Returns 0 if found, or negative on error.

Note. The programmer must pass x and y as addresses of pointers:
struct Map_info map;
int n, 1ip;
double *x, *y;

dig_P_get._area_xy (&map, n, &np, &x, &y);

dig P_get_area (map, n, pa) get area polygon
struct Map_info *map;
int n;
P_AREA **pa;
Given area index n, the P_AREA information for the area is read into a hidden
structure. A pointer to this structure is placed in pa. The pointer pa is valid
until the next call to this routine. .

Returns 0 if found, or negative on enr.

313 Dig Library

- 130 - - 130 -

dig P_area_att (map, n) get area category attribute

struct Map_info *map;
int n;

Given area index n, retumn its category number.

Returns 0 if not an area or if unlabeled.

dig P_get_area bbox (map, n, N, § E W) get area bounding box
struct Map_info *map;
int n;
double *N, *§, *E, *W;
Given area index n, set N (north), S (south), E (east), and W (west) to the values
of the bounding box for the area.

Returns O if ok, or -1 on error.

13.3.3. Arc Retrieval
The following routines retrieve arc information.

dig P_mum_lines (map) get number of arcs
struct Map_info *map;
Returns total mmnber of arcs in the vector map.

Note. The arc indexes are mumbered from 1 to n, where n is the number of arcs
in the vector file, as returned by this routine.

dig P_read_line (map, n, p) read arc
- struct Map_info *map;
int n;
struct line_pnts **p;

Given arc index n, the points for the arc are read into a hidden line_pnts
structure. A pointer to this structure is placed in p. The pointer p is valid until
the next call to this routine or to dig_P_read_next_line(p. 131).

Returns the same values as dig_read_next_line(p. 126).

§13 Dig Library

- 131 - -131 -

dig P_read_next_line (map, p) read next arc
struct Map_info *map;
struct line_pnts **p;

The points for the next arc in the vector map are readmm a hidden line_pnts
structure. A pointer to this structure is placed in p. The pointer p is valid until
the next call to this routine or to dig_P_read_line(p. 130).

Returns the same values as dig_read_next_line(p. 126).

dig P_rewind (map) _ rewind next-arc pointer
struct Map_info *map;

Resets the next-arc pointer to beginming of list For use with
dig_P_read_next_line(p.131). :

Retumn is undefined.

dig P line att (map, n) get arc category attribute

struct Map_info *map;
int

Given arc index n, retum its category mumber.

Returns 0 if not labeled or on envor.

dig P_get _line bbox (map, n, N, S, E, W) get arc bounding box

struct Map_info *map;
int n;
double *N, *S, *E, *W;

Given arc index n, set N (north), S (south), E (east), and W (west) to the values
of the bounding box for the arc.

Returns 0 if ok, or negative on error.

13.3.4. Area Amalysis Tools
The following routines provide some area-related analyses.

§13 Dig Library

- 132 - - 132 -

dig_point. to_area (map, x, y) find area with point
struct Map_info *map;
double x, y;

Retums the index of the area containing the point x.y, orOii'fnnefound.

double

dig_point_in_area (map, x, y, pa) point in area
struct Map_info *map;
double x, y;
P_AREA *pg;

Given a filled P_AREA structure pa, determines if x,y is within the area The
‘structure pa can be filled with dig_P_get_area(p. 129).

Returns 0.0 if xy is not in the area, the positive minimum distance to the nearest
area edge if x,y is inside the area, or -1.0 on error.

13.3.5. Arc Analysis Toals
The following routines provide some arc-related analyses.

dig_point_to_line (map, x, y, type) find arc with point
struct Map_info *map; :
double x, y;
char type;

Returns the index of the arc which is nearest to the point x,y. The point x,y must
be within the arc’s bounding box. Set type to a combination of LINE, AREA or
DOT (e.g., LINE | AREA), or (char)-1 if you want to search all arc types.

dig _check_dist (map, n, x, y, d) distance to arc
struct Map_info *map;
int n;
double x, y;
double *d;

Computes d, the square of the minimum distance from point x,y to arc n.
Returns the number of the segment that was closest, or -1 on enor. The segment

number, in combination with dig_P_read_line(p. 130) can be used to determine the
end-points of the closest line-segment in the arc:

-133 - -133.-

struct Map_info map;
double x,yd;

double x1,y1,x2,y2;
intn;

struct line_pnts *p;

if ((s = dig_check_dist(&map, n, x, y, &d)) > 0)

{
dig_P_read_line (&map, n, &p);
x1 = p->x(s-1];
yl=p->yls-1);
x2 = p->x|s};
y2 = p>yls);

13.4. Writing Binary Dig files |
The following routines are provided for import and export capabilities.

Note. The file descriptors required by these routines should be either open for writing,
or for reading, but not for both writing and reading.

long
dig Write_line (fd, type, x, y, np) write arc
FILE *fd;
char type;
double *x, *y;
int np;
Writes the arc, defined by the np points in the x and y arrays, to. the end of the
binary dig vector file open on file descriptor fd. The arc type must be one of
LINE, AREA, or DOT.

Returns the offSet in the file where the arc was written. This offSet can be used
with dig_Read_line(p. 133). '

dig_Read_line (fd, offset, x, y, np) read arc
FILE *{d;
long offset;
double **x, **y;
int *np;
Seeks to the specified offset on file descriptor fd and reads the arc which begins

there into hidden arrays. Pointers to these arrays are then placed into x and y and
np is set to the mumber of points in the arc.

Retumn is the same as dig_read_next_line(p. 126) from Level One.

§13 Dig Library

- 134 - -134 -

Note. The programmer must pass X and y as addresses of pointers:
FILE *{d;
long offset;
int np;
double *x, *y,

dig_Read_line (fd, offset, &x, &y, &np);

dig read_head_binary (fd, header) read vector header
FILE *fd;
struct dig_head *header,

Reads the header from the binary dig vector file open on file descriptor fd. It
can be used to position fd ready to read the first arc in the file.

C\irnently only returmns 0.

Note. If using Level One routines, it is unnecessary to call this routine.

dig_write_head binary (fd, header) "urite vector header
FILE *fd;
struct dig_head *header,
Writes the header information to the binary dig vector file open on file descriptor
fd. This routine must be the first to write to a new vector file. After the header
has been written, arcs can be sequentially written to the file. It can also be used

to rewrite the header information after the entire file has been written, if
necessary. :

Currently oniy returns 0.

13.5. Miscellaneous Tools

double
dig distance2_point,_to_line (x, y, x1, y1, x2, y2) distance to line-segment

double x, y;
double x1, y1, x2, y2;

Computes the square of the minimum distance from point x,y to the line-segment
x1,y1,x2,y2.

Retumns the distance squared.

¥13 Dig Library

- 135 - - 135 -

double
dig xy_distance2_paint. to_line (x,y,x1,y1,x2,y2) distance to line-segment

double *x, *y;
double x1, y1, x2, y2;

Returns the square of the minimum distance from point x,y to the line-segment
x1,y1,x2,y2.

Changes xy to the point on the segment x1,y1,x2y2 which is closest to x,y.

dig_prune (p, threshold) . prune a dense arc
struct line_pnts *p; |
double threshold;

Given a filled line_pnts structure p, prune it within the specified threshold. This
function is used to reduce the mmber of points needed to define an arc within a
given accuracy.

Returmns the new mumber of points.

dig bound box (p, N, S, E, W) get arc bounding box
struct line_pnts *p;
double *N, *S, *E, *W;
Given a filled line_pnts structure p containing a list of X,Y coordinates, compute
the bounding box of this list.

Returns non-zero on error.

13.6. Loading the Dig Library
The library is loaded by specifying $(DIGLIB)® in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

7 This vanable was NOT defined in releases 30 and 3.0A. Edit the file
S$GISBASE/sre/CMD /make mid and add the line: DIGLIB=$(SRC)/ mapdev lity diglib.a at the
bottom of the file.

$13 Dig Library

- 136 - - 136 -

_mekefile for $DIGLIB)
OBJ = main.o subl.o sub2.0
EXTRA_CFLAGS = -I$(SRC)/mapdevAib

pgm: $(OB:) $(DIGLIB)
$(CC) $(LDFLAGS) -0 $@ $OB.J) $(DIGLIB)

$(DIGLIB): # in case the library changes

Note. EXTRA_CFLAGS tells the C compiler where additional #include files are

located. This is necessary since the required #include files do not live in the normal
GRASS #include directory.

See §11 Corrpdmg GRASS Programs Using Gmake (p.55] for a complete discussion of
Gmakefiles.

§13 Dig Library

Chapter 14

Imagery Library

14.1. Introduction

The Imogery Library was created for version 3.0 of GRASS to support integrated
image processing directly in GRASS. It contains routines that provide access to the
group database structure which was also introduced in GRASS 3.0 for the same

purpose. !

It is assumed that the reader has read §¢ Database Sructure [p.15] for a general
description of GRASS databases, §8 Irmge Data: Groups [p.41] for a description of
imagery groups, and §5 Grid Cell Maps [p.23) for details about map layers in GRASS.

The routines in the Imagery Library are presented in functional groupings, rather than
in alphabetical order. The order of presentation will, it is hoped, provide a better
understanding of how the library is to be used, as well as show the inter-relationships
among the various routines. Note that a good way to understand how to use these
routines is to look at the source code for GRASS programs which use them2

Most routines in this library require that the header file "imagery.h" be included in any
code using these routines.3 Therefore, programmers should always include this file
when writing code using routines from this library:

#include "imagery.h"

This header file includes the "gis.h"" header file as well.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix I_. To avoid name conflicts, programmers should not create

I Since this is a new library, it is expected to grow. Hopefully, image analysis functions will
be added to complement the database functions already in the library.

2 See §8.4 Imagery Programs (p. 45) for a list of some imagery programs.

3 The GRASS conmpilation process, described in §11 Corpiling GRASS Programs Using
Grmake (p. 55, automatically tells the C compiler how to find this and other GRASS header files.

§14 Imagery Library

variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix E. Index to Imagery Library |p.245).

14.2. Group Processing
The group is the key database structure which permits integration of image processing
in GRASS.

14.2.1. Prompting far a Group

The following routines interactively prompt the user for a group name in the current
mapset.4 In each, the prompt string will be printed as the first line of the full prompt
which asks the user to enter a group name. If prompt is the empty string "", then an

appropriate promgt will be substitited. The name that the user enters is copied into
the group buffer.® These routines have a built-in ’list’ capability which allows the user
to get a list of existing groups.

The user is required to enter a valid group name, or else hit the RETURN key to
cancel the request. If the user enters an invalid response, a message is printed, and the
user is prompted again. If the user cancels the request, 0 is retmmed; otherwise, 1 is
returmed.

I_ask_group_old (prompt, group) . prompt for an existing group
char *prompt;
char *group;

Asks the user to enter the name of an existing group in the current mapset.

I_ask_group_new (prompt, group) prompt for new group
char *prompt; .
char *group;

Asks the user to enter a name for a group which does not exist in the current
mapset.

4 This library only works with groups in the current mapset. Other mapsets, even those in
the user' s mapset search path, are ignored.

5 The size of group should be large enough to hold any GRASS file name. Most systems
allow file names to be quite long. It is recormmended that name be declared char growp! 50].

§14 Imagery Library

-139- | -139-

I_ask_group._any (prompt, group) pronpt for any valid group name
char *prompt;
char *group;

Asks the user to emeravalidmrmm.’l‘hegtmpuéyormymtexistin
the current mapset.

Note. The user is not wamed if the group exists. The progranmmner should use
I find_group(p. 139) to determine if the group exists.

Here is an example of how to use these routines. Note that the programmer must
handle the 0 retum properly:

char group(50];

if (! Lask_group_any ("Enter group to be processed”, group))
exit(0);

14.2.2. Finding Groups in the Database

Sometimes it is necessary to determine if a given group already exists. The following
routine provides this service:

I_find_group (group) does group exist?
char *group;
Retimns 1 if the specified group exists in the current mapset; 0 otherwise.

14.23. REF File

These routines provide access to the information contained in the REF file for groups
and subgroups, as well as routines to update this information. They use the Ref
structure, which is defined in the "imagery.h" header file; see §14.4 Imagery Library
Data Structures |p. 144].

The contents of the REF file are read or updated by the following routines:

$14 Imagery Library

- 140 - - 140 -

I_get_group_ref (group, ref) read group REF file

char *group;
struct Ref *ref;

Reads the contents of the REF file for the specified group into the ref structure.

Retirns 1 if successful; O otherwise (but no emor messages are printed).

I_put_group_ref (group, ref) urite group REF file

char *group;
struct Ref *ref

Writes the contents of the ref structure to the REF file for the specified group.
Retumns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create the group, if it doesn’t already exist.

I_get_subgroup_ref (group, subgroup, ref) read subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Reads the contents of the REF file for the specified subgroup of the specified
group into the ref structure.

Returns 1 if successful; 0 otherwise (but no error messages are printed).

I_put_subgroup_ref (group, subgroup, ref) write subgroup REF file

char *group;
char *subgroup;
struct Ref *ref;

Writes the contents of the ref structure into the REF file for the specified
subgroup of the specified group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. This routine will create the subgroup, if it doesn’t already exist.

These next routines manipulate the R, structure:

§14 Imagery Library

- 141 - - 141 -

I_init_group_ref (ref) initialize Ref structure
struct Ref *ref;
This routine initializes the ref structure for other library calls which require a Ref

structure. This routine must be called before any use of the structure can be
made. ;

Note. The routines I_get_group_refip. 140) and I_get_subgroup_refip. 140) call this
routine automatically.

I_add file to_group_ref (name, mapset, ref) add file narme to Ref structure
char *name;
char *mapset;
struct Ref *ref;
This routine adds the file name and mapset to the list contained in the ref
structure, if it isn’t already in the list. The ref structure must have been propery
initialized.

This routine is used by programs, such as i.maxlik, to add to the group new cell
files created from files already in the group.

Returns the index into the file amray within the ref structure for the file after
insertion; see §14.4 Imagery Library Data Structures [p. 144).

I_transfer_group_ref_file (src, n, dst) copy Ref lists

struct Ref *src;
int o
struct Ref *dst;

This routine is used to copy file names froni one Ref structure to another. The
name and mapset for file n from the sre structure are copied into the dst structure
(which must be properly initialized).

For example, the following code copies one Ref structure to another:

struct Ref sre,dst;
int n;

/* some code to get information into src */

Linit_group _ref (&dst);
for (n = 0; n < sre.nfiles; n++)
I_transfer_group_ref_file (&sre, n, &dst);

This routire is used by i.points to create the REF file for a subgroup.

§14 Imagery Library

A
- 142 - -142 -

I_free_group_ref (ref) free Ref structure
struct Ref *ref’

This routine frees memory allocated to the ref structure.

14.2.4. TARGET File
The following two routines read and write the TARGET file.

I_get_target (group, location, mapset) - read target information

char *group;

char *location;

char *mapset;
Reads the target location and mapset irom the TARGET file for the specified
group.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

This routine is used by i.points and i.rectify and probably shouldn’'t be used by
other programs,]

Note. This routine does not validate the target information

I_put_target (group, location, mapset) ' write target informution

char *group;
char *location;

char *mapset;

Writes the target location and mapset to the TARGET file for the specified
group.

Retums 1 if successful; 0 otherwise (but no error messages are printed).

Th's routine is used by i.target and probably shouldn’'t be used by other
programs.

Note. This routine does not validate the target information.

¥14 Imagery Library

- 143 - - 143 .-

14.2.5. POINTS File

The following routines read and write the POINTS file, which contains the image
reglstxanon control points. This file is created and updated by the program i.points, and
read by i.rectify.

These routines use the Control_Points structure, which is defined in the "imagery.h"
header file; see §14.4 Imagery Library Data Sructures [p. 144].

Note. The interface to the Control_Points structure provided by the routines below is
incomplete. A routine to initialize the structure is needed.

I_get_control_paints (group, cp) | read group control points
char *group;
struct Control_Points *cp;
Reads the control points from the POINTS file for the group into the cp
~ structure.

Returns 1 if successful; 0 otherwise (and prints a diagnostic error).

Note. An enor message is printed if the POINTS file is invalid, or doesn’t exist.

I_new_control_point (cp, €1, nl, e2, n2, status) add new control point

struct Control_Points *cp;
double el, nl;

double €2, n2;

int status;

Once the control points have been read into the ¢p structure, this routine adds
new points to it. The new control point is given by el (column) and nl (row) on
the image, and the €2 (east) and n2 (north) forﬂletmgetdatzbase The value of
stalnsslnuld be 1 if the point is a valid point; 0 otherwise.®

5 Use of this routine implies that the point is probably good, so status should be set to 1.

{14 Imagery Library

- 144 - . - 144 -

I_put_control_points (group, cp) urite group control points

char *group;
struct Control_Points *cp;

Writes the control points from the ¢p structure to the POIN’IS file for the
specified group.

Note. Points in ¢p with a negative status are not written to the POINTS file.

14.3. Loading the Imagery Library
The library is loaded by specifying $(IMAGERYLIB) in the Gmakefile. The
following example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for SIMAGERYLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(IMAGERYLIB) $(GISLIB) _
$(CO) $(LDFLAGS) -0 $@ $(OBJ) $(IMAGERYLIB) $(GISLIB)

$(IMAGERYLIB): # in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See §12 GIS Library [p.63] for details on that library.

See §11 Compiling GRASS Programs Using Gmake (p.55] for a complete discussion of
Gmakefiles.

144. Imagery Library Data Structures
Some of the data structures in the "imagery.h" header file are described below.

14.4.1. struct Ref

The Ref structure is used to hold the information from the REF file for groups and
subgroups. The structure is:

§$14 Imagery Library

- 145 - - 145 -

struct Ref
{
int nfiles; /* mumrber of REF files */
struct Ref_Files
{
char name{30]; /* REF file name */
char mapset{30]; 7% REF file mapeet */
} *file;
struct Ref_Color
{
unsigned char *table; /* color table for min-nmax values */
unsigned char *index; /* data trandation index */
unsigned char *buf; /¥ data huffer for reading color file */
int fd; /¥ for image i/o */
CELL min, max; /4 minmex CELL values */
intn; 7* index into Ref Files */
} red, gm, by,

s
The Ref structure has nfiles (the mumber of cell files), file (the name and mapset of
each file), and red,grn,blu (color information for the group or subgroup?).

There is no function interface to the nfiles and file: elements in the structire. This
means that the programmer must reference the elements of the structure directly.® The
name and mapset for the i th file are file/i/.name , and file[i] .mapset .

For example, to print out the names of the cell files in the structure;
int i;
struct Ref ref;

7* sore code to get the REF file for a group into ref */

for G = 0; i < ref.nfiles; i++)
printf (“%s in %s\n", ref file[i].name, ref file[i]. mapeet);

14.4.2. struct Control_Points

The Control_Points structure is used to hold the control points from the group
POINTS file. The structure is:

7 The redgrm,blu elements are expected to change as the imagery code develops. Do not
reference them. Pretend they don’t exist.

8 The nfiles and file elements are not expected to change in the future.

§14 Imagery Library

- 146 -

struct Control_Points

{
int count;
double *el;
double *nl,
double *e2;
double *n2;
int *status;

}s

FEFRFRER

number of control points
image east (column)
imsge north (row)

target east

target north

status of contro! point

*/
*/
*/
*/
*/
*/

- 146 -

The mmber of control points is count. Control pomt L is el[i], nli], e2[i], n2[i],

ard its status is status [i].

$14 Imagery Library

- 147 - -147.

Chapter 15

Raster Graphics Library

15.1. Introduction

The Raster Graphics Library provides the programmer with access to the GRASS
graphics devices. All video graphics calls are made through this library (directly
or indirectly). No standard/portable GRASS video graphics program drives any video
display direcly. This library provides a powerful, but limited mmber of graphics
capabilities to the programomer. The tremendous benefit of this approach is seen in the
ease with. which GRASS graphics applications programs port to new machines or
devices. Because no device-dependent code exists in application programs, virtually
all GRASS graphics programs port without modification. Each graphics device must
be provided a driver (or translator program). At run-time, GRASS graphics programs
rendezvous with a user-selected driver program. Two significant prices are paid in this
approach to graphics: 1) graphics displays run significantly slower, and 2) the
programmer does not have access to fancy (and sometimes more efficient) resident
library routines that have been specially created for the device.

This library uses a couple of simple concepts. First, there is the idea of a current
screen location. There is nothing which appears on the graphics monitor to indicate
the current location, but many graphic commands begin their graphics at this location.
It can, of course, be set explicitly. Second, there is always a current color. Many
graphic commands will do their work in the currently chosen color.

The programmer always works in the screen coordinate system. Unlike many graphics
libraries developed to support CAD, there is no concept of a world coordinate system.
The programmer must address graphics requests to explicit screen locations. This is
necessary, especially in the interest of fast raster graphics.

The upper left hand comer of the screen is the origin. The actual pixel rows and
columns which define the edge of the video surface are retumed with calls to
R _screen_lefi(p. 150), R_screen._rite(p. 150), R_screen_bot(p. 150), and
R_screen_top(p. 150).

Note. All routines and global variables in this library, documented or undocumented,

§15 Rmter Graphics Library

-148 - - 148 -

start with the prefix R_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix G. Index to Raster Graphics
Library (p.249).

156.2. Connecting to the Driver

Before any other graphics calls can be made, a successful connection to a running and
selected graphics driver must be made.

R_open_driver () initialize graphics
Initializes connection to current graphics driver. Refer to GRASS User' s Mamual
entries on the monitor command. If connection cannot be made, the application
program sends a message to the user stating that a driver has not been selected or
could not be opened. Note that only one application program can be connected to
a graphics driver at once.

After all graphics have been completed, the driver should be closed.

R_dose_driver () terminate graphics
This routine breaks the commection with the graphics driver opened by
R_open_driver().

15.3. Colors

GRASS is highly dependent on color for distinguishing between different categories.
No graphic patterning is supported in any automatic way. There are two color modes.
Fixed color refers to set and immutable color look-up tables on the hardware device.
In some cases this is necessary because the graphics device does not contain
programmer definable color look-up tables (LUT). Floating colors use the LUTs of the
graphics device often in an interactive mode with the user. The basic impact on the
user is that under the fixed mode, multiple maps can be displayed on the device with
apparently no color interference between maps. Under float mode, the user may
interactively manipulate the hardware color tables (using programs such as d.colors).
Other than the fact that in float mode no more colors may be used than color registers
available on the user's chosen driver, there are no other programming repercussions.

¥15 Raster Graphics Library

- 149 - . -149 -

R_color_table_fixed () select fixed color table

Select a fixed color table to be used for subsequent color calls. It is expected that
the user will follow this call wnthacallu)ercsearﬂrelmuahzeﬂle . .fire

graphics screen.
Retirms 0 if successful, non-zero if unsuccessful.

R_color_table float () select floating color table

Select a float color table to be used for subsequent color calls. It is expected that
the user will follow this call mﬂxacalltoerasearxireunnahzeﬂaeennm

graphics screen.
Returns 0 if successful, non-zero if unsuccessful.

Colors are set using integer values in the range of 0-255 to set the red, green, and
blue intensities. In float mode, these values are used to directly modify the hardware
color look-up tables and instantaneously modify the appearance of colors on the
monitor. In fixed mode, these values modify secondary look-up tables in the devices
driver program so that the colors involved point to the closest available color on the
device.

R_reset_color (red, green, blu, mm) define single color

unsigned char red, green, blue ;
int mm ;

Set color mumber mum to the intensities represented by red, green, and blue.

R_reset_colors (min,max,red,green,blue) define multiple colors
int min, max ;
unsigned char *red, *green, *blue ;
Set color numbers min through max to the intensities represented in the arrays
red, green, and blue.

R_color (color) select color

int color ;

Selects the color to be used in subsequent draw commands.

§15 Raster Graphics Library

- 150 - - 150 -

R_standard_color (color) select standard color
int color ;

Selects the standard color to be used in subsequent draw commands. The color
value is best retrieved using D_translate_color(p. 167). See §16 Display Graphics
Library [p. 159).

R_RGB_color (red,green,blue) select color
int red, green, blue ;

When in float mode (see R _color_table_float(p. 149)), this call selects the color
most closely matched to the red, green, and blue intensities requested. These
values must be in the range of 0-255.

15.4. Basic Graphics

Several calls are common to nearly all graphics systems. Routines exist to determine
_ screen dimensions, as well as routines for moving, drawing, and erasing.

R_screen_bot () bottom of screen
Returns the pixel row mumber of the bottom of the screen.

R_screen_top () top of screen
Retums the pixel row mumber of the top of the screen

R_screen_left () screen left edge
Returns the pixel column mumber of the left edge of the screen.

R_screen_rite () screen right edge
Returns the pixel column mumber of the right edge of the screen

R_move_abs (x,y) move current location

int x, y;

Move the current location to the absolute screen coordinate x,y. Nothing is
drawn on the screen.

§15 Raster Graphics Library

- 151 - - 181 -

R_move re (dx,dy) move current location
int dx, dy;
Shift the current screen location by the values in dx and dy:

Newx = Oldx + dx;
Newy = Oldy + dy;

Nothing is drawn on the screen.

R_cont_abs (x,y) draw line
int x, y;

Draw a line using the current color, selected via R_color(p. 149), from the current
location to the location specified by x,y. The current location is updated to x,y.

R_cont_rel (dx,dy) draw line
int dx, dy;
Draw a line using the current color, selected via R_color(p. 149), from the current
location to the relative location specified by dx and dy. The current location is -

updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

R_box_abs (x1,y1,x2,y2) fil a box
int x1,y1;
int x2.y2;

A box is drawn in the current color using the coordinates x1,yl and x2,y2 as
opposite corners of the box. The current location is updated to x2,y2.

R_box_rd (dx,dy) fill a box
int dx, dy;

A box is drawn in the current color using the current location as one corner and
the current location plus dx and dy as the opposite comer of the box. The current

location is updated:

Newx = Oldx + dx;
Newy = Oldy + dy;

§15 Raster Graphics Library

R_ease () erase screen
Exrases the entire screen to black.
R_flush () ' flush graphics

Send all pending graphics commands to the graphics driver. This is done
automatically when graphics input requests are made.

15.5. Poly Calls

In many cases strings of points are used to descnbe a complex line, a series of dots, or
a solid polygon. Absolute and relative calls are provided for each of these operations.

R_mlyxhts_abs (x,y,rum) draw a series of dots
int *X, *y;
int mmy;
Pixels at the mum absolute positions in the x and y arrays are tumed to the
current color. The current position is left updated to the position of the last dot.

R_polydots rel (x,y,mm) draw a series of dots
int *x, *y;

Pixels at the num relative positions in the x and y arrays are tumed to the current

color. The first position is relative to the starting current location; the succeeding

positions are then relative to the previous position. ’I‘he current posmon is updated
to the position of the last dot.

R_polygon_abs (x,y,num) draw a closed polygon
int *x, *y; '
int. mum;
The mmm absolute positions in the x and y amrays outline a closed polygon which

is filled with the current color. The current position is left updated to the position
of the last point.

§15 Raster Graphics Library

R_polygon_rel (x,y,rmum) draw a closed polygon
int *x, *y;
int num;
The num relative positions in the x and y arrays outline a closed polygon which
is filled with the current color. The first position is relative to the starting current
location; the succeeding positions are then relative to the previous position. The
current position is updated to the position of the last point.

R_polyline_abs (x,y,mmm) draw an open polygon
int *x, *y;
The mmn absolute positions in the x and y arrays are used to generate a multi-

segment line (often curved). This line is drawn with the current color. The
current position is left updated to the position of the last point.

Note. It is not assumed that the line is closed, i.e., no line is drawn from the last
point to the first point.

R_polyline_rel (x,y,num) ‘ draw an open polygon
int *x, *y;
int numy;
The mum relative positions in the x and y arrays are used to generate a multi-
segment line (often curved). The first position is relative to the starting current
location; the succeeding positions are then relative to the previous position. The
current position is updated to the position of the last point. This line is drawn
with the current color. .

Note. No line is drawn between the last point and the first point.

15.6. Raster Calls

GRASS, being principally a raster-based data system, requires efficient drawing of
raster information to the display device. These calls provide that capability.

§15 Raster Graphics Library

R_raster (mm,mrows, withzero,raster) draw a raster
int num, nmrows, withzero ;
int *raster ;

Starting at the current position, the mumm colors represented in the raster aray are
drawn for mrows consecutive pixel rows. The withzero flag is used to indicate
whether 0 values are to be treated as a color (1) or should be ignored (0). If
ignored, those screen pixels in these locations are not modified. This option is
useful for graphic overlgys.

R_set_ RGB_color (red,éreen,blue) , initialize graphics
unsigned char red[256], green[256], blue[256] ;

The three 256 member arays, red, green, and blue, establish look-up tables
which translate the raw image values supplied in R_RGB_raster(p.154) to color
intensity values which are then displayed on the video screen. These two
commands are tailor-made for imagery data coming off sensors which give values
in the range of 0-265.

- R_RGB _raster (mm,nrows,red,green,blue, withzero) draw a raster

int mum, nrows, withzero ;
unsigned char *red, *green, *blue ;

This is useful only in fixed color mode (see R_color_table_fixed(p. 149)). Starting
at the current position, the mum colors represented by the intensities described in
the red, green, and blue arrays are drawn for mrows consecutive pixel rows. The
raw values in these amays are in the range of 0-255. They are used to map into
the intensity maps which were previously sent with R_set_RGB_color{p. 15¢). The
withzero flag is used to indicate whether 0 values are to be treated as a color (1)
or should be ignored (0). If ignored, those screen pixels in these locations are not
modified. This option is useful for graphic overlays.

15.7. Text

These calls provide access to built-in vector fonts which may be sized and clipped to
the programmers specifications.

$15 Raster Graphics Library

-155 -

R_set_window (top,bottom,left,right)
int top, bottom, left, right ;

- Subsequent calls to R _text(p.156) will have text strings. clipped to the screen

window defined by top, bottom, left, right.
R_font (font)
char *font ;
Set current font to font. Available fonts are:
Font Name Description
cyrile cyrillic
gothgbt Gothic Great Britain triplex
gothgrt Gothic German triplex
gothitt Gothic Italian triplex
greeke Greek complex
greekes Greek complex script
greekp Greek plain
greeks Greek simplex
italicc Italian complex
italiccs Italian complex small
italict Italian triplex
romarnc Roman complex
romancs Roman complex small
romand Roman duplex
romanp Roman plain
romans Roman simplex
romant Roman triplex
scripte Script complex
scripts Script simplex

R_text_size (width, height)

int width, height ;
Sets text pixel width and height to width and height.

{15 Raster Graphics Library

- 155 -

set text clipping window

choose font

set text size

- 156 - - 156 -

R_text (text) urite text
char *text ;

Writes text in the current color and font, at the current text width and height,
starting at the current screen location.

R_get_text_box (text, top, bottom, left, right) get text extents

char *text ;
int *top, *bottom, *left, *right ;

The extent of the area enclosing the text is retirned in the integer pointers top,
bottom, left, and right. No text is actually drawn. This is useful for capturing
the text extent so that the text location can be prepared with proper background
“or border.

15.8. User Input | :

The raster library provides mouse (or other pointing device) input from the user. This
can be accomplished with a pointer, a rubber-band line or a rubber-band box. Upon
pressing one of three mouse buttons, the current mouse location and the button pressed
are retumed.

R_get_location_with_painter (rx,ny,button) get mouse location using pointer
int *nx, *ny, *button ; '

A cursor is put on the screen at the location specified by the coordinate found at
the mxny pointers. This cursor tracks the mouse (or other pointing device) until
one of three mouse buttons are pressed. Upon pressing, the cursor is removed
from the screen, the current mouse coordinates are returned by the nx and ny
pointers, and the mouse button (1 for left, 2 for middle, and 3 for right) is
returned in the button pointer.

R_get_location_with_line (x,y,nx,ny,button) get mouse location using a line
int x, y;
int *nx, *ny, *button ;

Similar to R_get_location_uith_pointer(p. 156) except the pointer is replaced by a
line which has one end fixed at the coordinate identified by the xy values. The
other end of the line is initialized at the coordinate identified by the mx,ny
pointers. This end then tracks the mouse until a button is pressed. The mouse
button (1 for left, 2 for middle, and 3 for right) is retumed in the button pointer.

$15 Raster Graphics Library

- 157 - - 157 -

R_get_location_with_box (x,y,nx,ny,button) get nouse location using a box
intx, y;
int *nx, *ny, *button ;

Identical to R_get_location_with_line(p. 156) execpt a rubber-band box is used
instead of a rubber-band line.

15.9. Loading the Raster Graphics Library
The library is loaded by specifying $(RASTERLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(RASTERLIB)
OBJ = main.o subl.o sub2.0

pem: $(OBJ) $(RASTERLIB) $(GISLIB)
$(CO) $(LDFLAGS) -0 $@ $(OBJ) $(RASTERLIB) $(GISLIB).

$(RASTERLIB): # in case the library changes
$(GISLIB): # in case the library changes

Note. This library must be loaded with $(GISLIB) since it uses routines from that
library. See §12 GIS Library [p.63] for details on that library.

This library is usually loaded with the ${DISPLAYLIB). See §16 Display Graphics
Library [p. 159) for details or that library.

See §11 Compiling GRASS Programs Using Gmake [p.55] for a complete discussion of
Gmakefiles.

§15 Rmter Graphics Library

- 139 - o - 159 -

Chapter 16

Display Graphics Library

16.1. Introduction

This library provides a wide assortment of higher level graphics commands which in
tum use the graphics raster library primitives. It is highly recommended that this
section be used to understand how some of the GRASS 3.0 graphics commands
operate. Such programs like Dvect, Dgraph, and Dcell demonstrate how these routines
work together. The routines fall into four basic sets: 1) window creation and
management, 2) coordinate conversion reoutines, 3) specialized efficient raster display
routines, and 4) assorted miscellaneous routines like conmmand line parsing and line
clipping.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix D_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic .index is provided in $24.5 Appendix F. Index to Display Graphics
Library [p.247).

16.2. Window Management
The following set of muiines creates, destroys, and otherwise manages graphics
windows.

§16 Display Graphics Library

- 160 - - 160 -

D_new_window (name, top, bottom, left, right) create new graphics window
char *name ;
int top, bottom, left, right ;

Creates a new window name with coordinates top, bottom, left, and right. If
name is the empty string "" (i.e., xname == (), the routine retims a unique
string in name.
D_set_cur_wind (name) set current graphics uindow
char *name ;
Selects the window name to be the current window. The previous current
window (if there was one) is outlined in grey. The selected current window is
outlined in white.
D_get_cur_wind (name) identify current graphics window
char *name ; '

Captures the name of the current window in string name.

D_show_window (color) owtlines current window
int color ;

Outlines current window in color. Appropriate colors are found in
$GISBASE/sre/DAlibes/colors.h! and are spelled with lower-case letters.

D_get_screen_window (top, bottom, left, right) retrieve current window coordinates
int *top, *bottom, *left, *right ;
Returns current window’ s coordinates in the pointers top, bottom, left, and right.

D_check_map_window (window) assign/retrieve cwrrent map window
struct Cell_head *window ;

Graphics windows can have GRASS map windows associated with them. This
routine passes the map window to the current graphics window. If a GRASS
window is already associated with the graphics window, its information is copied
into window for use by the calling program. Otherwise window is associated
with the current graphics window.

1 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Buwironment
(p.51) for detnils.

§16 Display Graphics Library

- 161 - - 161 -

D_reset_screen_window (top, bottom, left, right) resets current uindow position
int top, bottom, left, right ;

Re-establishes the screen position of a window at the location specified by top,
bottom, left, and right.

D_timestamp () » give current tine to window
Timestamp the curent window. This is used primarily to identify which
windows are on top of which others.

D_erase_window () ' erase current window
Frases the window on screen using the currently selected color.

D_remove_window () rermove a window
Remove any trace of current window.

D_dear_window () clears informuation about current window

Removes all information about current window. This includes the map window
and the window content lists.

16.3. Window Contents Management
This special set of graphics window management routines maintains lists of window
contents.

D_add_to_list (string) add command to window display list
char *string ;

Adds string to list of screen contents. By convention, string is a command’
string which could be used to recreate a part of the graphics comtents. This
should be done for all screen graphics except for the display of raster (grid cell)
ma~s. The D_set_cell_name() routine is used for this special case.

$16 Display Graphics Library

- 162 - - 162 -

D_set_cdl_name (name) add cell fle name to display list
char *name ;

Stores the cell file namne in the information associated with the curent window.

D_get_cell_name (name) retrieve cell fille name
char *name ;

Retumns the name of the cell file associated with the current window.

D_dear_window () clear window display lists
Removes all display information lists associated with the current window.

16.4. Coordinate Tramsformation Routines
These routines provide coordinate transformation information. GRASS graphics
programs typically work with the following three coordinate systems:

Coordinate system Origin

Display screen upper left (NW)
Earth window lowerleft (SW)
Array window upper left (NW)

Display screen coordinates are the physical coordinates of the display screen and are
referred to as x and y. Earth window coordinates are from the GRASS database
windows and are referred to as east and north. Amay coordinates are the columns and
rows relative to the GRASS window and are referred to as colunm and row.

The routine D_do_conversions() is called to establish the relationships between these
different systems. Then a wide variety of accompanying calls provide access to
conversion factors as well as conversion routines,

D_do_conversions (window, top, bottom, left, right) initialize conversions

struct Cell_head *window ;
int top, bottom, right, left ;

The relationship between the earth window and the top, bottom, left, and right
screen coordinates is established, which then allows conversions between all three
coordinate systems to be performed.

In the following routines, a value in one of the coordinate systems is converted to the
equivalent value in a different coordinate system. The routines are named based on
the coordinates systems involved. Display screen coordinates are represented by d,

§16 Display Graphics Library

- 163 - - 163 -
array coordinates by a, and earth coordinates by u (which stands for UTM).

double
D_u_to_a_row (north) : earth to array (north)

double north ;

Returns a row value in the amay coordinate system when provided the
corresponding north value in the earth coordinate system.

double
D_u to_a_col (east) : earth to array (east)

double east ;

Returns a column value in the aray coordinate system when provided the
corresponding east value in the earth coordinate system.

double
D_a_to_d_row (row) array to screen (row

double row ;
Retims a y value in the screen coordinate system when provided the
corresponding row value in the array coordinate system.

double
D_a_to_d_col (column) ' array to screen (colurmn)

double column ;

Returns an x value in the screen coordinate system when. provided the

corresponding column value in the array coordinate system.

" double
D_u_to_d_row (north) earth to screen (north)

double north ;

Returns a y value in the screen coordinate system when provided the
corresponding north value in the earth coordinate system.

316 Display Graphics Library

- 164 - - 164 -

double |
D_u_to_d_col (east) earth to screen (east)

double east ;

Returns an x value in the screen coordinate system when provided the
corresponding east value in the earth coordinate system.

double
D_d to_u_row (y) screen to earth (y)

double y ;

Returns a north value in the earth coordinate system when provided the
corresponding y value in the screen coordinate system.

double
D_d _to_u_col (x) screen to earth (x)

double x ;

Retuns an east value in the earth coordinate system when provided the
corresponding x value in the screen coordinate system.

double
D_d_to_a_row (y) screen to array (y)

double y ;

Retums a row value in the amay coordinate system when provided the
corresponding y value in the screen coordinate system.

double
D_d to_a cal (x) screen to array (x)

double x ;

Returns a column value in the amray coordinate system when provided the
corresponding x value in the screen coordinate system.

If the above routines prove too inefficient, the programmer can examine the source
code for these routines to see how the conversions are done and create new conversion
routines.

16.5. Raster Graphics

The display of raster graphics is very different from the display of vector graphics.
While vector graphics routines can efficiently make use of word coordinates, the
efficient rendering of raster images requires the programmer to work within the

§16 Display Graphics Library

- 165 - - 165 -

coordinate system of the graphics device. These routines make it easy to do just that.
The application of these routines may be inspected in such commands as combine and
weight which, under the user's option, display graphics results immediately to the
screen.

D_cell_draw_setup (top, bottom, left, right) prepare for raster graphics
int top, bottom, left, right ;
The raster display subsystem establishes conversion parameters based on the

screen extent defined by top, bottom, left, and right, all of which are obtainable
from D_get_screen_uindouXp. 160) for the current window.

D_draw_cell_row (row, raster) render a raster row
int row ;
CELL *raster ;
The row gives the map amray row. The raster amray provides the categories for
each map grid cell in that row. This routine is called consecutively with the
information necessary to draw a raster image from north to south. No rows can
be skipped. All screen pixel rows which represent the current map array row are

rendered. The routine retumns the map ammay row which is needed to draw the
next screen pixel row.

D_overlay_cell_row (row, raster) . render a raster row without zeros
int row ;
CELL *raster ;

Equivalent to D_draw_cell_row() except that locations with category 0 are left
untouched, rather than being covered with the color for category 0.

16.6. Window Clipping
This section describes a routine which is quite useful in many settings. Window
clipping is used for graphics display and digitizing.

$16 Display Graphics Library

- 166 - - 108 -

D dip(s,n w,e XYy, c_x, C_y) clip coordinates to uindow

double s, n, w, €;
double *x1, *yl, *x2, *y2;

A line represented by the coordinates x1,y1 and x2,y2 is clipped to the window
defined by s (south), n (north), w (west), and e (east). Note that the following
constraints must be true:

w<e
s <n

The x1 and x2 are values to be compared to w and e The yl and y2 are values
to be compared to s and n.

The x1 and x2 values retirmed lie between w and e The yl and y2 values
returned lie between s and n.

16.7. Pop-up Menus
D_popup (bcolor, tcolor, dcolor, top, left, size, options) POp-Up mMeni

int beolor ;

int teolor ;

int dcolor ;

int left, top ;

int size ;

char *optiond] ;

This routine provides a pop-up type menu on the graphics screen. For examples
of how to use this routine see the source code for the GRASS 3.0 display
program.2 The beolor specifies the background color. The teolor is the text
color. The doolar specifies the color of the line used to divide the menu items.
The top and left specify the placement of the top left comer of the menu on the
screen. 0,0 is at the bottom left of the screen, and 100,100 is at the top right.
The size of the text is given as a percentage of the vertical size of the screen.
The options array is a NULL terminated array of character strings. The first is a
menu title and the rest are the menu options (i.e., options[0] is the menu title, and
options| 1], options{2], etc., are the menu options). The last option must be the
NUILLL pointer.

The coordinates of the bottom right of the menu are calculated based on the top
left coordinates, the size, the number of options, and the longest option text
length. If necessary, the menu coordinates are adjusted to make sure the menu is

2 The source code for display is under $GISBASE/src/D/prog._inter/display.

$16 Display Graphics Library

- 167 - - 167 -

on the screen.

D_popup() does the following:

1 Current screen contents under the menu are saved.

2 Areais blanked with the background color and fringed with the text color.
3 Mem options are drawn using the current font.

4 User uses the mouse to choose the desired option.

5 Menu is erased and screen is restored with the original contents.

6

Number of the selected option is returned to the calling program.

16.8. Colors
D_reset_colors (colors) set colors in driver
struct Colors *colors;
Turms. color information provided in the colors structure into color requests to the

graphics driver. These colors are for raster graphics, not lines or text. See
- §12.9.3 Cell Color Tuble (p.94) for GIS Library routiones which use this structure.

D_translate._color (name) color nare to number
char *name ;

Takes a color name in ascii and returns the color mmmber for that color. Retirns
0 if color is not known. The color mumber returmed is for lines and text, not raster

graphics. ‘

16.9. Loading the Display Graphics Library

The library is loaded by specifying $(DISPLAYLIB), $(RASTERLIB) and $(GISLIB)
in the Gmakefile. The following example is a complete Gmakefile which compiles
code that uses this library:

$16 Display Graphics Library

- 168 - , - 168 -

Gmalefile for $(DISPLAYLIB)
OBJ maino subl.o sub2.0

pgm: $(OBJ) $(DISPLAYLIB) $(RASTERLIB) $(GISLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(DISPLAYLIB) \
$(RASTERLIB) $(GISLIB)

$(DISPLAYLIB): # in case the library changes
$(RASTERLIB): # in cage the library changes
$(GISLIB): # in case the library changes |

Note. This library uses routines in $ RASTERLIB). See §15 Raster Graphics Library
lp. 1471 for details on that library. Also $(RASTERLIB) uses routines in $(GISLIB).
See §12 GIS Library (p.63] for details on that library.

See §11 Cormpiling GRASS Programs Using Gmake [p.55] for a complete discussion of
Gmakefiles.

§16 Display Graphics Library

-169 - _ - 169 -

Chapter 17

Lock Library

17.1. Introduction

This library provides an advisory locking mechanism. It is based on the idea that a
process will write a process id into a file to create the lock, and subsequent processes
will obey the lock if the file still exists and the process whose id is written in the file
is still rurming.

17.2. Lock Routine Synopses
lock _file (file, pid) create a lock
char *file;
int pid;
This routine decides if the lock can be set and, if so, sets the lock. If file does
not exist,- the lock is set by creating the file and writing the pid (process id) into
the file. If file exists, the lock may still be active, or it may have been
abandoned. To determine this, an integer is read out of the file. This integer is
taken to be the process id for the process which created the lock. If this process is
still running, the lock is still active and the lock request is denied. Otherwise the

lock is considered to have been abandoned, and the lock is set by writing the pid
into the file.
Return codes:
1 ok lock request was successful
0 somry, another process already has the file locked
-1 error. could not create the file

-2 enor. could not read the file
-3 eror. could not write the file

§17 Lock Library

- 170 - -170 -

unlock_file (file) rerrove a lock
char *file;

This routine releases the lock by unlinking file. This routine-does NOT check to
see that the process unlocking the file is the one which created the lock. The file
is simply unlinked. Programs should of course unlock the lock if they created it.
(Note, however, that the mechanism correctly handles abandoned locks.)

Return codes:

1 ok lock file was removed
0 ok lock file was never there
- -1 error. lock file remained after attempt to remove it.

17.3. Use and Limitations

It is worth noting that the process id used to lock the file does not have to be the
process id of the process which actually creates the lock. It could be the process id of
a parent process. The GRASS start-up shells, for example, invoke an auxiliary
"locking" program that is told the file name and the process id to use. The start-up
shells simply use a hidden file in the user's home directory as the lock file,! and their
own process id as the locking pid, but let the auxiliary program actually do the locking
(since the lock must be done by a program, not a shell script). The only consideration
is that the parent process not exit and abandon the lock.

Warning. Locking based on process ids requires that all processes which access the
lock file un on the same cpu. It will not work urder a network environment since a
process id alone (without some kind of host identifier) is not sufficient to identify a
process.

174. Loading the Lock Library

The library is loaded by specifying $(LOCKLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

! This file is .gistock under GRASS 3.0.

§17 Lock Library

-171 - -171 -
Gmakefile for $(LOCKLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(LOCKLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(LOCKLIB)

$LOCKLIB): # in case the library changes

See §11 Compiling GRASS Programs Using Gmuake [p.55) for a complete discussion of
Gmakefiles.

$17 Lock Library

—_

-173 - -173 -

Chapter 18

Rowio Library

18.1. Introduction

Sometimes it is necessary to process large files which contain data in a matrix format
and keep more than one row of the data in memory at a time. For example, suppose a
program were required to look at five rows of data of input to produce one row of
output (neighborhoed function). It would be necessary to allocate five memory buffers,
read five rows of data into them, and process the data in the five buffers. Then the
next row of data would be read into the first buffer, overwriting the first row, and the
five buffers would again be processed, etc. This memory management complicates the
programming somewhat and is peripheral to the function being developed.

The Rowio Library routines handle this memory management. These routines need to
know the mumber of rows of data that are to be held in memory and how many bytes
are in each row. They must be given a file descriptor open for reading. In order to
abstract the file i/o from the memory mansgement, the programmer also supplies a
subroutine which will be called to do the actual reading of the file. The library
routines efficiently see to it that the rows requested by the program are in memory.

" Also, if the row buﬁ'ers are to be written back to the file, there is a mechanism for
handling this management as well.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix rowio_. To avoid name conflicts, programmers should not create
variagbles or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix H. Index to Rouio Litrary (p.251).

§18 Rowio Library

- 174 - - 174 -

182. Rowio Routine Synopses

The routines in the Rouwio Library are described below. They use a data structure
called ROWIO which is deﬁned in the header file "rowio.h" that ot be included in
any code using these routines:!

#include "rowio.h"

rowio_setup (r, fd, nrows, len, getrow, putrow) configure routo structure
ROWIO *r; v
int fd, mows, len;
int (*getrow)();
int (*putrow)();

Rowio_setup() initializes the ROWIO structure r and allocates the required
memory buffers. The file descriptor fd must be open for reading. The mmmber of
rows to be held in memory is mrows. The length in bytes of each row is len.
The routine which will be called to read data from the file is getrow() and must
be provided by the programmer. If the application requires that the rows be
written back into the file if changed, the file descriptor fd must be open for write
as well, and the programmer must provide a putrow() routine to write the data
into the file. If no writing of the file is to occur, spccify NULL for putrow().

Return codes:
1 ok
-1 there is not enough memory for buffer allocation

The getrow() routine will be called as follows:

getrow (fd, buf, n, len)
int fd;
char *buf;
int n, len;

When called, getrow() should read data for row n from file descriptor fd into buf
for len bytes. It should retum 1 if the data is read ok, O if not.

The putrow() routine will be called as follows:

! The GRASS compilation process, described in §11 Conpiling GRASS Prograns Using
Grake [p. 551, automatically tells the C compiler how to find this and other GRASS header files.

$18 Rowio Library

- 175 - - 175 -

‘putrow (fd, buf, n, len)
int fd;
char *buf;
int n, len;

When called, putrow() should write data for row n to file descriptor fd from buf
for len bytes. It should return 1 if the data is written ok, 0 if not.

char *
rowio_get (r, n) : read a row

ROWIO *r;

int 1y
Rowio_get() retums a buffer which holds the data for row n from the file
associated with ROWIO structure r. If the row requested is not in memory, the
getrow() routine specified in rowio_setup(p. 174) is called to read row n into
memory and a pointer to the memory buffer containing the row is retumed. If
the data currently in the buffer had been changed by rowio_put(p. 176), the
putrow() routine specified in rouio_setup(p.174) is called first to write the
changed row to disk. If row n is already in memory, no disk read is done. The
pointer to the data is simply retumed.

Retum codes:

NULL nis negative, or
getrow() returned 0 (indicating an error condition).
INULL pointer to buffer containing row n.

rowio_forget (r, n) forget a row
ROWIO *r;
int n;
Rowio_forget() tells the routines that the next request for row n must be satisifed
by reading the file, even if the row is in memory.

For example, this routine should be called if the buffer returned by

routo_get(p. 175) is later modified directly without also writing it to the file. See
§18.3 Routo Programming Considerations [p. 176).

§18 Rowio Library

- 176 - , - 178 -

rowio_fieno (r) get file descriptor
ROWIO *r;

Rowio_fileno() veturns the file descriptor associated with the ROWIO structure.

rowio_release (r) free allocated menory
ROWIO *r,

Rowio_release() frees all the memory allocated for ROWIO structure r. It does
not close the file descriptor associated with the structure.

rowio_put (r, buf, n) write a row

ROWIO *r;

char *buf;,

int n;
Rowio_put() writes the buffer buf, which holds the data for row n, into the
ROWIO structure r. If the row requested is currently in memory, -the buffer is
simply copied into the structure and marked as having been changed. It will be
written out later. Otherwise it is written immediately. Note that when the row is
fmally written to disk, the putrow() routine specified in rouio_setup(p. 174) is
called to write row n to the file.

rowio_flsh (r) force pending updates to disk
ROWIO *r;

Rowio_flush() forces all rows modified by routo_put(p. 176) to be written to the
file. This routine must be called before closing the file or releasing the rowio
structure if rowio_put() has been called.

18.3. Rowio Programming Considerations

If the contents of the row buffer retitmed by rowio_get() are modified, the
programmer must either write the modified buffer back into the file or call
rowio_forget(). If this is not done, the data for the row will not be comect if
requested again. The reason is that if the row is still in memory when it is requested a
second time, the new data will be returned. If it isn’t in memory, the file will be read
to get the row and the old data will be reurmed. If the modified row data is written
back into the file, these routines will behave correctly and can be used to edit files. If
it is not written back into the file, rowio_forget() must be called to force the row to be

read from the file when it is next requested.

Rowio_get() reurms NULL if getrow() retums 0 (indicating an error reading the file),

or if the row requested is less than 0. The calling sequence for rowio_get() does not
permit error codes to be returned. If error codes are needed, they can be recorded by

$18 Rowio Library

- 177- - 177 -

getrow() in global variables for the rest of the program to check.

18.4. Loading the Rowio Library :
The library is loaded by specifying $(ROWIOLIB)? in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmalefile for $ ROWIOLIB)
OBJ = main.o subl.o sub2.0

pgm: $(OBJ) $(ROWIOLIB) .
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(ROWIOLIB)

$(ROWIOLIB): # in case the library changes

See §11 Compiling GRASS Programs Using Gmake [p.55) for a complete discussion of
Gmakefiles.

2 This vaidble was NOT defined in rcleases 30 and 30A. Edit the file
$GISBASE sre/CMD rake.mid. and add the line ROWIOLIB=$(LIBDIR) rowioa at the
bottom of the file.

§18 Rowio Library

-179- -179-

Chapter 19

Segment Library

19.1. Introduction

Large data files which contain data in a matrix format often need to be accessed in a
non-sequential or random manner. This requirement complicates the programming.
Methods for accessing the data are to:

(1) read the entire data file into memory and process the data as a two-
dimensional matrix,

(2) perform direct access i/0 to the data file for every data value to be accessed,
or

(3) read only portions of the data file into memory as needed.

Method (1) greatly simplifies the programming effort since i/o is done once and data
access is simple array referencing. However, it has the disadvantage that large
amounts of memory may be required to hold the data. The memory may not be
available, or if it is, system paging of the program may severely degrade performance.
Method (2) is not much more complicated to code and requires no significant amount
of memory to hold the data. But the i/0 involved will certainly degrade performance.
Method (3) is a mixture of (1) and (2). Memory requirements are fixed and data is
read from the data file only when not already in memory. However the programming
is more complex.

The routines provided in this library are an implementation of method (3). They are
based on the idea that if the original matrix were segmented or partitioned into smaller
matrices these segments could be managed to reduce both the memory required and
the i/o. Data access along connected paths through the matrix, (i.e., moving up or
down one row and left or right one column) should benefit.

In most applications, the original data is not in the segmented format. The data must
be transformed from the non-segmented format to the segmented format. This means
reading the original data matrix row by row and wnting each row to a new file with
the segmentation organization. This step comresponds to the i/o step of method (1).

§19 Segment Library

Then data can be retrieved from the segment file through routines by specifying the
row ard column of the original matrix. Behind the scenes, the data is paged into
memory as needed and the requested data is retumed to the caller.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix segment . To avoid name conflicts, programmers should not
create variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix 1. Index to Segment Library [p.253).

192. Segment Routines

The routines in the Segment Library are described below, more or less in the order
they would logically be used in a program. They use a data structure called
SEGMENT which is defined in the header file "segment.h” that must be included in
any code using these routines:!

#include "segment.h"

The first step is to create a file which is propedy formatted for use by the Segment
Library routines: .

segment,_format (fd, nrows, ncols, srows, scols, len) ' format a segment file
int fd, mows, ncols, srows, scols, len;

The segmentation routines require a disk file to be used for paging segments in
and out of memory. This routine formats the file open for write on file descriptor
fd for use as a segment file. A segmemn fiie inust be formatted before it can be
processed by other segment routines. The configuration parameters nrows, ncols,
srows, scols, and len are written to the begimming of the segment file which is
then filled with zeros.

The comesponding non-segmented data matrix, which is to be transferred to the
segment file, is mrows by nools. The segment file is to be formed of segments
which are srows by scols. The data iterns have length len bytes. For example, if
the data type is int, len is sizeof{int).

Retun codes are: 1 if ok; else -1 could not seek or write fd, or -3 illegal
configuration parameter(s).

The next step is to initialize a SEGMENT structure to be associated with a segment
file formatted by segment_format(p. 180).

I The GRASS compilation process, described in §11 Conpiling GRASS Prograrms Using
Gmake |p. 55!, automatically tells the C compiler how to find this and other GRASS header files.

§19 Sepment Library

- 181 - - 181 -

segment_jnit (seg, fd, nsegs) initiglize segment structure
SEGMENT *seg;
int fd, nsegs;
Initializes the seg structure. The file on fd is a segment file created by
segment_format(p. 180) and must be open for reading and writing. The segment
file configuration parameters nrous, ncols, srous, scols, and len, as written to
the file by segment_format(p. 180), are read from the file and stored in the seg
structure. Nsegs specifies the mmnber of segments that will be retained in
memory. The minirmm value allowed is 1.

Note. The size of a segment is scols*srous*len plus a few bytes for managing
each segment.

Return codes are: 1 if ok; else -1 could not seek or read segment file, or -2 out of
memory.

Then data can be written from another file to the segment file row by row:

segment._ put_row (seg, buf, row) write row to segment file
SEGMENT *seg;
char *buf;
int row;
Transfers non-segmented matrix data, row by row, into a segment file. Seg is the
segment structure that was configured from a call to segment_init(p. 181). Buf

should contain ncols*len bytes of data to be transferred to the segment file. Row
specifies the row from the data matrix being transferred.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

Then data can be read or written to the segment file randomly:

segmertt_get (seg, value, row, col) get value from segmertt file

SEGMENT *seg,
char *value;
int row, col;

Provides random read access to the segmented data. It gets len bytes of data into
value from the segment file seg for the corresponding row and col in the original
data matnix.

Retumn codes are: 1 if ok; else -1 could not seek or read segment file.

§19 Segment Library

segment_put (seg, value, row, col) put value to segmert file

SEGMENT *seg;
char *value;
int row, col;

Provides random write access to the segmented data. It copies len bytes of data
from value into the segment structure seg for the corresponding row and col in
the original data matrix. '

The data is not written to disk immediately. It is stored in a memory segment
until the segment routines decide to page the segment to disk.

Return codes are: 1 if ok; else -1 could not seek or write segment file.

After random reading and writing is finished, the pending updates must be flushed to
disk:

segment, flush (seg) flush pending updates to disk
SEGMENT *seg,

Forces all pending updates generated by segment_put(p. 182) to be written to the
segment file seg Must be called after the final segment put() to force all
perding updates to disk. Must also be called before the first call to
segment_get_rou/p. 182).

Now the data in segment file can be read row by row and transferred to a normal
sequential data file:

segment, get. row (seg, buf, row) " read row from segment file
SEGMENT *seg;
char *buf;
int row;

Transfers data from a segment file, row by row, into memory (which can then be
written to a regular matrix file). Seg is the segment structure that was configured
from a call to segment_init(p. 181). Buf will be filled with ncols*len bytes of data
corresponding to the row in the data matrix.

Retun codes are: 1 if ok; else -1 could not seek or read segment file.

Finally, memory allocated in the SEGMENT structure is freed:

§19 Segment Library

- 183 - - 183.

segment. release (seg) free allocated memory
SEGMENT *seg;

Releases the allocated memory associated with the segment file seg Does not
close the file. Does not flush the data which may be pending from previous

segment_put(p. 182) calls.

19.3. How to Use the Library Routines

The following should provide the programmer with a good idea of how to use the
Segment Library routines. The examples assume that the data is integer. The first step
is the creation and formatting of a segment file. A file is created, formatted and then
closed:

fd = creat (file,0666);
segment, format (fd, rows, ncols, srows, scols, sizeof(int));
close(fd)

The next step is the conversion of the non-segmented matrix data into segment file
format. The segment file is reopened for read and write, initialized, and then data read
row by row from the original data file and put into the segment file:

int buff NCOLS];
SEGMENT seg;

fd = open (file, 2);
segment,_init (&seg, fd, nseg)

for (row = 0; row < nrows; row-++)

{
<code to get original matrix data for row into buf>

segment. put, row (&seg, buf, row);

Of course if the intention is only to add new values rather than update existing values,
the step which transfers data from the original matrix to the segment file, using
segment_put_row(), could be omitted, since segment_format(p.180) will fill the
segment file with zeros.

The data can now be accessed directly using segment_get(p. 181). For example, to get
the value at a given row and column: :

$19 Sepment Library

int value;
SEGMENT seg;

segment, get (&seg, &value, row, col);
Similarly segment_put(p. 182) can be used to change data values in the segment file:
int value;
SEGMENT seg;
value = 10;

segment,_put (&seg, &value, row, col);

Warning It is an easy mistake to pass a value directly to segment, put(). The
following should be avoided:

segment,_put (&seg, 10, row, col); /* this won’t work */

Once the random access processing is complete, the data would be extracted from the
. segment file and written to a non-segmented matrix data file as follows:

segment, flush (&seg);

for (row = 0; row < OWS; row++)

{
segment, get. row (&seg, buf, row);

<code to put buf into a matrix data file for rou>

Finally, the memory allocated for use by the segment routines would be released and
the file closed:

segment, release (&seg);
close (fd);

Note. The Segment Library does not know the name of the segment file. It does not
attempt to remove the file. If the file is only temporary, the programmer should remove
the file after closing it.

§19 Segment Library

194. Loading the Segment Library
The library is loaded by specifying $(SEGMENTLIB) in the Gmakefile. The following
example is a complete Gmakefile which compiles code that uses this library:

Gmakefile for $(SEGMENTLIB)
ORJ = main.o subl.o sub2.0

‘pgm: $(OBJ) $(SBEGMENTLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(SEGMENTLIB)

$(SEGMENTLIB): # in cage the library changes

See §11 Compiling GRASS Programs Using Grmake (p.55] for a complete discussion of
Gmakefiles.

§19 Segment Library

- 187 - - 187 -

Chapter 20

Vask Library

20.1. Introduction

The Vask Library (visual-ask) provides an easy means to commmmicate with a user one
page at a time. That is, a page of text can be provided to the user with information
and question prompts. The user is allowed to move the cursor! from prompt to
prompt answening questions in any desired order. Users' answers are confined to the
programmer-specified screen locations.

This interface is used in many interactive GRASS programs.2 For the user, the Vask
Library provides a very consistent and simple interface. It is also faily simple and
easy for the programmer to use.

Note. All routines and global variables in this library, documented or undocumented,
start with the prefix V_. To avoid name conflicts, programmers should not create
variables or routines in their own programs which use this prefix.

An alphabetic index is provided in §24.5 Appendix J. Index to Vask Library (p.255).

20.2. Vask Routine Synopses

The routines in the Vask Library are described below, more or less in the order they
would logically be used in a program. The Vosk Library maintains a private data
space for recording the screen description. With the exception of V_call(), which does
all the screen painting and user interaction, vask routines only modify the screen
description and do not update the screen itself.

1 The functions in this library make use of the curses library and termeap descriptions. As
when using vi, the user must have the TERM variable set.
2 The GRASS window command is a good exarmple, as are reclass and mask.

§20 Vask Library

- 188 - 4 - 188 -

V_dear () initialize screen description

This routine initializes the screen description information, and must be called
before each new screen layout description.

V_line (mum, text) add line of text to screen
int rum;
char *text;
This routine is used to place lines of text on the screen. Row is an integer value

of 0-22 specifying the row on the screen where the text is placed. The top row
on the screel: is row 0.

Warning. V_line() does not copy the text to the screen description. It only saves
the text address. This implies that each call to V_line() must use a different text
buffer.

V_oconst (value, type, row, col, len) define screen constant
V_ques (value, type, row, col, len) define screen question
Ctype *value; (Ctype is one of int, long, float, double, or char)
char type;

int row, col, len;

These two calls use the same syntax. V_const() and V_ques() specify that the
contents of memory at the address of value are to be displayed on the screen at
location row, col for len characters. V_ques() further specifies that this screen
location is a prompt field. The user will be allowed to change the field on the
screen and thus change the value itself. V_const() does not define a prompt
field, and thus the user will not be able to change these values.

Value is a pointer to an int, long, float, double, or char string. Type specifies
what type value points to: ’i’ (int), 'I' (long), 'f (float), 'd’ (double), or ’s’
(character string). Row is an integer value of 0-22 spec “ying the row on the
screen. where the value is placed. The top row on the screen is row 0. Cal is an
integer value of 0-79 specifying the column on the screen where the value is
placed. The leftmost columm on the screen is column 0. Len specifies the
mmber of columns that the value will use.

Note that the size of a character aray passed to V_ques() must be at least one
byte longer than the length of the prompt field to allow for NULL termination.

Currently, you are limited to 20 constants and 80 variables.
Warmning These routines store the address of value and not the value itself.

This implies that different varidbles must be used for different calls.
Programmers will instinctively use different variables with V_ _s(), but it is a

$20 Vask Library

- 189 - - 189 -

stumbling block for V_const(). Also, the programmer must initialize value prior
to calling these routines.3

V_float, accuracy (mm) set number of decimul places
V_float_accuracy() defines the mumber of decimal places in which floats and
doubles are displayed or accepted. Num is an integer value defining the mumnber
of decimal places to be used. This routine affects subsequent calls to V_const()
and V_ques(). . Varous inputs or displayed constants can be represented with
different mumnbers of decimal places within the same screen display by making
different calls to V_float accuracy() before calls to V_ques() or V_const().
V_clear() resets the mmnber of decimal places to 2.

V_call () interact uith the user

V_call() clears the screen and writes the text and data values specified by
V_line(), V_ques() and V_const() to the screen. It interfaces with the user,
collecting user responses in the V_ques() fields until the user is safisfied. A
message is automatically supplied on line mmber 23, explaining to the user to
enter an ESC when all inputs have been supplied as desired. V_call() ends when
the user hits ESC and returns a value of 1 (but see V_intrpt_ok() below).

No emor checking is done by V_call(). Instead, all variables used in V_ques()
calls must be checked upon retum from V_call(). If the user has supplied
inappropriate information, the user can be informed, and the input prompted for
again by further calls to V_call().

V_intrpt_ok () allow ctrl-c
V_call() normally only allows the ESC character to end the interactive input
session. Sometimes it is desirable to allow the user to cancel the session. To
provide this alternate means of exit, the programmer can call V_intrpt_ok()
before V_call(). This allows the user to enter Ctd-C, which causes V_call() to
retirn a value of O instead of 1.

A message is automatically supplied to the user on line 23 saying to use Ctrl-C to
cancel the input session. The normal message accompanying V_call() is moved
up to line 22.

Note. When V_intipt_ok() is called, the programmer must limit the use of
V_line(), V_ques(), and V_const() to lines 0-21.

3 Technically value needs to be initialized before the call to V_call() since V_const() and
V_ques() only store the address of value. V_call() looks up the values and places them on the
screen

§20 Vask Library

- 190 - - 190 -

V_intrpt_nmsg (text) change ctri-c message
char *text;

| A call to V_intrpt_msg() chenges the default V_intrpt oki() message from
(OR <Ctd-C> TO CANCEL) to (OR <Ctd-C> TO msg). The message is (re)set

to the default by V_clear().

20.3. An Example Program

Following is the code for a simple program which will prompt the user to enter an
integer, a floating point mmber, and a character string.

#define LEN 15
main()

{ . _
inti; /* the variables */
float f ;

char s{LEN] ;

i=0; /* initialize the varigbles */_

V_clear() ; /* clear vask info */

V_line(5," Enter an Integer ") ; /* the text */
V_line(7," Enter a Decimal ") ;
V_line(9," Enter a character string ") ;

VP_QIES (8d9 ’i,, 5: 30, 5) ’ /* the pﬂ)m fields */
V_ques (&f,’f, 7,30, 5 ; '
V_ques(s, ’¢,9,30,LEN- 1) ;

V_intrpt_ok(); 7* dlow ctrl-c */
if (IV_call()) /* display and get user input */
exit(1); - /* exitif ctrd-c */)
printf ("%d %f %s\", i, f, §) ; : /* ESC, so print results */
exitt0);

}

The user is presented with the following screen:

§20 Vask Library

. 191 -

-191 -

Enter an Integer 0____
Enter a Decimal 0.00_
Enter a character sting @~ _________

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE

(OR <Ctri-C> TO CANCEL)

The user has several options.

<CR>

CTRL-K
CTRL-H
CTRL-L
CTRL-A

ESC
CTRL-C

moves the cursor to the next prompt field.

moves the cursor to the previous prompt field.

moves the cursor backward non-destructively within the field.
moves the cursor forward non-destructively within the field.

writes a copy of the screen to a file named wisual_ask in the user's
home directory.

returns control to the calling program with a retum value of 1.
returns control to the calling program with a return value of 0.

Displayable ascii characters typed by the user are accepted and displayed.
Control characters (other than those with special meaning listed above) are

ignored.

20.4. Loading the Vask Library

Compilations must specify the vask, curses, and termcap libraries. The library is
loaded by specifying $(VASK) and $(VASKLIB) in the Gmakefile. The following
example is a complete Gmakefile which conpiles code that uses this library:

' §20 Vask Library

-192- -192-

Gmakefile for $(VASK)
OBJ = meain.o subl.o ab20

pem: $(OBJ) $(VASKLIB)
$(CC) $(LDFLAGS) -0 $@ $(OBJ) $(VASK)

$(VASKLIB): # in case the library changes

Note. The target pgm depends on the object files $(OBJ) and the Vask Library
$(VASKLIB). This is done so that modifications to any of the $(OB.) files or to the
$(VASKLIB) itself will force program reloading. However, the compile rule specifies
$(OBJ)) and $(VASK), rather than $(OBJ) and $(VASKLIB). This is because
$(VASK) specifies both the UNIX curses and termcap libraries as well as
$(VASKLIB).

See §11 Conpdmg GRASS Programs Using Gmuake [p.55] for a complete discussion of
Gmakefiles.

20.5. Programming Cansiderations

The order of movement from prompt field to prompt ﬁeld is dependent on the ordering
of calls to V_ques(), not on the line mmbers used within each call.

Information cannot be entered beyond the edges of the prompt fields. Thus, the user
response is limited by the mumber of spaces in the prompt field provided in the call to
V_ques(). Some interpretation of input occurs during the interactive information
gathering session. When the user enters <CR> to move to the next prompt field, the
contents of the current field are read and rewritten according to the value type
associated with the field. For example, non-numeric responses (e.g., "abc") in an
integer field will get ttmmed to a 0, and floating point mumbers will be truncated (e.g.,
54.87 will become 54).

No envor checking (other than matching input with variable type for that input field) is
done by V_call(). This must be done, by the programmer, upon retum from V_call().

Calls to V_line(), V_ques(), and V_const() store only pointers, not cortents of
menmory. At the time of the call to V_call(), the contents of memory at these
addresses are copied into the appropriate places of the screen description. Care should
be taken to use distinct pointers for different fields and lines of text. For example, the
following mistake should be avoided:

$20 Vask Library

- 198 - -198 -

char text] 100];

V_clear();

gprintf(text,” Welcome to GRASS);
V_line(3,text);

sprintf(text,” which is a product of the US Army CERL ");
V_line(5,text);

V_call();

since this results in the following (unintended) screen:

which is a product of the US Army CERL

which is a product of the US Army CERL

AFTER COMPLETING ALL ANSWERS, HIT <ESC> TO CONTINUE
(OR <Ctl-C> TO CANCEL)

Warning Due to a problem in a routine within the curses library, the Vask routines
use the curses library in a somewhat unorthodox way. This avoided the problem
within curses, but means that the programmer cannot mix the use of the Vask Library
with direct calls to curses routines. Any program using the Vask Library should not
call curses library routines directly.

4 Specifically, memory allocated by initscr() was not freed by endwin().

§20 Vask Library

- 195 - - 195 -

Chapter 21

Writine a Digitizer Dri

21.1. Introduction A

A digitizer device driver consists of a library of device-dependent functions that are
linked into digitizer programs. This chapter describes those functions that are needed
to create a digitizer device driver compatible with GRASS map development software.
Section §21.2 Writing the Digitizer Device Driver [p. 195] explains how digitizer drivers
are written, while section §21.3 Discussion of the Finer Points (Hints) [p.203) describes
problems and pitfalls encountered during the development of the Altek Ariver.

21.2. Writing the Digitizer Device Driver
Source code for the digitizer drivers is kept in
$GISBASE/src/mapdev/digitizers!

Separate sub-directories contain the individual drivers. When a new driver is written,
it should be placed here in a new sub-directory.

It is helpful to examine the source code for existing drivers located here, and to attend
a demonstration of the GRASS digitizing program digit, before developing a new
driver.

21.2.1. Functions to be Written

This section describes the device-dependent library functions that must be written
Each of these functions must be present in the library. Function descriptions are
organized by file name. (The file names are those used by current GRASS digitizer
drivers. File names are printed in bold, along the left-hand margin of the page.) These

! $GISBASE is the directory where GRASS is installed. See $10.1 UNIX Ewironment
[p. 51) for details.

§21 Writing a Digitizer Driver

files and functions can be copied from one of the existing digitizer driver libraries and
altered to suit the needs of a particular driver.

Note. Although it is strongly recommended that the programmer use the file names
listed - below (for reasons set forth in §21.2.3 Conpiling the Deuvice Driver [p.202)),
other files names may be used instead.

dig mennh
This file contains the memu that is displayed while digitizing. The meru should

indicate the purpose of the buttons on the cursor for the particular digitizer. The
menu is stored in dig memx

char *dig memp];

An example of how the Altek driver uses this function to create a menu is given
below:

#define dig_menu_lines 16

char *dig memy] = {

" GRASSDIGIT Version 3.0 . Digitizing mems ",

" ALTEK digitizer | AMOUNT DIGITIZED -

" C| I'SDII']nqs # [I'nes. "’
<0> digitize point # Area edges:
<1> quit digltizing

<2> update monitor
<3> togple point/stream mode Total points:

v e el et e

CURREN'I‘ DIGITIZER PARAMS,
MODE TYPE

point line

stream area edge

Y

Note. The mernu must be exactly as it appears here, except that the text in bold
may be replaced by the appropriate text for the digitizer.

dig curses.c
This file only contains #includes. It is used to set up the digitizing menu in the
"dig_memvh" file. This file must look like this:

§21 Writing a Digitizer Driver

#include <cursesh>

#inchude "dig_merm h"
#include "/ /digitdigith”
#include "../../digit/memih”
#include "../..Nibes/head h"

#include ../ /Mdigitcursesc”

setup._driver.c
D_setup_driver (device)
char *device ;

This function opens the device (which is a t#fy port) and initializes the digitizer.

Note. This function should not set the originn The orgin is set later by the
function D_setup_origin(p. 199).

dig dev.c
D_get_scale(scale)
float *scale ;

This function sets scale to the digitizer resolution in umits of lines per inch.2 For
example, on a digitizer having a resolution of 1000 lines per inch, scale would be
set to .001.

coll_pts.c
#include "digith"
#include "globals.h"

collect_points (mode, type, np, x, y)
int mode; type;
int *np ;.
double **x, **y;

This routine is called to collect points that represent a single vector (or arc) from
the digitizer.

The points should be collected into static arrays or dynamically allocated arrays,
transformed from digitizer coordinates to database coordinates using
transform_a_into_b(p.201), and plotted on the graphics monitor using
plot_points(p.201). Then x and y are set to point to these arrays, and np set to
the number of points collected.

2 Almost all digitizers describe their resolution in lines per inch (Ipi). This is essentially
equivalent to pixels per inch, or dots per inch.

§21 Writing a Digitizer Driver

- 198 - 4 - 198 -

The digitizing mode may be either STREAM or POINT: STREAM indicates that
the digitizer should collect a contimwous stream of points; POINT indicates that
the digitizer should collect points under user control (i.e., each time the user
presses a button, the foot-switch, or a key on the keyboard). The collect_points ()
function can be written to allow interactive toggling between the two modes

during a single call.

The type is set to AREA when the vector to be collected is an area edge, and to
LINE when it is is a linear feahme. The type is of no interest to collect_points ()
itself, but is passed to the function plot_points(p. 201), which draws lines on the
graphics monitor.

This function should return 1 if digitizing in STREAM mode occurred (i.e., either
because mode was initially STREAM, or because the user changed to STREAM
mode), and 0 otherwise.3

Note. This routine is responsible for plotting the vector on the graphics monitor,
but it should do it responsibly. This means that while digitizing in POINT mode,
the line-segments should be plotted immediately; while digitizing in STREAM
mode, the points should be plotted only when the digitizing is finished, or when
the user toggles to POINT mode.

Note. If the cursor has buttons, they can be used to change the digitizing mode
as well as end the digitizing. If the digitizer has a foot-switch instead of buttons,
the foot-switch should be used to end the digitizing (toggling modes would not be
supported in this case). If the digitizer has neither buttons nor a foot-switch, then
the keyboard mmust be used, even in STREAM mode. (See GeoGraphics driver for
code that polls the keyboard.)

interface.c
This file contsins a number of functions. The following functions retmm
information about digitizer capabilities:
D_cursor_buttons()
If the digitizer cursor buttons are to be used by the digitizing programs,

there must be at least five buttons. This function returns 1 if the cursor has
five or more buttons; otherwise, it retums 0.

D_foot_switch()
This function retums 1 if there is a usable foot-switch. It retums O if the
digitizer has no foot-switch.

Note. If there are five or more buttons on the cursor, the value retumed by

4 STREAM mode indicates to digit that the resulting vector should be pruned.

§21 Writing a Digitizer Driver

- 199 -

-199 -

D_foot_suitch () is ignored (i.e., it is assumed that there is no foot-switch).
See D_cursor_buttons(p. 195).

D_start_button() :

This function tells the driver how the cursor buttons are labeled (i.e., the
labels that the user sees on the buttons). If the first button is labeled 1, then
this routine retums 1. If the first button is labeled 0, then this routine returns
0.

It should return -1 if the digitizer cursor buttons are not being used by the
driver. See D_cursor_buttons(p. 198).

For example, if the digitizer buttons are 1abeled 0-9, then this routine would
remm 0. If the digitizer buttons are labeled 1-16, then this routine would
retum 1.

The following routines perform digitizer configuration:

D_setup_origin()

This routine sets the digitizer's origin (0,0). This routine should only retum
if successful, and should retrm a value of 0. If it fails, an error message
should be sent to the terminal screen with Write_info(p.202), and the program
terminated with a call to close_doun(p.201).

Note. Frequently, the location of the digitizer s origin can be set to some
default value, without any input from the user. Otherwise, this routine must
ask the user to set the origin. The routine Write_info(p. 202) should be used
to print instructions for the user. (Refer to the GeoGraphics digitizer driver,
which instructs users to set the origin in the lower-left comer of the
digitizing tablet.)®

D_clear_driver()

This function clears any button presses on the digitizer that have been
queued. (Refer to §21.3 Discussion of the Finer Points (Hints) [p.203] for an
explanation of why this is necessary.) This routine should only return if
successful, and should rettrn a value of 0. If it fails, an error message
should be sent to the user with Write_info(p.202), and the program
terminated with a call to close_doun(p.201).

* Dwe to the design of the GeoGraphics digitizer, it isn’t possible to detect whether or not
the user properly sets the origin. If the origin is improperly set, the map will be impropery

registered.

§21 Writing a Digitizer Driver

- 200 - - 200 -
The following two routines read the current digitizer coordingates:

. D_read_raw (x, y)
double *x, *y;

Gets the current location of the digitizer cursor, and places the digitizer
coordinates in the variables x and y.

If a digitizer button was pressed, this routine returns the button’s value. The
retum value must be in the range of 1 through 16. This means that if the
first button is labeled O this routine must add 1 to the button number that is
returned.

If no button was pressed, this routine retums 0.

Foot-switch. If the digitizer has a foot-switch, msteai of cursor buttons,
then the foot-switch must be treated as if it were button 1. If the digitizer
has neither a foot-switch nor cursor buttons, then this routine should retirn
0.

D_ask_driver_raw (x, y)
double *x, *y;

Waits for a button to be pressed and then gets the current location of the
digitizer cursor, and places the digitizer coordinates in the variables x and y.

This routine returms the button's value. The retum value must be in the
range of 1 through 16. This means that if the first button is labeled 0 this
routine must add 1 to the button mumber that is returned.

Foot-switch. If the digitizer has a foot-switch, instead of cursor buttons,
then the foot-switch must be treated as if it were button 1, and this routine
should wait for the foot-switch to be pressed. If the digitizer has neither a
foot-switch nor cursor buttons, then this routine should rettrm 0 withowz

waiting.

21.2.2. Functions Available For Use

There are functions which have already been written that can be called by the digitizer
driver. These are described below.

Note. These functions exist in libraries. The libraries that contain these functions are
described in §21.2.3 Compiling the Deuice Driver (p.202).

§21 Writing a Digitizer Driver

- 201 - - 201 -

close_down (status)
int status ;

This function gracefully exits the calling program. Call this function with status
set to -1 when an irrecoverable emror has occurred (e.g., when the digitizer does
not respond, or retums an error). Otherwise, call this routine with status set to 0.

plot_points (type, np, x, y, line_color, point._color)
int type, np;
double *x, *y ;
int line_color, point_color ;

This function is to be called by collect_points(p. 197). It draws the vector defined
by the points in the x and y arrays on the graphics monitor. The mmber of
points in the vector is np.

The plot_points () function expects to receive points from collect_points(p. 197) in
the coordinate system of the database. Digitizer coordinates can be translated to
database coordinates using transform._a_into_blp. 201).

~ The type indicates whether the vector is an AREA or a LINE. ARFA and LINE
are defined in the include file "dig_defines.h".)

The line_color and point_color indicate whether the lines and points are to be
highlighted or erased. The constant CLR_HIGHLIGHT indicates highlighting,
and the constant CLR_ERASE indicates erase (CLR_HIGHLIGHT and
CRL_ERASE are defined in "globals.h). The colors actually used to highlight or
to erase lines and points are specified by the user in digit.

transform_a_into_b (Xraw, Yraw, X, Y)
double Xraw, Yraw ;
double *X, *Y ;

This function converts the digitizer coordinates Xraw,Yraw into the database
coordinates X)Y. This functon is used by the driver function
collect_points(p. 197).

Note. The transformation rule used by this routire is generated by digit when the

user registers the map to the database. The rule is already in place by the time
collect_points(p. 197) calls transform_a_into_b().

§21 Writing a Digitizer Driver

Write_info (line, message)
int line ;
char *message ;

This function prints a message in the four line window at the bottom of the
user' s terminal in digit. The variable line must be a mumber 1 through 4, which

represents the line mumber inside the window. Themmenmstmtexceed 76
characters and should not contain \n.

21.2.3. Compiling the Device Driver

Programs (e.g., digit) that use the digitizer driver functions are stored in libraies.
When the digitizer driver is compiled, it links with those different libraries and creates
the programs. Each driver should contain a Grmkefile that contains compilation
instructions for Gmake.® The Gmakefile for the digitizer driver is complex. Rather
than attempting to construct a completely new Gmakefile, it is generally simpler to
copy an existing Gmuakefile from another driver and modify it to meet the needs of the
new digitizer driver.

The following libraries are needed by the digitizer driver when it is compiled:

$GISBASE/sre/mapdev/digit/libdigit.a
$GISBASE/sre/mapdev/libes/libtrans.a
$GISBASE/src/mapdev/lib/libdig.a
$LIBDIR/ibdig_atts.a

Some include files (x.h) must also be compiled into the driver. These files are located
in the following directories:

$GISBASE/src/mapdev/libes

$GISBASE/src/mapdev/lib

Compile the device driver by executing Gmake. This will create the digit program and
any other programs dependent on the digitizer driver code.

21.2.4. Testing the Device Driver

There are three crucial points at whicl: the digit program calls the digitizer driver. The
first occurs just after digit has prompted the user for a file name. Digit will try to
open the driver and initialize the digitizer; if this fails, it is because
D_setup_driver(p. 197) has failed. The second occurs when the user registers the map
to the digitizer. If the program fails at this point, there is a problem with the

5 See 811 Conpiling GRASS Prograns Using Gruke |p 55 for a discussion of Grmke and
Grakefiles.

§21 Writing a Digitizer Driver

- 208 - - 203 -

D_read_rauw(p.200) function. A final test of the driver is performed when the
collect_points(p. 197) function is called, which occurs when vectors are being digitized.

Before testing any programs, review the Grass 3.0 Installation Guide to ensure that
the digitizer is set up comrectly. If more information is needed, read the file
$GISBASE/src/mapdev/README.

21.3. Discussion of the Finer Points (Hints)

This section offers several hints and pitfalls to avoid when writing the digitizer driver.
It has three subsections: Setting up the Digitizer, Program Logic, and Specific Driver
Issues.

21.3.1. Setting up the Digitizer
The process of setting up a computer system and digitizer can be divided into three
steps:

(1) Setting the internal switches on the digitizer (hardware)
(20 Rumning a cable between the digitizer and the computer (hardware)
(3) Setting up the serial port on the computer (software)

21.3.1.1. Setting the internal switches
The switches on the digitizer must be set so that the digitizer will run under
request or prompt mode, which means that the digitizer will only send output
when it is requested or prompted by the program. Thus, the program controls the
timing of the output from the digitizer and will only receive information when it
is ready to process it. Refer to the manual included with the digitizer for specific
information on its set-up.

Note. The digitizer must be able to use an RS232 serial interface and transmit
information only when prompted by the program. If the digitizer can’t transmit
information on command, then it can’t be used as a GRASS digitizer.

21.3.1.2. Running a cable between the digitizer and computer

A cable must be made to comnect the digitizer to a RS232 serial port on the
computer. Different model computers, even when from the same maker, may
require different cable configurations. For example, one computer may need a
straight-through cable, while another computer may need pins 6, 8, and 20 looped
back on the computer side. A break-out box can be used to deduce digitizer
cable requirements and ensure that the digitizer is actually talking to the

§21 Writing a Digitizer Driver

computer.

21.3.1.3. Configuring the serial port

The digitizer is plugged into a serial port (/dev/tty??) on the computer, which
must be configured for a digitizer to run onit. To set up the tty for the digitizer,
tumn that iy’ s getty off, and make the tty readsble and writsble by anyone.

A final suggestion: document the information that has been leamed. The file
SGISBASE/src/mapdev/digitizers/altek/INSTALLALTEK can be used as an
example. It contains the switch settings for the Altek, cable configurations, and
other useful information. Such documentation is invaluable when another
digitizer is added, problems arise, or if the digitizer switch settings have to be
changed because other software is using the digitizer.

21.3.2. Program Logic

All digitizing programs follow the same basic steps, whether they test the digitizer, or
_ appear in a complex digitizing program like digit. The following sequence gives the
progranmer a feel for how the digitizer driver is used by the calling programs.

(1) Link the program to the digitizer (open the #y)

(2) Set the tty to the appropriate state (ioctl calls)

(3) Initialize the digitizer (setting resolution, setting origin, ...)
(4) Ask the digitizer for data containing a set of coordinates
(5) Read the data from the digitizer

(6) Interpret the data into usable coordinates (x, y)

(7Y Display the coordinates (x, y)

(8) Loop back for more data or until user wants to quit

In order to become familiar with the architecture of a digitizer driver, it is useful to
write a simple program to test the digitizer. If a digitizing problem arises, the
diagnostic program can help isolate the cause of the problem (hardware, software,
cable, etc.).

21.3.3. Specific Driver Issues

The writing of digitizer device drivers can be complex. This section explores four
issues in greater depth:

(1) Comnnecting to the digitizer

(2) Initializing and reading the digitizer

(3) Synchronizing the digitizer and computer
(4) Digitizer cursors with buttons

§21 Writing a Digitizer Driver

Connecting to the digitizer:
In GRASS 3.0, the computer commumicates directly with the digitizer to which
(through the serial port tty) the digitizer is connected. The #ty to which the
digitizer is connected is opened, read, and written to just like a file.

D_setup_driver(p. 197) will open the #ty, set file permissions to read and write,
and set the running state of the #y. Some experimenting with the different line
disciplines (CBREAK, RAW) may be necessary to determine the best state for
the tty, but RAW seems to be the norm. Changing the nmming state of a tty
consists of changing the structures associated with that particular #y and
reflecting the changes to the operating system by using ioct!(). Unfortmately,
the information is stored differently under different operating systems.

GRASS digitizer drivers have been written under the System V (AT&T) and
Berkeley (UCB) UNIX operating systems. A mgjor difference between these two
operating systems is the way they handle terminal interfaces (ttys). Terminal
information is contained in structures in <termio.h> under System V, and in
<sgtty.h> under Berkeley. In other words, the structures, and the names used in
the structures, will differ depending on the operating system. All #y related
system-dependent code has C pre-processor #ifdef SYSV® statments around it in
the existing drivers. System-dependent code is defined as either being under
System V (SYSV) or Berkeley. This issue will only arise when the tty to which
the digitizer is connected is being opened, using D_setup_driver(p. 197).

Initializing and reading the digitizer:
The driver and the digitizer commumicate by using the UNIX read () and write ()
functions. D_setup_driver(p.197) sets up the digitizer software by writing
command strings to the tfy. Since each digitizer is different, the digitizer's user
manual frequently proves to be the only source of information on how to
initialize and read the digitizer.

Setting up a consistently good function to read the digitizer is the most difficult
part of writing the digitizer driver. The read() function, when reading from a
tty, may not read as many characters as requested. For example, if six bytes are
requested, read () can retum anywhere from zero to six bytes.

One approach is to request six bytes, and then, if the mumber of bytes actually
read isn't six, issue another read (), this time asking only for the mumber of bytes
remaining. In other words, if six bytes were requested but only two were
received, then another read for four bytes is issued. If that read returned one byte,
then another read is requested for three bytes, etc. This would continue until
either all six bytes were read, or a time-out occurred. This approach worked well
in the Altek driver.

5 SYSV is defined by Grake. See §11 Conpiling GRASS Programs Using Grake (p. 551.

§21 Writing a Digitizer Driver

Another approach that was tried was to request six bytes, and then, if less than
six bytes were received, the bytes were thrown away, and another six bytes were
requested. This was repeated until the read retumed six bytes. This approach
worked some of the time, but sometimes gave unreliable coordinates, and was
abandoned. Other digitizer drivers have been written that read ascii characters
from the digitizer and use sscarnf() to strip out the needed information.

The mmber of characters actually read to get one set of coordinates will depend
on the digitizer and on the information stated in the digitizer' s user manual.

Another problem, in the case of the Altek, is that the cursor is only active in
certain portions of the tablet. This means that either there will be no output, or a
specific flag will be on/off, until the cursor is within the active area of the tablet.
Because no external markings on the tablet delineate the active area, individuals
commonly attempt to digitize within the tablet's inactive area, leading them to the
false assumption that the digitizer is acting strangely. Depending on the digitizer,
this will have to be handled by fine-tuming the reads and/or checking the status
byte(s).

A word of waming - if the #y isn't set up properly in D_setup_driver(p. 197), the
read () function can retum confusing information (i.e., it may include garbage
with the data or be unable to read the mmber of characters specified).

Synchronizing the digitizer and computer:
Driver-checking has been added to post-3.0 drivers, to wam the user when the
driver is out of sync with the digitizer. For example, the Altek has the high bit
tumed on in the first byte of the six bytes that are read. The driver checks to
make sure that the high byte is turmed on; if it is not, the digitizer and driver are
out of sync. The driver warns the user, resets the digitizer and then re-initializes
the digitizer. '

Digitizer cursors with buttons:

Drivers can be written to use the digitizer buttons or the keyboard for input while
digitizing. Where drivers use the digitizer buttons, some digitizers will queue up
any button hits. (This may depend on what running state the digitizer was set up
with when it was initialized.) This means that if a person pushes the digitizer
cursor buttons a mmber of times and then begins to digitize, the program must
clear the queue of button hits before beginning to digitize. Other digitizers will
only say that a button has been hit if the button has been hit and the digitizer has
been prompted for a coordinate.

§21 Writing a Digitizer Driver

Chapter 22

Writing a Graphics Driver

22.1. Introduction

GRASS 3.0 application programs which use graphics are written with the Raster
Graphics Library. At compilation time, no actual graphics device driver code is
loaded. It is only at run-time that the graphics requests make their way to device-
specific code. At run-time, an application program connects with a running graphics
device driver, typically via system level first-in-first-out (fifo) files. Each GRASS site
may have one or nmore of these programs to choose from. They are managed by the
programs nwonitor, Dlist.mon, Drelease.mon, Dselect.non, Dstw'tnvn, Dstatus.mon,
Dstop.mon and Dwhich.mon.

Porting GRASS graphics programs from device to device simply requires the creation
of a new graphics driver program. Once completed and working, all GRASS graphics
programs will work exactly as they were designed without modification (or
recompilation). This section is concemed with the creation of a new graphics driver.

22.2. Basics

The vanous drivers have source code contained wunder the directory
$GISBASE/src/D/devices.! This directory contains a separate directory for each driver,
e.g., SUNVIEW and MASS. In addition, the directory lib contains files of code which
are shared by the drivers. The directory GENERIC contains the begimmings of the
required subroutines and sample Grkefile.

A new driver must provide code for this basic set of routines. Once working, the
programmer can choose to rewrite some of the generic code to increase the
performance of the new driver. Presented first below are the required routines.
Suggested options for driver enhancement are then described.

! $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Ewnormxent
I 51 for details.

Y22 Writing a Graphics Driver

- 208 - _ - 208 -

22.3. Basic Routines

Described here are the basic routines required for constructing a new GRASS 3.0
graphics driver. These routines are all found in the GENERIC directory. It is
suggested that the programmer create a new directory (e.g.,, MYDRIVER) into which
all of the GENERIC files are copied (i.e., cp GENERIC/+ MYDRIVER).

22.3.1. OpeayClose Device

Graph_Set () initialize graphics
This routine is called at the start-up of a driver. Any code necessary to establish
the desired graphics environment is included here. Often this means clearing the
graphics screen, establishing connection with a mouse or pointer, setting drawing
parameters, and establishing the dimensions of the drawing screen. In addition,
the global integer variables SCREEN_LEFT, SCREEN_RIGHT, SCREEN_TOP,
SCREEN_BOTTOM, and NCOLORS must be set Note that the GRASS
software presumes the origin to be in the upper lefti-hand corner of the screen,
meaning:

SCREEN_LEFT < SCREEN_RIGHT
SCREEN_TOP < SCREEN_BOTTOM

You may need to flip the coordinate system in your device-specific code to
support a device which uses the lower left comer as the origin. These values
must map precisely to the screen rows and columns. For example, if the device
provides graphics access to pixel columns 2 through 1023, then these values are
assigned to SCREEN_LEFT ansd SCREEN_RIGHT, respectively.

NCOLORS is set to the total number of colors available on the device. This
most certainly needs to be more than 100 (or so).

Graph_Close () shut doun device
Close down the graphics processing. This gets called only at driver termination
time.

22.3.2. Retiim Edge and Color Values

The four raster edge values set in the Graph_Set() routine above are retrieved with the
following routines.

§22 Writing a Graphics Driver

- 29 - - 209 -

Screen_left (index) return left pivel colurn value

Screen_rite (index) return right pixel colurn value

Screen_top (index) return top pivel row value

Screen_bot (index) return bottom pixel row value
int *index ;

The requested pixel value is retimed in index.

These next two routines return the mmnber of colors. There is no good reason for both
routines to exist; chalk it up to the power of anachronism.

Get_mum_colors (index) return rugrber of colors
int *index ;
The number of colors is reumed in index.

get_mum colors () . return nurrber of colors
The mumber of colors is retumed directly.

22.3.3. Drawing Routines
The lowest level drawing routines are draw_line(), which draws a line between two
screen coordinates, and Polygon_abs() which fills a polygon.

draw_line (x1,y1,x2,y2) draw a line
int x1, y1, x2, y2;

This routine will draw a line in the current color from x1,y1 to x2,y2.

Polygon_abs (x,y.n) draw filled polygon
int *x, *y ;
intn;

Using the n screen coordinate pairs represented by the values in the x and y
arrays, this routine draws a polygon filled with the currently selected color.

22.3.4. Colors

This first routine identifies whether the device allows the nin-time setting of device
color look-up tables. If it can (and it should), the next two routines set and select
colors. '

$22 Writing a Graphics Driver

- 210 - -210-

Can_do () signals run-time color look-up table access

If color look-up table modification is allowed, then this routine must retum 1;

. otherwise it retums 0. If your device has fixed colors, you must modify the
routines in the lib directory which set and select colors. Most devices now allow
the setting of the color look-up table.

reset_color (mmber, red, green, blue) set a color
int mmober ;
unsigned char red, green, blue ;
The system’s color represented by mumber is set using the color component

intensities found in the red, green, and blue variables. A value of 0 represents
0% intensity; a value of 255 represents 100% intensity.

color (number) select a color
int mmber ;

The current color is set to mumber. This mumber points to the color combination
defined in the last call to reset_color() that referenced this mmber.

22.3.5. Mouse Input
The user provides input through the three following routines.

Get_Jocation_with_box (cx,cy,wx,wy,button) get location with rubber box

Using mouse device, get a new screen coordinate and button mumber. Button
numbers must be the following values which correspord to the following software
meanings:

1 - left button

2 - middle button

3 - right button

A "rubber-band” box is used. One comer is fixed at the cx,cy coordinate. The
opposite coordinate starts out at wx,wy and then tracks the mouse. Upon button
depression, the current coordinate is retumed in wx,wy and the button pressed is
returmed in button.

§22 Writing a Graphics Driver

-211-

Get_location_with_line (cx,cy,wx,wy,button) get location uith rubber line

int cx, ¢y ;

int *wx, *wy ;

int *button ;
Using mouse device, get a new screen coordinate and button mumber. Button
mmbers must be the following values which correspond to the following software
Meanings:

1 - left button
2 - middle button
3 - right button

A "nuibber-band" line is used. Ore end is fixed at the ex,cy coordinate. The
opposite coordinate starts out at wx,wy and then tracks the mouse. Upon button
depression, the current coordinate is returned in wx,wy and the button pressed is
returmed in button.

Get_location_with_pointer (wx,wy,button) get location with pointer

int *wx, *wy ;
int *button ;
Using mouse device, get a new screen coordinate and button mumber. Button
mmnbers must be the following values which correspond to the following software
meanings:
1 - left button

2 - middle button
3 - right button

A cursor is used which starts out at wx,wy and then tracks the mouse. Upon
button depression, the current coordinate is retirned in wx,wy and the button
pressed is retirned in button,

22.3.6. Pands
The following routines cooperate to save and restore sections of the display screen.

§22 Writing a Graphics Driver

-212- -212-

Panel_save (name, top, bottom, left, right) save a panel
char *name ;
int top, bottom, left, rnight ;

The bit display between the rows and cols represented by top, bottom, left, and
right are saved. The string pointed to by name is a file name which may be
used to save the image.

Panel_restore (name) restore a panel
char *name ;

Place a parel saved in name (which is often a file) back on the screen as it was
when it was saved. The memory or file associated with name is removed. -

22.4. Optional Routines

All of the above must be created for any new driver. The GRASS Rasterlib, which
provides the application program routines which are passed to the driver via the fifo
files, contains many more graphics options. There are actually about 44. Above, we
have described 19 routines, some of which do not have a counterpart in the Rasterlib.
For GRASS 3.0, the basic driver library was expanded to accommodate all of the
graphics subroutines which could be accomplished at a device-dependent level using
the 19 routines described above. This makes driver writing quite easy and
straightforward. A price that is paid is that the resulting driver is probably slower and
less efficient than it might be if more of the routines were written in a device-
dependent way. This section presents a few of the primary target routines that you
would most likely consider rewritting for a new driver.

It is suggested that the driver writer copy entire files from the lib area that contain
code which shall be replaced. In the loading of libraries during the compilation
process, the entire file containing an as yet undefined routine will be loaded. For
example, say a file "ab.c" contains subroutines a() and b(). Even if the programmer
has provided subroutine a() elsewhere, at load time, the entire file "ab.c" will be
loaded to get subroutine b(). The compiler will likely complain about a mulitply-
defined extermal. To avoid this situation, do not break routines out of their files for
modification; modify the entire file.

¥22 Writing a Graphics Driver

- 213 - -213-

Raster_int (n, nrows, array, withzeros, type) raster display

intn;

int nrows ;

unsigned int *array ;

int withzeros ;

int type ;
This is the basic routine for rendering raster images on the screen. Application
programs construct images row by row, sending the completed rasters to the
device driver. The default Raster_int() in lib draws the raster through repetitive
calls to color() and draw_line(). Often a 20x increase in rendering speed is
accomplished through low-level raster calls. The raster is found in the array
pointer. It contains color information for n colors and should be repeated for
mrows rows. Each successive row falls under the previous row. (Depending on
the complexity of the raster and the mumober of rows, it is sometimes
advantageous to render the raster through low-level box commands.) The
withzeros flag indicates whether the zero values should be treated as color 0
(withzeros==1) or as invisible (withzeros==0). Finally, type indicates that the
raster values are already indexed to the hardware color look-up table (type==0),
or that the raster values are indexed to GRASS colors (which must be translated
through a look-up table) to hardware look-up table colors (type==1).

Further details on this routine and related routines Raster_chr(), and

Raster_def{) are, of course, found in the definitive documentation: the source
code.

§22 Writing a Graphics Driver

-215- - 215 -

Chapter 23

Writing a Paint Driver

23.1. Introduction

The paint system, which produces hardcopy maps for GRASS, is able to support many
different types of color printers. This is achieved by placing all device-dependent code
in a separate program called a device driver. Application programs, written using a
library of device-independent routines, commumicate with the device driver using the
UNIX pipe mechanism. The device driver translates the device-independent requests
into graphics for the device.

A paint driver has two parts: a shell script and an executable program. The executable
program is responsible for translating device-independent requests into graphics on the
printer. The shell script is responsible for setting some UNIX environment variables
that are required by the interface, and then rurming the executable program.

The user first selects a printer using the Pselect program (or the related paint select
option). The selected printer is stored in the GRASS environment varable
PAINTER.! Then the user runs one of the application programs. The principal paint
applications that produce color output are Prap (and the related paint map option)
which generates scaled maps, and Pchart (and the related paint chart option) which
produces a chart of printer colors. The application looks up the PAINTER and runs
the related shell script as a child process. The shell script sets the required
environment variables and runs the executable. The application then commmmicates
with the driver via pipes.

1 See §10.2 GRASS Environment [p. 52).

§233 Writing a Paint Driver

- 216 - -216 -

23.2. Creating a Source Directory for the Driver Code
The source code for paint drivers lives in
$GISBASE/src/paint/Drivers?

Each driver has its own sub-directory containing the source code for the executable
program, the shell script, and a Gmakefile with rules that tell the GRASS Grmke
command how to compile the driver.3

23.3. The Paint Driver Executable Program

A paint device driver program consists of a set of routines (defined below) that
perform the device-dependent functions. These routines must be written for each
device to be supported.

23.3.1. Printer /O Routines
The tollowing routines open the printer port and perform low-level i/o to the printer.

Popen (port) open the printer port
 char *port;

Open the printer port for output. If the port is a #y, perform any necessary tty
settings (baud rate, xon/xoff, etc.) required. No data should be written to the
port.

The port will be the value of the UNIX environment variable MAPLP,? if set,
and NULL otherwise. It is recommended that device drivers use the port that is
passed to them so that paint has a consistent logic.

The baud rate should not be hard-coded into Popen(). It should be set in the
driver shell as the UNIX enviromment variable BAUD. Popen() should
determine the baud rate from this environment variable.

2 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX BEuwironment
ip.51) for details.

3 See §11 Conpiling GRASS Programs Using Gruke (p 55 for details on the GRASS
compilation process.

4 This, and other, environment variables are set in the driver shell script which is described
in §23.4 The Deuice Driver Shell Sript |p. 222).

$23 Writing a Paint Driver

-217 - - 217 -

Pout (buf, n) urite to printer
unsigned char *buf;
int ng
Output the data in buf. The mummber of bytes to send is n. This is a low-level

request. No processing of the data is to be done. Output is simply to be sent as
is to the printer.

It is not required that data passed to this routine go immediately to the printer.
This routine can buffer the output, if desired.

It is recommended that this routine be used to send all output to the printer.

Poutc (¢) urite a character to printer
unsigned char c;
Send the character ¢ to the printer. This routine can be implemented as follows:

Poutr(c) unsigned char c;
{

Pout(c, 1);
}
Pouts (s) write a string to printer
unsigned char *s;
Send the character string s to the printer. This rouﬁne.can be implemented as

follows:

Pouts(s) unsigned char *s;
{

Poutls, strlen(s));
) v

Pfiush () ’ flush pending output
Flush any pending output to the printer. Do not close the port.

$23 Writing a Paint Driver

- 218 - ‘ - 218 -

Pdose () close the printer port
Flush any pending output to the printer and close the port.

Note. The above routines are usually not device-dependent. In most cases the printer
is connected either to a serial #y port or to a parallel port. The paint driver library®
contains versions of these routines which can be used for output to either serial or
parallel ports. Exceptions to this are the preview driver, which sends its output to the
graphics monitor, and the NULL driver which sends debug output to stderr.

The following routine will be called after Popen(p.216) to initialize the printer:

Pinlt() initialize the printer

Initialize the printer. Send whatever codes are necessary to get the printer ready
for printing. .

23.3.3. Alpha-mumeric Mode
The following two routines allow the printer to be used for normal text printing:

Palpha () put printer in text mode
Put the printer in alpha-mmeric mode. In this mode, the driver should only
honor Ptext(p.218) calls.

Ptext (text) print text
char *text;
Print the text string on the printer.
The text will not normally have non-printing characters (i.e., control codes, tabs,
linefeeds, returns, etc.) in it. Such characters in the text should be ignored or

suppressed if they do occur. If the printer requires any linefeeds or camiage
returns, this routine should supply them.

Note. If the printer does not have support for text in the hardware, it must be
simulated. The shinko635 printer does not have text, and the code from that driver can
be used.

5 See §23.6 Paint Driver Library p.224).

$23 Writing a Paint Driver

-219-

23.3.4. Graphics Mode
The following routines perform raster color graphics:

.219.-

Praster () ‘put printer in graphics mode

Put the printer in raster graphics mode. This implies that subsequent requests will
be related to generating color images on the printer.

Pnpixels (nrows, ncols) report printer dimensions

int *nrows; -
int *ncols;

The variable nools should be set to the number of pixels across the printer page.
If the driver is combining physical pixels into larger groupings (e.g., 2¢2 pixels)
to create more colors, then nools should be set the mumber of these larger pixels.5

The variable nrows should be set to 0. A non-zero value means that the output
media does not support arbitrarily long output and paint will scale the output to
fit into .a window mrows x ncols. The only driver which should set this to a
non-zero value is the preuiew driver, which serds its output to the graphics
screen.

Ppictsize (nmrows, ncols) defined picture size

int nrows;
int ncols;

Prepare the printer for a picture with mrows and ncols. The number of columns
neols will not exceed the mumber of columns returmed by Prpixels(p.219).7

There is no limit on the number of rows mrows that will be requested. Paint
assumes that the printer paper is essentially infinite in length. Some printers (e.g.,
thermal printers like the shinko635) only allow a limited mumber of rows, after
which they leave a gap before the output can begin again. It is up to the driver to
handle this. The output will simply have gaps in it The user will cut out the
gaps and tape the pieces back together.

disappear.

large, the driver should exit with an error message.

§23 Writing a Paint Driver

|

5 The Prmp program canmot make use of more than 1024 pixels. It is acceptable for
Pripixels() to set nools larger than 1024, but Prap will reset it to 1024. Wide printers will
not (currenty) be used to their fullest width. When Prmap is upgraded, this limitation will

7 The programmer should, of course. code defensively. If the number of colurmns is too

Pdata (buf, n) send raster data to printer
unsigned char *buf;
int n;
Output the raster data in buf. The mmber of bytes to send is n, which will be

the ncols as specified in the previous call to Ppictsize(p.219). The values in buf
will be printer color mmbers, one per pixel.

Note that the color mmnbers in buf have full color information encoded into them
(i.e., red, green, and blue). Some printers (e.g., inkjet) can output all the colors on
a row by row basis. Others (e.g., thermal) must lay down a full page of one
color, then repeat with another color, etc. Drivers for these printers will have to
capture the raster data into temporary files and then make three passes through
the captured data, one for each color.

Prie (buf, n) send rle raster datu to printer
unsigned char *buf;
int g
Output the run-length encoded raster data in buf. The data is in pairs:
color, count, where color is the raster color to be sent, and courz is the mmber

of times the color is to be repeated (with a count of 0 meaning 256). The
mmber of pairs is n.

Of course, all the counts should add up to ncols as specified in the previous call
to Ppictsize(p.219). If the printer can handle run-length encoded data, then the
data can be sent either directly or with minimal manipulation. Otherwise, it must
be converted into standard raster form before sending it to the printer.

23.3.5. Color Infarmation

The paint system expects that the printer has a predefined color table. No attempt is
made by paint to download a specific color table. Rather, the driver is queried about
its available colors. The following routines retrn information about the colors
available on the printer. These routines may be called even if Popen(p:216) has not
been called.

§23 Writing a Paint Driver

-921 - -221-

Pnoolors () number of printer colors

This routine retums the number of colors available. Currently, this routine must
not return a number larger than 255. If the printer is able to generate more than
255 colors, the driver must find a way to select a subset: of these colors. Also,

- the paint system works well with printers that have around 125 different colors.
If the printer only has three colors (e.g., cyan, yellow, and magenta), then 125
colors can be created using a 2x2 pixel.

Poolorlevels (red, green, blue) get color levels
int *red, *green, *blue;

Returns the mumber of colors levels. This. means, for example, if the printer has
125 colors, the color level would be 5 for each color; if the printer has 216
colors, the color levels would be 6 for each color, etc.

Poolormum (red, green, blue) get color number
float red, green, blue;

This routine retums the color number for the printer which most closely
~ approximates the color specified by the red, green, and blue iniensities. These
intensities will be in the range 0.0 to 1.0.°

The printer color mmbers must be in the range O to n-1, where n is the mmber
of colors returmed by Pncolors(p. 221).

For printers that have cyan, yellow, and magenta instead of red, green and blue,
the conversion formulas are:

cyan = 10-red
yellow = 1.0- blue
magenta = 1.0 - green

8 See §23.8 Creating 125 Colors From 3 Colors {p. 227).
? Jst to be safe, those above 1.0 can be changed to 1.0, and those below 0.0 can be
changed to 0.0.

$23 Writing a Paint Driver

.22 .22 .

Poolorvalue (n, red, green, blue) get color intensities
int o
float *red, *green, *blue;
This routine computes the red, green, and blue intensities for the printer color

mmber n. These intensities must be in the range 0.0 to 1.0. If n is not a valid
color mmber, set the intensities to 1.0 (white).

23.4. The Device Driver Shell Script ‘
The driver shell is a snuall shell script which sets some environment varisbles, and
then executes the driver. The following variables must be set:10

MAPLP
This van'd)le should be set to the t#y port that the printer is on. The #y named by
this variable is passed to Popen(p.216). Only in very special cases can drivers
Jjustify either ignoring this value or allowing it not to be set.

The drivers distributed by USACERL have MAPLP set to /dev/${ PAINTER}.
Thus each driver must have a corresponding /dev port. These are normally created
as links to real /dev/tty ports.

BAUD
This specifies the baud rate of the output tty port. This variable is only needed if
the output port is a serial RS-232 tty port. The value of the variable should be an
integer (e.g., 1200, 9600, etc.), and should be used by Popen(p.216) to set the
baud rate of the 2y port.

HRES

This specifies the horizontal resolution of the printer in plxels per inch. This is a
positive floating point number.

VRES
This specifies the vertical resolution of the printer in pixels per inch. This is a
positive floating point number.

NCHARS
This specifies the maximum number of characters that can be printed on one line
in alpha-mumeric mode.

Note. The application programs do not try to deduce the width in pixels of text
characters.

TEXTSCALE

- This positive floating point mmber is used by Prap and paint map to set the
size of the numbers placed on the grid when maps are drawn. The normal value

') The driver shell script may set any other variables that the programmer has determined
the driver needs.

§23 Writing a Paint Driver

is 1.0, but if thc mumbers should appear too large, a smaller value (0.75) will
shrink these numbers. If they appear too small, a larger value (1.25) will enlarge
them. This value must be determined by trial and enor.

The next five variables are used to control the color boxes drawn in the map legend
for Pmap and paint map, as well as the boxes for the printer color chart created by
Pchart and paint chart. They have to be determined by trial and emror in order to get
the numbering to appear under the correct box.11

NBLOCKS
This positive integer specifies the maximum muber of blocks that are to be
drawn per line.

BLOCKSIZE
This positive integer specifies the number of pixels across the top of an individual
box.

BLOCKSPACE
This positive integer specifies the mumber of pixels between boxes.

TEXTSPACE
This positive integer specifies the mmber of space characters to output after each
mumber (printed under the boxes).

TEXTFUDGE
This non-negative integer provides a way of inserting extra pixels between every
other box, or every third box, etc. On some printers, this will not be necessary, in
which case TEXTFUDGE should be set to 0. If you find that the numbers under
the boxes are drifting away from the intended box, the solution may be to move
every other box, or every third box over 1 pixel. For example, to move every
other box, set TEXTFUDGE to 2.

The following‘ is a sample paint driver shell script:

T Apologies are offered for this admittedly awkward design.

§23 Writing a Paint Driver

: $PAINTER?} $ PAINT_DRIVER?}

MAPLP=/dev/$PAINTER
BAUD=9600

HRES=85.8
VRES=87.0
NCHARS=132

TEXTSCALE=1.0

NBLOCKS=25

BLOCKSIZE=23

BLOCKSPACE-13

TEXTSPACE=1

TEXTFUDGE=3

export MAPLP BAUD HRES VRES NCHARS

export TEXTSCALE TEXTSPACE TEXTFUDGE
export NBLOCKS BLOCKSIZE BLOCKSPACE

exec $PAINT_DRIVER

23.5. Programming Considerations

The paint driver uses its standard input and standard output to commmmicate with the
paint application program. It is very important that neither the driver shell nor the
driver program write to stdout or read from stdin.

Diagnostics, error messages, etc., should be written to stderr. There is an error routine
which driver programs can use for fatal error messages. It is defined as follows:

error (message, pernror)
char *message;
int pernror,

This routine prints the message on stderr. If perror is true (i.e., non-zero), the
UNIX routine perror() will be also called to print a system error message.
Finally, exit () is called to terminate the driver.

23.6. Paint Driver Library
The paint system comes with some code that has already be written. This code is in
object files under the paint driver library directory.12 These object files are:

12 See §23.7 Corpiling the Driver [p 2251 for an example of how to load this library code.

$23 Writing a Paint Driver

.z - - 26

main.o
This file contains the mmin() routine which must be loaded by every driver,
since it contains the code that interfaces with the application programs.

i0.0
This file contains versions of Popen(p.216), Pout(p.217), Poulc(p.217),
Pouts(p.217), Pflush(p.217), and Pclose(p.218) which can be used with printers that
are connected to serial or parallel ports. These routines handle the tricky #y
interfaces for both System V and Berkeley UNIX, allowing full 8-bit data output
to the printer, with xon/xoff control enabled, as well as baud rate selection.

colors125.0
This file contains versions of Pncolors(p.221), Pcolorlevels(p.221),
Pcolornumip.221), and Pcolorvalue(p.222) for the 125 color logic described in
§23.8 Creating 125 Colors From 3 Colors [p.227).

23.7. Compiling the Driver
Paint drivers are compiled using the GRASS Gruoke utility which requires a
Gruakefile containing compilation rules.13 The following is a sample Gmakefile :

13 See §11 Conpiling GRASS Prograrms Using Grake (p.551 for details on the GRASS
compilation process.

§23 Writing a Paint Driver

DRIVER_SHELL =
DRIVER_EXEC =

OBJ =

all: $(DRIVER_EXFC) $DRIVER_SHELL)
$(DRIVER_EXEC): $(OBJ) $(LOCKLIB)

$(DRIVER_SHELL): DRIVER.sh

$(SRC)/paint/Interface/driverlib

$(DRIVERLIB)/main.o \
$(DRIVERLIB)/Ao0.0 \
$(DRIVERLIB)/colors125.0

$(ETC) fpaint/driver.sv/$(NAME)
$(ETO)/peint/driver/$(NAME)

slphao texto rastero mpixelso \
pictsize.o datao He.o

cc $(LDFLAGS) $(INTERFACE) $(OBJ) $(LOCKLIB) -0 $@

m -f $@

cp & $@

chmod +x $@
$(OBJ): - Ph
$(LOCKLIB): # in case library changes

There are some features sbout this Gmakefile that should be noted:

printer name (NAME)

The printer name sample is assigned to the NAME variable, which is then used

everywhere else.

paint driver library (DRIVERLIB)
This driver loads code from the common paint driver library.14 It loads main.o
containing the main() routine for the driver. All drivers must load raino . It
loads i0.0 which contains versions of Popeni(p.216), Pout(p.217), Poutc(p.217),
Pouts(p.217), Pflush(p.217), and Pclose(p.218) for serial and parallel ports. It also
loads colors125.0 which contains versions of Pncolors(p.221), Pcolorlevels(p.221),
Pcolornumi(p. 221), and Pcolorvalue(p.222) for 125 colors.

lock library (LOCKLIB)

The driver loads the lock libary. This is a GRASS library which must be loaded
if the Popenip.216) from the driver library is used.

homes for driver shell and executable
The driver executable is compiled into the driver directory, and the driver shell is
copied into the driver.sh directory. This means that the driver executable is

14 See also §23.6 Paint Driver Library (p. 224)).

§23 Writing a Paint Driver

-227- - 227 -

placed in
$GISBASF/etc/paint/drivertd

and the driver shell in
$GISBASE/etc/paint/driver.sh.

23.8. Creating 125 Colars From 3 Colars
The paint system expects that the printer will have a reasonably large mmber of
colors. Some printers support a large color table in the hardware. But others only

support three primary colors: red, green, and blue (or cyan, yellow, and magenta). If
the printer only has three colors, the driver must simulate more. '

If the printer pixels are grouped into 2x2 combinations of pixels, then 125 colors can
be similated. For example, a color with 20% red, 100% green, and 0% blue would
have one of the four pixels painted red, all four pixels painted green, and none of the
pixels painted blue.

The following code converts - color intensity in the range 0.0 to 1.0 into a mumber
from 0-4 (i.e., the mmt__ . pixels to "tum on" for that color):

npixels = (inte: 3* <« 5)

if (npixels > 4)

npixels = 4 ;

This logic will agree with the 125 color logic used by the paint driver libraryl6
routines Fncolors(p. 221), Pcolorlevels(p.221), Pcolornumip.221), and Pcolorvalue(p. 222),
provided that the color numbers are assigned as follows:

color_number = red_pixels « 25 + green_pixels = 5°+ blue_pixels ;

15 $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Buwironment
ip.51) for details.
16 See §23.6 Paint Driver Library [p. 2241.

§23 Writing a Paint Driver

Chapter 24

Writing GRASS Shell Scripts

This section describes some of the things a programmer should consider when writing
a shell script that will become a GRASS command.

24.1. Use the Bourne Shell

The Boume Shell (/bin/sh) is the original UNIX command interpreter. It is available
on most (if not all) versions of UNIX. Other command interpreters, such as the C-
Shell (/bin/csh), are not as widely available. Therefore, programmers are strongly
encouraged to write Bourne Shell scripts for maximum portability.

The discussion that follows is for the Bourne Shell only. It is also assumed that the
reader knows (or can leam) how to write Bourne Shell scripts. This chapter is intended
to provide guidelines for making them work properly as GRASS commands.

24.2. How a Script Should Start

There are some things that should be done at the beginning of any GRASS shell
script:

(1) Venfy that the user is running GRASS, and

(2) Cast the GRASS environment varisbles into the UNIX enviroment,! and
verify that the vanables needed by the shell script are set.

The following accomplishes these two things:

V See §10 Environment Variables (p. 51!

§24 Writing GRASS Shell Scripts

if test "$GISRC" = ""
then
echo "Somnry, you are ot running GRASS” >&2
exit 1
fi
eval “giserv’
: ${GISBASE?}. ${ GISDBASE?} ${ LOCATION_NAME?} ${ MASPET?}

Note the use of the : command. This command simply evaluates its arguments. The
first use is as the first character of the file, which signals to UNIX that the script is in
fact a Bourne Shell script (see §24.5 Don’t Use- #//in/h [p.2311). The second use
checks to see that variables are set. The syntax ${GISBASE?} means that if GISBASE
is not set, issue an enor message to standard error and exit the shell script

24.3. Gask

The GRASS command Gask emulates the prompting found in all other GRASS
commands, and should be used in shell scripts to ask the user for files from the
GRASS database. The user' s response can be cast into shell variables. The following
example asks the user to select an existing cell file:

Gask old "Select a cell file" cell cell Amp/$$
. tmp/$$
m -f Ap/$$
if test " $name” = "
then
exit 0
fi

The Gask mamual entry in the GRASS User’s Reference Manual describes this
commanrd in detail. Here, the reader should note the following:

(1) The temporary file used to hold the user's response is Amp/$$. The
Boume Shell will substitute its process id for the $§ thus creating a
unique file name;

(2) The next line, which begins with a dot, sources the commands contained
in the temporary file. These commands are:

name=something

mapset=something

file=something
Therefore, the variables $name, $mapset, and $file will contain the name,
mapset and full UNIX file name of the cell file selected by the user;

(3) The temporary file is removed; and

(4) If $name is empty, this means that the user changed his or her mind and
didn’t select any cell file.2 In this case, something reasonable is done, like

2 The other variables will be empty as well.

$24 Writing GRASS Shell Scripts

- 231 - -231-

24.4. Gfindfile

The Gfindfile command can be used t locate GRASS files that were specified as
arguments to the shell script (instead of prompted for with Gask). Assuming that the
variable $request contains the name of a cell file, the following checks to see if the file
exists. If it does, the variables $name, $mapset and $file will be set to the name,
mapset and full UNIX file name for the cell file:

eval ‘Gfindfile cell "$request”"

if test " $mapset” = ""

then
echo ERROR: cell file "$request” not found >&2
exit 1

fi

Note. The programmer should use quotes with $request, since it may contain spaces.
The user can request a file on the command line of the form "name in mapset"3
(quotes will preserve the full request). Gfindfile accepts this form and, if found,
outputs $name as the name part and $mapset as the mapset part. See the Gfindfile
manual entry in the GRASS User’s Reference Manual for more details.

24.5. Don’t Use #/bin/sh

When a user runs a shell script, he or she simply types the name of the shell script just
as if it were a compiled program. On systems that have more than one shell, it is the
responsibility of UNIX to figure out which shell should interpret the commands in the
script. This decision must be made on the basis of the shell for which the script was
written.

On systems that have both /bin/sh and /bin/csh, the rule has been: if the first character
of the file is #, then the script is given to /bin/csh to interpret; otherwise, it is given to
/bin/sh. As the number of shells available grew, the mechamsm was expanded to
allow the shell script to explicitly specify the interpreter. The rule was modified so
that if the first line of the file is: '

#!command [args)
then the conmand (with the specified arguments) is invoked as the script interpreter.

This led to /bin/sh scripts starting with #/bin/sh. However, the authors have found
UNIX systems which do not recognize this rule. They simply see the # as the first
character, and tum the script over to /bin/csh instead of /bin/sh. Therefore, scripts for

4 This form for GRASS file names is discussed under §12.5.2 Finding Files in the Database

g0

§24 Writing GRASS Shell Scripts

-282- -232-

/birvsh should never start with #. A way to start Boume Shell script that has
worked well on all systems with which the authors have experience, is to use the :
command (see §24.2 How a Script Should Sart (p. 229)).

§24 Writing GRASS Shell Scripts

Appendix A
Annotated Gmake Pre-defined Variables

The pre-defined Gmake varables are defined in the files makehead and make.nid.
These files can be found under $GISBASE/sre/CMD.!

Note. The variables shown here are described in more detail in §11 Compiling GRASS
Programs Using Gmake [p.55].
nmakehead

The makehead file contains machine-dependent and installation-dependent information.
It is created by system persommel when GRASS is installed on a system prior o
compilation. This file varies from system to system.

| $GISBASE is the directory where GRASS is installed. See §10.1 UNIX Enwironment
Ip.51) for details.

Annotated Gmake Pre-defined Variables

Annotated sample makehead file
Variable Value Description
GIS = /gress GRASS installation directory
GISDBASE = /gross/data GRASS database directory
UNIX_BIN = /usrflocal/bin UNIX command bin directory
DEFAULT_LOCATION = spearfish Default Location for new users
oS = SYSV Tty interface flag
#0S = BERK
COMPILE_FLAGS =-0 Compiler options
LDFLAGS =-§ Loader options
DIGIT_FLAGS = Digitizer compile time flag
#DIGIT_FLAGS = -DATT
#DIGIT_FLAGS = -DMASSCOMP
MATHLIB =-lm Math library
TERMLIB = -ltermlib Termlib/Aermcap library
CLEAR =ok Can use termlib to clear screen
#CLEAR =no
AR = arruv $@ $7;)\ Library archive rule for
ranlib $@ systemns with ranlib
#AR = ar rc @\ Library archive rule for
‘lorder $(OBJ) | teort gystems without ranlib

Annotated Gmalke Pre-defined Variables

make.mid

The make.mid file uses the variables in makehead to construct other variables that are
useful for compilation rules. The contents of this file are usually unchanged from

system to system.
Annotated make.md file
Variable Value Description
CFLAGS = $(COMPILE_FLAGS) -I$(LIBDIR)\ Compiler flags
-D$(0S) $(EXTRA_CFLAGS)
GMAKE = $(GIS)/src/CMD/Gmake Gmake command
MAKEALL = set - *; ford do\ Gmake "all”
test -f $$d/Gmakefile && $(GMAKE) $$d;\
done; exit 0
MANROFF =thl -TX \ Nroff rule for manual pages
$(GIS)/src/man help/man header $7\
| nroff -Tlp |col -b > $@
CURSES = -leurses $(TERMLIB) Curses libraries
MAN1 = $(GIS)/man/1 Man directory, section 1
MAN2 = $(GIS)/man/2 Man directory, section 2
HELP = $(GIS)/man/help Help directory
BIN = $(GIS)hin GRASS command directory
ETC = §(GIS)/etc GRASS command support directory
SRC = $(GIS)/src GRASS source directory
LIBDIR = $(GIS)/grelibes GRASS library directory
GISLIB = $(LIBDIRibgis.a GIS library
IMAGERYLIB = $(LIBDIR)/ibLa Imagery library
LOCKLIB = $(LIBDIR)Aiblock.a Lock library
| SEGMENTLIB = $(LIBDIR)i a Segment library
l DLGLIB = $(LIBDIR)ibdlg.a Dig library
RASTERLIB = $(SRC)/DAibes/rasterlib.a Raster library
DISPLAYLIB = $SRC)/D/libes/displaylib.a Display library
VASKLIB = $(LIBDIRibvask.a Vask library
| VASK - $(VASKLIB) $(CURSES) Vask + curses library

Annotated Gmake Pre-defined Variables

Appendix B
The CELL Data Type

GRASS cell file data is defined o be of type CELL. This data type is defined in the
"gis.h" header file. Programmers must declare all variables and buffers which will
hold cell file data or category codes (which are CELL values as well) as type CELL.

Under GRASS 3.0 the CELL data type is declared to be int, but the programmer
should not assume this. What should be assumed is that CELL is a signed integer
type. It may be changed sometime to short or long. This implies that use of CELL
data with routines which do not know about this data type (e.g., printfl), sscanf(), etc.)
must use an intermediate variable of type long.

To print a CELL value, it must be cast to long. For example:
CELL c; /* cell value to be printed */
/* some code to get a value for ¢c-*/

printf ("%ld\n", (long) ¢); /* castc o long to print */

To read a CELL value, for example from user-typed input, it is necessary to read into
a long varigble, and then assign it to the CELL variable. For example:!

char userbuf 128];

CELL c;

long x;

printf ("Which category? "); /¥ prompt user */

gets(userbuf); /* get user response */

sscanf (userbuf,"%ld", &x); /* scan category into long vaniable */
¢ = (CELL) x; /* assign long value to CELL value */

Of course, with GRASS library routines that are designed to handle the CELL type,
this problem does not arise. It is only when CELL data must be used in routines
which don’t know about the CELL type, that the values must be cast to or from long.

I This example does not check for valid inputs, EOF, etc., which good code must do.

The CELL Data Type

Appendix C

Index to GIS Library

Here is an index of GIS Library routines, with calling sequences and short function

descriptions. '
GIS Library

routine _parameters description page
G_allocate_cell_buf 0 ’ allocate a cell buffer 86
G_ask_any (prompt, name, element, label, wam) | prompt for any valid file name 70
G_ask_cell_in_mapset (prompt, name) prompt for existing cell file 81
G_ask_cell_new (prompt, name) prompt for new cell file 81
G_ask _cell_old (prompt, name) prompt for existing cell file 81
G_ask_in_mapset (prompt, name, element, label) prompt for existing database file 70
G_ask_new (prompt, name, element, label) promopt for new database file 69
G_ask_old (prompt, name, element, label) prompt for existing database file 69
G_ask_sites_in_mapset (prompt, name) prompt for existing site list file 106
G_ask_sites_new (prompt, name) prompt for new site list file 106
G_ask_sites_old (prompt, name) prompt for existing site list file 106
G_ask_vector_in_mapset (prompt, name) prompt for an existing vector file 101
G_ask_vector_new {prompt, name) prompt for a new vector file 101
G_ask_vector_old (prompt, name) prompt for an existing vector file 101
G_calloc (n, size) memory allocation 76
G_close_cell (fd close a cell file 89
G_date () current date and time 117
G_fatal_error (message) print enor message and exit 64
G_find_cell2 (name, mapset) find a cell file 82
G_find_cell (name, mapset) find a cell file 82
G_find_file2 (element, name, mapset) find a database file s
G_find_file (element, name, mapeet) find a database file 71
G_find_vector2 (name, mapset) find a vector file 102
G_find_vector (name, mapset) find a vector file 102
G_fopen_append (clement, name) open a database file for update 73
G_fopen_new (element, name) open a new database file 74
G_fopen_old (element, name, mapset). open a database file for reading 73
G_topen_sites_new (name) open a new site list file 107

T_fopen_sites_old (name, mapset) open an existing site list file 107
G_fopen_vector_new {(name) open a new vector file 104
(i_lopen_vector_old {name, mapset) open an existing vector file 103
G_tork) create a protected child process 116
G free_cats (cats) {ree category structure memory 94
G_hee colors (colors) free color structure memory 96
G_gel_ask_etum. msy @] get Hit RETURN msg 70
G_get_cat (n, cats) get a category label 93
G_get_cats_tile (cats) get title from category structure 93
G _get_cellhd (name, mapret, cellhd) read the cell header N0
G_gret_cell_title {name, mapset) get cell title 92
G_get_color (cat, red, given, blue, colors) get a category color 95
(i_get_default_window (window) read the default window 78

Index to GIS Library

- 240 - - 240 -
GIS Library

routine parameters description _page

G_ _getenv (name) query GRASS environment variable 67

G_getenv (name) query GRASS environment variable 67

G_get_map_row {fd, cell, ow) read a cell file 87

G_get_map_row_nomask (fd, cell, ow) read a cell file (without masking) 87

G_gets (buf) get a line of input (detect ctrl-z) 117

G_get_set_window (window) get the active window 79

G_get_site (fd, east, north, desc) read site list file 107

G_get_window (window) read the database window 77

G_gisbase 0 top level program directory 66

G_gisdbase 0 top level database directory 67

G_gisinit (program_name) initialize gis library 64

G_home O user's home directory 117

G_init_cats (n, tite, cats) initialize category structure

G_init_colors (colors) initialize color structure

G_init_range (range) initialize range structure

G_intr_char () retumn interrupt char

G_is_reclass (name, mapset, r_name, r_mapset) reclass file?

G_legal_filename (name) check for legal database file names

G_location 0 current location name

G_location_path 0 current location directory

G_make_aspect_colors
G_make_color_ramp
G_make_color_wave
G_make_grey_scale

G_make_rainbow_colors
G_make_random_colors
G_make_red_vel_gm
G_malloc

G_mapset

G_myname
G_open_cell_new
G_open_cell_new_random

(colors, min, max)
(colors, min, max)
(colors, min, max)
(colors, min, max)

(colors, min, max)
(colors, min, max)
(colors, min, max)
(size)

0

Q0.

(name)

(name)

G_open_cell_new_uncompressed (name)

(i_open_cell_old

G_open_new

G _open_old
(G_open_update
(_parse_command

(; parse_command_usage

(i_percent

O proygram_name
(3 _projee ion_name
G projection

G _put_ccellhd

G _put_cell_tide
_put_map_row
€_put_map_row_random
G put_site
(_put_window

(i read_cats
G read_colors

(name, mapset)

(element, name)
(element, name, mapset)
(element, name)
(arge, argv, keys, stash)
(program, keys, format)

(n, total, incr)
0O

(proj)

9]

(name, cellhd)

(name, title)

(fd, buf)

{fd, buf, row, col, ncells)
({d, east, north, desc)
{(window)

(name, mapset, cats)
(name, mapset, colors)

Index to GIS Library

make aspect colors
make color ramp
make color wave
make linear grey scale

make rainbow colors

make random colors

make red,yellow,green colors
memory allocation

current mapseet name

location tile
open a new cell file (sequential)
open a new cell file (random)

open a new cell file (uncompressed)

! open an existing cell file

open a new database file

open a database file for reading
open a database file for update °
parse command line

command line usage message

print percent complete messages
retum program name

query cartographic projection
query cartographic projection
write the cell header

change cell title

write a cell file (sequential)
write a cell file (random) -
write site list file

write the database window

read cell category file
read map laver color tble

REER RILL] YIRLLY IS8 gy

]

) =3
AN

73
109
11
117
118

G_zone

- 241 -
GIS Library

mutne __puwumelers

.G_read_history (name, mapset, history)

G_read_range (name, mapset, range)

G_read_vector_cats (name, mapeet, cats)

G_remove (element, name)

G_rename (element, old, new)

G_row_update_range (cell, n, range)

G_set_ask_retum_msg (msg)

G_set_cat (n, label, cats)

G_set_cats_title (title, cats)

G_set_color (cat, red, green, blue, colors)

G_ _seteniv (name, value)

G_setenv (name, value)

G_set_error_routine (handler)

G_set_window (window)

G_short_history (name, type, history)

G_sleep_on_error (lag)

G_squeeze (s)

G_store (s)

G_streat (dst, src)

G_strepy (dst, src)

G_strip (9

G_stmepy (dst, src, n)

G_suppress_wamings (flag)

G_system (command)

G_tempfile 0

G_tolcase (s)

G_toucase (s)

G_unctd (©)

G_unopen_cell (fd)

G_unset_emor_routine O

G_update_range (cat, range)

G_waming (message)

G_whoami QO

G_window_cols ()

G_window_rows O

G_write_cats (name, cats)

G_write_colors (name, mapset, colors)

G_write_history (name, history)

G_write_range (name, range)

G_write_vector_cats (name, cats)

(i_ves (question, default)

G_zero_cell_buf (buf)

0

Index to GIS Library

- 241 -

read cell history file 98
read cell range 99
read vector category file 106
memory allocation 76
remove a database file 76
rename a database file 76
update range structure 100
set Hit RETURN msg 70
set a category label 94
set title in category structure 94
set a category color 96
set GRASS environment variable 67
set GRASS environment variable 67
change error handling 65
set the active window 79
initialize history structure 99
sleep on emror? 65
remove unnecessary white space 113
copy string to allocated memory 114
concatentate strings 113
copy strings 113
remove leading/training white space 114
copy strings - 113
SUppress wamings? 66
run a shell level command 116
retums a temporary file name 108
convert string to lower case 114
convert string to upper case 114
printable version of control character 114
unopen a cell file 89
reset normal error handling 65
update range structure 100
print waming message and continue 64
user's hame 118
number of columns in active window 78
number of rows in active window 78
write cell category file 92
write map layer color table 95
write cell history file 9
write cell range 100
write vector category file 106
ask a yes/no question 118
zero a cell buffer 86
query cartographic zone 80

Appendix D

Index to Dig Library

Here is an index of Dig Library routines, with calling sequences and short function

descriptions.
Dig Library

routine __parameters description __page
dig_bound_box (p,N,S, EW) get arc bounding box 135
dig_check_dist (map, o, x, y, d distance to arc 132
dig distance2_point_to_line (x, y, x1, y1, x2, y2) distance to line-segment 134
dig_fini (fd) end level one vector access 125
dig_init_box (N,S,E,W) limit arc search in box 127
dig_init (fd) initialize level one vector access 125
dig P_area_att (map, n) get area category attribute 130
dig P_fini (map) end level two vector access 128
dig P_get_area_bbox (map, n, N, S, E, W) get area bounding box 130
dig P_get_aiea (map, n, pa) get area polygon 129
dig _P_get_area_xy (map, n, np, X, y) get area polygon 129
dig P_get_line_bbox {map, n, N, S, E, W) get arc bounding box 131
dig P_init (name, mapset, map) initialize level two vector access 128
dig P _line_att (map, n) get arc category attribute 131
dig_P_num_areas (map) get number of areas 129
dig_P_num_lines (map) get number of arcs 130
dig_point_in_area (map, x, y, pa) point in area 132
dig_point_to_area (map, x, y) find area with point 132
dig_point_to_line (map, x, y, type) find arc with point 132
dig_P_read_linc (map, n, p) read arc 130
dig _I’_read_next_line (map, p) read next arc 131
dig P_rewind (map) rewind next-arc pointer . 131
dig_print_hcader 0) display vector header information 126
dig_prune (p, threshold) prune a dense arc 135
dig_P_tmp_close (map) temporary close vector map 128
di I_tmp_open (map) reopen closed vector map 128
digr_read_hcad_binarv (fd, header) read vector header 134
dig Read_hine (fd, offset, x, v, np) read arc 133
digr_read_line_in_box (fd, np, x, y) read arc in box 127
digr_read_next hine (fd, np, x, v get next arc 126
digrvad _next hime_onvpe (fd, np, x, y, type) get next arc by tvpe 126
e ewined (tdh) rewind vector file 125
e wntle bead b ifd, healer) write vector header 134
dic Wate hine (fd, tvpe, x, vy, np) wTite arc 133
divs xv distane e point_to _line (x,v,x1,ylx2,v2) distance to line-segiment 135

Index to Dig Library

Appendix E

Index to Imagery Library

Here is an index of Dig Imagery routines, with calling sequences and short function

descriptions.
Dig Imagery

routine __Darameters description __Dage
dig_bound_box P, N,S,EW) get arc bounding box 1356
dig_check_dist (map, n, x, y, d distance to arc 132
dig distance2_point_to_line (x,y, x1, y1, x2, y2) distance to line-segment 134
dig_fini (fd) end level one vector access 125
dig init_box (N,S,E W) limit arc search in box 127
dig_init (fd) initialize level one vector access 125
dig P _area_att (map, n) get area category attribute 130
dig P fini (map) end level two vector access 128
dig_P_get_area_bbox (map, n, N, S, E, W) get area bounding box 130
dig_P_get_area (map, n, pa) get area polygon 129
dig_P_get._area_xy (map, n, np, x, y) get area polygon 129
dig_P_get_line_bbox {map,n, N, §, E, W) get arc bounding box 131
dig_P_init (name, mapeet, map) initialize level two vector access 128
dig P line_att (map, n) get arc category attribute 131
dig P_num_areas (map) get number of areas 129
dig_P_num_lines (map) get number of arcs 130
dig_point_in_area (map, x, y, pa point in area 132
dig_point_to_area (map, x, y) find area with point 132
dig_point_to_line (map, x, y, type) find arc with point 132
dig P_read_line (map, n, p) read arc 130
dig P_read_next_line (map, p) read next arc 131
dig P_rewind (map) rewind next-arc pointer 131
dig_print_header 0 display vector header information 125
dig_prune (p, threshold) prune a dense &t 135
dig_P_tmp_close (map) temporary close vector map 128
dig P_tmp_open (map) reopen closed vector map 128
dig_read_head_binary (fd, header) read vector header . 134
dig_Read_line (fd, offset, x, v, np) read arc 133
dig read_line_in_box (fd, np, x, y) read arc in box 127
dig_read_next_line (fd, np, x, y) get next arc 126
dig_read_next_line_tvpe (fd, np, x, v, tvpe) get next arc by type 126
dig_rewind (fd) rewind vector file 125
dig_write_hcad_binar (td, header) write vector header 134
dig_Wnte_line (fd, tvpe, x, v, np) write arc 1133
dig_xy_distarce2_point_to_line (x,v,x1,y1.x2,v2) distance to line-segment 135

Index to Imagery Library

- 247 - | - 247 -
Appendix F
Index to Display Graphics Library

Here is an index of Display Graphics Library routines, with calling sequences and
short function descriptions.

Display Graphics Library
routine parameters description _ page
D_add_to_list (stzring) add command to window display list 161
D_a_to_d_col (column) array to screen {column) 163
D_a to_d_row (row) array to screen (row) 163
D_cell_draw_setup (top, bottomn, left, right) prepare for raster graphics 165
D_check_map_window (window) assign/retrieve current map window 160
D_clear_window O clear window display lists 161
D_clear_window Q] clears information about current window 161
D_clip (s,n,w,e XxYy,c_xCy clip coordinates to window 166
D_do_conversions (window, top, bottom, left, right) initialize conversions 162
D_draw_cell_row (row, raster) rerder a raster row 165
D_d_to_a_col (x) screen o aray (x) 164
D_d_to_a_row (y) screen to array (y) 164
D_d_to_u_col (x) screen o earth (x) 164
D_d_to_u_row y) screen to earth (y) 164
D_ersse_window () erase current window 161
D_get_cell_name (name) retrieve cell file name 162
D_get_cur_wind (name) identify current graphics window 160
D_get_screen_window (top, bottom, left, right) retrieve current window coordinates 160
D_new_window (name, top, bottom, left, right) create new graphics window 160
D_overay_cell_row (row, raster) render a raster row without zeros 166
D_popup (beolor, tcolor, deolor, top, left, size, options) | pop-up menu 166
D_remove_window O . remove a window 161
D_reset_colors {colors) set colors in driver 167
D_reset_screen_window (top, bottom, left, right) resets current window position 161
D_set_cell_name (name) add cell file name to display list 162
D_sef_cur_wind (name) set current graphics window 160
D_show_window (color) outlines current window 160
D_timestamp) give current time to window 161
P_translate_color (name) color name to number 167
D_u_to_a_col (east) earth to array (cast) 163
D_u_to_a_row {north) earth to arrav (north) 163
D_u_to_d_col (east) carth to screen (east) 164
PD_u_to_d_row (north) carth o screen (north) 163

Index to Dlsplay Graphics Library

Appendix G
Index to Raster Graphics Library

Here is an index of Raster Graphics Library routines, with calling sequences and short
function descriptions.

Raster Graphics Library
routine __parameters _description _page
R_box_abs (x1,y1,x2,y2) fill a box 151
R_box_rel (dx,dy) fill a box 151
R_close_driver () terminate graphics 148
R_color (color) select color 149
n_color_table_fixed 0 select fixed color table 149
R_color_table_float 0O select floating color table 149
R_cont_abs (x,y) draw line 151
R_cont_rel (dx,dy) draw line 151
R_erase 0 erase screen 152
R_flush 0O flush graphics 152
R_font (font) choose font 155
R_get._location_with_box (x,y,nx,ny,button) get mouse location using a box 157
R_get location_with_line (x,y,nx,ny,button) get mouse location using a line 156
R_get_location_with_pointer (nx,ny,button) get mouse location using pointer 156
R_get._text_box (text, top, bottom, left, right) get text extents 156
R_move_abs (x,y move current location 150
R_move_rel (dx,dy) move current location 151
R_open_driver 0 initialize graphics 148
R_polydots_abs (x,y,num) draw a series of dots 152
R_polydots_rel (x,y,num) draw a series of dots 152
R_polvgon_abs (x,y,num) draw a closed polygon 152
1R_polvgon_rel (x,y,num) draw a closed polvgon 153
R _polyline_abs (x,y,num) draw an open polygon 153
1R_polvline_rel (x,y,num) draw an open polvgon 153
R_raster (num, nrows, withzero, raster) draw a raster 154
R_reset_color (red, green, blu, num) define single color 149
R_reset_colos (min,max, red,green,blue) define multiple colors 149
R_RGB_color (red,green,blue) select color 150
R_RGB_nister (num, nrows, red, green,blue, withzero) draw a raster 154
IR _screen_bot () bottom of screen 150
R_screen_lett () screen left edge 150
R _screen_inte) screen right edge 150
R screen_top 0 top of screen 150
R st _GB_color (red,green blue) initialize graphics 154
R _=et_window (top,bottom,left, right) set text clipping window 155
it standad_color {color) select standard color 150
R_text_size (width, height) set text size 155
R_text (text) write text | 156

Index to Raster Graphics Library

- 251 - - 251 -
Appendix H
Index to Rowio Library

Here is an index of Rowio Library routines, with calling sequences and short function
descriptions.

Rowio Library
routine __parameters description page
rowio_fileno (r) : get file descriptor 176
rowio_flush (D force perding updates to disk 176
rowio_forget {r, n) forget a row 175
rowio_get (r, n) read a row 175
rowio_put (r, buf, n) write a row 176
rowio_release () free aliocated memory 176

rowio_setup (r, fd, nrows, len, getrow, putrow) configure rowio structure 174

Index to Rowio Library

Appendix I

Index to Segment Library

Here is an index of Segment Library routines, with calling sequences and short

function descriptions.
Segment Library

routine parameters description page
segment_flush (seg) flush pending updates to disk 182
segment_format (fd, nrows, ncols, gows, scols, len) format a segment file 180
segment_get_row (seg, buf, row) read row from segment file 182
segment._get (seg, value, row, col) get value from segment file 181
segmeni._init (seg, fd, nsegs) initialize segment structure 181
segment_put_row (seg, buf, row) write row to segment file 181
segment_put (seg, value, row, col) put value to segment file 182
segment_release (seg) free allocated memory 183

Index to Segment Library

Appendix J

Index to Vask Library

Here is an index of Vask Library routines, with calling sequences and short function

descriptions.
Vask Library

routine parémeters description page
V_call 0) interact with the user 189
V_clear 1§ initialize screen description 188
V_const (value, type, row, col, len) define screen constant 188
V_float_accuracy (num) set number of decimal places 189
V_intrpt_msg (text) change ctrl-c message 190
V_intrpt_ok () allow ctri-c 189
V_line (num, text) add line of text to screen 188
V_ques (value, type, row, col, len) define screen question 188

Index to Vask Library

- 957 -
Appendix K
Pernmited Index for Library Subroutines
end level one vector access dig fini()
initialize level one vector access dig jinit()
end level two vector access dig P_fini()
initialize level two vector access dig P _init{)
getthe active window G_get_set_window()
setthe active window G_set_window()
number of columns in active window G_window_cols()
number of rows in active window G_window_rows()
add cell file name to display list D_set_cell_name()
add command to window display list D_add_to_list()

add file name to Ref structure

add line of text to screen
add new control point
allocate a cell buffer

[_add_file_to_group_ref()
V_line()
I_new_control_point()
G_allocate_cell_buf{()

copy string to allocated memory G_store()
free allocated memory rowio_release()
free allocated memory segment_release()
memory allocation G_calloc()
memory alocation G_malloc()
memory alocation G_redloc() -
allow ctrl-c V_intrpt_ok()
distance to arc dig_check_dist()
read arc dig P_read_line()
read next arc dig P_read_next_line()
prune adense arc dig_prune()
read arv dig Read_line()
get next arc dig_read_next_line()
write arc dig Write_line()
get arc bounding box dig_bound_box()
get arc bounding box dig_P_get_line_bbox()
get rext arc by type dig_read_next_line_type()
get arc category attribute dig_P_line_att()
read arc in box dig_read_line_in_box()
limit arc search in box dig_init_box()
find arc with point dig_point_to_line()
get number of arcs dig_P_num_lines()
point in arca dig _point_in_area()
get wea bounding box dig_P_get_area_bbox()
get area categorv atribute dig P_area_att()
get area polygon dig P _get_area()
get area polvgon dig P_get_area_xy()
find avca with point dig_point._to_area()
get number of areas dig_P_num_areas()
earth to aray (east) D_u_to_a_col()
earth to armay (north) D_u_to_a_row()
anay lo screen (column) D_a to_d_col()
amav to screen (row) D_a_to_d_row(}
sreen to anav (x) D_d_to_a_col()

Permuted Index for Library Subroutines

125

128
128
79

79
78
78
162
161

141
188
143

114

176
183
76
76

~

189
132
130
131
135

133
126
133
135
131
126
131
127
127
132
130
132
1330
130
129
129
132
129
163
163
163
163
164

screen to

make

get area category
get arc category

get arc

get area

get arc

get arc bounding
limit arc search in

get area bounding
get arc bounding
read arc in

fill a

fill a

get mouse location using a

allocate a cell
zero a cell
query

query

query

convert string to lower
convert string to upper
get area

get arc

get a
set a

read cell
read vector
write cell

write vector

geta

set a

get tile from
initialize

set title in

free

allocate a

Zero a

read

write

prompt for existing
prompt for new
prompt for existing
close a

find a

find a

read a

open dan existing
unopen o

retrieve
add

array (y)
ask a yes/no question

aspect colors

assign/retrieve current map window
attribute

attribute

bottom of screen

bounding box

bounding box

bounding box

box

box

box
box
box
box
box

box

buffer

buffer

cartographic projection
cartographic projection
cartographic zone

case

case

category attribute
category attribute
category color
category color
category file

category file

category file

category file
category label
category label
category structure
category structure

category structure
category structure memory
cell buffer

cell butfer

cell category file

cell categorv file
cell file
cell file
cell file
cell file

cell file
cell file
cell file
cell file
cell file

cell file name
cell file name to display list

D_d_to_a row()
G_yes()

G_make_aspect_colors()
D_clukmﬁrﬂow()
dig P_area_att()

dig P_line_att()
R_screen_bot()

dig_bound_box()

dig P_get._area_bbox()
dig P_get_line_bbox()
dig_bound_box()
dig_init_box()

dig P_get_area_bbox()
dig_P_get._line_bbox()
dig_read_line_in_box()
R_box_abs()
R_box_rel()

R_get._location_with_box()

G_allocate_cell_buf()
G_zero_cell_buf()
G_projection()
G_projection_name()

G_zone()
G_tolcase()
G_toucase()

dig P_area_attt)

dig P_line_att()
G_get_color()
G_set_color()
G_read_cats()
G_read_vector_cats()
G_write_cats()

G_write_vector_cats()
G_get._cat()
G_set_cal()
G_get_cats_title()
G_init_cats()

G_set_cats_title()
G_frec_cats()
G_allocate_cell_but()
G_zer_cell_buf()
G_read_catsi)

G_write_cats()
G_ask_cell_in_mapsetl()
G_ask_cell_new()
G_ask_cell_old()
G_close_cell()

G_find_cell20)
G_fircl_cell()
G_get_map_row()
G_open_cell_old()
G_unopen_cell()

D_get_cell_name()
D_set_cell_name()

Permuted Index for Library Subroutines

164
118

160
130
131
1650

136
130
131

105
93

93
93

2EXERER

92
81
81
81
89

82
82
87
83
89
162
162

open a new
write a
open a new
write a
open a new
read a

read the
write the
read

write

read

write

get

change

retum interrupt

printable version of control

create a protected

set text

temporary
draw a

draw a
reopen

get a category
set a category

select

define single
select

scleet standard

make

initialize

: tree

read map laver
write map laver

select fixed

select floating

make

make aspect

make rainbow

make ranclom

make red,vellow,green
define muitiple

’ set

anay to screen

number of

cell file (random)
cell file (random)
celi file (sequential)

cell file (sequential)

cell file (uncompressed)
cell file (without masking)
cell header

cell header

cell history file
cell history file
cell range

cell range
cell title

cell title
change cell title
change ctrd-c message

change error handling
char

character

check for legal database file names
chiid process

choose font

clear window display lists

clears information about current window
clip coordinates to window

" clipping window

close acell file
close vector map

closed polygon
closed polygon
closed vector map
color

color

color
color
color
color
color name to number

color ramp
color structure

color structure memory
color table
colar table

color table
color table
color wave
colors
colors

colors

colors,

colors

colors in driver
(column)

columns in active window

-959.
G_open_cell_new_random) 85
G_put_map_row_random() 88
G_open_cell_new() 84
G_put_map_row() 88
G_open_cell_new_uncompressed() 85
G_get_map_row_nomask() 87
G_get_cellhd() 920
G_put_celibd() 90
G_read_history() 98
G_write_history() 99
G_read_range() 99
G_write_range() 100
G_get_cell_title() 92
G_put_cell_title() 92
G_put_cell_tide() 92
V_intrpt_msg() 190
G_set_error_routine() 65
G_intr_char() 117
G_unctrd() 114
G_legal _filename() 72
G_fork() 116
R_font() 155
D_clear_window() 161
D_clear_window() 161
D_clip() 166
R_set_window() 156
G_close_cell() 89
dig P_tmp close() 128
R_polygon_abs() 152
R_polygon_rel() 153
dig_P_tmp_open() 128
G_get_colon() 95
G_set_color() 96
R_color() 149
R_reset_colon() 149
R_RGB_color() 150
R_standard_colon() 150
D_tanslate_color() 167
G_make_color_ramp() 97
G_init_colors() 96
G_free_colors() 9
G_read_colors() 94
G_write_colorst) 95
R_color_table_fixed() 149
R_color_table_float() 149
G_make_color_wave() 97
G_make_aspect_colorst) 97
G_make_rainbow_colors() 97
G_make_random_colors() 98
G_make_red_yel_gm(98
R_reset_colors() 149
D_reset_colors() 167
D_a_to_d_col() 163
G_window_cols() . 78

Permted Index for Library Subroutines

run a shell level
parse

add
print percent

define screen

print waming message and
printable version of

add new

read group

write group

initialize

retrieve current window
clip

allow

change
get a line of input (detect

identfy
set
move
move

assign/retrieve

give

clears information about
erase

outlines

retrieve

resets

top level

prompt lor existing
prompt tor new
prompt [or existing
find a

find a

open a new
open a new
remove a
rename a
open a

command
command line
command line usage message

command to window display list

complete messages
concatentate strings
configure rowio structure
constant

continue

control character
control point
control points
control points
conversions

convert string to lower case
convert stnng to upper case
coordinates

coordinates to window
copy Ref lists

copy string to allocated memory

copy strings
copy strings
create alock

create a protected child process

create new graphics window
ctii-c

ctrl-c message

ctrd-z)

current date and time

current graphics window
current graphics window
current location

current location .

current location directory

current location name
current map window
current mapsetl name
cument time to window
cunent window

current window

cunent window

current window coordinates
current window position
database directory

database file
database file
database file
database file
database file

database file
database file
databasc file
database file
database file for reading

G- 7stem()
G_parse_command()
G_parse_command_usage()
D_add_to_list()

G_percent()
G_streat()
rowio_setup()
V_const()
G_waming()

G_unctri()
I_new_control_point()
[_get_control_points()
[_put_control_points()
D_do_conversions()

G_wlcase()

G_toucase()
D_get_screen_window()
D_clip()
L_ansfer_group_ref_file()

G_store()
G_strepy()
G_stmepv()
lock_file()
G_fork()

D_new_window()
V_intrpt_ok()
V_intrpt_msg()
G_gets()
G_date()

D_get_cur_wind()
D_set_cur_wind()
R_move_abs()
R_move_rel()
G_location_path()

G_location()
D_check_map_window()
G_mapset()
D_timestamp()
D_clear_window()
D_erase_window()
D_show_window()
D_get_screen_window()
D_reset_screen_window()
G_gisdbase()

G_ask_in_mapsel(}
G_ask_newt()
G_ask_old()
G_find_file2()
G_find_filcO)

G_fopen_new()
G_open_new()
G_removet()
G_rename()
G_fopen_old()

Permuted Index for Library Subroutines

116
109
111
161

117
113
174
188

114
143
143
144
162

114
114
160
166
141

114
113
113
169
116

160
189
190
117
117

160
160
150
151

<3 =) =y =3
Lan s

-261 -

open a

open a

open a

cheek for logal
read the

write the
current

set number of
read the

prure a

initialize screen
get file

get a line of input
top level program
top level database
user' s home

current location

force pending updates to

flush pending updates to

add command to window
add cell file name to

clear window

draw a series of
draw a series of

set colors in

xreen to
screen o

earth to amay
carth o screen
screen left
screen right

database file for reading
database file for update
database file for update
datubare file names
databsse window

database window
date and time
decimal places
default window
define multiple colors

define screen constant
define screen question
define single color
dense arc

description

descriptor
(detect ctrl-z)
directory
directory
directory
directory
disk

disk

display list
display list

display lists

display vector header information
distance to ac

distance to line-segment

distance to line-segment

does group exist?

dots

dots

draw a closed polygon
draw a closed polygon

draw a raster

draw a raster

draw a series of dots
draw a series of dots
draw an open polygon

draw an open polygon
draw line

draw line

driver

carth v amay (east)

carth to array (north)
carth to screen (east)
earth to screen (north)
carth (x)

carth (v)

(east)
(east)
cdge
odge

G_open_old()
G_fopen_append()
G_open_update()
G_legal _filename()
G_get_window()

G_put_window()
G_date()
V_float_accuracy()
G_get_default, window()
R_reset_colors()

V_const()
V_ques()
R_reset_color()
dig_prune()
V_clear()

rowio_fileno()
G_gets()
G_gisbase()
G_gisdbase()
G_home()

G_location_path()
rowio_flush()
segment_flush()
D_add_to_list()
D_set_cell_name()

D_clear_window()
dig_print_header()
dig check_dist()

dig distance2_point_to_line()
dig xy_distance2_point_to_line()

Lfind_group()
R_polydots_abst)
R_polydots_rel()
R_polygon_abs()
R_polygon_rel()

R_raster()
R_RGB_raster()
R_polydots_abst)
R_polydots_rel()
R_polyline_abs()

R_polyline_rel()
R_cont_abs(}
R_cont_rel()
D_reset_colos()
D_u_to_a_col(n

D_w to_a_rowt)
D_u_to_d_col
D_u_to_d_rowt?
D_d_to_u_coi()
D_d_to_u_row()

D_uw to_a col()
D_u to_d_coll)
R_screen_left()
R_screen_rite()

Permuted Index for Library Subroutines

-281 -

72
73
73
72
77

77
117
189

78
149

188
188
149
135
188

176
117

67
117

67
176
182
161
162

161
125
132
134
135

139
152
152
152
153

154
154
152
152
153

153
151
151
167
163
163
164
163
164
164

163
164
150
150

sleep on
change
reset normal
print

does group
prompt for

" prompt for
open an

prompt for

prompt for

prompt for an

prompt for

prompt for

open an

prompt for an

prompt for an

open an

print emror message and

get text

rewind vector

prompt for existing cell
prompt for new cell
prompt for existing cell

prompt for existing database
prompt for new database
prompt for existing database
prompt for existing site list
prompt for new site list

prompt for existing site list
prompt for an existing vector
prompt for a new vector
prompt for an existing vector
close a cell

find a cell

find acell

find a databasc
find a database
find a vector

find a vector

open a new database
open a new site list
open an existing site list
open a new vector

open an existing vector
read a cell

read site list

end level one vector access

end level two vector access
environment variable
environment variable
environment variable
environment variable

erase current window
erase screen

enor?

error handling

enor handling

enor message and exit
exist?

existing cell file
existing cell file
existing cell file

existing database file
existing database file
existing group
existing site list file
existing site list file
existing site list file
existing vector file
existing vector file
existing vector file
exit

extents
file
file
file
file

file
file
file
file
file

file
file
file
file
file
file
file
file
file
file

file
file
file
file
file
file
file
file:

dig fini()
dig P_fini()
G_ _getenv()
G_getenv()
G_ _setenv()
G_setenv()

D_erase_window()
R_erase()
G_sleep_on_error()
G_set_error_routine()
G_unset_error_routine()

G_fatal_error()
I_find_group()
(_ask_cell_in_mapeet()
G_ask_cell_old()
G_open_cell_old()

G_ask_in_mapeet()
G_ask_old()
[_ask_group_old()
G_ask_sites_in_mapset()
G_ask_sites_old()

G_fopen_sites_old()
G_ask_vector_in_mapeet()
G_ask_vector_old()
G_fopen_vector_old()
G_fatal_error()

R_get_text_box()
dig_rewind()
G_ask_cell_in_mapset()
G_ask_cell_new()
G_ask_cell_old()

G_ask_in_mapeet()
G_ask_new()
G_ask_old()

G_ask _sites_in_mapset()
G_ask_sites_new()

G_ask_sites_old()

G _ask_vector_in_mapset()
G_ask_vector_new()
G_ask_vector_old()
G_close_cell()

G_find_cell2()
G_find_cellt)
G_find_file2()
G_find_file()
G_find_vecwr2()

(_find_vector()
G_topen_new()
G_fopen_sites_new()
G_fopen_sites_old()
G_fopen_voctor_new()

G_fopen_vector_old()

(_get_map_row()
G_get_site()

Permuted Index for Library Subroutines

:

aaaal R

.
—

2aQ22

ExxBE P

83

138
106
106

107
101
101
103

156
125
81
81
81

70

106
106

106
101
101
101

89

82
82
71
71
102

102

74
107
107
104

103
87
107

reclass

open an existing cell
open a new database
write site list

read cell category
read cell history
read vector category

remove a database
rename a database
unopen a cell

write cell caegory
write cell history

write vector category
read group REF

read subgroup REF
write group REF

write subgroup REF
format a segment

get value from segment
read row from segment

put value to segment
write ow {0 segment

get
open a database
open a database
open a database
open a database

retrieve cell

prompt for any valid
retums a temporary
add cell

add

check for legal database
open a new cell

write a cell

open a new cell

write a cell

open a new cell
read a cell’

select
select

choosge

file?
file

file
file
file
file
file

file
file
file
file
file

file
file
file
file
file

file
file
file
file
file

file descriptor
file for reading
file for reading
file for update
file for update

file name

file name

file name

file name to display list
file name to Ref structure

file names

file (random)
file (random)
file (sequential)
file (sequential)

file (uncompressed)
file {(without masking)
fill a box

fill a box

find a cell file

find a cell file

find a database file
find a database file
find a vector tile
find a vector file

find arc with point
find area with point
fixed color table
floating color table
flush graphics

flush pending updates to disk

font

G_is_reclass()
G_open_cell_old()

G_open_new()
G_put_site()
G_read_cats()
G_read_history()
G_read_vector_cats()
G_remove()
G_rename()
G_unopen_cell()
G_write_cats()
G_write_history()

G_write_vector_cats()
[_get_group_ref{()
Lget_subgroup_ref()
L_put_group_ref()
[_put_subgroup. ref()

segment,_format()
segment,_get()
segment_get_row()
segment,_put()
segment,_put,_row()

rowio_fileno()
G_fopen_old()

"G_open_old()

G_fopen_append()
G_open_update()

D_get_cell_name()
G_ask_any()
G_tempfile()
D_set_cell_name()

L add_file_to_group_ref()

G_legal_filename()
G_open_cell_new_random()
G_put_map_row_random()
G_open_cell_new()
G_put_map_row()

G_open_cell_new_uncompressed()
G_get_map_row_nomask()
R_box_abs()

R_box_rel()

G_find_cell2()

G_find_cell()
G_find_file2()
G_find_file()
G_find_vector2()
G_find_vector()

dig_point_to_line()
dig_point_to_area()
R_color_table_fixed()
R_color_table_float()
R_flush()

segment_flush()
R_tont)

Permuted Index for Library Subroutines

91

74
108
91

106

75
76

105
140
140
140
140

180
181
182
182
181

176
73
72
73
73

162
70

108

162

141
72

PERE

85
87
151
151
82
82
71
7
102
102
132
132
149
149
152

182

155

initialize

prepare for raster
terminate

flush

initialize
initialize

identify current
create new

set current

query
query

set

set

make linear

prompt for new
prompt for an existing
read

write

does

prompt for any valid
read

write

change error

reset normal error

read vector
write vector
read the cell
write the cell
display vector

read cell
write cell
initialize
get
set

user' s
display veetor header

read target
write target

clears

force pending updates to disk
forget a row
format a segment file

free allocated memory

free allocated memory

free category structure memory
free color structure memory
free Ref structure

gis library

give current time to window
graphics

graphics

graphics

graphics

graphics

graphics window

graphics window

graphics window

GRASS environment variable
GRASS environment variable
GRASS environment variable
GRASS environment variable
grey scale

group

group

group control points
group control points
group exist?

group name

group REF file
group REF file
handling

handling

header

header

header

‘header

header information

history file

history file

history structure
Hit RETURN msg
Hit RETURN msg

home directory

identifv current graphics window

information
information
information

information about current window

initialize category structure
initialize color structure
initialize conversions
initialize gis library

initialize graphics

rowio_flush()
rowio_forget()
segment,_format()

rowio_release()
segment,_release()
G_free_cats()
G_free_colors()
I_free_group_ref()
G_gisinit()
D_timestamp()
D_cell_draw_setup()
R_close_driver()
R_flush()

R_open_driver()
R_set. RGB_color(}
D_get_cur_wind()
D_new_window()
D_set_cur_wind()

G_ _getenv()
G_getenv()

G_ _setenv()
G_setenv()
G_make_grey_scale()

[_ask_group_new()
[_ask_group_old()
1_get_control_points()
I_put_control_points()
L find_group()

[Lask_group_any()
I_get,_group_ref()
L_put_group_ref()
G_set_emor_routine()

G_unset_error_routine()
dig_read_head_binary()

dig_write_head_binary() -

G_get_cellhd()
G_put_cellhd(}
dig_print_header()

G_read_history()
G_write_historv()
G_short_history(}
G_get_ask_return_msg()
G_set_ask_return_msg()

G_home()
D_get_cur_wind()
dig_print_headert }
[_get_taget()
I_put_target()
D_clear_window()
G_init_cats()
G_init_colorst)

D _do_conversions()
G_gisinile)

R_open_diivert)

Permuted Index for Library Subroutines

176
176
180

176
183

142

161
165
148
152

139
140
140

65

134
134

125
98

70
70

117
160
125
142
142
161

93

162

get a line of

return

get a category
et a category
read map
write map
remove
screen

check for

run a shell

top

end

initialize

top

- end
initialize

initialize gis

parse command
draw

draw

get mouse location using a
geta

add

command

make

distance to

distance o

add command to window display
add cell file name to display

prompt for existing site
prompt for new site
prompt {or existing site
open a new site

open an existing site
read site

write site

clear window display
copy Ref

move current

move cunent
cunuent
curent

ZeU Imouse

initialize graphics

initialize history structure
initialize level one vector access
initialize level two vector access
initialize range structure
iniialize Ref structure

inutialize screen description
iniialize segment structure
input (detect ctri-z)

interact with the user

interrupt char

label

label

layer color table

layer color table
eadingfraining white space
left edge

legal database file names
level command

level database directory
leve! one vector access
level one vector access
level program directorv
level two vector access

level two vector access
library

limit arc search in box
line

line

line

line

line of input (detect ctri-z)
line of text to screen
line usage message
linear grey scale
linc-segment
line-segment

list

list

list file
list file
list file
list file
list file

hist file
list file
lists
hists
locaton

locaton

location directorv
location name
locauon title
locauon using a box

R_set_ RGB_colon()
G_short_history()
dig init()

dig P_init0)

vG_imt_mnge()

Linit_group_ref()
V_clean()
segment,_init()
G_gets()
V_call()
G_intr_char()
G_get_cat()
G_set_cat()
G_read_colors()

G_write_colors()
3_stript)
R_screen_left()
G_legal _filename()
G_system()

G_gisdbase()

dig finiy)

dig init()
G_gishase()
dig_P_fini()

dig P_init()
G_gisinit()
dig_init_box()
G_parse_command()
R_cont,_abs()

R_cont_rel()
R_get_location_with_line()
G_gets()

V_line()
G_parse_command_usage()

(G_make_grev_scale()
dig_distance2_point_to_line()
dig xv_distance2_point_to_linc()
D_add_to_tist()
D_set_cell_name()

G_ask_sites_in_mapset!)
G_ask_sites_new()
G_ask_sites_old()
G_fopen_sites_newt)
1_fopen_sites_old()

G_get_site()

G_put_site()
D_clear_window()
[_transfer_group_rct _tile()
R_move_abs()

R_move_rel()
G_location_path()
(i_location()

G_mynamet)
R._get_location_with_box(}

Permuted Index for Library Subroutines

164

125

100
141
188
181
117

189
117
93

95
114
150

72
116

67
125
125

128
128

127
109
151

151
156
117
188
111

97
134
135
161
162

106
106
106
107
107

107
108
161
141
150

151
67
66
A6

157

get mouse

Ret mouse
cneal o

remove a
convert string to

temporary close vector
reopen closed vector
read

write

assign/retrieve current
current

read a cell file (without
free category structure
free color structure
copy string to allocated

free allocated
free allocated

pop-up

command line usage
change ctrl-c

print waming

print eror

print percent complete
get
get
get

get Hit RETURN
set Hit RETURN
definc

retrieve cell filc

prompt for any valid file
current location

current mapset

retum program

retums a temporary file

user =

prompt for any valid group
add cell file

color

ald file

check for legal database file
reax

got

get

rewind

resel

carth to amrav

earth W screen
color name o

location using a line
location using pointer
Yock

lock

lower case

map

m3p

map layer color table
map layer color table
map window

mapset name
masking)

memory

memory

memory

memory
memory

memory allocation
memory allocation
memory allocation

menu

message

message

message and continue
message and exit

messages

mouse location using a box
mouse location using a line

mouse location using pointer

move current location

move current location

msg

msg
multiple colors

name

name to display list
name to number
name to Ret structure

nmes
next &

next are

next are by type
next-arc pointer
normal error handling
(north)

{noith)
number

R_get_location_with_line()

R_get_location_with_pointer()

lock _filet)
unlock_file()
G_tolcase()

dig P_tmp_close()
dig_P_tmp_open()
G_read_colors()
G_write_colors()
D_check_map_window()

G_mapset()
G_get_map_row_nomask()
G_free_cats()
G_free_colors()

G_store()

rowio_release()
segment,_release()
G_calloc()
G_malloc()
G_redlloc()

D_popup()
G_parse_command_usage()
V_intrpt_msg()
G_waming()
G_fatal_emror()

G_percent()
R_get_location_with_box()
R_get_location_with_line()

R_get_location_with_pointer()

R_move_abs(}

R_move_rel()
G_get_ask_return_msg()
G_set_ask_return_msg(}
R_reset_colors()
D_get_cell_name()

G_ask_any()
G_location()
G_mapset()
G_program_name()
G_tempfile()

G_whoami()
_ask_group_any()
D_set_cell_name()
D_translate_color()
[_add_file_to_group_ref()

G_legal _filename()

dig P_read_next_line()
dig_read_next_line()
dig_read_next_line_type(}
dig P_rewind()

G_unset_ertor_routine{)
D_u_to_a_row()
D_u_to_d_row()
D_translate_color()

Permuted Index for- Library Subroutines

166
166
169
170
114

128
128

9%
160

87

114

176
183
76
76
76

166
111
190

117
157
156
156
150

151

70
149
162

70

66
118
108

118
139
162
167
141

72
131
126
126
131

65
163
163

167

get
et

set

draw an
draw an

force
(lush
print

set number of decimal
find area with

find arc with

add new conuvl

rewind next-arc

get mouse location using
read group control

wiite group contol

get area

et area
draw a closed
draw a closed
draw an open
draw an open

rescts cunent window

create a protected child
op level
etum

queny cartographic
aueny canogrphic

number of arcs

number of arcas

number of columns in acuve window

number of decimal places
number of rows in active window
open a database file for reading

open a database file for reading
open a database file for update
open a database file for update
open a new cell file (random)
open a new cell file (sequential)

open a new cell file (uncompressed)
open a new database file

open a new database file

open a new site list file

open a new vector file

open an existing cell file
open an existing site list file
open an existing vector file
open polygon

open polygon

outlines current window
parse command line
pending updates to disk
pending updates to disk
percent complete messages

places

point

point

point

point in area
pointer
printer
points

points
polvgon

polvgon
polygon
polygon
polygon
polygon

pop-up menu

position

prepare for raster graphics

print enor message and oxit
print percent complete messages

print waming message and continue

printable version of contol charucter

process

program directorv
program name
projection

projecuon
srompt for a new vector lile

dig P_num_lines()

dig P_num_areas()
G_window_cols()
V_float_accuracy()
G_window_rows(}
G_fopen_old()

G_open_old()
G_fopen_append()
G_open_update{)
G_open_cell_new_random()
G _open_cell_new()

G_open_cell_new_uncompressed()
G_{open_new()

G_open_new()
G_fopen_sites_new()
G_topen_vector_new{()

G_open_cell_old()
G_topen_sites_old()
G_topen_vector_old()
R_polyline_abs()
R_polyline_rel()

D_show_window()
G_parse_command()
rowio_flush()
segment_flush()
G_percent() .

V_float_accuracy()
dig_point_to_area()
dig_point_to_line{)
[_new_contol_pointl)
dig_point.in_area()

dig_P_rewind()
R_get_location_with_pointer()
I_gzet_control_pointst)
I_put_control_points()
dig_P_get_area()

dig_P_get_area_xv(}
R_polvgon_abst)
R_polvgon_rel()
R_polyline_abs()
R_polyline_rel()

1_popupt)
1)_reset_screen_window()
D_cell _draw_setupl)
G_fatal_enort)
G_percenu)

(i_waming()
G_unctri()

G tork()
G_msbase()

(. program_name()

t:i_projectionl)
(i_projection_name()
G skovector_new()

Permuted Index for Library Subroutines

130

129
78
189
78
73

72
73
73
85

85
74
74
107
104

83
107
103
153
153

160
109
176
182
117

189
132
132
143
132

131
156
143
144
129
129
152
153
153
153
166
161
165

117

114
116

1138

80
80
101

create a

ak a yes/no
define screen
make

make color

open a new cell file
write a cell file
make

read cell

write celi

initialize

update

update

draw a

draw a

prepare for
render a

render a

prompt for an existing group
prompt for an existing vector file

prompt for an existing vector file
prompt for any valid file name
prompt for any valid group name
prompt for existing cell file
prompt for existing cell file

prompt for existing database file
prompt for existing database file
prompt for existing site list file
prompt for existing site list file
prompt for new cell file

prompt for new database file
prompt for new group
prompt for new site list file
protected child process
prune a dense arc

put value to segment file
query cartographic projection
query cartographic projection
query cartographic zone

query GRASS environment variable

query GRASS environment variable

question
question
rainbow colors
ramp

(random)
(random)
random colors
range

range

range structure
range structure
range structure
raster
raster

raster graphics

raster row

raster row without zems

wad a cell file

ead a cell file (without masking)

ad a row

iead are

wead arc

jead are in box

wwad cell category file

wad cell history file

icad cell range

ead group control points
read group REF file

read map layer color table

read next arc
wead row from sepment file

I_ask_group_old()
G_agk_vector_in_mapeet()

G_ask_vector_old()
G_ask_any()
L_ask_group_any()
G_ask_cell_in_mapset()
G_ask_cell_old()

G_ask_in_mapeet()
G_ask_old()
G_ask_sites_in_mapset()
G_ask_sites_old()
G_ask_cell_new()

G_ask_new()
I_ask_group_new()
G_ask_sites_new()
G_fork()
dig_prune(}

segment._put()
G_projection()
G_projection_name()
G_zone()

G_ _getenv()

G_getenv()

G_yes()

V_ques()
G_make_rainbow_colors()
G_make_color_ramp()

G_open_cell_new_random()
G_put_map_row_random()
G_make_random_colors()

G_init_range()
G_row_update_ranget()
G_update_range()
R_raster()
R_RGB_raster()

D_cell_draw_setupl()}
D_draw_cell _row()
D_overlay_cell_row()
G_get_map_row()
G_get_map_row_nomask()

rowio_get()
dig_P_read_line()
dig_Read_line()

dig read_line_in_box(}
G_read_cats()

G_read_history()
G_read_range()
I_get_control _points()

[_get_group_ref()
G_read_colors()

dig_P_read_next_linc()
scgment_get_row()

Permutted Index for Library Subroutines

138
101

101
70
139
81
81

70

106
106
81

138
106
116
135

182

67

67
118
188

97

97

98

100

100
100
100
154
164

165
166
165
87
87

175
130
133
127

91

98

143
140

131
182

open a database file for
open a database file for

make
read group

read subgroup
write group
write subgroup
copy

add file name to

free
initialize

‘et Hit
st Hit

4mav o screen
render a raster
forgel a

read a

wnle a

e

wie

rendey a raster

configure
number of

make hnear grev
crase

boltom of

read site list file
read subgroup REF file
read target information

read the cell header

read the database window
read the default window
read vector category file
read vector header
reading

reading

reclass file?

red,yellow green colors
REF file

REF file
REF file
REF file
Ref lists
Ref structure

Ref structure

Ref structure

remove a database file
remove a lock
remove a window

remove leadingAraining white space
remove unnecessary white space
rename a database file

render a raster row

render a raster row without zeros

reopen closed vector map

reset normal error handling

resets current window position
retrieve cell file name

retrieve current window coordinates

retym interrupt char
RETURN msg

RETURN msg

retum program name

returns a temporary file name

rewind next-arc pointer
rewind vector file
(row)

1w
1ow flrom segment file
1w to segment file
row without zeros

IowWio structue

rows in active window
run a shell level commind
«ale

xnen

seen

G_get_site()
I_get_subgroup_ref()
Lget_target()

G_get_cellhd()
G_get_window()
G_get_default_window()
G_read_vector._cats()
dig_read_head_binary()
G_fopen_old()
G_open_old()
G_is_reclass()
G_make_red_yel_gm()
_get_group_ref()

[get_subgroup_ref()
L_put_group_reft)
I_put_subgroup_ref()
I_transfer_group_ref_file()

[_add_file_to_group_ref()

L_free_group_ref()
Linit_group_ref()
G_remove()
unlock_fite()
D_remove_window()

G_strip()
G_squeeze()
G_rename()
D_draw_cell_row()
D_overiay_cell_row()

dig P_tmp_open()
G_unset_error_routine()
D_reset_screen_window()
D_get._cell_name()
D_get_screen_window()

G_intr_char()
G_get_ask_retum_msg()
G_set_ask_return_msg()
G_program_name()
G_tempfile()

dig P_rewind()
dig_rewind()
D_a_to_d_row()
D_draw_cell_row()
rowio_forget()

rowio_get()
rowio_put()
segment_get._row()
segment_put_row()
D_overay_cell_row()

rowio_setup()
G_window_rows(}
G_system()
G_make_grey_scale()
R_erase()

R_screen_botl)

Permuted Index for Library Subroutines

107
140
142

77
78
105
134

73
72
91
98
140

140
140
140
141
141

142
141

75
170
161

114
113

75
165
165

128

161
162
160

17
70
70

118

108

131
125
163
165
175

175
176
182
181
165

174
78
116
97
152

top of

add line of text to
array to

define

initialize

earth to

earth to
define

aray to

limit arc
tormat a
get value from
read row from

put value to
write row to
initialize

open a new cell file
write a cell file

draw a
draw a

mun <l

define

provapt Tor existung
prompt ior new
prompt for existing
apen a new

OpCR A exisungs
read
witte

<t text

screen
screen
screen (column)
screen constant

screen description
screen (east)
screen lett edge
screen (north)
screen question

screen right edge
screen {row)
screen o amay (x)
screen o aray (y)
xreen to earth (x)

screen to earth (v)
search in box
segment file
segment file
segment tile
segment file
segment file
segment strucuure
select color

select color

select fixed color table
select {loating color table

-gelect standard color

(sequential)
(sequential)

series of dots
senes of dots
set a category color
set a category label
set colors in diiver

«w't cunent graphics window

sct GRASS environment vanable
et GRASS environment variable
st Hit RETURN msy

set number of decimal places

st text clipping window

Kt text size

«t the active window

ot e incategory sbucture
<hell level command

stgle color
site Tist fle
site hist ile
<ite list file
site st file

stle list tile
site list tile
site List fite
s

sleep on enor?

R_screen_topt)
V_line()
D_a_to_d_col()
V_const()

V_clear()
D_u_to_d_col()
R_screen_left()
D_u_to_d_row()
V_ques()

R_screen_nte()
D_a to_d_rowt)
D_d_to_a_col()
D_d_to_a_row()
D_d_to_u_col()

D_d_to_u_rowt)
dig_tnit_box()
=egment_format()
=egment_get()
egment_get_row()

=egment_put()
segment_put_row()
egment_initd)
R_color(}
R_RGB_colort)

R_color_table_fixed()
R_color_table_float()
R_standard_colo()
G_open_cell_new()
G_put_map_row()

R_polvdots_abs()
R_polvdots_rel{)
G_set_color()
G_set_cat()
D_reset_colorst)

D_set_cur_wind()
(i__setenv!)

G_setenvt)
C_set_ask_retnmn_msg()
V_float_accurucyvt)

R_sct_window()
R_text_size(
G_set_window()
(5_set_cats_tilet
G_svstem()

R_weset_colory
C_ask_sites in_imapsett)
Cr_askesites_new)
(_ask_sites_oldt)
G_fopen_sites_new()

G_foper_sites_old()
(_get_site()
(_put_site()
Rotext_sizet
G_sleep_on. e

Pe'muted Index for Library Subroutines

- 270 -

150
188
163
188

188
164
150
163
188

150
163
164
164
164

164
127
180
181
182
182
181
181
149
150

149
149
150

152
152

94
167

160
67
67
70

189

155
155
79
94
116

149
106
106
106
107

107
107
108
155

65

.27 -

remove unnecessary white
remove leading/training white
select

copy
convert

convert
concatentate

copy

copy

get title from category
initialize category
initialize color
initialize range
update range

set title in category
initialize history
update range

add file name to Ref
free Ref

initialize Ref
configure rowio
initialize segment
free category

free color

read

write

read map layer color
write map layer color
select fixed color

select floating color
read
wrile

retums a

write
set
get
set

add line of
get cell
location
change cell
get

set

get next arc by

open a new cell file
remove

open a database file tor

space
space

standard color

string to allocated memory
string to lower case

siring to upper case
strings

strings

strings

structure

structure
structure
structure
structure
structure

structure
structure
structure
structure
structure

stncture
structure
structure memory
structure memory
subgroup REF file

subgroup REF file
suppress wamings?
table

table

table

table

target information

target information
temporary close vector map
temporary file name
terminate graphics

text

text clipping window

text extents

text size

wxt to screen

ute

utle

title

ude from category structure
utle in category strucune
wp level database directory
top level program directory
top of =iven

type

{uncomprussed)
unnecessary white space
unopen a cell file
update

-271-

G_squeeze()
G_strip()
R_standard_color()
G_store()
G_tolcase()

G_toucase()
G_streat()
G_strepy()
G_stmepy()
G_get_cats_title()

G_init_cats()
G_init_colors()
G_init_range()
G_row_update_range()
G_set_cats_title()

G_short_history()
G_update_range()
[_add_file_to_group_ref()
[_free_group_refl)
[init_group_ref()
rowio_setigX)
segment._init(}
G_free_cats()
G_free_colors()
[_get_subgroup_ref()

[_put_subgroup: ref()
G_suppress_warmnings()
G_read_colors()
G_write_colors()
R_color_table_{ixed()

R_color_table_float()
I_get._target!)
I_put_target()
dig_P_tmp_close()
G_temptile()

R_close_driver()
R_text()
R_set_window()
R_get_text_box()
R_text_size()

V_line()
G_get_cell_title()
G_myname()
G_put_cell_tide()
G_get_cats_title()

G_set_cats_title()
G_gisdbase()

G_gisbaset)
R_screen_top()

dig read_next_line_tvpe()

G_open_cell_new_uncompressed()
(_squeeze()

G_unopen_cell()
G_fopen_append()

Permuted Index for Library Subroutines

113
114
150
114
114

114
113
113
113

93

93

100
100

100
141
142
141
174
181

140

140
65

95
149

149
142
142
128
108
148
156
155
156
155

188
92

92
93
94

~y

150
126

85
113
49

73

open a database file for

force pending
flush pending
convert string to

command line
interact with the

get mouse location

get mouse location

get mouse location

prompt for any

prompt for any

get

put

query GRASS environment
query GRASS environment
set GRASS environment
set GRASS environment

end level one
initialize level one
end level two
initialize level two
read

write

rewind

prompt for an existing
prompt for a new
prompt for an existing

find a

find a

open a new
open an existing
read

wnte

display
temporarv close
reopen closed
pnntable

print

suppress

make color

ICIMOVE UNNCCeSSY
remove feading/traiming

assign/ictieve current map
clears information about curtent
clip coordinaws to

erase current

identifv current graphics

create new graphics

remove a

sct cunvnt graphies

update

update range structure
update range structure
updates to disk
updates to disk
upper case

usage message
user

user' s home directory
user' s name

using a box

using a line

using pointer

valid file name

valid group name

value from segment file

value to segment file
variable
variable
variable
vaniable

vectnr access
vector access
vector acess
vector acess
vector category file

vector category file
vector file
vector file
vector file
vector file

vector file
vector file
vector file
vector file
vector header

vector header

vector header infomuition
vector map

vector map

version of control character

warning message ad continue
warnings?

wive

while space

whit space

window
window
window
window
window

window
window
window

G_open_update()

G_row_update_range()
G_update_range()
rowio_flush()
segment_flush() .
G_toucase()

G_parse_command_usage()
V_call()

G_home()

G_whoami()
R_get_location_with_box()

R_get_location_with_line()
R_get_location_with_pointer()
G_ask_any()
[_ask_group_anv()
segment_get()

segroent_put()
G_ _getenv()
G_getenv()
G_ _setenv()
G_setenvt()

dig _fini()

dig_init()

dig_P_fini()

dig P_init()
G_read_vector_catst)
G_w1ite_vector_cats()
dig_rewind()
G_ask_vector_in_mapset()
G_ask_vector_new()
G_ask_vector_old()

G_find_vector2()
G_find_vector()
G_fopen_vector_new()
(i_fopen_vector_old()
dig_read_head_binarvt)

dig_wnite_head_binarv()
dig_print_header()

dig _P_tmp_close()
dig_P_tmp_open()
G_uncui()

G_warning()
(3_suppress_warmnings()
G_make_color_wave()
G_spueeze()

G_sthpl)

N_cheek_map_window()
D_clear_windowt)
D_clipt)
D_ersse_window()
N_get_cur_wind()

D _new _window()
D _remove_window()
D_wt_cur_wind()

Permuted Index for Library Subroutines

73

100
100
176
182
114

111
189
117
118
157

156
156

70
139
181

182

67
67
67

125
125
128
128
105

1056
125
101
101
101

102
102
104
103
134
134
125
128
128
114

65
97
113
114

160
161
166
161
160
160
161
160

outlines current
give current time to

read the default
get the active
read the database
write the database
set the active

number of columns in active
number of rows in active
set text clipping

retrieve current

add command to

clear

resets current

read a cell file
render a raster row

screen to array
screen to earth

screen to amray

screen to earth’

ask a

render a nster row without

querv cartographic

window

window

window

window

window

window

window

window

window

window

window coordinates
window display list
window display lists
window position
(without masking)
without zeros

write a cell file (random)

write a cell file (sequential)
WTite a row

write arc

write cell category file
write cell history file

write cell range

write group contro] points
write group REF file

write map layer color table
write row to segment file
write site list file

write subgroup REF file
write target information
write text

write the cell header

write the database window
write vector category file
write vector header

(x)

(x)

)

(y)

yes/no question
zero a cell bufter
28108

zone

D_show_window()
D_timestamp()
G_get_default_window()
G_get_set_window()
G_get_window()
G_put_window()
G_set_window()

G_window_cols()
G_window_rows()
R_set_window()
D_get._screen_window()
D_add_to_list()

D_clear_window()
D_reset_screen_window()
G_get_map_row_nomask()
D_overay cell_row()
G_put_map_row_random()

G_put_map_row()
rowio_put{()
dig_Write_line()
G_write_cats()
G_write_history()

G_write_range()
L_put_control_points()
{_put_group_ref()
G_write_colors()
segment,_put_row()

G_put._site()
I_put_subgroup_ref()
I_put_target()
R_text()
G_put_cellhd()

G_put_window()
G_write_vector_cats()
dig_write_head_binarv()
D_d_to_a_col()
D_d_to_u_col()

D_d_to_a_row()
D_d_to_u_row()
G_yes()
(G_zero_cell_buf()
D_overlav_cell_row()

(G_zonel)

Pernuterd Index for Library Subroutines

160
161

78
79
77
7
79

78
78
1656
160
161

161
161

87
165

176
133

100
144
140

95
181

108
140
142
156

77
106
134.
164
164

164
164
118

86
165

80

- 275 - -7 -
Index
$ 82
history file 29, 98
$GISBASE 51 opening (new) 84
$GISDBASE 16 opening (read) 83
$GISRC 51 progranmiing interface 24, 80
$GIS_LOCK 51 prompting for 81
$LOCATION_NAME 16 range file 29, 99
$MAPSET 16 ' ing 86
reclass format 27
. resolution 27
writing 87
gidock 170 cell header:
grassre 15, 52 see: cell files
gisdbase 52 color table:
location 52 see: cell files
mapeet 52 colors:
.h files: see: cell files
see: include files see: Digplay Graphics Library
see: Raster Graphics Library
A colors.h 160
compiling:
ACCESS penmissions: Gmake 55, 122, 135, 144, 157, 167, 170, 177, 185,
GRASS 2 191
UNIX 20 curses:
Approsch 1 Gmeke 87
Vask Library 187, 191, 193
B
D
Background 1
band files 41 database:
Boume Shell: access permissions 20
shell scripts 229 programming interface 15, 68
search path 20
C title 19, 66
datsbase structmre 15
category file: $GISDBASE 16
see: cell files, vector files location 16
category nurrber: $SLOCATION_NAME 16
cell 23 SMAPSET 16
vector 31 mapeet 16
CELL 79, 80, 56, 87, 88, 93, 94, 9%, 96, 97, 98, 100, date:
165, 237 G_date() 117
cell files 23 DEFAULT_WIND 19
see also: GIS Library diagnostics:

allocate CELL buffer 85
and the database 24
category file 28, 91
category mmnber 23

cell file forrmat 24

cell header 26, 89
closing 89

color file 28, 94

See: envor messages
Dig Library 12, 123
arc types 124
include files 123
INDEX of routines 243
INDEX, perrmuted 257
level one access 124
level two access 127

- 276 -

levels of access 124
LOADING the library 135
writing vector files 133
digit files:
see: vector files
dig :
index of dig_ routines (Dig Library) 243
dig_definesh 124,126
dig strctsh 124
Display Graphics Library 12,57, 159
colors 167
coordinate transformation 162
INDEX of routines 247
INDEX, perrmuted 257
LOADING the library 167
popup menus 166
raster graphics 164
window clipping 165
window contents 161
windows 159
drivers:
writing a digitizer driver 195
writing a graphics driver 207
- writing a paint driver 215
D_:
index of D_ routines (Display Graphics
Library) 247

E

elements 17, 18

environment 15, 51, 66
G__getenv() 67
G_getenv() 67
G_gisbase() 66
G_gisdbase() 67
$GISBASE 51
gisdbase 52
$GIS_LOCK 51
$GISRC 51
G_locationt) 66
G _mapsett) 66

"~ GRASS 52
grassic 52
G__setenv() 67
G setenvi) 67
location 52
mapset 52
UNIX 51

envur messages 64
GIS_FRROR 10G 64

F

fork() 84
G_fork() 115

G

Gask:
and shell scripts 230

gets():
G_gets() 117

Gfindfile:
and shell scripts 231

GIS Library 11, 56, 63
allocate CELL buffer 85
and UNIX 115
cell category file 91
cell color table 94
cell file support 89
cell files 80
cell header 89
cell history file 98
cell range 99
closing cell files 89
cormmard line parsing 109
daia stnctires 118
database access 68
database information 66
database management 75
environment information 66
error messages 64
finding cell files 82
finding database files 70
finding vector files 102
fork() 115
‘gets() 117
INDEX of routines 239
INDEX, permuted 257
initialization 64
legal file names 72
LOADING the library 122
memory allocation 75
open cell file (new) 84
open cell file (read) 83
opening a vector file (read) 103
opening database files (read! 72
opening database files (update) 73
opening database files (write) 74
opening site files 107
opening vector files (new) 104
projection 79
prompting for cell files 81
prormpting for database files 68
promrpting for site files 106
prompting for vector files 101

- 276 -

- 277 -

reading and writing site files 107
reading cell files 88
sites 106
string routines 113
struct Categories 119
struct Cell_head 119
struct Colors 120
struct History 121
struct Range 122
system() 116
tempfiles 108
vector category file 104
vector files 100
window 76
writing cell files 87
gis.h 56, 63, 76, 80, 118, 137, 237
gisdbase 52
.grassre 52
GIS_ERROR_LOG 64
Gmake 11, 55, 202, 216, 225
varisbles 55, 233
Gmakefile 11, 55, 202, 207, 216, 225, 226
and Dig library 135
and Displ+y Graphics Library 167
and GIS Library 122
and Imagery Library 144
and Lock Library 170
and Raster Graphics Library 157
and Rowio Library 177
and Segment Library 185
and Vagh Library 191
construction of 58
graphics:
see: Disy'ay Graphics Library
see: Rast~r Graphics Library
GRASS:
Information Center 2, 3, 4
Inter-Age cy Steering Cormnmitee 3
User Group Meeting 3
GRASSClir vings 3
GRASSNE™ 3
grid cell:
see: cell f.les
group 41, '-7,138
see also: imegery Library
finding 159
POINTS file 44
POINTS file routines 143
programmming interface 46
prompting for 138
REF file 43
REF file routines 139
structure of a group 43
subgroup 44
TARGET file 44

TARGET file routines 142

Guidelines 5
G.:
index of G_ routines (GIS Library) 239
H
history file:
see: cell files
home directory:
G_home() 117
I
imagery:
bard files 41

ilmge classification 42
image rectification 42
imege registration 42
programs 45
X,y projection 26, 42, 48, 80
Imagery Library 137 :
data stnctures 144
finding groups 139
group 138
group POINTS files -143
growp REF file 139
group TARGET file 142
INDEX of routines 245
INDEX, permuted 257
LOADING the library 144
prompting for a group 138
struct Control _Points 145
struct REF 144
imagery.h 137, 139, 143, 144
import:
vector files 38
include files:
colorsh 160
dig definesh 124,126
dig_structsh 124
gish 56, 63, 76, 80, 118, 137, 237
imagery.h 137, 139, 143, 144
rowio.h 174
segmenth 180
index:
Dig Library 243
Display Graphics Library 247
GIS Library 239
Imagery Library 245
permuted 257
Raster Graphics Library 249
Rowio Library 251
Segment Library 253
Vask Library 266

. 278 -

intermpt, chramneter:
Ci_intr_char() 147

L:

index of 1_ routines (Imagery Library) 245

L

library:

see: Dig Library

see: Display Graphics Library

see: GIS Library

see: Imagery Library

see: Lock Library

see: Raster Graphics Library

see: Rowio Library

see: Segment Library

see: Vask Library

how to build 60

permuted index 257
location 52

G_location() 66

. 52
Lock Library 169

INDEX, permuted 257

LOADING the library 170
login name:

G_whoami() 118
longitude/latitude:

see: projection

M

see: cell files, vector files
map layer:
see: cell files, vector files
mapset 16, 24, 32, 52
access permassions 20
cell files 24
cuntent mapset 16, 20, 47, 4, 66, 69, 70, 71, 73,
THO TS, T7, K1, B2, B3, 84, W0, 42, 95, 99, 100, 101,
102, 103, 104, 105, 106, 107, 138, 134
elements 17, 18
files 17
G_mapset! » 66
Erassie 52
SMAPSET 16
mask an
PERMANENT 17, 19
gearch path 17, 20, 69, 71, K52, 83, 102
structure of a mapset 17
subrditectones 17
vector files 2
window 17, 47
mask s

parsing:
G_parse_cormmands() 109, 111
PERMANENT 17, 19
access permissions 21
default window 19
DEFAULT_WIND 19
MYNAME 19, 66
permuted index 257
point data:
see: site files
Programmer:
drivers 12
GRASS 10
system designer 13
Programming:
compiling 55
interface to cell files 24, 80
interface to groups 46
interface to site files 40, 1056
interface to the database 15, 68
interface to vector files 32, 100, 123
programiming:
standards 6
projection 26, 48
GIS Library 79
imagery (x,y) 26, 42, 48, 80
longitude/latitude 5
State Plane 26, 48, 80
UTM 5, 28, 27, 42, 44, 45, 80, 163
Zone 26, 48

R

range file:
see; cell files

raster files:
see: cell files

Raster Graphics Library 12, 56, 147
basic graphics 150
colors 148
comnecting to the driver 148
INDEX of routines 249
INDEX, permuted 257
LOADING the library 157

mouse 156
poly calls 152
raster calls 153
text 154
reclass files:
see: cell files
resolution:
cell file 27
window 48
Rowio Library 173
INDEX of routines 251
INDEX, permuted 257
LOADING the library 177
rowio.h 174 -
TOWIO_:
index of rowio_ routines (Rowio Library) 251
R_:
index of R_ routines (Raster Graphics
Library) 249

S

Scope 2
search path 17, 20, 69, 71, 82, 83, 102
Segment Library 11, 56, 179
INDEX of routines 253
INDEX, permutted 2657
LOADING the library 185
segmenth 180
segment,_:
index of segment routines
Library) 253
ghell scripts 15, 229
Boume Shell 229
Gask 230
Gfirdfile 231
gite files 39
file format 39
opening 107
programming interface 40, 105
prompting for 106
reading and writing 107
Standards:
documentation 7
programming 6
State Plane:
see: projection
string routines:
GIS Library 113
structures:
P_AREA 12, 132
struct Categories 91, 92, u3, 94, 105, 119
struct Cell_head 76, 77, 78, 79, %0, 119, 160, 162
struct Colors 44, 95, 96, 97, 98, 120, 167
struct Command_keys 109, 110, 111, 113

(Segment

struct Control_Points 143, 144, 145
struct dig head 134
stroct Hislory 98, 99, 121
struct line_pnts 130, 131, 133, 135
struct Map_info 128, 129, 130, 131, 132, 133
struct Range 99, 100, 122
struct Ref 139, 140, 141, 142, 144
subgroup 44
gystem():
G system() 116

T
target

see: group
Techmology Trensfer 2
termeap,termlib:

Gmeke 57
Vask Library 187, 191

U

UNIX: .
access permissions 20
enviromment 51
fork() s4, 115
gets() 117
system() 116

User:
gereral 9

UTM:

see: projection

\'

Vask Library 56, i87
INDEX of routines 256
INDEX, permuted 257
LOADING the library 191

vector files 31
see also: Dig Library
ascii format 32
attribute file 35
category file 36, 104
category number 31
digitizer registration 37
finding 102
import 38
index and pointer file 37
opening (new) 104
opening (read) 103 .
programming interface 32, 100, 123
pronpting for 101
reading and writing 104
topology rules 37

