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1. INTRODUCTION

The suboptimal Ho. problem can been solved via the the solution of two algebraic --- J. ..

Riccati equations (Doyle et al., 1989). In the finite horizon case, expressions for a subopti-

mal controller have also been derived in the time-varying setting (Subrahmanyam 1992a),

without resorting to various transformations, such as the ones given in (Safonov et al.,

1989). In the time-invariant case, the solutions of the dynamic Riccati equations eventu-

ally converge to constant matrices. Also, efficient algorithms for the computation of the

infimal H,, norm have been given in the finite horizon case (Subrahmanyam 1992b,c,d).

Our computational experience indicates that for time-invariant systems, the infimal H,,

norm can be very nearly approached using full state feedback, whereas with output feed-

back, the suboptimal value that gives a viable controller is generally much higher than the

infimal value (Subrahmanyam 1992e).

It is difficult to design a suboptimal controller taking into account parameter varia-

tions in the system matrices. It is doubtful whether a noniterative solution exists to the

performance robustness problem. The reason for this is the fact that when one designs

a suboptimal Hc controller at the nominal values of the parameters, the performance of

the controller under a variation in the system matrices is a priori unknown. In fact, in

our treatment here, knowledge of the controller is essential for the computation of the

variation of performance under variations in the system matrices. It is tacitly assumed

that the controller and observer matrices designed at a nominal point are fixed even under

parameter uncertainties since we have no way to measure the variations in the system

matrices in general.
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To solve the performance robustness problem, we need to have an idea of the variations

in performance. To this end, we derive an expression for the variation in performance for

a specific controller in terms of variations in the system matrices. If the performance

degradation for the range of parameter variations is unsatisfactory, we need to redesign

the suboptimal controller.

The technical note is organized as follows. In Section 2 we formulate the finite horizon

Ho, performance robustness problem. Section 3 presents a summary of the equations

involved in the design of a suboptimal Hco controller. Section 4 presents a procedure

for the computation of actual performance of the suboptimal controller. In Section 5,

a formula for the degradation in performance owing to parameter variations is given.

Section 6 presents an iterative procedure for the design of a suboptimal controller which

has adequate performance robustness. An example of the control system design which

illustrates the usefulness of the theory is given in Section 7.

2. PROBLEM FORMULATION

Let the n-dimensional time-varying system be given by

= A(t)x + B,(t)u + B2(t)v, z(t0) = 0, (2.1)

z = C(t)x + D(t)u + E(t)v, (2.2)

y = C2(t)z + D 2(t)u + E2(t)v. (2.3)

Without loss of generality, let to = 0. Also let

Tf v"Rvd
,o1 = max fo 2 (2.4)

,o fTz.Wzdt

2
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where R and W are assumed to be positive definite and the superscript * denotes a matrix

or vector transpose. Computational techniques for the evaluation of A,1ps are given in the

papers by Subrahmanyam (1992b,c,d). The suboptimal H.. problem can be stated as

follows. Given A < A pt, find full state and output feedback controllers, if these exist, for

which
man f oT lv'Rvdtmi >A;. (2.5)
v:0O TI z*Wz dt

The above problem has been solved in Subrahmanyam (1992a) and a summary of the

design equations will be given in Section 3.

The suboptimal performance robustness problem can be stated as follows. Given

A < APt, find state and output feedback controllers, if these exist, for which

f Tv*Rv dt
min > A,

v:o f0 T z*Wzdt

even under specified variations in the system matrices in (2.1)-(2.3).

3. FEEDBACK SOLUTIONS

In this section, we give equations for a suboptimal H.. design. For the details of

derivation, see Subrahmanaym (1992a,1991).

The system is given by

= A(t)x + B1 (t)u + B2(t)v, z(O) = 0, (3.1)

z = C(t)x + D(t)u + E(t)v, (3.2)

y = C2(t)x + D 2(t)u + E2 (t)v. (3.3)

3
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Let

At =MaXMinfL vRvdt (3.4)
WO f#f zWz dt

and let \ < Aopt. Also, let W1,..-, W6 be defined by

z*Wz = z'W 1 x + 2x*W2u + u*W3u + 2x*W4 v + v*Wsv + 2u*Wv. (3.5)

Let

il = B2*g + E2*f + E*t , (3.6)

and let f,., - be defined by

i,*R-1 1 = W* I, + 2 j* 2ii + ii *Vii + 2* 4 t + tW*W 5 WD + 2ii*t*6 t. (3.7)

We make the following assumptions.

(a) Let the final time T satisfy the assumption in Lemma 4.2 of Subrahmanyam 1992a.

(b) Assume that for each t E [0, T], R - AW5 is positive definite and W3 + AW6 (R -

AW) - 'W6 is invertible.

(c) Also, assume that for each t E [0, T], W - 1 - AW5 is positive definite and W3 +

AW6 (W - ' - Af W5)-'fV6 is invertible.

The relevant controller equations are

= (R - AW5) - ' ,  (3.8)

A = {W 3 + AWaflW} - ', (3.9)

U1 = A(BI + XWJB2), (3.10)

U2 = -A(W2 + \ W6 f W), (3.11)

V, = \fl(-B2 + W U1 ), (3.12)

V2 = AP(W, + W;U2 ), (3.13)
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P + P(A + BU 2 + B2 V2 ) + (A* - W2 UI - W4 V)P

+P(BiUi + B2V)P - (W1 + W2 U2 + W4 V2 ) =O, P(T)=0. (3.14)

Note that the above equation is symmetric.

The relevant observer equations are

4 = (W - (3.15)

I" = { 3 + Af 6§47 - , (3.16)

A A + B 2VP + B2 V 2 , (3.17)

B = -(U 1P + U2 ), (3.18)

= C2 + E2 V1P + E2V2, (3.19)

s1 = r(C + AW64DB), (3.20)

s2 = -r(fv + \f 6-0v), (3.21)

Ti - A(-DB + fV6 Si), (3.22)

T2 = A(4 + WJ*S2 ). (3.23)

k = (A - iV2s1 - fv4T,)Y + Y(A* + CS 2 + B*D*T2)

+Y(C*S + b*D*T1 )Y - (Wi + VS 2 + V4 T2), Y(0) = 0. (3.24)

Note that the above equation is symmetric.

A suboptimal controller is given by

q = Aq + B1(U1Pq + U2q) + B2 (ViPq + V2q) + L(Cq + D 2u - y), (3.25)

L = (S1 Y + S 2 )*, (3.26)

U = (U] P + U 2 )q. (3.27)

5
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In the case of time-invariant systems, the solutions of the Riccati equations (3.14)

and (3.24) eventually converge to constant matrices. Note that the full state feedback

controller is simply given by u = (UIP + U2 )x.

4. COMPUTATION OF PERFORMANCE

We consider the output feedback case. The full state feedback case is covered by the

ensuing analysis as well. The closed loop system is given by

B,(UIP + U2) ) (x) +(_2)V, (4.1)
-L2 L2UP+U)LE2 /v 41

where

= A + BI(U 1P + U2 ) + B 2 (VIP + V2 ) + L(C + D 2 (UIP + U2)). (4.2)

Note that all the matrices can be time-varying. We now specialize to the case where

x(O) = q(O) = 0. (4.3)

Let

z = Cx + D(U1 P + U2 )q + Ev. (4.4)

For the controller

U = (UiP + U2 )q, (4.5)

the performance is given by mn°T V* Rv dt
minf$ 'Wd" (4.6)

110 f Z*'Wz dt
The above value is strictly greater than A by our design procedure. For time-invariant sys-

tems, it is convenient to consider constant solutions of the two dynamic Riccati equations

6
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and take the matrices UIP + U2 and S1 Y + S2 to be fixed. In some cases, it is possible

that the performance may be below A because of the disregard for the time dependence.

Nevertheless, in such cases, the performance can be artificially improved by designing the

controller at a higher value of A than the one specified.

We now describe a procedure to compute the value of (4.6). Let (4.1) be rewritten as

;i = A.x. + B~v, x,(0) = 0, (4.7)

where v needs to be chosen to minimize

foT  v*Rv dt
f T L 2(4.8)

fT'{X:QIX. + z:Q2v + v*Q 3v} dt(

Note that the denominator of (4.6) can put in the form of the denominator of (4.8) by

virtue of (4.4).

This problem has previously been solved by Subrahmanyam (1992f, 1990) and con-

ditions guaranteeing the existence of a minimizing v are also reported in these references.

For the sake of completeness, we present here the details concerning the characterization of

a minimizing v and the computation of the performance corresponding to the minimizing

V.

L. the following theorem, we give conditions that are satisfied by an optimal v which

minimizes (4.8) subject to (4.7).

THEOREM 4.1. Consider the system given by (4.7) and (4.8). Let

fT v*Rvdtmrin L 2 (4.9
m fo{Jo ;Qf z jQX, + X:Q 2v + v'Q 3 v} dt

7
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Assume that (R(t) - Q3 (t)) - ' exists for all t E [0, T]. If (x., v) is optimal, then therc

exists a nonzero p(t) such that

dp = -A:p - AQIX. - AQ2v, p(T) = 0, (4.10)

and

v(t) = (R - Q3 )- 4 *x, + B'p}. (4.11)

Proof. If v minimizes (4.8), then it also minimizes

J(v) A vRvdt - A {1X*QX + z:Q2v + 1v*Q3v} dt. (4.12)

The theorem now follows from the maximum principle (Pontryagin et al., 1962). 0

Let

At = A, + iB.(R - Q3)- 1Q, (4.13)

= B(R - Q3)-'B:, (4.14)

and

= - -AQ 1 - 2 Q2(R - AQ3 )- 1Q2. (4.15)

The variables satisfy a two point boundary value problem given by

(' 0)-(, _e ,) (-A) (4.16)

with

X°(0) = 0, p(T) = 0. (4.17)

We now give a criterion for the estimation of . Notice that A gives a measure of

performance of the H, optimal controller under worst-case conditions.

8
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THEOREM 4.2. Let A be the smallest positive value for which the boundary value problem

given by (4.16) and (4.17) has a solution (z., p) with foT { z:Qlz.+z*Q 2v+ 'v*Q 3 v} dt >

0, where v ' (R - Q 3)-'1 {AQ2x, + B'p}. Then A is the minimum value of (4.8), x, is an

optimal trajectory and v = (R - Q 3)-l {Qx, + B~p) is an open loop optimal exogenous

input.

Proof. It is clear from Theorem 4.1 that if v(t) minimizes (4.8), then it satisfies k4.16)

and (4.17), with A being the minimum value of (4.8). Now suppose (z., p) 6 0 satisfies

(4.16) and (4.17) for some A. Let v = (R-Q 3 )- 1 {Q.xo+Bp}. In the following equations

( , ) denotes an inner product.

We have

((R - Q3)v,v) dt = j (AO 8,,v)dt + (B*p,v)dt. (4.18)

By equation (4.7), the second integral of (4.18) can be written as

(B: p,v) dt = B, v) dt = (p, + - A~xo) dt. (4.19)

An integration by parts and equations (4.10) and (4.17) yield

jT(p. - A.x.)dt = (Q1x.,x,)dt + T (X°,Q 2v) dt. (4.20)

Substituting (4.20) in (4.18), we get

V*Rvdt = x:Q~ x° + 2x:Q 2v + v*Q3 v} dt. (4.21)

Thus, the cost associated with v is provided that the right side of (4.21) is nonzero.

Hence, if (x., p) is a nontrivial solution of the boundary value problem given by (4.16) and

9
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(4.17) for the smallest parameter A > 0 with f{z:QIX. + 2z:Q2v + v*Q3 v} dt > 0, then

is the optimal value and (x., p) is an optimal pair. D

Note that the boundary value problem (4.16)-(4.17) has a solution with a nonvanishing

denominator for (4.8) for at most a countably infinite values of i. Theorem 4.2 gives a

sufficient condition for an open loop exogenous input to be optimal. Theorems 4.1 and 4.2

completely characterize the open loop worst case exogenous input.

Making use of the transition matrix, the solution of (4.16) may be expressed as

p() = 4 2 1(t,0) ', 2 (t,O) 1 pX(0) "  (4.22)

Equation (4.17) yields

412(T,0)p(O) = x,(T), (4.23)

4 22(T,0)p(0) = 0. (4.24)

In view of (4.24) and (4.16)-(4.17), we have det(4 22 (T,0)) = 0 if and only if the solution

(x, p) of (4.16)-(4.17) is not identically zero. Thus, we need the least positive A which

makes det(4D22 (T, 0)) = 0 and the denominator of (4.8) positive. This can be very easily

obtained by doing a search with A over an interval on which there is a change in the sign

of the determinant.

We found the following algorithm to be numerically more stable since numbers of

lesser magnitude are involved in the computation of the transition matrices in (4.25). We

have

p(T)= 4(T,T/2)4 (T/2, 0) S(O) (4.25)

10
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Let

4,'(TT/2) = 6 12

and

4(T/2,0) = (1i V12'.
t'21 V2 2/

Making use of x,(0) = p(T) = 0, we have

v 12 p(O) = Cilx,(T), (4.26)

V22p(O) = C21x.(T). (4.27)

Thus

( 22 C21/

Thus we need the least positive A which makes the above determinant zero.

5. PERFORMANCE VARIATION

In this section, we develop a formula for the variation of A when there are parameter

variations in the system matrices. The system is given by

i. = A.xs + Bv, X.(0) = 0, (5.1)

with v chosen to minimize

fT v'Rvdt
fT L 2" *a} (5.2)

fT :QlX, + x:Q2v + vQ3V}

From the theory of Section 4, we have a boundary value problem given by

x. = Ax. + bp, (5.3)

6x, - A'P, (5.4)

11
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with

x.(O) = 0, p(T) = 0. (5.5)

Note that A is the minimal value of (5.2). Because of variations in the matrices

of the original system (2.1)-(2.3), there will be corresponding variations in the matrices

A(t), B(t), and C(t). Let the elemental dependent variations in A, B, and C be denoted

by £4, b8, and e' respectively. For simplicity of notation, we will derive the variation in

performance in terms of 6A, 68, and e. We denote by AX the variation in A owing to the

parameter variations.

Let

T = (R- Q 3
- . (5.6)

We have

6A = 11 + AJ, (5.7)

6 =12 + AJ 2, (5.8)

e= + A 3h, (5.9)

where

I, = £4. + 6BoTQ2 + ABT6 R - 3 )TQ2 + ABoT&Q, (5.10)

J1 = -AB.TQ3 TQ2 + B.TQ;, (5.11)

12 = 6B.TB: + B.T 6R- AW3)TB: + BT6B:, (5.12)

J2 = -BTQ 3TB;, (5.13)

13 = -6 1 - A2 &Q2TQ - A2Q2T6 R - W 3)TQ2 - 2 Q 2T*, (5.14)

J3 = -Q- 2,Q 2TQ2 + 2 Q2 TQ3 TQ2. (5.15)

12
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Let x, and P, represent the variation in x, and p due to &4,6B, and e. Fom (5.3)-

(5.5), we have the following equations that are satisfied by z, and pl.

ii = Ax1 + Bpi + (Ii + gJ 1 )x + (42 + XJ2)p, (5.16)

= ex, - A*Pi + (13 + &,J3 )x - (I, + jJi)*p, (5.17)

x(0) = o, pi(T) = o. (5.18)

THEOREM 5.1. The variation & in performance is given by

L - f°T{xIjp + lp*I2p - lx:I 3x.} di
f T{ 1*Q, + X:Q 2v + "V*Q3V} dt

where v = T{Bp + AQ2x}.

Proof. From (5.17) we obtain

o x* 1 dt = IT:Oxl dt - T x*A" l dt

X+ (I3 + b)J 3 )x. dt - x;(Ii + 6J 1 )'pdt. (5.20)

Integrating the left side of (5.20) by parts and making use of (5.3) and (5.5), we obtain

-I pfp dt= TX:Ol dt + T (+ J3)x. dt - Tx:(Ii + AJ)*pdt. (5.21)

By (5.4), the first integral on the right side of (5.21) is written as

x0 x 1 dt = jo + A'p)*xi dt. (5.22)

An integration by parts and equations (5.16) and (5.18) yield

jox:ex dt = _ ]pBpj dt - ]op*(I + iJ , )x.dt - 1rp*(I2 + AJ 2)x, dt. (5.23)

13
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Substituting (5.23) in (5.21) and simplifying, we obtain

_ - {2x:Ilp + p 1 2p - z:Isx.} dt (5.24)
fo f{2x:Jp + pJp - x:Jsza} dt

It can be easily shown (see Lemma 1 of Subrahmanyam 1992f, for example) that the

denominator of (5.24) is equal to fJr{x;Qz. + 2zQ 2 v + vQ 3 v} di. 0

6. PERFORMANCE ROBUSTNESS PROBLEM SOLUTION

We now give an iterative procedure to solve the performance robustness problem posed

in Section 2. The equations are given by

= A(t)x + Bj(t)u + B2(t)v, z(O) = O, (6.1)

z = C(t)x + D(t)u + E(t)v, (6.2)

y = C2(t)x + D 2(t)u + E 2 (t)v, (6.3)

and
Aop = maxmin 1 2 (6.4)

is 0fi z*Wzdt

The suboptimal performance robustness problem is to find a controller, if one exists,

for which
LflvRvdt - -

> < >opA, (6.5)V:0 fT z'Wz dt

under variations in the system matrices involved in (6.1)-(6.3).

The iterative steps are as follows.

1. Set A = A,, A, <A opt, and design a suboptimal H.. controller based on the design

equations of Section 3.

14



NAWCADWAR-TN-92041-60

2. For this controller, let

fT v-Rv dtA= minL2(6)
,,o fT{ z:QIX, + z:Q2v + 4v*Q 3v) dt

This can be computed using the results of Section 4. Note that A > A. If A < A,

increase the value of A and go through Steps 1 and 2 until A > .

3. For the range of allowable variations of the matrices involved in (6.1)-(6.3), find the

worst value of 6A using (5.19). Note that (5.19) is linear in the parameter variations.

Thus, let 6 = min 6A. The controller of Step 1 solves the performance robustness

problem in case A + 6 > X. If this is the case, stop the iteration and use the controller

of Step 1.

4. If A +6b < A, choose a suitable Ai+ 1 , Ai+l < \opt, and set A = Ai+ 1 . Go back to Step 1.

Note that Ai+j may be bigger or smaller than Ai depending on the specific problem

being solved.

Alternately we can get A and 6 = min A for a range of values of A and then pick

a value of A that solves the performance robustness problem. In case we cannot find a

value of A which satisfies the performance robustness requirement, then the requirement

is too stringent and the performance robustness problem does not have a solution. The

requirement can be relaxed either by lowering A or by suitably shrinking the range of

allowable parameter variations.

7. AN EXAMPLE

We now illustrate the theory with an example. The system equations are given by

15
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(6.1)-(6.4) with

00

C2 =(1 0), D 2 =0, E2 =(0 1), R=10012 , W=1 2 ,

where 12 is the 2-dimensional identity matrix. Let

a, = bA(I, 1),

a 2 = 6BI(1, 1),

a 3 = M2(2,1).

Assume that ai E [-0.1,0.1], i = 1, 2,3. Given a A, the problem is to find a controller for

which

rn 5 v*Rv dt
mn (7.1)

V#O f0 z*Wz dt

under the above variations in A(1, 1), BI (1,1) and B2(2,1).

We can find A., given by (2.4) using the technique given in Subrahmanyam 1992b,c,d.

For this example, A\,pt = 261.4016. A suboptimal full state feedback controller can be

designed choosing \ arbitrarily close to ,,Pt. However, to obtain a viable suboptimal output

feedback design, A needs to be chosen much lower than ,,pt. Let us form Table 1 which

gives the performance for various values of \ and the variations.
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TABLE 1: Results of the Performance Robustness Example
A,___ 6_2 3 4,, A-6

1 5.4601 -0.7034 -3.0474 -0.0428 2.3868 2.4127
2 5.8783 -0.6757 -3.2158 0.0169 2.5232 2.6625
3 6.3303 -0.6428 -3.3935 0.0837 2.6670 2.9368
4 6.8179 -0.6045 -3.5808 0.1577 2.8186 3.2371
5 7.3431 -0.5605 -3.7778 0.2392 2.9781 3.5653
6 7.9079 -0.5107 -3.9847 0.3285 3.1455 3.9232
7 8.5140 -0.4549 -4.2010 0.4254 3.3207 4.3130
8 9.1630 -0.3933 -4.4254 0.5296 3.5026 4.7376
9 9.8562 -0.3258 -4.6543 0.6398 3.6886 5.2019

10 10.5944 -0.2534 -4.8779 0.7528 3.8717 5.7165

We now explain the procedure to obtain a particular row of the table. For example,

for A = 3, we find the output feedback controller using the equations given in Section

3. Note that we ignore the time dependence of the solutions (3.14) and (3.24) and only

consider the constant solutions. For A = 3,

UIP+U 2 =(-2.4249 -1.0062),

(0.0302 0.0151)V, +V2-- 0 0

L= 2.7524)L= -0.3047"

The closed loop system (4.1) is given by

( 1 -2.4249-1.0062 0 000 -1\01

)= 2.7524 0 -4.1773 -0.0062 + (7.2)

\0.3047 0 -0.2745 -0.9849 0 0.3047

with x(O) q(0) = 0. Going through the procedure given in Section 4, the actual perfor-

mance A of the output feedback controller

u = (UIP + U2 )q (7.3)

17



NAWCADWAR-TN-92041-60

can be obtained as the first positive value of i which satisfies (4.28). This value is A =

6.3303. Using (4.26)-(4.27) and selecting, for example, the first component of p(O) as 1, we

can obtain p(O). Thus, we can solve the initial value problem (5.3)-(5.4) with z,(0) = 0

and the value of p(O) as obtained above.

Assuming that the accuracy of linear expressions is acceptable, 6A(al, a2, a3 ) which is

the variation in performance can be obtained by using (5.19). Since (5.19) is linear in the

parameter ,variations, the worst degradation in the value of A is at one of the 8 vertices

of (a1 ,a 2 ,a 3 ). Because of the linearity of A(al,a2,a3) and the symmetric nature of the

variations, we need only compute A at four vertices. In Table 1,

Al = A(0.1, 0.1, 0.1),

A2 = A(0.1, -0.1, 0.1),

a3 = A(0.1,0.1, -0.1),

A4 = )(-0.1,01, 0.1).

Also b = mini ±i,. Thus - 6 in Table 1 gives the greatest lower bound of the actual

performance of the controller under parameter variations. This value is 2.9368.

Going back to (7.1), if A = 3, looking at Table 1, A can be 4 or higher. If A = 4, the

controller design can be performed with A = 7, or with a higher value of A. If A = 5, we

can select A at 9 or higher.

8. CONCLUSIONS

In this technical note, an approach is presented for the solution of the finite horizon

H,, performance robustness problem under parameter variations. A linear expression for
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the degradation of performance is given in terms of variations in the system matrices. An

example which illustrates the methodology is also given.
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