
WRDC-TR-90-8007
Volume V
Part 5

AD-A252 450

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 5 - Neutral Data Definition Language (NDDL) Development
Specification

J. Althoff, M. Apicella, S. Singh

Control Data Corporation
Integration Technology Services
2970 Presidential Drive
Fairborn, OH 45324-6209 -ELECTS

w-um 0 3, 1992f

September 1990

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-14514
I IIII ft 111 III ! tlil!!Hll UI

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

92 6 02 015

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any wa)
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
Information Service (NTIS). At NTIS, it will be

available to the general public, including foreign nations

DA D L. J SON, Prect Manager DATE

WRi ht-Poatt r AFB, OH 45433-6533

FOR THE COMMANDER:

"BRUCE A. RASMUSSEN, Chief DATE 6" 1
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release;
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DS 620341100 WRDC-TR-90-8007 Vol. V, Part 5

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI

4Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairbom, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
8c. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB. Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification) 78011 F 595600 F9560 20950607
See Block 19

12. PERSONAL AUTHOR(S)
Control Data Corporation: Althoff, J. L., Apicella, M. L., Singh, S.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr..Mo.,Day) 1F. PAGE COUNT
Final Report /1/87-12/31/90 1990 September 30 237

16. SUPPLEMENTARY NOTATION

WRDC/MTI Project Priority 6203

17. COSATICODES 18. SUBJECTTERMS (Continue on reverse i necessary and identi,y bloc no.)

FIELD GROUP SUB GR.

1308 0905T

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This development specification establishes the development, test and qualification requirements of the Neutral Data Definition
Language (NDDL) Processor computer program.

Block 11 - INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)

Vol V - Common Data Model Subsystem

Part 5 - Neutral Data Definition Language (NDDL) Development Specification

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

a 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE

DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

DS 620341100
30 September 1990

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology

4Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS). The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation

subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFIX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Aaoesslon For

* NTIS GRA&I
DTIC TAB
Unannounced
Just if eation

• /By

Distribution/
Availability Codes

Avall and/or
Dist Special

DS 620341100
30 September 1990

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iv

iv

DS 620341100
30 September 1990

Table of Contents

Page

SECTION 1. SCOPE.....................................1-1
1.1 Identification............................1-1
1.2 Functional Summary........................1-1

SECTION 2. DOCUMENTS.................................2-1
2.1 Reference Documents.......................2-1
2.2 Terms and Abbreviations...................2-2

SECTION 3. REQUIREMENTS..............................3-1
3.1 Computer Procqram Definition...............3-1
3.1.1 System Capacities.........................3-1
3.1.2 Interface Requirements....................3-1
3.2 Detailed Functional Requirements..........3-3
3.2.1 Initialization............................3-3
3.2.2 Input/Output..............................3-4
3.2.3 Error Handling............................3-4
3.2.4 Parse Commands............................3-5
3.2.5 Database Access.........:..................3-7
3.2o6 General Command Processing.....o...........3-8
3.2o7 Termination.....o...-...............o......3-10
3.2.8 Individual Command Processing 3-10
3.3 Performance Requirements 3-161
3.3.1 Programming Methods 3-161
3.3.2 Proqram organization...................3-161
3.3o3 Modification Consideration.o...........3-161
3.3.4 Special Featureso.................3-162
3.3.5 Expandability........o.....................3-162
3.4 Human Performance................. 3-162
3.5 Database Requirements..........o...........3-162
3.5.1 Database Overview....o....o............3-162
3.5.2 Relations Between Tables and Views. 3-162
3.5.3 Detailed Description of Tables

and Viewso.................3-162

SECTION 4. QUALITY ASSURANCE PROVISIONS..........4-1
4.1 Introduction and Definitions........4-1
4.2 computer Programming Test and

Evaluation..........................o......4-1

SECTION 5. PREPARATION FOR DELIVERY.....o.............5-1

SECTION 6. NOTES.................o..............o......6-1

v

DS 620341100

30 September 1990

Table of Contents

Page

APPENDIX A. oracle Data Dictionary......................A-i
APPENDIX B. CDM Tables Accessed.........................B-i
APPENDIX C. Internal Tabies used by NDDL

Commnands C-i

vi

DS 620341100
30 September 1990

List of Illustrations

Figure Title Page

1-1 NDDL Functionality Matrix...................1-3
3-1 NDDL Processor Interface....................3-2
3-2 Organization of NDDL Functional

Requirements................................3-3

vi

DS 620341100
30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the development, test and
qualification requirements of a computer program identified as
the Neutral Data Definition Language Processor, known in this
document as the NDDL Processor. The NDDL Processor is one
configuration item of the Integrated Information Support System
(IISS) Common Data Model (CDM) Subsystem.

1.2 Functional Summary

The NDDL processor is a language used to manipulate and
populate information in the Common Data Model (CDM) of the IISS
System database. It provides the user with three modes of
operation: (1) Batch Mode allows NDDL command files to be
executed; (2) Interactive Mode allows the user to enter NDDL
commands at a terminal; and (3) Forms Mode allows the user use
of the IISS forms processor to display input and output screens
of NDDL commands. The NDDL processor allows the user to
populate and maintain the three schemas of the CDM: external,
conceptual and internal and the mappings between each. The NDDL
also provides capabilities for manipulation of many IDEF-1
models and submodels needed during the process of developing the
single integrated model of the conceptual schema. Only the
integrated model may be mapped to the external and internal
schemas. The NDDL was designed by a joint working group of IISS
coalition members described in the Integration Task Report,
Reference 8. The language is modeled after SQL and the command
features a combination of a few simple verbs (operators) along
with the necessary parts of the CDM (objects). The
functionality of NDDL is summarized in the matrix of Figure 1-1.
The following notes refer to the foot notes of the matrix.

1. Internal Schema Objects are defined rather than created
since IISS assumes internal schema describes actual,
previously existing databases.

2. DESCRIBE serves the purpose of creating, altering and
dropping descriptions for the applicable objects.

3. Aliases are maintained for entities and attributes only.

4. Keywords are maintained only for entities, attributes
and relations. They can only be created when associated
with entities, attributes or relations.

5. The noted objects can only be altered through use of
DROP and CREATE/DEFINE operators.

6. ALTER commands generally have ADD, DROP and ALTER
suboperators for subobjects.

1-1

DS 620341100
30 September 1990

7. Data items are created and dropped as subobjects of
views.

S. Data types are created and dropped as subobjects of
domains.

9. Data fields are created as subobjects of records.

10. Maps do not have names of their own and cannot be
renamed or described.

OBJECT

A A A CDD D DDD E FHKMMMPPRRSU V
O L L T A BA A AE 0 NI OEAOO ASEEENI
p G0I T T MT T TS M T ES Y PD D R LTI E
E 0 A R ES A A A CA ILT WE UT 0A 0W
R R S IG I TD 0 L LI RT N
A I B 0I B T TN Y R ET D I
T T . UR T A YY D 11 0
O H T Y E S PP 0 N

R MI El IMEIEIE I N II III
* ALTER 5 X XX X 5X55 X XXXX XXXX X 5

CHECK X
* COMBINE X
* COMPAR
* COPY X X X X X X X XX X X X
* CREATE XX X 17 1 9X X X9 1 4X XIXI IX IX X

DEFINE X X x x x xx x
* DESCRIBE X X X XX X XX X X10X X X

DROP X XX X X 7 X 8X X X XX X XX XXXXX
MERGE X
RENAME X X X XX X X X X10X X XX X
HALT

Figure 1-1. NDDL Functionality Matrix

1-2

DS 620341100
30 September 1990

SECTION 2

DOCUMENTS

2.1 Reference Documents

1. Control Data Corporation, Test Bed System Requirement
Document (Draft); SRD620340000, 31 May 1988.

2. Control Data Corporation, Test Bed System Design
Specification; SDS620340000, 31 May 1988.

3. ICAM Documentation Standards; IDS15012000A, 28
December 1981.

4. Control Data Corporation, IISS Software Development
Guidelines/Conventions (Draft), 31 May 1988.

5. Structural Dynamics Research Corporation, IISS User
Interface Management System Services User ManuaT;
UM620344100, 31 May 1988.

6. Structural Dynamics Research Corporation, IISS Form
Processor Users Manual; UM620344200, 31 May 1988.

7. Control Data Corporation, IISS Neutral Data Definition
Language (NDDL) User's GuieaTPrelIminary Draft); 31
May 1988.

8. Hughes IISS Integration Task; 16 April 1984.

9. Softech, ICAM Architecture, Part II, Vol. V,
Informatio-nModeling (IDEFI); FTR110210000.

10. D. Appleton CO., CDM Administrator's Manual;
UM620341000, 31 May 1988.

11. D. Appleton Co., CDM1-IDEF, Model of the Common Data
Model; CCS620341000, 31 May 1988.

12. General Electric Co., Quality Assurance Plan;
QAP620344000, 31 May 1988.

13. D. Appleton Co., Embedded NDML Programmer's Reference
Manual; IPRM620341200, 31 May 1988.

14. Control Data Corporation, NTM Programmer's Guide;
UM620340001, May 1988.

2.2 Terms and Abbreviations

Attribute Use Class: (AUC).

bApplication Interface: (AI) A collection of routines with the

same calling sequences as the Forms Processor and Virtual

2-1

DS 620341100
30 September 1990

Terminal callable routines that enables applications to be
hosted on computers other than the host of the User interface.

Assertion: Predicate that applies to one or more attributes;
checked after completion of an action to determine if the
results should be committed.

Conceptual Schema: (CS).

Common Data Model Processor: (CDMP).

Common Data Model: (CDM) Describes common data application
process formats, form definitions, etc, of the IISS and includes
conceptual schema, external, internal schemas, and schema
transformation operators.

Data Field: (DF) An element of data in the internal schema.
Generally, a DBMS will reference data by this name.
Data Item: (DI) An element of data in the external schema. An
NDML programmer references data by this name.

Data Type: A specific computer representation of a domain.

Distributed Request Supervisor: (DRS) This IISS CDM Subsystem
Configuration Item controls the execution of distributed NDML
queries and non-distributed updates.

Domain: A logical definition of legal attribute class values.

Domain Constraint: Predicate that applies to a single domain.

External Schema: (ES).

Forms: Structured views which may be imposed on windows or
otger forms. A form is composed of fields where each field is a
form, item, or window.

Forms Processor: (FP) A set of callable execution time routines
available to an application program for form processing.

Internal Schema: (IS).

Integrated Information Support System: (IISS), a computing
environment used to investigate, demonstrate, test the concepts
and produce application for information management and
information integration in the context of Aerospace
Manufacturing. The IISS addresses the problems of integration
of data resident on heterogeneous databases supported by
heterogeneous computers interconnected via a local Area Network.

Mapping: The correspondence of independent objects in two
schemas: ES to CS or CS to IS.

NDDL User: The CDM administrator or his designated
representative.

2-2

DS 620341100
30 September 1990

Network Transaction Manager: (NTM) Performs the coordination,
communication and housekeeping functions required to integrate
the Application Processes and System Services resident on the
various hosts into a cohesive system.

Neutral Data Definition Lanquages: (NDDL) A language used to
manipulate and populate information in the Common Data Model
(CDM) or IISS System Database.

Neutral Data Manipulation Language: (NDML) A language developed
by the IISS project to provide uniform access to common data,
regardless of database manager or distribution criteria. It
provides distributed retrieved and single node update.

ORACLE: Relational DBMS based on the SQL (Structured Query
Language, a product of ORACLE Corp, Menlo Park, CA). The CDM is
an ORACLE database.

object: Named Common Data Model item; for example, entity
class, relation class, attribute class.

Trigger: Action that is invoked at the commit completion of
another action.

User Interface: (UI) Controls the user's terminal and
interfaces with the rest of the system.

Virtual Terminal Interface: (VTI) Performs the interfacing
between different terminals and the UI. This is done by
defining a specific set of terminal features and protocols which
must be supported by UI software which constitutes the virtual
terminal definition. Specific terminals are then mapped against
the virtual terminal software by specific software modules
written for each type of real terminal supported.

2-3

DS 620341100
30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

The NDDL processor is the computer program that translates
the command statements of this language and performs the
operations requested, updating the CDM database. The NDDL
language is non-procedural. The NDDL processor is essentially
an interpreter, executing one command at a time, in the order
presented by the user.

Each command is parsed for syntactic correctness. Control
is transferred to the individual command processor for the
semantic validation of the command. If all semantic checks are
found to be correct, the database is updated or information
retrieved.

3.1.1 System Capacities

The NDDL is designed to allow multiple users at the same
time. Data limits are imposed only by the capacity of the DBMS.
Processing speed limits are imposed by the speed of the computer
and the number of other users and the speed and efficiency of
the NTM subsystem and the IISS Forms Processor. A number of
COBOL and C fixed size tables will be used to temporarily hold
information. These limits can be changed very easily in a
virtual memory environment.

3.1.2 Interface Requirements

The NDDL processor shall make use of the IISS Forms
Processor for command input and shall allow batch input as well.
The NDDL processor shall make use of IISS NDML wherever possible
to retrieve data from the CDM native ORACLE wherever NDML is not
sufficient.

3-1

DS 620341100
30 September 1990

3.1.2.1 Interface Block Diagram

BATCH NDDLI --- +-...+--------

+ . > C1 -------------
------------ I/O +------------
------------------ +---------------

IF +.... NDDL N IN GENERATED
--------------- I<-+T ORACLE
INTERACTIVEI+--> FP T IM REQUEST

I+-> IM PROCESSORS++
SM +-------- -------

+-----------------+
--------------- II NDMLI

+---------+-------+ ORACLE ++-------+

2 FORMS ------------------IiDSj ---+

+-> I CDM DATA BASE I-----------

Figure 3-1. NDDL Processor Interfaces

3.1.2.2 Interface Requirements

The NDDL processor makes use of the IISS Forms Processor
directly for forms interactive input. NDDL also makes use of
the standard C input/output library to allow user non-forms
interactive input or batch input via file redirection. Database
access is through a combination of:

(1) Oracle for Recursive Searches and Updates not supported
by the NDML precompiler and

(2) NDML for all other retrievals and Updates.

The NDML routines are precompiled by the IISS NDML
precompiler and ORACLE request processors are generated. The
Request Processors communicate with NDDL through the DRS which
uses IISS NTM services.

It is a design goal to replace the use of ORACLE with NDML
to achieve DBMS independence, and to allow the CDM database
itself be distributed.

It is a design goal to make NDDL an application controlled
by the IISS User Interface subsystem to make use of its
capabilities.

3-2

DS 620341100
30 September 1990

3.2 Detailed Functional Requirements

This description of functional requirements is broken down
into nine subfunctional areas. These areas are identified in
the block diagram, Figure 3-2, which includes the following
paragraph numbers. The forty-two commands currently making up
NDDL are each described in Subsection 3.2.8.

+-------------------
NDDL

. . .. PROCESSOR +
I +--- 3.2 --- + I
V V ------------ V V

+----------------- ----------- +------------------- +-------------

I I

+-- IINDIVIDUAL COMMAND ++-+I

PROCESSING I+-+
3.2.8 ++3 I

---- ----O-PT- +ELR----------------------------

V----------- ------ I---------------

IINPT/OTPU I<-IERORHNDLNG 1.2. 3..3 DATABASEACCESS3.5

3.2.2 V---I--HANDLING-I----- -
-- +--------------------- V------------

Figre 3-2. Organization of NDDL Functional Reuirements

3.2.1 Initialization

A. Function:

Initialization will allow the NDDL processor to perform
all initialization requirements with other subsystems
and software environments.

B. CDM Reqirements:

None

C. Processing:

i. Determine the processing mode, either interactive,

through forms, or batched.
2. Initialize with NTM through use of INITEX sevice.

In the future, this should be changed to INITAL whenUI serices are required.

3-3

DS 620341100
30 September 1990

3. If in forms mode, initialize to the forms processor
by using the INITFP service, OPNFRM and ADDFRM to
create the user's initial form.

4. Log on to the ORACLE DBMS. The log on data area
will be global data structures.

5. Initialize any other data structures necessary for
any commands to their null, or initial state.

6. Initialize any other global variables such as
current model, current database, current commit
mode, current output mode, etc.

3.2.2 Input/Output

A. Function:

Provide user input to the other components of the NDDL
processor in an invisible manner, without respect to
the means in which the input was obtained. Provide
output for NDDL processor to the user through a
standard interface to allow the same invisibility.

B. CDM Requirements:

None

C. Processing:

The standard C character input/output routines will be
used. They will be modified, however, to recognize the
current input/output mode. Batch mode will use the
existing capability of the C library. Interactive
mode will make use of forms processor calls. Because
the forms processor can return many screens of
information at a time, the modified input/output
routines shall extract a single character at a time
from the data structures. Since output consists of
simple information messages to the user, PMSGLS forms
processor calls can be used for all messages or
PRINTF, if batch mode, to standard output. Output of
generated NDDL uses the standard C file I/O
primitives.

3.2.3 Error Handling

A. Function:

Provide a single standard means of communicating
errors to the NDDL user. The interface shall be
simple, readily usable and invisible to the particular
input/output mode. The error handling shall also make
database transaction rollback conditions simple to

3-4

DS 620341100
30 September 1990

recognize. User requirements for command skipping

after a semantic error shall be implemented.

B. CDM Requirements:

None

6 C. Processing:

Three major entry points to the error handling
functionality of NDDL shall be established
corresponding to the three types of errors. These
are:

1. An entry point for "fatal" errors. These are
errors from other subsystems or software other than
NDDL. These errors are to be handled in accordance
with the IISS Error Handlinq Philosophy, Reference
Number 12. A standard routine is called to log the
message in a central place. These error conditions
shall also be communicated to the user as type 2
below.

2. An entry point for user errors. These are errors
that are caused by the user and can be recovered by
user action. An example may be creating an entity
that already exists. This error handler must set a
flag so at the end of the command, any database
changes are backed out through a rollback procedure
supplied by the DBMS or NDML.

3. An entry point for warning messages. These are
indications of problems of user understanding, such
as dropping a set that does not exist, or simple
informative messages about actions that have
occurred, such as "model altered".

It is the responsibility of the general command
processor, Section 3.2.6, not to process commands
in batch after a user error or fatal error has
occurred. This prevents a later command from
causing unpredictable harm.

3.2.4 Parse Commands

A. Function:

The Parse Command subfunction of IISS will provide a
mechanism for accepting user command input, validating
correct syntax, reporting syntax errors and saving
pertinent command information in data structures
ndependent of the syntax.

3-5

DS 620341100
30 September 1990

B. CDM Requirements:

None

C. Processing:

This function will be provided through code generated
by the UNIX tools YACC and LEX and interface routines

provided as part of this function (UNIX is a trademark
of Bell Labs).

1. LEX is a tool that generates lexical analyzers.
Given a specification of the reserved words or
tokens, LEX will generate a routine that will
accept user input and return control to the caller
on each token recognized.

2. YACC is a tool that generates a parser that
validates user input as matching the grammar or
syntax of the language. The parser generated has
the capability of calling user specified routines
or code called "actions". YACC is commonly used in
compiler construction. YACC uses a syntax
specification of the NDDL commands and generates
the NDDL parser. This specification is not treated
as an IISS deliverable because to do so would
require the user or target site to have the UNIX
tools.

3. Token primitive routines will be developed that
store user entered command data, or tokens, in a
special data structure. This data structure is
simply a matrix of pointers into a string of
concatenated tokens. The columns of the matrix are
called lists. Lists generally have like tokens;
for example, all the keywords entered on a CREATE
ENTITY command. The rows of the matrix are
generally meaningless, unless the syntax defines a
special correspondence between lists. An example is
CREATE VIEW, where data items and attributes must
match up.

The token primitives are the only kind of action
statements used in the YACC input. It is
conceivable that each entire command processor
could be called as YACC action statements, but this
is not the case. The design goal was to build
command processors independent of the input
mechanism, in this case, command syntax.

3-6

DS 620341100
30 September 1990

3.2.5 Database Access

A. Function:

This subfunction outlines the functional requirements
of the database access used in the NDDL processor. All
database access shall be for the ORACLE based CDK. All
database access shall use the facilities of the IISS
NDML wherever possible. The ORACLE SQL facilities may
be substituted only if the NDML does not provide the
needed functionality. Any use of ORACLE's SQL shall be
written in C. This is because the necessary log on
database area must be kept in a global area to avoid
the database access routines requiring any DBMS
specific interface parameters. This is to allow
eventual conversion of all ORACLE database access
routines to NDML and achieve DBMS independence for the
NDDL processor.

B. CDM Requirements:

The ORACLE DBMS must be used due to previous decisions
on the initial DBMS to host the CDM.

C. Processing:

1. ORACLE SQL will be used for the following
requirements:

1.1 SELECT where a Bill of Materials type
recursive search is needed.

1.2 UPDATE (or MODIFY) operations, when a key is
to be modified.

2. COBOL embedded NDML will be used for all other
database retrieval, verification, insert,delete and
modify modules. A distinction is made between
verification or look up modules and modules
expected to retrieve more than one row.
2.1 The verification type module shall be called

with the search parameters as inputs and the
database value(s) found on the single row as
output. Very often a zero valued object
number will be used as a "no-find" status.

2.2 For routines expected to find many rows, the
routine will receive the simple search
parameters as input as before. Within the
NDML (and), logic will be coded for
processing each row. Very often calls to
other routines which may process a single row
will be made. If row processing is simple
enough, calls are not necessary.

3-7

DS 620341100
30 September 1990

These requirements promote DBMS independence and
simp]icity of data structures common to more than
one module.

3. For purposes of database concurrence and integrity,
the logical unit of work shall be defined to be a
single NDDL command execution. That is, the
command is wholly executed with the results as
expected by the user or none of the command is
executed. Therefore, an NDDL command can be
considered a transaction.

3.2.6 General Command Processing

A. Function

General Command Processing will handle such functions
as pre-command initialization, control of parsing,
control of forms input/output, and post command control
of database commit or rollback. It must also control
parsing of commands that cannot be executed due to
previous errors. This subfunction will also provide
facilities for CDM object numbering and number reuse.
The subfunction must provide for generalized access to
the parser data structures.

B. CDM Requirements

One table necessary for object numbering will be used.
This is NEXT NUMBER which contains the next number to
be used for each object type.

C. Processing

1. The user input form must be displayed the first
time in forms mode.

2. Each command entered by the user on the input
screen must be processed, skipping commands after
an error is encountered.

3. For a completed command, a count of errors must be
displayed.

4. If there were errors, the entire screen must be
redisplayed. Also, the previous set of error
messages need to be blanked out and a "no errors"
message displayed. If the user asked to refresh
and keep his command on the screen, this too must
be done.

5. The current database, model, current output mode
(file or screen) and current commit mode (whether
automatic or natural) must also be kept on the
screen.

3-8

DS 620341100
30 September 1990

6. If the user entered the quit key, a halt command
must be generated and processed.

7. When a user has entered a command, the parser must
be called. The return status of parsing must be
examined.

8. If the command is to be processed, then a routine
to effect the transfer of control to the proper
command processor is executed.

9. After the individual command is executed, the
current model and database must be established. If
the command was successful, the database
transactions are committed or, if unsuccessful,
rolled back.

10. The CDM objects that shall be numbered follow.

Each object type below has an object type number.

OBJECT TYPE NUMBER OBJECT TYPE

1 MODEL
2 ENTITY
3 ATTRIBUTE
4 KEY CLASS
5 RELATION
6 TAG
7 DOMAIN
8 KEYWORD
9 VIEW
10 DATABASE
11 SET
12 DATA TYPE
13 DATA ITEM
14 DATA FIELD
15 RECORD

Objects are numbered to ease renaming and to allow
a central place for storing object descriptions.

One subfunction exists to promote consistent
handling of these numbers.

10.1 Get next number will obtain a new, unused
number for an object being created. It must
first search the list of available numbers
for this object type. If one is found, it
must be deleted from the list of reusable
numbers. If one is not found, the next
available number is retrieved from the CDM's
NEXT NUMBER table. This number is
incremented and updated in the NEXTNUMBER
table.

3-9

DS 620341100
30 September 1990

11. Finally, this subfunction must supply routines that
allow the command processor to access the lists of
user command tokens built by the parser. These
functions shall allow access to the first token on
the list, the next token from the list and
accessing a token from one list corresponding to
another list (same row). The functions should
return a count of tokens on the list and an end of
list indicator.

3.2.7 Termination

A. Function

Termination will allow the NDDL processor to perform
all termination requirements with other subsystems and
software environments.

B. CDM Requirements

None

C. Processing:

1. Log off from ORACLE.

2. If the forms mode of input was used, use the FP
service TERMFP.

3. Issue a call to send a finish up message to the DRS
and to terminate NTM activities.

3.2.8 Individual Command Processing

The following subparagraphs outline the functional
requirements of each command making up the NDDL. Consult the
Table of Contents for a quick reference to a specific command.
3.2.8.1 ALTER ALIAS - Switch the primary and alias names of a

conceptual attribute or entity.

A. Function:

Alter Alias performs the following functions:

1. Changes the primary name of an attribute or entity
to alias

2. Changes the alias name of an attribute or entity to
primary

B. CDM Requirements:

1. The primary name of the attribute or entity must
exist in the current model.

3-10

DS 620341100
30 September 1990

2. The alias name of the attribute or entity must exist

in the current model.

C. Processing:

1. Alter Alias verifies that the primary and alias
names to be switched exist in the current model.

2. If attribute names are being switched, the primary
and alias entries in the ATTRIBUTENAME table are
updated.

3. If entity names are being switched, the primary and
alias entries in the ENTITYNAME table are updated.

3.2.8.2 ALTER ATTRIBUTE - Alter a Conceptual Attribute

A. Function:

Alter Attribute performs the following functions:

1. Change a domain name for an attribute

2. Add keywords to an attribute

3. Drop keywords from an attribute

4. Alter ownership of an attribute from the old owner
to new owner entity

5. Insert attribute as member of a specified key in
new owner entity

B. CDM Requirements:

1. The attribute to be altered must exist in the
current model.

2. The entity class who already owns the attribute
must exist.

2.1. If the attribute is a discriminator in
category relation, the domain change will
only occur if the new domain does not
invalidate the discriminating values already
being used in the category relation.

3. If the domain is to be modified, the new domain
must exist.

4. If a keyword is to be dropped, it must exist.

5. If the ownership of the attribute is to be altered,
the entity class to be the new owner must exist.

3-11

DS 620341100
30 September 1990

C. Processing:

1. Alter Attribute verifies that the attribute to be
altered exists.

2. If the domain is to be changed, the existence of
the new domain is verified and the ATTRIBUTE CLASS
table is modified to contain the new domain number.

3. If a keyword is to be dropped, a check is performed
to verify that the keyword is assigned to the
attribute. If so, the keyword is deleted from the
ACKEYWORD table.

4. If a keyword is to be added to an attribute, the
keyword table is searched to determine whether the
keyword exists. If not, the new keyword is
inserted into the keyword table. The new keyword
is then inserted into the AC KEYWORD table, if it
did not already exists there.

5. Determine if the ownership of an attribute is to be
altered from the old owner entity to a new owner
entity.

5.1 If the alter ownership clause is not present,
exit command processing.

5.2 Else, initialize local variables and tables.

6. Retrieve from the parser list the name of the new
owner entity to which attribute ownership is to be
altered.

6.1 Verify that the new owner entity exists.

6.2 If the entity does not exist issue an error
message and exit command processing.

7. Retrieve information about the old owner entity.

7.1 Retrieve the tag name, tag number, old entity
number.

7.2 Determine if the tag was a member of any key
in the old owner. If the tag is a key
member, move "yes" to
KEY-FOUND-IN-OLD-OWNER-FLAG.

8. Determine if relations exist in which the new owner
is the independent entity and the old owner is the
dependent entity.

3-12

DS 620341100
30 September 1990

8.1 For each relation found, increment the
MIGRATES-BACK-COUNTER.

9. Retrieve key migration information, if any, for the
attribute use class in the old owner. Process as
follows:

9.1 Select the dependent entity, independent
entity, relation, key and inherited attribute
from the CDM tables INHERITED ATT USE LINK-
RELATION, and CATEGORYRELATION. For each
row retrieved:

9.1.1 Populate the internal table
OLDTAGMIGRATIONTBL.

9.1.2 If the dependent entity found in the
search is the same as the new owner
entity

9.1.2.1 Increment
OLD-MIGRATES-TO-NEW-COUNTER

9.1.2.2 Select all the key numbers if
the inherited attribute is a
member of the new owner
entity. If the attribute is
a key member in the new owner
entity:

9.1.2.2.1 Complete
populating
of OT-KC-NO-NEW of
OLD TAG MIGRATION
TBL-wit the key
class numbers
retrieved.

9.1.2.2.2 Move "YES" to
KEY-FOUND-IN-NEW-
OWNER-FLAG

9.1.2.2.3 Increment
OT-KC-NO-USED for
each key class
number retrieved.

10. Determine all cases in which attribute ownership
cannot be altered.

10.1 If a dependency loop exists between the old
owner entity and new owner entity, i.e. if
MIGRATES-COUNTER and MIGRATES-BACK-COUNTER
both are greater than zero, issue an error
message and exist command processing.

3-13

DS 620341100
30 September 1990

10.2 If the attribute has migrated more than once
from the old owner to the new owner, i.e. if
it already exists as two or more inherited
attributes in the new owner, only one of
those inherited attributes may belong to any
of the new owner's keys. If multiple keys
are found, this is an error condition, and is
determined by searching in the table
populated earlier.

10.2.1 Search OLD-TAG-MIGRATION TBL for
entries where the dependent entity
populated is the same as the new
owner entity. If multiple entries
are found, only one of these entries
should have any keys associated with
it (i.e., OT-KC-NO-USED > 0). If
more than one entry has keys
associated, issue an error message
and exit command processing.

10.3 Compare the new entity number with the old
entity number. If they are the same, issue
an error message that the attribute is being
altered to an entity where it is already
owned.

10.4 If attribute is a key number that is used in
a categorization, no ownership change is
allowed. Keys that are used in category
relatation cannot be altered.

10.5 If attribute is a discriminator for a
category relation, no ownership change is a-
llowed. Ownership of discriminators cannot
be altered.

10.6 Migrates clause cannot be specified if new
entity is part of a category relation. Keys
used in category relations cannot be altered.

11. Retrieve the key name, KC NAME LST, from the parser
lists in which the attribute is to be placed as a
key member. Also, Retrieve the link relation name,
RC NAME LST, from the parser lists if any, through
whTch tHe key can migrate back to the old owner.

Set FIRSTTIMEFLAG = 1

12. If KCNAMELST is empty

12.1 If KEY FOUND IN NEW OWNER FLAG = "NO",
initialize KCNAME LST = WNONKEY"

3-14

DS 620341100
30 September 1990

12.2 Continue processing at Step 14.

13. If KC NAME LST is not empty, i.e. "as member of"
clause is specified

13.1 Verify if this KC NAME LST has already been
processed by searching KEYCLASSPROCESSEDTBL.
If the key has been processed

13.1.1 Issue an error message and exit
command processing

13.1.2 Else, add this key to the
KEYCLASSPROCESSEDTBL table.

13.2 Determine if this key exists in the new owner

entity

13.2.1 If the key does not exist

13.2.1.1 Insert the key KC-NAME LST
for the new owner entiEy
into the CDM table
KEY CLASS. This is added
as a primary key if a
primary does not already
exist. Else, it will be an
alternate key.

13.2.1.2 Continue processing at Step
14.

13.2.2 If the key does exist in the new
owner entity, i.e. KCNONEW is not
zero.

13.2.2.1 Retrieve from the CDM
tables COMPLETERELATION
and LINK RELATION, all key
migrations of KCNONEW.

13.2.2.2 Populate the table
NEW TAG MIGRATION TBL with
the-dependent entity number
and the link relation name
and number that KC NO NEW
was migrated through.

13.2.2.3 Each entry has an
associated
DEPENDENT-ENTITY-COUNT
representing the total
number of times the entity
appears as dependent in all

3-15

DS 620341100
30 September 1990

new owner migrations. This
count is used later to
facilitate generation of
unique tag names for
inherited attributes.

14. If the attribute in the old owner is key and does
not migrate from the old owner to the new owner or
cannot migrate from the new owner back to the old
owner, all key migrations of the attribute will be
deleted. Process as follows:

14.1 If the attribute is not key in the old owner
continue processing at Step 17.

14.2 If old key migrations have previously been
preserved or deleted, i.e. FIRST-TIME-FLAG
not = 1, continue processing at Step 17.

14.3 If the attribute is key in the old owner and
the MIGRATES-BACK-COUNTER is greater than
zero continue at Step 17.

14.4 If the MIGRATES-COUNTER is greater than zero

14.4.1 Continue at Step 15

14.4.2 Else continue processing at Step 16,
which deletes all key migrations of
the attribute in the old owner.

15. Since the attribute does mivrate from the old owner
entity to the new owner entity, key migrations, if
any, of the new entity's key containing this
inherited attribute may need to be preserved.

15.1 If the user specified that the attribute is
to be left as nonkey in the new owner
(KC-NAME-LST equals "nonkey") the old owner's
migrations need not be preserved. Continue
processing at Step 16.

15.2 Check whether the inherited attribute is a
key class member in the new owner. If the
attribute is key and the user did not specify
a key class in the "as member" clause, the
migrations of this attribute need to be
preserved. Or, if the user specified the
same key name where the attribute is already
a key member, the migrations will again need
to be preserved. Process as follows:

15.2.1 If the attribute is not member of
key, i.e., KEY-FOUND-IN-NEW-OWNER-
FLAG = "No", no migrations need to be
preserved; continue processing at
Step 16.

3-16

DS 620341100
30 September 1990

15.2.2 If the attribute is a member of a key
in the new owner, search for a row in
the OLD-TAG-MIGRATION-TBL populated
earlier where the OT-DEP-EC-NO is
equal to the new entity number. Flag
the row with an asterisk to be
preserved if:

15.2.1 No "as member" clause was
specified (i.e., KC-NAME-LIST
equal spaces)

15.2.2 Or one of the KC numbers that
the inherited attribute is a
key member of (OT-KC-NO-NEW)
is equal to che key number of
the key specified in the "as
member" clause (KC-NO-NEW)

15.2.3 If none of the rows of the
OLD-TAG-MIGRATION table were
flagled with an asterisk,
continue processing at Step
16; otherwise, there are
migrations that need to be
preserved as follows:

15.2.3.1 Remove the OLD-TAG-NO from
all keys in the old owner
entity, by deleting from
the CDM table
KEY CLASS MEMBER and
ATTRIBUTEUSECL.

15.2.3.2 Search the
OLD-TAG-MIGRATION-TBL. If
the row has not been
flagged with an asterisk,
drop all migrations of the
old owner to all dependent
entities except where the
dependent entity is the new
owner. This is done by
using a recursive search of
the INHERITED ATT USE CDM
table and matching the
OLD-TAG-NO with the
KCM TAG NO and the relation
numBer -rom the
OLD-TAG-MIGRATION-TBL
(OT-RC-NO) with the RC NO.
Delete the migrations -rom
the CDM Tables

3-17

DS 620341100
30 September 1990

INHERITED ATT USE,
KEYCLASS-MEMBER, and
ATTRIBUTE USE CL where
there is i match.

15.2.3.3 If the row has been flagged
with an asterisk, convert
the inherited attribute of
the new owner found in the
OLD-TAG-MIGRATION-TBL
(OT-TAG-NO-NEW) to owned by
deleting its entry in CDM
Table INHERITED ATT USE.
If an "as membeF of-key"
clause was specified (i.e.,
KC-NAME-LIST not ecual to
spaces) drop the migrations
of all the keys in the new
owner except the one
specified in the clause.
This is done by using a
recursive search of the
INHERITED ATT USE CDM Table
and matching the new '.ag
number (OT-TAG-NO-NEW)
found in the
OLD-TAG-MIGRATION-TBL with
KCM-TAG-NO and the key
number from the
OLD-TAG-MIGRATION-TBL with
KC NO. Delete the
migrations from the CDM
Tables INHERITED ATT USE,
KEY CLASS MEMBER and
ATTRIBUTE-USE CL where
there is a match.

15.2.3.4 Issue a warning message
that some keys may now be
"SUSPECT".

15.2.3.5 Continue processing at Step
22.

16. Process deleting the old owner's migrations as
follows:

16.1 Delete the attribute as member of all keys in
the old owner entity by deleting from the CDM
table KEYCLASSMEMBER.

16.2 Delete all migrations down the entire chain
using a recursive search accessing CDM tables
INHERITEDATTUSE, KEYCLASSMEMBER and
ATTRIBUTE USECL.

3-18

DS 620341100
30 September 1990

16.3 Issue a warning message that some keys may
now be "SUSPECT".

17. Using the table created in Step 13.2.2,
NEW-TAG-MIGRATION-TBL, which contains migration
information of the key specified by the user for
the new owner entity, create attribute use and
inherited attribute use occurrences for the
attribute whose ownership is being altered.
Process as follows:

17.1 If table is empty, continue processing at
St~p 19.

17.2 If this is not the first time through,
continue processing at Step 18.

17.3 If a complete relation has been specified in
case of multiple migrations from the new
owner back to the old owner entity (i.e.,
RC-NAME-LST is not empty):

17.3.1 Verify the link relation specified
does exist in the
NEW-TAG-MIGRATION-TBL and that the
dependent entity is the old owner
entity. If this check fails:

17.3.1.1 Issue an error messave and
exit command processing.

17.3.1.2 Else, continue processing
at Step 18.

17.4 If a complete relation is not specified
(i.e., RC-NAME-LST is empty) search through
the NEW-TAG-MIGRATION-TBL to locate an entry
where the dependent entity is the old owner
entity. Move this entry's link relation to
RC-NAME-LST. This processing is done to
establish the same tag name for the first
inherited attribute created and suffixed tag
names for all the remaining inherited
attributes in the same dependent entity.

18. For each entry found in NEW-TAG-MIGRATION-TBL,
process as follows:

18.1 If the attribute has already been established
as an attribute use in the new owner entity
and inserted as a key member in the key
specified by the user, continue processing at
Step 18.5.

3-19

DS 620341100
30 September 1990

18.2 If the attribute use has previously been
established in the new owner (i.e.,
FIRST-TIME-FLAG NOT = 1 but the key
occurrence has not been created, insert an
occurrence in the CDM table KEY CLASSMEMBER.
Continue processing at Step 18.4.

18.3 Since this is the first time through,
establish the attribute use in the new owner,
and insert a key class occurrence in the key
specified.

18.3.1 If the MIGRATES-BACK-COUNTER > zero
(i.e., the attribute migrates back
from the new owner to the old owner)
insert an attribute use occurrence in
the new owner entity. Generate a new
tag number and insert into the CDM
table ATTRIBUTE USE CL. Move the new
tag number to tHe variable KCM-TAG-NO
to reflect that the AUC has been
established in the new owner.

18.3.2 If the MIGRATES-BACK-COUNTER = 0
(i.e., the attribute does not migrate
back to the old owner) modify the
attribute use occurrence. Update the
CDM table ATTRIBUTE USE CL to reflect
the tag is an attriBute-use of the
new owner entity, instead of the old
owner. Move this TAG-NO-OLD to
KCM-TAG-NO to establish the AUC has
been established in the new owner.

18.4 Set a flag to denote the key member has been
created.

18.5 If the attribute migrates back from the new
owner to the old owner entity, the attribute
is converted from owned to inherited. This
conversion is done only once, and uses the
information populated in RC-NAME-LST. For
every other migration of the new owner to all
other dependent entities, an attribute use
and inherited attribute use occurrence pair
is created. Process as follows:

18.5.1 If the dependent entity from the
table is the same as EC-NO-OLD and
FIRST-TIME-FLAG = 1, and the link
relation from the table is the same
as RC-NAME-LST

3-20

DS 620341100
30 September 1990

18.5.1.1 Insert an inherited
attribute occurrence in the
CDM table INHERITEDATTUSE

18.5.1.2 Else, create an inherited
attribute use and attribute
use pair by performing Step
23.

18.5.2 Continue processing at Step 22.

19. Process the situation, if any, where the new owner
entity's new key can migrate back to the old owner
entity through a user specified incomplete
relation. Process as follows:

19.1 If KC-NAME-LST is not empty (i.e., a key
has been specified) and RC-NAME-LST is not
empty (i.e., a link relation has been
specified).

19.1.1 Verify the link relation specified
exists with new owner as the
independent entity and the old owner
as the dependent entity. If the
verification fails, issue an error
message and exit command processing.

19.1.2 Verify the link relation specified is
incomplete. If an incomplete
relation has not been specified,
issue an error message and exit
command processing.

19.1.3 Create a complete relation occurrence
by inserting into the CDM table
COMPLETE RELATION, specifying the new
key migrates through the specified
link relation.

19.1.4 If the attribute use occurrence has
not previously been established
(i.e., FIRST-TIME-FLAG = 1):

19.1.4.1 Generate a unique tag
number. Move this tag
number to KCM-TAG-NO, to
indicate the attribute use
for the new owner entity has
been established.

19.1.4.2 Create an attribute use
occurrence for the new owner
by inserting into the CDM
table ATTRIBUTEUSECL.

3-21

DS 620341100
30 September 1990

19.1.4.3 Create an inherited
attribute use occurrence to
convert the attribute in the
old owner from owned to
inherited. Insert into the
CDM table INHERITEDATTUSE.

19.1.4.4 Place the attribute as
member of the user specified
key in the new owner entity.
Insert into CDM table
KEYCLASSMEMBER.

19.1.5 Else (attribute use has been
established for new owner)

19.1.5.1 Generate an attribute use
and inherited attribute use
occurrence for the old
owner entity. Perform Step
23.

19.1.5.2 Place the attribute as
member of the user
specified key, if not
already placed, by
inserting into the CDM
table KEYCLASSMEMBER.

19.1.6 Continue processing at Step 22.

20. Determine if the attribute is to be placed as key
in the new owner entity.

20.1 If KC-NAME-LST is not empty (i.e., user has
specified a key):

20.1.1 Insert the attribute as member of key
specified in the new owner entity, by
inserting into the CDM table
KEYCLASSMEMBER.

20.1.2 Establish the attribute use
occurrence for the new owner, if not
previously established, by updating
the CDM table ATTRIBUTE USE CL to
reflect that the attribute now is an
attribute use in the new owner.

20.1.3 Continue processing at Step 22.

21. If the attribute is to be placed as nonkey in the
new owner entity:

3-22

DS 620341100
30 September 1990

21.1 Modify the attribute use occurrence by
updating the CDM table ATTRIBUTEUSECL to
reflect that the attribute is now an
attribute use in the new owner entity,
instead of the old owner entity.

22. Prepare for the next iteration of the "as member"
clause. Initialize the parser variables. Retrieve
from the parser lists the next "as member" clause.
22.1 If as "NONKEY" specified, issue an error

message.

22.2 If KC-NAME-LST is spaces

22.2.1 Update the CDM table OWNED ATTRIBUTE
to reflect the attribute is now owned
by the new owner entity.

22.2.2 Delete any empty keys from the CDM
table KEY CLASS and incomr'ete link
relations-from the CDM table
COMPLETE RELATION that resulted from
altering-the attributes ownership.

22.2.3 EXIT program.

22.3 If a key name has been specified

22.3.1 Retrieve from the parser list, if
any, the corresponding link relation
name, RC-NAME-LST.

22.3.2 Initialize the NEW-TAG-MIGRATION-TBL.
Set a flag to indicate the key member
occurrence has not been created.
Increment FIRST-TIME-FLAG.

22.3.3 Continue processing with this key
class name specified, at Step 13.

23. Create an Attribute Use and Inherited Attribute Use
pair for the dependent entity that the attribute
from the new owner will migrate to. Special
processing is required when the new owner migrates
back to the old owner multiple times. For these
cases suffixes will be appended to the old owner's
tag name. Process as follows:

23.1 If FIRST-TIME-FLAG = 1 (i.e., this is the
first time throuqh) and the dependent entity
being processed is the same as the old owner
entity:

3-23

DS 620341100
30 September 1990

23.1.1 If the link relation is specified by
the user (i.e. RC-NAME-LST is the
same as the link relation being
processed) no suffixing is performed.

23.1.2 Else suffix the tag name, by
appending a circumflex character and
a number to the attribute (role)
name.

23.1.3 Continue processing at Step 23.3.

23.2 If this is not the first time through (i.e.,
FIRST-TIME-FLAG > 1) verify if the tag name
exists in the dependent entity being
processed.

23.2.1 If the tag name exists, generate a
unique inherited attribute (role)
name by suffixing.

23.3 Generate a unique tag number for the
inherited attribute in the dependent entity.

23.4 Create an attribute use occurrence by
inserting into the CDM table
ATTRIBUTEUSECL.

23.5 Create an inherited attribute use occurrence
in the dependent entity and pair it with the
attribute use occurrence in the new owner
entity.

3.2.8.3 ALTER CATEGORY - Alter a conceptual category relation.

A. Function:

Alter Category performs any or all of the following
functions:

1. Add/drop category entities for the category relation
being altered.

2. Add/drop associated keywords for the category
relation being altered.

3. Change relation from complete to incomplete or
incomplete to complete.

B. CDM Requirements:

1. The category relation must exist.

2. The category entity must exist.

3-24

DS 620341100
30 September 1990

3. Added category entities can not have any keys and
their liter value must be valid in the domain of the
discriminating attribute.

C. Processing:

1. Incomplete/complete

1.1 An incomplete category can be changed to
complete or vice versa. If the category
relation is complete, a check will be made to
make sure that there are at least two category
entities.

2. Add

2.1 The category relation can be adjusted by adding
entities.

2.2 The primary key of the generic entity will be
migrated as the primary key of the
category entities. A new key number will be
assigned to the category entity. The key name
of the generic entity's primary key will Ee
inserted into KEYCLASS with the new
keynumber.

2.3 The value for the discriminator in the category
must be unique for each of the category entities
in the category relation and be a valid specific
value in the domain of the discriminator.

2.4 If a keyword is to be added to the category
relation, the keyword table is searched to
determine whether the keyword exists. If it
does not exist, the new keyword is inserted into
the keyword table. The new keyword is then
associated with the category relation.

3. Drop

3.1 The category relation can be adjusted by
deleting entities.

3.2 The attribute use and inherited attribute use
originally created for each key member migrated
to the category entity are deleted. Also, the
attribute use and inherited attribute use
created for each key member migrated to lower
level dependent entities are also deleted. Then
all keys and complete relations that become
empty due to the deletion of migrated key
members are deleted.

3-25

DS 620341100
30 September 1990

3.3 The category entity is deleted from
CATEGORY MEMBER. If the category entity being
dropped Is the only category member in the
category relation, the category relation is
dropped with complete ripple down.

3.4 If keywords are specified, the relation
concurrence is also deleted.

3.2.8.4 ALTER DATABASE - Alter the definition of a database in
CDM internal schema.

A. Function:

The command allows the user to alter a database
definition in the CDM by changing password information,
schema information, database location information, PSB
information, null information, ntm directory
information, or by adding and/or deleting files or
areas.

B. CDM Requirements:

The database to be altered must exist in the CDM. If
the host is to be altered, it must be defined for the
DBMS for which the database is defined.

C. Processing:

1. Verify the existence of the database to be altered.
If it does not exist, flag a user error. If no
other clauses are specified, the database specified
is made the current database.

2. If the host is to be changed:

2.1 Verify that the host exists. If it does not
exist, flag a user error.

2.2 Otherwise, modify the database occurrence.

3. If the DBMS is IMS:

3.1 Check if the PSB clause is present in the
Command.

3.2 If it is, modify the PSB occurrence.

4. If the DBMS is ORACLE:
4.1 Check if the password clause is present in the

command.

4.2 If it is, modify the database password
occurrence.

3-26

DS 620341100
30 September 1990

5. If the DBMS is CODASYL (IDMS, IDS-II, or VAX-il):

5.1 Check if the schema clause is present in
command.

5.1.1 If it is:

5.1.1.1 Modify the database schema
occurrence.

5.1.1.2 Check if location clause is
present. If it is not, flag a
user error. If it is, modify
the database location
occurrence.

5.2 If areas are to be added:

5.2.1 Verify that the area does not exist. If
it does exist, flag a user
error.

5.2.2 Otherwise, insert the database/area
occurrence.

5.3 If areas are to be dropped:

5.3.1 Verify that the area exists. If it does
not exist, flag a user error.

5.3.2 Check if the area specified is the last
remaining area associated with the
database. If it is, flag a user error.

5.3.3 Otherwise, delete the database/area
occurrence.

6. If nulls (character or integer) are to be changed,
the occurrence in the CDML table DATA BASE will be
modified to the new null value specified.

7. If ntm directory is to be changed, the occurrence in
the CDM table DATA BASE will be modified to the new
ntm directory value specified.

3.2.8.5 ALTER DBMS - Change a Data Base/Host association in the

CDM.

A. Function:

Alter DBMS performs the following function:

1. Alter DBMS allows the user to add and delete host
associations to a DBMS definition and change DBMS
type code.

3-27

DS 620341100
30 September 1990

B. CDM Requirements:

1. The DBMS description must exist in the CDM.

2. The host being added must not already be associated
with the DBMS.

3. The host being dropped must be associated with the
DBMS.

4. In both cases, the host must be in the CDM.
5. The DBMS must not exist on host for host to be

dropped.

C. Processing:

1. The CDM is checked to see if DBMS definition exists.

2. If DBMS definition exists:

2.1 If host is to be added:

2.1.1 The CDM is checked to see if the host
exists.

2.1.2 If host exists:
2.1.2.1 The CDM is checked to see if

host is already associated with
the DBMS.

2.1.2.2 If host already associated with
database:

2.1.2.2.1 An error message is
issued.

2.1.2.2.2 Continue processing
the next host.

2.1.2.3 If host not associated with
DBMS:

2.1.2.3.1 The host/database
associated is added
to the CDM.

2.2 If a host is to be dropped:

2.2.1 The CDM is checked to see if the host
exists.

2.2.2 If host exists:
2.2.2.1 The CDM is checked to see if

host is associated with the
DBMS.

3-28

DS 620341100
30 September 1990

2.2.2.2 If host is associated with
database:

2.2.2.2.1 The host/database
association is
dropped from the CDM.

2.2.2.3 If host is not associated with
DBMS:

2.2.2.3.1 An error message is
issued.

2.2.2.3.2 Continue processing
the nxt host.

2.3 If DBMS type code is to be changed:

2.3.1 The DBMS type code is updated with the
new code.

3.2.8.6 ALTER DOMAIN - Alter the definition of a domain in the
CDM.

A. Function:

Alter Domain allows the NDDL user to perform the
following modifications to the definitions of existing
domains:

1. Addition of non-standard data types

2. Deletion of non-standard data types

3. Changing the meta data description of existing data
types of the domain (i.e. changing the type, size
and number of decimal digits)

4. Promoting a non-standard data type to standard,
converting the former standard to non-standard

5. Add valid values

6. Add valid ranges

7. Delete existing values

8. Delete existing ranges

9. Delete all existing values

10. Delete all existing ranges

3-29

DS 620341100
30 September 1990

B. CDM Requirements:

The domain name referenced must be found in the CDM. Any
data types to be dropped or altered must already be
defined for the domain. Any data types to be added must
not already be defined anywhere else in the CDM. There
must always be a standard data type for the domain, i.e.
the current standard data type cannot be dropped.

C. Processing:

1. The user entered domain name to be altered is
verified to be in the CDM. With this number, each
of the data type changes can be processed.

2. For each user data type request, determine if it's
an ADD, DROP or ALTER.

2.1 For an ADD or ALTER, the legal data types are
checked. They must be SIGNED, UNSIGNED,
INTEGER, FLOAT, PACKED, or CHARACTER. The user
does not enter this for a DROP.

2.2 For an ADD and optionally for an ALTER, the
size and number of decimal digits are checked.
They must both be numeric and the decimal
digits must not exceed the size. They are not
specified for a DROP.

2.3 If the user has requested to alter a data type:

2.3.1 The data type is verified to exist for
the domain and be either standard or
non-standard. The user is warned if it
cannot be found. If it is a standard,
only type, size and number of decimals
may be changed and Step 3.3.1 must be
performed.

2.3.2 For standard data type, or a change to
only the type, size and number of
decimals, this change is recorded in the
USER DEF DATA TYPE table. Step 3.3.1
must be performed.

2.3.3 Otherwise, the user has requested a
switch from non-standard to standard.
In this case, the old standard data type
name is fetched and is changed to
non-standard and the name specified by
the user is changed to become the
standard data type. Step 3.3.1 must be
performed.

3-30

DS 620341100
30 September 1990

2.4 If the user has requested to drop a data type:

2.4.1 The data type name is verified to be in
the domain.

2.4.2 If the data type is found to be
standard, the user is informed that it
cannot be dropped.

2.4.3 If the data type is non-standard, then
any usage of this data type is checked.

2.4.3.1 The database is searched to
find any references by a data
field.

2.4.3.2 The database is searched to
find any references by a data
item.

2.4.3.3 The database is searched to
find any references by anattribute class. This is
probably unnecessary since it
has been checked to be
non-standard in 2.4.2 and only
standards can map to
attributes.

2.4.4 If it was not referenced elsewhere, the
data type and its description text is
deleted.

2.5 If the user has requested to add a data type:

2.5.1 For a standard data type, the database
is searched for an existing standard
data type. If one is not found:
2.5.1.1 The data type name is checked

to see that it was not used forsome other domain. If not,

2.5.1.2 The data type is checked to be
valid by using a database look
up in the table DATATYPE. If
ok,

2.5.1.3 The data type information is
stored in the CDM table
USER DEF DATA TYPE, with a
unique oBject-number, as
standard for this domain.

2.5.2 For a non-standard data type, the data
type name is checked as in step 2.5.1.1.

3-31

DS 620341100
30 September 1990

2.5.2.1 The data type is checked as in
2.5.1.2.

2.5.2.2 The data type information is stored
in the CDM table USER DEF DATA TYPE
with a unique object number as-
non-standard (or "USER") for this
domain.

3. For each value and/or range request, determine if it is
an ADD, DROP, or DROP ALL.

3.1 For a DROP ALL, all values and/or ranges are
deleted from the DOMAINVALUE and/or DOMAINRANGE
tables.

3.2 For a DROP, the specified values and/or ranges on
the request are deleted from the database.

3.3 For an ADD, the specified values and/or ranges are
inserted into the database.

3.3.1 All the values and/or ranges on the
database must be retrieved and validated
against the standard data type information
since new values and/or ranges have been
added or the standard data type information
has been changed.

4. For any value and/or range request, a new verification
module is created.

3.2.8.7 ALTER ENTITY - Alter a conceptual entity

A. Function:

Alter Entity performs the following functions:

1. Add/drop keys for the entity being altered

2. Add/drop owned attributes for the entity being
altered

3. Add/drop associated keywords for the entity being
altered

4. Rename the role (tag) name of the specified
attribute use in the entity being altered

5. Rename a key name in the entity being altered

6. Alter a key type from alternate to primary in the
entity being altered.

3-32

DS 620341100
30 September 1990

7. Add additional members to a specific key of the
entity being altered

8. Drop existing members of a specific key of the
entity being altered

9. Substitute members of a specific key with new key
members, and continue to preserve the migrations of
the old members for the substituted attributes

B. CDM Requirements:

1. The entity to be altered must exist in the current
model.

2. If owned attributes are to be added, the attribute
must exist in the current model. If owned
attributes are to be dropped, they must be owned by
the entity being altered.

3. If a key is to be dropped, it must be a key for the
entity being altered.

4. If a keyword is to be dropped, it must be
associated with the entity being altered.

5. The role name being renamed must exist in the
entity being altered.

6. The key being altered must exist in the specified
entity.

7. The tag names being added and dropped must exist in
the entity being altered.

8. Identify candidate keys as being the primary key or

alternate keys.

C. Processing:

1. The Alter Entity process verifies that the entity
to be altered exists in the current model. If it
does not exist, an error is issued and processing
is terminated.

2. If keys are being added, a new occurrence of key
is added to the entity. The key will be a primary
or alternate key as specified. If it is not
specified, the key will be the primary key if a
primary key does not exist. Else it will be an
alternate key. A new occurrence of attribute use
is created for each attribute named as part ol the
key, if one does not exist for the entity. A new
occurrence of key class members is created for the

3-33

DS 620341100
30 September 1990

entity for each attribute named in the key clause.
If entity being altered is part of a category
relation, only alternate keys may be added.

3. If owned attributes are being added for the entity,
the existence of the attribute class is determined
within the current model. If the attribute does
not exist, an error is issued and processing
is terminated. If they do exist, each attribute is
created as an owned attribute and attribute use for
the entity.

4. If a keyword is to be added to the entity, the
keyword table is searched to determine whether the
keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The
new keyword is then associated with the entity.

5. If keys are being dropped, the existence of the key
for the entity being altered is determined. If it
does exist, the key and attributes iherited via
the migrated keys and key members are dropped. If
the key being dropped is from a complete relation,
the complete relation is also deleted. Identity
being altered is part of a category relation, only
alternate keys can be dropped.

6. If owned attributes are being dropped, they are
verified to determine if they belong to the entity
being altered. If they belong to the entity, the
owned attribute occurrence and the attribute use
and any tag constraints for each attribute named is
deleted from the entity being altered. If mappings
exist for the attribute, an error is issued,
processing is terminated and no attribute is
dropped. If owned attribute to be dropped is a
discriminating attribute in a category relation,
the category relation is dropped also with complete
ripple down.

7. If keywords are to be dropped, a check is performed
to verify that the keyword is associated with the
entity being altered. If so, the keyword
association is deleted from the entity. If any
associations exist for the keyword, an error is
issued, processing is terminated and no keywords
are dropped.

8. If a tag name is to be renamed:

8.1 Verify that the old tag name is an attribute
use in the specified entity.

8.2 Verify the new tag name does not previously
exist as an attribute use in the specified
entity.

3-34

DS 620341100
30 September 1990

8.3 If either of the above conditions are not
satisfied, issue an error message and continue
with the next iteration.

8.4 If both the above conditions are true, update
the CDM table ATTRIBUTEUSECL, with the new
tag name.

8.5 Continue processing with the next tag name to
be renamed.

9. If the key name is to be renamed:

9.1 Verify that the old key name does exist in the
specified entity.

9.2 Verify that the new key name does not
previously exist in the specified entity.

9.3 If either of the above conditions are not
satisfied, issue an error message and continue
with the next iteration.

9.4 If both the above conditions are true, update
the CDM table KEYCLASS with the new key name.

10. Determine if the key members of a specified key of
the entity being altered are to be added, dropped
or substituted and branch to the appropriate case.
If entity is part of a category relation, no
altering of primary keys is allowed.

11. If an attribute use is to be added as a member of
the key:

11.1 Verify that the tag exists as an attribute use
of the specified entity.

11.2 Verify that the tag does not already exist as
member of the specified key.

11.3 If either of the above conditions are not
satisfied, issue an error message and continue
with the next iteration.

11.4 If both the above conditions are true, create
an occurrence of this tag as member of the
specified key, by inserting into the CDM table
KEYCLASSMEMBER.

11.5 Select all the dependent entities that the
specified key migrated to through a link
relation. For each dependent entity found,
add this tag as a non-key attribute. Process
as follows:

3-35

DS 620341100
30 September 1990

11.5.1 Verify that this taq name is currently not an
attribute use in this dependent entity.

11.5.2 If the tag already exists, issue an error
message and exit command processing.

11.5.3 If the tag does not exist in this entity, create
an attribute use occurrence for this tag by
inserting into the CDM table
ATTRIBUTEUSECLASS.

11.5.4 Also, create an inherited attribute class
occurrence for this tag by inserting into the
CDM table INHERITEDATTUSE.

11.6 Continue processing with the next key member to be
added.

12. If the attribute use is to be removed as a key member of a
specified key:

12.1 Verify that the tag does exist as an attribute use of
thq entity being altered.

12.2 Verify that the tag currently is a member of the key
being altered.

12.3 Verify that this tag is not the only key member of the
key being altered.

12.4 If either of the above conditions are not satisfied,
issue an error message and exit command processing.

12.5 If all three conditions are satisfied, remove this tag
as a key member by deleting an occurrence from CDM table
KEYCLASSMEMBER.

12.6 Also, delete all inherited attributes of this tag.
Delete the inherited attribute occurrences from the CDM
tables INHERITEDATTUSE, ATTRIBUTEUSECL,
KEYCLASSMEMBER.

12.7 Continue processing with the next key member to be
dropped.

13. After determining that key members are to be substituted in
the entity being altered:

13.1 Retrieve from the parser lists the tag names to be
added as key members of the specified key.

3-36

DS 620341100
30 September 1990

13.2 For each tag name retrieved:

13.2.1 Verify the tag exists in the entity
being altered.

13.2.2 Verify this tag is not a member of the
key being altered.

13.2.3 If either of the above conditions are
not satisfied, issue an error message
and exit command processing.

13.2.4 If both the above conditions are true,
populate the internal table
ADD-TAG-LIST.

13.3 Retrieve from the parser lists the tag names
to be removed as key members of the specified
key.

13.4 For each tag name retrieved:

13.4.1 Verify that this tag exists in the
entity being altered.

13.4.2 Verify that this tag is a member in
the key being altered.

13.4.3 If either of the above conditions are
not satisfied, issue an error message
and exit command processing.

13.4.4 If both the above conditions are true,
populate the internal table
DROP-TAG-LIST.

13.5 Check that the number of entries in
ADD-TAG-LIST is equal in number to those
entries in DROP-TAG-LIST. If the number of
tags being added does not equal the number of
tags being dropped from the key, issue an
error message, and exit command processing.

13.6 For each tag in the DROP-TAG-LIST select all
its inherited attributes. For each inherited
attribute number and dependent entity
selected, process as follows:
13.6.1 Verify that the corresponding tag

name, add-tag-name in the ADD-TAG-LIST
does not exist as an attribute use
in the dependent entity that the
drop-tag-name migrated to.

3-37

DS 620341100
30 September 1990

13.6.2 If a duplicate tag name is found,
issue an error message and exit
command processing.

13.6.3 If the tag-name being added will not
result in a duplicate name being
created, populate another internal
table UPD-TAG-LIST with the inherited
attribute number selected and in Step
13.6 the tag name to be substituted
for it from the corresponding entry in
ADD-TAG-LIST.

13.6.4 Continue processing with the next
entry in the DROP-TAG-LIST.

14. Using the three internal tables that were populated
in the previous steps, (ADD-TAG-LIST, DROP-TAG-LIST
and UPD-TAG-LIST), and the entity and key being
altered, the CDM tables will be modified. Process
as follows:

14.1 For each entry in the UPD-TAG-LIST, rename the
inherited attribute with its new role name.
Update the CDM table ATTRIBUTE USE CL, setting
the drop-tag-name to become the ads-tag-name.

14.2 For each corresponding entry in the
ADD-TAG-LIST and DROP-TAG-LIST, update the CDM
table KEY CLASS MEMBER, to reflect that the
key being-altered has a new key member.
Substitute the drop-tag-numer with the
add-tag-number.

14.3 For each corresponding entry in the
ADD-TAG-LIST and DROP-TAG-LIST, update the CDM
table INHERITED ATT USE to reflect that the
inherited attri~utes of drop-tag-name are not
inherited from add-tag-name. Substitute the
drop-tag-number with add-tag-number.

15. If the type of key is being modified, it may be
altered from alternate to primary only. The
previous primary key is then made an alternate
key. If the entity being altered is part of a
category relation, no key type change is
allowed for the alternate keys.

3.2.8.8 ALTER FIELD - Alters an existing data field in a

previously defined record.

A. Function:

Alter field performs the following functions:

3-38

DS 620341100
30 September 1990

1. Verifies that the field, record and database exist

2. Alters a data type name or converts to null in case
of a group data field

3. Alters a field to be repeating by adding an occurs
clause or vice-versa

4. Adds, alters or drops the depending on field

5. Adds, alters or drops the redefine field

6. Adds or drops the indexed by field

7. Converts a non-key to key, or convert a key to be
unique or duplicates allowed key

8. Specifies whether a field is known or unknown to
the DBMS

B. CDM Requirements:

1. The database/PCB and record-type must be previously
defined.

2. The field name must exist.

3. The depending on field name must exist.

4. The field being redefined name must exist.

C. Processing:

1. The CDM is checked to see if the database exists.
If it has not been defined, issue an error message
and exit command processing.

2. The CDM is checked to see if the record type
exists. If it has not been defined, issue an error
message and exit command processing.

3. The CDM is checked to see if the field name exists.
If it has not been defined, issue an error message
and exit command processing.

4. All the existinq data fields belonging to the
record are retrieved into a temporary structure.
Syntax and semantic checks are performed on the
data field being altered to ensure the integrity of
the record layout is maintained.

5. Additional processing is required in case the
indexed-by field is altered. If the user specifies
that the field is "not indexed", its existing index

3-39

DS 620341100
30 September 1990

will be deleted after verifying that the index
field is not mapped. If the user specifies the
field is to be indexed, there are two
possibilities. If the indexed by field name
exists, this field now has to be updated by setting
a flag indicating it is an index. However, if the
indexed by field was not previously defined, a new
data field has to be created and inserted with a
numeric index data type name and an index indicator
of "G".

6. Now the following checks are performed on the field
being altered:

6.1 An ORACLE DBMS does not support repeating
fields, COBOL type indexes, re-definition or
keys.

6.2 Re-definition of TOTAL fields must be specified
as a single field.

6.3 A repeating field or repeating group cannot be
key.

6.4 The indexed by field cannot re-define, or be a
component or group or repeating field or key.

6.5 The data type name for an indexed field and a
depending-on field must be numeric.
Additionally, all elementary items must have a
data type and the data type name entered by the
user must have been previously defined in
USERDEFDATATYPE.

6.6 If the indexed-by field exists in the record,
it must appear before the field it is indexing.

6.7 If it is a repeating data field, the number of
times it occurs must be greater than one.
Additionally, the depending on field must be
previously defined.

6.8 If the field is re-defined, the re-defined
field must be previously defined.
Additionally, the re-defines field must be key
if the re-defined field is key.

6.9 The depending-on field cannot be group or
repeating or an index.

6.10 If a component data field is key, one of its
subcomponents cannot also be a unique key. It
may be a duplicate or secondary key.

7. If the record layout conforms with the checks
performed and no errors occurred, an insert or

3-40

DS 620341100
30 September 1990

delete or modify (as the case may be) is performed
to the indexed field. The data field itself is
modified.

8. If errors occurred, the user is informed and no
updates to the CDM are performed.

3.2.8.9 ALTER HOST - Change Host/Database Management System

associated in the CDM.

A. Function:

Alter Host performs the following function:

1. Alter Host allows the user to add and delete DBMS
associations to the specified host.

B. CDM Requirements:

1. The HOST and DBMS must be previously defined.

C. Processing:

1. The CDM is checked to see if host is defined.

2. If the host is not defined:

2.1 Issue an error message.

2.2 Exit command processing.

3. If the Host is defined:

3.1 If DBMS association is to be added:

3.1.1 The CDM is checked to see if the DBMS is
defined.

3.1.2 If the DBMS is not defined, issue an
error message and continue processing
the next DBMS definition.

3.1.3 If the DBMS is defined, the DBMS
association with the host is added to
the CDM.

3.2 If a DBMS association is to be dropped:

3.2.1 The CDM is checked to see if the DBMS is
defined.

3.2.2 If the DBMS is not defined, issue an
error message and continue processing
the next DBMS definition.

3-41

DS 620341100
30 September 1990

3.2.3 If the DBMS is defined, the DBMS/Host
association is deleted from the CDM.

3.2.8.10 ALTER MAP - Modify a CS-IS Mapping

A. Function:

Alter Map allows the user to perform the following
functions:

1. Switch a preference mapping along with its map and
category.

2. Alter the map and category of a tag for a
preference.

3. Allow the tag to be mapped for the same preference
to a data field.

4. Allow the tag to be mapped for the same preference
to an additional set.

5. Allow an additional record to be mapped to an
entity.

6. Alter the value in tag to set mapping for a stated
preference.

7. Delete a tag to data field mapping for a stated
preference.

8. Delete a tag to set mapping for a stated preference.

9. Delete a relation to set mapping.

10. Delete a record mapped to an entity.

11. Alter the distributed rules for an entity.

B. CDM Requirements:

The map to be altered must exist in the CDM. In
addition, all database names, record names, data field
names and set names referenced must exist in the CDM.

C. Processing:

1. Determine if the user wants to alter an entity, AUC,
link relation, or category relation mapping.

1.1 If entity:

1.1.1 Verify that the entity name exists and
that the entity to record mapping exists
in the CDM.

3-42

DS 620341100
30 September 1990

1.1.2 Retrieve update and retrieval rules from
the parser. If they were input, update
these rules in the DISTRIBUTEDRULES
table of the CDM.

1.2 If AUC:

1.2.1 Verify that the entity name and tag name
exist in the CDM.

1.2.2 Check if this AUC is involved in a
horizontal partition and set flag to
indicate this fact.

1.2.3 Retrieve the preference number(s) from
the parser. Verify if the tag is mapped
for the stated preference.

1.2.4 If the mapping preference is to be
altered, retrieve the new preference
number from the parser.

1.2.4.1 If the new preference number
specified has a mapping
associated with it, the mapping
preferences are switched along
with the map and map category.

1.2.4.2 If the new preference number
specified has no associated
mapping:

1.2.4.2.1 If the mapping
preference to be
altered is 1, issue
an error message and
exit command
processing.

1.2.4.2.2 Else change the old
preference number to
the new one, then
validate that the
new preference
number corresponds
to the old map
category (i.e.
"ACTIVE" has
preference numbers
of 1-50 and
"PASSIVE" has
preference numbers
of 51-99).

3-43

DS 620341100
30 September 1990

1.2.4.3 If the mapping preference is
altered, no other function may
be performed.

1.2.5 If map and/or map category are to be
altered, validate the map category and
preference number combination. Alter
AUC IS MAPPING table with the new map
and/or map category.

1.3 If Relation:

1.3.1 Retrieve relation name and entity name
from parser and verify that the relation
exists, either a category or link
relation.

2. Retrieve the ALTER MAP option from the parser. If
ALTER ADD or ALTER DROP, the command can refer to a
field, record or set; if ALTER ALTER the command
refers to a set only.

2.1 For ALTER ADD AUC to data field mapping, the
following rules apply:

2.1.1 The AUC must not have been previously
mapped to a set for the stated
PREFNUMB.

2.1.2 The AUC must not have been previously
mapped to a data field unless the entity
is horizontally partitioned.

2.1.3 If the entity is horizontally
partitioned, verify the tag is being
mapped to a data field that exists in a
fragment of the partitioned entity.

2.1.4 If all the above conditions are
satisfied, create an occurrence in the
CDM tables AUC IS MAPPING and
PROJECTDATAFIELD.

2.2 For ALTER DROP AUC to data field mapping, the
following rules apply:

2.2.1 Dropping a tag to data field deletes a
mapping of one fragment of the
partitioned entity.

2.2.2 After the drop is performed, at least
one data field must remain mapped to the
AUC.

3-44

DS 620341100
30 September 1990

2.2.3 If the above condition is satisfied, the
stated data field mapping is deleted
from the CDM tables AUCISMAPPING and
PROJECTDATAFIELD.

2.3 For ALTER ADD AUC to set mapping, the following
rules apply:

2.3.1 A data field mapping must not exist for
the AUC for stated PREF NUMB unless the
entity is horizontally partitioned.

2.3.2 The sets to be mapped to must be single
member sets.

2.3.3 The set to be mapped to must not have
been previously mapped from a link
relation, category relation, or another
AUC.

2.3.4 All AUC to set maps must map to the same
database for a particular AUC unless the
entity is horizontally partitioned.

2.3.5 All sets mapped to from an AUC must have
the same record type as its owner; the
owner may be different in case of
horizontal partitioning.

2.3.6 If the entity is horizontally
partitioned, verify that the sets being
mapped to have owner records that belong
to a fragment of the partitioned entity.

2.3.7 All AUC to set maps must contain a value
which must be unique for a particular
AUC.

2.3.8 The AUC must have been previously mapped
for specified preference number.

2.3.9 An AUC must be mapped to at least two
sets of same database/record.

2.3.10 If the above conditions are met, create
an occurrence the CDM table
AUCISMAPPING and AUC ST MAPPING.

2.4 For ALTER DROP AUC to set mapping, the
following rules apply:

2.4.1 When dropping, at least two sets of the
same database must remain mapped to the
AUC.

3-45

DS 620341100
30 September 1990

2.4.2 If the above condition is met, the
specified set is deleted from the CDM
table AUCSTMAPPING.

2.5 For ALTER ALTER set mapping, the following
rules apply:

2.5.1 The stated AUC ST MAPPING must exist for
the stated preference.

2.5.2 The AUC value must be unique for all
mappings from a particular AUC.

2.5.3 If the above conditions are met, the AUC
to SET MAP specified will be modified in
the CDM table AUCSTMAPPING.

2.6 For ALTER ADD relation to set mapping, the
following rules apply:

2.6.1 The set must not have been previously
mapped.

2.6.2 The member record name must be specified
if the set being mapped to is a
multi-member set.

2.6.3 If the above rules are obeyed, an
RC _BASED RECSET entity occurrence is
created.

2.7 For ALTER DROP relation to set mapping, no
special validations are performed. An
RCBASEDRECSET entity occurrence is deleted.

2.8 For ALTER ADD entity to record mapping,
additional records can be mapped to the entity.

2.9 For ALTER DROP entity to record mapping, the
following rules apply:

2.9.1 The mapping for the entity to the
specified records are dropped.

2.9.2 After the drop is performed, at least
one record must remain mapped to the
entity.

2.9.3 A record cannot be dropped if a field in
that record is still mapped.

2.10 For an entity to record mapping, the
distributed rules for the entity can be
altered. An entity to record mapping must
exist for the entity.

3-46

DS 620341100
30 September 1990

3.2.8.11 ALTER MODEL - Creates a current model for a NDDL

session using modeling commands.

A. Function:

Alter Model performs the following functions:

1. Updates the date of the model showing the model
change date

2. Creates a current model for an NDDL session

3. Changes the status of the model to "UNCHECKED"

B. CDM Requirements:

Alter Model requires that the model to be altered exists
in the CDM.

C. Processing:

1. The Alter Model process verifies that the model was
created previously. If the model does not exist, an
error occurs and an error message is issued.

2. The model being altered becomes the current model
for an NDDL modeling session with all subsequent
model processing identified with the model. The CDM
MODEL CLASS table is updated to show the system date
as the date the model was updated and changes the
model status to "UNCHECKED".

3.2.8.12 ALTER MODULE - Alter the software module definition

A. Function:

ALTER MODULE allows the NDDL User to change the
definition of the module parameter list or the module
language.

B. CDM Requirements:

The module named must currently exist in the CDM. Any
module parameters to be dropped must currently exist.
Module parameters to be added to the parameter list must
currently not exist in the CDM. Data type names used
when adding module parameters must currently exist.
Definitions may not be altered if the module has mapping
algorithms established for it.

C. Processing:
1. Verify that the module named (MOD ID) currently

exists on the SOFTWARE MODULE TabTe.

3-47

DS 620341100
30 September 1990

2. The module being altered must be defined for a

complex mapping algorithm (STATUSIND = "C")

3. Retrieve the language from the Lang-Lst.

3.1 If LIST-COUNT equals zero, no change is made to
the language.

3.2 If a language is retrieved, modify LANDNAME of
the SOFTWAREMODULE Table.

4. Update the LATEST REV DATE of the SOFTWAREMODULE
Table with the currenE system date.

5. Check the Drp-Parm-Lst for parameters to be dropped.
If parameters exist on the list:

5.1 Verify that the parameter (PARMID) exists for
the software module named (MODID).

5.2 Delete the module parameter from the
MODULEPARAMETER Table.

5.3 Check the return status for a Referential
Integrity Test Failed.

5.3.1 If return status not equal "zero" issue
an error message.

5.4 Retrieve next module parameter to be dropped.

6. check the After-Before-Lst for where new module
parameters should be positioned in the parameter
list.

6.1 If LIST COUNT equals zero, no module parameters
are to Be added to the parameter list and the
program is exited.

6.2 If LIST COUNT does not equal zero, retrieve the
word "Before" or "After".

7. Select all module parameters associated with the
software module named into an internal program
table.

8. Retrieve the name of the parameter (PARM ID) the new
parameters should be positioned before or after from
the Parm-Lst.

8.1 Verify that this module parameter (PARMID)
currently exists for the software module named
(MODID).

3-48

DS 620341100
30 September 1990

8.1.1 If module parameter doesn't exist, issue
an error message and exit program.

8.2 Check to see how many new parameters should be
added before or after this PARM ID (Call CPFVAL
on Parm-Lst) and process these parameters as
follows:

8.2.1 Retrieve the parameter name to be added
(PARMID) from the Add-Parm-Lst.

8.2.2 Verify that this parameter to be added
(PARM_ID) doesn't currently exist for
the software module name (MODID).

8.2.2.1 If it currently exists, issue
an error message and exit the
program.

8.2.3 Retrieve the Data Type Name of the new
parameter from the Data Lst.

8.2.4 Verify that this name (DATA TYPE NAME)
exists on the USERDEFDATATYPE-Table.

8.2.4.1 If it doesn't exist, issue an
error message and exit from the
program.

8.3 Once all module parameters to be added to the
parameter list have been checked and verified
resequence the internal program structure.

8.4 Delete all parameters associated with the
software module named (MODID) from the
MODULEPARAMETER Table.

8.4.1 If return status equals a Referential
Integrity Test Failed, issue an error message
and exit the program.

8.5 Insert the resequenced parameter list from the
internal program structure into the
MODULEPARAMETER Table.

3.2.8.13 ALTER PARTITION - Alter the definition of a horizontal

partition for an entity.

A. Function:

Alter Partition allows the NDDL user to perform the
following modifications to the definitions of existing
horizontal partitions:

3-49

DS 620341100
30 September 1990

1. Deletion of records included in the horizontal

partition.

2. Addition of records for a horizontal partition.

B. CDM Requirements:

The record names references must be found in the CDM.
Any record names dropped must already be defined for the
partition. Any record names added must not already be
defined in the partition. There must always be two
partitions specified for an entity.

C. Processing:

1. The user entered entity name is verified to be in
the CDM and the entity number is retrieved.

2. A "1" is used as the horizontal partition number if
none is specified by the user.

3. Verify that the partition number currently exists
for the entity.

4. For each DROP RECORDS request the following checks
are made:

4.1 The DB NAME and RTID currently are defined in
the CDM.

4.2 The RTNO is retrieved from this selection.

4.3 Verify that the Entity and Record combination
exists. Check that the HPNO retrieved is the
same as the one entered.

4.4 Delete that record from the horizontal
partition table.

5. For each ADD RECORDS request the following checks
are made:

5.1 The DB NAME and RTID currently are defined in
the CDM.

5.2 Retrieve the RTNO from selection in 5.1.

5.3 Verify that the entity and record combination
doesn't currently exist for the partition
number.

5.4 Insert the partition record.

3-50

DS 620341100
30 September 1990

6. After all adds and drops are processed, all the
partition records are selected for the entity and
horizontal partition number.

6.1 If no horizontal partition is found for an
entity (NDML-COUNT = 0), the horizontal
partition has been inadvertently deleted by the
ALTER Command. Process an error with an
appropriate message.

6.2 If an entity is horizontally partitioned over
less than 2 records, (NDML-COUNT < 2) process
an error with an appropriate message.

3.2.8.14 ALTER PSB - Change a PSB name/host association in the

CDM.

A. Function:

1. Alter PSB name allows user to change a PSB/host
association in the CDM.

B. CDM Requirements:

1. PSB name must be previously defined in the CDM.

2. Host must be previously defined in the CDM.

C. Processing:

1. The CDM is checked to see if the PSB name exists.

2. If PSB name exists:

2.1 For the host identification to be changed.

2.1.1 The CDM is checked to see if the host
exists.

2.1.2 If the host exists, the PSB name/host
association will be updated in the CDM.

2.1.3 If the host does not exist:

2.1.3.1 Issue an error message.

2.1.3.2 Exit command processing.

3. If PSB name does not exist:

3.1 Issue an error message.

3.2 Exit command processing.

3.2.8.15 ALTER RECORD - Alters an existing record type for a
previously defined database/PCB. Areas

3-51

DS 620341100
30 September 1990

and field names may be added and

dropped.

A. Function:

Alter record performs the following functions:

1. Verifies that the database exists

2. Verifies that the record type exists

3. If the DBMS is CODASYL, verify that the areas
association to be added do not exist or those to be
dropped do exist. Additionally, the area
association with the record may be inserted or
deleted

4. Verifies that the fields to be added do not
previously exist and the fields to be dropped exist

5. The fields being added may be defined as repeating,
group, elementary, indexed, component or re-defined.
Additionally, they may be specified as keys, and
indicate whether known or unknown to the DBMS

6. The fields will be dropped if specified by the user.
All of its subcomponent fields will also be dropped.
If the field being dropped is used as an indexed-by,
or occurs-depending-on of another data field, the
latters indexed-by or occurs-depending is set to
null. If the field being dropped is redefined by
another field, the latter is dropped and all its
subcomponent fields are droppeO

B. CDM Requirements:

1. The database must be previously defined.

2. CODASYL database areas must be previously defined.

3. The record being altered must exist.

4. The fields being added must not previously exist.

5. The fields being dropped must previously exist.

6. The occurs depending on and redefines field must be
defined earlier.

C. Processing:

1. The CDM is checked to see if the database exists.
If it has not been defined, issue an error message
and exit command processing.

3-52

DS 620341100
30 September 1990

2. The CDM is checked to see if the record type exists.
If it has not been defined, issue an error message
and exit command processing.

3. For each area association to be added:

3.1 The CDM is checked to ensure the area has been
previously defined.

3.2 The CDM is checked to see the database area
assignment is not associated with the record.

3.3 If both conditions are true, the area
association is inserted.

3.4 If any one of the conditions is false, issue an
error message and exit command processing.

4. All the existing data fields belonging to the record
are retrieved into a temporary structure. Syntax
and semantic checks on the data fields being added
and/or dropped are performed within this temporary
table before the data fields are added or deleted in
the CDM.

5. If the data field is being added:

5.1 If the keyword "after" or "before" is
specified, the user specified data fields are
inserted at the appropriate position, and later
resequenced.

5.2 If the keywords are not specified, the new
fields are appended at the end of the existing
record layout.

6. For each field being added, perform the following
checks:

6.1 Each subcomponent field must specify a level
number to ensure subcomponent structures are
properly implemented.

6.2 If the field name is the reserved word
"filler", it must have a corresponding numeric
filler-size and be unknown to the DBMS.

6.3 The data type name for an indexed field and
depending-on field must be numeric.

6.4 Each elementary item must have a data type and
the user-enter data type name must have been
previously defined in USERDEFDATATYPE.

6.5 If it is a repeating data field, the number of
times it occurs must be greater than one. If

3-53

DS 620341100
30 September 1990

the indexed by field is not defined, it will be
created with a default numeric index data type
name and an index-indicator of "G".

6.6 The depending on field must be previously
defined.

6.7 If the field is redefined, the redefines field
name must be previously defined.

6.8 The indexed-by field cannot be a key, group,
component or a redefine.

6.9 The depending-on field cannot be a group,
repeating, or an index.

6.10 A repeating field or repeating group cannot be
key.

6.11 If a component data field is key, one of its
subcomponents cannot also be a unique key. It
may be a secondary or duplicates allowed key.

6.12 An ORACLE DBMS does not support repeating
fields, indexes, redefinitions, keys or
fillers.

6.13 Redefinitions of TOTAL fields must be specified
as a single field.

6.14 For a relational database (ORACLE or DB2), all
fields must be 01 level and specified as known
to the DBMS.

7. If the record layout conforms with the checks
performed, the existing data fields of the record
are deleted. The existing and new data fields
residing in the temporary structure are inserted
into the CDM.

8. For each area to be dropped:

8.1 The CDM is checked to verify the area is
previously associated with the record.

8.2 If the association exists, delete the database
area assignment for the record.

8.3 If no association exists, issue an error
message and exit command processing.

9. The CDM is checked to verify that the data field is
not mapped-to. If the data field is present in a
record union mapping, complex mapping algorithm or
mapped to a tag (AUC), issue an error message.
Continue processing with the next data field.

3-54

DS 620341100
30 September 1990

10. For each data field to be dropped:

10.1 Delete the field specified by the user.

10.2 Delete any subcomponent data fields.

10.3 If the data field appears as the indexed-by
data field of another field in the record,
update the latters indexed-by to null.

10.4 If the data field appears as the
occurs-depending-on data field of another field
in the record, update the latters depending-on
to null.

10.5 If the data field appears as the redefines data
field of another field in the record, drop the
redefining field and all its subcomponents.

10.6 If the data field is indexed, drop the indexing
field if it is a "G" index indicator;
otherwise, set the index indicator to N and do
not drop the indexed-by field.

11. If no errors occurred in item 10, the user specified
data fields are deleted along with its
subcomponents. Delete any textual description for
the data fields being dropped.

3.2.8.16 ALTER RELATION - Alter a conceptual link relation.

A. Function:

Alter Relation performs any or all of the f3llowing
functions:

1. Change to cardinality of an existing link relation

2. Migrate the key of the independent entity to the
dependent entity, creating a complete relation and
inherited attribute uses

3. Assign new tag names to the key class members
migrated to the dependent entity

4. Associate one or more keywords with the link
relation

5. Drop the key from the relation and from the
dependent entity and all subsequent entities that
inherited the key

6. Delete any empty keys that result from dropping a
key migration

3-55

DS 620341100
30 September 1990

B. CDM Requirements:

1. Key for independent entity must exist.

2. Key members for independent entity must exist

3. An attribute use for each key member must exist.

4. Link relation must exist.

5. Independent entity must exist.

6. Dependent entity must exist.

7. If a key is to be migrated to the dependent entity,
the key must not have been previously migrated to
the dependent entity.

8. If a key is to be dropped from the dependent entity
and all subsequent entities, the key must have been
previously migrated.

C. Processing:

Processing varies depending on the options chosen by the
user. If an error is detected, processing continues
with the next option on the command.

1. CARDINALITY

Any cardinalities specified replace the original
values es t-biished when the link relation was
created, ujiless an error is detected, a warning
message is generated and the cardinality defaults to
its original value.

2. ADD MIGRATES

An attribute use and an inherited attribute use
for the dependent entity is created for each key
member migrated to the dependent entity. If the set
phrase is specified, TAG NAME1 (the independent
entity is tag name) is migrated to the dependent
entity with the new name TAG NAMED. A complete
relation occurrence is created. If a keyword is
specified, the keyword is created in the CDM if it
doesn't already exist and a class keyword occurrence
is created.

3. DROP MIGRATES

The complete relation occurrence for the relation
is deleted. The attribute use and inherited
attribute use originally created for each key member

3-56

DS 620341100
30 September 1990

migrated to the dependent entity class are deleted.
Also, any tag constraints are deleted. In
addition, the attribute uses and inherited attribute
uses created for each key member migrated to lower
level dependent entities are also deleted. Then all
keys and complete relations which become empty due
to the deletion of migrated keys members are
deleted. Finally, any text descriptions for empty
keys are deleted. If keywords are specified, the
relation keyword occurrence are also deleted.

3.2.8.17 ALTER UNION - Alter the union of conceptual entities
representing a record type in the CDM.

A. Function:

ALTER UNION allows the NDDL user to alter a record union
definition by dropping and/or adding entities.

B. CDM Requirements:

The data base and record named must currently exist in
the CDM. Any entities dropped must currently exist in
the CDM. Any entities to be added to the union must not
currently exist in the CDM.

C. Processing:

1. Verify that the data base name and record name
currently exist. Retrieve the record type number
(RTNO) for this selection.

2. For each DROP ENTITY request, the following occurs:

2.1 Verify that the entity named exists in the CDM.

2.2 Verify that the union currently exists on the
ECRTUD Table. Use RTNO and ECNO for the
select.

2.3 Delete all records from the ECRTUD Table where
RTNO and ECNO match those entered.

2.4 For the entity we are dropping, check
AUC IS MAPPING for tags that belong to this
entity-to see if they map to any data fields
th&at are part of the record for this union. If
not, delete the entity to record mapping
(ECRTMAPPING) for ECNO and RTNO.

2.5 Check to see if the entity is part of any other
entity to record mappings. If not, delete the
distributed rules (DISTRIBUTEDRULES) for the
entity (ECNO).

3-57

DS 620341100
30 September 1990

3. For each ADD ENTITIES request, the following

occurs:

3.1 Verify that the entity named exists in the CDM.

3.2 Verify that the data fields entered are
associated with the database and record named
and retrieve the datafield number (DFNO).

3.3 Verify that the entity does not currently exist
in the union.

3.4 Verify that the union discriminator value is
compatible with the data type of the data
field.

3.5 Insert the union into the CDM.

3.6 Check for an integrity test failure which
indicates that no entity to record mapping
exists for the record union.

4. After all drops and adds have been processed the
ECRTUD Table is checked. The number of entities for
the record type named is counted.

4.1 If the count is zero, an error message is
issued. The union has been deleted by the
ALTER UNION command. The DROP UNION command
should be used to delete a record union.

4.2 If the count is less than two, an error message
is issued. The union has been altered leaving
only one entity defined for the union which is
illegal.

3.2.8.18 CHECK MODEL - Determines if the model conforms to

specifiedIDEFl rules

A. Function:

The check model performs the following functions:

1. Verifies that the model exists in the CDM

2. Verifies that the model has one or more entities

3. Verifies that the entities have at least one
attribute

4. Verifies that the model follows the specified IDEFI
rules (see Rules under Processing)

3-58

DS 620341100
30 September 1990

5. Updates the model in the CDM to show that it is a

"checked" model and the date it was checked

B. Requirements:

The check model process requires that the model exist in
the CDM. (See Rules under Processing).

C. Processing:

The check model process determines if the model follows
the following IDEF1 rules.

Rules:

1. No non-specific relations are allowed (independent
cardinality greater than one).

2. No incomplete link relations (key has not been
migrated).

3. Each entity must have at least one attribute use.

4. Each owned attribute must have a domain and that
domain must have a standard data type.

5. A primary key must be defined for each entity.

6. Multiple keys of an entity must not be subsets of
one another.

7. No one to one relations are allowed.

8. No dependency loops are allowed e.g. A->B->C->D->B.

9. At least one entity must exist in the model.

10. Category Relations have move than one category
member.

11. Link Relations migrated primary key instead of
alternate keys.

12. Inherited keys are not split among key and nonkey
attributes in the dependent entity.

13. If any of the above rules are not satisfied, a
message is printed out to a file.

The following rules cannot be checked for the model:

1. One to none or one relationships imply identical
keys.

3-59

DS 620341100
30 September 1990

2. Key uniqueness throughout the model is not checked,
i.e., no two entities may have the same key unless
they are related to each other with a one to none or
one relation.

The processing verifies the existence of the model.
The process then selects each entity belonging to
the model and checks the relations, keys, and
attributes.

Next the process checks the hierarchical
dependencies both up and down to determine if there
are any dependency loops within the model.

The output is generated to a user defined file or
screen.
If all rules have been followed the CDM MODEL CLASS
table is updated to reflect the date and the model
status of CHECKED.

3.2.8.19 COMBINE ENTITY - Combine two conceptual entities.

A. Function:

Combine Entity performs the following functions:

1. Combine two entities that exist either within the
same model (intra-model) or between two models
(inter-model)

2. Generate NDDL commands on a file or screen to
populate the to-model entity with the attributes,
relations, aliases, keywords, keys, and key members
associated with the from-model entity

B. CDM Requirements:

1. If the to-model is not specified an inter-model
combine is assumed, and the to-model must exist in
the CDM.

2. If the to-model and from-model are specified, both
models must exist in the CDM.

3. The two entities to be combined must exist in the
model(s).

C. Processing:

1. If it is an intra-model combine, to-model defaults
to the from-model.

2. First, verify that the two entities to be combined
exist in the from-model and to-model. Processing

3-60

DS 620341100
30 September 1990

halts if any of the verification checks fail. The NDDL
commands to combine the from-entity and to-entity are
generated in a user defined file or screen. Retrieve
from global variables the name of the file.

3. Verify that the from entity is not a generic entity of
the to entity. If if is, generate an error message and
reject-the command. If from entity is a category entity,
the to entity must be the immediate generic entity for
the from entity only. If it is not, generate an error
message and reject the command.

4. Now determine if a relation exists between the to-entity
and from-entity. If one does, generate a command to drop
this relation. Drop the relation only if it is a link
relation. If it is a category relation, delete the
category member occurrence. If this was the only
category member, then drop the category relation with
complete ripple down. Also, if it is an intra-model
combine generate a command to delete the from-entity.

5. The from-entities' keys and key members are saved in a
temporary key list, in order to migrate the keys via new
relations that will be created after the from-entity has
been combined into the to-entity.

6. Generate an "Alter entity and owned attributes..." for
all the attributes that belonged to the from-entity. If
the user specified that he wanted keywords, aliases
and/or descriptions, NDDL commands are generated for the
same. The from-entity name is generated as an alias for
the to-entity.

7. Next, select all relations in the from-model where the
from-entity is the dependent entity in the relation. If
this from-independent entity(s) exists in the to-model,
generate Create relation ... migrates... commands for the
same. The key class that was inherited via this relation
has to be generated for the to-entity. Generate an Alter
Entity add key...for the inherited key class.

8. Next, select all the relations in the from-model where
the from-entity is the independent entity in the
relation. If this from-dependent entity exists in the
to-model, generate a Create relation.. .migrates... command
using the information stored earlier in the temporary key
list. If this from category member entity(s) exists in
the tomodel, generate Create relation.

3-61

DS 620341100
30 September 1990

9. Commands are also generated to associate keywords and
descriptions with the relation if any exist. Finally,
close the user defined file at the end of processing.

3.2.8.20 COMMIT - Commit the changes made to the CDM since the
last commit point.

A. Function:

Perform ORACLE and NDML commit.

B. Processing:

1. Call a routine to perform the NDML commit.

2. Issue an ORACLE commit.

3.2.8.21 COMPARE MODEL - Compare two IDEFI models.

A. Function:

Compare models to see if their entity names, attribute names,
entity keywords, attribute keywords and relation keywords
match each other.

B. CDM Requirements:

The two models to be compared must exist.

C. Processing:

1. First, verify the existence of both models. If either of
these two models does not exist, flag a user error.
Next, retrieve from global variables the name of the file
where the output is to be directed.

2. Parse the "Alias Exception List". If the Parser doesn't
return the word "ALIAS":

2.1 Compare entities based on identical names either
primary or alias names.

2.2 Compare attributes based on identical names either
primary or alias names.

2.3 Compare entity keywords to determine if entities
from both models use the same keyword.

2.4 Compare attribute keywords in the same manner as
entities.

2.5 Compare relation keywords.

3-62

DS 620341100
30 September 1990

2.6 Compare link relations based on identical names
either primary or alias names.

2.7 Compare category relations based on identical
names either primary or alias names,
incomplete/complete status, discriminating
attribute names, and number of category
members.

3. If the Parser returned the word "ALIAS":

3.1 Compare entities based on identical
primary names.

3.2 Compare attributes based on identical
primary names.

3.3 Compare entity keywords to determine if
entities from both models use the same keyword.

3.4 Compare attribute keywords in the same manner
as entities.

3.5 Compare relation keywords.

3.6 Compare relation names based on identical
primary names.

3.7 Compare category relations based on identical
primary names, incomplete/complete status,
discriminating attribute name, and number of
category members.

4. For each successful comparison above, a message will
be written to a file to indicate a match is found in
two models.

3.2.8.22 COPY ATTRIBUTE - Copies an attribute and all
associated information from one model
to another model (inter-model) or
within a model (intra-model).

A. Function:

Copy Attribute performs the following functions:

1. Verifies that the model specified exists

2. Copies an attribute within a model or to another
model

3. Verifies that the new attribute does not exist in
the current model

4. When indicated, copies all description text,
aliases, and keywords related to the attribute

3-63

DS 620341100
30 September 1990

5. Optionally, places the created NDDL commands in a
file or directs the output to the screen

6. Optionally, interactively performs the intra-model
or inter-model copy

B. CDM Requirements:

The Copy Model process requires that the from-model and
the attribute exist in the CDM database.

C. Processing:

The following rules apply to the copy attribute
process:

1. The except clause, when used, indicates what items
associated with the attribute are not to be
copied. If the except clause is omitted all
keywords, aliases, and textual descriptions of the
attribute are copied.

2. The process verifies that the current model exists
in the CDM database. If the FROM clause is not
specified, the FROM MODEL defaults to the current
model. AdditionallY, the attribute to be copied
('FROM' ATTRIBUTE) is verified to exist in the
from-model. If either attribute or model is not
found, an error message is issued and the
processing terminates.

3. The processing determines whether the copy is to
be interactive or a copy to a file screen.

4. If the 'FROM' option is present, an inter-model
copy is assumed.
4.1 The process verifies the FROM model exists in

the CDM. If the model does not exist, issue
an error message and exit command processing.

4.2 Verify if the 'FROM' attribute and 'TO'
attribute have been specified. If not, the
'TO' attribute name defaults to the 'FROM'
attribute name.

4.3 Verify the 'TO' attribute does not exist in
the model. If the attribute does exist,
issue an error message and exit command
processing.

4.4 If the copy is 'DIRECTLY'

3-64

DS 620341100
30 September 1990

4.4.1 Insert the 'TO' attribute in the CDM
tables ATTRIBUTE NAME and
ATTRIBUTECLASS for the current model.

4.4.2 If keywords have not been excepted,
verify the keyword exists in the
current model and insert the keyword
occurrence in the CDM table
ACKEYWORD.

4.4.3 If the descriptions have not been
excepted, copy the 'FROM' attributes
description text for the 'TO'
attribute in the CDM table DESCTEXT.

4.4.4 If the aliases have not been excepted,
verify the 'FROM' attributes alias
name does not exist as an attribute in
the current model. If the alias name
does not previously exist, create an
alias occurrence for the 'TO'
attribute by inserting in the CDM
table ATTRIBUTENAME.

4.5 If the copy is not 'DIRECTLY'

4.5.1 Generate NDDL commands to create the
'TO' attribute in the current model.

4.5.2 If keywords have not been excepted,
generate the keyword clause.

4.5.3 If aliases have not been excepted,
generate the CREATE ATTRIBUTE alias
command.

4.5.4 If descriptions have not been
excepted, generate the Describe
commands for the new attribute.

5. If the 'FROM' option is not present, an intra-
model copy is assumed.

5.1 Verify that the 'FROM' and 'TO' attribute
names have been specified and are not the
same. If not, issue an error message and
exit command processing.

5.2 Verify the 'TO' attribute name does not exist
in the current model. If it does exist,
issue an error message and exit command
processing.

5.3 If the copy is 'DIRECTLY'

3-65

DS 620341100
30 September 1990

5.3.1 Insert the TO ATTRIBUTE in the CDM
tables ATTRIBUTE NAME and
ATTRIBUTECLASS Tor the current model.

5.3.2 If keywords are not excepted, insert
the FROM ATTRIBUTE keyword for the
TO ATTRIBUTE in the CDM table
ACKEYWORD.

5.3.3 If descriptions are not excepted,
insert the 'FROM' attribute's textual
description for the 'TO' attribute in
the CDM table ACKEYWORD.

5.3.4 tf aliases have not been excepted,
issue a warning message. The
attribute aliases are not created
intra-model.

5.4 If the copy is not 'DIRECTLY'

5.4.1 Generate NDDL commands to create the
'TO' attribute in the current model.

5.4.2 If keywords, aliases and/or
descriptions have not been excepted,
generate NDDL commands to create the
corresponding keywords, aliases and
descriptions for the TOATTRIBUTE in
the current model.

3.2.8.23 COPY DATABASE - Generate NDDL commands to make a copy
of databases.

A. Function:

COPY DATABASE allows the NDDL user to copy specified
databases or all databases within the CDM. Optionally,
the textual descriptions for the database, records,
datafields and sets are copied. At the user's
discretion, the generated NDDL commands are either
outputted to a screen or file.

B. CDM Requirements:

The database/databases to be copied must exist in the
CDM.

C. Processing:

1. Global input parameters are checked to determine if the
generated NDDL commands will be appended to an existing
output file or written to a new file or outputted to a
screen. Input parameters are set with a previous "SET
OUTPUT" statement.

3-66

DS 620341100
30 September 1990

2. A database name or the word "ALL" is obtained from a
Database Name Parser List.

2.1 If the Parser returns the word "ALL", retrieve all
the databases in the DATABASE Table and store the
database name, host name, DBMS name, null value and
NTM directory code in an internal program table.

2.2 If the Parser returns a database name, verify that
the database name exists in the CDM. Store each
database named on the Parser List in an internal

V program table, along with its host name, DBMS name,
null value and NTM directory code.

3. Databases are retrieved into the internal program table
sequenced by database name.

4. Process each database name on the internal program table
as follows.

4.1 Start generating the "DEFINE ... DATABASE" NDDL
command using the DBMS, database and host name.

4.2 If the DBMS name is "IMS":

4.2.1 Use the keyword "PCB" instead of "DATABASE"
after the DBMS name when generating the
command in step 4.1.

4.2.2 Select the PSB Name, sequence number and
feedback length from the PSB PCB Table and
generate the "WITH POSITION"-clause of this
command.

4.3 If the DBMS name is "ORACLE" or "DB2":

4.3.1 Use the keyword "DATABASE" instead of "PCB"
after the DBMS name when generating the
command in step 4.1.

4.3.2 Select the database password from the
DB PASSWORD Table and 7enerate the "WITH
PASSWORD" clause of this command.

4.4 If the DBMS name is "TOTAL":

4.4.1 Use the keyword "DATABASE" instead of "PCB"
after the DBMS name when generating the
command in step 4.1.

4.4.2 Select the file names from the
DATA BASE AREA
Table and-generate the "WITH FILES" clause
of this command.

3-67

DS 620341100
30 September 1990

4.5 If the DBMS name is one of the CODASYL DBMS VAX-11,
IDMS or IDS-II):

4.5.1 Use the keyword "DATABASE" instead of "PCB"
after the DBMS name when generating the
command in step 4.1.

4.5.2 Select the schema and subschema name from
the SCHEMA NAMES Table and generate the
"WITH SCHEMA ... AND SUBSCHEMA" clause of
this command.

4.5.3 Select the area name/names for the
DATA BASE AREA Table and append the "AREAS"
clause to-the "WITH SCHEMA" clause generated
in 4.5.2.

4.5.4 Select the database location from the
SCHEMANAMES Table and generate the "LOCATED
AT" clause.

4.6 Generate the "STORES CHARACTER/INTEGER NULL AS"
clause using the null value stored in the internal
program table.

4.7 Generate the "NTM DIRECTORY" clause using the two
character field representing the NTM Directory
where the generated request processors can be
found, which is stored in the internal program
table.

4.8 Generate an "ALTER DATABASE" NDDL command using the
database name.

4.9 Retrieve all the record names belonging to the
database being processed, from the RECORDTYPE
Table.

4.10 Records are retrieved into the table created in
step 4.9 sequenced by record name.

4.11 Process each record name in the internal program
table as follows:

4.11.1 Start generating the "DEFINE RECORD" NDDL
command using the record name.

4.11.2 Select all areas associated with the record
name and database number for a CODASYL DBMS.

4.11.2.1 If areas are retrieved generate
the "IN AREAS" clause using the
area ;iames.

3-68

DS 620341100
30 September 1990

4.11.2.2 If no areas are retrieved, omit
this clause.

4.11.3 Retrieve all the information from the
DATA FIELD Table for the record named.
Retrieve the data fields ordered by record
sequence number.

4.11.4 Generate the "WITH FIELD" clause for each
data field associated with the record. Use
the information obtained in step 4.11.3.

4.11.5 For each field always generate:

4.11.5.1 The level of each field (i.e. if
not a subcomponent, the level
number defaults to 1).

4.11.5.2 Repeating field information (i.e.
if the field doesn't repeat, occurs
defaults to 1).

4.11.5.3 Whether the field is known or
unknown to the DBMS.

4.11.5.4 Whether the field is a unique or

duplicate key.

4.11.6 For each field generate, whenever applicable:

4.11.6.1 The level of the subcomponent
fields (i.e. if the field repeats,
the level number will be greater
than 1.)

4.11.6.2 Any filler information.

4.11.6.3 Repeating field information (i.e.
the "OCCURS" clause, "DEPENDING ON"
clause and INDEXED BY" clause).

4.11.6.4 The "REDEFINES" clause.

4.11.6.5 The data type name.

4.11.7 Parse the Description Exception List once.

4.11.7.1 If the word "DESCRIPTION" was
not retrieved, generate a
"DESCRIBE" NDDL command for the
record if a textual description
exists. Generate separate
"DESCRIBE" NDDL commands if
textual information exists for
data fields.

3-69

DS 620341100
30 September 1990

4.11.7.2 If the word "DESCRIPTION" was
retrieved, omit generating
"DESCRIBE" commands.

4.12 Select every set belonging to the database being
processed from the RECORD SET Table. As each set is
retrieved process as follows:

4.12.1 Start generating the "DEFINE SET...FROM" NDDL
command using the set's name and the set's owner

record name.

4.12.2 Select all the members and required/optional
indicators of the set named from the
SET TYPE MEMBER Table. Generate the "TO"
clauses using the member's record names and
required/optional indicator obtained from
this select.

4.12.3 If the DBMS of the database is TOTAL, retrieve
the data field name of the owner record for
the set and generate the "LINKED BY" clause.

4.12.4 Check what was retrieved from the
Description Exception List.

4.12.4.1 If the word "DESCRIPTION" was not
retrieved, generate a "DESCRIBE"
NDDL command for the set if
textual descriptions exist.

4.12.4.2 If the word "DESCRIPTION" was
retrieved, omit generating a
"DESCRIBE" command.

4.13 Check what was retrieved from the Description
Exception List.

4.13.1 If the word "DESCRIPTION" was not retrieved
generate a "DESCRIBE" NDDL command for the
database if textual descriptions exist.

4.13.2 If the word "DESCRIPTION" was retrieved, omit
generating a "DESCRIBE" command.

3.2.8.24 COPY DBMS - Generate NDDL commands to copy a DBMS or

all DBMS

A. Function:

COPY DBMS allows the NDDL user to copy a specified DBMS
or all DBMS within the CDM. Optionally, all databases

3-70

DS 620341100
30 September 1990

associated with the DBMS' are copied. A "DESCRIBE"
command may also be generated if the user desires. At
the user's discretion, the generated NDDL commands are
either outputted to a screen or file.

B. CDM Requirements:

The DBMS/DBMS' to be copied must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an
existing output file or written to a new file or
outputted to a screen. Input parameters are set with
a previous "SET OUTPUT" statement.

2. A DBMS name or the the word "ALL" is obtained from a
DBMS Name Parser List.

2.1 If the Parser returns the word "ALL" process
every DBMS in the DBMS Table.

2.2 If the Parser returns a DBMS name, verify that
the DBMS name exists in the CDM.

3. Process each DBMS name obtained from the DBMS Name
Parser List or every DBMS in the CDM as follows:
3.1 Start generating the "DEFINE DBMS" NDDL command

using the DBMS name and its model type.

3.2 Retrieve any hosts associated with the DBMS.

3.2.1 If no hosts are retrieved for the DBMS
being processed, terminate the "DEFINE
DBMS" NDDL command.

3.2.2 If hosts are retrieved for the DBMS
being processed, generate the "ON HOST"
clause using the host name/names, then
terminate the "DEFINE DBMS" command.

4. Parse the Database Inclusion List once.

4.1 If nothing was retrieved, omit copying
all databases associated with the DBMS named.

4.2 If the word "DATABASE" was retrieved process
step 5 through step 8.

5. Select all the databases from the DATA BASE Table
associated with the DBMS being processed.

6. Store the database name, host name, DBMS name, null
value and NTM directory code on an internal program

3-71

DS 620341100
30 September 1990

table.

7. Databases are retrieved into the internal program
table sequenced by database name.

8. Process each database name on the internal program
table as follows.

8.1 Start generating the "DEFINE ... uATABASE" NDDL
command using the DBMS, database and host name.

8.2 If the DBMS name is "IMS":

8.2.1 Use the keyword "PCB" instead of
"DATABASE" after the DBMS name when
generating the command in step 8.1.

8.2.2 Select the PSB Name, sequence number and
feedback length from the PSB PCB Table
and generate the "WITH POSITION" clause
of this command.

8.3 If the DBMS name is "ORACLE" or "DB2":

8.3.1 Use the keyword "DATABASE" instead of
"PCB" after the DBMS name when
generating the command in step 8.1.

8.3.2 Select the database password from the
DB PASSWORD Table and generate the "WITH
PASSWORD" clause of this command.

8.4 If the DBMS name is "TOTAL":

8.4.1 Use the keyword "DATABASE" instead of
"PCB" after the DBMS name when
generating the command in step 8.1.

8.4.2 Select the file names from the
DATA BASE AREA Table and generate the
"WITH FILES" clause of this command.

8.5 If the DBMS name is one of the CODASYL DBMS'
(VAX-11, IDMS or IDS-II):

8.5.1 Use the keyword "DATABASE" instead of
"PCB" after the DBMS name when
generating the command in step 8.1.

8.5.2 Select the schema and subschema name
from the SCHEMA NAMES Table and generate
the "WITH SCHEMA ... AND SUBSCHEMA"
clause of this command.

8.5.3 Select the area name/names for the
DATABASE AREA Table and append the

3-72

DS 620341100
30 September 1990

"AREAS" clause to the "WITH SCHEMA"
clause generated in step 4.5.2.

8.5.4 Select the database location from the
SCHEMA NAMES Table and generate the
"LOCATED AT" clause.

8.6 Generate the "STORES CHARACTER/INTEGER NULL AS"
clause using the null value stored in the
internal program table.

8.7 Generate the "NTM DIRECTORY" clause using the
two character field representing the NTM
Directory where the generated request
processors can be found, which is stored in the
internal program table.

8.8 Generate an "ALTER DATABASE" NDDL command using
the data base name.

8.9 Retrieve all the record names belonging to the
database being processed, from the RECORD TYPE
Table. Store the record names along with-their
record numbers in an internal program table.

8.10 Records are retrieved into the table created in
step 4.9 sequenced by record name.

8.11 Process each record name in the internal
program table as follows:

8.11.1 Start generatinj the "DEFINE RECORD"
NDDL command using the record name.

8.11.2 Select all areas associated with the
record name and database number for a
CODASYL DBMS.

8.11.2.1 If areas are retrieved
generate the "IN AREAS" clause
using the area names.

8.11.2.2 If no areas are retrieved,
omit this clause.

8.11.3 Retrieve all the information from the
DATA FIELD Table for the record named.
Retrieve the data fields ordered by
record sequence number.

8.11.4 Generate the "WITH FIELD" clause for
each data field associated with the
record. Use the information obtained in
step 4.11.3.

3-73

DS 620341100
30 September 1990

8.11.5 For each field always generate:

8.11.5.1 The level of each field (i.e.
if not a subcomponent, the
level number defaults to 1).

8.11.5.2 Repeating field information
(i.e., if the field doesn't
repeat, occurs defaults to 1).

8.11.5.3 Whether the field is known or
unknown to the DBMS.

8.11.5.4 Whether the field is a unique
or duplicate key.

8.11.6 For each field generate, whenever
applicable:

8.11.6.1 The level of the subcomponent
fields (i.e. if the field
repeats, the level number will
be greater than 1).

8.11.6.2 Any filler information.

8.11.6.3 Repeating field information
(i.e., the "OCCURS" clause,
the "DEPENDING ON" clause and
"INDEXED BY" clause).

8.11.6.4 The "REDEFINES" clause.

8.11.6.5 The datatype name.

8.11.7 Parse the Description Exception List
once.

8.11.7.1 If the word "DESCRIPTION" was
not retrieved, generate a
"DESCRIBE" NDDL command for
the record if a textual
description exists. Generate
separate "DESCRIBE" NDDL
commands if textual
information exists for data E

fields.

8.11.7.2 If the word "DESCRIPTION" was
retrieved, omit generating
"DESCRIBE" commands.

8.12 Select every set belonging to the database
being processed from the RECORDSET Table. As

3-74

DS 620341100
30 September 1990

each set is retrieved process as follows:

8.12.1 Start generating the "DEFINE SET...FROM"
NDDL command using the set's name and
the set's owner record name.

8.12.2 Select all the members and
required/optional indicator of the set
named from the SET TYPEMEMBER Table.
Generate the "TO" clauses using the
member's record names and
required/optional indicator obtained
from this select.

8.12.3 If the DBMS of the database is TOTAL,
retrieve the data field name of the
owner record for the set and generate
the "LINKED BY" clause.

8.12.4 Check what was retrieved from the
Description Exception List.

8.12.4.1 If the word "DESCRIPTION" was
not retrieved, generate a
"DESCRIBE" NDDL command for
the set if textual
descriptions exist.

8.12.4.2 If the word "DESCRIPTION" was
retrieved, omit generating a
"DESCRIBE" command.

8.13 Check what was retrieved from the Description
Exception List.

8.13.1 If the word "DESCRIPTION" was not
retrieved generate a "DESCRIBE" NDDL
command for the database if textual
descriptions exist.

8.13.2 If the word "DESCRIPTION" was retrieved,
omit generating a "DESCRIBE" command.

3.2.8.25 COPY DESCRIPTION - Copy CDM objects and/or
descriptions.

A. Function:

COPY DESCRIPTION allows the NDDL user to copy
descriptions from the CDM. These descriptions can be
copied directly or the NDDL DESCRIBE commands can be
generated on a file. The user may specify one, many or
all description types.

3-75

DS 620341100
30 September 1990

B. CDM Requirements:

The object(s) identified must exist in the CDM.

The description type and description text of the object
to be copied must exist.

If the copy involves the modeling objects (entities,
attributes and relations), a current model must be
established.

If "directly" is specified, a "to" object must exist,
and a description text must not exist for that object.

C. Processing:

1. Retrieve the model name from the parser list. If no
name was found, set the "from" model name to the
current model name. Otherwise, verify the model
name.

2. Retrieve the "directly" clause off the parser list.
If "directly" was found, set a flag.

3. Retrieve the description type from the parser list.
If ALL descriptions are to be copied, set a flag.

4. If the user wishes to copy the specified description
types directly:

4.1 Verify the object type and retrieve the object
number for the object to be copied. If the
object does not exist, issue a user error and
stop processing.

4.2 Verify the object type and retrieve the object
number of the object to be copied to. If the
to object does not exist, issue a user error
and stop processing.

4.3 For each description type specified:

4.3.1 Select the description text of the first
object and copy it to the second object
and exit processing. If the description
text does not exist, issue a user error.

5. If the user wishes to copy all descriptions
directly:

5.1 Verify the object type and retrieve the object
number for the object to be copied. If the
object does not exist, issue a user error and
stop processing.

3-76

DS 620341100
30 September 1990

5.2 Verify the object type and retrieve the object
number of the object to be copied to. If the
"to" object does not exist, issue a user error
and stop processing.

5.3 For every description of the "from" object in
the CDM:

5.3.1 Retrieve a description from the CDM for
the object.

5.3.2 Copy the description text of the first
object to the second object.

5.4 Exit command processing.

6. If the user wishes to copy specified descriptions on
file:

6.1 Open the output file.

6.2 Verify the object type and retrieve the object
number for the object to be copied. If the
object does not exist, issue a user error and
stop processing.

6.3 If the "to" object was specified, verify the
object type and retrieve the object number of
the object to be copied to. If the "to" object
does not exist, issue a user error and stop
processing.

6.4 If the object is an attribute, entity or
relation, generate an ALTER MODEL command.

6.5 For each description type specified, generate a
DESCRIBE command to create the description on
file.

6.6 Close the file and exit processing.

7. If the user wishes to copy all descriptions on file:

7.1 Open the output file.

7.2 Verify the object type and retrieve the object
number for the object to be copied. If the
object does not exist, issue a user error and
stop processing.

7.3 If the "to" object was specified, verify the
object type and retrieve the object number of
the object to be copied to. If the "to" object

3-77

DS 620341100
30 September 1990

does not exist, issue a user error and stop
processing.

7.4 If the object is an attribute, entity or
relation, generate an ALTER MODEL command.

7.5 Generate a DESCRIBE command to create the
description on file for each description in the
CDM.

7.6 Close the file and exit processing.

3.2.8.26 COPY DESCRIPTION TYPE - Generate NDDL commands to copy
existing description types.

A. Function:

1. COPY DESCRIPTION TYPE generates NDDL commands to
create one or more description types.

2. The generated NDDL is outputted to a user defined
field or to the screen.

3. Allows the user to determine specific description
types to be copied.

B. CDM Requirements:

A specified description type must exist.

C. Processing:

1. Open the user specified output device.

2. If "ALL" is specified, all description types stored
in the CDM will be copied.

3. If certain description types are specified:

3.1 The CDM table DESCRIPTION TYPE is checked to
verify that the description type exists:

3.1.1 If the description type does not exist:

3.1.1.1 The user is notified and a
warning message is issued.

3.1.1.2 Continue processing with the
next specified description
type.

3.1.2 If the description type does exist:

3.1.2.1 Generate the create
description type command.

3-78

DS 620341100
30 September 1990

3.1.2.2 Continue processing with
the next description type.

3.2.8.27 COPY DOMAIN - Generate NDDL commands to make a copy of

domains.

A. Function:

COPY DOMAIN allows the NDDL user to copy specified
domains or all domains within the CDM. Optionally,
all user defined data types are copied along with
all textual descriptions for the domain and data
types. All domain values and ranges are copied.
At the user's discretion, the generated NDDL
commands are either outputted to a screen or file.

B. CDM Requirements:

The domain/domains to be copied must exist in the
CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an
existing output file or written to a new file or
outputted to a screen. Input parameters are set
with a previous "SET OUTPUT" statement.

2. A domain name or the word "ALL" is obtained from a
Domain Name Parser List.

2.1 If the Parser returns the word "ALL", process
every domain retrieved from the DOMAINCLASS
table.

2.2 If the Parser returns a domain name, verify
that the domain name exists in the CDM.

3. Process each domain name obtained from the Domain
Name Parser List or every domain in the CDM as
follows:

3.1 Select the standard data type's name, type-id,
size and number of decimals from the CDM.

3.2 Start generating the "CREATE DOMAIN" NDDL
command specifying the standard data type with
information obtained in step 3.1.

3.3 Parse the User Data Type Exception List.

3.3.1 If the word "USER" is retrieved, select
all user defined data types and generate
the "TYPE" clauses of the NDDL "CREATE
DOMAIN" statement.

3-79

DS 620341100
30 September 1990

3.3.2 Save the datatypes retrieved in a
temporary table.

3.3.3 If nothing is retrieved, omit the "TYPE"
clauses.

3.4 Select all domain values and generate the
"VALUE" clause.

3.5 Select all the domain ranges and generate the
"RANGE" clause.

3.6 Check if a verification module exists for a
domain.

3.6.1 If one exists, generate a comment line
informing the user of the module's name.

3.6.2 If one doesn't exist, omit this comment
line.

3.7 Parse the Description Exception List.

3.7.1 If the word "DESCRIPTION" is not
retrieved, generate a "DESCRIBE" NDDL
command for the domain if textual
information exists.

3.7.2 Also generate "DESCRIBE" NDDL commands
for the datatypes saved in step 3.3.2.

3.7.3 If the word "DESCRIPTION" is retrieved,
omit generating a "DESCRIBE" command.

3.2.8.28 COPY ENTITY - Copy a conceptual entity.

A. Function:

COPY ENTITY allows the user to perform the following:

1. Copy an entity within the same model, directly,
giving it a different name.

2. Copy an entity within the same model, generating the
NDDL commands that the user would otherwise have to
type in.

3. Copy an entity from one model to another, directly,
giving it a different name.

4. Copy an entity ROM one model to another, generating
the necessary NDDL to create the entity in the other
model. This kind of copy can include all
subordinate entities in the tree structure of the
target entity, or all the relations associated with
the target entity.

3-80

DS 620341100
30 September 1990

5. Copy, at the user's discretion, the descriptions,
aliases, keywords, attributes, keys for the entity
and descriptions, aliases, and keywords for the
entity's attributes.

6. Exclude, at the user's discretion, certain
dependent entities from being copied when a copy
with relation or structure is done.

7. Copy, at the user's discretion, just key
information for the entity (when except nonkeys is
specified).

B. CDM Requirements:

The entity to be copied must previously exist in the
CDM. The entity copied to must not exist in the target
model.

C. Processing:

1. Begin processing by determining if the copy is
inter-model or intra-model. If a model name is
specified, assume inter-model and check if the
current model was established and the from-model
exists.

Verify the from-entity name. If intra-model,
verify that the to-entity name was entered, and if
it was, verify that it doesn't already exist and
that it is not the same name as the from-entity
name.

If inter-model, and if no to-entity name was
entered, assume it to be the same as the
from-entity name, and verify that it doesn't
already exist.

Retrieve the With clause off the parser list.
Determine if the copy is directly or generated (On
file). If directly was not specified, assume
generated (see SET OUTPUT).

If intra-model and directly, perform step 2
if intra-model and generated, perform step 3
if inter-model and directly, perform step 4
if inter-model and generated and no with clause

(simple), perform step 5
if inter-model and with structure, perform step 6
if inter-model and with relation, pe~fo-' step 7

2. For an intra-model copy entity directly, the
database is updated directly.

3-81

DS 620341100
30 September 1990

2.1 A new unique number is obtained and the entity
and its primary name are stored. The "TO"
entity name will be made primary.

2.2 If the user desires, all keywords for the old
entity are also associated with the new entity.

2.3 If the user desires, all descriptions from the
old entity are copied to the new entity.

2.4 No aliases will be copied in an intra-directly,
because an alias can uniquely identify only one
entity in the model.

2.5 No attributes are copied, because they already
exist in the model and are already owned by the
"FROM" entity.

3. For an intra-model copy entity generated, NDDL is
generated on a file or to the screen (see SET
OUTPUT) to perform the copy.

3.1 Generate a comment stating that the only NDDL
that will execute successfully in this case,
will be the create entity and its associated
keywords and descriptions.

3.2 Generate an 'ALTER MODEL' command and a 'CREATE
ENTITY' command for the target entity. Also,
if the user desires, generate the entity's
'DESCRIBE', 'ALTER ENTITY ADD KEYWORD', and the
'CREATE ALIAS' for entity commands.

3.3 Generate, if the user desires, 'CREATE
ATTRIBUTE' commands for each attribute owned by
the entity, along with each attribute's
descriptions, aliases, and keywords if the user
desires. Also, generate 'ALTER ENTITY ADD
OWNED ATTRIBUTE' commands for each attribute
owned by the entity.

4. For an inter-model copy entity directly, the current
model is updated by creating the 'TO' entity.

4.1 A new unique number is obtained and the entity
and its primary name are stored. The "TO"
entity name will be made primary.

4.2 If the user desires, all keywords for the old
entity are also associated with the new entity.

4.3 If the user desires, all descriptions from the
old entity are copied to the new entity.

3-82

DS 620341100
30 September 1990

4.4 If the user desires, the old entity's aliases
will be created for the new entity in the
current model, provided the alias does not
exist in the current model.

4.5 If the user desir~s, for all attributes owned
by the from-entity:

4.5.1 A unique number is obtained and the
attribute and its primary name are
stored unless the attribute already
exists in the to-model.

4.5.2 If the user desires, the attribute's
descriptions and keywords are
associated with the new attribute in
the to-model.

4.5.3 If the user desires, the attribute's
aliases will be created for the new
attribute in the to-model unless the
alias already exists in the to-model.

4.5.4 The newly created attribute is stored
as an owned attribute and an attribute
use class for the new entity.

4.5.5 If the user desires, all keys for the
"FROM" entity can be copied to the new
entity. The keys of the entity being
copied, found in step 4.5, are stored
in a table. If not already in the
table, a new key is established with
the new attribute as its key member.
If the key class was on the list, a new
key class member is created for the new
attribute and the new key previously
created.

4.5.6 If nonkeys are excepted, only
attributes that are part of a key are
generated, and no 'ALTER ENTITY ADD
OWNED ATTRIBUTE' command is generated
for nonkey attributes.

5. For an inter-model copy simple (no with clause):

5.1 Generate an 'ALTER MODEL' command and a
'CREATE ENTITY' command for the target entity.
Also, if the user desires, generate the
entity's 'DESCRIBE', 'ALTER ENTITY ADD
KEYWORD', and the 'CREATE ALIAS' for entity
commands.

3-83

DS 620341100
30 September 1990

5.2 Generate, if the user desires, 'CREATE
ATTRIBUTE' commands for each attribute owned
by the entity, along with each attribute's
descriptions, aliases, and keywords if the
user desires. If the attribute already exists
in the to-model, a comment is generated.
Also, generate 'ALTER ENTITY ADD OWNED
ATTRIBUTE' commands for each attribute owned
by the entity.

5.3 If attributes are excepted, keys and nonkeys
are automatically excepted.

5.4 Generate, if the user desires, 'ALTER ENTITY
ADD KEY' commands for the entity's keys. A
comment is generated stating that some key
members may not be owned attributes, and
therefore, the NDDL will not execute
successfully.

5.5 If nonkeys are excepted, only attributes that
are part of a key are generated, and no 'ALTER
ENTITY ADD OWNED ATTRIBUTE' command is
generated for nonkey attributes.

6. For an inter-model copy with structure:

6.1 Generate an 'ALTER MODEL' command.

6.2 If the user specified a list of dependent
entities to be excepted:

6.2.1 Verify that the excepted entity exists
in the from-model.

6.2.2 Verify that the excepted entity is not
the same as the entity being copied.

6.2.3 Load each of the excepted entities into
a COBOL table, along with all the
entities in each of the excepted
entities' dependent tree structure.

6.3 Generate a 'CREATE ENTITY' command for the
target entity. Also, if the user desires,
generate the entity's 'DESCRIBE', 'ALTER
ENTITY ADD KEYWORD', and the 'CREATE ALIAS'
commands.

6.4 Generate, if the user desires, 'CREATE
ATTRIBUTE' commands for each attribute owned
by the entity, along with each attribute's
descriptions, aliases, and keywords if the
user desires. If the attribute already exists

3-84

DS 620341100
30 September 1990

in the to-model, a comment is generated.
Also, generate 'ALTER ENTITY ADD OWNED
ATTRIBUTE' commands for each attribute owned
by the entity.

6.5 If attributes are excepted, keys and nonkeys
are automatically excepted.

6.6 The keys of the top entity are built. A
search of keys and members is made of the
original entity and stored in a structure.
The original ECNO, KC NO, KC NAME,
KCMTAGNO, and KCMTAG_NAME are saved.

6.7 The entities, keys, and key members of the
dependent tree structure of the original
entity are stored in the same data structure
of step 6.5. Do not store entities that have
been excepted. A recursive search of the
CDM's LINK RELATION and CATEGORY RELATION
tables is 3one to accomplish this.

6.8 Next, for each level of relations in the
structure find the keys for each dependent
entity which contain attributes inherited via
the relation. Populate a COBOL table with the
level, dependent entity number and relation
number. Do not populate the table for
entities that have been excepted. This
information will facilitate generation of the
alter entity...add key clause at the
appropriate level; i.e., after all the CREATE
RELATION and CREATE CATEGORY commands have
been generated, establishing all the inherited
attributes making up the key.

6.9 An 'ALTER ENTITY' command for the new top
entity can now be generated which declares
each of the keys and its members found in the
data structure stored in step 6.5.

6.10 Generate all the attributes, keys, and
relations for the tree structure by traversing
the constructed data structure and table to
make sure that what is being generated is not
part of an excepted entity.

7. For an inter-model copy with relation, the target
entity is generated as in steps 6.1 through 6.5:

7.1 If the user specified a list of dependent
entities to be excepted:

7.1.1 Verify that the excepted entity exists
in the from-model.

3-85

DS 620341100
30 September 1990

7.1.2 Verify that no excepted entity is not
the same as the entity being copied.

7.1.3 Verify that a relation does exist from
the copied entity to each excepted
entity.

7.1.4 Verify that no excepted entity is an
independent entity in a relation with
the copied entity, because only
dependent entities can be excepted.

7.1.5 Load each of the excepted entities into
a COBOL table.

7.2 Build a data structure for entities, keys, and
key members for the top entity and all
entities that are involved as independent
entities in relations with the top entity.

7.3 Generate 'CREATE RELATION' commands for all
relations in which the copied entity is
dependent.

7.4 Generate 'ALTER ENTITY ADD KEY' commands for
the copied entity.

7.5 Generate 'CREATE RELATION' commands for all
relations in which the copied entity is
independent, unless one of the dependent
entities was excepted. This is done by
searching the table built in step 7.1.5.

7.6 Generate "CREATE CATEGORY" commands for all
relations that the copied entity is a category
member.

7.7 Generate "CREATE CATEGORY" commands for all
relations where the coped entity is the
generic entity, omitting the category members
that were on the excepted entity list.

3.2.8.29 COPY HOST - Generate NDDL commands to make a copy of
hosts.

A. Function:

COPY HOST allows the NDDL user to copy specified hosts
or all hosts within the CDM. Data Base Managements
Systems (DBMS) associated with the host are copied.
Optionally, textual description for the host or PSBs
associated with the host may be copied. At the user's
discretion, the generated NDDL commands are either
outputted to a screen or file.

3-86

DS 620341100
30 September 1990

B. CDM Requirements:

The host/hosts to be copied must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an
existing output file or written to a new file or
outputted to a screen. Input parameters are set
with a previous "SET OUTPUT" statement.

2. A host name or the word "ALL" is obtained from a
Host Name Parser List.

2.1 If a Parser returns the word "ALL", process
all hosts retrieved from the HOST table in the
CDM.

2.2 If the Parser returns a host name, verify that
the host exists in the CDM.

3. Continue processinq each host name obtained from the
Host Name Parser List or every host in the CDM as
follows:

3.1 Start generating a "DEFINE HOST" NDDL command

using the host's name.

3.2 Parse the PSB Exception List.

3.2.1 If the word "PSB" is not retrieved,
select PSBs associated with the host and
generate "DEFINE PSB" NDDL commands.

3.2.2 If the word "PSB" is retrieved, omit

these commands.

3.3 Parse the Description Exception List.

3.3.1 If the word "DESCRIPTION" is not
retrieved, generate a "DESCRIBE" NDDL
command for the host if textual
description exists.

3.3.2 If the word "DESCRIPTION" is retrieved,
omit generating a "DESCRIBE" command.

3.2.8.30 COPY MAP - Generate NDDL commands to make a copy of
mapping definitions.

A. Function:

COPY MAP allows the NDDL user to copy mapping
definitions between conceptual and internal schemas.

3-87

DS 62034i!0O
30 September 1990

Specified mapping definitions for an entity, relation,
record or set can be copied, or all mapping definitions
for an entity, relation, record or set can be copied
within the CDM. Optionally, horizontal partitions
and/or records unions are copied for entity and record
mapping definitions. At the user's discretion, the
generated NDDL commands are either outputted to a screen
or file.

B. CDM Requirements:

The entity, attribute use, relation, record or set for
which the map is defined must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an
existing output file or written to a new file or
outputted to a screen. Input parameters are set with
a previous "SET OUTPUT" statement.

2. Parse the Mapping Exception List and retrieve the
words "PARTITION" and/or "UNION", setting the except
flags as needed.

3. Parse the Conceptual/Internal Object List and
retrieve either the word "ENTITY", "RELATION",
"RECORD" or "SET".

4. If the word "ENTITY" was returned in Step 3:

4.1 Check what the Parser returned from the Object
Name List.

4.1.1 If the word "ALL" was returned process
all primary entity names in the
ENTITYNAME Table.

4.1.2 If the word "ALL" wasn't returned, the
first object name returned was that of
an entity. Verify that the entity named
exists in the CDM and return the primary
entity name.

4.2 Process the entity named or all entities in the
CDM as follows:

4.2.1 If partitions are to be generated,
select all the partition numbers from
the HORIZONTAL PART Table for the entity
named. Generafe a "CREATE PARTITION"
NDDL command for each entity partition.

3-88

DS 620341100
30 September 1990

4.2.2 For each entity returned, generate a
CREATE MAP command for the entity and
record mapping. Select all the entity
to record mappings from the
EC RT MAPPING Table for the entity
specified. Retrieve the distributed
rules from DISTRIBUTED RULES table and
generate retrieval and-update commands.

4.2.3 Select all the tag names and numbers for
the entity from the ATTRIBUTE USE CL
Table, the database number ani record
name from the RECORDTYPE Table,
preference number, map type, map and map
category from the AUC IS MAPPING Table
and database name from the DATABASE
Table.

4.2.4 For each tag name returned, map that tag
for a stated preference:

4.2.4.1 If Map-Type = "FIELD", generate
a "CREATE MAP" NDDL command
using the entity name and tag
name. Use the database, record
and field name& in the "TO
FIELD" clause. Continue NDDL
command with MAPCATEGORY,
MAP CLASS and preference
numBer. Select the field names
from PROJECT DATA FIELD Table
for the database number, record
name and tag number.

4.2.4.2 If Map-Type = "SET", generate a
"CREATE MAP" NDDL command using
the entity name and tag name.
Use the data base name, set
name and AUC values in the "TO
SET" clause. Continue NDDL
command with MAPCATEGORY,
MAP CLASS and preference
numBer. Select all the
set names and AUC values from
the AUCSTMAPPING Table.

4.2.4.3 If Map-Type = "COMPLEX",
retrieve the module name,
module instance,
algorithm use-code and
algorithm parameters from the
COMPLEX MAPPING PARM Table for
the tag-number.- Check the
module name, use code and

3-89

DS 620341100
30 September 1990

instance against DI PARM to see
if it is mapped to a data item.
If so, omit generating the
"DEFINE ALGORITHM" command.
Also, check the module name and
instance against an internal
program table (MDTBL) where the
module name and instance of
prior algorithms that have been
copied is stored. If it is not
found, store the module name
and instance on the table and
generate a "DEFINE ALGORITHM"
NDDL command. If it is found,
omit generating a "DEFINE
ALGORITHM" command since it
would be a duplication of one
already generated.

4.2.5 If unions are to be generated, select
all the database number, record name
combinations from the ECRTUD Table where
the entity is part of a record union.
Retrieve the data field name, union
value and comparison operator from this
select. The entity names are retrieved
from the ENTITY NAME Table using the
entity number from this select.

4.2.6 When the first entity is returned from
the ECRTUD Table, check the database
number, record name combination against
the internal program table (UNTBL) where
all prior record unions that have been
copied are stored. If the record union
is not found, update the program table
(TABLE1) with the database number,
record name combination and generate a
"CREATE UNION" NDDL command for the
record union. If the record union is
found, exit from this select and omit
generating a "CREATE UNION" NDDL command
thereby eliminating duplicate commands.

5. If the word "RELATION" was returned in Step 3:

5.1 Check what the Parser returned from the Object
Name List.

5.1.1 If the word "ALL" was returned, all
relation to set maps in the CDM must be
copied, ordered by independent entity,
relation name and dependent entity.

5.1.2 If the word "ALL" was not returned, the
first object named is the independent

3-90

DS 620341100
30 September 1990

entity, the second object named is the
relation name and the optional third
object named is the dependent entity.
Verify that this link or category
relation named exists in the CDK.

5.2 Process the relation named or all relations in
the CDM as follows:

5.2.1 Select all the maps between the relation
named and record sets from the
RCBASEDRECSET Table.

5.2.2 If maps are retrieved, start generating
the "CREATE MAP" NDDL command using the
independent entity name, relation class
name and optional dependent entity
name. Generate the "TO SET" clause for
every set returned.

5.2.3 If no maps are retrieved, omit
generating a "CREATE MAP" NDDL command.

6. If the word "RECORD" was returned in Step 3:

6.1 Check what the Parser returned from the Object
Name List.

6.1.1 If the word "ALL" was returned, the maps
for all records in the CDM, ordered by
record name, will be copied.

6.1.2 If the word "ALL" was not returned, the
first object named is the database name
and the second object named is the
record name. Verify that this database,
record combination exists in the CDM.

6.2 Process the record named or all records in the
CDM as follows:

6.2.1 Generate a CREATE MAP command for the
entity to record mappings for all the
entities in which the record named
participates in. Select the entity name
and number from the ENTITY NAME Table,
the record name from the RECORD TYPE
Table and the database name from the
DATA BASE Table. Retrieve the
distributed rules from DISTRIBUTED RULES
table and generate retrieval and update
commands.

6.2.2 If partitions are to be generated,
select all the entities and partition
numbers from the HORIZONTALPART Table

3-91

DS 620341100
30 September 1990

where the record named participates in
the entity's partition.

6.2.3 When the first entity and partition
numbers are returned, check against an
internal program table (HPTBL) where all
entity and horizontal partition numbers
of partitions already copied are stored.
If not found, store the entity and
partition number into HPTBL and generate
a "CREATE PARTITION" NDDL command.

If found, omit generating a "CREATE
PARTITION" NDDL command for this entity,
thereby avoiding duplicate commands.

6.2.4 Select the database number and record
name from the RECORD TYPE Table,
preference number, map type, map-class
and map-category for the record named
from the AUCISMAPPING Table,
associated tag and primary entity names
from the ATTRIBUTE USE CL Table and the
database name from-the-DATABASE Table.

6.2.5 For each mapping of that tag for a
stated preference returned in step
6.2.1:

6.2.5.1 If Map-Type = "FIELD", generate
a "CREATE MAP" NDDL command
using the entity name and tag
name. Use the database,
record and field names in the
"TO FIELD" clause. Continue
NDDL command with MAPCATEGORY,
MAP CLASS and preference
numBer. Select the field names
from PROJECT DATA FIELD Table
for the data-base-number,
record name and tag number.

6.2.5.2 If Map-Type = "SET", generate a
"CREATE MAP" NDDL command using
entity name and tag name. Use
the set names and AUC values in
the "TO SET" clause. Continue
NDDL command with MAPCATEGORY,
MAP CLASS and preference
number. Select all the set
names and AUC values from the
AUCSTMAPPING table.

6.2.5.3 If Map-Type = "COMPLEX",
retrieve the module name,

3-92

DS 620341100
30 September 1990

module instance, algorithm
use-code and algorithm
parameters from the
COMPLEX MAPPING PARM Table for
the tag-number.- Check the
module name, use code and
instance against DIPARM to see
if it is mapped to a data item.
If so, do not generate the
"DEFINE ALGORITHM" command.
Check the module name, use code
and instance against an
internal program table (TABLE2)
where the module name and
instance of prior algorithms
that have been copied is
stored. If it is not found,
store the module name and
instance on the table and
generate a "DEFINE ALGORITHM"
NDDL command. If it is found,
omit generating a "DEFINE
ALGORITHM" command since it
would be a duplication of one
already generated.

6.2.6 If unions are to be generated, select
all the data base number, record name
combinations from the ECRTUD Table for
the record named. GENERATE a "CREATE
UNION" NDDL command.

7. If the word "SET" was returned in Step 3:

7.1 Check what the Parser returned from the Object
Name List.

7.1.1 If the word "ALL" was returned, all
relation to set maps in the CDM, ordered
by database name and set name will be
copied.

7.1.2 If the word "ALL" was not returned,
the first object named is the database
name, the second object named is the
set name. Verify that the set named
exists in the CDM.

7.2 Process the set named or all sets in the CDM as
follows:

7.2.1 Select the relation names from the
RC BASEDRECSET Table using the set
named.

3-93

DS 620341100
30 September 1990

7.2.2 If a relation to set mapping is retrieved
generate a "CREATE MAP... TO SET" NDDL
command using the relation name and set
name.

3.2.8.31 COPY MODEL - Generate NDDL commands to copy an existing
model

A. Function:

Copy Model performs the following functions:

1. Generates NDDL commands to create a model along with
its attributes and entities with their associated
keywords, aliases and descriptions and the keys, key
members, owned attributes, relations and migrated
keys for the entities and dependent entities of the
model being copied.

2. NDDL is outputted to a user defined file or to the
screen.

3. Allows the user to determine whether attributes,
entities, keys, nonkeys, relations, descriptions,
aliases, keywords or specific entities will be
excepted from the new model.

B. CDM Requirements:

1. The model to be copied must exist in the CDM.

2. The model to be copied into should not exist in the
CDM.

C. Processing:

1. If the model to be copied (the from-model) is not
specified, the model name defaults to the current
model. The copy model command verifies that the
from-model exists, and that the new model being
created (the to-model) does not exist. Processing
halts if any of the verification checks fail.

2. If there is a list of dependent entities excepted, a
table is built containing the specified entities and
their dependent entities.

3. If attributes are excepted:

3.1 Set a flag indicating that exception.

3.2 Set a flag indicating that keys are also to be
treated as excepted.

3-94

DS 620341100
30 September 1990

3.3 Set a flag indicating that no
'migrates...set...' clause NDDL will be
generated for link relations.

3.4 Category relations will be generated, but need
editing for discriminating attributes.

4. If attributes are not excepted, the NDDL is
generated to create the attribute, its keywords,
description text and aliases for all attributes of
the model with the following exceptions:

4.1 Determine if the attribute is owned by an
entity which exists on the previously created
excepted entity table. If it is, do not
generate the NDDL to create that attribute.

4.2 If nonkeys are excepted, determine if the
attribute is a key member. If it is not, do
not generate the NDDL to create that attribute.

4.3 If descriptions are excepted, do not generate
the NDDL to create the description text.

4.4 If attribute is not primary and aliases are
excepted, do not generate the NDDL to create
the alias for that attribute.

4.5 If keywords are excepted, do not generate the
NDDL to create the 'keyword' clause for that
attribute.

5. If entities are excepted, the output file is closed
and processing halts.

6. If entities are not excepted, the NDDL is generated
to create the entity, its owned attributes, keywords
and aliases for all entities of the model with the
following exceptions:

6.1 Determine if the entity exists on the
previously created entity exception table. If
so, do not generate the NDDL to create that
entity.

6.2 If attributes are excepted, do not generate the
NDDL to create the 'owned attribute' clause for
that entity.

6.3 If non-keys are excepted, determine if the
owned attribute is a key class member, if it is
not, do not generate the 'owned attribute'
clause.

3-95

DS 620341100
30 September 1990

6.4 If keywords are excepted, do not generate the
'keyword' clause for that entity.

6.5 If the entity is not primary and aliases are
excepted, do not generate the 'create alias'
clause for that entity.

7. If keys and/or attributes are not excepted:

7.1 Build a temporary key list to store all the
keys and key members for each entity with the
exception of those entities on the table of
excepted entities. This list will be used
later to venerate the keys for the entity after
all the migrations have been determined.

7.2 Another temporary list is built to store all
the key information at each level in the model
structure for every dependent entity, with the
exception of those on the excepted entity
table. This table contains attributes
inherited via the relation for each level of
relations in the model being copied.

7.3 An ORACLE tree search is used to determine
inheritance at all lower levels for an entity,
after the top node has been identified, with
the exception of those entities on the table of
excepted entities. The model being copied must
not contain any dependency loops. An 'alter
entity add key' clause is generated for the top
node in this model's tree structure.

8. If keys are excepted:

8.1 Set a flag indicating that exception.

8.2 Set a flav indicating that no key migration
clauses will be generated for link relations.

8.3 Do not build the temporary tables to store key
and key member information.

8.4 Category relations will be generated, but need
to be edited because of keys automatically
being migrated.

8.5 Do not perform the ORACLE tree search.

9. If relations are excepted, no further processing is
necessary; therefore, the user defined file is
closed and processing halts. No category or link
relations are generated.

3-96

DS 620341100
30 September 1990

10. If relations are not excepted, both of the temporary
lists are used to generate NDDL statements necessary
to create the relations for the entity. For each
level of relations, migrate the keys and add keys
for each dependent entity in the from model. NDDL
commands are also generated for keywords and
descriptions associated with the relations. The
following exceptions apply:

10.1 If the entity exists on the previously created
exception list, do not generate the NDDL to
create the relations for that entity.

10.2 If keys and/or attributes and/or inherited
attributes are excepted, do not generate the
NDDL to create the 'migrates...set...' clause
or link relations.

10.3 If keys are excepted, do not generate the 'add
key' clause for the dependent entities.

10.4 If keywords are excepted, do not generate the
'keyword' clause for the relation.

11. Finally, the user defined file is closed and
processing halts.

3.2.8.32 COPY MODULE - Generate NDDL commands to make a copy of
user defined software modules.

A. Function:

COPY MODULE allows the NDDL user to copy specified
modules or all modules within the CDM that were
previously user defined (not generated). All the
software module's parameters are copied. At the
user's discretion, the generated NDDL commands are
either out-putted to a screen or file.

B. CDM Requirements:

The software module/modules to be copied must exist
in the CDM.

C. Processing:

1. Global input parameters are checked to determine
if the generated NDDL commands will be appended
to an existing output file or written to a new
file or outputted to a screen. Input parameters
are set with a previous "SET OUTPUT" statement.

2. A module name or the word "ALL" is obtained from
a module Name Parser List.

3-97

DS 620341100
30 September 1990

2.1 If the Parser returns the word "ALL", process
all modules retrieved from the SOFTWARE MODULE
table with a status indicator of "C". The "C"
indicates software modules created for the
purpose of defining Complex Mapping Algorithms.

2.2 If the Parser returns a module name, verify
that the module exists in the SOFTWAREMODULE
table and has a status indicator of "C8.

3. Continue processing each valid module name obtained
from the Module Name Parser List or every module in
the CDM with a status indicator of "C" as follows:

3.1 Start generating a "DEFINE MODULE" NDDL command
using the module's name and language.

3.2 Select all parameters and their data type names
for the module, sequenced by the PARMID.

3.3 Generate the "PARAMETER" clause for these
parameters using the parameter's name and its
data type name.

3.2.8.33 COPY RECORD - Generate NDDL Commands to make a copy of

records.

A. Function:

COPY RECORD allows the NDDL user to copy specified
records or all records within the CDM. The record
layout is copied along with all the information
pertaining to each data field. At the user's
discretion, the generated NDDL commands are either
outputted to a screen or file. Optionally, the
"DESCRIBE" command with any textual descriptions may be
copied.

B. CDM Requirements:

The record/records to be copied must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if the
generated NDDL commands will be appended to an existing
output file or written to a new file or outputted to a
screen. Input parameters are set with a previous "SET
OUTPUT" statement.

2. Parse the Database List.

3-98

DS 620341100
30 September 1990

2.1 If a database name is retrieved, verify that the
database named exists in the CDM and retrieve its
DBMS.

2.2 If nothing is retrieved, use the global input
parameter containing the current database name that
has been established for the session and retrieve
its DBMS.

3. Generate an "ALTER DATABASE" NDDL command using the
database name from step 2.

4. A record or the word "ALL" is obtained from a Record Name
Parser List.

4.1 If the Parser returns the word "ALL", retrieve every
record from the RECORD TYPE Table for the database
name obtained in step 2. Retrieve the record names
sequenced by record name.

4.2 If the Parser returns a record name, verify that the
record named exists in the CDM and is associated
with the database determined in step 2.

5. Process each record name obtained from the Record Name
Parser List or every record in the CDM as follows:

5.1 Start generating the "DEFINE RECORD" NDDL command
using the record name.

5.2 Select all areas associated with the record name and
database number for a CODASYL DBMS.

5.2.1 If areas are retrieved generate the "IN

AREAS" clause using the area names.

5.2.2 If no areas are retrieved omit this clause.

5.3 Retrieve all the information from the DATA FIELD
Table for the record named. Retrieve the aata
fields ordered by the record sequence number into an
internal table.

5.4 Generate the "WITH FIELD" clause for each data field
associated with the record. Use the information
obtained in step 5.3.

5.5 For each field always generate:

5.5.1 The level of each field (i.e. if not a
subcomponent, the level number defaults to 1).

5.5.2 Repeating field information (i.e. if the
field doesn't repeat, occurs defaults to 1).

3-99

DS 620341100
30 September 1990

5.5.3 Whether the field is known or unknown to the
DBMS.

5.5.4 Whether the field is a unique or duplicate
key.

5.6 For each field generate, whenever applicable:

5.6.1 The level of the subcomponent fields (i.e. if
the field repeats, the level number will be
greater than 1).

5.6.2 Any filler information.

5.6.3 Repeating field information (i.e. the
"OCCURS" clause, the "DEPENDING ON" clause
and "INDEXED BY" clause).

5.6.4 The "REDEFINES" clause.

5.6.5 The datatype name.

5.7 Parse the Description Exception List.

5.7.1 If the word "DESCRIPTION" is not retrieved,
generate a "DESCRIBE" NDDL command for the
record and a separate "DESCRIBE" NDDL
commands for each data field.

5.7.2 If the word "DESCRIPTION" is retrieved, omit
generating "DESCRIBE" commands.

3.2.8.34 COPY SET - Generate NDDL commands to make a copy of

sets.

A. Function:

COPY SET allows the NDDL user to copy specified sets or
all sets within the CDM. At the user's discretion, the
generated NDDL commands are either outputted to a screen
or file.

B. CDM Requirements:

The set/sets to be copied must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an

3-100

DS 620341100
30 September 1990

existing output file or written to a new file or
outputted to a screen. Input parameters are set with
a previous "SET OUTPUT" statement.

2. Parse Database List.

2.1 If a database name is retrieved, verify that
the database named exists in the CDM.

2.2 If nothing is retrieved, use the global input
parameter containing the current database name
that has been established for the session.

3. Generate an "ALTER DATABASE" NDDL command using the
database name from step 2.

4. A set name or the word "ALL" is obtained from the
Set Name Parser List.

4.1 If the Parser returns the word "ALL", process
every set retrieved from the RECORD SET Table.
The sets retrieved are ordered alphabetically.

4.2 If the Parser returns a set name, verify that
the set named exists in the CDM.

5. Process each set name obtained from the Set Name
Parser List or every set in the CDM as follows:

5.1 Start generating the "DEFINE SET...FROM" NDDL
command using the set's name and the set's
owner record name.

5.2 Select all the members and required/optional
indicators of the set named from the
SET TYPE MEMBER Table. Generate the "TO"
clauses using the member's record names and
required/optional indicator obtained from this
select.

5.3 If the DBMS of the database is TOTAL, retrieve
the data field name of the owner record for the
set and generate the "LINKED BY" clause.

5.4 Parse the Description Exception List.

5.4.1 If the word "DESCRIPTION" is not
retrieved, generate a "DESCRIBE" NDDL
command for the set if a textual
description exists.

5.4.2 If the word "DESCRIBE" is retrieved,
omit generating a "DESCRIBE" command.

3-101

DS 620341100
30 September 1990

3.2.8.35 COPY VIEW - Generate NDDL commands to make a copy of

views

A. Function:

COPY VIEW allows the NDDL user to copy specified views
or all views within the CDM. All data items are copied.
If the data item is an input or output parameter of a
Complex Mapping Algorithm, the algorithm will be copied
if the user chooses that option. Another user option is
to have all textual description for the view copied. At
the user's discretion, the generated NDDL commands are
either outputted to a screen or file.

B. CDM Requirements:

The view(s) to be copied must exist in the CDM.

C. Processing:

1. Global input parameters are checked to determine if
the generated NDDL commands will be appended to an
existing output file, written to a new file, or
outputted to a screen. Input parameters are set
with a previous "SET OUTPUT" command.

2. Check the parser list to see if descriptions have
been excepted. If they have, set a flag.

3. Check the parser list to see if algorithms have been
excepted. If they have, set a flag.

4. A view name or the word "ALL" is obtained from the
View Name Parser List.

4.1 If the Parser returns the word "ALL", process
every view retrieved from the USERVIEW table.

4.2 If the Parser returns a view name, verify that
the view named exists in the CDM.

5. Process each view name obtained from the View Name
Parser List or every view in the CDM as follows:

5.1 Select all the data item names for the view
from the CDM Table DATA ITEM ordered by DI NO,
and generate the data ifem names and associated
data type names.

5.2 Start generating the "CREATE VIEW" NDDL command
using the view name retrieved in Step 4.

5.3 Join the two CDM tables (VIEW EC XREF and
ENTITY NAME) to select the prTmary entity names
and enEity numbers for the view. Store the

3-102

DS 620341100
30 September 1990

entity name(s) and entity number(s) retrieved
during this select in an internal program table
(EC-NAME-TABLE). Assign unique two character
abbreviations for the entity names and store
them together in EC-NAME-TABLE.

5.4 Select the tag name(s) and entity number(s) by
joining two CDM tables (PROJECT DATA ITEM and
ATTRIBUTE USE CL) and ordering By DI-NO.
Search the EC-NAME-TABLE generated in Step 5.3
to get the abbreviation. Generate the "AS
SELECT" clause and the "DISTINCT" clause if
DISTNCT-IND = "Y", using the abbreviations and
tag names retrieved.

5.5 Generate the "FROM" clause of the "CREATE VIEW"
NDDL command using the unique entity name(s)
and abbreviation(s) stored in EC-NAME-TABLE.

5.6 Select all Qualification Criteria items for the
view from CDM table VIEWQUALIFYCRITERIA,
ordering by QC TEXTNO.

5.7 Generate the "WHERE" clause using the
cualification text items retrieved in Step 5.6
in text line number order. If no qualification
text items were selected, omit this clause.

5.7.1 If a text identification type "T" is
retrieved:

5.7.1.1 Select a tag name and
associated entity number for a
given tag number
from ATTRIBUTEUSECLASS.

5.7.1.2 Using the unique entity names
and abbreviations stored in
EC-NAME-TABLE during Step 5.3,
build a (ABBR.TAG-NAME)
combination as a Qualification
Criteria text line item.

5.7.2 If a text identification type "C" is
retrieved, list the Qualification
Criteria text line item with single
quotes.

5.7.3 If the text identification type is not
'"T" or "C", list the Qualification
Criteria text line items retrieved
during Step 5.6 in the same format as
they are stored in the CDM.

5.8 If algorithms have not been excepted:

3-103

DS 620341100
30 September 1990

5.8.1 Verify if a complex mapping alqorithm
exists using each of the data items of
the view.

5.8.2 If a complex mapping algorithm doesn't
exist, omit generating the "DEFINE
ALGORITHM" NDDL command.

5.8.3 If a complex mapping algorithm exists:

5.8.3.1 Retrieve the algorithm's
software module name, module
instance and use-code from the
DI-PARM Table.

5.8.3.2 Start generating the "DEFINE
ALGORITHM" NDDL command using
the information obtained in
Step 5.8.3.1.

5.8.3.3 Depending on the module
name, module instance and
algorithm use-code, select the
algorithm data items, constant
and/or attribute parameters.

5.8.3.4 Retrieve all the parameters of
the software module, in correct
sequence, using the module name
information obtained in Step
5.8.3.1.

5.8.3.5 Generate the "USING PARAMETER"
clause of the "DEFINE
ALGORITHM" NDDL command with
information obtained in Steps
5.8.3.3 and 5.8.3.4.

5.8.4 If the word "ALGORITHM" is retrieved,
omit generating the "DEFINE ALGORITHM"
NDDL command.

5.9 If descriptions were not excepted:

5.9.1 Generate a DESCRIBE NDDL command for any
descriptions which exist with the view.

3.2.8.36 CREATE ALIAS - Create an alias for an entity or
attribute.

A. Function:

Create Alias performs the following function:

3-104

DS 620341100
30 September 1990

1. Allows the user to add a secondary name, or alias,

for any attribute or entity of the current model.

B. CDM Requirements:

The entity or attribute named in the command must exist
in the user's current model.

C. Processing:

1. CREATE ALIAS shall access the object type from the
user command. It must be either ATTRIBUTE or
ENTITY. The command processor must then access the
user entered identifier for the entity attribute and
verify its presence with a database lookup. The
potential new alias name is also verified to make
sure it has not already been used. Finally, having
the entity attribute number from the first
verification, the new alias name can be inserted.

3.2.8.37 CREATE ATTRIBUTE - Create a conceptual attribute

A. Function:

Create Attribute performs the following functions:

1. Create an attribute for a model

2. Assign a domain for the attribute

3. Add keywords to an attribute

B. CDM Requirements:

A current model must be established.

C. Processing:

1. If a domain is specified, the Create Attribute
command verifies the existence of the domain to
which the attribute is being assiqned. If the
domain is not specified, the domain will default to
zero or undefined.

2. Next, a check is performed to verify that the
attribute does not previously exist in the model.
Then the attribute is inserted into the
ATTRIBUTE CLASS and ATTRIBUTE NAME tables. This
attribute-is created as the Primary attribute.

3. If keywords are to be added to the attribute verify
that the keyword has not previously been assigned to
the attribute. Keyword references are then created

3-105

DS 620341100
30 September 1990

for the attribute by inserting into the AC KEYWORD
table. Also, the keyword will be inserted-into the
KEYWORD table if it did not previously exist.

4. Processing halts if any of the verification checks
fail.

3.2.8.38 CREATE CATEGORY - Create a conceptual

category relation.

A. Function:

Create category performs the following functions:

1. Create a category relation for generic entity with
the specified sub-entities (category entities).

2. Create associated keywords for the relation.

3. Migrate the primary key from the generic entity to
the category entities.

4. Associate each category entity with a discriminator
value of the discriminator in the generic entity.

5. Validate discriminator values with the domain values
of the discriminating attribute.

B. CDM Requirements:

The generic and category entities must exist in the
current model. The generic entity must have a primary
key. The generic entity must have the attribute that is
the discriminator. The discriminator attributes must
have a domain with a specific set of values.

C. Processing:

1. The Create Category Relation process verifies that
the generic and category entities exist in the
current model. If these do not exist, an error is
issued and processing is terminated. A check is
made to determine if the relation to be created
already exists for the generic entity. If one
exists, an error is issued and processing is
terminated. An attribute use for the discriminator
in the generic entity is verified. If one does not
exist, an error is issued and processing is
terminated. The existence of a primary key in the
generic entity is verified. If one does not exist,
an error is issued and processing is terminated.
The discriminator values for each of the category
entities are verified to be unique. If they are not
unique, an error is issued and processing is
terminated.

3-106

DS 620341100
30 September 1990

2. An attribute use and an inherited attribute use for
each category entity is created for each key member
of the generic entity migrated to the category
entities. The definition is inserted into the
entities Relation Class, Category Relation,
Category Number, CompleteRelation, KeyClass, and
Key_Class_Number.

3. A domain value is associated with each category
entity's discriminator value.

4. If a keyword is to be added to the relation, the
keyword table is searched to determine whether the
keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The
keyword is then associated with the relation.

5. If the set phrase is specified, TAG NAMED (the
generic entity's tag name) is migrated with the new
name of TAGNAME1 to the associated category member
entity.

3.2.8.39 CREATE DESCRIPTION TYPE - Add new description type(s)

in the CDM.

A. Function:

1. Create Description Type allows the user to add new,
legal description types in the CDM.

B. CDM Requirements:

1. DESCTYPE must not be previously defined in the CDM.

C. Processing:

1. Convert DESCTYPE to upper case if entered in lower
case.

2. CDM is checked to see if the DESCTYPE name exists.

2.1 If the DESCTYPE name exists:

2.1.1 The user is notified; issue error
message.

2.1.2 Continue processing with next DESCTYPE
name.

2.2 If the DESCTYPE name does not exist:

2.2.1 Insert the new DESCTYPE name in the
CDM.

3-107

DS 620341100
30 September 1990

3.2.8.40 CREATE DOMAIN - Create a domain

A. Function:

Create Domain performs the following functions:

1. Adds a new domain to the system.

2. Associates a standard data type with the new domain.

3. Associates optional user-defined data types with the
new domain.

4. Associates valid values with the new domain
according to the standard data types definition.

5. Associates valid ranges with the new domain
according to the standard data types definition.

6. Generates a verification module of these new values
and/or ranges for the new domain.

B. CDM Requirements:

1. The domain must not previously exist in the system.

2. The standard data type for the new domain must be
specified in the first data type clause.

3. Additional data types may be specified in subsequent
data type clauses. These data-types are considered
user-defined data types for the new domain.

4. Values may be specified in value clause. Ranges may
be specified in range clause.

C. Processing:

1. Create Domain verifies that the domain to be added
does not exist in the system. Then the new domain
is inserted into the DOMAIN CLASS table using a
unique domain number from tie reusable pool.

2. The data type specified for the standard or
user-defined DATA TYPE NAME is verified as a legal
data type, and the numBer of decimals, if specified,
must not exceed the maximum field length of
DATA TYPE NAME. The DATA TYPE NAME is then inserted
into-USER -DEF DATA TYPE tables-as a user-defined
data type-for-the new domain.

3. Before the DATA TYPE NAME is inserted into the
USER DEFDATATYPE table for the standard data type,

3-108

DS 620341100
30 September 1990

any values and/or ranges specified are validated
against the standard data type definition.

4. The DATA TYPE NAME is then inserted into the
USER DEF DATA TYPE table as a standard data type for
the new Uomaiii.

5. A verification module is generated for the new
domain. The name of the verification module is
inserted into CDM tables SOFTWAREMODULE,
VERIF MODULE and MODULE PARAMETER. All valid values
are inserted into the DOMAIN VALUE table. All valid
ranges are inserted into the-DOMAINRANGE table.

3.2.8.41 CREATE ENTITY - Create a conceptual entity

A. Function:

CREATE ENTITY will allow the NDDL user to perform the
following functions:

1. Create a new entity for the current model

2. Associate attributes as owned attributes for this
entity

3. Define keys of the owned attributes only, (unowned
attributes must be migrated to the entity by use of
the CREATE or ALTER RELATION commands)

4. Associate keywords with the entity

B. CDM Requirements:

The entity being created must not previously be found in
the current model. Any attribute referenced must
already be defined for the current model and must not be
previously owned by any entity.

C. Processing:

1. First the entity itself is created. The name is
accessed from the command and database lookup
verifies that it is not already present. If not
found, the entity is assigned a unique number and
stored and the user entered name is stored as the
entity's primary or preferred name, not an alias.

2. Any user specified attributes are then processed.
Each attribute name must be found in the current
model and also verified not to be owned by any other
entity in the model. If these conditions are met,
the attribute can be associated with the entity by

3-109

DS 620341100
30 September 1990

storing an occurrence of OWNED ATTRIBUTE. Finally,
a unique tag number is obtained, and the attribute
is also stored as an ATTRIBUTEUSECLASS of this
entity.

3. When the user has specified any keys to be defined
for this entity, the user may omit the attribute
names for the key. Therefore, the key name may be
taken as the attribute name if none follows the =
sign. For each key specified the program must:

3.1 Verify the key name was not used for this
entity.

3.2 Obtain a unique number for the key.

3.3 Store a key occurrence for the entity first
created. The key type is identified as primary
or alternate. KEY TYPE is set to "PRIMARY" or
"A'LTERNATE", respectively. If primary or
alternate is not specified, the first key will
be the primary key and all following keys will
be alternate keys.

3.4 Pro-ess each att ibute name specified for the
current ve.

3.4.1 Determine if the attribute has already
been associated with the entity as an
ATTRIBUI2EUSECLASS.

3.4.2 If it had not, an attempt is made to
make the attribute owned by the entity
as specified in step 2 above.

3.4.3 Finally, an occurrence of
KEYCLASSMEMBER can be stored.

4. Finally, any keywords specified by the user can be
related to the entity first created. For each
keyword entered:

4.1 The keyword is verified in the table of
keywords (independent of model).

4.2 If the keyword is new, then a unique number for
the keyword is obtained and a keyword
occurrence is stored.

4.3 Finally, the keyword to entity cross reference
(EC KEYWORD) is stored, relating the keyword to
the entity just created.

3-110

DS 620341100
30 September 1990

3.2.8.42 CREATE MAP - Create CS-IS mapping

A. Function:

The CREATE MAP command allows the user to map an entity
to a record, an attribute use class (AUC) to a data
field or set for a single preference, or a relation to a
set.

B. CDM Requirements:

1. The mapping definition must not exist in the CDM for
an AUC to set map, a relation to set map, or an AUC
to data field map unless the entity is horizontally
partitioned.

2. All database names, record names, data field names,
entity names, module names, set names, relations and
AUC names referenced must exist in the CDM.

3. An entity to record mapping must exist before an
attribute of that entity can be mapped to a data
field of the record or a set using that record.

C. Processing:

1. Determine whether an entity, tag or relation mapping
is specified.

2. If mapping is AUC:

2.1 Verify the existence of the entity name and tag
name specified.

2.2 If MAP CATEGORY was not specified, default to
"ACTIVE".

2.3 If PREF NUMB was not specified, it is set to 1
by default for active mappings and 51 for
passive mappings.

2.4 Check the MAP CATEGORY and PREF NUMB
combination. -If PREF NUMB is between 1 and 50,
MAP CATEGORY must be WACTIVE". If PREF NUMB is
between 51 and 99, MAP CATEGORY must be-
"PASSIVE". If not, flag as an error and exit
the program.

2.5 If MAP CLASS not specified, default to
"ORIGINAL SOURCE" if PREF NUMB is equal to 1,
"REPLICATION" if PREF NUMB is between 2 and 50,
or "REDUNDANT" if PREFNUMB is between 51 and
99.

3-111

DS 620341100
30 September 1990

2.6 Check to see if this entity is involved in a
horizontal partition. If so, set a flag to
indicate this fact.

2.7 Determine whether the mapping is to a field or
to a set.

2.8 For an AUC-to-datafield mapping:

2.8.1 Check to see if a data field mapping
already exists in the CDM for preference
1.

2.8.1.1 If it does not exist and user
input preference number is not
equal to 1, issue an error
message.

2.8.1.2 If it does exist and the user
input preference number is also
1, the entity must be
horizontally partitioned,
otherwise an error message is
issued.

2.8.1.3 If it does exist and the user
input preference number is
greater than 1, check to see ±f
a data field mapping already
exists in the CDM for user
preference number. If a match
was found and the entity was
not horizontally partitioned,
issue an error message.

2.8.2 Retrieve database name, record name and
data field name from the parser list;
verify the data field name exists in the
CDM.

2.8.3 If horizontally partitioned, verify that
this data field mapping is valid.

2.8.4 Check if FIELD NAME can be mapped to.
If the data field is both a group field
and repeats, the field cannot be mapped
to.

2.8.5 Verify that an entity to record mapping
exists for the entity of the attribute
and the record of the data field being
mapped.

3-112

DS 620341100
30 September 1990

2.8.6 Check if data types of the from and to
data fields are compatible. If not,
issue an error message.

2.8.7 Verify that the tag has not already been
mapped to this record. If it has not,
insert the AUC IS MAPPING entity
occurrence and-PROJECT DATA-FIELD entity
occurrence in the CDM.-

2.9 For an AUC-to-set mapping:

2.9.1 Check to see if a data field mapping
already exists in the CDM for preference
1.

2.9.1.1 If it does not exist and user
input preference number is not
equal to 1, issue an error
message.

2.9.1.2 if it does exist and the user
input preference number is also
1, the entity must be
horizontally partitioned,
otherwise an error message is
issued.

2.9.1.3 if it does exist and the user
input preference number is
greater than 1, check to see if
a data field mapping already
exists in the cdm for user
preference number. if a match
was found and the entity was
not horizontally partitioned,
issue an error message.

2.9.2 Retrieve and verify database name, set
name and value string.

2.9.3 Determine whether the set is a single
member set. If not, flag a user error.

2.9.4 Determine whether a relation class
mapping exists. If it exists, flag a
user error.

2.9.5 Verify that the owner record and the
entity to record mapping exists in the
CDM.

2.9.6 Verify the AUC values specified are
unique for each set having the same
owner record.

3-113

DS 620341100
30 September 1990

2.9.7 Determine whether all sets specified
have the same owner record. If
different owner records are found for
the specified sets, check if the entity
is horizontally partitioned.

2.9.7.1 If the entity is not
horizontally partitioned, issue
an error message.

2.9.7.2 If the entity is horizontally
partitioned, verify the owner
records of the sets specified
are record fragments of the
partitioned entity.

2.9.8 Verify at least two sets are specified
having the same owner record.

2.9.9 Insert the AUCISMAPPING entity
occurrence and the AUCSTMAPPING entity
occurrence in the CDM.

3. If mapping is Relation:

3.1 Verify that the relation exists. If it does
not, issue an error message. Check is made to
either category or link relation, based on
whether or not a dependent entity name is
specified.

3.2 Check to see if entity is involved in a
horizontal partition. If so, set a flag to
indicate this fact.

3.3 Retrieve database name and verify that it
exists in the CDM. Retrieve the set name and
record name as well.

3.4 Determine whether any previous mapping to the
set exists. If it does, flag a user error.

3.5 Determine whether set mapping contains member
records of more than one type. If it is not a
single member record type set, the member
record name is required.

3.6 Insert the RCBASEDRECSET entity occurrence
in the CDM.

4. If mapping is for an Entity:

4.1 Verify that the entity already exists in the
CDM. If it does not, issue an error message.

4.2 Retrieve the distributed rules (update and
retrieval) from the parser. If they were not
specified, default to the value "DISALLOW".

3-114

DS 620341100
30 September 1990

4.3 Verify that the distributed rules don't already
exist for the entity. If they do exist, issue
an error message; otherwise insert the
DISTRIBUTEDRULES entity occurrence in the CDM.

4.4 Check to see if entity is involved in a
horizontal partition. If so, set a flag to
indicate this fact.

4.5 Retrieve database name and record name from the
parser. Verify that they exist in the CDM. If
they do not, issue an error message.

4.6 Insert the ECRTMAPPING entity occurrence in
the CDM.

3.2.8.43 CREATE MODEL - Create a new IDEFl model.

A. Function:

A new model is created as unchecked in the system.

B. CDM Requirements:

The model to be created must exist in the CDM.

C. Processing:

1. First, verify whether the model to be created exists
in the system. If it does, flag an error;
otherwise, obtain a model number for the model name.

2. Store the model number, model name into the CDM.

3.2.8.42 CREATE PARTITION - Represents an entity as being
horizontally partitioned against two
or more record types.

A. Function:

CREATE PARTITION allows the NDDL User to create a
horizontal partition between record types for an entity.

B. CDM Requirements:

The entity to be partitioned must already exist in the
database. The records named in the partition must
currently exist in the database.

C. Processing:

1. If INTEGER1 is omitted on the CREATE PARTITION
command, a "1" is assumed for HPNO.

3-115

DS 620341100
30 September 1990

2. The entity name (ECNAME) is used to verify that the
entity exists on the ENTITY NAME table and the
entity number is retrieved TEC_NO).

3. The EC NO is used along with the HP NO to assure
that this partition number doesn't currently exist
for the entity class.

4. For each database name (DB NAME) Record Name (RTID)
combination, the following-is done:

4.1 At least two partitions must be specified for
an entity (LIST-COUNT must be > "2" for
DBLST).

4.2 Verify that the database name and record name
combination currently exist. Retrieve the
record type number (RTNO) from this select.

4.3 The EC NO and RT NO must be unique on the
horizontal partition table. This will assure
that the same record type won't exist under
another partition number of the same entity
class.

4.4 If unique, insert ECNO, RTNO and HPNO into
HORIZONTALPART.

3.2.8.45 CREATE RELATION - Create a link relation

A. Function:

Create Relation performs the following functions:

1. Creates a link relation for user entered independent
and dependent entity

2. Creates associated keywords for the relation

3. Migrates a key from the independent entity to the
dependent entity

B. CD! Requirements:

The independent and dependent entity must exist in the
current model. If the migrates clause is present, the
key for the independent entity must exist in the current
model.

C. Processing:

1. The Create Relation process verifies that both the
independent and dependent entity exist in the

3-116

DS 620341100
30 September 1990

current model. If both do not exist, an error is
issued and processing is terminated. A check is
made to determine if the relation to be created
already exists between the user entered entities.
If one does exist, as above, an error is issued and
processing is terminated.

2. Next, the process validates the cardinality of the
relation to be created. If a cardinality is omitted
by the user, the relation is assigned a default
value. The default for the independent cardinality
is a value of one. The default for the dependent
cardinality is a value of zero for the left
dependent cardinality and a value of 99 for the
right dependent cardinality.

3. If the migrates clause is entered, the existence of
the key for the independent entity is determined.
If the key does not exist, an error is issued and
processing is terminated. An attribute use and an
inherited attribute use for the dependent entity is
created for each key member of the independent
entity migrated to the dependent entity. If the set
phrase is specified, TAGNAME2 (the independent
entity's tag name) is migrated with the new name of
TAGNAME1.

4. If a keyword is to be added to the relation class,
the keyword table is searched to determine whether
the keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The new
keyword is then associated with the relation class.

3.2.8.46 CREATE UNION - Create a union of conceptual entities to
represent a record type in the CDM.

A. Function:

CREATE UNION allows the NDDL User to create a union of
record types for an entity.

B. CDM Requirements:

The entities' names must currently exist in the
Integrated Model. Data fields stated must be associated
to the database and record type named. The union must
not currently exist in the CDM.

C. Processing:

1. Verify that the database name and record name
currently exist. Retrieve the record type number
(RTNO) for this selection.

3-117

DS 620341100
30 September 1990

2. The following is done for entities entered:

2.1 At least two entities must be named to create a
union.

2.2 The Entity Name must currently exist on the
ENTITY NAME Table and the entity number is
retrieved (ECNO).

2.3 Find the number of data fields, operators and
strings that are associated with the entity.
(CPFVAL)

3. For each data field, verify that it is defined for
the database and record type named and retrieve the
data field number (DFNO).

4. Verify that the union created doesn't currently
exist on the ECRTUD table.

5. Verify that the union discriminator value is
compatible with the data type of the data field.

6. Insert the record union into the CDM.

7. Check for an integrity test failure, which indicates
that no entity to record mapping exists for the
record union.

3.2.8.47 CREATE VIEW - Create an external schema view and

mappings to the conceptual schema.

A. Function:

Create a view of the entity and relation existing in the
conceptual schema of the Common Data Model.

B. CDM Requirements:

The following elements must exist in the CDM:

1. Independent entities specified.

2. Dependent entities specified.

3. Entities of the view.

4. Data items defined and attribute use of the entities
must be from the same domain.

3-118

DS 620341100
30 September 1990

C. Processing:

1. Verify if the view to be created already exists. If
it does, flag a user error.

2. Obtain a unique number for the view to be created.

3. Retrieve the distinct clause from the parser and set
the DISTINCT-IND flag.

4. Insert the view name and view number into the CDM
table USERVIEW.

5. Construct in-code table to store parser information
from the FROM CLAUSE, the SELECT CLAUSL, and the
WHERE CLAUSE as follows:

5.1 Retrieve an entity from the parser, verify it
exists in the CDM, and store the information in
the VIEWFROMLIST.

5.2 Retrieve the abbreviation from the parser list.
If no abbreviation exists, verify there is only
one entity. If more than one entity exists,
issue a user error. If an abbreviation is
found, store the abbreviation in the
VIEW FROM LIST and repeat Steps 5.1 and 5.2 for
each entity. Unique abbreviations are verified
for each subsequent entity.

5.3 Retrieve a data item from the parser. Retrieve
the data type, if specified, and store in the
DATA ITEMLIST. Repeat this step for each data
item7.

5.4 Retrieve a tag. If the first tag name is an
asterisk:

5.4.1 Verify that no data items were
specified. If specified, issue an error
message and exit processing.

5.4.2 Verify only one entity was specified.
If not, issue an error message and exit
processing.

5.4.3 Store asterisk and entity name in
VIEWRETRIEVELIST.

5.5 If the first tag name was not an asterisk:

3-119

DS 620341100
30 September 1990

5.5.1 Retrieve the abbreviation.

5.5.2 If no abbreviation is found, verify
there is only one entity. If not, issue
an error message and exit processing.

5.5.3 Store tag name and abbreviation in
VIEWRETRIEVELIST and
VIEWQUALIFYCRITERIA.

5.5.4 Repeat Steps 5.4 and 5.5 for each tag
name. In addition, for each subsequent
tag:

5.5.4.1 Verify that the tag exists and
retrieve the tag number.

5.5.4.2 Verify that the tag exists in
entity specified.

5.6 Retrieve the first operator from the WHERE
cl?-se. If there is no operator (i.e. no WHERE'use) verify that only one entity exists. Ifrot, issue an error message and exit
processing. If one entity exists, go to Step
6.

5.7 If an operator was found in Step 5.6, retrieve
the first operand and build the Boolean Listand CSEQUALCRITERI*_LIST as follows:

5.7.1 Place any logic operator (AND, OR, XOR)
in the Boolean List and set the
BOOLEAN CSQ pointer to point to the next
CS_QUAL_CRITERIALIST entry.

5.7.2 Place "(",")" or "NOT" in the Boolean
List and set the BOOLEAN CSQ pointer to
the CS_QUALCRITERIALIST entry.

5.7.3 If operator = "BETW", expand the entry
to store tag 1 > = operand 1 and tag <
operand 2.

5.7.4 If operator = "NBTW" (Not Between),
expand the entry to store tag < operand
1 or tag > operand 2.

5.7.5 If operator = "NN" (Not Null) or "NL"
(Null) place the operator in the Boolean
List and set the BOOLEANCSQ pointer to

3-120

DS 620341100
30 September 1990

point to the CS QUAL CRITERIA LIST entry
where the tag ii then stored.-

5.7.6 If operator is a comparison operator (=,
1=, U=, >, <, >=, <=) place the operator
in the Boolean List and set the
BOOLEANCSQ pointer to point to the
CS_QUAL_CRITERIA LIST entry where both +
operands will be-stored. Examine the
type of operand 2; if a tag, store
tag-no. If numeric constant, store as
number. If character constant, store as
character constant. If
operator="LK"(LIKE) place the operator
in the Boolean list and set the
BOOLEAN CSQ pointer to point to the
CSQUAL CRITERIA LIST entry where both
operand" will be-stored. Insure that
operand 2 is a character constant and
store it as such

Upon completion of any one of the six
options, retrieve the next operator and
operand if necessary.

5.8 Take the Boolean List and CS QUAL CRITERIA LIST
and expand them by first eliminating XORs by
changing "operand 1 XOR operand 2" to "operand
1 or operand 2 and not (operand 1 and operand
2)." Then eliminate NOTs by changing
comparison operators to their opposites.

6. Insert into VIEWECXREF every entity for the view
number.

7. If specified, verify that the number of data items
equals the number of tags selected.

8. If the view is a one entity view and all the tags
were selected ("*"):

8.1 Retrieve each DOMAIN NO, TAG NO, and TAG NAME
combination from the-CDM. For each set
selected:

8.1.1 Retrieve the standard data type name.

8.1.2 Retrieve a unique data item number.

8.1.3 Insert an instance into the CDM table
DATAITEM.

8.1.4 Insert an instance into the CDM table

3-121

DS 620341100
30 September 1990

PROJECTDATAITEM.

9. If the view is a one entity view and specific tags
were selected:

9.1 Retrieve the domain number and tag number for
the tag name.

9.2 Retrieve the standard data type name.

9.3 Retrieve a unique data item number.

9.4 Insert an instance into the CDM table
DATAITEM.

9.5 Insert an instance into the CDM table
PROJECTDATAITEM.

9.6 Repeat Steps 9.1 through 9.5 for each tag.

10. If the view is a multiple entity view:

10.1 Validate that the minimum number of joins (1
less than number of entities) were specified.
If not, issue an error message and exit
processing.

10.2 Validate for each join condition:

10.2.1 The join is based on two related
entities, either through a link or
category relation.

10.2.2 The join is on at least one key class
from the independent entity.

10.3 Verify that the structure is a confluent
hierarchy.

10.4 Verify that the number of items selected are
equal to the number of items in the data item
list.

10.5 For each data item:

10.5.1 Retrieve the corresponding tag's
ECNUMBER.

10.5.2 Retrieve the domain number for the
tag.

10.5.3 Retrieve a unique data item number.

3-122

DS 620341100
30 September 1990

10.5.4 If the user specified data types:

10.5.4.1 Verify that the FLAG NAME
and DATA ITEM names Have
same domains.

10.5.4.2 Retrieve the standard data
type name.

10.5.4.3 Validate that the ES-CS and
CS-ES conversion is
possible.

10.5.4.4 Insert an instance into the
CDM table DATAITEM.

10.5.4.5 Insert an instance into the
CDM table PROJECTDATAITEM.

10.5.5 If the user did not specify data
types:

10.5.5.1 Retrieve the standard data
type name.

10.5.5.2 Insert an instance into the
CDM table DATAITEM.

10.5.5.3 Insert an instance into the
CDM table PROJECTDATAITEM.

11. If there was a WHERE clause, retrieve the
information from the Boolean List and
CS QUALCRITERIA LIST and insert it into the
VIEW_QUALIFYCRITERIA table of the CDM. (An extra
set of parenthesis is inserted around the join
conditions.) Every combination of view number, tag
number and entity number is inserted into
VIEWQUALXREF.

3.2.8.48 DEFINE ALGORITHM - Define the use of a software module

as a complex mapping algorithm.

A. Function:

Define Algorithm performs the following functions:

1. Verifies that the software module exists in the CDM.

3-123

DS 620341100
30 September 1990

2. Verifies that the algorithm being defined uses the
same number of parameters and in the same order, as
previously defined for the module in the 'Define
Module' command.

3. The algorithm specifies the conversion direction,
i.e. from ES to CS to IS (update) or IS to CS to ES
(retrieval). This command verifies whether the
parameter coincides with legal NDML retrieval and
update requests.

4. Verify that the input and output parameters
specified for the algorithm have the same data type
names as those specified for the module.

5. Input and output parameters may specify data items,
data fields, attributes or a record. A constant
value may be specified as an input parameter, and
module status must be defined as the last output
parameter. Validate these input and output
parameters.

6. For a CS-IS algorithm, a mapping is inserted in
AUCISMAPPING for each tag in the algorithm.

7. A CS-IS or CS-ES algorithm is inserted into
COMPLEXMAPPINGPARM.

B. CDM Requirements:

1. The module must exist in the CDM.

2. The mapping types being specified for the algorithm,
namely data items, attributes, data field and/or
record, must exist in the CDM.

C. Processing:

1. A temporary structure is used to store the input and
output parameters specified for the algorithm.
Check that parameters coincide exactly with the list
of parameters defined for the software module.

2. Extract from the parser lists the module name and
the module instance. The module instance defaults
to 1 if not specified. Verify that the software
module being used as a complex mapping algorithm has
been previously defined.

2.1 If the module has not been defined, issue an
error message and exit command processing.

3-124

DS 620341100
30 September 1990

2.2 Retrieve the module's parameters into the
temporary table, in sequence.

3. Extract from the parser list the preference number.
Preference number if not specified, defaults to 1.

3.1 Extract from the parser's lists and populate
the temporary table with inputs and outputs for
the algorithm. External schema to conceptual
schema or vice versa mappings involve data
items and attributes. For these cases, verify
that the data items and attributes have been
previously defined. If mappings are between
conceptual and internal, they involve
attributes and data fields/records. For these
cases, verify that the attributes and data
fields or records have been previously defined.
If any of the mapping types specified do not
exist in the CDM, issue an error message and
exit command processing.

4. The following checks are performed to ensure the
legality of the algorithm.

4.1 Verify that the number of parameters defined
for the module agree with the number of
parameters specified for the algorithm.

4.2 If the algorithm is specified for use on an
NDML retrieval:

4.2.1 The input parameter may be a single
attribute followed by any number of
constants and a single output data item
or

4.2.2 The input parameter may be a single
record type or any number of data fields
(from the same record type) followed by
any number of constants and any number
of output attributes.

4.3 If the algorithm is specified for use on NDML
updates:

4.3.1 The input parameter may be a single data
item followed by any number of constants
and a single output attribute or

4.3.2 The input parameter may be any number of
attributes (from the same entity class)
followed by any number of constants,
followed by any number of data fields

3-125

DS 620341100
30 September 1990

(from the same record type) or a single
record.

4.4 The last parameter must be the module status,
which conforms to the IISS error handling
Ihilosophy. If the algorithm conformed with
egal mapping types and retrieval and update
rules, the algorithm is inserted into the CDM.
Check that the data types between the software
modules parameters and the algorithm parameters
are compatible.

4.5 If the mapping is between conceptual schema and
internal schema, for each tag specified in the
algorithm:

4.5.1 Check whether a mapping exists in
AUC IS MAPPING for the stated
preference, through a complex mapping,
to the target record.

4.5.2 If a mapping does not exist, insert
AUC IS MAPPING. Check for an integrity
test failure. If one occurs, issue an
error message that no entity to record
mapping exists for the entity of the tag
specified and the target record.

4.6 If no errors occurred, insert the algorithm
into the appropriate CDM tables: AUCPARM,
DFPARM, DI_PARM, RIPARM, CONSTPARM.

3.2.8.49 DEFINE DATABASE - Describe the definition of a

database to the CDM internal schema.

A. Function:

The command defines a database to the CDM.

B. CDM Requirements:

1. The database to be defined must not exist in the
CDM.

2. The host and DBMS must be previously defined.

3. In addition, the host must exist for the DBMS for
which the database is to be defined.

C. Processing:

1. Verify the existence of the DBMS. If it does not
exist, flag a user error.

2. Verify the existence of the database to be defined.
If it exists, flag a user error.

3-126

DS 620341100
30 September 1990

3. Obtain from the parser lists a character and integer
null value and NTM directory string. If not
present, character and integer null value default to
"NULL" for a relational DBMS and zeros for a
non-relational DBMS. NTM directory defaults to
"GR".

4. Verify the existence of the host. If it does not
exist, flag a user error and exit.

5. Obtain a unique number for the database.

6. Insert the database entity occurrence.

7. If the DBMS is ORACLE:

7.1 Check if the password is provided in the
command. If not, flag a user error.

7.2 Otherwise, insert the password entity
occurrence of the database.

8. If the DBMS is IMS:

8.1 Check if the start position and feedback length
are provided in the command.

8.2 If they are not in the command, flag a user
error.

8.3 Verify the existence of the PSB of the IMS
database. If it does not already exist, flag a
user error. Otherwise, insert the PCB entity
occurrence.

9. If the DBMS is CODASYL (IDMS, IDS-II, or VAX-li):

9.1 Check if the schema and database location
clauses are present in the command. If they
are not, flag a user error.

9.2 Insert the schema and database location
occurrence of the CODASYL database.

9.3 Verify the existence of the area of the CODASYL
database. If it already exists, flag a user
error. Otherwise, insert the area occurrence.

3.2.8.50 DEFINE DBMS - Add a Database Management System (DBMS)

definition to the CDM.

A. Function:

DEFINE DBMS performs the following function:

3-127

DS 620341100
30 September 1990

1. DEFINE DBMS allows the user to add a DBMS definition
to the CDM and associated host
identifications.

B. CDM Requirements:

1. The DBMS must not be previously defined.

2. DBMS model type must be one of the following:

H - Hierarchic
R - Relational
N - Network

C. Processing:

1. The CDM is checked to see if the DBMS has been
previously defined.

2. If the DBMS has previously been defined, issue an
error message and exit command processing

3. If the DBMS has not been previously defined:

3.1 For each host:

3.1.1 Check if host has been previously
defined.

3.1.2 If host has not been defined:

3.1.2.1 Issue an error message and exit
command processing

3.1.2.2 Exit command processing

3.1.3 Add Host/DBMS association

3.2 Add the DBMS definition to the CDM.

3.2.8.51 DEFINE HOST - Add a host definition to the CDM.

A. Function:

DEFINE HOST performs the following function:

1. DEFINE HOST allows the user to add a new host to the
CDM.

B. CDM Requirements:

1. The host must not be previously defined.

3-128

DS 620341100
30 September 1990

C. Processing:

1. The CDM is checked to see if the host is already
defined.

2. If the host has been previously defined, issue an
error message and exit command processing.

3. If the host has not been previously defined:

3.1 The host definition is added to the CDM.

3.2 If the Database Management System (DBMS)
definition is to be associated with host:

3.3.1 The CDM is checked to see if the DBMS is
defined.

3.3.2 If the DBMS definition exists, the
DBMS/HOST association is added to the
CDM.

3.3.3 If the DBMS definition does not exist,
issue an error message and exit command
processing.

3.2.8.52 DEFINE MODULE - Define software modules in the CDM.

A. Function:

DEFINE MODULE allows the NDDL User to define software
modules used for complex mapping algorithms.

B. CDM Requirements:

The module named must not currently exist in the CDM.
The data type names of the parameters of the module must
currently exist in the CDM.

C. Processing:

1. Verify that the module named (MOD ID) doesn't
already exist in the SOFTWAREMODULE Table.

2. Retrieve the language (LANG NAME) as is from the
Lang-List. No editing is done on this value.

3. The value for the module title and abstract is "USER
DEFINED SOFTWARE MODULE".

4. The status indicator is a "C" indicating a module
used for a complex mapping algorithm.

3-129

m m mmm | | w

DS 620341100
30 September 1990

5. Insert into the SOFTWAREMODULE Table with this
information.

6. Retrieve the parameter name (PARM ID) from the
Parm-Lst. If no parameters are named, exit the
program since parameters can be omitted.

7. Verify that the data type name (DATA TYPE NAME)
retrieved from Data-List currently exists-on the
USERDEFDATATYPE Table.

8. Insert each parameter in the order that they were
entered into the MODULE_PARAMETER Table.

3.2.8.53 DEFINE PSB - Add an IMS Program Specification Block

(PSB) name to the CDM.

A. Function:

1. DEFINE PSB allows user to add a PSB name and
associated host identification to the CDM.

B. CDM Requirements:

1. PSB name must not be previously defined in the CDM.

2. Host identification being added must be previously
defined in the CDM.

C. Processing:

1. The CDM is checked to see if the PSB name has been
previously defined.

2. If the PSB name has been previously defined, issue
an error message and exit command processing.

3. If the PSB name has not been previously defined:

3.1 For the host ID:

3.1.1 Check if host has been previously
defined.

3.1.2 If host has not been defined, issue an
error message and exit command
processing.

3.1.3 If host has been defined, add host/PSB
name association to the CDM.

3-130

DS 620341100
30 September 1990

3.2.8.54 DEFINE RECORD - Creates a record type/table/segment for

a previously defined database/PCB

A. Function:

DEFINE RECORD performs the following functions:

1. Verifies that the database exists.

2. Inserts the record into the CDM, provided it has not
been previously defined.

3. If the DBMS is CODASYL, it associates the records
with previously defined database areas.

4. Allows the fields in a record to be defined as
repeating, group, elementary, indexed, component,
redefined or key.

5. Indicates whether the field is known or unknown to
the DBMS, i.e. can the DBMS address the field by
name.

B. CDM Requirements:

1. The database must be previously defined.

2. CODASYL database areas must be defined.

3. The record and its fields must not be previously
defined.

4. The occurs-depending-on field and field being
redefined must be defined in the record prior to the
depending field and the redefining field.

C. Processing:

1. The CDM is checked to see if the database exists.
If it has not been defined, issue an error message
and exit command processing.

2. If the database exists and the record does not
previously exist, insert the record type in the CDM.

2.1 For each CODASYL area specified, after
verifying that the area exists, insert the
record association into the database area
assignment.

3-131

DS 620341100
30 September 1990

2.2 For a TOTAL database, the record name is
truncated to four positions and inserted into
the database area and the database area
assignment.

2.3 For each field/column/element/item specified,
store this information in a temporary structure
and perform the following checks:

2.3.1 Each subcomponent field must specify a
level number to ensure subcomponent
structures are accurately implemented.

2.3.2 If the field name is "Filler", it must
have a corresponding numeric
filler-size. It must also be unknown to
the DBMS.

2.3.3 The data type name for an indexed field
and depending on field must be numeric
(i.e., the data type must not be of
character type or contain decimal
specification).

2.3.4 The data-type-name entered by the user
must have been previously defined in
USERDEFDATATYPE.

2.3.5 If it is a repeating data field, the
number of times it occurs must be
greater than one. The indexed-by field,
if not previously defined, is created
internally and defined with a default
numeric data type name and an index
indicator of "G".

2.3.6 If there is a depending on clause, the
depending on field must be previously
defined. The indexed-by field, if
defined in the record, must appear
before the field it is indexing.

2.3.7 If the field is redefined, the redefines
field name must be previously defined.

2.3.8 The indexed-by field cannot be a key,
group, component or a redefine.

2.3.9 The depending on field cannot be a
group, repeating, or an index itself.

2.3.10 A repeating field or repeating group
cannot be key.

2.3.11 If a component data field is key, one of

3-132

DS 620341100
30 September 1990

its subcomponents cannot also be a
unique key. It may be a duplicate key.

2.3.12 An ORACLE DBMS does not support
repeating fields, indexes,
redefinitions, keys or fillers.

2.3.13 For an ORACLE DBMS, all fields must be
01 level and known to the DBMS.

2.3.14 Redefinitions of a TOTAL database must
be specified as a single field.

2.4 If the record layout conforms with the checks
performed, the data fields are inserted into
the CDM.

3.2.8.55 DEFINE SET - Define an internal set/path for CODASYL,

TOTAL and IMS DBMSs

A. Function:

DEFINE SET performs the following functions:

1. Create a set/path for a CODASYL (VAX-11, IDMS, IDS),
IMS or TOTAL DBMS

2. Allow a set between owner and multiple members for
CODASYL, but only single member for other DBMS

B. CDM Requirements:

The database must be established during the session. The
owner and member record types must exist. If creating a
set for a TOTAL DBMS, the data field from the variable
record must exist.

C. Processing:

1. DEFINE SET verifies the existence of the
database/PCB in which the set is to be created. If
the database is not specified, it defaults to the
database established during the current session.

2. Next, a check is performed to verify that the set to
be created does not exist. For an IMS database, the
path name is derived by combining the owner record
and member record names.

3. For a TOTAL or IMS database, verify that the owner
and member records have previously been defined. In
addition, verify that the data field of the variable
(member) record to which the set is to be linked,

3-133

DS 620341100
30 September 1990

has also been defined. The set information is then
inserted into the DF SETLINKAGE, SETTYPEMEMBER
and RECORDSET tables. -

4. For a CODASYL DBMS multiple members are allowed.
Verify that the owner record and member record(s)
have been previously defined. A required/optional
entry must be specified for the member record types.
The set information is then inserted into the
SETTYPEMEMBER and RECORDSET tables.

5. Processing halts if any of the verification checks
fail.

3.2.8.56 DESCRIBE - Describe Objects

A. Function:

The DESCRIBE command allows description text of the
following object types to be entered, modified or
deleted. The object types are:

1. Database

2. Set

3. Record

4. Data field

5. Domain

6. User data type

7. View

8. Data item

9. Keyword

10. Entity

11. Attribute

12. Relation, Link or Category

B. CDM Requirements:

The object to be described must exist in the CDM.

C. Processing:

1. The user entered description type is validated
against the description type table maintained by the
CDM administrator.

3-134

DS 620341100
30 September 1990

2. The object's existence is validated.

3. The description text originates from three sources:
a text file, from the command line or from the
UI/UTI Screen Editor. If the text originated from a
text file and if the file contains data, only
pre-existing description text of the proper type is
deleted prior to the insertion of the new text. If
the file contains no data, the description text is
not deleted and an error message is generated. If
the text originates from the command line, the old
description text, if any, is deleted prior to the
insertion of new text, if any. Therefore, to delete
old description text, the user must describe the
object with a null description on the command line.

4. If the description text is to come from the UI/UTI
Screen Editor, pre-existing description text if any,
is extracted from the database and written to a
file.

5. The UI/VTI Screen Editor is called to edit the file.
If changes are made, the old description text is
replaced by the text output from the editor. If no
editing changes were made, the database is not
modified.

6. If object type is relation, the following must be
specified: Category Relations- ECNAME1 and
RC_NAME, Link Relations- ECNAME!, RCNAME, and
ECNAME2

3.2.8-57 DROP ALGORITHM - Delete all references to a software
module defined as a complex mapping
algorithm.

A. Function:

Drop Algorithm performs the following functions:

1. Verifies that the software module is currently
defined for use as a complex mapping algorithm

2. Disassociates the software module as a complex
mapping algorithm from the CDM

3. Note that the software module is not dropped. A

"Drop Module" will delete the software module.

B. CDM Requirements:

The software module being used as a complex mapping
algorithm must be defined in the CDM.

3-135

DS 620341100
30 September 1990

C. Processing:

1. Extract from the parser lists the module to be
dropped, the module instance, whether the module was
specified for use on NDML retrieval or update
requests, and the preference number. Module
instance, if not specified, defaults to 1.
Preference number, if not specified, defaults to 1.

2. The CDM is checked to see if the software module is
used as a complex mapping algorithm. If it has not
been defined, issue an error message and exit
command processing.

3. Using a view of COMPLEXMAPPING PARM and
AUC IS MAPPING, retrieve all the tags that are
defTnei for that algorithm and have been mapped for
the specified preference through a complex mapping
algorithm. These tags are saved in a table
(TAGTBL).

4. Drop the association of the software module as a
complex mapping algorithm from the CDM Table
COMPLEXMAPPINGPARM.

5. Check whether the algorithm transformed between
conceptual and internal. If it is a CS-IS
algorithm, the re-mapping has to be deleted.

5.1 Delete from AUC ISMAPPING for the case where
the tag is mappied through a complex mapping
algorithm but the tag is no longer referenced
in any algorithm in COMPLEXMAPPINGPARM.

5.2 Check if the EC NO and RT NO in the deleted
mapping is used-in any other AUC IS MAPPING.
If not, delete the entity to record-mapping
(EC RT MAPPING) and check if the entity of the
delited mapping is used in any other entity to
record mapping. If not, delete the
DISTRIBUTEDRULES for the entity.

5.3 For each tag saved in Step 3, delete from
AUC IS MAPPING for the case where a tag is
mapped through a complex mapping algorithm but
the tag is used in conjunction with a data item
(a CS-ES Algorithm) in COMPLEX MAPPING PARM. In
this case, the CS-IS mapping in AUCIS-MAPPING
is no longer necessary.

5.3.1 Delete from AUC IS MAPPING for the case
where a tag is mapped through a complex
mapping algorithm but the tag is used in
conjunction with a data item (a CS-ES

3-136

DS 620341100
30 September 1990

Algorithm) in COMPLEXMAPPING PARM. In
this case, the CS-IS mapping In
AUCISMAPPING is no longer -cessary.

3.2.8.58 DROP ALIAS - Deletes an alias established for an
attribute or entity name.

A. Function:

DROP ALIAS performs the following tunctions:

1. Verifies whether the alias is for an attribute or
entity

2. Verifies that the alias exists for the attribute or
entity for a specified model

3. Deletes the Alias for the attribute or entity

B. CDM Requirements:

DROP ALIAS requires the presence of an alias for the
attribute or entity.

C. Processing:

1. The DROP ALIAS process will determine whether the
alias is of an attribute or entity and verifies if
the attribute or entity exists for the specified
model.

2. The process will then verify the alias name and
delete the alias for the attribute/entity from the
CDM Entity or Attribute name table.

3.2.8.59 DROP ATTRIBUTE - Drop a Conceptual Attribute

A. Function:

DROP ATTRIBUTE deletes one or more user specified
attributes from the CDM.

B. CDM Requirements:

The attribute(s) to be dropped must exist in the current
model.

C. Processing:

1. DRPATT, after verifying that the attribute exists,
determines whether the attribute to be dropped is
owned. If so, the attribute is deleted from the
OWNEDATTRIBUTE and ATTRIBUTEUSECL tables.

3-137

DS 620341100
30 September 1990

2. If the attribute to be dropped has been inherited,
all instances of inheritance are deleted. The
tables effected are INHERITEDATTUSE,
ATTRIBUTE USECL, BY CLASS MEMBER and DESC TEXT.
The ORACLE tree search feature is used to identify
inheritance at all lower levels.

3. After all owned or inherited instances of the
attribute are deleted, the attribute is deleted from
ATTRIBUTECLASS, ATTRIBUTE-NAME, ACKEYWORD
DESCTEXT, AUCCONSTRAINT and CONSTRAINTINPUT.

4. If the attribute deleted was a key member, and if
it was the only member of a particular key the
corresponding entries in the KEY-CLASS,
COMPLETE RELATION and KEYCLASSMEMBER tables are
deleted.

5. If mappings exist anywhere, an error is issued,
processing is terminated, and no deletions are
performed.

6. If attribute is a discriminator in a category
relation, the category relation is dropped with
complete ripple down.

3.2.8.60 DROP CATEGORY - Deletes the category relation and all
references to the relation from the CDM
database.

A. Function:

The DROP CATEGORY RELATION process performs the
functions for one or more category relations:

1. Verifies the category relation exists.

2. Verifies the generic and category entities
exist.

3. Deletes the category relation from the CDM.

4. Deletes the relation from the CDM.

5. Deletes the complete relation.

6. Deletes all keys that have migrated from the he
relation.

7. Deletes all keywords associated with the
relation.

8. Deletes all textual descriptions associated
with the relation.

3-138

DS 620341100
30 September 1990

B. CDM Requirements:

The DROP CATEGORY RELATION process requires the
presence of the relation, generic entity, and
category entities within the current model.

C. Processing:

1. The DROP CATEGORIZAtION process verifies that
the generic entity and the categorization
relation exists in the CDM. If these do not
exist, an error is issued and processing
terminates.

2. The process returns the key that allows the
process to determine of the associated items.

3. Using the key, the process deletes all
migrating key members based on the relation.
In turn, each key member is deleted from
KEY CLASS MEMBER, ATTRIBUTE USE CL, and
INHERITED ATTRIBUTE USE based on its
association to the relation.

4. After all the key members have been deleted,
the process deletes the association in the
complete relation, the relation class, the
category relation, tag constraints, any
keywords associated with the relation, and all
textual descriptions of the relation.

5. If any mappings exist anywhere, an error is
issued, processing is terminated, and no
deletions are performed.

3.2.8.61 DROP DATABASE - Delete a database from the Common Data

Model.

A. Function:

DROP DATABASE deletes all references to the database
from the Common Data Model.

B. CDM Requirements:

1. The database or IMS PCB must exist in the Common
Data Model.

2. The Common Data Model database cannot be dropped.

3-139

DS 620341100
30 September 1990

C. Processing:

1. Retrieve from the parser lists the database name and
DBMS name. Verify that the database or IMS PCB to
be dropped does exist.

1.1 If the database does not exist, issue an error
message and exit command processing.

P
2. Verify whether any objects of the database (records,

fields, etc.) have been mapped to. Verify the
mapping from the following tables:

2.1 AUCISMAPPING (CS-IS MAPPING)

2.2 RCBASEDRECSET (Relation - Set Mapping)

2.3 ECRTUD (Record Union)

2.4 HORIZONTALPART (Horizontal Partition)

If a mapping is found, issue an error message
and exit command processing.

3. If no mapping is found, delete all references of the
database or PCB from the Common Data Model. Process
the deletes by records, fields and sets of the
database.

4. Delete the textual descriptions for the database and
all records, fields and sets of the database.

3.2.8.62 DROP DBMS - Drops a Database Management System
definition from the CDM.

A. Function:

DROP DBMS performs the following function:

1. DROP DBMS allows the user to drop a Database
Management System definition from the CDM.

B. CDM Requirements:

1. The Database Management System must be defined.
There must be no database/host association in the
CDM.

C. Processing:

1. The CDM is checked to see if the Database Management
System definition exists.

3-140

DS 620341100
30 September 1990

2. If the DBMS definition exists:

2.1 The CDM is checked for any hosts associated
with the DBMS.

2.2 If any hosts are associated with the DBMS, the
user is notified and the program is exited.

2.3 If no hosts are associated with the DBMS, the
DBMS definition is deleted from the CDM.

3. If the DBMS definition does not exist, issue an
error message and exit command processing.

3.2.8.63 DROP DESCRIPTION TYPE - Drop description type(s) from
the CDM.

A. Function:

1. DROP DESCRIPTION TYPE allows user to drop a
DESCTYPE from the CDM.

B. CDM Requirements:

1. The DESCTYPE must be previously defined in the CDM.

C. Processing:

1. Convert DESCTYPE to upper case if entered in lower
case.

2. CDM is checked to see if the DESCTYPE name exists.

3. If the DESCTYPE name exists:

3.1 The CDM is checked for any object(s) associated
with the DESCTYPE name.

3.2 If any object(s) are associated with the
DESC TYPE name (referential integrity check
fails):

3.2.1 The user is notified; issue error
message.

3.2.2 Continue command processing with the
next DESCTYPE name.

3.3 If no object(s) are associated with the
DESC TYPE name, the DESC TYPE name is deleted
from-the CDM, if no referential integrity check
fails.

4. If the DESCTYPE name does not exist, issue an error

3-141

DS 620341100
30 September 1990

message and continue command processing.

3.2.8.64 DROP DOMAIN - Drop a domain definition from the CDM.

A. Function:

DROP DOMAIN allows the NDDL User to drop the definitions
of one or more domains from the CDM.

B. CDM Requirements:

The domains to be dropped must currently exist,
independent of model, and no attributes, data items or
data fields must be associated with the data types
defined for the domain.

C. Processing:

1. For each domain name specified by the user, the
following is done:

1.1 The domain name is verified, retrieving its
domain number.

1.2 Any attribute class associated with the domain
is searched. This search is possible because
the standard data type of the domain is the
only data type associated with attributes.

1.3 For each data type associated with the domain:

1.3.1 Usage of the data type by any internal
schema data fields is determined and
displaced to the user.

1.3.2 Usage of the data type by any external
schema data items is determined and
displaced to the user.

1.4 If the usage count of any data types of this
domain is not zero, the user is given a message
and the domain will not be deleted.

1.5 If the domain can be deleted, the following
steps are executed:

1.5.1 All values associated with the standard
data type of the domain to be deleted
are dropped.

1.5.2 All ranges associated with the standard
data type of the domain to be deleted
are dropped.

1.5.3 All data types can be deleted. The data
type descriptions are also deleted.

3-142

DS 620341100
30 September 1990

1.5.4 Drop the verification module from the
CDM tables SOFTWARE MODULE,
MODULEPARAMETER ana VERIFMODULE.

1.5.5 The DOMAIN CLASS entry itself can be
deleted, along with any associated text
descriptions. Any textual information
associated with the domain class itself
is deleted.

3.2.8.65 DROP ENTITY - Drop a conceptual entity

A. Function:

DROP ENTITY performs the following functions:

1. Deletes one or more user specified entities from the
CDM

2. Deletes the primary name of the entity and all
associated aliases, keywords and description text

3. Deletes all associated owned attributes, attribute
use classes and inherited attributes

4. Deletes all associated keys and key members

5. Deletes all relations associated with the entity and
its keywords

B. CDM Requirements:

1. Each entity to be dropped must exist in the current
model.

2. No mappings must exist for each entity to be
dropped.

C. Processing:

1. The DROP ENTITY process verifies that the entity to
be dropped exists in the current model. If it does
not exist an error is issued and processing is
terminated. Processing then checks if any union
mappings exist for the entity or if the entity is
horizontally partitioned. If so, an error is issued
and processing is terminated.

2. The process next determines all owned attributes and
attribute uses for the entity and these are dropped.
The tag constraints are also dropped. Further, its
keys and attributes inherited via the migrated keys
and key members are also dropped. If the deletion
of the entity resulted in any empty keys for the
model, these are then deleted.

3-143

DS 620341100
30 September 1990

3. All link relations where the entLf is independent
and dependent are deleted as is its associated
keywords. All category relations where the entity
is generic entity are deleted. If the entity is a
category member, the category member occurrence is
deleted and if it is the only category member, the
category relation is then deleted. For each
relation the entity participates in, if any CS/ES or
Relation Set mappings exist, an error is issued and
processiig is terminated.

4. The primary name of the entity and all of its
aliases, keywords, description text and entity
constraints are deleted from the model. If any
complex or CS/IS mappings exist for the entity, an
error is issued and processing halts.

3.2.8.66 DROP FIELD - Drops an existing field of a previously

defined record and database.

A. Function:

DROP FIELD performs the following functions:

1. Verifies that the database exists

2. Verifies that the record type exists

3. Verifies that the fields to be dropped exist

4. Drops the datafield and all of its subcomponents

5. If the field being dropped is used as index or
occurs-depending-on by another data field, the
latter's indexed-by or occurs-depending is set to
null and updated in the record layout. If the field
being dropped is indexed, drop the indexing field if
it is an index-indicator of "G"; otherwise, set the
index indicator of the index field to "N"

6. If the field being dropped is redefined by another
data field, the latter is dropped along with its
subcomponent fields

7. All description text is deleted for each data field
to be dropped

B. CDM Requirements:

The database, record type and fields to be dropped must
be previously defined.

3-144

DS 620341100
30 September 1990

C. Processing:

1. The CDM is checked to see if the database exists.
If it has not been defined, issue an error message
and exit command processing.

2. The CDM is checked to see if the record exists. If
it has not been defined, issue an error message and
exit command processing.

3. All existing data fields belonging to the record are
retrieved into a temporary structure. Syntax and
semantic checks are performed within this temporary
table before the data fields are deleted or
modified, as necessary.

4. For each data field to be dropped:

4.1 The CDM is checked to verify the data field is
not mapped to. If the data field participates
in a union mapping, complex mapping algorithm
or is mapped to a tag, issue an error message.
Continue processing with the next field.

4.2 Retrieve into a second temporary table the data
field and its component data fields. Perform
the following steps for each data field in this
table.

4.2.1 If the data field being dropped is
indexed, drop the indexing field if it
has an index indicator of "G";
otherwise, set the index field indicator
to "N" and retain the field.

4.2.2 If the data field being dropped is an
index of another data field in the
record, update the latter's indexed-by
to null.

4.2.3 If the field is the occurs-depending-on
of another data field in the record,
update the latter's depending-on field
to null.

4.2.4 If the data field appears as the
redefines of another field in the
record, drop the redefining field and
all of its subcomponents.

5. The second temporary table contains a list of all
the fields to be deleted. For each field to be
dropped:

3-145

DS 620341100
30 September 1990

5.1 If it is a TOTAL DBMS, verify if the data field
is used as a link to a record set.

5.2 If a data field to set linkage exists, verify
that the set is not mapped to a tag or a
relation. If it is mapped, issue an error
message and continue processing. If no set
mapping exists:

5.2.1 Drop the data field to set linkage.

5.2.2 Drop the set and any of its members.

5.2.3 Delete the textual description for the
set.

5.3 Delete the textual description for the data
field.

5.4 Drop the data field from the CDM table
DATAFIELD.

3.2.8.67 DROP HOST - Delete a host definition from the CDM.

A. Function:

DROP HOST performs the following functions:

1. DROP HOST allows the user to delete a host
definition from the CDM

B. CDM Requirements:

1. The host must be defined on the CDM.

C. Processing:

1. The CDM is checked to see if the host is defined.

2. If the host is not defined, issue an error message
and exit command processing.

3. If the host is defined:

3.1 If no DBMS is associated with the host, the
host is deleted from the CDM.

3.2 If a DBMS is associated with host, the user is
notified. The program is exited.

3-146

DS 620341100
30 September 1990

3.2.8.68 DROP KEYWORD - Delete an object keyword.

A. Function:

DROP KEYWORD performs the following function:

1. Delete the named keyword and associations with any
attribute, entity and/or relation class.

B. CDM Requirements:

The keyword to be dropped must exist in the CDM.

C. Processing:

1. DROP KEYWORD verifies the existence of the keyword.
The keyword is deleted from the ACKEYWORD,
ECKEYWORD, RCKEYWORD and from the IISSKEYWORD
tables.

2. Processing halts if any of the verification checks

fail.

3.2.8.69 DROP MAP - Delete a CS-IS Mapping

A. Function:

DROP MAP performs the following functions:

1. Deletes AUC to field mappings for a stated
preference.

2. Deletes AUC to set mappings for a stated preference.

3. Deletes all mappings for all preferences for a
specified entity.

4. Deletes relation to set mappings.

B. CDM Requirements:

The map to be dropped must exist in the CDM.

C. Processing:

1. For an AUC mapping:

1.1 Check whether a mapping exists through a
software module. If so, flag user error, since
a complex mapping is deleted by the Drop
Algorithm command.

1.2 If PREF NUMB equals 1, delete all
AUCISMAPPING, PROJECTDATAFIELD and

3-147

DS 620341100
30 September 1990

AUC ST MAPPING entity occurrences in the CDM
for-the specified tag.

1.3 If PREF NUMB is greater than 1, delete all
AUC IS MAPPING, PROJECT DATAFIELD and
AUC STTMAPPING entity occurrences in the CDM
for-the specified tag and preference number.

1.4 No matter what the specified preference number,
after deleting the AUC IS MAPPING entity
occurrence, check to see If the entity and
record number of the deleted map is used for
any other map. If not, delete the entity to
record mapping in the ECRTMAPPING Table of
the CDM.

1.5 After the maps are deleted, count the number of
entity to record maps for the entity specified.
If none exist, delete the DISTRIBUTED RULES
occurrence for the entity specified. -

1.6 If the user specified all mappings to be
deleted for an entity, process as follows: For
each tag selected, delete all mappings from the
CDM tables AUC IS MAPPING, AUC ST MAPPING and
PROJECT DATA FIELD. Delete alT entity to
record mappings from the EC RT MAPPING CDM
Table for the entity the atEri~ute is owned by.
Delete the DISTRIBUTEDRULES for the entity.

2. For a RELATION mapping:

2.1 Verify existence of link or category RELATION
in the CDM. If it does not exist, flag user
error.

2.2 Delete RCBASEDRECSET entity occurrences in
the CDM.

3.2.8.70 DROP MODEL - Delete a model from the CDM.

A. Function:

DROP MODEL performs the following functions:

1. Drops all entities associated with the model

2. Drops all attributes, attribute uses, and inherited
attributes associated with the model

3. Drops all keys and key members associated with the
model

4. Drops all relations, category and link, associated
with the model

3-148

DS 620341100
30 September 1990

5. Drops all descriptions, aliases and keywords for the
entities, attributes and relations associated with
the model

B. CDM Requirements:

The model to be dropped must exist in the CDM.

C. Processing:

1. DROP MODEL verifies that the model to be dropped
exists. The INTEGRATEDMODEL cannot be dropped.

2. For each entity found in the model, its owned
attributes, keywords, descriptions and the entity
itself is dropped. Further, its keys and attributes
inherited via the migrated keys and key members are
also dropped. Relations where the entity is both
dependent and independent and its associated
keywords and descriptions are deleted.

3. For each attribute in the model, the attribute
keywords, descriptions and the attribute itself is
dropped.

4. Processing halts if any of the verification checks

fail.

3.2.8.71 DROP MODULE - Drop software modules from CDM

A. Function:

DROP MODULE allows the NDDL user to drop software
modules along with their parameters from the CDM.

B. CDM Requirements:

The modules named (MOD ID) must currently exist in the
CDM. Any module associated as a complex mapping
algorithm can't be deleted.

C. Processing:

1. Verify that the modules named (MODID) exist on the
SOFTWAREMODULE Table.

2. If the status indicator is a "C" (complex mapping
algorithm):

2.1 Delete module parameters associated with the
software module.

2.2 Check the return status.

3-149

DS 620341100
30 September 1990

2.2.1 If return status = KES-TYPE-2-FAIL, an error
occurred during a referential integrity
test; i.e., the module is associated as a
complex mapping algorithm.

2.2.2 Issue an error message and retrieve next

module name.

2.3 Delete the module from the SOFTWAREMODULE Table.

3. If the status indicator is not a "C" (implying it is a
module generated or modified by the NDML precompiler),
search the CDM table CDMP GENERATED MOD to retrieve all
the modules generated for-MOD ID. For each generated
module retrieved, delete the Internal Schema software
cross reference and the generated module itself.

3.1 Delete from CDM tables RECORDSETUSAGE,
DATA FIELD USAGE, SOFTWAREMODULE, and
NDML-MODULE.

3.2 If MOD ID is not a User's Application program (if
FDL-USED = ZERO), then this module does not have
any associated External Schema cross references,
nor would it be associated with any NDML generated
programs.

3.3 Otherwise, delete from CDM tables ESUSAGE and
CDMPGENERATEDMOD.

3.4 Delete the software module MOD ID from
MODULEPARAMETER and SOFTWAREMODULE as in step
2.

3.2.8.72 DROP PARTITION - Drop a horizontal partition from the CDM.

A. Function:

DROP PARTITION allows the NDDL User to drop a horizontal
partition for a specific entity from the CDM.

B. CDM Requirements:

The horizontal partition for an entity must currently exist.

C. Processing:

1. If a partition number is not specified by the user,
a "I" is assumed.

3-150

DS 620341100
30 September 1990

2. The user entered entity name is verified to exist
and the entity number is retrieved.

3. Verify that the horizontal partition number
currently exists fcr tha entity.

4. All partition records are deleted that have the
entered entity and horizontal partition number.

3.2.8.73 DROP PSB - Drop an IMS Program Specification Block

(PSB) name(s) from the CDM.

A. Function:

1. DROP PSB allows user to drop a PSB name from the
CDM.

B. CDM Requirements:

1. The PSB name must be previously defined in the CDM.

C. Processing:

1. The CDM is checked to see if the PSB name to be
dropped exists.

2. If the PSB name exists:

2.1 The CDM is checked for any PCBs associated with
the PSB name.

2.2 If any PCBs are associated with the PSB name:

2.2.1 The user is notified; issue an error
message.

2.2.2 Continue processing with the next PSB
name.

2.3 If no PCSs are associated with the PSB name,
the PSB name is deleted from the CDM.

3. If the PSB name does not exist, issue an error
message and continue command processing.

3.2.8.74 DROP RECORD - Delete the record type/table/segment

from the Internal Schema database.

A. Function:

DROP RECORD performs the following functions:

3-151

DS 620341100
30 September 1990

1. Deletes all references to the record
type/table/segment from the Internal Schema portion
of the CDM.

2. Deletes all associated data fields, record to area
assignments, data field linkage, record sets and
record set members. Additionally, all textual
descriptions for the record type/segment/data field,
and record sets are deleted.

B. CDM Requirements:

The record/table/segment to be dropped, and the database
must exist in the CDM database.

C. Processing:

1. DROP RECORD verifies the existence of the
database/PCB specified and the record
type/table/segment specified. If the database or
record type does not exist, processing stops and an
error message is issued.

2. The record is not deleted if any mappings to the
Conceptual Schema are found. The following tables
are checked to see if the record is mapped:

a) AUC IS MAPPING - Mapping exists to an Attribute
Use Class.

b) ECRTUD - If the record is unioned against two
or more entities.

c) HORIZONTAL PART - If the record is one of the
specified fragments in a partition.

3. lf the record is an owner record or member record in
a non-relational DBMS, the record is not deleted if
a set is mapped to. The following tables are
checked to see if the record set is mapped:

a) AUC ST MAPPING - If a mapping exists for an
Attribute Use Class.

b) RC BASED REC SET - If a relation class to set
mapping exists.

4. The process then queries for and deletes all
database area assignments associated with the
record/table/segment. All data fields that belong
to the record are deleted along with their
associated textual description.

3-152

DS 620341100
30 September 1990

5. For a TOTAL DBMS, DF SET LINKAGE table removes all
references to the record.

6. The process deletes all RECORD SET or RECORD SET
members that contain the record/table/segment to be
dropped. The RECORD SET processing will delete all
references to the record/table/segment where it is
an owner record or member record and any set that
becomes memberless when the dropped record was the
set member.

7. The record/table/segment is deleted from the CDM;
all associated textual description about the record
are deleted.

3.2.8.75 DROP RELATION - Deletes the link relation and all
references to the relation class from
the CDM database.

A. Function:

The DROP RELATION process performs the following
functions for one or more relations:

1. Verifies that the link relation exists

2. Verifies that the independent and dependent entities
exist

3. Deletes the link relation from the CDM

4. Deletes the relation from the CDM

5. Deletes the complete relation

6. Deletes all keys that have migrated from the
relation

7. Deletes all keywords associated with the relation

8. Deletes all textual descriptions associated with the
relation

B. CDM Requirements:

The DROP RELATION process requires the presence of the
Relation Class, Independent Entity, and Dependent Entity
within the current model.

C. Processinq:

I. The DROP RELATION process verifies that the
independent entity, dependent entity, and the

l- I 'li

DS 620341100
30 September 1990

relation exist in the CDM. If any of these do not
exist, an error is issued and processing terminates.

2. The process verifies whether the relation is
complete and if so, returns the key which allows the
process to determine the migration of the associated
items.

3. Utilizing the key the process deletes all migrating
key member based on the relation. In turn, each key
member is deleted from KEY CLASS MEMBER,
ATTRIBUTE USE CL, and INHERITED ATTRIBUTEUSE based
on its association to the relation.

4. After all the key members have been deleted, the
process deletes the association in the complete
relation, the relation itself, tag constraints, any
keywords associated with the relation, and all
textual descriptions of the relation.

5. If any mappings exist anywhere, an error is issued,
processing is terminated, and no deletions are
performed.

3.2.8.76 DROP SET - Drop a record set from the Internal Schema

A. Function:

DROP SET allows the NDDL user to drop the set specified
from the Internal Schema portion of the CDM.

B. CDM Requirements:

The set to be dropped must have been already defined to
the CDM.

C. Processing:

1. The user entered database name is used to determine
if the database exists in the CDM at this point.
The set name is used along with the database number
to determine if the set actually exists.

1.1 If the set exists, verify that the set is not
mapped to the Conceptual Schema. Verify the
mapping from the following tables.

1.1.1 RCBASED RECSET, CS to IS relation
class to set mappings.

1.1.2 AUC ST MAPPING, CS to IS attribute to
set mappings.

1.2 If no mapping exists, delete the set from the
following tables.

3-154

DS 620341100
30 September 1990

1.2.1 SETTYPEMEMBER, all member record types
for the set.

1.2.2 RECORDSET, the record set occurrence
itself.

1.2.3 For TOTAL DBMS only, the DF SET LINKAGE
occurrence used to indicate-the-presence
of foreign control keys needed for TOTAL
link path traversal.

3.2.8.77 DROP UNION - Drop the record union definition from the
CDM.

A. Function:

DROP UNION allows the NDDL user to drop the definition
of a record union from the CDM.

B. CDM Requirements:

The record union must currently exist in the Integrated
Model.

C. Processing:

1. Verify that the database and record name currently
exist. Retrieve the record type number (RTNO) from
this selection.

2. Verify that this record type currently exists in the
record union definitions.

3. Delete all record unions which match the record type
entered.

3.2.8.78 DROP VIEW - Delete NDDL User specified view(s) from the

CDM.

A. Function:

DROP VIEW allows the NDDL user to drop specified views
from the CDM. All data items and related textual
descriptions are deleted unless the data item is an
input or output parameter of a Complex Mapping
Algorithm. Also, any textual descriptions associated
with the View Name are dropped.

B. CDM Requirements:

The view(s) to be dropped must exist in the external
schema portion of the CDM.

3-155

DS 620341100
30 September 1990

C. Processing:

1. A View Name is obtained from a View Name Parser
list.

2. Process each View Name obtained from the View name
List as follows:

2.1 Verify that the View Name exists in the CDM.

2.1.1 If the View Name does not exist, issue a
user error message and continue
processing with the next View Name on
the Parser List.

2.2 Delete all project data items associated with
the View Name from the CDM table
PROJECTDATAITEM.

2.3 Select all the data items for the View Name
from the CDM table DATAITEM.

2.3.1 Verify that each data item does not
participate in a conversion algorithm.
If a Complex Mapping Algorithm does
exist, issue a user error message and
continue processing with the next View
Name on the Parser List.

2.3.2 Delete any textual descriptions
associated with the data item from CDM
table DESCTEXT.

2.4 Delete all data items associated with the View
from the CDM table DATAITEM.

2.4.1 If any data item cannot be deleted,
issue an NDML error message and continue
processing with the next View Name on
the Parser List.

2.5 Delete all occurrences of VIEW QUAL XREF (if
any exist) which are associated witi the
view.

2.5.1 If any occurrences cannot be deleted,
issue an NDML error message and continue
processing with the next View Name on
the Parser List.

2.6 Delete the occurrence or occurrences of
VIEW EC XREF which are associated with the
view.

3-156

DS 620341100
30 September 1990

2.6.1 If any of the occurrences cannot be
deleted, issue an NDML error message and
continue processing with the next View
Name on the Parser List.

2.7 Delete any qualification criteria text items
associated with the View from CDM table
VIEWQUALIFYCRITERIA.

2.7.1 If any occurrences cannot be deleted,
issue an NDML error message and continue
processing with the next View Name on
the Parser List.

2.8 Delete the View Name from the CDM table
USERVIEW.

2.8.1 If the View Name cannot be deleted,
issue an NDML error message and continue
processing with the next View Name on
the Parser List.

2.9 Delete any textual descriptions associated with
the View Name from the CDM.

2.9.1 If the textual description cannot be
deleted, issue an NDML error message and
continue processing with the next View
Name on the parser list.

3.2.8.79 HALT - Terminate the current NDDL session

A. Function:

HALT terminates the current NDDL session.

B. Processing:

1. If the commit mode is Automatic:

1.1 If any errors were detected during the NDDL
session, an ORACLE rollback is performed. If
no errors were detected, an ORACLE commit is
performed.

2. If the commit mode is Manual:

2.1 Retrieve from the parser lists the optional
"ROLLBACK" clause.

3-157

DS 620341100
30 September 1990

If rollback is specified:

2.1.1 Perform an Oracle Rollback

Else

2.1.2 Perform an Oracle Commit

3.2.8.80 MERGE MODEL - Merge two conceptual models.

A. Function:

MERGE MODEL performs the following functions:

1. Merge two models into the first named model or into
a newly created third model.

2. Generate NDDL commands on a file or screen to
populate either the first model or the third model
with the attributes, entities, relations, key, key
members, aliases, keywords and descriptions from
model one and model two.

B. CDM Requirements:

1. Model one must exist in the CDM.

2. Model two must exist in the CDM.

3. If model three is specified, it must not exist in
the CDM.

C. Processing:

1. Verify the existence of model one and model two.
Note that processing halts if any verification
checks fail.

1.1 If model three was not specified, default model
three to model one; otherwise, verify that
model three does not exist.

1.2 If model three does not exist, copy everything
from model one to model three using the COPY
MODEL routines.

2. Build the key list for all the entities in model
two.

3. Add all the model two top node entities to model
three. If the model two entity does not exist in
model one, then COPY ENTITY routines are used to add
the entity to model three. Otherwise, COMBINE ENTITY
routines are used to combine the model two entity

3-158

DS 620341100
30 September 1990

with the model one entity with the result added to
model three.

4. Add all the model two dependent entities,
attributes, link relations, keys, key members,
aliases keywords, category relations, and
descriptions to model three, level by level. If the
model two entity, attribute and/or relation does not
exist in model one, then COPY ENTITY routines are
used to add the information to model three.
Otherwise, COMBINE ENTITY routines are used to
combine the model two information with model one
with the result added to model three.

3.2.8.81 RENAME - Rename object names for a particular object

type.

A. Function:

RENAME performs the following function:

1. Change an old object name to a new object name for
object types - entity, attribute, keyword, model,
domain, view, relation, host, data item, data field,
database, record type, set, and data type name.

B. CDM Requirements:

1. Object names to be renamed must exist in the CDM.

2. Except for keywords, new object names must not
previously exist in the CDM.

C. Processing:

1. RENAME verifies the existence of the old object
name. If it does not exist, flag a user error.

2. To rename a link relation, the independent entity,
relation name, and dependent entities existence is
verified. If it does not exist, flag a user error.

3. To rename a category relation, the generic entity
and relation name existence is verified. If it does
not exist, flag a user error.

4. Verify that the new object name(s) does not
previously exist for the particular object type.

4.1 If the object type is KEYWORD and the new name
already exists, replace all uses of the old
keyword number to the new keyword number in the
three keyword tables - AC KEYWORD, ECKEYWORD,
and RCKEYWORD and delete-the old keyword from
the keyword table.

3-159

DS 620341100
30 September 1990

4.2 If the object type is not KEYWORD and the new
name does not already exist, flag a user error.

5. If all verifications have passed, the old object
name is updated in the CDM with the new object
name.

3.2.8.82 ROLLBACK - Rollback or undo all changes made to the CDM
since the last commit point.

A. Function:

Perform ORACLE and NDML rollback.

B. Processing:

1. Call a routine to perform the NDML rollback.

2. Issue an ORACLE rollback.

3.2.8.83 SET COMMIT - Establish the commit mode.

A. Function:

SET COMMIT establishes the current commit mode for the
session - Automatic or Manual.

B. Processing:

1. Retrieve from the parser lists whether the commit
mode is 'Automatic' or 'Manual'.

2. Update global variables to reflect the current
commit mode for the NDDL session.

3.2.8.84 SET OUTPUT - Establish the output mode.

A. Function:

SET OUTPUT establishes the current output for the NDDL
session - whether the output is to be directed to a user
defined file or to the screen.

B. Processing:

1. Retrieve from the parser lists whether the output is
to be generated to a file or the screen.

2. If output is to be generated to a file, retrieve
from the parser lists whether the optional word

3-160

DS 620341100
30 September 1990

"NEW" has been specified. If "NEW" has been
specified, set a flag to denote the file named has
to be opened and written to for each NDDL command in
the session. If "NEW" has not been specified, set a
flag to denote that the file named can be opened and
appended to.

3. If the output is to be directed to the screen, set a
flag to denote that the current mode is screen.

4. Establish the file name and the flag as global

variables.

3.3 Performance Requirements

3.3.1 Programming Methods

S.ructuied Design, structured coue walkthroughs and
structured programming will be used wherever possible.
Debugging through use of a symbolic debugger will also be used.

3.3.2 Program Organization

NDDL processor will be organized as a single executable
image. It will use the forms processor directly. The DBMS
access will be done through ORACLE services communicating with
the actual DBMS processes. The NDML will be used for database
access and it is designed to communicate via the IISS NTM to the
actual request processors. The NDDL processor will consist of a
main routine, an initialization routine to establish all the
environments, a command initialization routine to communicate
with the parser command processor interface data structure, a
command processor entry point for each command and a termination
routine.

3.3.3 Modification Consideration

It would be useful to investigate the creation of a
seperate process for each command processor. Each would have
its own processor. UI function screen or menu interface would
allow command selection. A forms driven, rather than syntax
driven, approach could also be considered. Continued evolution
of NDML facilities should be monitored, such as generation of
"in-line" code, replacement of ORACLE with NDML update
facilities and removal of many calls to routines that provide
inteqrity tests, currently coded as separate NDML verification
routines, since NDML would generate these. Security
considerations for a group of different user types must also be
considered. Facilities for displaying the CDM contents must
also be considered, specifically generating the NDDL that
originally populated the object. The NDDL processor must
continually be updated as new features and data tables are added
to the CDM.

3-161

DS 620341100
30 September 1990

3.3.4 Special Features

3.3.5 Expandability

The NDDL can be expanded very simply in the area of new
commands. Parsing directives must be written and new command
processors designed and implemented without effecting the
command processing shell or existing commands.

3.4 Human Performance

The NDDL processor should allow the CDMA to reliably
maintain the most important parts of the CDM and to effectiveiy
perform the functi- c 't nini :

3.5 Database Requirements

3.5.1 Database Overview

The CDM database is relational, meaning that it consists
of tables that resemble traditional sequential files. The rows
of the tables are similar to records in a file and the columns
are similar to fields on the records. Columns from different
tables are sometimes combined to form "views" to ease
manipulation of the data. The CDM database was derivc.
from the definitions found in the CDM-I. model, Referei.ce
11.

3.5.2 Relations Between Tables and Views

A single complete view has been created for each table of
the CDM accessed by NDDL except in the case of DATAFIELD and
COMPLEXMAPPINGPARM.

3.5.3 Detailed Description of Tables and Views

There follows an ORACLE listing of the tables columns of
the CDM. By using the table names, definitions of each may be
found in the CDM-l model.

3-162

DS 620341100
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error.

4.2 Computer Programming Test and Evaluation

The quality assurance provisions for tests will consist of
the normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team.

The integration test developed for the NDDL will consist of
a list of commands (and their expected outputs) which will be
used by the tester. This session will test each command to
ensure its correct operation. Results of the session may be
compared with those of the unit testing.

Because rather flat hierarchy of modules is designed for
the NDDL, unit testing will primarily involve testing each of
the NDDL interface routines and internal functions for correct
processing and output. Below the level of modules implementing
each command will be a small set of procedures for database
commit and rollback and error handling.

4-1

DS 620341100
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software
will be the ICAM Integrated Support System (IISS) Test Bed Site
located at Arizona State University, Tempe, Arizona. The
software associated with the NDDL will be clearly identified and
will include instructions on procedures to be followed for
installation of the release.

5-1

DS 620341100
30 September 1990

SECTION 6

NOTES

Please refer to the Software Availability Bulletin, Volume
III, Part 16, CI# SAB620326000, for current IISS software and
documentation availability.

6-1

DS 620341100
30 September 1990

APPENDIX A

ORACLE DATA DICTIONARY

TABLE NAME COLUMN NAME TYPE WIDTH NULLS
----------------------------- ----------- ------ ----- --------ACKEYWORD AC NO NUMBER 6 NOT NULL

KWNO NUMBER 6 NOT NULL

ATTRIBUTECLASS AC NO NUMBER 6 NOT NULL
DOMAINNO NUMBER 6 NOT NULL
MODELNO NUMBER 6 NOT NULL

ATTRIBUTENAME AC NAME CHAR 30 NOT NULL
AC NAME TYPE CHAR 8 NOT NULL
ACNO NUMBER 6 NOT NULL

ATTRIBUTEUSECL ACNO NJMBER 6 NOT NULL
EC NO NUMBER 6 NOT NULL
TAG NAME CHAR 30 NOT NULL
TAGNO NUMBER 6 NOT NULL

AUCCONSTRAINT CONSTRAINTNO NUMBER 6 NOT NULL
EC NO NUMBER 6 NULL
TAG NO CHAR 30 NOT NULL
TAG-NO NUMBER 6 NOT NULL

AUCISMAPPING EC NO NUMBER 6 NOT NULL
MAPCATEGORY CHAR 8 NULL
MAP CLASS CHAR 30 NULL
MAP-TYPE CHAR 10 NULL
PREF NO NUMBER 2 NULL
RT NO NUMBER 6 NOT NULL
TAGNO NUMBER 6 NOT NULL

AUCSTMAPPING AUC VALUE CHAR 30 NULL
DB ID NUMBER 6 NOT NULL
ECNO NUMBER 6 NULL
RT NO NUMBER 6 NULL
SET ID CHAR 30 NOT NULL
TAG-NO NUMBER 6 NOT NULL

CDMPGENERATEDMOD CASE NO NUMBER 6 NULL
DB ID NUMBER 6 NULL
FILE NAME CHAR 30 NULL
GENERATED BY CHAR 30 NULL
GENERATEDMODID CHAR 10 NOT NULL

A-I

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

CDMPGENERATEDMOD GEN DATE DATE 7 NULL
HOST ID CHAR 30 NULL
IS ACTION CHAR 1 NULL
LOCAL REMOTE CHAR 1 NULL
LUW NAME CHAR 30 NULL
MODULE TYPE CHAR 10 NOT NULL
SUBTRANS ID NUMBER 6 NULL
USERMODID CHAR 1 NULL

COMPLETERELATION KC NO NUMBER 6 NOT NULL
RC-NO NUMBER 6 NOT NULL

COMPLEXMAPPINGPARM ALGUSECODE CHAR 1 NULL
CONSTANT VALUE CHAR 30 NULL
DF NO NUMBER 6 NULL
DI NO NUMBER 6 NULL
MOD ID CHAR 10 NOT NULL
MOD INST NUMBER 6 NULL
PARM ID NUMBER 6 NULL
RT NO NUMBER 6 NULL
TAG NO NUMBER 6 NULL
UNIONDISC NUMBER 6 NULL

CONSTRAINTINPUT CONSTRAINTNO NUMBER 6 NOT NULL
MOD ID CHAR 10 NOT NULL
PARM ID NUMBER 2 NOT NULL
STMT ACTION CHAR 30 NOT NULL
TAGNO NUMBER 6 NOT NULL

DATABASE CHARACTERNULL CHAR 30 NULL
DBMS NAME CHAR 30 NULL
DB ID NUMBER 6 NULL
DB NAME CHAR 30 NULL
HOST ID CHAR 30 NULL
INTEGER NULL CHAR 30 NULL
NTMDIRECTORY CHAR 2 NULL

DATABASEAREA AREA ID CHAR 30 NOT NULL
DBID NUMBER 6 NOT NULL

DATA FIELD COMPONENTOFDF NUMBER 6 NULL
DATA-TYPENAME CHAR 30 NULL

A-2

DS 620341100
30 September 1990

TABLE NAME COLJMN NAME TYPE WIDTH NULLS
------------------------------- --------------- ------ ------ --------
DATAFIELD DBMS ACCESS CHAR 1 NULLDB ID NUMBER 6 NOT NULL

DF ID CHAR 30 NOT NULL
DF-NO NUMBER 6 NOT NULL
FIILER SIZE NUMBER 6 NULL
INDEX BY DF NO NUMBER 6 NULL
INDEX-INDICATOR CHAR 1 NULL
NO OF OCCURS NUMBER 6 NULL
0CC_DEPENDDF_
NO NUMBER 6 NULL
REC KEY CODE CHAR 1 NULL
REC SEQINO NUMBER 6 NOT NULL
REDEF DF NO NUMBER 6 NULL
RTID CHAR 30 NOT NULL

DATAFIELDUSAGE DF NO NUMBER 6 NOT NULL
DFUSAGECODE CHAR 1 NULL
MOD_ID CHAR 10 NOT NULL

DATAITEM DATATYPENAME CHAR 30 NOT NULL
DI ID CHAR 30 NOT NULLDINO NUMBER 6 NULL
VIEWNO NUMBER 6 NOT NULL

DATATYPE TYPE _DESC CHAR 60 NOT NULL
TYPEID CHAR 1 NOT NULL

DBMSONHOST DBMSNAME CHAR 30 NOT NULL
HOSTID CHAR 30 NOT NULL

DBAREAASSIGNMENT AREA ID CHAR 30 NOT NULL
DB ID NUMBER 6 NOT NULL
RTID CHAR 30 NOT NULL

DBPASSWORD DB ID NUMBER 6 NOT NULL
DB PASSWORD CHAR 30 NOT NULL

DESCRIPTION_TYPE DESCTYPE CHAR 30 NOT NULL

DESCTEXT DESC TEXT CHAR 79 NULL
DESCTYPE CHAR 30 NOT NULL

DESCTEXT LINE NO NUMBER 6 NOT NULL
OBJECT_NO NUMBER 6 NOT NULL
OBJECTTYPE CHAR 30 NOT NULL

A-3

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

DFSETLINKAGE DB ID NUMBER 6 NOT NULL
DF ID CHAR 30 NOT NULL
LINKAGETYPE CHAR 1 NOT NULL
RT ID CHAR 30 NOT NULL
SETID CHAR 30 NOT NULL

DISTRIBUTEDRULES DISTR RETR RULE CHAR 8 NULL
DISTRUPDT-RULE CHAR 8 NULL
ECNO NUMBER 6 NOT NULL

DOMAINCLASS DOMAIN NAME CHAR 30 NULL
DOMAINNO NUMBER 6 NULL

DOMAINRANGE BEGIN VALUE CHAR 30 NULL
DOMAINf NO NUMBER 6 NOT NULL
ENDVALUE CHAR 30 NULL

DOMAINVALUE DOMAIN NO NUMBER 6 NOT NULL
SPECIFIC-VALUE CHAR 30 NULL

ECRTUD COMPARISONOP CHAR 2 NULL
DF NO NUMBER 6 NOT NULL
EC-NO NUMBER 6 NOT NULL
RT-NO NUMBER 6 NOT NULL
UNIONVALUE CHAR 30 NOT NULL

ECCONSTRAINT CONSTRAINTNO NUMBER 6 NULL
EC NO NUMBER 6 NULL
STMTACTION CHAR 30 NULL

ECKEYWORD EC NO NUMBER 6 NOT NULL
KW_NO NUMBER 6 NOT NULL

ECRTMAPPING EC NO NUMBER 6 NOT NULL
RTNO NUMBER 6 NOT NULL

ENTITYCLASS ECNO NUMBER 6 NOT NULL
MODELNO NUMBER 6 NOT NULL

ENTITYNAME EC NAME CHAR 30 NOT NULL
EC NAME TYPE CHAR 8 NOT NULL
ECNO NUMBER 6 NOT NULL

ESUSAGE DI NO NUMBER 6 NULL
DI USAGECODE CHAR 1 NULL
MOD ID CHAR 10 NULL
VIEWNO NUMBER 6 NULL

A-4

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

FILENAMEHOST HOST ID CHAR 30 NOT NULL
LASTFILEUSED CHAR 30 NOT NULL

HORIZONTALPART EC NO NUMBER 6 NULL
HP NO NUMBER 6 NULL
RTNO NUMBER 6 NULL

IISSDBMS DBMS NAME CHAR 30 NOT NULL
DB_MODEL CHAR 1 NOT NULL

IISSHOST HOST ID CHAR 30 NOT NULL
HOST-NO NUMBER 6 NULL

IISSKEYWORD CDM KEYWORD CHAR 30 NOT NULL
KWNO NUMBER 6 NOT NULL

IISSPSB HOST ID CHAR 30 NOT NULL
PSB_NAME CHAR 8 NOT NULL

INHERITEDATTUSE KCM TAG NO NUMBER 6 NOT NULL
KC NO NUMBER 6 NOT NULL
RCNO NUMBER 6 NOT NULL
TAGNO NUMBER 6 NOT NULL

KEYCLASS EC NO NUMBER 6 NOT NULL
KC-NAME CHAR 30 NOT NULL
KC-NO NUMBER 6 NOT NULL

KEYCLASSMEMBER KC NO NUMBER 6 NOT NULL
TAGNO NUMBER 6 NOT NULL

LOGUNITWORK LAST CASE NO NUMBER 6 NULL
LUW_NAME CHAR 30 NULL

MACROCODE LIBRARY NAME CHAR 30 NULL
MACRO CODE CHAR 72 NULL
MACRO LINENO NUMBER 6 NULL
MACRONAME CHAR 8 NULL

MODELCLASS DATE CREATED DATE 7 NOT NULL
DATE MODIFIED DATE 7 NOT NULL
MODEL NAME CHAR 30 NOT NULL
MODEL-NO NUMBER 6 NOT NULL
MODEL-STATUS CHAR 10 NOT NULL

A-5

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

MODULE PARAMETER DATA TYPE NAME CHAR 30 NULL
MOD ID CHAR 10 NOT NULL
PARM ID NUMBER 6 NULL
PARM-NAME CHAR 30 NULL
PARM-PURPOSE CHAR 60 NULL

NDMLMODULE LAST COMPSTAT CHAR 1 NULL
LUW NAME CHAR 30 NULL
MODID CHAR 10 NULL
PRECOMPDATE CHAR 9 NULL

NEXTMODNAME LASTNAMEUSED CHAR 10 NOT NULL

NEXTNUMBER ACNO NUMBER 6 NOT NULL
NEXT NO NUMBER 6 NOT NULL
OBJECTNAME CHAR 30 NULL

OWNEDATTRIBUTE ACNO NUMBER 6 NOT NULL

OWNEDATTRIBUTE ECNO NUMBER 6 NOT NULL

PROJECTDATAFIELD DB ID NUMBER 6 NOT NULL
DF-ID CHAR 30 NOT NULL
EC NO NUMBER 6 NULL
RT-ID CHAR 30 NOT NULL
RT-NO NUMBER 6 NULL
TAGNO NUMBER 6 NOT NULL

PROJECTDATAITEM DINO NUMBER 6 NOT NULL
EC NO NUMBER 6 NULL
PRIM SECONDARY CHAR 1 NULL
TAG NO NUMBER 6 NULL
VIEWNO NUMBER 6 NULL

PSBPCB DB ID NUMBER 6 NOT NULL
KEYFEEDBACK_
LEN NUMBER 6 NOT NULL
PCB SEQNO NUMBER 6 NOT NULL
PSB_NAME CHAR 8 NOT NULL

PSBUSAGE MOD ID CHAR 10 NOT NULL
PSB-NAME CHAR 8 NULL

RCBASEDRECSET DB ID NUMBER 6 NOT NULL
RC-NO NUMBER 6 NOT NULL
RT-ID CHAR 30 NOT NULL
SETID CHAR 30 NOT NULL

A-6

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

RCKEYWORD KW NO NUMBER 6 NOT NULL
RC-NO NUMBER 6 NOT NULL

RECORDSET DB ID NUMBER 6 NOT NULL
RT ID OF OWNER CHAR 30 NOT NULL
SET ID CHAR 30 NOT NULL
SET NO NUMBER 6 NULLTOTAL_NUMMEM NUMBER 6 NOT NULL

RECORDSETUSAGE MOD ID CHAR 10 NULL
SET-NO NUMBER 6 NULL

RECORDTYPE DB ID NUMBER 6 NOT NULL
RT-ID CHAR 30 NOT NULL
RT-NO NUMBER 6 NULL

RELATIONCLASS DEP EC NO NUMBER 6 NOT NULL
IND ECNO NUMBER 6 NOT NULL
MAX NO DEP ENT NUMBER 6 NOT NULL
MIN NO DEP ENT NUMBER 6 NOT NULL
NO INDENT NUMBER 6 NOT NULL
RC-NAME CHAR 30 NOT NULL
RCNO NUMBER 6 NOT NULL

SCHEMANAMES DBID NUMBER 6 NOT NULL
DB LOCATION CHAR 30 NULL
SCHEMA NAME CHAR 30 NOT NULL
SUBSCHEMANAME CHAR 30 NOT NULL

SETTYPEMEMBER DB ID NUMBER 6 NOT NULL
REQ MEM IND CHAR 1 NOT NULL
RT ID OF
MEMBER CHAR 30 NOT NULL
SETID CHAR 30 NOT NULL

SOFTWAREMODULE LANG NAME CHAR 10 NULL
LATEST_REV_
DATE CHAR 9 NULL
MOD ABSTRACT CHAR 60 NULL
MODID CHAR 10 NOT NULL
MOD TITLE CHAR 30 NULL
STATUSIND CHAR 1 NULL

USERDEFDATATYPE DATA TYPE IND CHAR 4 NULL
DATA-TYPE-NAME CHAR 30 NULL
DOMAINNO NUMBER 6 NULL
MAX SIZE NUMBER 6 NULL
NO OF DECIMALS NUMBER 6 NULL
TYPEID CHAR 1 NULL
USDFDTNO NUMBER 6 NULL

A-7

DS 620341100
30 September 1990

TABLE NAME COLUMN NAME TYPE WIDTH NULLS

USERVIEW DISTINCTIND CHAR 1 NOT NULL
VIEW ID CHAR 30 NOT NULL
VIEW-NO NUMBER 6 NOT NULL

VERIF_MODULE DOMAIN NO NUMBER 6 NULL
MOD_ID- CHAR 10 NULL

VIEWECXREF EC NO NUMBER 6 NOT NULL
VIEWNO NUMBER 6 NOT NULL

VIEWQUALIFYCRITERIA QC_CONDITION_
NO NUMBER 6 NULL
QC_CONDTYPE NUMBER 1 NULL
QCTEXT CHAR 30 NULL
QCTEXTNO NUMBER 6 NOT NULL
QC_TEXTTYPE CHAR 1 NULL
VIEWNO NUMBER 6 NOT NULL

VIEW_QUALXREF EC NO NUMBER 6 NOT NULL
TAG NO NUMBER 6 NULL
VIEWNO NUMBER 6 NOT NULL

266 records selected.

SQL> SPOOL OFF

A-8

DS 620341100
30 September 1990

APPENDIX B

CDM TABLES ACCESSED

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)
------------------------- ----------------- ------ ------- -------

ALTER ALIAS ATTRIBUTE CLASS SELECT VERNMA N
ATTRIBUTE-NAME SELECT VERNMA N
ATTRIBUTE NAME MODIFY UPDACAL N
ENTITYCLASS SELECT VERNME N
ENTITY NAME SELECT VERNME N
ENTITY-NAME MODIFY UPDECAL N

ALTER ATTRIBUTE AC KEYWORD SELECT ADDKWA N
ACKEYWORD DELETE DELKWAC S
AC KEYWORD INSERT INSKWAC S
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE CLASS MODIFY UPDAC S
ATTRIBUTE-NAME SELECT RETATTR N
ATTRIBUTE NAME SELECT VERATT N
ATTRIBUTE USE CL INSERT INSAUC S
ATTRIBUTE-USE-CL MODIFY MODAUCE S
ATTRIBUTE-USE-CL SELECT RETATTR N
ATTRIBUTEUSE_
CLASS SELECT VERATAG S
COMPLETE RELATION INSERT INSCRC S
COMPLETE-RELATION SELECT NEWTAGM S
COMPLETE-RELATION SELECT VERIREL S
DOMAIN CLASS SELECT VERDOM N
ENTITY-CLASS SELECT DELMTK S
ENTITY-CLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
IISS_KEYWORD SELECT VERKW N
IISS KEYWORD INSERT INSKW S
INHERITED ATT USE SELECT DELMIGK S
INHERITED-ATT-USE SELECT OLDTAGM N
INHERITED-ATT-USE INSERT INSIAUC S
INHERITED-ATT-USE SELECT DMIGKRC S
INHERITED-ATT-USE DELETE DELIAUC S
KEY CLASS SELECT DELMTKC S
KEY CLASS INSERT INSKEYC N
KEY CLASS SELECT VERKC N
KEY CLASS MEMBER SELECT DELMTKC S
KEYCLASS MEMBER INSERT INSKCM S
KEY CLASS MEMBER SELECT VERKCM N
KEY-CLASS-MEMBER DELETE DELKCMT S

B-i

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

OWNED ATTRIBUTE MODIFY MODACEC N
OWNED-ATTRIBUTE SELECT RETATTR N
RELATION CLASS SELECT VERRC N
RELATION CLASS SELECT SELRELC N
RELATION CLASS SELECT NEWTAGM S
RELATIONCLASS SELECT OLDTAGM N

ALTER DATABASE DATA BASE SELECT VERDBAL N
DATABASE MODIFY MODDBAL N
DATA BASE AREA SELECT VERARL N
DATA-BASE-AREA SELECT VERARIA N
DATA-BASE-AREA INSERT INSAREA N
DATA-BASE-AREA DELETE DELAREA N
DB PASSWORD MODIFY MODPWRD N
IISS HOST SELECT VERHST N
PSB PCB MODIFY MODPCB N
SCHEMA NAMES MODIFY MODSCH N
SCHEMA-NAMES MODIFY MODLOC N

ALTER DBMS DBMS ON HOST INSERT INSDBH N
DBMS ON HOST DELETE DELDBH N
DBMS ON HOST SELECT VERDBH N
IISS DBMS SELECT VERDBMS N
IISS-DBMS MODIFY ALTDBT N
IISS-HOST SELECT VERHST N

ALTER DOMAIN ATTRIBUTE CLASS SELECT VERACDT N
DATA ITEM- SELECT VERDIDT N
DATA-TYPE SELECT VERTYP N
DOMAIN CLASS SELECT VERDOM N
DOMAIN-RANGE INSERT INSRNG N
DOMAIN-RANGE SELECT RETRNGA N
DOMAIN-RANGE SELECT RETRNG N
DOMAIN-RANGE DELETE DRPRNGA N
DOMAIN-RANGE DELETE DRPRNG N
DOMAIN-RANGE SELECT CHKRNG N
DOMAIN RANGE SELECT VERRNG N
DOMAIN-VALUE SELECT RETVALA N
DOMAIN VALUE DELETE DRPVAL N
DOMAIN VALUE INSERT INSVAL N
DOMAIN-VALUE SELECT CHKVAL N
DOMAIN-VALUE SELECT VERVAL N
ELEMENTARYDATA_
FIELD SELECT VERDFDT N
MODULE PARAMETER INSERT INSPARM N
MODULE-PARAMETER SELECT VERMPDT N

B-2

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

MODULE PARAMETER DELETE DELPARM NSOFTWARE MODULE INSERT INSSMOD N
SOFTWARE MODULE DELETE DELSMOD N
USERDEFDATA_
TYPE SELECT RETSTD N
USER_ DEF_DATA_
TYPE DELETE DELDT N
USER DEF DATA_
TYPE MODIFY UPDIND N
USER DEFDATA_
TYPE MODIFY VERSDT N
USER DEFDATA_
TYPE MODIFY VERDTD N
USER DEF DATA_
TYPE SELECT RETDT N
USER DEF DATA_
TYPE SELECT VERDT N
USER DEF DATA_
TYPE INSERT INSD' N
USER DEF DATA_
TYPE MODIFY UPDTDT N
VERIF MODULE SELECT RETVMOD N
VERIF-MODULE INSERT INSVMOD N
VERIF-MODULE DELETE DRPVMOD N

ALTER ENTITY ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE-USE CL SELECT VTAGAUC S
ATTRIBUTE-USE-CL SELECT DELOAC N
ATTRIBUTE-USE-CL SELECT VERAUC N
ATTRIBUTE-USE-CL DELETE DELAUCL S
ATTRIBUTE-USE-CL INSERT INSAUC S
ATTRIBUTE USE CL UPDATE MODAAUC S
ATTRIBUTE-USE-CL SELECT VERATAG S
AUC CONSTRAINT DELETE DELACON N
COMPLETE RELATION SELECT KCINH S
COMPLETE-RELATION DELETE DELCMPR S
COMPLETE-RELATION SELECT VERCRC N
CONSTRAINT-INPUT DELETE DELCONI N
EC KEYWORD SELECT ADDKWE N
EC-KEYWORD DELETE DELKWEC S
ENTITY CLASS SELECT VERENT N
ENTITY-NAME SELECT VERENT N
IISS KEYWORD SELECT VERKW N
IISS-KEYWORD INSERT INSKW S
INHERITED ATT USE SELECT DMIGKKC S
INHERITED-ATT-USE DELETE DELIAUC S

B-3

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

INHERITED ATT USE SELECT FETITAG S
INHERITED-ATT--USE INSERT INSIAUC S
INHERITED-ATT-USE UPDATE MODIAUC S
INHERITED-ATT-USE UPDATE MODAKCM S
INHERITED-ATT-USE SELECT DELMIGK S
KEY CLASS UPDATE MODKCNM S
KEY CLASS SELECT VERKC N
KEY CLASS DELETE DELKC S
KEY CLASS INSERT INSKC S
KEY CLASS MEMBER SELECT VERTKCM S
KEY CLASS MEMBER DELETE DELAKCM S
KEY CLASS MEMBER SELECT DRPMGKM N
KEY CLASS MEMBER DELETE DELKCM S
KEY CLASS MEMBER INSERT INSKCM S
OWNED ATTRIBUTE SELECT DRPAC N
-OWNEDATTRIBUTE SELECT VEROAC N
OWNED ATTRIBUTE INSERT INSOAC S
RELATION CLASS SELECT GETRCID N
RELATION CLASS SELECT KCINH S
VIEWQUALXREF SELECT VERVWQU N

ALTER FIELD AUC ST MAPPING SELECT FNDASA N
DATA BASE SELECT VERDBAS N
DATAFIELD SELECT RETRFLD S
DATAFIELD DELETE DELDFL3 S
DATAFIELD INSERT INSTFLD S
DATA FIELD UPDATE MODYFLD S
DATAFIELD USAGE SELECT DELDBDF N
DESCTEXT DELETE DELTEXT S
DF PARM SELECT VERDFPA N
DF SET LINKAGE SELECT VERDSL3 N
DF-SET-LINKAGE DELETE DELDSL3 S
ECRTUD- SELECT VERMUNI N
PROJECTDATA
FIELD SELECT VERMPDF N
RC BASED REC SET SELECT VERRCBS N
RECORD SET DELETE DELRST3 S
RECORD-TYPE SELECT VERRT N
SET TYPE MEMBER DELETE DELSTM3 S
USER _DEDATA_
TYPE SELECT VERDTYP N

ALTER HOST DBMS ON HOST INSERT INSDBH N
DBMS ON HOST SELECT VERDBH N
DBMS ON HOST DELETE DELDBH N
IISS DBMS SELECT VERDBMS N
IISSHOST SELECT VERHST N

B-4

DS 620341100
30 September 1990

(S=SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)
---------------- ----------------- ------ ---------- -------

ALTER MAP ATTRIBUTE CLASS SELECT VERTAG N
ATTRIBUTE-USE CL SELECT VERTAG N
ATTRIBUTE-USE-CL SELECT VERAUC N
AUC IS MAPPING DELETE DELlAIM N
AUC IS MAPPING MODIFY ALTAISM N
AUC IS MAPPING SELECT VERASET N
AUCIS MAPPING SELECT VERAISM N
AUC IS MAPPING INSERT INSAISM N
AUC IS MAPPING SELECT CHKAUCV N
AUC IS MAPPING SELECT VERAIMR N
AUCIS-MAPPING SELECT VERAPDF N
AUC IS MAPPING SELECT SELAISM N
AUCIS-MAPPING SELECT CHKHPRT N
AUC IS MAPPING MODIFY MODAISM N
AUC IS MAPPING SELECT VOMAPS N
AUC ST MAPPING INSERT INSAUCS N
AUC ST MAPPING SELECT FNDASA N
AUC ST MAPPING SELECT CHKAUCV N
AUC ST MAPPING SELECT FNDASM N
AUC ST MAPPING SELECT VOMAPS N
AUC ST MAPPING SELECT CHKSTMP N
AUC ST MAPPING SELECT VERASET N
AUC ST MAPPING DELETE DELlASM N
AUC ST MAPPING MODIFY UPDAUCS N
DATA BASE SELECT VERDFID N
DATABASE SELECT VERDTFL N
DATABASE SELECT VERDB N
DATA FIELD SELECT VERDFID N
DATAFIELD SELECT VERMAPD N
DATA FIELD SELECT VERDTFL N
DISTRIBUTED RULES SELECT VERRULE N
DISTRIBUTED RULES MODIFY UPDRULE N
EC RT MAPPING SELECT ECRTALL N
EC RT MAPPING DELETE ALTIERT N
ELEMENTARYDATA_
FIELD SELECT GETDTN N
ENTITY CLASS SELECT VERENT N
ENTITYNAME SELECT VERTAG N
ENTITY-NAME SELECT VERENT N
HORIZONTAL PART SELECT VERHZP N
HORIZONTAL PART SELECT VERHPDF N
HORIZONTALPART SELECT VERHPST N
HORIZONTAL-PART SELECT CHKHPRT N
PROJECT DATA
FIELD SELECT FNDPDF N
PROJECT DATA
FIELD INSERT INSPDF N
PROJECT DATA
FIELD DELETE DEL1PDF N
PROJECT DATA
FIELD SELECT VERAPDF N
RCBASEDRECSET SELECT VERRCBS N

B-5

DS 620341100
30 September 1990

(S=SQL

COMMAND TABLE NAME FUNCTI MODULE N=NDML)

ALTER MAP RC_BASEDRECSET SELECT VERRCMP N

RC BASED REC SET INSERT INSRCRS S
RC-BASED-RECSET DELETE DELIRCS S
RC BASED RECSET SELECT FNDRC M N
RECORD SET SELECT VERHPST N
RECORD SET SELECT VOMAPS N
RECORD SET SELECT VERSMS N
RECORD TYPE SELECT VERHPDF N
RECORD TYPE SELECT VERDTFL N
RECORD-TYPE SELECT VERHPST N
RELATION CLASS SELECT VERRC N
SET TYPE MEMBER SELECT FNDIMEM N
USER DEF-DATA_
TYPE SELECT VERTAG N
USER DEF DATA_
TYPE SELECT VERDTYP N

ALTER MODEL MODEL CLASS SELECT VERMOD N
MODELCLASS MODIFY UPDMOD S

ALTER MODULE MODULE PARAMETER SELECT VERAPRM N
MODULE-PARAMETER DELETE DELAPRM N
MODULE-PARAMETER SELECT SELPARM N
MODULE-PARAMETER INSERT INSPARM N
MODULE-PARAMETER DELETE DELPARM N
SOFTWAREMODULE MODIFY UPDSMOD N
SOFTWARE MODULE SELECT VERSMOD N
USER DEF DATA_
TYPE SELECT VERDTYP N

ALTER PARTITION DATA BASE SELECT VERDBRT N
ENTITY CLASS SELECT VERECN N
ENTITY NAME SELECT VERECN N
HORIZONTALPART SELECT VERHPN N
HORIZONTAL PART INSERT INSPART N
HORIZONTAL PART DELETE DELHPN N
HORIZONTAL PART SELECT VERPART N
MODELCLASS SELECT VERECN N

B-6

DS 620341100
30 September 1990

(S=SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)
----------------------- ----------------- ------ ---------- -------

ALTER PSB DBMS ON HOST SELECT VERDBH N
IISS HOST SELECT VERHST N
IISS PSB SELECT VERPSB N
IISSPSB MODIFY UPD1PSB N

ALTER RECORD AUC ST MAPPING SELECT FNDASA N
DATA BASE SELECT VERDBAS N
DATABASE AREA INSERT INSAREA N
DATABASE AREA SELECT VERAREA N
DATA-BASE-AREA INSERT INSDAA N
DATA-FI ELD SELECT RETRFLD S
DATA FIELD DELETE DELDFL3 S
DATA FIELD DELETE DELFLDA S
DATAFIELD UPDATE MODFLD S
DATAFIELD INSERT INSFLD S
DATA FIELD USAGE SELECT VERDFUS N
DB AREA
ASSIGNMENT DELETE DELAAA N
DB AREA
ASSIGNMENT SELECT VERDBAA N
DESC TEXT DELETE DELTEXT S
DF PARM SELECT VERDFPA N
DF SET LINKAGE SELECT VERDSL3 N
DF-SET-LINKAGE DELETE DELDSL3 S
ECRTUD- SELECT VERMUNI N
PROJECTDATA
FIELD SELECT VERMPDF N
RC BASED REC SET SELECT VERRCBS N
RECORD SET DELETE DELRST3 S
RECORD-TYPE SELECT VERRT N
SET TYPE MEMBER DELETE DELSTM3 S
USER DEF-DATA_
TYPE SELECT VERDTYP N

ALTER RELATION ATTRIBUTE USE CL SELECT ADDMIG N
ATTRIBUTE-USE-CL INSERT INSAUC S
ATTRIBUTE-USE-CL DELETE DELAUCL S
ATTRIBUTE-USECL SELECT VERAUC N
AUC CONSTRAINT DELETE DELACON N
COMPLETE RELATION SELECT VERRCC N
COMPLETE-RELATION DELETE DELCMPR S
COMPLETE-RELATION INSERT INSCRC S
CONSTRAINT_INPUT DELETE DELCONI N
DESCTEXT DELETE DELTEXT S

B-7

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE (N=NDML)

ENTITY CLASS SELECT DELMTKC N
ENTITY CLASS SELECT VERENT N
IISS KEYWORD SELECT VERKW N
IISS KEYWORD INSERT INSKW S
INHERITED ATT USE SELECT DLMIGRC S
INHERITED ATTUSE DELETE DELIAUC S
KEY CLASS SELECT VERKC N
KEY CLASS SELECT DELMTKC S
KEY CLASS DELETE DELKC S
KEY CLASS MEMBER SELECT ADDMIG N
KEY CLASS MEMBER DELETE DELKCMT S
KEY CLASS MEMBER SELECT DRPMGRC N
KEY CLASS MEMBER SELECT DELMTKC S
RC REYWORD SELECT ADDKWR N
RC-KEYWORD INSERT INSKWRC S
RCKEYWORD DELETE DELKWRC S
RELATION CLASS SELECT GETCARD N
RELATION CLASS SELECT VERRC N
RELATION CLASS INSERT UPDTRC S
VIEW_QUALXREF SELECT VERVWQU N

ALTER UNION DATA BASE SELECT VERDB N
DATA BASE SELECT VERDF N
DATAFIELD SELECT VERDF N
DATA FIELD SELECT VERUDT N
DATA FILED SELECT VERDFID N
DISTRIBUTEDRULES DELETE DRPRULE N
ECRTUD SELECT SELURT N
ECRTUD INSERT INSUNIN N
ECRTUD SELECT SELUNIN N
ECRTUD SELECT VERUNIN N
ECRTUD DELETE DELUNIN N
EC RT MAPPING DELETE DRPECRT N
EC-RT-MAPPING DELETE DELlERT N
ECRT MAPPING SELECT ECRTALL N
ELEMENTARY DATA
FIELD SELECT VERUDT N
ENTITY CLASS SELECT VERECN N
ENTITY NAME SELECT VERECN N
MODEL CLASS SELECT VERECN N
RECORD TYPE SELECT VERDF N
RECORD TYPE SELECT VERRT N
USER DEF DATA_
TYPE SELECT VERUDT N

B-8

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)
----------------------- ----------------- ------ ---------- -------

CHECK MODEL ATTRIBUTE CLASS SELECT CHKATT N
ATTRIBUTE USE CL SELECT CHKATT N
COMPLETE RELATION SELECT VERRCC N
ENTITYCLASS SELECT CHKLOOP S
ENTITY CLASS SELECT GETECS N
ENTITY NAME SELECT RETRECP N
ENTITY-NAME SELECT GETECS N
KEY CLASS SELECT CHKKEYS S
KEY CLASS MEMBER SELECT CHKKEYS S
MODEL CLASS SELECT CHKLOOP S
MODEL-CLASS SELEC VERMOD N
OWNED -ATTRIBUTE SELECT CHKATT N
RELATION CLASS SELECT CHKREL N
RELATION CLASS SELECT TLOOPCK S
RELATION CLASS SELECT BLOOPCK S
RELATION-CLASS SELECT CHKLOOP S

COMBINE ENTITY AC KEYWORD SELECT GENAKW N
ATTRIBUTE CLASS SELECT CMBOA N
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT CMBOA N
ATTRIBUTE NAME SELECT CMBACAL N
ATTRIBUTENAME SELECT VERATT N
ATTRIBUTE USE CL SELECT BLKCL1 N
ATTRIBUTE-USE-CL SELECT SELIAUC S
COMPLETE RELATION SELECT VERRCC N
DESC TEXT SELECT GENDESC N
DOMAIN CLASS SELECT CMBOA N
EC KEYWORD SELECT CMBEKW N
EC KEYWORD SELECT VERKWE N
ENTITY CLASS SELECT CMBALI N
ENTITY CLASS SELECT VERENT N
ENTITY CLASS SELECT SELIAUC S
ENTITY CLASS SELECT BLKCL1 N
ENTITY-NAME SELECT VERENT N
ENTITY-NAME SELECT SELECNM N
ENTITY-NAME SELECT VERALI N
ENTITY-NAME SELECT CMBALI N
IISS KEYWORD SELECT CMBRKW N
IISS KEYWORD SELECT VERKWE N
IISS KEYWORD SELECT CMBEKW N
IISS KEYWORD SELECT GENAKW N
IISS KEYWORD SELECT VERKWR N
INHERITEDATTUSE SELECT SELIAUC S
KEYCLASS SELECT BLKCL1 N

B

B-9

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

KEY CLASS MEMBER SELECT BLKCL1 N
MODEL CLASS SELECT VERMOD N
OWNED ATTRIBUTE SELECT CMBOA N
RC KEYWORD SELECT CMBRKW N
RCKEYWORD SELECT VERKWR N
RELATION CLASS SELECT DEPFROM N
RELATION CLASS SELECT VERRC N
RELATION CLASS SELECT SELRCNM N
RELATION-CLASS SELECT INDFROM N

COMPARE MODEL AC KEYWORD SELECT RETACKW N
ATTRIBUTE CLASS SELECT RETRACI N
ATTRIBUTE NAME SELECT RETRAC1 N
ENTITY CLASS SELECT RETREC1 N
ENTITYCLASS SELECT VERENT N
ENTITY-CLASS SELECT RETECKW N
ENTITY-CLASS SELECT RECKW2 N
ENTITY CLASS SELECT RELKW N
ENTITY-NAME SELECT RETREC1 N
ENTITY NAME SELECT RETRECP N
ENTITY-NAME SELECT VERENT N
IISS KEYWORD SELECT RETRCKW N
IISS-KEYWORD SELECT RETACKW N
IISS KEYWORD SELECT RETECKW N
MODET CLASS SELECT VERMOD N
RC KE-0RD SELECT RETRCKW N
RCKEYWORD SELECT RRCKW2 N
RELATION CLASS SELECT RETRCKW N
RELATION CLASS SELECT RRCKW2 N
RELATION-CLASS SELECT GETRCID N

COPY ATTRIBUTE AC KEYWORD SELECT WRTACKW N
AC KEYWORD INSERT INSKWAC S
ACKEYWORD SELECT GENAKW N
ATTRIBUTE CLASS SELECT VERACNM N
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT WRTANAM N
ATTRIBUTE NAME SELECT WRTALI N
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE NAME SELECT VERACNM N
ATTRIBUTE-NAME SELECT FCOPATT N
DESC TEXT- SELECT GENDESC N
DOMAIN CLASS SELECT VERACNM N
IISS KEYWORD SELECT GENAKW N
MODELCLASS SELECT VERMOD N

B-10

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

COPY DATABASE DATA BASE SELECT ALLDB N
DATA BASE SELECT VERDBAL N
DATA-BASE AREA SELECT VERDBA N
DATA-FIELD SELECT RETRFLD S
DB AREA
ASSIGNMENT SELECT SELDBAA N
DB PASSWORD SELECT VERPASS N
DESC TEXT SELECT GENDESC N
DF SET LINKAGE SELECT GETDFSL N
PSB PCB SELECT VERPCB N
RECORD SET SELECT ALLSET N
RECORDTYPE SELECT ALLREC N
SCHEMA-NAMES SELECT VERSCH N
SETTYPEMEMBER SELECT GETMEMB N

COPY DBMS DATA BASE SELECT SELDB N
DATA-BASEAREA SELECT VERDBA N

DATA FIELD SELECT RETRFLD S
DBMS ON HOST SELECT SELHOST N
DB AREA-
ASSIGNMENT SELECT SELDBAA N
DB PASSWORD SELECT VERPASS N
DESC TEXT SELECT GENDESC N
DF SET LINKAGE SELECT GETDFSL N
IISS DBMS SELECT ALLDBMS N
IISS-DBMS SELECT VERDBMS N
PSB PCB SELECT VERPCB N
RECORD SET SELECT ALLSET N
RECORDTYPE SELECT ALLREC N
SCHEMA-NAMES SELECT VERSCH N
SET TYPE MEMBER SELECT GETMEMB N

COPY DESC TYPE DESCRIPTION TYPE SELECT SELDSTP N
DESCRIPTION-TYPE SELECT VERDSTP N

COPY DESCRIPTION ATTRIBUTECLASS SELECT VERATT '4

DATA BASE SELECT VERDB N
DATAFIELD SELECT VERDFLD N
DATA ITEM SELECT VERDI N
DESC-TEXT SELECT GENDESC N
DESC-TEXT SELECT SELDESC N
DESC-TEXT SELECT GENIDSr N
DESC TEXT SELECT SELIDSC N
DESC-TEXT INSERT INSDESC N
DOMAINCLASS SELECT VERDOM N
ENTITYCLASS SELECT VLRENT N

B-11

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

IISS HOST SELECT VERHST N
IISS KEYWORD SELECT VERKW N
MODEL CLASS SELECT VERMOD N
RECORD SET SELECT VERRSET N
RECORD TYPE SELECT VERRT N
USER DEF DATA
TYPE SELECT VERUDTN N
USERVIEW SELECT VERVIEW N

COPY DOMAIN DESC TEXT SELECT GENDESC N
DOMAIN CLASS SELECT ALLDOM N
DOMAIN RANGE SELECT ALLRNG N
DOMAIN VALUE SELECT ALLVALU N
USER DEF DATA
TYPE SELECT ALLD N

COPY ENTITY AC KEYWORD SELECT COPAKW N
AC KEYWORD SELECT WRTACKW N
ATTRIBUTE CLASS SELECT COPOA N
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE CLASS INSERT INSAC S
ATTRIBUTE CLASS SELECT COPYAC N
ATTRIBUTE NAME SELECT COPOA N
ATTRIBUTE NAME SELECT WRTALI N
ATTRIBUTE-NAME SELECT COPAALI N
ATTRIBUTE-NAME INSERT INSACNM S
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE USE CL SELECT BLKCL1 N
ATTRIBUTE USECL SELECT SELIKEY N
ATTRIBUTE USE CL SELECT SELKCM N
ATTRIBUTE USECL INSERT INSAUC S
ATTRIBUTE USECL SELECT COPYAC N
ATTRIBUTE USE CL SELECT DPKCLST S
ATTRIBUTE-USE CL SELECT SELIAUC S
COMPLETE RELATION SELECT VERRCC N
DESC TEXT SELECT WRTDESC S
DESC TEXT INSERT WRTDESC S
DESCTEXT SELECT GENDESC N
DOMAYN CLASS SELECT COPOA N
EC KEYWORD SELECT COPEKW N
EC-KEYWORD SELECT WRTECKW N
ENTITY CLASS INSERT INSEC S
ENTITYCLASS SELECT VERENT N
ENTITYCLASS SELECT COPVALI N
ENTITYCLASS SELECT SELIAUC S
ENTITYCLASS SELECT BLKCL1 N
ENTITYCLASS SELECT COPYAC N

B-12

DS 620341100
30 September 1990

(S=SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)

ENTITY NAME SELECT COPVALI N
ENTITYNAME SELECT DEPENT S
ENTITYNAME SELECT VERENT N
ENTITYNAME SELECT ECSTRUC S
ENTITYNAME SELECT DEPEC S
ENTITY-NAME SELECT WRTENAM N
ENTITY NAME SELECT SELECNM N
IISS KEYWORD SELECT COPEKW N
IISS KEYWORD SELECT COPAKW N
IISS KEYWORD SELECT COPRKW N
INHERITED ATT USE SELECT SELIAUC S
INHERITED-ATT-USE SELECT SELIKEY N
INHERITED-ATTUSE SELECT VERITAG N
KEY CLASS SELECT BLKCL1 N
KEY-CLASS INSERT INSKC S
KEY-CLASS SELECT KEYLOOK N

COPY ENTITY KEY CLASS SELECT GENKEY N
KEY CLASS SELECT DPKCLST S
KEY CLASS MEMBER SELECT BLKCL1 N
KEY CLASS-MEMBER SELECT SELIKEY N
KEY CLASS-MEMBER SELECT DPKCLST S
KEY CLASS-MEMBER SELECT KEYLOOK N
KEY CLASS MEMBER SELECT VERKCM N
KEYCLASS-MEMBER INSERT INSKCM S
KEY CLASS-MEMBER SELECT SELKCM N
MODEL CLASS SELECT VERMOD N
OWNEDATTRIBUTE SELECT VEROAC N
OWNED_ATTRIBUTE SELECT COPOA N
OWNED_ATTRIBUTE INSERT INSOAC S
OWNED ATTRIBUTE SELECT COPYAC N
RC KEYWORD SELECT COPRKW N
RELATION CLASS SELECT DEPENT S
RELATION-CLASS SELECT DPKCLST S
RELATION-CLASS SELECT BLRCKC1 S
RELATION CLASS SELECT LVLCHKI S
RELATION-CLASS SELECT DEPREL S
RELATION-CLASS SELECT ECSTRUC S
RELATION-CLASS SELECT DEPEC S
RELATION CLASS SELECT DEPKCM N
RELATION CLASS SELECT GENDEP N
RELATION-CLASS SELECT GENIND N
RELATION-CLASS SELECT SELRELC N

B-13

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)
-- ------------ ----------------- ---------------- -------

COPY HOST DESC TEXT SELECT GENDESC N
IISS-HOST SELECT VERHST N
IISS-HOST SELECT SELHSTS N
IISS-PSB SELECT GENPSB N

COPY MAP ATTRIBUTE USECL SELECT ALLMREC N
ATTRIBUTE-USE-CL SELECT SELAPRM N
ATTRIBUTE-USE-CL SELECT SELMTAG N
ATTRIBUTE USE CL SELECT SELREC N
AUC IS MAPPING SELECT ALLMREC N
AUC IS MAPPING SELECT SELMREC N
AUC IS MAPPING SELECT GENCMPX N
AUC-IS-MAPPING SELECT SEL24TAG N
AUC PARM SELECT GENCMPX N
AUC-PARM SELECT SELAPRM N
AUC-ST MAPPING SELECT GENTOST N
CONST PARM SELECT GTCNTPR N
DATA BASE SELECT ALLMREC N
DATA-BASE SELECT ALLRSET S
DATA BASE SELECT SELDFPM N
DATA BASE SELECT VERREC N
DATA-BASE SELECT GENECRT N
DATA-BASE SELECT ALIMREL S
DATA-BASE SELECT SELRMAP N
DATA-BASE SELECT SELSET S
DATA-BASE SELECT VERDB N
DATA BASE SELECT SELRTPM N
DATA-BASE SELECT SELMTAG N
DATA-BASE SELECT SELDBNM N
DATA FIELD SELECT RETRFLD S
DATA-FIELD SELECT GENCRUN N
DATA-FIELD SELECT SELDFPM N
DESC-TEXT SELECT GENDESC N
DF PARM SELECT SELDFPM N
DISTRIBUTED RULES SELECT VERRULE N
DISTRIBUTEDRULES SELECT VERRULE N
DI PARM SELECT SELDI N
ECATUD SELECT GENCRUN N
ECRTUD SELECT GENEUN N
EC RT MAPPING SELECT GENCREC N
EC RT MAPPING SELECT GENECRT N
ENTITY CLASS SELECT VERENT N
ENTITYNAME SELECT ALLMREL S
ENTITYNAME SELECT SELPEC N
ENTITYNAME SELECT ALLMENT N
ENTITY-NAME SELECT ALLMREC N

B-14

DS 620341100
30 September 1990

(S-SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)

ENTITYNAME SELECT SELSET S
ENTITY NAME SELECT SEIREC N
ENTITYNAME SELECT ALLRSET S
ENTITYNAME SELECT SELAPRM N
ENTITYNAME SELECT ALLECRT N

COPY MAP ENTITY NAME SELECT VERENT N
ENTITYNAME SELECT SELECNM N
ENTITY NAME SELECT GENCREC N
HORIZONTAL PART SELECT GENCRPT N
HORIZONTAL PART SELECT GENEHP N
MODEL CLASS SELECT ALLMENT N
MODEL CLASS SELECT ALLECRT N
MODULE PARAMETER SELECT GTCNTPR N
MODULEPARAMETER SELECT SELAPRM N
MODULE PARAMETER SELECT SELDFPM N
MODULE PARAMETER SELECT SELRTPM N
PROJECT DATA_
FIELD SELECT GENTODF N
RC BASED REC SET SELECT ALLMREL S
RCBASED-REC-SET SELECT SELRMAP N
RCBASED-REC-SET SELECT SELSET S
RC BASED-REC-SET SELECT ALLRSET S
RECORD SET - SELECT VERRSET N
RECORDTYPE SELECT ALLMREC N
RECORDTYPE SELECT VERRTNO N
RECORDTYPE SELECT SELMTAG N
RECORDTYPE SELECT GENECRT N
RECORDTYPE SELECT VERREC N
RECORDTYPE SELECT VERRT N
RECORD TYPE SELECT SELRTPM N
RECORDTYPE SELECT GENEUN N
RECORD-TYPE SELECT GENTOST N
RECORD-TYPE SELECT SELMREC N
RELATION CLASS SELECT ALLMREL S
RELATION-CLASS SELECT ALLRSET S
RELATION CLASS SELECT VERRC N
RELATION-CLASS SELECT SELRMAP N
RELATION-CLASS SELECT SELSET S
RTPARM SELECT SELRTPM N

B-15

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

COPY MODEL AC KEYWORD SELECT GENAKW N
ATTRIBUTE CLASS SELECT MGENOA N
ATTRIBUTE CLASS SELECT MODATT N
ATTRIBUTE CLASS SELECT MODOATT N k

ATTRIBUTE NAME SELECT MGENOA N
ATTRIBUTE NAME SELECT MODOATT N
ATTRIBUTE-NAME SELECT MODATT N
ATTRIBUTE-USE CL SELECT BLKCLST N
ATTRIBUTE-USE-CL SELECT SELIKEY N
ATTRIBUTE-USE-CL SELECT SELIAUC S
ATTRIBUTE-USE-
CLASS SELECT MODOATT N
COMPLETE RELATION SELECT VERRCC N
DESC TEXT SELECT GENDESC N
DOMAIN CLASS SELECT MODOATT N
DOMAIN CLASS SELECT MODATT N
EC KEYWORD SELECT GENEKW N
EC-KEYWORD SELECT COPEKW N
ENTITYCLASS SELECT BLKCLST N
ENTITYCLASS SELECT MODENT N
ENTITYCLASS SELECT VERENT N
ENTITY CLASS SELECT TOPNODE S
ENTITYCLASS SELECT SELIAUC S
ENTITY CLASS SELECT BLRCKC S
ENTITY CLASS SELECT MODREL S
ENTITYNAME SELECT MODENT N
ENTITY NAME SELECT VERENT N
IISS KEYWORD SELECT GENAKW N
IISS KEYWORD SELECT GENEKW N
IISS-KEYWORD SELECT COPEKW N
IISS KEYWORD SELECT GENRKW N
INHERITED ATT USE SELECT SELIKEY N
INHERITED_ATTUSE SELECT SELIAUC S
KEY CLASS SELECT MODKC N
KEY CLASS MEMBER SELECT MODKC N
KEY CLASS MEMBER SELECT SELIKEY N
MODEL_CLASS SELECT COPTOPE S
MODEL_CLASS SELECT VERMOD N
MODEL CLASS SELECT BLRCKC S
MODEL-CLASS SELECT MODREL S
OWNED ATTRIBUTE SELECT MGENOA N
OWNED-ATTRIBUTE SELECT MODATT N
OWNED-ATTRIBUTE SELECT MODOATT N
RC KEYWORD SELECT GENRKW N
REEATIONCLASS SELECT TOPNODE S
RELATION CLASS SELECT MODREL S
RELATION-CLASS SELECT BLRCKC S

B-16

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

COPY MODULE MODULE PARAMETER SELECT CPY1SMD N
SOFTWARE MODULE SELECT VERSMOD N
SOFTWARE-MODULE SELECT SELMODS N

COPY RECORD DATA FIELD SELECT RETRFLD S
DB AREA
ASSIGNMENT SELECT SELDBAA N
RECORD TYPE SELECT ALLREC N
RECORDTYPE SELECT VERRT N

COPY SET DF SET LINKAGE SELECT GETDFSL N
RECORD SET SELECT ALLSET N
RECORD SET SELECT VERDBST N
SETTYPEMEMBER SELECT GETMEMB N

COPY VIEW ATTRIBUTE USE CL SELECT GTAUCPR N
ATTRIBUTE USE CL SELECT WRTSLCT N
ATTRIBUTE USE CL SELEC'T SELTGEC N
AUC PARM SELECT GTAUCPR N
CONST PARM SELECT GTCNTPR N
DATA _TEM SELECT GENALG N
DATA ITEM SELECT WRTDITM N
DATA ITEM SELECT GTDIPR N
DESC TEXT SELECT GENDESC N
DI PARM SELECT GENALG N
DI PARM SELECT GTDIPR N
ENTITY NAME SELECT GTAUCPR N
ENTITY NAME SELECT SELECXR N
MODULE PARAMETER SELECT GTAUCPR N
MODULE PARAMETER SELECT GTDIPR N
MODULE PARAMETER SELECT GTCNTPR N
PROJECT DATA ITEM SELECT WRTSLCT N
USER VIEW SELECT GTDIPR N
USER VIEW SELECT VERVIEW N
USER VIEW SELECT GTVIEWS N
VIEW EC XREF SELECT SELECXR N
VIEWQUALIFY_
CRITERIA SELECT WRTWHCL N

B-17

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

CREATE ALIAS ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE NAME INSERT INSACNM S
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
ENTITY-NAME INSERT INSECNM S

CREATE ATTRIBUTE AC KEYWORD SELECT ADDKWA N
AC KEYWORD INSERT INSKWAC S
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE CLASS INSERT INSAC S
ATTRIBUTE NAME SELECT VERATT N
ATTRIBUTE-NAME INSERT INSACNM S
DOMAIN CLASS SELECT VERDOM N
EC KEYWORD SELECT ADDKWE N
EC KEYWORD INSERT INSKWEC S
IISS KEYWORD SELECT VERKW N
IISS KEYWORD INSERT INSKW S
RC KEYWORD SELECT ADDKWR N
RC KEYWORD INSERT INSKWRC S

CREATE DESCRIPTION DESCRIPTION TYPE SELECT VERDSCT N
DESCRIPTIONTYPE INSERT INSDSCT N

CREATE DOMAIN DATA TYPE SELECT VERTYP N
DOMAIN CLASS SELECT VERDOM N
DOMAINCLASS INSERT INSDOM N
DOMAINVALUE INSERT INSVAL N
DOMAINVALUE INSERT INSRNG N
MODULE PARAMETER INSERT INSPARM N
MODULE PARAMETER SELECT VERMPDT N
SOFTWARE MODULE INSERT INSSMOD N
USER DEF-DATA_
TYPE SELECT VERSDT N
USER DEF DATA_
TYPE SELECT VERDTD N
USER DEF DATA_
TYPE SELECT VERDT N
USER DEF DATA_
TYPE INSERT INSDT N
VERIFMODULE INSERT INSVMOD N

B-18

DS 620341100
30 September 1990

(S=SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)
------------------------- ----------------- ------ ---------- -------

CREATE ENTITY ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE USE CL SELECT VERAUC N
ATTRIBUTE-USE-CL INSERT INSAUC S
EC KEYWORD SELECT ADDKWE N
ECKEYWORD INSERT INSKWEC S
ENTITY CLASS SELECT VERENT N
ENTITYCLASS INSERT INSEC S
ENTITY-NAME SELECT VERENT N
ENTITY NAME INSERT INSECNM S
IISSKEYWORD SELECT VERKW N
IISS KEYWORD INSERT INSKW S
KEY_CLASS SELECT VERKC N
KEYCLASS INSERT INSKC S
KEY CLASS MEMBER INSERT INSKCM S
OWNED ATTRIBUTE INSERT INSOAC S
OWNEDATTRIBUTE SELECT VEROAC N

CREATE MAP ATTRIBUTE CLASS SELECT VERTAG N
ATTRIBUTE-USE CL SELECT VERTAG N
ATTRIBUTE-USE-CL SELECT VERAUC N
AUC IS MAPPING SELECT CHKAUCV N
AUCIS-MAPPING SELECT VOMAPS N
AUC-IS-MAPPING SELECT VERAISM N
AUCIS MAPPING SELECT VERAIMR N
AUC IS MAPPING INSERT INSAISM N
AUC IS MAPPING SELECT VERAIM N
AUC ST MAPPING SELECT CHKSTMP N
AUC ST MAPPING SELECT CHKAUCV N
AUCST MAPPING INSERT INSAUCS N
AUC ST MAPPING SELECT FNDASA N
AUC ST MAPPING SELECT VOMAPS N
COMPONENTDATA_
FIELD SELECT VERMAPD N
DATABASE SELECT VERDTFL N
DATA BASE SELECT VERDFID N
DATABASE SELECT VERDB N
DATAFIELD SELECT VERMAPD N
DATAFIELD SELECT VERDTFL N
DATA FIELD SELECT VERDFID N
DISTRIBUTED RULES SELECT VERRULE N
DISTRIBUTEDRULES INSERT INSRULE N
DISTRIBUTED-RULES INSERT INSRULE N
EC RT MAPPING SELECT VERECRT NEC RTMAPPING INSERT INSECRT NEC-RTMAPPING SELECT VERECRT N

B-19

DS 620341100
30 September 1990

(S-SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

EC RT MAPPING INSERT INSECRT N
ELEMENTARYDATA_
FIELD SELECT GETDTN N
ENTITY CLASS SELECT VERENT N
ENTITY-NAME SELECT VERTAG N
ENTITYNAME SELECT VERENT N
HORIZONTAL PART SELECT VERHPDF N
HORIZONTALPART SELECT VERHPST N
HORIZONTAL-PART SELECT VERHZP N
PROJECTDATA_
FIELD SELECT FNDPDF N
PROJECTDATA
FIELD INSERT INSPDF N
RC BASED REC SET SELECT VERRCBS N
RC-BASEDREC-SET SELECT VERRCMP N
RC BASED RECSET INSERT INSRCRS S
RECORD SET SELECT VERHPST N
RECORD SET SELECT VOMAPS N
RECORD SET SELECT VERSMS N
RECORDTYPE SELECT VERHPDF N
RECORD TYPE SELECT VERDTFL N
RECORD TYPE SELECT VERHPST N
RELATIONCLASS SELECT VERRC N

CREATE MAP SET TYPE MEMBER SELECT FND1MEM N
USER_ DEF-DATA_
TYPE SELECT VERTAG N
USER DEFDATA_
TYPE SELECT VERDTYP N

CREATE MODEL MODEL CLASS SELECT VERMOD N
MODELCLASS INSERT INSMOD S

CREATE PARTITION DATA BASE SELECT VERDBRT N
ENTITY CLASS SELECT VERECN N
ENTITY-NAME SELECT VERECN N
HORIZONTAL PART INSERT INSPART N
HORIZONTALPART SELECT VERPART N
HORIZONTALPART SELECT VERHPN N
MODELCLASS SELECT VERECN N

B-20

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

CREATE RELATION ATTRIBUTEUSECL SELECT VERAUC N
ATTRIBUTE-USE-CL SELECT VERKCMG N
ATTRIBUTE USE CL SELECT ADDMIG N
ATTRIBUTE-USE-CL INSERT INSAUC S
COMPLETE_
RELATION SELECT VERRCC N
COMPLETE_
RELATION INSERT INSCRC S
IISS KEYWORD INSERT INSKW S
INHERITEDATT_
USE INSERT INSIAUC S
KEY CLASS SELECT VERKC N
KEY CLASS MEMBER SELECT ADDMIG N
KEY CLASS MEMBER SELECT VERKCMG N
RC KEYWORD SELECT ADDKWR N
RC KEYWORD INSERT INSKWRC S
RELATION CLASS INSERT INSRC S
RELATION-CLASS SELECT VERRC N

CREATE UNION DATA BASE SELECT VERDB N
DATA BASE SELECT VERDF N
DATAFIELD SELECT VERDF N
DATA FIELD SELECT VERUDT N
DATA FIELD SELECT VERDFID N
ECRTUD SELECT VERUNIN N
ECRTUD INSERT INSUNIN N
ELEMENTARYDATA_
FIELD SELECT VERUDT N
ENTITY CLASS SELECT VERECN N
ENTITY NAME SELECT VERECN N
MODEL CLASS SELECT VERECN N
RECORD TYPE SELECT VERDF N
RECORD TYPE SELECT VERRT N
USER DEFDATA_
TYPE SELECT VERUDT N

B-21

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

CREATE VIEW ATTRIBUTE CLASS SELECT ALLVIEW N
ATTRIBUTE-CLASS SELECT VERTAG N
ATTRIBUTE CLASS SELECT GETDOM N
ATTRIBUTE-CLASS SELECT GTDTTYP N
ATTRIBUTE USE CL SELECT ALLVIEW N
ATTRIBUTE-USE-CL SELECT GETDOM N
ATTRIBUTE-USE-CL SELECT VERTAG N
ATTRIBUTE-USE-CL SELECT GTDTTYP N
COMPLETE RELATION SELECT VALVWRC N
DATA ITEM INSERT INSDI N
ENTITY CLASS SELECT VERENT N
ENTITY-NAME SELECT VERTAG N
ENTITY-NAME SELECT SELECNM N
KEY CLASS MEMBER SELECT VALVWRC N
PROJECT DATA ITEM INSERT INSPDI N
RELATION CLASS SELECT VERRC N
RELATION CLASS SELECT VALVWRC N
USER DEF DATA_
TYPE SELECT VERSDT N
USER DEF DATA_
TYPE SELECT GTDTTYP N
USER DEF DATA_
TYPE SELECT VERDTYP N
USER DEF DATA_
TYPE SELECT VERTAG N
USER DEF DATA_
TYPE SELECT VERDTD N
USER VIEW SELECT VERVIEW N
USERVIEW INSERT INSVIEW N
VIEWEC XREF INSERT INSECRF N
VIEW-QUALIFY_
CRITERIA INSERT INSQCRF N
VIEW_QUALXREF INSERT INSQCTG N

B-22

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

----------------- ----------------- ------ ---------- -------

DEFINE ALGORITHM ATTRIBUTECLASS SELECT VERTAG N
ATTRIBUTE-USE CL SELECT VERTAG N
AUC IS MAPPING SELECT VERAIAP N
AUC IS MAPPING INSERT INSAISM N
AUC IS MAPPING SELECT VERAISM N
AUC PARM INSERT INSTGPA N
AUC PARM SELECT VERALGI N
CONST PARM INSERT INSCOPA N
DATA BASE SELECT VERDBRT N
DATA BASE SELECT VERDTFL N
DATAFIELD SELECT VERDTFL N
DATA ITEM SELECT VERDIDN N
DF PARM INSERT INSDFPA N
DI PARM INSERT INSDIPA N
ELEMENTARYDATA_
FIELD SELECT GETDTN N
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT VERTAG N
ENTITY NAME SELECT VERENT N
MODULE PARAMETER SELECT VERPARM N
RECORD TYPE SELECT VERDBRT N
RECORD TYPE SELECT VERRTNO N
RECORD-TYPE SELECT VERDTFL N
RT PARM INSERT INSRTPA N
SOFTWARE MODULE SELECT VERPARM N
USER DEF DATA_
TYPE SELECT VERTAG N
USER DEF DATA_
TYPE SELECT VERDTYP N
USERVIEW SELECT VERDIDN N

DEFINE DATABASE DATA BASE SELECT VERDB N
DATABASE INSERT INSDB N
DATABASE AREA SELECT VERAREA N
DATA BASE AREA INSERT INSAREA N
DB PASSWORD INSERT INSPWRD N
IISS DBMS SELECT VERDBMS N
IISS HOST SELECT VERHST N
IISS PSB SELECT VERDPSB N
PSB PCB INSERT INSPCB N
REUSABLE NUMBER SELECT NRGET S
SCHEMA_NAMES INSERT INSSCH N

B-23

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)
--- ----------- ----------------- ------ ---------- -------

DEFINE DBMS DBMS ON HOST INSERT INSDBH N
IISSDBMS INSERT INSDBMS N

DEFINE HOST DBMS ON HOST INSERT INSDBH N
IISS1HOST SELECT VERHST N
IISSHOST INSERT INSHST N

DEFINE MODULE MODULEPARAMETER SELECT VERAPRM N
MODULE PARAMETER INSERT INSAPRM N
SOFTWARE MODULE SELECT VERSMOD N
SOFTWARE-MODULE INSERT INSSMOD N
USER DEF_DATA_
TYPE SELECT VERDT N

DEFINE PSB DBMS ON HOST SELECT VERDBH N
IISS HOST SELECT VERHST N
IISS PSB INSERT INS1PSB N
IISSPSB SELECT VERPSB N

DEFINE RECORD DATA BASE SELECT VERDBAS N
DATA-BASE AREA INSERT INSAREA N
DATABASE-AREA SELECT VERAREA N
DATA-FIELD INSERT INSFLD S
DB AREA
ASfIGNMENT INSERT INSDAA N
RECORD TYPE SELECT VERRT N
RECORD TYPE INSERT INSRTYP S
USER DEF DATA_
TYPE SELECT VERDTYP N

B-24

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

----------------- ----------------- ------ ---------- -------

DEFINE SET DATA BASE SELECT VERDTFL N
DATA BASE SELECT VERDBAS N
DATA-FIELD SELECT VERDTFL N
DATA FIELD SELECT VERDFLD N
DF SET LINKAGE INSERT INSDSL S
EL;MENTARYDATA_
FIELD SELECT GETDTN N
RECORD SET INSERT INSRSET S
RECORDSET SELECT VERRSET N
RECORDTYPE SELECT VERDTFL N
RECORD--TYPE SELECT VERRT N
SETTYPEMEMBER INSERT INSSTM S

DESCRIBE ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE NAME SELECT VERATT N
DATA BASE SELECT VERDB N
DATA FIELD SELECT VERDFLD N
DATA ITEM SELECT VERDI N
DESCRIPTION TYPE SELECT VERDSTP N
DESC TEXT SELECT OUTDESC N
DESC TEXT INSERT RDDESC S
DESC TEXT INSERT FILEINS S
DESC TEXT INSERT RDDESC S
DESC TEXT INSERT STRINS S
DESC TEXT DELETE DELTXT S
DOMAIN CLASS SELECT VERDOM N
ENTITYCLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
IISS KEYWORD SELECT VERKW N
RECORD SET SELECT VERRSET N
RECORD-TYPE SELECT VERRT N
RELATION_CLASS SELECT VERRC N
USER DEFDATA
TYPE SELECT VERUDTN N
USERVIEW SELECT VERVIEW N

B-25

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

DROP ALGORITHM AUC IS MAPPING DELETE DLTPRFA S
AUCISMAPPING DELETE DLMTMAP S
AUC ISMAPPING DELETE DLDITAG S
AUCIS MAPPING SELECT CMPTAGS S
AUC IS MAPPING SELECT VERAISM N
AUC PARM SELECT VERALG N
COMPLEXMAPPING_
PARM DELETE DELCMP S
COMPLEXMAPPING_
PARM SELECT CMPTAGS S
COMPLEXMAPPING_
PARM DELETE DLMTMAP S
DISTRIBUTED_
RULES DELETE DRPRULE N
EC RT MAPPING DELETE DRPECRT N
EC-RT-MAPPING DELETE DELIERT N
EC RT MAPPING SELECT ECRTALL N

DROP ALIAS ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE NAME SELECT VERATT N
ATTRIBUTENAME DELETE DELECAL S
ATTRIBUTE-NAME DELETE DELACAL S
ATTRIBUTE NAME SELECT GETACAL N
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
ENTITYNAME SELECT GETECAL N

DROP ATTRIBUTE AC KEYWORD DELETE DELACKW S
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTECLASS DELETE DELAC S
ATTRIBUTE NAME SELECT VERATT N
ATTRIBUTE NAME DELETE DELACNM S
ATTRIBUTE USE CL SELECT DELOAC N
ATTRIBUTE USE CL DELETE DELAUCL S
AUC CONSTRAINT DELETE DELACON N
COMPLETE RELATION DELETE DELCMPR S
CONSTRAINT INPUT DELETE DELCONI N
DESC TEXT DELETE DELTEXT S
ENTITY CLASS SELECT DELMTKC S
INHERITED ATT USE SELECT DELMIGK S
INHERITED-ATT-USE DELETE DELIAUC S
KEY CLASS SELECT DELMTKC S
KEY-CLASS DELETE DELKC S
KEY-CLASS MEMBER SELECT DELMTKC S
KEY-CLASS-MEMBER DELETE DELKCMT S
OWNED ATTRIBUTE DELETE DELOWAC S
VIEW_ UAL_XREF SELECT VERVWQU N

B-26

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

DROP DATABASE AUC IS MAPPING SELECT VERAIMD N
DATA BASE SELECT VERDBAS N
DATA BASE DELETE DELDBS1 S
DATABASE AREA DELETE DELDBA1 S
DATA FIELD DELETE DELDFL3 S
DATA FIELDUSAGE SELECT DELDBDF N
DB AREA
ASSIGNMENT DELETE DELDAA1 S
DB PASSWORD DELETE DELPSWD S
DF SET LINKAGE DELETE DELDSL1 S
ECRTUD SELECT VERDUNI N
EC RT MAPPING SELECT VERERMD N
HORIZONTAL PART SELECT VERHORZ N
IMS SEGMENTSIZE DELETE DELISS1 S
PSB-PCB DELETE DELPCB S
RC EASED REC SET SELECT VERDBRL N
RECORD SET SELECT VERSTNO N
RECORD-SET SELECT DELDBST N
RECORD-SET DELETE DELRST2 S
RECORD SET USAGE SELECT VERRSUS N
RECORD-TYPE DELETE DELRTY1 S
RECORD -TYPE SELECT VERDUNI N
RECORD-TYPE SELECT VERAIMD N
RECORDTYPE SELECT VERERMD N
RECORD TYPE SELECT VERAIMD N
RECORD-TYPE SELECT DELDBRT N
RP MAIN SELECT VERRPM N
RP SUBROUTINE SELECT VERRPS N
SCHEMA NAMES DELETE DELSN1 S
SETTYPEMEMBER DELETE DELSTM1 S

DROP DBMS IISS DBMS SELECT VERDBMS N
IISS-DBMS DELETE DELDBMS N

DROP DESCRIPTION DESCRIPTION TYPE SELECT VERDSCT N
DESCRIPTION-TYPE DELETE DELDSCT N

B-27

DS 620341100
30 September 1990

(S=SQLCOMMAND TABLE NAME FUNCTI MODULE N=NDML)
-- ------------ ----------------- ------ ---------- -------

DROP DOMAIN ATTRIBUTE CLASS SELECT VERACDT N
DATA ITEM- SELECT VERDIDT N
DESC-TEXT DELETE DELTEXT S
DOMAYN CLASS SELECT VERDOM N
DOMAIN CLASS DELETE DELDOM N
DOMAIN-RANGE DELETE DRPRNGA N
DOMAIN--VALUE DELETE DRPVALA N
ELEMENTARY_DATA_
FIELD SELECT VERDFDT N
MODULE PARAMETER DELETE DELPARM N
SOFTWARE_MODULE DELETE DELSMOD N
USER DEF_DATA_
TYPE DELETE DELDTD N
USER_ DEFDATA_
TYPE SELECT DELDTNO N
USER DEF DATA_
TYPE SELECT DOMUSAG N
VERIF MODULE DELETE DRPVMOD N
VERIF_MODULE SELECT RETVMOD N

DROP ENTITY ATTRIBUTE USE CL SELECT DELOAC N
ATTRIBUTE-USE-CL DELETE DELAUCL S
ATTRIBUTE-USE CL SELECT FNDAUC N
AUC CONSTRAINT DELETE DELACON N
AUC ISMAPPING SELECT VERTAUC N
COMPLETE RELATION DELETE DELCMPR S
COMPLEX_-APPING_
PARM SELECT VERTAP N
CONSTRAINT INPUT DELETE DELCONI N
DESC TEXT DELETE DELTEXT S
ECRTUD SELECT VERECR N
EC CONSTRAINT DELETE DELECON N
ECKEYWORD DELETE DELECKW S
ENTITY CLASS SELECT VERENT N
ENTITYCLASS DELETE DELEC S
ENTITY CLASS SELECT DELMTKC S
ENTITY NAME SELECT VERENT N
ENTITY NAME DELETE DELECNM S
HORIZONTAL PART SELECT SELHP N
INHERITED ATT USE DELETE DELIAUC S
INHERITED--ATT-USE SELECT DELMIGK S
KEY CLASS- SELECT DELMTKC S
KEY CLASS DELETE DELKC S
KEY-CLASS MEMBER SELECT DELMTKC S
KEY-CLASS-MEMBER DELETE DELKCMT S

B-28

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

OWNED ATTRIBUTE SELECT FNDOAC N
OWNED-ATTRIBUTE DELETE DELOWAC S
PROJECT DATA ITEM SELECT VERTPDI N
RC BASED REC SET SELECT VERRCB N
RC KEYWORD DELETE DELRCKW S
RELATION CLASS SELECT DRPRCE N
RELATION-CLASS DELETE DELRC S
VIEW_QUALXREF SELECT VERVWQU N
VIEWRCCOMPONENT SELECT VERSRC N

DROP FIELD AUC ST MAPPING SELECT FNDASA N
DATA BASE SELECT VERDBAS N
DATA FIELD SELECT RETRFLD S
DATA FIELD UPDATE MODFLD S
DATA FIELD DELETE DELDFL3 S
DESC TEXT DELETE DELTEXT S
DF PARM SELECT VERDFPA N
DF-SET LINKAGE SELECT VERDSL3 N
DF SET LINKAGE DELETE DELDSL3 S
ECRTUD- SELECT VERMUNI N
PROJECT DATA_
FIELD SELECT VERMPDF N
RC BASED REC SET SELECT VERRCBS N
RECORD SET - DELETE DELRST3 S
SETTYPEMEMBER DELETE DELSTM3 S

DROP HOST IISS HOST DELETE DELHST N
IISS HOST SELECT VERHST N

DROP KEYWORD AC KEYWORD DELETE DELKWAC S
DESC TEXT DELETE DELTEXT S
EC KEYWORD DELETE DELKWEC S
IISS KEYWORD SELECT VERKW N
IISS KEYWORD DELETE DELKW S
RCKEYWORD DELETE DELKWRC S

B-29

DS 620341100

30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDHL)

DROP MAP ATTRIBUTE USE CL SELECT DRPALTG N
ATTRIBUTE USE CL SELECT VERAUC N
AUC IS MAPPING SELECT VERAISM N
AUC IS MAPPING SELECT VERRPDB N
AUC IS MAPPING DELETE DELAISM N
AUC IS MAPPING SELECT DRPSTMP N
AUC IS MAPPING SELECT DRPDFMP N
AUC IS MAPPING SELECT SELAIMP N
AUC IS MAPPING SELECT DRPALTG N
AUC IS MAPPING DELETE DELlAIM N
AUC IS MAPPING DELETE DELIPRF N
AUC IS MAPPING SELECT DRPPRFI N
AUC IS MAPPING DELETE DELAISM N
AUCSTMAPPING SELECT DRPSTMP N
AUC ST MAPPING DELETE DELASM N
AUC ST MAPPING DELETE DELlASM N
DATA BASE SELECT SELDBNM N
DISTRIBUTED RULES DELETE DRPRULE N
EC RT MAPPING SELECT ECRTALL N
EC RT MAPPING DELETE DRPECRT N
ECRT MAPPING DELETE DELlERT N
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
ENTITY NAME SELECT VERENT N
PROJECT DATA_
FIELD DELETE DELPDF N
PROJECT DATA_
FIELD DELETE DEL1PDF N
PROJECT DATA_
FIELD SELECT DRPDFMP N
RC BASED REC SET DELETE DELRCST S
RC-BASED-RECSET SELECT VERRCST N
RC BASED-REC-SET SELECT VERRCDB N
RECORD TYPE - SELECT VERRPDB N
RELATION CLASS SELECT VERRC N
RP MAIN SELECT VERRPM N
RP SUBROUTINE SELECT VERRPS N

B-30

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

DROP MODEL AC KEYWORD DELETE DELACKW S
ATTRIBUTE CLASS SELECT FNDACM N
ATTRIBUTE CLASS DELETE DELAC S
ATTRIBUTE NAME SELECT SELACNM N
ATTRIBUTE-NAME DELETE DELACNM S
ATTRIBUTE USE CL SELECT DLMDAUC N
ATTRIBUTE-USE-CL DELETE DELAUCL S
AUC CONSTRAINT DELETE DELACON N
COMPLETE RELATION DELETE DELCMPR S
CONSTRAINTINPUT DELETE DELCONI N
DESC TEXT DELETE DELTEXT S
EC CONSTRAINT DELETE DELECON N
EC KEYWORD DELETE DELECKW S
ENTITY CLASS SELECT FNDECM N
ENTITYCLASS DELETE DELEC S
ENTITY NAME SELECT SELECNM N
ENTITY NAME DELETE DELECNM S
INHERITED ATT USE DELETE DELIAUK S
KEYCLASS SELECT DELMDKC N
KEY CLASS DELETE DELKC S
KEY CLASS MEMBER DELETE DELKCMT S
MODEL CLASS SELECT VERMOD N
MODEL CLASS DELETE DELMOD S
OWNED ATTRIBUTE DELETE DELOACE S
RC KEYWORD DELETE DELRCKW S
RELATION CLASS SELECT DELMDRC N
RELATION CLASS DELETE DELRC S
VIEWQUALXREF SELECT VERVWQU N

DROP MODULE MODULE PARAMETER DELETE DELPARM N
SOFTWARE MODULE SELECT VERSMOD N
SOFTWARE-MODULE DELETE DELSMOD N

DROP PARTITION ENTITY CLASS SELECT VzRECN N
ENTITY NAME SELECT VERECN N
HORIZONTAL PART SELECT VERHPN N
HORIZONTAL PART DELETE DELHPNA N
MODELCLASS SELECT VERECN N

B-31

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

DROP PSB IISS PSB SELECT VERPSB N
IISS PSB DELETE DELPSB N

DROP RECORD AUC IS MAPPING SELECT VERAIM N
AUC ST MAPPING SELECT FNDASA N
DATA BASE SELECT VERDBAS N
DATA FIELD SELECT DELDFL2 S
DESC TEXT DELETE DELTEXT S
DF SET LINKAGE DELETE DELDSL2 S
ECRTUD SELECT SELURT N
HORIZONTAL PART SELECT VERHORZ N
RC BASED REC SET SELECT VERRCBS N
RECORD SET SELECT SELRSET N
RECORDSET DELETE DELRST2 S
RECORD SET USAGE SELECT VERRSUS N
RECORDTYPE SELECT VERRT N
RECORD TYPE DELETE DELRST2 S
SETTYPEMEMBER SELECT SELSTM N

DROP RELATION ATTRIBUTE USE CL DELETE DELAUCL S
AUC CONSTRAINT DELETE DELACON N
AUC IS MAPPING SELECT VERTAUC N
COMPLETE RELATION SELECT VERRCC N
COMPLETE RELATION DELETE DELCPRC S
COMPLEX MAPPING_
PARM SELECT VERTAP N
CONSTRAINT INPUT DELETE DELCONI N
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT VERENT N
INHERITED ATT USE SELECT DELMIGRC S
INHERITED ATT USE DELETE DELIAUC S
KEY CLASS MEMBER SELECT DRPMGRC N
KEY CLASS MEMBER DELETE DELKCMT S
PROJECT DATA ITEM SELECT VERTPDI N
RC BASED FEC SET SELECT VERRCB N
RC-KEYWORD - DELETE DELRCKW S
RELATION CLASS SELECT VERRC N
RELATION CLASS DELETE DELRC S
VIEW QUAL XREF SELECT VERVWQU N
VIEW RCCOMPONENT SELECT VERSRC N

B-32

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

----------------- ----------------- ------ ---------- -------

DROP SET AUC ST MAPPING SELECT FNDASA N
DATA BASE SELECT VERDBAS N
DF SET LINKAGE DELETE DELDSL2 S
RC-BASED REC-SET SELECT VERRCBS N
RECORD SET SELECT VERRSET N
RECORD-SET DELETE DELRST2 S
RECORD-SET USAGE SELECT VERRSUS N
SETTYPEMEMBER DELETE DELSTM2 S

DROP UNION DATA BASE SELECT VERDB N
ECRTUD SELECT SELURT N
ECRTUD DELETE DELURT N
RECORDTYPE SELECT VERRT N

DROP VIEW DATA ITEM SELECT DRPDIV N
DATA ITEM DELETE DELDIV N
DI PARM SELECT VERDIPA N
PROJECT DATA ITEM DELETE DELPDI N
USER VIEW SELECT VERVIEW N
USERVIEW DELETE DELVIEW N
VIEWEC XREF DELETE DELECRF N
VIEW QUALIFY_
CRITERIA DELETE DELQCRF N
VIEW_QUALXREF DELETE DELQCTG N

MERGE MODEL ATTRIBUTE CLASS SELECT CMBOA N
ATTRIBUTE-CLASS SELECT VERATT N
ATTRIBUTE NAME SELECT CMBOA N
ATTRIBUTE NAME SELECT VERATT N
ATTRIBUTE USE CL SELECT BLKCLST N
DOMAIN CLASS SELECT CMBOA N
ENTITY CLASS SELECT MRGNODE S
ENTITY CLASS SELECT BLKCLST N
ENTITY CLASS SELECT VERENT N
ENTITY NAME SELECT MRGMOD2 S
ENTITYNAME SELECT VERENT N
ENTITY NAME SELECT SELECNM N
MODEL CLASS SELECT MRGNODE S
MODELCLASS SELECT VERMOD N
MODELCLASS SELECT MRGMOD2 S
OWNED ATTRIBUTE SELECT CMBOA N
RELATION CLASS SELECT MRGNODE S
RELATIONCLASS SELECT MRGMOD2 S

B-33

DS 620341100
30 September 1990

(S=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

RENAME AC KEYWORD UPDATE MODACKW N
APPLICATION UPDATE UPDAPP S
ATTRIBUTE CLASS SELECT VERATT N
ATTRIBUTE-NAME SELECT VERATT N
ATTRIBUTE-NAME MODIFY UPDACNM S
AUC IS MAPPING UPDATE UPDRAUC S
AUCSTMAPPING UPDATE UPDAUC S
DATA BASE SELECT VERSTID N
DATABASE SELECT VERDB N
DATABASE UPDATE UPDDBN S
DATABASE UPDATE UPDDB S
DATABASE SELECT VERDFID N
DATA BASE SELECT VERRTID N
DATAFIELD SELECT VERDFID N
DATAFIELD UPDATE UPDFDF S
DATA FIELD UPDATE UPDDF S
DATAITEM SELECT VERDIID N
DATA ITEM UPDATE UPDDI S
DATAITEM UPDATE UPDDDI S
DBMS ON HOST UPDATE UPDDBH S
DB AREA
ASSIGNMENT UPDATE UPDDAA S
DF SET LINKAGE UPDATE UPDDFU S
DF SET LINKAGE UPDATE UPDFDFU S
DF SET LINKAGE UPDATE UPDRDFU S
DOMAIN CLASS SELECT VERDOM N
DOMAIN CLASS MODIFY UPDTDOM S
EC KEYWORD UPDATE MODECKW N
ENTITY CLASS SELECT VERENT N
ENTITY-NAME SELECT VERENT N
ENTITY NAME MODIFY UPDECNM S
IISS HOST SELECT VERHST N
IISS HOST UPDATE UPDHST S
IISS KEYWORD SELECT VERKW N
IISS KEYWORD MODIFY UPDTKW S
IISS PSB UPDATE UPDPSB S
MODEL CLASS SELECT VERMOD N
MODULE PARAMETER UPDATE UPDMP S
PROJECT DATA
FIELD UPDATE UPDPDF S
PROJECTDATA
FIELD UPDATE UPDFPDF S
PROJECT DATAITEM UPDATE UPDPDI S
RC BASED REC SET UPDATE UPDRCB S
RC-BASED-REC-SET UPDATE UPDRRCB S

B-34

DS 620341100
30 September 1990

(SE=SQL
COMMAND TABLE NAME FUNCTI MODULE N=NDML)

RENAME (continued)
RC KEYWORD UPDATE MODRCKW N
RECORD SET SELECT VERSTID NRECORDSET UPDATE UPDRRS S
RECORDSET UPDATE UPDRSS S
RECORDTYPE SELECT VERRTID N
RECORD TYPE UPDATE UPDRT S
RELATION CLASS SELECT VERRC N
RELATION CLASS MODIFY UPDRCNM S
SETTYPEMEMBER UPDATE UPDSTM S
SET TYPE MEMBER UPDATE UPDRSTM S
USER DEF DATA

TYPE - SELECT VERDTN N
USER DEF DATA
TYPE UPDATE UPDUDT S
USER VIEW SELECT VERDIID N
USER-VIEW MODIFY UPDVIEW S
USER-VIEW SELECT VERVIEW N

B

B-35

DS 620341100
30 September 1990

APPENDIX C

INTERNAL TABLES USED BY NDDL COMMANDS

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

ADDTGLS 25 Max # of attributes Alter Entity
to be added for a
specific key class
of a specific entity

ALGTBL 25 Max # of parameters Define Algorithm
for a complex mapping
algorithm

AUPTBL 25 Max # of attributes Copy Map
that are input or
output parameters for
an algorithm

BOOLST 100 Contains the Boolean Create View
operators, parenthesis
and pointers to type 2
conditions for an NDML
transaction

CSQCLST 50 Contains entity and Create View
tag number for each
attribute on the
WHERE clause

DBTBL 25 Max # of databases Copy Database
in the CDM

C-1

DS 620341100
30 September 1990

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

DEPECL 25 Max # of entities in Copy Entity
the "except" clause Copy Model

DEPTBL 25 Max # of datafields Copy Map
that are input or
output parameters for
an algorithm

DFTBL 256 Max # of fields in Define Record,
a record Alter Record,

Alter Field, Drop
Field

DFPTBL 25 Contains database, Copy Map
record, and data
field numbers for
Copy Map

DRPTGLS 25 Max # of attributes Alter Entity
from a specific key
class of a specific
entity

ECLIST 200 Max # of entities Copy Model, Merge
in a model Model, Copy

Entity

ECRTBL 100 Contains entities Copy Map
used in entity to
record mappings

ECTBL 25 Max # of entity Copy Map
mappings to be Copy View
copied

HPTBL 25 Max # of entities Copy Record
that have been
horizontally
partitioned against
a specific record

C-2

DS 620341100
30 September 1990

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

C
KCLIST 20 Max # of keys for Copy Entity

a specific entity

KCNAMET Max # of keys that Alter Attribute
have been processed
for a specific entity

KEYLIST 5 Max # of keys for Copy Model, Merge
an entity Model, Copy

Entity
KWDTBL 100 Max # of entity Compare Model

keywords in both
models

Max # of attribute Compare Model
keywords in both
models

LISTREL 25 Max # of dependent Combine Entity
relations per
entity

Max # of independent Combine Entity
relations per entity

MACDAT 1 Contains WS Variables Create Domain
for Macro Copy Utility

MDTBL 25 Max # of software Copy Map
modules that are used a
complex mapping algorithm

C-3

DS 620341100
30 September 1990

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

MODTBL 25 Max # of parameters Define Module,
per software module Alter Module

NEWTAGT 25 Contains key migration Alter Attribute
information of the
attribute use class
in the new owner entity

OLDTAGT 25 Two-dimensional table Alter Attribute
contains key migration
information of the
attribute use class
in the old owner entity

10 Contains new key class
information

RCDEPKC Two-Dimensional Table

400 Max # of relations Copy Model,
in one model Merge Model,

Copy Entity,
Combine Entity

5 Max # of keys per
entity

RCTBL 25 Contains relation Copy Map
class information Copy view

RELTBL 25 Max # of relations Combine Entity,
where the entity Copy Entity
is the dependent entity

RENLIST 10 Max # of tags mi- Create Relation,
grated per relation Alter Relation
mentioned in the
Set.. .clause

C-4

DS 620341100
30 September 1990

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

RTPTBL 25 Max # of records that Copy Map
the input or output
parameter to an
algorithm

SBSTLST 8 Represents the input Create Domain
table of substitution
parametes for Macro
expansion routine

SDLIST 25 Contains information Create View
needed to validate
the legality of the
view structure

TAGTBL 25 Max # of tags per Drop Algorithm
complex mapping
algorithm

TDFTBL 256 Max # of fields in Define Record
a record Alter Record,

Alter Field,
Drop Field

UNTBL 25 Max # of entities Copy Map
that participate
in a record union

UPTGLS 25 Contains attribute use Alter Entity
class information for
updating the inherited
attribute use class

VWDI 25 Max # of data items Create View
per view

VWFROM 25 Max # of entities Create View
in From clause per
view

C-5

DS 620341100
30 September 1990

INTERNAL
TABLE TABLE WHY USED USED BY
NAME SIZE

VWRC 25 Max # of relations Create View
in Where clause
per view

VWRETR 25 Max # of tags in Create View
Select clause
per view

C-6

