

OFFICE OF NAVAL RESEARCH

Grant N00014-90-J-1193

TECHNICAL REPORT No. 84

Cooperative Effects on Transient Spectral Hole Burning

by

X. Li, D. L. Lin and Thomas F. George

Prepared for publication

in

Journal of Modern Optics

Departments of Chemistry and Physics Washington State University Pullman, WA 99164-1046

June 1992

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.

-)

92 2 200

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188
Public reporting burgen for this collection gathering and maintaining the data need collection of information, including sugg Davis Highway, Suite 1204, Arlington, VA	n of informatil led, and compli- estions for red 22202-4302. (on is estimated to average 1 hour sting and reviewing the collection using this burgen to washington and to the Office of Management	per response, including the time for of information. Send comments re- releduaters Services, Directorate and Budget, Paperwork Aeduction Pr	reviewing instructions, searching existing data sou perting this bureen estimate or any other adact of for information Operations and Reports. 1215 lefte ovect (0744-0188), Washington, DC 20503.
I. AGENCY USE ONLY (Leave	biank)	2. REPORT DATE	3. REPORT TYPE A	ND DATES COVERED
		June 1992		Interim
I. TITLE AND SUBTITLE		.	••••	5. FUNDING NUMBERS
Cooperative Effec	ts on 1	fransient Spectr	al Hole Burning	Grant
				N00014-90-J-1193
. AUTHOR(S)				1
X. Li, D. L. Lin	and <u>The</u>	omas F. George		
PERFORMING ORGANIZATIO	N NAME(S	AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Departments of Chemistry and Physics Washington State University				REPORT NUMBER
			WSU/92/84	
. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
Office of Naval Research				
Arlington, Virginia	a 22217			
SUPPLEMENTARY NOTES			<u> </u>	L
Prepared for publ	icatior	in <u>Journal of</u>	Modern Optics	
	2a. DISTRIBUTION / AVAILABILITY STATEMENT			
a. DISTRIBUTION / AVAILABILIT	TY STATEN	IENT		12b. DISTRIBUTION CODE
a. DISTRIBUTION / AVAILABILIT	relea	NENT	unlimited	12b. DISTRIBUTION CODE
Approved for public	ry statem	NENT se; distribution	n unlimited	12b. DISTRIBUTION CODE
Approved for public	TY STATEN	KENT se; distribution	unlimited	12b. DISTRIBUTION CODE
Approved for public Approved for public	ry STATEN c relea	SE; distribution	unlimited	12b. DISTRIBUTION CODE
Approved for public Approved for public ABSTRACT (Maximum 200 wc The nonlinear opti	relea crelea pros) cal sus	se; distribution	n unlimited	12b. DISTRIBUTION CODE
Approved for public Approved for public ABSTRACT (Maximum 200 wc The nonlinear opti located bound exci	releas	se; distribution se; distribution sceptibility is treating the t	n unlimited calculated for a set field as a per	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe
Approved for public Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci	cal sus	se; distribution ceptibility is treating the t	n unlimited calculated for a s est field as a per radiance effect or	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe
Approved for public Approved for public ABSTRACT (Maximum 200 wc The nonlinear opti located bound exci experiments. The	c releation c releation cal sus tons by coheren	se; distribution sceptibility is treating the t ace of the super	a unlimited calculated for a s est field as a per radiance effect on	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t	cal sus coheren o be dr	se; distribution ceptibility is treating the t ce of the super amatic in the t	n unlimited calculated for a s est field as a per radiance effect of ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 wc The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	c releases c releases cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super amatic in the t	n unlimited calculated for a s est field as a per radiance effect on ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	c releas c releas cal sus tons by coheren o be dr pumping	se; distribution se; distribution ceptibility is treating the t ace of the super amatic in the t	n unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 wc The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	cal sus coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super amatic in the t	a unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	c relea c relea cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super ramatic in the t	n unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	c relea c relea cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super samatic in the t	a unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	c relea cords) cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super ramatic in the t	a unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	releas creleas cords) cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super amatic in the t	a unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance	relea ords) cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super samatic in the t	a unlimited calculated for a s est field as a per radiance effect or ransient regime fo	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance 15. NUMBER OF PAGES
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance SUBJECT TERMS SPECTRAL HOLE BURN	relea ords) cal sus tons by coheren o be dr pumping	se; distribution sceptibility is treating the t ace of the super ramatic in the t t.	n unlimited calculated for a s est field as a per radiance effect or ransient regime for	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance 15. NUMBER OF PAGES ITY 19
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance SUBJECT TERMS SPECTRAL HOLE BURN TRANSIENT	relea crelea cal sus tons by coheren o be dr pumping	se; distribution sceptibility is r treating the t ace of the super ramatic in the t c. NONLINEAR OP PUMP-PROBE	n unlimited calculated for a s est field as a per radiance effect of ransient regime for TICAL SUSCEPTIBIL	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance ITY 15. NUMBER OF PAGES ITY 19 16. PRICE CODE
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance SUBJECT TERMS SPECTRAL HOLE BURN TRANSIENT COOPERATIVE EFFECT	relea relea cal sus tons by coheren o be dr pumping ING S	NONLINEAR OP PUMP-PROBE SUPERRADIANC	a unlimited calculated for a s est field as a per radiance effect or ransient regime for TICAL SUSCEPTIBIL:	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance Distribution of pages ITY 19 16. PRICE CODE NTIS VION
Approved for public ABSTRACT (Maximum 200 we The nonlinear opti located bound exci experiments. The burning is found t and off-resonance SUBJECT TERMS SPECTRAL HOLE BURN TRANSIENT COOPERATIVE EFFECT: SECURITY CLASSIFICATION OF REPORT	relea relea ords) cal sus tons by coheren o be dr pumping ING S 18. SECU OF T	se; distribution sceptibility is r treating the t ace of the super ramatic in the t c. NONLINEAR OP PUMP-PROBE SUPERRADIANC RITY CLASSIFICATION HIS PAGE	n unlimited calculated for a s est field as a per radiance effect on ransient regime for TICAL SUSCEPTIBIL: E 19. SECURITY CLASSIFICA OF ABSTRACT	12b. DISTRIBUTION CODE system of two closely- rtubation in pump-probe n the spectral hole or both on-resonance Distribution ITY 19 16. PRICE CODE NTIS NTION 20. LIMITATION OF ABSTRACT

298-102

COOPERATIVE EFFECTS ON TRANSIENT SPECTRAL HOLE BURNING

X. Li and D. L. Lin Department of Physics and Astronomy State University of New York at Buffalo Buffalo, New York 14260

Thomas F. George Departments of Chemistry and Physics Washington State University Pullman, Washington 99164-1046

Abstract

The nonlinear optical susceptibility is calculated for a system of two closely-located bound excitons by treating the test field as a pertubation in pump-probe experiments. The coherence of the superradiance effect on the spectral hole burning is found to be dramatic in the transient regime for both on-resonance and off-resonance pumping.

١

PACS Numbers: 42.50.Fx, 42.50.Md, 42.65.Ma, 78.47.+P

I. Introduction

The pump-probe experiment is one of the most important techniques of nonlinear optics to examine how the optical properties of a medium are modified by a strong laser beam. In the pump-probe process, the strong pump light prepares the material which is subsequently tested by the probe light for information regarding the nonlinear optical response induced by the pump beam. Transient or dynamical spectral hole burning has been observed in such experiments on large molecules in solution, in semiconductor heterostructures and in quasi-one-dimensional conjugated polymers.¹⁻³

The phenomenon of hole burning or bleaching accompanied by a dynamical Stark shift in the absorption spectrum has been widely discussed.⁴ A phase-space-filling model has been proposed, with a reasonably good explanation provided for the hole burning and excitonic Stark shift observed in semiconductor quantum wells.⁴⁻⁶ In almost all the existing theoretical treatments^{4,7-9} of spectral hole burning, only a single atom is considered in the interacting system.

When the mean distance between the excitons is small compared to the transition wavelength, excitons couple to each other via the exchange of photons. Recently, superradiant effects on the nonlinear optical susceptibility $\chi^{(3)}$ of molecular aggregates in the steady-state regime has been investigated.¹⁰ It is found that there is no universal enhancement of the nonlinearity in general, and that $\chi^{(3)}$ is not enhanced at all under off-resonance conditions.

We investigate, in this article, the cooperative or coherent effect in pump-probe experiments on a semiconductor system of bound-excitons. As a twoatom system is sufficient to demonstrate all the characteristic features of

2

ମ ()

Avoid and/or Special

Dist

the coherent effects on the spontaneous radiation, ¹¹ we calculate the pumpfield-induced optical response in a system of two closely-located bound excitons with respect to the probe-field in the transient regime.

Since the probe field is much weaker than the pump field in typical pump-probe experiments, we solve the wave equation to all orders of the pump field and first order of the probe field in our calculation of the susceptibility experienced by the probe field. Coherence effects are obtained by comparing our results with those from the corresponding incoherent excitons. In contrast to the conclusion of Ref. 10, we find a very different nonlinear optical susceptibility. Its decay rate and Rabi oscillation frequency, as well as the phenomenon of spectral hole burning, all show dramatic changes due to the coherent effect in the two-coupled excitons.

II. Method of Calculation

The nonlinear optical response of a solid can be treated by the twolevel model. The two levels in a semiconductor correspond to the ground state |-> (electron-hole recombination) and the bound exciton state |+>. Since bound excitons trapped by impurities cannot propagate, the two-exciton system may be described as two stationary atoms. A strong laser pump field and a much weaker laser probe field are directed to the semiconductor. As long as the laser wavelengths are much larger than the separatio⁻ oetween the excitons, it is a good approximation to assume the same field is experienced by both excitons. Thus, the Hamiltonian can be written, in the rotating-wave approximation, as

$$H = \omega_{x} \sum_{j=1}^{2} S_{j}^{z} - [\mu(E_{p}^{*e} \stackrel{i\omega_{p}t}{p} + E_{t}^{*e} \stackrel{i\omega_{t}t}{p}) \sum_{j=1}^{2} S_{j} + H.c.] , \qquad (1)$$

where we have defined the dipole operator

$$S_{j} = |->_{j} |_{j} <+|$$
 , (2a)

$$S_{j}^{z} = \frac{1}{2}(|+>_{j}_{j}<+|-|->_{j}_{j}<-|)$$
 (2b)

The matrix element of the excitonic dipole moment is μ , the exciton frequency is ω_x , and $E_p(E_t)$ is the amplitude of the pump (probe) field with frequency $\phi_p(\omega_t)$.

Let us now define the four states for the two-exciton system,

$$|1\rangle = |-, -\rangle$$
, $|2\rangle = |+, -\rangle$, $|3\rangle = |-, +\rangle$, $|4\rangle = |+, +\rangle$. (3)

At an arbitrary time t, the state for the system can be written as

$$|\psi(t)\rangle = C_1(t)|1\rangle + C_2(t)|2\rangle + C_3(t)|3\rangle = C_1(t)|4\rangle$$
, (4)

where the coefficients are determined by the set of coupled equations

$$C_4 = i(\Omega_p e^{-i\omega_p t} + \Omega_t e^{-i\omega_t t})(C_2 + C_3) - (i\omega_x + 2\gamma)C_4 .$$
 (5d)

In Eqs. (5), we have assumed that μ and $E_{p,t}$ are all real quantities, and have defined the Rabi frequency $\Omega_{p,t} - \mu E_{p,t}$. We have also introduced phenomenologically the nonradiative decay rate γ which is a result of the strong Auger effect for bound excitons in semiconductors.¹³ For convenience, we work in the rotating frame by making the replacements $C_1 \rightarrow C_1 e^{i\omega_p t}$ and $C_4 \rightarrow C_4 e^{-i\omega_p t}$, whereby Eqs. (5) become

•

$$C_1 = -i\Delta C_1 + i(\Omega_p + \Omega_t e^{-i\Delta_t t})(C_2 + C_3)$$
, (6a)

$${}^{\bullet}_{3} = i(\Omega_{p} + \Omega_{t}e^{-i\Delta_{t}t})C_{1} - \gamma C_{3} + i(\Omega_{p} + \Omega_{t}e^{-i\Delta_{t}t})C_{4} ,$$
 (6c)

•
$$i\Delta_t^t$$

 $C_4 = i(\Omega_p + \Omega_t^e)(C_2 + C_3) + (i\Delta - 2\gamma)C_4$. (6d)

with the detuning parameters defined by $\Delta = \omega_p - \omega_x$, and $\Delta_t = \omega_p - \omega_t$.

To solve Eqs. (6), we treat the probe field as a perturbation and obtain the zeroth-order solutions by setting $\Omega_{r} = 0$. The results are

$$C_{1}^{(0)}(t) = e^{-\gamma t} \left\{ \frac{(\Delta + i\gamma)^{2} + 2\Omega_{p}^{2}}{\nu^{2}} \cos\nu t - i \frac{\Delta + i\gamma}{\nu} \sin\nu t + \frac{2\Omega_{p}^{2}}{\nu^{2}} \right\}, \qquad (7a)$$

$$C_{2}^{(0)}(t) = C_{3}^{(0)}(t) = \frac{\Omega_{p}}{\nu^{2}} e^{-\gamma t} [(\Delta + i\gamma)(1 - \cos\nu t) + i\nu \sin\nu t] , \qquad (7b)$$

$$C_{4}^{(0)}(t) = \frac{2\Omega_{p}^{2}}{\nu^{2}} e^{-\gamma t} (1 - \cos \nu t) . \qquad (7c)$$

with the initial condition $C_1^{(0)}(0) = 1$. If the system is initially in the state $|2\rangle$, the zeroth-order solutions are given by

$$C_{1}^{(0)}(t) = \frac{\Omega}{\nu^{2}} e^{-\gamma t} [i\nu \sin\nu t + (\Delta + i\gamma)(1 - \cos\nu t)] , \qquad (8a)$$

$$C_{2}^{(0)}(t) = e^{-\gamma t} \left[1 - \frac{2\Omega_{p}^{2}}{\nu^{2}}(1 - \cos\nu t)\right] , \qquad (8b)$$

$$C_{3}^{(0)}(t) = -\frac{2\Omega_{p}^{2}}{\nu^{2}} e^{-\gamma t} (1 - \cos\nu t) , \qquad (8c)$$

$$C_{4}^{(0)}(t) = \frac{\Omega}{\nu^{2}} e^{-\gamma t} [i\nu \sin\nu t - (\Delta + i\gamma)(1 - \cos\nu t)] . \qquad (8d)$$

In these equations, we have defined a new complex Rabi frequency

$$\nu = \left[\left(\Delta + i\gamma \right)^2 + 4\Omega_p^2 \right]^{\frac{1}{2}} .$$
 (9)

Following the procedure discussed in Ref. 14, we find the solutions up to the first order in Ω_t by substituting Eq. (7) or (8) into (6), depending on the initial condition considered. The results are given by

$$C_{i}(t) = C_{i}^{(0)}(t) + C_{i}^{(1)}(t) , \quad i = 1, 2, 3, 4$$
 (10)

For the initial condition $C_1(0) = 1$, we have

$$C_{1}^{(1)}(t) = \frac{\Omega_{t}\Omega_{p}}{\nu^{2}} e^{-i(\Delta_{t}-i\gamma)t} \times \left(\frac{[\nu^{2}-(\Delta+i\gamma)(\Delta_{t}-i\gamma)]\cos\nu t+i\nu(\Delta_{t}-\Delta-2i\gamma)\sin\nu t}{\nu^{2}-(\Delta_{t}-i\gamma)^{2}} - \frac{\Delta+i\gamma}{\Delta_{t}-i\gamma}\right) , \quad (11a)$$

$$C_{2}^{(1)}(t) = \frac{\Omega_{t}}{\nu^{2}} e^{(i\Delta_{t}-\gamma)t} (\frac{2\Omega_{p}^{2}}{\Delta_{t}+i\gamma}) + \frac{i\nu[(\Delta+i\gamma)^{2}+2\Omega_{p}^{2}+(\Delta+i\gamma)(\Delta_{t}+i\gamma)]\sin\nu t - \{\nu^{2}(\Delta+i\gamma)+(\Delta_{t}+i\gamma)[(\Delta+i\gamma)^{2}+2\Omega_{p}^{2}]\}\cos\nu t}{\nu^{2}-(\Delta_{t}+i\gamma)^{2}} + \frac{2\Omega_{t}\Omega_{p}^{2}}{\nu^{2}} e^{-(i\Delta_{t}+\gamma)t} [\frac{1}{\Delta_{t}-i\gamma} + \frac{(\Delta_{t}-i\gamma)\cos\nu t+i\nu\sin\nu t}{\nu^{2}-(\Delta_{t}-i\gamma)^{2}}] = C_{3}^{(1)}(t) , \qquad (11b)$$

$$C_{4}^{(1)} = \frac{2\Omega_{t}\Omega_{p}}{\nu^{2}} e^{(i\Delta_{t}^{-\gamma})t} \left[\frac{\Delta + i\gamma}{\Delta_{t}^{+}i\gamma} + \frac{\left[(\Delta + i\gamma)(\Delta_{t}^{+}i\gamma) + \nu^{2}\right]\cos\nu t - i\nu(\Delta + \Delta_{t}^{+}2i\nu)\sin\nu t}{\nu^{2} - (\Delta_{t}^{+}i\gamma)^{2}}\right] .$$
(11c)

When the initial condition is $C_2(0) = 1$, we have

$$C_{1}^{(1)}(t) = \frac{\Omega_{t}}{\nu^{2}} e^{-(i\Delta_{t}+\gamma)t} \left(\frac{4\Omega_{p}^{2}}{(\nu^{2}-(\Delta_{t}-i\gamma))^{2}}\left[(\Delta_{t}-i\gamma)\cos\nu t+i\nu\sin\nu t\right] - \frac{(\Delta+i\gamma)^{2}}{\Delta_{t}-i\gamma}\right), \quad (12a)$$

$$C_{2}^{(1)}(t) = \frac{\Omega_{p}\Omega_{t}}{\nu^{2}} e^{(i\Delta_{t}-\gamma)t} \left\{ \frac{\Delta + i\gamma}{\Delta_{t} + i\gamma} + \frac{[\nu^{2} + (\Delta + i\gamma)(\Delta_{t} + i\gamma)]\cos\nu t - i\nu(\Delta + \Delta_{t} + 2i\gamma)\sin\nu t}{\nu^{2} - (\Delta_{t} + i\gamma)^{2}} \right\}$$

$$+ \frac{\Omega_{p}\Omega_{t}}{\nu^{2}} e^{-(i\Delta_{t}+\gamma)t} \left\{ \frac{\Delta + i\gamma}{\Delta_{t}-i\gamma} + \frac{[\nu^{2} + (\Delta + i\gamma)(\Delta_{t}-i\gamma)]\cos\nu t + i\nu(\Delta + \Delta_{t})\sin\nu t}{\nu^{2} - (\Delta_{t}-i\gamma)^{2}} \right\}$$
$$= C_{3}^{(1)}(t) , \qquad (12b)$$

$$C_{4}^{(1)}(t) = \frac{\Omega_{t}}{\nu^{2}} e^{\left(i\Delta_{t}^{-\gamma}\right)t} \left[\frac{(\Delta+i\gamma)^{2}}{\Delta_{t}^{+}i\gamma} + 4\Omega_{p}^{2} \frac{i\nu\sin\nu t - (\Delta_{t}^{+}i\gamma)\cos\nu t}{\nu^{2} - (\Delta_{t}^{+}i\gamma)^{2}}\right] .$$
(12c)

We note that in the integration of Eqs. (8), the static terms have been neglected, and as a consequence, we have $C_2^{(1)}(t) = C_3^{(1)}(t)$.

The expectation values of the dipole moment of the excitons are

$$d_1 = \mu \langle S_1(t) \rangle = \mu (C_1^* C_2 + C_3^* C_4) ,$$
 (13a)

$$d_2 = \mu \langle S_2(t) \rangle = \mu (C_1^* C_3 + C_2^* C_4) \quad .$$
(13b)

The dipole moments induced by the probe laser field are therefore

$$\delta d_{1} = \mu (C_{1}^{(0)*}C_{2}^{(1)} + C_{2}^{(0)}C_{1}^{(1)*} + C_{3}^{(0)*}C_{4}^{(1)} + C_{4}^{(0)}C_{3}^{(1)*}) , \qquad (14a)$$

$$\delta d_2 = \mu (C_1^{(0)*} C_3^{(1)} + C_3^{(0)} C_1^{(1)*} + C_2^{(0)*} C_4^{(1)} + C_4^{(0)} C_2^{(1)*}) \quad .$$
(14b)

The nonlinear optical susceptibility of the two-exciton system as experienced t the probe field is by definition

$$x_{t} = \mu \sum_{j=1}^{2} n_{j} \delta d_{j} / E_{t} e^{-i\omega_{t}t} , \qquad (15)$$

where

$$n_1 = |c_2|^2 + |c_4|^2 \approx |c_2^{(0)}|^2 + |c_4^{(0)}|^2$$
 (16a)

$$n_2 = |c_3|^2 + |c_4|^2 \approx |c_3^{(0)}|^2 + |c_4^{(0)}|^2$$
(16b)

are the exciton population probabilities.

Since we are only interested in solutions up to first order in E_t , the terms leading to the static and second-harmonic components in Eqs. (14) can be neglected. The coherent effect on the susceptibility due to the cooperative coupling between the two excitons can be most easily found by comparing the above results with those of two independent excitons. The corresponding susceptibility for two independent or incoherent excitons is

$$\chi_{t}^{i} = \frac{16\Omega_{p}^{2}\mu^{2}}{|\nu|^{2}} e^{-2\nu t} |\sin\frac{\nu}{2}t|^{2} \{ [\nu^{*}\cos\frac{\nu^{*}}{2}t+i(\Delta-i\gamma)\sin\frac{\nu^{*}}{2}t] \\ \frac{i[\nu^{2}+(\Delta+i\gamma)(2\Delta_{t}-\Delta+i\gamma)]\sin\frac{\nu}{2}t-2\gamma(\Delta_{t}+i\gamma)\cos\frac{\nu}{2}t}{\nu^{2}-(2\Delta_{t}-\Delta+i\gamma)^{2}} \\ - 4\Omega_{p}^{2}\sin\frac{\nu}{2}t\frac{i\nu^{*}\cos\frac{\nu^{*}}{2}t+(2\Delta_{t}+\Delta+i\gamma)\sin\frac{\nu^{*}}{2}t}{\nu^{*2}-(2\Delta_{t}+\Delta-i\gamma)^{2}} \}$$
(17)

where we have used the initial conditions that there is no exciton initially.

III. Results and Discussion

As can be seen from Eqs. (7), (8), (11), (12) and (17), there exist optical nutations in the susceptibility x_t . In the coupled two-exciton case, there are four oscillations with frequencies $Re\nu$, $2Re\nu$, $3Re\nu$ and $4Re\nu$

composing the Rabi oscillation, while in the incoherent case the oscillation consists of only two components with frequencies $Re\nu$ and $2Re\nu$.

When $\Omega_p \leq \gamma/2$, or when the non-radiative decay is faster than the flipflop rate, χ_t decays monotonically, and its rate is generally faster than the decay of χ_t^i . As an example, one can easily see that for $\Delta = 0$ and $\Omega_p = \gamma/2$ the decay factor is $e^{-2\gamma t}$ for χ_t^i , but is $e^{-4\gamma t}$ for χ_t because of the superradiant effect in the coupled system.

The imaginary part of the optical susceptibility as given by Eqs. (15) and (17) is computed numerically under different conditions. We adopt the unit such that energy is measured by γ and time is measured by γ^{-1} throughout this paper. When the pump field is tuned on resonance with the exciton frequency, or when $\Delta = 0$, the cooperative effect is in general found to make the hole shallow and at the same time to make χ_t decay faster. This is clearly seen in Fig. 1 in which $Im\chi_t(t)$ is plotted for the coupled two-exciton system with $C_1(0) = 1$ (a) and $C_2(0) = 1$ (b) as well as for incoherent excitons (c). Holes induced by the pump-field bleaching are located at $\omega_t = \omega_x$. We have also found the phenomenon of power broadening in spectral hole burning in our numerical study, that is, a stronger pump intensity leads to broader holes. It is further observed from Fig. 1(b) that when one of the excitons is already excited initially, two antiholes appear on both sides of the hole. This means that bleaching or increasing in absorption depends on the initial conditions of the system.

For the pump field tuned off-resonance with the exciton frequency, i.e., $\Delta \neq 0$, we plot the absorption spectra in Fig. 2 for $C_1(0) = 1$, in Fig. 3 for $C_2(0) = 1$, and in Fig. 4 for incoherent case. A comparison of 2(b) with 4(b) reveals that the superradiance effect can enhance the spectral hole burning which is centered around $\omega_t = \omega_y$. The situation becomes much more complicated

when there is initially one exciton already excited. In addition to holes at $\omega_t = \omega_x$, there are also holes and antiholes appearing near $\omega_t = 2\omega_p - \omega_x$, as shown in Fig. 3. This is a result of a two-photon effect of the pump-field. In a study of Frankel excitons in Ref. 10, no enhancement in the nonlinear optical response was found for the case of off-resonance pumping. On the contrary, for bound excitons we find an important qualitative difference in the optical hole burning or bleaching for the off-resonance pumping, as well as the hole burning and broadening for the on-resonance pumping.

Acknowledgments

We are grateful to Mr. X. Xia for his help with the numerical calculations. This work was supported in part by the Office of Naval Research.

References

- C. H. B. Cruz, R. L. Fork, W. H. Knox and C. V. Shank, Chem. Phys. Lett.
 132, 341 (1986).
- A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink and H. Morkoc, Phys. Rev. Lett. 56, 2748 (1986).
- B. I. Greene, J. Orenstein, R. R. Millard and L. R. Williams, Phys. Rev. Lett. 58, 2750 (1987).
- See, for example, D. S. Chemla, D. A. B. Miller, and S. Schmitt-Rink, in Optical Nonlinearities and Instabilities in Semiconductors, ed. H. Haug (Academic, New York, 1988).
- 5. S. Schmitt-Rink and D. S. Chemla, Phys. Rev. Lett. 57, 2752 (1986).
- S. Schmitt-Rink, D. S. Chemla and D. A. B. Miller, Adv. Phys. 38, 89 (1989); B. I. Greene, J. Orenstein and S. Schmitt-Rink, Science 247, 679 (1990).
- 7. B. R. Mollow, Phys. Rev. A 5, 2217 (1972).
- 8. C. H. B. Cruz, J. P. Gordon, P. C. Becker, R. L. Fork and C. V. Shank, IEEE J. Quantum Electron. 24, 261 (1988).
- 9. M. Lindberg and S. W. Koch, J. Opt. Soc. Am. B 5, 139 (1988).
- F. C. Spano and S. Mukamel, Phys. Rev. A 40, 5783 (1989); 41, 5243 (1990).
- Y. C. Lee and D. L. Lin, Phys. Rev. 183, 147 (1969); 183, 150 (1969);
 Phys. Rev. A 6, 388 (1972).
- K. Watanabe, H. Nakano, A. Honold and Y. Yamamoto, Phys. Rev. Lett. 62, 2257 (1989).
- D. G. Thomas, in Localized Excitations in Solids, ed. R. F. Wallis (Plenum, New York, 1968), pp. 239 ff.

14. X. S. Li, D. L. Lin, T. F. George and X. Sun, Phys. Rev. B 40, 11728 (1989).

Figure Captions

- 1. Evolution of the absorption spectrum of the susceptibility of two excitons experienced by the probe field for resonant pumping ($\Delta = 0$) and $\Omega_p = 0.4$, where Ω_p and Δ_t are in the unit of γ , t in γ^{-1} , and χ_t and χ_t^i in μ^2 . (a) $Im\chi_t$ with the initial condition $C_1(0) = 1$; (b) $Im\chi_t$ with $C_2(0) = 1$; (c) $Im\chi_t^i$ with the initial conditions of no excitons.
- 2. Evolution of the absorptive spectrum of the susceptibility $Im\chi_t$ with offresonant pumping ($\Delta = -5$) and $C_1(0) = 1$, where Δ , Δ_t and Ω_p are in the unit of γ , t in γ^{-1} , and χ_t in μ^2 . (a) $\Omega_p = 0.4$; (b) $\Omega_p = 1$.
- 3. Same as Fig. 2, except that $C_2(0) = 1$.
- 4. Same as Fig. 2, except that x_t is replaced by x_t^i .

Fig.2

į

Fig. 3

Ú

