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ABSTRACT. We use an adaptive mesh moving and refinement finite volume method to
solve the transient Euler equations of compressible flow in one and two space dimensions.
Numerical solutions are generated by a MacCormack scheme with Davis's artificial viscos-
ity model. Richardson's extrapolation is used to calculate estimates of the local discretiza-
don error which can be used to control mesh motion and refinement. Questions regarding
the optimal combination of adaptive strategies and the characterization of the initial mesh
are investigated. Results indicate that local mesh refinement with and without mesh mov-
ing provide dramatic improvements in accuracy over uniform mesh solutions; that mesh
motion provides good results on relatively fine initial meshes; that each problem has an
optimal initial mesh and that it is more efficient to begin with a coarser than optimal mesh
and refine rather than starting with too fine a mesh; and that a combination of both the
adaptive strategies produced the most accurate solutions.
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1. INTRODUCTION. Our goal is to develop reliable, robust, and efficient software for
solving hyperbolic partial differential equations. With this in mind, Arney and Flaherty
(4] developed an adaptive procedure combining mesh motion and mesh refinement for
solving one- and two-dimensional vector systems of time-dependent partial differential
equations. The solution, mesh motion, and local refinement procedures were explicit and
independent of each other, thus, modules can easily be replaced.

Arney and Flaherty's [4] method solves vector systems of hyperbolic conservation

laws having the form

ut + f (X, Y, r, u) 1-gy (X, y, r, u) = O, (la)

with initial conditions

u(x, y, 0) =u 0 (x, y), (Ib)

and with appropriate well-posed boundary conditions on a one- or two-dimensional
domain Q. Their adaptive approach consists of moving a coarse "base" mesh of quadrila-
teral cells to follow fronts and reduce dispersive errors. Recursive refinement of mesh
cells is performed when necessary to satisfy a prescribed local error tolerance. Solutions
are generated using MacCormack's [10] finite volume scheme coupled with Davis's [81
artificial viscosity model to make the scheme total variation diminishing (TVD). Local
motion and refinement indicators on each cell of the mesh are used to control mesh
motion and refinement, respectively. They used an estimate of the local discretization
error obtained by Richardson's extrapolation [2,11] as the mesh refinement indicator. For
the examples presented in this paper, we used a normalized solution gradient as the mesh
movement indicator, although other choices are possible as long as the indicator is large
where additional resolution is required and small where less resolution is desired. An
automatic time step adjustment feature, based on maximizing the Courant stability condi-
tion, is also provided in our algorithm.

The generation of a proper initial mesh is important for the efficiency of any adaptive
algorithm. Initially we create a uniform mesh on Q having a specified number of nodes
without considering the possibility of any nigh-error regions. A global mesh refinement is
performed on the first time step to estimate the discretization error of the initial data. The
nodes of the mesh are then placed to equidistribute this error estimate. As time evolves,
these nodes are dynamically moved to reduce dispersive errors.

Arney and Flaherty [4,5] perform mesh motion based on an intuitive approach by
identifying computational cells having large motion indicators and clustering them into
isolated regions that are presumed to contain similar solution characteristics. The center
of motion indicators of each clustered region is moved so as to follow the dynamics of the
solution. Remaining portions of the mesh are moved according to an algebraic function so
as to produce a smooth grid having minimal distortion. Most mesh points cannot move
independently but must be coupled to their immediate neighbors. The amount of move-
ment is determined by a function which ensures that the center r. (t) of error clusters
moves according to the differential equation

rF + X i, = 0, (2)

mum mmnmnnmmnnmn Nlnlnmnmnnlln~l . ...
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used by Coyle et al. [7]. Clustered regions created at one time step can subsequently be
destroyed when a dynamic phenomenon subsides. Similarly, two or more clusters can be
united when structures of the solution intersect.

Results obtained by using Arney and Flaherty's [1,3,4,5] adaptive algorithm in one
and two dimensions indicated that, in some instances, proper mesh motion was capable of
dramatically reducing errors for a modest increase in the cost of computation. In general,
however, mesh motion alone cannot produce solutions that satisfy arbitrarily prescribed
accuracy requirements. They, therefore, combined mesh motion with a local temporal and
spatial cellular mesh refinement strategy [4,6]. The space-time cells of a mesh that
violated the prescribed error tolerance were gathered into clusters and were recursively
bisected in space and ime. The problem was solved locally on the successively smaller
domains created by the clistering and refinement. Initial and boundary data for any
refined mesh were determined by interpolation from their "parent" coarser mesh. Error
tolerances involved control of the local error per unit time step and were, thus, halved at
each refinement to account for the binary temporal refinement.

A dynamic tree structure, where fine grids are regarded as offspring of coarser ones,
is used to manage the data associated with the motion and refinement strategies. Solutions
were generated by a preorder traversal of the tree; thus, solutions on all fine meshes pre-
ceded those on coarser ones.

Our results on solving shock problems for the one- and two-dimensional Euler equa-
tions are presented in Section 2. We explore the relationship of the base mesh to the level
of refinement. We found, for example, that it is more effective to begin with a coarse
mesh and perform more refinement than to create a finer mesh which needs less
refinement. Effective mesh motion, on the other hand, required a finer base mesh rather
than a coarser one. The combination of mesh motion and refinement produced the best
results. Local refinement with and without mesh moving provide substantial improve-
ments in accuracy per unit cost relative to computations on uniform stationary mesh solu-
tions.

2. NUMERICAL EXPERIMENTS. Computer codes for one- and two-dimensional prob-
lems based on Arney and Flaherty's [4] algorithm have been implemented in FORTRAN
on an IBM 3090-200S computer and tested on several problems [1,41. In this paper, we
consider examples involving solutions of the Euler equations for a one-dimensional shock
tube and a two-dimensional piston problem. The Euler equations for a perfect compressi-
ble fluid are studied in their conservative form

ur + f" (U) + gy (U) = 0, (3a)

where

P Pu Pv

Pu pu2+p pVU
u = PV ' f(u) = puv , g(u) = pv2+ p  (3b,c,d)

e Ju(e +p) v(e +p)
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Here, p is the fluid density; u and v are the Cartesian components of the velocity vector,
e is the total internal energy per unit volume; and the subscripts x, y, and t denote partial
differentiation with respect to the spatial coordinates and time, respectively. The pressure
p is evaluated according to the ideal gas equation of state as

P = (Y- 1)[e - p(u 2 + v 2)/2], (4)

where y is the specific heat ratio of the fluid. Computational experiments were conducted
with y = 1.4. Solution accuracy is appraised in the L I norm

lie(-, , )lI = max f lej(x, y, t)l dx dy , (5)
15j:4 Q

where ej (x, y, t) is a piecewise constant approximation of uj (x, y, t) - Uj obtained by
using values at cell centers.

Example 1. Consider Sod's [12] one-dimensional shock tube problem which consists
of solving (3,4) with v = 0 and a( )/dy = 0 subject to the initial conditions

[p(X,0) 1.0, 1.0,0 0 1T* if -0.2 :5x :50.5
p(X, ) 1[0.125, 0.1, 0.0], if 0.5 <x : 1.5 (6)
U (X, 0).

A diaphragm at x = 0.5 separates two regions of a tube that contain gases at different
densities and pressures. The two regions are in a constant state and both fluids are ini-
tially at rest. At time r = 0 the diaphragm is ruptured and three waves are generated: a
shock moving with velocity 1.7522, a contact discontinuity moving with velocity 0.9275,
and an expansion wave centered between 0.5 - 1.1832t 5 x 5 0.5 - 0.0703t. The exact
solution [13] of this problem is

[0.0, 1.0, 1.01T, if T1 :5 - 1.1832U (X, t [0.9860 +11 /1.2, (1 -u/5.9161) 5, p 1.4]T, if -1.1832 :5r 11!5-0.0703

p(x, t) = [0.9275, 0.4263, 0 .3 0 3 11
T ,  if -0.0703 :5 11 < 0.9275 ,(7)

p(x, t) [0.9275, 0.2656, 0.303 1]T, if 0.9275 < il < 1.7522

[0.0, 0.125, 0.1]T, if 1.7522 < il

where 11 = (x - 0.5) / t.

The "base" mesh is the coarsest mesh used to solve a problem. It reflects the scale
on which dominant temporal and spatial changes in the solution occur. Selecting too
coarse a base mesh will result in excessive refinement. Selecting too fine a base mesh
will be inefficient. At present, selection of the base mesh is at the discretion of the user
and in this first experiment we hope to provide guidance for this choice as well as for
future automated base mesh selection procedures. Six cases having base meshes of
N = 2k, k=3,4,...,8, cells were solved on 0<t 50.35. The maximum number of
refinement levels, the initial time step, and the local discretization error were set at 8-k,
3 x 2"k x 10-4, and 2-k x 10- , k = 3,4,...,8, respectively, so that the finest allowable
discretization and local error tolerance were constant for all six cases.
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Error Max. No. Normalized No. Space- Effort per
N Tolerance Refinement CPU Time Time Unit Accuracy

(x 10) Levels (Effort) Cells (x 103)

8 4.0 5 1.295 28162 3.71
16 2.0 4 1.066 23026 2.17
32 1.0 3 1.000 21006 2.24
64 0.5 2 1.104 21396 2.67

128 0.25 1 1.533 25996 3.89
256 0.125 0 4.104 63744 6.70

Table 1. Normalized CPU time, number of space-time cells, and effort per unit
accuracy at t = 0.35 with different initial base meshes for Example 1. The
parameters are adjusted so that the finest discretization and the corresponding lo-
cal error tolerance are constant for all cases.

Results for the normalized CPU time, the number of space-time cells, and the effort
per unit accuracy are reported in Table 1 for each of the six cases. Effort per unit accu-
racy is the product of the normalized CPU time and the LI error at terminal time (0.35 in
this case). In Figure 1, we show how the effort per unit accuracy varies with the loga-
rithm of the number of cells in the base mesh. It is preferable to select a coarser base
mesh than a finer one since, with our procedures, refinement of a coarse mesh will
decrease the effort/accuracy ratio. The number of space-time cells vary in approximately
the same ratio as the CPU time suggesting that the overhead associated with data manage-
ment is minimal

Error Toler- Normalized No. of Space-
ance (x 1W) CPU Time- Time Cells Ile 1l1 (x 103)

128.0 1.000 910 25.7
32.0 4.473 7532 12.7

8.0 9.370 19322 6.20
2.0 15.610 34562 3.03

Table 2. Normalized CPU time, number of space-time cells, and global L I error
at r = 0.35 as a function of the local error tolerance for Example 1 using local
mesh refinement.

We continued our experiments by solving this problem on -0.2 5 x < 1.5 for

0 < t < 0.35 using local mesh refinement on 16-element base meshes, an initial time step
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Figure 1. Effort per unit accuracy vs. number of elements in the base mesh for
Example 1.

of 0.0035, and with varying error tolerances. Refinement was restricted to a maximum of
four levels to avoid excessive refinement near shocks. The normalized CPU time, the
number of space-time cells used to solve the problem, and the errors in L 1 at t = 0.35 are
presented in Table 2 as functions of the local discretization error tolerance. For small
tolerances, the CPU times and the number of space-time cells increase at approximately
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the same rate as the L 1 error decreases, again indicating a minimal overhead associated
with refinement. The decrease in the local pointwise error tolerance is quadratic when
compared with the actual global LI error, which is what one would expect for problems
having smooth solutions. The result apparently carries over to this shock problem.

Normalized No. of Space-
Strategy CPU Time Time Cells lie III (x 13)

Uniform Mesh 1.000 576 30.7
Coarse Mesh Motion 2.026 1152 16.9
Refinement 19.009 34562 3.03
Motion & Refinement 26.532 44602 1.88

Fine Mesh Motion 8.584 12690 4.37

Table 3. Normalized CPU time, number of space-time cells, and global L 1 error
at : = 0.35 for adaptive and standard solutions of Example 1.

The third experiment involves comparing adaptive solutions obtained using mesh
motion, local mesh refinement, and mesh motion plus local refinement with one obtained
on a uniform mesh. In each case, a 16-element base mesh and an initial time step of
0.0035 was selected. An error tolerance of 0.00002 was used for those solutions that
involved refinement. A fifth solution involving motion of a finer 50-element mesh was
also generated. Data similar to that presented in Table 2 is displayed in Table 3 compar-
ing the results of different adaptive strategies with those on a stationary uniform mesh. In
Figures 2 to 6 we display the calculated density as a function of x at r = 0, 0.09, 0.18,
0.27, and 0.35, the meshes used, and the time steps selected for each of the solutions
shown in Table 3. The uniform mesh solution shown in Figure 2 exhibits excessive
diffusion at the shock, at the contact surface, and in the expansion region. However, the
time step increases rapidly in accordance with the Courant condition. A larger initial time
step could clearly have been used; however, we wanted to use the same initial time step
for all the cases. In Figure 3 we show that the moving mesh procedure follows the dom-
inant features of the solution. Results are clearly superior to those in Figure 2, but the
mesh is too coarse to obtain good resolution everywhere. The results in Figure 6 demon-
strate that far better resolution is obtained when a finer mesh consisting of 50 elements is
used; however, this mesh did not move correctly in the expansion region because the mesh
movement indicator is too small there. The initial mesh generator distributes a specified
number of nodes N based on the initial data. In this case, the initial data has a jump
discontinuity at x = 0.5, so nodes were clustered around that point and then gradually
spread across the domain. There are too many nodes in the expansion region in relation
to the small magnitude of the movement indicator to produce adequate motion there. A
static rezone of the mesh could alleviate this problem. The time steps of both solutions
with mesh moving (Figures 3 and 6) are erratic for small times while the mesh is
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adjusting itself to the three breaking waves. Time steps increase at the same rate as those
for the uniform mesh solution of Figure 2 when a coarser mesh is used. Incorrect motion
of the fine mesh in the expansion region (Figure 6) prevented a similar increase of the
time step. The results depicted in Figure 4 show that refinement was correctly performed
at all critical points of the calculation. In each case, shocks are captured sharply with the
correct speed. As expected with Davis's [8] artificial viscosity model, diffusive effects are
more pronounced near the contact surface than at the shock. Results obtained using both
mesh motion and refinement are depicted in Figure 5. The results have improved some-
what but at the cost of a significantly higher computational effort relative to the solution
of Figure 4. This suggests that mesh motion, with or without refinement, is not competi-
tive with refinement alone. Additional experimentation is needed to determine a better
combination of mesh moving and refinement.

Example 2. Consider the solution of the Euler equations (3,4) in a region exterior to
an infinite cylindrical piston that is expanding radially creating a radially expanding shock
wave. We ignore the cylindrical symmetry and solve this problem in one quadrant of the
two-dimensional rectangular domain -0.05 : x, y 5 0.05 with the two-dimensional algo-
rithm of Arney and Flaherty (4]. Self-similar solutions of this test problem are obtained
by solving a pair of ordinary differential equations (by numerical integration) for the radial
velocity and acoustic speed [9].

We solved this problem for 0 < t < 0.0096 with the piston initially positioned at a
radius of 0.016023 and having a velocity of 1.6185. Numerical solutions were calculated
on a 26 x 26 spatial mesh (i) without adaptation, (ii) with one level of local refinement,
and (iii) with mesh motion and one level of refinement. Contours of the density at
t = 0.0096 are presented for the exact and three numerical solutions in Figure 7. The spa-
tial meshes produced by the two adaptive strategies at t = 0.0096 are shown in Figure 8.

Clearly one level of refinement is not sufficient to adequately resolve the structure of
this solution. We were forced to limit our computations to this level because of memory
restrictions on our computing system. Nevertheless, local refinement with and without
mesh moving provide improvements in accuracy over uniform stationary mesh solutions.
Detailed quantitative comparisons have yet to be performed; however, qualitatively, the
expanding shock is sharper in both adaptive solutions. The combination of mesh motion
and refinement provides additional improvement.

3. CONCLUSIONS. We have applied an adaptive mesh motion and refinement method
for time-dependent partial differential equations to the one- and two-dimensional Euler
equations. Our method can be used with several numerical methods and local error indi-
cators to produce solutions that satisfy prescribed local tolerances. Mesh motion is global
and is performed at every time step. Mesh refinement is cellular and can be used on
irregular or moving meshes of quadrilateral cells.

Our results indicate that mesh refinement can be used to achieve prescribed levels of
accuracy. Refinement is easy, recursive, and works well. It appears to be computationally
efficient for a given accuracy level. Proper mesh movement improved the computed
results. Refinement has a definite advantage over mesh motion in that it is inferred in an
a posteriori manner from a preliminary solution whereas our mesh motion is applied in an
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Figure 2. Solutions, mesh trajectories, and time step profie for computations
performed with a stationary uniform mesh of 16 cells for Example 1.
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Figure 4. Solutions, mesh trajectories, and time step profile for computations
performed with adaptive local mesh refinement for Example 1.
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Figure 5. Solutions, mesh trajectories, and time step profile for computations
performed with both adaptive mesh motion and local mesh refinement for Exam-
PIe 1.
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Figure 6. Solutions, mesh trajectories, and time step profile for computations
performed with adaptive mesh motion on a mesh of 50 cells for Example 1.
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Figure 7. Density contours for Example 2 at r = 0.0096 obtained from the exact
solution (upper left) and by computed solutions on a uniform stationary mesh
(upper right), a uniform stationary base mesh with one level of refinement
(lower left), and a moving base mesh with one level of refinement (lower right).

a priori fashion by extrapolating the mesh behavior of the previous two base time steps.
As a result, mesh refinement may be inefficient but it never leads to anomolous behavior.

On the other hand, incorrect mesh motion can easily mess a local nonuniformity in the
solution that evolves suddenly. Such incorrect motion restricts the size of the time steps
and diminishes the overall efficiency of the adaptive method. These difficulties can
largely be overcome by combining mesh motion with mesh refinement and static mesh
redistribution. Further experimentation and analysis are needed in order to determine
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I~~~L I

x x

Figure 8. Spatial meshes at t = 0.0096 for Example 2 using one level of local
mesh refinement on a uniform stationary base mesh (left) and a moving base
mesh (right).

optimal combinations of these strategies.

We used the first example to demonstrate that each problem has an optimal initial
base mesh size and that it is always computationally efficient to adaptively refine begin-
ning with a less than optimal mesh rather than starting with too fine a mesh. This exam-
ple also showed that for mesh motion to be effective, a fine base mesh is absolutely neces-
sary. A combination of both the adaptive strategies of mesh motion and refinement pro-
duced the best results but at the cost of a significantly higher computational effort. The
second example demonstrates that our adaptive mesh procedures extend to two-
dimensional problems.

We are currently developing higher-order explicit finite volume methods to replace
the second-order MacCormack scheme. The present Richardson's extrapolation-based error
indicator is expensive and we are seeking ways of replacing it by using p-refinement tech-
niques. Such methods have been shown to have an excellent cost performance ratio when
used in conjunction with finite element methods. We are also working on a modification
of our algorithm which allows a variety of geometries. Our adaptive techniques must be
able to take advantage of the latest advances in vector and parallel computing hardware.
The tree is a highly parallel structure and we are developing solution procedures that
exploit this in a variety of shared and distributed memory parallel computing environ-
ments; however, it is difficult to parallelize mesh motion because of its global nature.
Cells assigned to a particular processor may migrate to the domain of other neighboring
processors and cause non-trivial bookkeeping problems. Mesh motion is also difficult to

I
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perform in higher dimensions. We are, therefore, actively considering hp-type techniques
in parallel environments.
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