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FOREWORD 

This report summarizes the risk analyses for aging aircraft 

work performed by the Structural Integrity Division of the 

University of Dayton Research Institute for the Flight Dynamics 

Directorate of the Air Force Wright Laboratory under Contract 

F33615-87-C-3215.  The period of performance for the effort was 

September 1987 through January 1991. Mr. Joseph G. Burns, 

WL/FIBEC, was the Air Force Project Monitor.  Dr. Alan P. Berens 

of the University of Dayton Research Institute was the Principal 

Investigator. 

The final report of this work comprises two volumes. 

Volume 1 contains a description of the model for implementing the 

risk analyses and example applications.  The documentation of 

Probability fif fracture (PROF); the computer program written to 

perform the risk analyses, is prer.ented in Volume 2. 
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SECTION 1 

INTRODUCTION 

The realized life of individual airframes is seldom equal 

to the design life planned for a fleet.  The life of an aircraft 

fleet tends to be determined more by its inherent operational 

capability and maintenance costs than by the number of flight 

hours specified at the design stage.  As a fleet ages, the Air 

Force must make many decisions concerning the timing and extent 

of inspections, repairs, modifications, and life extension 

options.  Since the readiness and cost ramifications of these 

decisions are very large, the Air Force needs every possible tool 

that can assist in making cost effective decisions. 

Of major concern are the real cracks in the individual 

airframes of the fleet at the time structural decisions must be 

made and the projected growth of these cracks.  To obtain this 

specific information, extensive inspections of individual 

airframes would be necessary to obtain the required data on the 

number and size of the cracks; and even with such extensive 

inspections, not all of the cracks would be detected.  Therefore, 

the status of the populations of fatigue cracks in an aging fleet 

must be inferred from inspections of a sample of the fleet or 

analytically estimated.  In either case, decisions based on 

durability and damage tolerance analyses should reflect the 

uncertainty in the flaw size information. 

Most durability and damage tolerance analyses have been 

based on deterministic methods making conservative assumptions 

when necessary to cover scatter.  (It might be noted that the Air 

Force has used estimates of failure probability as aids in making 

structural integrity decisions regarding the F-lll, C/KC-135, C- 

5A, and T-38 aircraft.)  Due to the increased uncertainty 

regarding potential flaw sizes in an aging fleet of aircraft, a 

deterministic analysis does not necessarily provide the Air Force 

with the information needed to assess options.  Rather, a risk 

analysis tool is needed whereby the risks and expected costs of 

1 



maintenance strategies and life extension options can be quickly 

assessed and compared.  This risk analysis methodology should be 

as realistic as possible within the constraints of force 

management data av-liable for different fleets of aircraft. 

The objective of this program was to provide the Air Force 

with an additional tool for evaluating inspect, replace, repair 

or retire decisions in aging aircraft fleets.  To achieve this 

objective, a risk analysis computer program, PBobability Of 

fracture (PROF), was formulated and implemented.  The programmed 

methodology is based on data available from the Air Force 

Aircraft Structural Integrity Program, ASIP.  PROF calculates the 

history of a growing population of fatigue cracks in zones of 

equivalent stress experience.  It accounts for inspection 

uncertainty and the repair of cracks which are detected.  The 

risk assessment addresses both safety and durability.  Safety is 

quantified in terms of the probability of a fracture resulting 

from the maximum load in a flight exceeding the critical load 

associated with the fracture toughness level.  Durability is 

quantified in terms of the expected number and sizes of the 

cracks to be detected and repaired at each inspection and repair- 

if-necessary cycle and the expected costs of these repairs. 

This report summarizes the complete development and 

application of the risk analysis program.  Section 2 is a brief 

overview of PROF.  Section 3 defines the detailed methodology 

that was implemented in the PROF computations, describes methods 

for obtaining the required input, and presents an example run of 

the program.  Section 4 contains the results of PROF output 

sensitivity to variations in input and to the fleet management 

decisions.  An example application of PROF is presented in 

Section 5.  Conclusions and recommedations are contained in 

Section 6. 



SECTION 2 

OVERVIEW 

The objectives of structural risk analyses are to provide 

quantitative information for the management and assessment of 

structural safety and useful life.  This information is typically 

expressed in terms of the expected costs of competing maintenance 

scenarios and the probability of failure associated with the 

scenarios.  There are many approaches that can be programmed to 

achieve these objectives.  Differences in approach can be 

fundamental, for example, modeling the time to failure versus 

modeling the growth of a crack size distribution.  Differences in 

approach can also be due to the selection of the many influencing 

factors and the methods for modeling these factors.  However, 

implementing any structural risk analysis approach involves a 

compromise between the ability to model reality and the data that 

are available to feed the analytical model.  In general, the more 

detail required by the model, the less reliable are the available 

data. 

Because of the Aircraft Structural Integrity Program (ASIP) 

requirements of MIL-STD-1530A [1], the Air Force has an extensive 

data base on each system for the deterministic evaluation of 

structural integrity. The approaches usually taken in fulfilling 

these requirements, the availability of the resulting data, and 

the information content of the crack size distribution at 

critical locations were the primary reasons for the choice of the 

fracture mechanics based analysis that was implemented in PROF. 

Of particular importance to this risk analysis methodology are 

the ASIP data associated with the damage tolerance [2,3] and 

durability [2,4] analyses that are performed for all potential 

airframe cracking sites and the data associated with the force 

management tasks of ASIP [5].  Data requirements will be 

addressed in detail in Section 3. 

The risk analysis model, PROF, addresses a single 

population of structural elements.  The population is defined in 



terms of all details which experience essentially equivalent 

stress histories and have equivalent stress intensity factor 

coefficients.  Such populations of potential cracking sites are 

defined during the ASIP damage tolerance analyses.  Each 

structural element in the population of details is assumed to 

contain a crack whose size at T spectrum hours is a random 

variable with probability density function, fT(a). There are 

three contexts for interpreting statements about this 

distribution of cracks: an individual structural element, a 

single airframe with many such "identical" elements, and the 

fleet of airframes.  PROF addresses all three, but care should be 

taken to ensure that interpretations are being made in the 

correct context. 

The crack size distribution forms the basis of PROF 

computations as illustrated in the schematics of Figures 1-4.  An 

estimate of the distribution of crack sizes at a reference 

spectrum hour age is obtained from inspection feedback [6] or an 

initial quality analysis expressed in terms of flaw sizes 

[7,8,9].  The deterministic crack size versus spectrum hour (Ma 

vs. T") relation from the damage tolerance analysis. Figure la, is 

used to project the percentiles of the crack size distribution. 

Figure lb.  (The sizes of individual cracks can be projected 

forward or backward to combine data from different airframes in 

obtaining the crack size distribution at the reference time.) 

At a maintenance action, the crack sites are inspected. 

The capability of the inspection system is characterized by its 

probability of detection function. Figure 2a.  If a crack is 

detected, it is repaired and the quality of the repaired cracks 

is quantified by an equivalent repair crack size distribution, 

Figure 2b.  The equivalent repair crack size distribution is 

analogous to the equivalent initial crack size distribution used 

to characterize manufacturing quality [9].  (If desired, the 

repaired crack sites can be removed from further analyses by 

defining the equivalent repair crack sizes to be zero.  The 

possibility of a rogue flaw being introduced at the maintenance 
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action can also be addressed by the method of modeling the 

equivalent repair crack size distribution.)  The crack size 

distribution after the inspect and repair maintenance action is a 

mixture of the sizes from sites in which no cracks were detected 

and from the sites in which cracks were detected and repaired, 

Figure 2c.  This after inspection crack size distribution is 

projected forward for the next period of uninspected usage.  This 

process is continued for as many inspection intervals as 

desired. 

The time history of the crack size distribution is used to 

evaluate both safety and maintenance costs.  Safety is quantified 

in terms of the probability of fracture, Figure 3.  Fracture 

occurs when an applied stress produces a stress intensity factor 

which exceeds the fracture toughness for the cracked detail, 

i.e., when 

a > a   = K  / [7 IT a • /J(a)] (1) 

where "a" is the crack Jepth, K is the fracture toughness of the 

material and ß{a)   is a geometry dependent factor.  The smallest 
time increment considered by PROF is a single flight, and it is 

assumed that potential fractures will occur at the random 

variable of maximum stress in a flight. Figure 3a.  For an 

arbitrary element in the population of details, "a" and Kc are 

unknown and are modeled as random variables. Figures 3b and 3c. 

From the distributions of these three random variables, the 

probability of fracture (POF) is calculated as 

POF = P{ a    >   a } x    max   er / 

= P{ amax ^ Kc / ^ ^ a * ^a^ >        (2) 



POF is calculated for a single flight and for any flight in the 

interval between the start of analysis and each inspection, 

Figure 3d.  POF is also calculated for any flight within each 

inspection interval. 

Maintenance costs are quantified in terms of the expected 

number of cracks that will be detected and repaired at each 

inspection and the total expected costs of the planned 

maintenance scenario, Figure 4.  The expected number and sizes of 

cracks to be repaired are obtained from the distribution of crack 

sizes at the time of the inspection, Figure 4a, and the 

capability of the inspection system, Figure 4b.  The expected 

costs are obtained from the costs of inspection, the expected 

number and sizes of cracks to be repaired, Figure 4c, and the 

expected costs due to element fracture.  Figure 4d is a schematic 

illustration of the expected costs of maintenance for different 

intervals between maintenance actions. 
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SECTION 3 

PROF METHODOLOGY 

This section presents the risk analysis methodology that 

has been implemented in PROF.  The input and methods for 

obtaining this input in the required formats are presented first. 

These input requirements are followed by a general mathematical 

description of the programmmed computations.  (Details of these 

computations are contained in Appendix A and Volume 2 of this 

report.)  An example of PROF output is then displayed by 

presenting the results of a PROF run using a set of example input 

for an Attac /Fighter/Trainer (A/F/T) class aircraft. 

3.1   PROF INPUT DATA 

The risk analysis methodology implemented in PROF requires 

input on nine distinct data items.  Since PROF is an interactive 

program, it obtains this input by querying the user in a series 

of screens.  The answers to the queries depend on the data item 

and comprise a) names of files which contain input tables, b) 

parameters of programmed functions, and, c) stand alone 

constants. 

Figure 5 presents a list of the nine PROF input data items 

and indicates the required formats.  This subsection presents the 

specific requirements for each item and describes methods for 

obtaining the input in the required format. An example is 

presented for each data item which is representative of an inner 

lower wing location for an Attack/Fighter/Trainer application. 

The example input will be used to generate the example output of 

Subsection 3.3.  Expected maintenance costs are currently 

calculated using PROF output, so inspection and repair costs are 

not required to run PROF.  Inspection and repair costs, however, 

would be required for a complete analysis. 

Although not addressed in detail in this report, some of 

the input data can be modeled at different levels of 
stratifications.  For example, the distribution of max stress per 
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DATA TYPE FORMAT SOURCE/COMMENT 

MATERIAL/GEOMETRY 

K/or VS a File DTA analysis - stress intensity 
factor coefficient 

g(Kc) Parameter Normal distribution of fracture 

values toughness, [10] 

AIRCRAFT/USAGE 

Locations Constants Number of analysis locations per 
airframe and number of airfraraes 
in the fleet 

f0(a) File Crack size distribution at start 

of analysis 

a vs T File DTA analysis - crack growth life 
curve 

h(a) Parameter 
values 

Gumbel distribution of max stress 
per flight - from L/ESS data or 
seguences of DTA analysis 

INSPECTION/REPAIR 

1'  2 ' ' * * Constants Inspection times - user defined 

POD(a) Parameter 
values 

Cumulative lognormal POD function 
for NDE system [11] 

fr(a) File Crack size distribution of 

repaired crack sites 

Figure 5. Summary of PROF Input Data. 
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flight can be modeled for different mission types or for a 

composite of all mission types.  For these types of input, both 

the effect on the interpretation of probability of fracture and 

the method for combining probabilities of fracture across the 

stratifications are also discussed in this section. 

3.1.1  Material/Geometry Data 

Under current Air Force regulations, damage tolerance 

analyses are performed for every critical location on an 

airframe.  As part of these analyses, the stress intensity factor 

geometry correction, /9(a), for correlating stress, loading 

condition, global geometry, and crack size will have been 

determined.  Further, fracture toughness data, K , for the 

material will have been collected.  The following subsections 

describe the format required by PROF for these geometry and 

material dependent properties. 

3.1.1.1  K/a versus a 

The defining relation between stress intensity factor, 
stress,   and crack size is expressed as 

K = a   •   7 JT  a   •   ^ (a) (3) 

To isolate the crack size random variable, a, PROF requires the 

geometry factor input to be expressed in terms of "K/a versus a," 

i.e., 

K/a = 7 »r a • ^9(3) (4) 

For every critical location in an airframe, /3(a) will be known. 

Closed form solutions for /3(a) have been obtained for many 

typical detail geometries [12,13].  However, finite element 

analyses may be required to obtain j8(a) due to such factors as 

complex geometry, boundary conditions, or load transfer 
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[14,15,16].  In these cases, /9(a) is typically expressed in 

tabular or graphical form. 

The "K/a versus a" relation must extend to a sufficiently 

large crack size, alast» such that for cracks larger than a,  . , 

the structural element can be considered to be in a failed state. 

PROF uses alast to define limits of integration for the 

calculation of fracture probabilities. 

As currently written, the fracture probability calculations 

of PROF do not properly account for large discontinuities in the 

"K/a versus a" relation introduced by edges, holes, etc.  In this 

situation, a crack may temporarily experience rapid growth and 

still be stopped before the structure fractures.  Modifications 

to account for such discontinuities and to extend the analysis to 

cover continuing damage are planned for a future version of the 

program. 

3.1.1.1.1 Format 

Since the geometry factor, /9(a), is not always stated in 

explicit terms, PROF was designed to expect a tabular input for 

the "K/a versus a" relation.  In particular, PROF reguests the 

name of the file which contains (a,K/a) data pairs.  This data 

file can be generated from a closed form solution, from a table, 

or from a digitization of an analog definition of /3(a).  Since 

interpolation is used to obtain intermediate values, the (a,K/a) 

pairs must define a single valued function. 

The format of the "K/a versus a" data file is as follows. 

The first row of the file identifies the source of the data and 

will appear in the PROF output.  The second row of the file must 

contain the number of (a,K/a) pairs in the table.  The first pair 

must be (0,0) and the last pair defines the maximum crack size, 

a,  ., that is considered in the analysis.  The filename must 

contain a ".DAT" extension. 

3.1.1.1.2 Example 

Figure 6 presents an example "K/a versus a" curve for an 

A/F/T aircraft.  The data were obtained from a manufacturer's 
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Figure 6.  Example K/a versus Crack Size for an A/F/T Airfrarae, 
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Damage Tolerance Analysis (DTA) report.  It was assumed 

(presumably conservatively) that cracks would originate at the 

intersection of the countersink and the bore of the ifivet hole. 

Unstable crack growth occurs in both the depth and surface 

directions when the crack depth (a) reaches 0.5 in.  For a = 0.5 

in. and average K = 30 KSI J  in., the residual strength is 24 
KSI, a stress level exceeded in about 80 percent of all flights. 

Thus, for this example alast = 0.5 in. 

3.1.1.1.3   Comments 

PROF treats ,9 (a) as a deterministic relationship for the 

structural detail. Given an initiated crack, the deterministic 

model is reasonable in the sense that deviations from the model 

for a particular crack would have a second order effect on the 

calculations as compared to uncertainty in other inputs. 

However, cracks do not necessarily initiate at the "correct" 

location, and there are significant differences in the geometry 

factors for different locations.  The conservative approach to 

the problem of multiple crack initiation sites is to assume all 

cracks initiate at the location with the most severe geometry 

correction.  Probability of fracture (POF) as calculated by PROF 

would then be conservative with respect to geometry factor. 

Multiple crack initiation sites in a given detail can be 

directly modeled by using multliple runs of PROF and interpreting 

the results as follows.  If the proportion of the total number of 

cracks governed by each initiation site is known, then the best 

estimate of POF is obtained from a weighted average of the 

fracture probabilities for each crack geometry (each "K/a versus 

a" description).  For example, if p^^ represents the proportion of 

cracks that initiate at the intersection of the countersink and 

the rivet bore, p2 represents the proportion of cracks that 

initiate in the bore, and p3 represents the proportion of cracks 

that initiate at a bore corner, then the probability of fracture 

for the detail is given by 
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POF = P1(POF1) + p2(POF2) + P3(POF3) (5) 

where POF. is the fracture probability for the ith crack 

initiation geometry.  The calculation of Equation 5 would have to 

be made using output results from three individual runs of PROF 

as there is no provision in PROF for combining results from 

different analyses. 

3.1.1.2  Distribution of Fracture Toughness 

Fracture toughness is best modeled in terms of a 

distribution of values for the particular material application 

[17].  PROF assumes that fracture toughness values have a normal 

distribution and requests the mean and standard deviation of Kc 

for the particular material of the application.  In general, 

these values can be obtained from the Damage Tolerant Design 

Handbook [10].  Coefficients of variation (a/M for Kc values 

range from about 0.03 to 0.10 for aluminum and titanium alloys 

and most steels. 

For the example application, assume the material of the 

structural detail, Figure 6, is 7075-T7351 aluminum alloy plate. 

The mean and standard deviation of fracture toughness for this 

material are listed at 29.4 and 2.2  KSI J  in. , respectively, in 

the Damage Tolerant Design Handbook [10], Table 8.9.1.1.  These 

values were based on a sample of 47 specimens and the mean 

closely agrees with the fracture toughness used by the 

manufacturer in the DTA of this detail. 

3.1.2  Aircraft/Usage Data 

The input data in this category are specific to the past 

and expected usage of the fleet of aircraft being analyzed.  The 

initial structural design, manufacturing quality, and past usage 

determine the distribution of crack sizes that are in the 

analysis locations at the start of the analysis.  The expected 

usage determines the projected growth of the cracks and the 

operational stress peaks that may be encountered.  This section 
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addresses the methods used to model these elements as well as 

their PROF input requirements. 

3.1.2.1  Aircraft Population Parameters 

An individual execution of PROF is based on the analysis of 

a single distribution of crack sizes emanating from stress 

raisers in metallic structure.  The population modeled by this 

distribution can represent a single location in each airframe of 

the fleet.  If there are multiple locations in each airframe that 

will experience essentially equivalent stress histories and have 

equivalent stress intensity factors, the crack size distribution 

would also apply to each of the stress raisers in the zone of 

equivalence.  There are three fracture probabilities of interest 

to cover these populations:  a) the POF at a single stress 

raiser, b) the POF at any stress raiser in a single airframe of 

the fleet, c) the POF for any stress raiser in any airframe of 

the fleet. 

PROF first calculates the POF at a single stress raiser 

and, assuming independence, calculates the POF for the other two 

cases based on the number of stress raisers, k, in the zone of 

equivalence on a single airframe and the number of airframes, N, 

in the fleet being analyzed.  To perform the last two 

computations, PROF asks for the number of analysis locations per 

aircraft and the number of aircraft in the fleet.  The number of 

analysis locations per aircraft is determined from the number of 

stress raisers in the zone of equivalence. The number of 

aircraft in the fleet is the number of aircraft that will 

experience the equivalent expected usage. 

The probability of fracture is calculated on the basis of 

the maximum stress that might be encountered in a flight, i.e., 

on a flight-by-flight basis.  Aircraft usage, however, is 

typically expressed in terms of flight hours or equivalent flight 

(spectrum) hours.  PROF expects time data in terms of hours and 

converts to number of flights when necessary. This conversion is 
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done in terms of average hours per flight.  Therefore, average 

hours per flight is a required input to the program. 

For the example, it is assumed that there are three of the 

countersunk rivet holes (Figure 6) on each side of the wing that 

will experience the same stress history.  Thus, there are six 

analysis locations per aircraft.  It is assumed that there are 

125 aircraft experiencing the common operational usage and that 

the average flight is one hour. 

3.1.2.2  Crack Size versus Flight Time 

Crack growth is inherently a stochastic phenomena.  If 

specimens containing cracks of "constant" size are subjected to a 

common stress history in the laboratory, a distribution of sizes 

will result.  Further, if different airframes contain cracks of a 

"constant" size and are subjected to a "common" usage, the 

resulting distribution of crack sizes will contain significantly 

more scatter. The increase in scatter is due to the additional 

variability introduced by the differences in operational loadings 

actually encountered.  To implement a complete stochastic model 

of the growth of a distribution of cracks ^ - fleet of aircraft 

would require a stochastic model for the effect of usage 

variation as well as a stochastic model for the crack growth 

process for a fixed stress sequence.  The data for such models 

are currently not available for aircraft applications. 

PROF uses a deterministic correlation between spectrum 

flight hours and crack size as the basis for projecting the 

growth of the distribution of cracks assumed to be in the 

population of structural detail.  This is accomplished by 

projecting percentiles of the crack size distribution based on 

the deterministic "a versus T" relationship for the expected 

stress sequence.  There were three major reasons for implementing 

this method of modeling crack growth: 
a) The damage tolerance requirements assure that this 

deterministic crack growth prediction will always be 

available for known critical locations. 
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b) The POF calculated from average usage is the POF for a 

detail in a randomly selected aircraft of the fleet. 

The specific usage of any single aircraft is unknown at 

the time of analysis.  If the potential usages for the 

airframes of the analysis are ranked in severity, a 

distribution of the severities can be postulated.  The 

expected usage of the DTA analysis represents the 

average of the distribution of severities. Different 

percentiles of the severity distribution would produce 

different "a versus T" curves and different 

distributions of maximum stress per flight (to be 

discussed in Subsection 3.2.3).  If POF were calculated 

for these different severity percentiles, a distribution 

of POF values would be generated.  The POF for a 

randomly selected aircraft would be the mean of this POF 

distribution, i.e., the POF obtained from the mean 

usage.  Note that POF values can be generated for stress 

sequences that are representative of the percentiles of 

the severity distribution, and these could be 

interpreted in terms of the population of individual 

aircraft usage. 

c) There are no generally accepted methods for modeling 

stochastic crack growth and the methods that have been 

proposed require data that have not been obtained for 

existing aircraft. There are indications that the added 

stochastic effect of the growth of cracks of the same 

size may be of second order when compared to the 

uncertainty in the crack size distribution in the 

population.  A heuristic analysis of the effects of 

stochastic crack growth on the crack size distribution 

is presented in Appendix B. 

3.1.2.2.1   Format 

Since PROF uses table lookup with interpolation to project 

the growth of the crack size distribution, the "a versus T" 

relation is input to PROF in the form of a table of (a,T) data 
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pairs.  PROF requests the name of a file which contains the 

table.  The first row of the file must contain an identification 

which will appear in the summary output file.  The second row of 

the file must contain the number of (a,T) data pairs which are in 

the table. The table of (a,T) data pairs must define a single 

valued function. The first pair in the table must be (0,0) and 

the last crack size must be greater than or equal to the maximum 

in the "K/a versus a" data file. The "a versus T" filename must 

end with a ".DAT" extension. 

3.1.2.2.2 Example 

Example "a versus T" curves for an inner lower wing 

location on an A/F/T aircraft flying severe and moderate load 

spectra are presented in Figure 7. For crack sizes larger than 

0.005 in., the curves were obtained by digitizing a figure from 

the aircraft manufacturer's DTA report.  For the crack sizes less 

that 0.005 in., the curves were obtained by back extrapolation 

using an exponential fit as the shape of the curve for the sizes 

less than 0.005 in.  The fit was obtained as follows. 

For a < 0.005, it was assumed that the "a versus T" curve 

has an equation given by 

a = a0 exp(bT) (6) 

The parameter b was estimated from a least squares fit over a 

range of linear "In a versus T" (0.005 to 0.028 in. for the 

severe spectrum and 0.005 to 0.024 in. for the moderace 

spectrum).  It was arbitrarily assumed that a0 = 0.0005. For a ^ 

0.005, the original T values were increased by the time required 

for a 0.0005 in. "crack" to grow to 0.005 in. using Equation 6. 

The adjustment added 2045 and 2330 hours, respectively, for the 

severe and moderate spectra. 

3.1.2.2.3 Comments 

In general, the population of cracks being modeled will 

have a significant proportion with si^es smaller than the minimum 
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size considered in damage tolerance analyses.  The importance of 

these small cracks in risk analysis depends on the primary 

concern.  To date, sensitivity studies have shown that these very 

small cracks have an insignificant effect on POF.  However, for 

long analysis periods, the rapidity of growth of the small cracks 

does affect the expected number of cracks detected and repaired 

at a maintenance action.  Reasonable care should be taken in 

accounting for the growth of the small cracks. 

Current methods for obtaining crack growth at very small 

sizes center on the empirical methods associated with durability 

analyses [7]. These methods are based on an exponential fit to 

the "a versus T" curve for very small cracks in the expected 

stress environment.  If the crack size distribution (see 

Subsection 3.2.4 and Appendix C) was obtained as an equivalent 

flaw size distribution for durability analyses, then crack growth 

curves that extend to time zero will be available.  In the 

absence of such data for back extrapolation, it is reasonable to 

assume that the shape of the crack growth curve is exponential 

[9]. The parameters can be estimated from the smallest cracks 

for which data are available and a size at time zero.  See 

Subsection 3.2.2.2 for an example of this calculation. 

Evidence is accumulating that, at least for aluminum alloys 

and steels, cracks grow from the first application of a 

significant stress cycle.  Considerable research effort is being 

expended on modeling the growth of such small cracks (0.0002 to 

0.010 in.) [8,18].  It is expected that analytical methods for 

extending crack growth curves to very short cracks will be 

available within a reasonable time period. 

3.1.2.3  Maximum Stress Distribution 

POF is calculated as the probability that an applied stress 

will exceed the residual strength of the cracked structural 

detail.  For practical purposes, it can be assumed that the 

stress peak that will cause fracture is the largest peak to be 

encountered in a flight.  Since available data might not extend 
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to the largest stresses that might be encountered, a consistent 

basis for extrapolation was required.  In PROF, the distribution 

of this maximum stress peak in a flight is modeled in terms of a 

Gumbel distribution of extreme values. The following discussion 

presents the rationale for this choice and a method for 

estimating the parameters of the model. 

In an operational flight, the number and magnitude of the 

experienced stress peaks are random variables both of which are 

influenced by the mission being performed.  Let Faii(
ff) 

represent the cumulative distribution function of the magnitude 

of all stress peaks greater than a threshold for the 

stratification of the operation being modeled.  Let H(a) 

represent the cumulative distribution function of the maximum 

stress encountered in a flight.  If a flight consists of n stress 

cycles selected at random from the population described by 

F ,i{o)   and if a represents the largest peak in a flight, then 
3 X JL IDclX 

"(*> = P^max < ^ 

= P(all n peaks < a) 

'all 
[Fa1l(a)]

n (7) 

Gumbel [19] showed that for exponential type distributions and 

large n. Equation 7 can be approximated by 

H(a) = exp{-exp[-((7-B)/A]} (8) 

Flights which contain large stress peaks are usually very active 

and also contain a large number of peaks.  Therefore, this 

asymptotic relation was incorporated as the model for 

extrapolating and describing the distribution of the maximum 

stress per flight. 

The parameters of this Gumbel distribution can be estimated 

as follows. (Numerical examples of this process are presented in 

Subsection 3.2.2.2.)  First, the cumulative distribution of the 
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maximum stress per flight is estimated from data.  Peak stress 

data will be available as flight-by-flight stress sequences or 

exceedance curves for the expected usage at the analysis 

location.  If a flight-by-flight stress history is available, the 

maximum stress in each flight can be extracted and the cumulative 

distribution function of these maximum stresses per flight is 

calculated directly as: 

H(ai) = n. / N (9) 

where n. is the number of stress maximums less than a. and N is 

the total number of flights.  If only an exceedance curve is 

available for describing the magnitude of the expected stresses 

for the POP calculation, the exceedance curve must first be 

converted to the distribution function, F
a]i(

a)' 

F all^i) = 1 " Mai)/A(athr) (10) 

where A (a .) is the number of peak stresses per unit time 

exceeding a . and A (a.. ) is the number of exceedances per unit 

time of the stress threshold. Let n represent the average number 

of stress peaks per flight greater than threshold.  Then the 

cumulative distribution of the maximum stress per flight is 

estimated by 

W'i) = f1 - A(*i>/A<"thr>] n (11) 

Next note that Equation (8) can be transformed to 

ln{-ln[-H(ai)]} = -a./A + B/A (12) 

A least squares fit of the (a i, ln{ ln[-H((7i) ]}) data pairs will 

yield estimates of -1/A and B/A.  To ensure that the fit is 

acceptable at the high stress levels of most influence in the POF 
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computation, only the four or five highest stress ranges in the 

data should be used in determining the least sguares fits.  It 

might be noted that B is the stress that is exceeded in 63 

percent of the flights and A is proportional to the steepness of 

the exceedance probability versus stress curve.  The larger the 

value of A, the less steep the exceedance probability curve 

(resulting in a larger probability of large maximum stress peaks 

in a flight) .  A practical approach to estimating A and B is to 

vary these parameters until an acceptable fit is obtained for the 

probability of exceeding the high stress levels which drive the 

probability of fracture calculation. 

3.1.2.3.1 Format 

The PROF maximum stress per flight input are the two 

parameters A and B of the Gumbel asymptotic distribution for 

maxima of exponential type distributions.  Substitution of a 

different two parameter family of distributions of maximum stress 

per flight could be readily accomplished. 

3.1.2.3.2 Example 

Stress data for the example calculation in the A/F/T 

application were available in the form of flight-by-flight stress 

sequences.   These data were analyzed using both the flight-by- 

flight and exceedance curve methods to estimate A and B. 

Figure 8 presents exceedance curves for moderate and severe 

usage spectra.  The spectra have approximately equivalent 

exceedance rates at the highest stress peaks but the severe 

spectra has significantly greater exceedance rates at the lower 

stress peaks.  Table 1 presents the data and analysis for the 

severe spectra.  Both exceedance data and maximum peak per flight 

data are included in Table 1.  In the exceedance rate analysis, 

the third, fourth and fifth columns are obtained using Equations 

(10) and (11) and the In-ln transformation in Equation (12).  The 

calculations for the "observed" maximum stress per flight are 

more direct, but notice that in Table 1 the data are expressed in 

terms of the total number of maximum stress peaks per flight 
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TABLE   1 

EXAMPLE CALCULATIONS   FOR GUMBEL FIT 
TO MAX STRESS PER FLIGHT DISTRIBUTION 

A/F/T SEVERE  SPECTRUM 

Exceedance Data ! Max imum Peak/Flight Data 

A B C D E i F G H 
Peak Exceed Peak Estimate Gumbel Observed Observed Gumbel 
Stress per CDF CDF Transform exceed CDF Transform 

KSI 1180 max peak of CDF max peak max peak  CDF 
Fits per fit per fit per fit 

3 61738 0 0 1179 0 
4 59513 0.0360 3E-76 5.157907 1179 0 
6 57566 0.0675 6E-62 4.948210 1179 0 
8 56538 0.0842 6E-57 4.862930 1179 0 

10 43174 0.3006 5E-28 4.140713 1179 0 
12 28547 0.5376 8E-15 3.479961 1179 0 
14 18832 0.6949 0.00000 2.946087  | 1177 0.00169 1.853054 
16 8474 0.8627 0.00044 2.044010  ! 1127 0.04410 1.138210 
18 4621 0.9251 0.01709 1.403354  1 952 0.19253 0.499241 
20 1182 0.9808 0.36384 0.010954  1 628 0.46734 -0.27353 
22 701 0.9886 0.55033 -0.51544  I 450 0.61832 -0.73241 
24 352 0.9942 0.74152 -1.20716  | 244 0.79304 -1.46155 
26 21 0.9996 0.98236 -4.02896  | 21 0.98218 -4.01892 
28 9 0.9998 0.99240 -4.87636  | 9 0.99236 -4.87136 

Least squares i fits: 
Highest 5 Highest 4 Highest 5 Highest 4 

-1/A = -0.6644 -0.7952 -0.6241 -0.7487 
B/A = 13.82 17.22 12.71 15.95 
A = 1.51 1.26 1.6 1.34 
B = 20.8 21.7 20.36 21.3 

COLUMN B FROM SPECTRUM 
COLUMN C =  1   -   (COLUMN B / 61738) 
COLUMN D = COLUMN C  "52. 3       (52.3 
COLUMN E = LN(-LN(COLUMN D)) 
COLUMN F FROM STRESS SPECTRUM 
COLUMN G =  l-(COLUMN F /  1179) 
COLUMN H = LN(-LN(COLUMN G)) 

= AVERAGE PEAKS PER FLIGHT) 

CDF  = CUMULATIVE DISTRIBUTION FUNCTION 

28 



exceeding the stress level, rather than the number below the 

stress level.  A and B for the two sets of data were obtained 

from least squares fits of both the highest four and highest five 

stress levels.  The four sets of A and B values are also listed 

in Table 1. 

The fit of the Gumbel distribution using the top four and 

top five stress values for the severe spectrum are presented in 

Figure 9.  (Using lower stress values may provide a better fit at 

the lower levels at the expense of a poorer fit at the largest 

levels.  The highest stress levels are the only ones of 

importance in the fracture probability calculations.)  The fits 

as shown in this figure were calculated from the exceedance data 

and not the observed distribution of maximum stress per flight. 

In the numerical example of Section 5, the subjective decision 

was made to use the fit through the top four stress values of the 

probabilities obtained from the exceedance count data, i.e., A = 

1.26 and B = 21.7. The notation in PROF for these parameters is 

ASIG and BSIG. 

3.1.2.3.3   Comments 

This method of modeling the distribution of maximum stress 

peaks per flight was checked against several sets of data from 

A/F/T aircraft usages.  The calculation always provided an 

acceptable fit at the highest stress levels. These are the 

stress levels which dominate the POF calculation, and it is 

important that the model fits the data at these levels.  The 

model tends to predict higher probability of occurrences for the 

smaller stress peaks.  Since the observed data actually represent 

a mixture of mission types, they are not a random sample from a 

single population.  The maximum stresses from flights of less 

severe mission types are not as large, and they bias the observed 

distribution of maximum stresses per flight.  By restricting the 

Gumbel fit to the high stress ranges, this bias is avoided at the 

expense of more conservative POF estimates. 
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Figure 9.  Fit of Gumbel's Extreme Value Distribution to Severe 
A/F/T Spectrum. 
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The best estimate of POF can be obtained from stress 

spectra for each of the mission types.  If such data are 

available, POF can be calculated for each mission type using the 

distribution of peak stresses for only that mission type.  These 

POPs can then be interpreted for the individual mission types or 

a weighted average can be calculated using the mission mix 

percentages.  The weighted average would be calculated using a 

formula analogous to Eguation 5 where the p. are now the 

percentages of flights for each of the mission types. 

3.1.2.4  Initial Crack Size Distribution 

The risk analysis calculations of PROF are based on the 

distribution of the sizes of the cracks that are in the 

population of structural details at the start of the analysis. 

There are several approaches to obtain this distribution.  The 

choice of method for a specific application would be primarily 

determined by the available data.  These approaches are discussed 

in Appendix C.  The calculations of PROF are independent of the 

methods of modeling the initial crack size distribution.  PROF 

requires only that the initial crack size distribution file 

contains a valid cumulative distribution function. 

3.1.2.4.1   Format 

The initial crack size data is input to PROF in the form of 

a table of the cumulative distribution function of the crack 

sizes at the start of the analysis.  There were three reasons for 

this choice of format: 

a) There are no commonly accepted distributions for 

modeling crack sizes in a population of structural 

details.  Families with two, three, or four parameters 

have been used; e.g., the lognormal, Weibull, Johnson 

S , and Weibull Compatible Time-to-Crack-Initiation 

families [7].  There are also data [6] which suggest 

that in some applications a mixture of such 

distributions would be more appropriate than any single 

family. 
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b) After an inspection/repair cycle is completed in the 

analysis, the crack size distribution is a mixture of 

unrepaired and repaired crack sizes. This mixture has 

no general form as it depends on the distribution of the 

crack sizes at the inspection time, the POD(a) function, 

and the method for modeling the crack sizes at the sites 

which were repaired. 

c) Since the "a versus T" relation used to transform the 

crack size distribution will not preserve the particular 

model of a family, PROF had to be designed to handle an 

arbitrary distribution, i.e., one specified by a table 

of values. 

PROF requests the name of a file which contains (a,F0(a)) 

data pairs, where F0(a) is the proportion of crack sizes less 

than or equal to "a" at the start of the analysis. The first 

line of the file must contain an identification which will appear 

in the PROF output. The second line must contain the number of 

(a,F0(a)) data pairs that will follow.  Since this distribution 

will have to be extrapolated, PROF requires the user to provide 

at least two pairs for which F0(a) > 0.99. The filename must 

contain a ".DAT" extension. 

3.1.2.4.2   Example 

Figure 10 presents an exceedance distribution (i.e., 

complement of the cumulative distribution) of equivalent initial 

crack sizes that are assumed to be representative of the initial 

quality of the wing location of the example. This crack size 

distribution is a mixture of the equivalent crack sizes found to 

be representative of the A-7D aircraft [20] and a uniform 

distribution of "rogue" flaws.  The example distribution assumes 

that 99.9 percent of the locations have a crack size from a log 

normal distribution with median crack size of 0.0008 in. and 

standard deviation (of log crack sizes) of 0.63, and 0.1 percent 

are from a uniform distribution on the interval of 0 to 0.050 

in. 
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EQUIVALENT INITIAL FLAW SIZE DISTRIBUTION % 
MIXTURE - 99.9% LOG NORMAL (0.0008,0.630) 
AND 0.1% UNIFORM ON (0,0.050) 

10-  1 1 1 \ 1 1 1 1 1— 
0.000 0.010        0.020        0.030        0.040        0.050 

CRACK  SIZE  (in.) 

Figure 10.  Example Initial Flaw Size Distribution. 
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3.1.2.4.3   Comments 

The initial crack size distribution affects the probability 

of fracture and the expected cost of maintenance calculations in 

different ways.  Since fracture probabilities will be small in 

any realistic application, the upper tail of the crack size 

distribution will dominate the POF calculation.  Expected repair 

costs, on the other hand, will be dominated by the detected 

cracks.  These will come from the crack size ranges that have a 

higher probability of occurrence, i.e., the mid ranges of the 

crack size distribution.  The distinction is important since it 

affects the type of data needed to meet different objectives.  If 

the objective of the analysis is limited to evaluations or 

comparisons of fracture probabilities, then only the upper tail 

of the crack size distribution will influence the analysis.  If 

repair costs are also being analyzed, the mid ranges of the crack 

size distribution must also be reasonably modeled. 

The crack size distributions are the most difficult PROF 

input to obtain.  The best source of crack size data from a 

mature fleet is obtained from teardown inspections in which 

rather complete inspection results are obtained from laboratory 

inspections of a sample of structural details.  These inspections 

can detect all cracks greater than a known minimum size. 

Although the crack sizes observed in teardown inspections of 

elements from different airframes must be adjusted to account for 

differences in age, this extrapolation would be over reasonably 

short intervals.  Since all of the largest cracks will be 

detected and the total number of inspected sites is known, the 

teardown inspection results will provide a valid set of data for 

estimating at least the upper tail of the crack size 

distribution. 

In the absence of teardown inspections, the crack size 

distribution will have to be estimated from a) routine inspection 

results, b) a flaw size based initial quality characterization, 

c) time to crack initiation distributions, or, d) combinations of 

all three (Appendix C) .  Characterizing initial quality in terms 
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of actual or equivalent flaw sizes is gaining acceptance, but 

methods for modeling the growth of the very small actual or 

equivalent cracks are still being developed.  Cracks detected 

during routine inspections are important in that they represent 

hard evidence, but care must be taken in deriving a crack size 

distribution for the entire population of elements.  Cracks that 

were missed in the routine inspections must be accounted for, and 

the sizes of the missed cracks depend on the capability of the 

inspection system as expressed by the POD(a) function (see 

Paragraph 3.3.2).  Cracks detected during routine inspections 

could be used to "calibrate" any current estimate of the crack 

size distribution. 

3.1.3  Inspection/Repair Data 

This category of input data defines the maintenance 

scenario in terms of the frequency of inspections, inspection 

capability (method), repair quality, and unit costs of 

inspections, repairs, and fractures.  These input alements are 

independent of the structural condition of the population of 

crack sites under consideration. 

3.1.3.1  Maintenance Times 

The maintenance times are the number of flight hours at 

which the inspection and repair (if necessary) cycle is performed 

in the calculations of PROF.  The analysis starts at an arbitrary 

reference time which is considered to be time zero.  The initial 

crack size distribution is descriptive of the cracks in the 

population of details at the reference time.  PROF input that 

describes the timing of maintenance cycles is requested in the 

form of the number of flight (spectrum) hours in each interval of 

operational usage.  The length of each interval is arbitrary. 

The user may specify any number of usage intervals but 

computation time increases linearly with the number of intervals 

in the analysis. 

If the first usage interval is set at zero hours, PROF 

immediately applies the inspection and repair algorithms to the 
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initial crack size distribution. This implies that the analysis 

would be applicable to operational usage after an inspection at 

the reference age.  The length of usage intervals has typically 

been set at half the number of flight hours required to grow a 

crack from the reliably detected crack size to critical size. 

Other scenarios can be easily evaluated since any interval can be 

analyzed. 

For the example, the inspection times have been determined 

by the MIL-STD-1530 requirements.  Since the initial crack size 

distribution is an equivalent initial flaw size distribution, the 

first interval will be at 1100 hours, one-half the time required 

for a 0.050 in. crack to grow to critical (Figure 7) under the 

severe spectrum.  Subsequent intervals will be set at 900 hours, 

one-half the time required for a 0.100 in. crack to grow to 

critical.  For the assumed inspection capability, POD(0.100) = 

0.90 (Subsection 3.3.2). 

3.1.3.2   Inspection Capability 

Inspection capability is quantified in terms of the 

probability of detection as a function of the crack size, POD(a) . 

In PROF, POD(a) is modeled by the log-logistic function, which 

has been found to provide an acceptable fit to both manual and 

automated inspection reliability data [21,11].  In particular, 

let a .  be the size of the smallest crack that can be detected 
mln 

by the system.  Then, POD(a) = 0, if 

a < a • and mm 

ln <a " amin) " ^    -1 

POD(a) = {1 + exp - [— (   )]}     (13) 
73 a 

where     a = size of crack being inspected, a > a^^, 

n  = natural logarithm of the median detectable crack 
size - crack size which is detected 50 percent of 

the time. 
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a  = scale parameter - larger a   implies flatter POD(a) 

function and lower detectability at bigger crack 

sizes. 

Equation (13) is essentially equivalent to a cumulative log 

normal distribution with the same parameters. 

Inspection capability is input to PROF by specifying the 

minimum and median detectable crack sizes and the parameter a . 

(PROF refers to a  as the steepness parameter.)  The minimum 

detectable crack size may be a function of the location of the 

crack or the inspection system.  For example, if the crack 

initiates in the bore of a rivet hole, the inspection system may 

be physically prevented from detecting the crack until it clears 

the head of the rivet.  Ideally, the inspection system that will 

be used to inspect the population of details will have been 

evaluated through an experiment designed to estimate the POD(a) 

function. More often, the POD(a) function parameters will be 

based on engineering judgement or by analogy with other 

inspection situations.  The median detectable crack size can 

often be estimated at the time the inspection method for the 

detail is determined.  The parameter a  car include uncertainty 

resulting from the inspection process itself and also uncertainty 

due to the human factors associated with the difficulties of the 

inspections. 

The best estimate of fracture probability will be obtained 

from using the best estimate of the POD(a) function, the so- 

called mean POD(a) function.  However, any valid POD(a) function 

can be input to PROF.  For example, if the POD(a) function was 

obtained from an NDE reliability experiment, a lower confidence 

bound on the POD(a) function would be available.  This lower 

bound could be used as PROF input to provide protection against 

the potential sampling errors in the POD(a) parameter estimates. 

Such POF values would be expected to be conservative. 

To provide an indication of the relative importance of the 

parameters of the log-logistic POD(a) function. Figure 11 

displays POD(a) for a median detectability of 0.030 in. and a - 
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0.5, 0.75, and 1.0.  In this figure, ^m^n =  0-  Introducing a 
non-zero a .  value merely shifts the zero value of "a" in mm 
Figure 11 to a . .  It has become the custom to guantify the J mm 
capability of an inspection system by the crack length for which 

the probability of detection is 0.9.  Let a90 be defined by 

POD(a«-) = 0.90.  For selected values of a,  Table 2 presents 

approximate multipliers of the median detectable crack size a50to 

obtain a. NO- 

TABLE 2 
FACTORS FOR OBTAINING ago FROM a50 FOR SELECTED VALUES OF a 

a 0.25 0.50 0.75 1.00 1.25 1.50 

C 1.38 1.90 2.62 3.60 4.97 6.84 

a90 = C • a50 and C = exp(1.282 • a) 

Fully automated eddy current inspection systems with the 

part removed from the aircraft can have a  values in the range of 

0.2 to 0.7, depending on the material and geometry of the parts 

[22].  Depot inspections using manual and semiautomated eddy 

current inspections have values of a  greater than 1.0 [20,23]. 

In the example calculation, it will be assumed that the 

inspection process will be a semiautomated eddy current 

inspection without removing the rivet.  For the example, a .  = 

0, the median detectable crack size is 0.050 in. and a  =  0.5. For 

this inspection capability, POD(0.100) = 0.925.  The inspection 

schedule as determined from the damage tolerance analysis was 

based on a reliably detected crack size, aNDE; of 0.100 in. 

3.1.3.3  Repair Crack Size Distribution 

To account for the cracks in the population which are 

detected and repaired at an inspection, PROF uses an equivalent 

repair crack size distribution.  The equivalent repair crack size 
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distribution is analogous to the equivalent initial quality 

distribution in concept.  The repaired flaws can essentially be 

removed from further analysis by restricting the repair crack 

size distribution to extremely small sizes.  If repair quality is 

considered to be equivalent to initial quality, the equivalent 

initial quality distribution can be defined as the repair crack 

size distribution.  Other subjective choices based on engineering 

judgement can be made.  For example, it can be assumed that each 

repair will leave a flaw equivalent to a crack and that the size 

of the equivalent cracks will be uniformly distributed between 0 

and 0.050 in., i.e., the probability of a large equivalent flaw 

is equal to the probability of a small equivalent flaw.  The 

uniform distribution is considered to be conservative.  The 

repair crack size distribution has a relatively small effect on 

the fracture probabilities but can have a major effect on the 

expected number of cracks detected at repeat inspections. 

3.1.3.3.1 Format 

The equivalent repair quality distribution is input to PROF 

as a table of the cumulative distribution of the equivalent crack 

sizes that are present in those structural details which are 

repaired at a maintenance cycle.  PROF requests the name of a 

file which contains (a,Fr(a)) data pairs, where Fr(a) is the 

proportion of equivalent crack sizes less than or equal to the 

crack size, "a". The first line of the file must contain an 

identification which will appear in the PROF output.  The second 

line must contain the number of (a,Fr(a)) data pairs thc.t are in 

the file.  Since this distribution is extrapolated, at least two 

data pairs for which F (a) > 0.99 must be contained in the file. 

The filename must contain a ".DAT" extension. 

3.1.3.3.2 Example 

In the example, it will be assumed that any crack that is 

detected will lead to a replacement of the wing.  Thus, it will 

be assumed that a repaired wing is as good as new and the repair 

crack size distribution is the same as the initial crack size 
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distribution.  The equivalent repair crack size distribution to 

be used in the example, a mixture of a log normal and an 

exponential, is shown in Figure 10. 

3.1.3.3.3   Comments 

The equivalent repair crack size distribution is analogous 

to the equivalent initial crack size distribution for 

characterizing initial quality.  Strictly speaking, the 

equivalent repair crack size distribution would need to be 

characterized in the manner described in [7]. This 

characterization of repair quality has not been researches in any 

detail.  Since the choice of an equivalent repair crack size 

distribution is arbitrary, only three approaches to selecting 

this distribution have been used.  These are a) repeating the 

initial quality distribution (repaired is as good as new) , b) 

assuming a uniform distribution of equivalent repair cracks 

(conservative), and c) removing the repaired structural details 

from the analysis.  The third approach is implemented by defining 

F (a) so that essentially all equivalent repair cracks are too 

small to grow during the analysis, e.g., Fr(0.00001) = 0.99999. 

Under this third approach, the analysis could be restarted after 

a maintenance cycle with a reduced number of aircraft in the 

fleet.  (PROF output includes the crack size distribution 

immediately before and after an inspection. The after inspection 

crack size distribution can be input as the initial crack size 

distribution for a new run of the analysis.) 

Since the equivalent repair crack sizes will be, in 

general, relatively small, they tend to have no immediate effect 

on the fracture probability.  However, they can have a 

significant effect on the expected number of cracks to be 

detected in future inspections. 

3.1.3.4  Maintenance Costs 

Expected maintenance costs are not computed in PROF. 

Rather, PROF provides an output from which expected maintenance 

costs can be calculated.  In particular, structural maintenance 
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costs comprise the costs of inspecting the population of interest 

and repairing or replacing cracked details.  In addition, the 

costs of an in-service fracture must also be included.  PROF 

crack size output is expressed in terms of proportions of the 

total population.  It is compatible with the use of unit costs of 

inspection, repair as a function of crack size, and in-service 

fracture. 

3.1.4   Summary of Input for Example 

The order and form in which PROF requests input are 

illustrated by data for the example problem whose output is 

presented in Section 6.  The example parameter values and 

filenames in the PROF requested format are presented in Table 3. 

3.2   COMPUTATIONS 

The computations performed within PROF are centered on the 

distribution of the crack sizes in the population being modeled 

as a function of flight hours.  The crack size distribution is 

the basis for the calculation of the three primary outputs: a) 

the single flight probability of fracture at ten intermediate 

times between inspections, b) the probability of fracture at any 

time within each inspection interval, and, c) the distribution of 

the sizes and the number of cracks expected to be detected at an 

inspection.  This section addresses in a general way, the methods 

used by PROF in performing the required calculations.  Details of 

the numerical methods actually programmed in PROF are contained 

in Appendix A. 

3.2.1  Modeling the Crack Size Distribution 

There are two basic crack population calculations: growing 

the distribution of cracks from a beginning reference time to an 

arbitrary time within a period of uninterrupted usage, and 

quantifying the effect of the inspect and repair-if-necessary 

actions at the maintenance times.  These calculations are 

addressed in the following subsections. 

42 



TABLE 3 
PROF INPUT FOR EXAMPLE PROBLEM 

DATA TYPE 

1. PEAK STRESS/FLIGHT 

EXAMPLE INPUT REFERENCE 

2. POD FUNCTION 

3. K  DISTRIBUTION 
c 

4. AIRCRAFT PARAMETERS 

5. a VS K/SIGMA 

6. a VS TIME 

7. INITIAL CRACK SIZES 

8. REPAIR CRACK SIZES 

9. USAGE INTERVALS 

ASIG = 1.26 
BSIG = 21.7 

MEDIAN DET.    = 0.050 
STEEPNESS      =0.5 
MINIMUM        =0.0 

MEAN =29.4 
STD. DEV.      =2.2 

LOCATIONS/AC    = 6 
# OF AC = 125 
AVG FLT LENGTH  =1.0 

GE0METRY1.DAT 
(Figure 6) 

A-TSEVERE.DAT 
(Figure 7) 

INITCRAKS.DAT 
(Figure 10) 

INITCRAKS.DAT 
(Figure 10) 

T. = 1100 hours 
T^ = 900 hours 
T^ = 900 hours 
T? = 900 hours 
4 

Section 3.2.3 
Figure 9 

Section 3.3.2 
Figure 11 

Section 3.1.2 

Section 3.2.1 

Section 3.1.1 

Section 3.2.2 

Section 3.2.4 

Section 3.3.3 

Section 3.3.1 
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3.2.1.1 Growing Population of Crack Sizes 

Given an initial distribution of crack sizes at a reference 

time, T-, (Subsection 3.1.2.4), the program estimates the 

distribution of crack sizes at TR + AT flight hours by projecting 

the percentiles of the initial crack size distribution using the 

deterministic crack growth versus flight hours relation 

(Subsection 3.1.2.2).  This calculation is performed in PROF by 

table look-up.  Figure 12 is a schematic of the process.  The 

analytical formulation of the process is as follows. 

Let a (T^) represent the pth percentile of the crack size 
P ** 

distribution at TR flight hours, i.e., P[a < a (TR)] = p.  Let 

the a = ^(T) represent the "a versus T" relation (defined for 

PROF by a table of (a.,T.) data pairs).  Then the pth percentile 

of crack size distribution at TR + AT is given by 

ap(TR + AT) = ^(^"1[ap(TR)] + AT) (14) 

This calculation is repeated for all percentiles in the table 

which defines the crack size distribution. 

3.2.1.2 Maintenance Effect on Crack Size 
Distribution 

At a maintenance action, the population of details are 

inspected and all detected cracks are repaired.  The maintenance 

action will change the crack size distribution and the change is 

a function of the inspection capability and the quality of 

repair.  Inspection capability is modeled in terms of the 

probability of detection as a function of crack size, POD(a). 

Repair quality is expressed in terms of the equivalent repair 

crack size distribution, fr(a).  If fbefore(
a) and fafter(a) 

represent the density function of crack sizes in the population 

of structural details before and after a maintenance action, then 

fafter(a) = P * fR(a) + ^-poD(a^   '   fbefore(a)     (15) 
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where P is the percentage of cracks that will be detected during 

the inspection. 

P = /; POD(a) . fbefore(a) • da (16) 

The post maintenance crack size distribution, f
after(

a)' is then 

projected forward for the next interval of uninspected usage. 

The process is continued for as many inspection intervals as 

desired. 

3.2.2  Probability of Fracture 

Safety is quantified in terms of the probability of 

fracture (POF) due to the maximum stress encountered in a flight. 

POP is calculated as the probability that the maximum stress 

encountered in a flight will produce a stress intensity factor 

that exceeds the critical stress intensity factor for a 

structural detail.  This calculation is performed in two 

contexts.  The single flight POF is the probability of fracture 

in the flight given that the detail has not fractured previously. 

This number can be compared to other single event types of risks, 

such as the risk of death in an automobile accident in an hour of 

driving.  The interval probability is the probability of fracture 

at any flight between the start of an analysis (reference time of 

zero or after a maintenance action) and the number of spectrum 

hours, T.  This POF is useful in predicting the expected 

fractures in a fleet of aircraft in an interval and is required 

for the expected costs associated with a maintenance schedule. 

Because significantly more computer time is required to calculate 

interval POF than single flight POF, interval POF is calculated 

only for the entire interval between inspections. 

3.2.2.1  Single Flight Probability of Fracture 

The equation for calculating the probability of fracture at 

a single stress raiser in a single flight at T hours is given by 
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POFE(T) «■ Single element POF during flight at T hours 

= P^max > 'cv<*'Kc" 

S  / fT(a) • g{Kc) • H(acr(a,Kc)) dKcda        (17) 

where 

fm(a) -  probability density function of crack sizes 

at T flight hours; 

g(K ) = probability density function of the fracture 

toughness of the material; 

"^cr^'V) ' Ptaraax > Kc / 7 »r a • /J (a) ], i.e.,  the 
probability that the maximum stress in the 

flight exceeds the critical stress given 

"a" and Kc. 

The single element POF, POFE(T), is interpreted as the 

probability that one of the elements in an airframe with T 

equivalent flight hours will experience a fracture due to a 

combination of crack size, fracture toughness, and stress.  This 

calculation is based on the assumption that the size of the crack 

in the stress raiser of the element and the fracture toughness 

are independent. 

To calculate the single flight probability of a fracture 

from any one of the k equivalent elements (stress raisers) in a 

single airframe at T flight hours, POFA(T), it is assumed that 

the fracture probabilities between elements are independent. 

Then 

POFA(T) = 1 - [1 - POFE(T)]k (18) 

« k • POFE(T) 
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Similarly, POFF(T), the probability of a fracture in any of the N 

airframes in the fleet as they age through T flight hours, is 

calculated as 

POFF(T) = 1- [1 - POFA(T)]N (19) 

= N • POFA(T) 

All three of these single flight POFs are calculated at ten 

equally spaced increments in each tsage interval. The results 

are printed in the summary output report. 

3.2.2.2   Interval Probability of Fracture 

Fracture can result during any flight in a usage period, 

and the probability of a fracture during an entire period is 

required to estimate the expected costs of a fracture.  Since the 

fracture toughness of an element does not change from flight to 

flight, single flight POFs as obtained above cannot be combined 

to obtain interval POF.  The assumption of independence needed to 

wake this calculation possible is not valid. 

An approach to estimating interval POF which accounts for 

the constancy of fracture toughness over the interval was 

formulated as follows: 
a) determine the contribution to the total POF from each 

possible pairing of fracture toughness and crack size at 

the beginning of the usage interval, say PF(a,Kc); 

b) weight each contribution by the probability of the crack 

size-fracture toughness combination, say 

f(a)da.g{Kc)dKc; 

c) sum the weighted contributions over all possible 

combinations of crack size and fracture toughness. 

To calculate the contribution to the total POF from a crack size- 

fracture toughness pair, the total usage interval is divided into 

m subintervals.  It is assumed that the crack size is essentially 

constant in a subinterval, and the critical stress is calculated 

for the crack size of the subinterval and the fracture toughness. 
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The distribution of maximum stresses in a subinterval is 

calculated from the distribution of maximum stresses in a flight. 

The probability of fracture in a subinterval is the probability 

that the maximum stress exceeds the critical stress for the 

subinterval.  The POFs from the subintervals are combined to 

obtain the POF of the total usage interval for the initial crack- 

fracture toughness pair. 

The interval POF process is implemented mathematically by 

the equation: 

POFgdj) = r0  fj(a) Si  g(Kc) • PF(a,Kc) • dKc da    (20) 

where 

POF,,(I.) = probability of fracture at a single stress 

raiser in the jth usage interval; 

f.(a) = probability density function of crack sizes 

at the start of the jth analysis interval; 

g(K ) = probability density function of fracture 

toughness for the structural detail; 
m 

PF(a,Kc) = 1 - n  HAT[c7cr(a(Ti),Kc)] 

H „[a     (a(T.)#K )] = probability that the maximum stress in AT 
AT crx ^ i' ' c 

flights is less than the critical stress 

= {H[acr(a(Ti),Kc)]}
AT 

H(a)   = Gumbel distribution of max  stress per 

flight; 

'cr^'V'V   = K
c / V *  •   aCT.)   •   /MafT.)) 

AT = number of flights  in a subinterval; 

T.   =  i   •   AT, i  =   1,...,m. 
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Since the computation time to implement equation (20) is 

both significant and depends on the number of subintervals, the 

number of flights in a subinterval is a trade-off between 

accuracy (change of crack size in the subinterval) and computer 

time. Crack growth per flight is relatively slow over most of 

the crack sizes in the crack size distribution and long usage 

intervals imply slow crack growth per flight.  Therefore, the 

number of flights in a subinterval was determined based on the 

total time in a usage interval as follows: 

0 < m«AT < 1000, AT ■ 10 
1000 < m.AT < 2000, AT = 20 

2000 < m-AT < 3000, AT = 30 

etc. 

The sensitivity of the interval POF to this method for 

determining the number of flights in a subinterval was evaluated. 

It was concluded that changes in the interval POF from using 

smaller subintervals would be practically negligible. 

Interval fracture probabilities for the aircraft and for 

the fleet are calculated using equations analogous to equations 

(18) and (19), respectively. 

3.2.3  Expected Maintenance Costs 

Given the predicted crack size distribution at the time,T., 

of an inspect/repair maintenance action and the POD(a) function, 

the expected number and sizes of the cracks that will be detected 

can be calculated.  In particular, PROF calculates the cumulative 

proportion of cracks that will be detected as a function of crack 

size as 

P(ai) = JoiPOD(a) • fbefore(a) ' da (21) 

The proportion of detected cracks in the arbitrary range defined 

by Aai = ai+1 - ai is given by 
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P^a.) = P(ai+1) - P(ai) (22) 

Expected costs of maintenance are not calculated in PROF. 

However, PROF output can be used to estimate the expected costs 

of a maintenance scenario (as defined by flight hours between 

inspections, inspection capability, and repair quality).  If the 

total population being modeled comprises k details in each of N 

air frames, then the expected number of cracks to be repaired at 

T. between sizes a. and ai+1 is k^N-P^a^.  If C^ represents the 

cost of repairing a crack in size range i, CF represents the cost 

of a fracture, and I represents the cost of inspecting each 

detail, then the expected costs of fracture and repairs in the 

usage interval are given by 

E.(C) = POF(T.).N.CF + k.N« [ I +  I P(Aai).Ci] (23) 

Summing over usage intervals (maintenance periods) yields the 

total expected maintenance costs. 

3.3   EXAMPLE OUTPUT 

PROF output comprises three types of information: a screen 

plot, a tabular summary file, and data files.  At the end of the 

calculations, PROF executes a plotting routine called PROFPLOT. 

If the system computer graphics library contains PLOT-10 

(w/AGII), PROFPLOT produces a screen plot of the single stress 

raiser, single flight POF versus flight hour data.  Note also 

that PROFPLOT does not support all terminals.  Figure 13 is the 

screen plot of the example analysis whose input was defined in 

Section 3.1. 

The report file summarizes the results of the PROF run and 

contains the following information: 

a) a summary of the input data either in the form of file 

names and the file description or the parameter values; 
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Figure 13.    Screen Plot of Example Analysis - Single Detail POP. 
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b) single flight POF values for single details, single 

airfraroes and total fleet at ten time intervals between 

each inspection; 

c) percent of inspection sites at which cracks are expected 

to be detected at each inspection; 

d) POF values for each usage interval for single details, 

single airfraroes and total fleet; 

e) POF values for the total analysis interval (0 to T) for 

single details, single airfraroes, and total fleet; 

f) crack size data at each inspection/repair - the crack 

size distribution before the inspection and after the 

cracks are repaired, the cumulative proportion of 

detected cracks, and the cumulative distribution of the 

sizes of the detected cracks. 

Table 4 presents the summary report for the example analysis. To 

conserve space, only the crack size data for the third inspection 

are included in the table. 

PROF also writes data files which contain the single flight 

and interval POF values and the crack size distribution data. 

These files can be used as plot files on the user's system. The 

after inspection crack size distribution files can also be used 

to reinitiate PROF if an analysis is desired for a set of 

conditions that are not constant throughout the total analysis 

interval. 
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TABLE   4 

EXAMPLE   PROF   REPORT 

7-MOV-90 
EXAMPLE REPORT.DAT 

PROBABILITY OF FRACTURE REPORT 

EXAMPLE PROF RUN 

SUMMARY OP TABLES USED IN ANALYSIS 

A-VS-VSICMA 
Filenam«! 6E0METRY1 
• VS K/S1GHK - A/T/C AIRCRAFT,   INNER LONER NING LOCATION 

A-V8-TINB 
Fllenaa«: A-TSEVERB 
a VS T - k/T/C AIRCRAFT,   LONER INNER NINO,  SEVERE SPECTRUM 

Initial Crack Six« Distribution 
Pilsnasst INITCRAX8 
Mix of ln(.000l,.O) and Unifom (0-.050), p-o.boi 

Repair Crack Distribution 
Pilsnasst   INITCRAKS 
Nix of In(.0008,.63) and Uniform (0-.0S0), P-0.001 

PEAK STRESS PER FLIGHT DISTRIBUTION PARAMETERS 
ASIGt 1.3« 
BSIGl 31.70 

PROBABILITY OF DETECTION PARAMETERS 
Nadian Datsctabilityt    0.0S0 
Stsspnssst      0.S7 
Ssallsst Detsctabla Craokt 0.000 

NIC DISTRIBUTION PARAMETERS 
Naant 39.400 
Standard Dsviationt    2.300 

AIRCRAFT PARAMETERS 
Analysis Locations Par Aircraft! 
Nusbsr of Aircraft!      139 
Avg flight duration (hrs)t    1.0000 
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TABLE   4   (continue 1) 
PROBABILITY OF  FRACTURE REPORT 

7-HOV-90 
EXAMPLE REPORT.DAT 

EXAMPLE  PROF  RUN 

SINGLE   FLIGHT  PROBABILITIES 

FLIGHT MEDIAN SINGLE SINGLE FLEET % OF CRACKS 
HOURS CRACK DETAIL AIRCRAFT WIDE FOUND DURING 

SIZE POF POF POF INSPECTION 

0.0 0.0008 0.1000E-11 0.2754E-11 0.3442E-09 
120.0 0.0010 0.3003E-11 0.1802E-10 0.2252E-08 
240.0 0.0010 0.1383E-10 0.8300E-10 0.1038E-07 
360.0 0.0010 0.4937E-10 0.2962E-09 0.3703E-07 
480.0 0.0010 0.1488E-09 0.8928E-09 0.1116E-06 
600.0 0.0010 0.3931E-09 0.2359E-08 0.2948E-06 
720.0 0.0010 0.8807E-09 0.1>284E-O8 0.6605E-06 
840.0 0.0010 0.2102E-08 0.1261E-07 0.1576E-05 
960.0 0.0010 0.5465E-08 0.3279E-07 0.4099E-05 

1080.0 0.0010 0.1422E-07 0.8531E-07 0.1066E-04 
1100.0 0.0010 0.1683E-07 0.1010E-06 0.1263E-04 1.79 

1100.0 0.0010 0.8529E-08 0.5118E-07 0.6397E-05 
1190.0 0.0010 0.2063E-07 0.1238E-06 0.1547E-04 
1280.0 0.0010 0.4424E-07 0.2654E-06 0.3318E-04 
1370.0 0.0010 0.8640E-07 0.S184E-06 0.6480E-04 
1460.0 0.0010 0.1550E-06 0.9298E-06 0.1162E-C3 
1550.0 0.0010 0.2612E-06 0.1567E-05 0.1959E-03 
1640.0 0.0010 0.3881E-06 0.2328E-05 O.291OE-03 
1730.0 0.0010 0.5499E-06 0.3300E-05 0.4124E-03 
1820.0 0.0010 0.7359E-06 0.4415E-05 0.5518E-03 
1910.0 0.0010 0.9289E-06 0.5573E-05 0.6964E-03 
2000.0 0.0011 0.1140E-05 0.6838E-05 0.8544E-03 11.00 

2000.0 0.0011 0.9104E-07 0.5462E-06 0.6828E-04 
2090.0 0.0011 0.1262E-06 0.7573E-06 0.9466E-04 
2180.0 0.0011 0.1746E-06 0.1048E-05 0.1309E-03 
2270.0 0.0011 0.2409E-06 0.1445E-05 0.1807E-03 
2360.0 0.0011 0.3215E-06 0.1929E-05 0.2411E-03 
2450.0 0.0011 0.4329E-06 0.2597E-05 0.3246E-03 
2540.0 0.0011 0.5705E-06 0.3423E-05 0.4278E-03 
2630.0 0.0011 0.7526E-06 0.4516E-05 0.5643E-03 
2720.0 0.0011 0.9996E-06 0.5998E-05 0.7494E-03 
2810.0 0.0011 0.1355E-05 0.8132E-OS 0.1016E-02 
2900.0 0.0011 0.1889E-05 0.1133E-04 0.1416E-02 7.44 

2900.0 0.0011 0.4961E-07 0.2977E-06 O.3721E-04 
2990.0 0.0011 0.6980E-07 0.4188E-06 0.5235E-04 
3080.0 0.0011 0.9444E-P7 0.5667E-06 0.7083E-04 
3170.0 0.0011 0.1241E-06 0.7444E-06 0.9305E-04 
3260.0 0.0011 0.1644E-06 0.9862E-06 0.1233E-03 
3350.0 0.0011 0.2148E-06 0.1289E-0S 0.1611E-03 
3440.0 0.0011 0.2870E-06 0.1722E-05 0.2152E-03 
3530.0 0.0011 0.3849E-06 0.2310E-05 0.2887E-03 
3620.0 0.0011 0.5276E-06 0.3166E-05 0.3956E-03 
3710.0 0.0011 0.7355E-06 0.4413E-05 0.5515E-03 
3800.0 0.0011 0.1063E-0S 0.6376E-05 0.7967E-03 5.74 

3800.0 0.0011 0.3940E-07 0.2364E-06 0.2955E-04 
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TABLE   4   (continued) 

PROBABILITY OF  FRACTURE REPORT 

7-NOV-90 
EXAMPLE REPOR?.DAT 

EXAMPLE  PROF RUN 

USAGE INTERVAL PROBABILITIES 

FLIGHT 
HOURS 
AT INSPECTION 

1100.0 
2000.0 
2900.0 
3800.0 

SINGLE 
DETAIL 
POF 

0.2633E-05 
0.2927E-03 
0.3691E-03 
0.1853E-03 

SINGLE 
AIRCRAFT 
POF 

0.1580E-04 
0.1755E-02 
0.2213E-02 
0,1111E-02 

FLEET 
NIDE 
POF 

0.1973E-02 
0.1971E+00 
0.2419E-t-00 
0.1298E+00 

% OF CRACKS 
FOUND DURING 
INSPECTION 

1.79 
11.00 
7.44 
5.74 

ANALYSIS INTERVAL PROBABILITIES 

FLIGHT 
HOURS 
AT INSPECTION 

1100.0 
2000.0 
2900.0 
3800.0 

SINGLE 
DETAIL 
POF 

0.26rjE-O5 
0.2953E-03 
0.6643E-03 
0.M95E-O3 

SINGLE 
AIRCRAFT 
POF 

0.1580E-04 
0.1771E-02 
0.3979E-02 
0.5086E-02 

FLEET 
HIDE 
POF 

0.1973E-02 
0.1987E400 
0.392SE+00 
0.4713E-t-00 
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TABLE   4   (concluded) 

PROBABILITY OF FRACTURE REPORT 

7-N0V-90 
EXAMPLEJtEPORT. DAT 

EXAMPLE PROF RUN 

CRACK SIZE  DATA 
3rd Inspection 

PRE-INSPECTION CUMULATIVE CUMULATIVE POST-INSPECTION 
CUMULATIVE PROPORTION DISTRIBUTION OF CUMULATIVE 

CRACK SIZE DISTRIBUTION DETECTED DETECTED CRACKS DISTRIBUTION 

0.0010222 0.0001010 0.0000 0.0000 0.0479 
0.0010222 0.0010010 0.0000 0.0000 0.0488 
0.0010222 0.0099930 0.0000 0.0000 0.0578 
0.0010222 0.0249790 0.0000 0.0000 0.0727 
0.0010222 0.0499550 0.0000 0.0000 0.0977 
0.0010764 0.0999070 0.0000 0.0000 0.1502 
0.0010764 0.1498580 0.0000 0.0000 0.2002 
0.0010764 0.1998090 0.0000 0.0000 0.2501 
0.0010764 0.2997110 0.0000 0.0000 0.3500 
0.0010764 0.4995160 0.0000 0.0000 0.5498 
0.0011120 0.5555467 0.0000 0.0000 0.6076 
0.0012033 0.6993220 0.0000 0.0001 0.7541 
0.0013590 0.7683842 0.0000 0.0001 0.8278 
0.0014285 0.7992270 0.0000 0.0001 0.8601 
0.0015360 0.8026419 0.0000 0.0001 0.8658 
0.0017930 0.8108093 0.0000 0.0001 0.8777 
0.0022550 0.8254918 0.0000 0.0001 0.8961 
0.0027500 0.8412229 0.0000 0.0001 0.9137 
0.0030004 0.8491800 0.0000 0.0001 0.9220 
0.0034650 0.8514730 0.0000 0.0001 0.9250 
0.0056060 0.8620390 0.0000 0.0002 0.9363 
0.0083300 0.8754822 0.0000 0.0005 0.9498 
0.0100000 0.8837238 0.0001 0.0011 0.9580 
0.0131228 0.8991350 0.0002 0.0031 0.9732 
0.0200000 0.9033026 0.0004 0.0048 0.9773 
0.0300000 0.9093625 0.0010 0.0132 0.9827 
0.0400000 0.9154225 0.0025 0.0331 0.9873 
0.0450000 0.9184525 0.0036 0.0484 0.9893 
0.0955656 0.9490950 0.0255 0.3425 0.9980 
0.1481335 0.9740800 0.0489 0.6578 0.9995 
0.1867196 0.9890790 0.0636 0.8550 0.9999 
0.2616883 0.9981130 0.0726 0.9753 0.9999 
0.2817686 0.9990660 0.0735 0.9881 1.0000 
0.2857318 0.9992000 0.0736 0.9899 1.0000 
0.2931395 0.9994000 0.0738 0.9925 1.0000 
0.3001033 0.9996000 0.0740 0.9952 1.0000 
0.3249653 0.9998000 0.0742 0.9979 1.0000 
0.3439904 0.9999000 0.0743 0.9992 1.0000 
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SECTION 4 

SENSITIVITY ANALYSIS 

Eight of the nine PROF input items can significantly effect 

the output of PROF. This subsection presents the results of an 

analytical study designed to evaluate the sensitivity of the PROF 

output to variations in the input.  Since some of the input is 

defined by actions that are taken in the management of the fleet, 

trade-off studies reflecting the results of specific actions are 

also evaluated. 

The analyses were performed using representative input from 

a wing location (WS27) of a replacement wing on the T-38 

aircraft.  The baseline conditions for the analysis are defined 

in Subsection 4.1. Although there is overlap, the input were 

categorized as being determined by design (material/geometry), 

usage, or force management decisions.  Subsection 4.2 presents 

the results of the sensitivity analysis for each of these three 

categories of input. 

4.1   BASELINE CONDITIONS 

Figure 5 presented a list of the various categories and 

data input elements required by PROF. To test the sensitivity to 

these elements, representative data from a critical location on 

the lower wing skin of the T-38 aircraft was selected to 

represent the baseline condition. 

WS27 is the designation for the population of lower wing 

skin fastener holes at the 44% spar.  There are three such holes 

on each side of the airframe, Figure 14, [24].  All six holes are 

assumed to be exposed to the same stress sequences during usage. 

Because of a mission change which increased stress levels at 

WS27, the fleet was retrofit with new wings. The analyses of 

this report are performed using the specifications and damage 

tolerance results from the new (-29) wing.  The T-38 experiences 

two distinct usages, Air Training Command (ATC) and Lead-in- 

Fighter (LIF).  For WS27, the LIF usage is more severe. 
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Representative conditions for the approximately 125 aircraft that 

experience the LIF usage will be used as the baseline. 

4.1.1  Material/Geometry Data 

There are two types of data covered in this category - the 

stress intensity factor and the fracture toughness.  The stress 

intensity factor solution for cracks initiating at the corner of 

the countersink is given in Figure 15.  For this configuration 

and the maximum stresses per flight of baseline expected usage 

(subsection 4.1.2), fracture would occur at crack sizes less than 

0.5 in.  Cracks initiating at other sites down the bore of the 

hole are considered in the sensitivity analyses. 

The -29 wing is made of 7075-T7351 aluminum alloy plate and 

is 0.585 in. thick at WS27.  For this thickness, the fracture 

toughness can be characterized by the plane strain fracture 

toughness, Kj   .     The mean and standard deviation of Klc for 7075- 

T7351 are listed at 29.4 and 2.2 KSI yin., respectively, in the 

Damage Tolerant Design Handbook, Table 8.9.2.1 [10].  The 

sensitivity to fracture to-iahness will be tested by arbitrary 

changes to these values to r fleet sampling variation in their 

estimation. 

4.1.2  Aircraft/Usage Category Data 

There are four types of data in the aircraft/usage 

category.  The first of these define the number of analysis 

locations in each aircraft and the number of aircraft in the 

fleet.  For WS27, there are six locations in each of the 125 

aircraft.  These numbers will not be varied in the sensitivity 

analysis as they are known exactly and are not variable in any 

trade-off studies. 

The second data type defines the crack size distribution at 

the start of the analysis.  The sensitivity studies for WS27 will 

begin at zero spectrum hours since new wings were installed on 

the airplanes.  Accordingly, the initial crack size distribution 

will be assumed to be an equivalent initial flaw size 
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Figure 15.   Baseline Geometry Fastener for WS27. 
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distribution even though this method of characterizing durability 

was not used in the damage tolerance of the wing.  The baseline 

equivalent initial flaw size distribution will be a mixture with 

99.9% of the equivalent initial cracks from a log normal 

distribution with median of 0.0008 in. and standard deviation of 

0.63. The remaining 0.001% of the cracks will be uniformly 

distributed on the interval 0 to 0.050 in.  This distribution is 

shown in Figure 16.  The lognormal (0.0008,0.63) was determined 

to be a reasonable model for equivalent initial flaw sizes in the 

A-7 aircraft.  The one in a thousand cracks between 0 and 0.050 

in. was introduced to allow for the rare possibility of a much 

larger initial flaw.  (It should be noted that these fastener 

holes in the -29 wing were cold worked.  The effect of this cold 

working was not accounted for in the crack growth analyses or in 

this characterization of initial quality.) 

The third data type of this category defines the fatigue 

crack growth as a function of usage time.  The baseline crack 

growth ("a versus T") curve for WS27 is presented in Figure 17 

for the LIF spectrum.  This curve was obtained from a modified 

Willenborg model with parameters as given in [24].  Sensitivity 

of PROF to the "a versus T" relation can only be investigated in 

conjunction with changes related to the stress intensities or the 

stress sequences which drive the crack.  For example, changes in 

the scaling of the maximum stress in the spectrum causes changes 

in both the "a versus T" relation and the distribution of the 

maximum stress per flight.  Similarly, changes in the crack 

initiation site cause changes in the stress intensity factor and 

the "a versus T" relations.  The changes resulting from the 

scaling of the maximum stress will be considered sensitivity to 

"a versus T." The joint effect with stress intensity will be 

considered in the crack geometry sensitivity analysis. 

The fourth data type is the stochastic model of the maximum' 

stress per flight of the expected usage.  Figure 18 presents the 

Gumbel fit to the distribution of the maximum stress per flight 

for the stress sequence at WS27 of the LIF spectrum.  The 
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fracture probabilities are dependent on the fit of this 

distribution at the high stress levels. The sensitivity of POF 

to this fit was tested by arbitrary shifts in the population 

parameters that still produced acceptable fits to the data. 

4.1.3  Inspection/Repair Category Data 

The inspection and repair data reflect force management 

decisions that are made in defining maintenance scenarios.  The 

baseline inspection intervals were defined as those that would be 

specified by the requirements of MIL-STD-1530A.  The first 

inspection would be scheduled at 1100 spectrum hours and all 

subsequent inspections at 900 spectrum hours thereafter.  These 

inspection intervals will be varied as prime controllable factors 

in risk analysis trade-offs. 

The inspections for this critical location are performed 

using a semiautomated eddy current probe with the fastener in the 

hole.  The reset crack size after an inspection (aNDE) is 0.100 

in.  Experiments to quantify the inspection reliability for this 

specific inspection have not been performed.  The baseline POD(a) 

function will be assumed to have a minimum detectable crack size 

of zero and a median detection capability of 0.050 in. with a = 

0.54, Figure 19.  This combination of parameters yields 

POD(0.100) = 0.90 and is in reasonable agreement with experiments 

for eddy current systems. 

Repair of cracks found at this location are considered to 

be a major repair.  The equivalent repair flaw size distribution 

will be assumed to be the same as the initial quality 

distribution i.e., repaired is as good as new.  Sensitivity to 

this assumption will be made by introducing equivalent repair 

flaw size distributions that are not as "small" as those of the 

baseline. 

Inspection and repair costs are exceedingly difficult to 

estimate.  Overhead costs associated with inspecting a particular 

location are shared with the scheduled maintenance of many other 

individual details that are not necessarily structure related. 
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As  a  basis of cost comparison,   it  is  assumed that the relative 

cost of  inspection  is $100  per hole,   the cost of  repairing a 

crack  less than 0.100  in.   is  $100,   the cost of repairing a crack 

greater than 0.100  in.   is  $100,000   (wing replacement),   and the 

cost of a  fracture  is $10,000,000   (loss of aircraft).     Note that 

these costs are fictitious;   they are not based on actual 

experience,   and do not represent T-38 experience. 

4.1.4       Summary of  Baseline Input 

Table 5 presents a summary of the input data which provided 

the baseline for sensitivity analyses. 

4.2        SENSITIVITY  TO  INPUT  VARIATIONS 

The objectives of the sensitivity analyses were to provide 

a basis for judging the validity of the PROF output and to 

perform trade-off studies on those  inputs which are  associated 

with  fleet management decisions.     Trade-off studies were only 

considered for the maintenance scheduling,   repair quality,   and 

inspection capability options.     The material/geometry data and 

the aircraft/usage data are considered to be inputs which are not 

associated with fleet management.     Strictly speaking,   aircraft 

could be rotated among different usages as a planned part of 

fleet management.     Such rotation could be modeled using PROF but 

in PROF'S current configuration,  multiple runs would be required 

to accommodate the changes  in the crack growth   ("a vs.  T")   curve 

and the peak stress per flight distribution. 

The sensitivity analyses are presented for the  three 

categories  of input data.     Discussion of the results  are 

presented  for each of the three categories even though there  is a 

correlation between some of  the input data.     Single  flight POF 

values were  selected as the  basic parameter for evaluating the 

sensitivity of PROF to  input  variables.    Multiple  sites on a 

single airframe and multiple airframes in a  fleet  are 

approximately accounted for by multiplying the single flight POF 

by  a  constant factor.     Conclusions drawn from the  single  flight 
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TABLE 5 
BASELINE PROF INPUT FOR SENSITIVITY ANALYSES 

CATEGORY AND 
DATA   TYPE 

MATERIAL/GEOMETRY 

K/a vs a 

9(KC) 

AIRCRAFT/USAGE 

Locations 

f0(a) 

a vs T 

h(a) 

INSPECTION/REPAIR 

Tl' T2' •** 

POD(a) 

fr(a) 

DESCRIPTION 

Geometry correction for crack initiating at a 
lower wing skin fastener hole at the corner of 
the countersink.  Figure 15, [24] 

Normal distribution of K with /x = 29.4 and 
C 

a = 2.2 KSIVTH. 

6 holes per aircraft, 125 aircraft in the 
fleet, average flight length of 1 hour. 

Equivalent initial flaw size distribution - 

Mixture of 99.9% Lognormal (0.0008 in., 0.63) 
and 0.001% Uniform (0,0.050 in.).  Figure 16. 

Severe (LIF) usage.  Figure 17, [24]. 

Gumbel distribution of max stress peak per 
night, A = 21.8 KSI, B = 1.27.  Figure 18. 

DTA defined inspection schedule. 

inspection at 1100 spectrum hours, 
inspections at 900 spectrum hours. 

First 
Subsequent 

Semi-automated eddy current.    /* = ln(0.0i;0), 
a = 0.54.    Reliably detected crack size, 

ann = 0.100  in. 90 Figure 19. 

Same as  initial crack size distribution,   i.e., 
repaired is as good as new.     Figure  16. 
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POF would be unchanged by comparisons of the airframe or fleet 

POF.  POF in the inspection and total analysis interval were also 

considered and none of the conclusions were altered.  Expected 

maintenance costs were also considered in the evaluation of fleet 

management decisions and will be discussed in subsection 4,2.3. 

4.2.1  Variations in Material/Geometry Input 

Sensitivity to the K distribution and variations in the 
HK/a versus a" relation are defined by the material and specific 

design of the structural detail under consideration.  In essence, 

these factors are determined when the detail is designed. 

4.2.1.1   Fracture Toughness 

The fracture toughness is input to PROF by specifying the 

mean, /i, and standard deviation, o,  of the assumed normal 

distribution of Kc for the material of the detail.  Sensitivity 

to variations in fracture toughness were performed by varying n 

and a  to reflect potential uncertainty in these parameters 

because they are estimated from samples of different fabrication 

lots of the material.  For the 0.585 in. plate of WS27, the 

baseline values of M ■ 29.4 and a = 2.2 were based on 47 samples 

of plane strain fracture toughness, K.  [10], Table 8.9.2.1]. 

Ninety percent confidence intervals for p and a   from a sample of 

size 47 are (28.9,29.9) and (1.8,2.5), respectively.  Figures 20a 

and 20b display the differences in the distribution of fracture 

toughness when n  and a  are at the extremes of these confidence 
intervals. 

To reflect the influence of uncertainty in K on the 
c 

calculation of the probability of fracture (POF), PROF 

sensitivity runs were made at the limits of the 90 percent 

confidence bounds.  Figure 21 compares the single flight POF for 

/i - 28.9, 29.4, and 29.9 for the baseline a  =  2.2.  Figure 22 

compares the single flight POF for a  =  1.8,2.2, and 2.5 for the 

baseline p = 29.4.  Combining the upper limit on ß  and the lower 

limit on a  yields an upper bound on the distribution of K . 
c 

Similarly, the lower limit on ^   and the upper limit on a   yields a 
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Figure 21.   POF Varying Kc Mean with Fixed Standard Deviation. 
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lower bound on the distribution of K .  Figure 23 compares the 

POF values from these combinations of the parameters with the 

baseline.  Finally, since K  is often considered to be a * c 
constant, POF values were calculated for \i  = 29.4 and a  = 0.01 
and compared with the baseline POF, Figure 24. 

The sampling variation in the estimates of the parameters 

of the K distribution produced possible differences in POF over c 
a range of about a factor of 4 from uncertainty in the mean alone 

and over a range of about a factor of 6 from uncertainty in the 

standard deviation alone.  These potential differences are based 

on the sample size of 47.  (Note that many materials do not have 

this large of a sample of K values on which to estimate the mean 

and variance.  Smaller sample sizes would produce wider 

confidence intervals and a larger range of POF values.) 

Combining the reinforcing extri i :s of the confidence bounds 

produced possible differences in POF of more than order in 

magnitude over the total possible range of values, Figure 23. 

Assuming that K is a known constant produced POF values 

that were more than an order of magnitude less than the baseline 

values.  The baseline assumed that the fracture toughness for a 

structural detail chosen at random from the population is a 

random sample from a normal distribution of K values with a  = 
2.2.  This result is not surprising since the baseline conditions 

provide a much greater chance of combining a small fracture 

toughness with a large stress.  Regardless, it should be noted 

that assuming K  is constant produces significantly smaller (non- 

conservative) POF values. 

4.2.1.2  K/o versus a 

The stress intensity factor correlation with crack size is 

modeled as a deterministic input and is essentially defined by 

the design detail geometry and the crack initiation site.  To 

test the sensitivity of PROF to the "K/a versus a" relation, 

stress intensity solutions were obtained for cracks initiating in 

the bore of the hole and also in the corner away from the 
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Figure 24 POF for Constant Fracture Toughness. 
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countersink, Figure 25.  Strictly speaking, these crack 

geometries are not directly comparable as the holes in these 

solutions did not include a countersink.  Changing the stress 

intensity geometry factor changes both the "a versus TM relation, 

Figure 26, and the critical stress for a given KIC. 

Figure 27 presents single flight POF as a function of 

flight hours for the three crack geometries.  In general, the 

POFs are significantly lower for the corner and bore cracks as 

compared to the cracks initiating at the countersink corner. 

(The corner crack POF after 3800 hours is greatly reduced for the 

next few maintenance cycles.)  The significantly larger POF 

values for the countersink corner geometry is apparently due to 

the larger K/a values for the small crack sizes. 

If all three geometries are potential crack initiating 

sites in the field, POF for the mixture would be a weighted 

average of the three POF's from the three geometries with weights 

given by the percentage of cracks initiating at each site. 

Because of the dominance of the countersink POF values, the 

weighted average would be closely approximated by the percentage 

of cracks initiating in the countersink corner multiplied by the 

baseline POF.  The baseline POF is an upper bound on the mixture 

when all single crack initiation sites are considered. 

4.2.1.3  Discussion - Material/Geometry Input 

The estimates of the parameters of the KIC distribution can 

significantly influence the calculation of POF.  The smaller the 

sample size, the greater the potential effect.  However, the 

differences tend to yield "parallel" POF curves.  Although the 

estimated value might be in "error" by as much as a factor of 

five (assuming all other input is exactly correct), relative POF 

values would be unchanged from the "true" value. 

The different geometries from the different crack 

initiation sites produced significantly different POF curves, 

both in magnitude and shape.  In application, the percentage of 

cracks initiating at the different locations should be estimated 
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either from tests or feedback from field inspections.  Given 

stress intensity factor solutions for each geometry, POF values 

can easily be generated and combined into a composite estimate of 

the POF for the population of details. 

4.2.2  Variations in Aircraft/Usage Input 

The PROF input associated with the prediction of crack size 

versus time and the distribution of maximum stress per flight are 

dominated by the anticipated usage of the aircraft.  The initial 

crack size distribution is dominated by the initial quality of 

the structure if the analysis is to start with virgin structure. 

In the case of application to aging aircraft, the initial crack 

size distribution is influenced by both the initial quality and 

also by the past usage experienced by the airframe. 

4.2.2.1  Initiating Crack Size Distribution 

The sensitivity of POF to the initial crack size 

distribution was investigated by altering the baseline in four 

different ways. 

a) A Weibull distribution, rather than a log normal 

distribution, was mixed with the uniform (0,0.050) for 

the basic equivalent initial flaw size distribution 

(EIFS) .  The median and 90th percentile of the EIFS were 

kept the same. 

b) A log normal (0.0008,0.63) without the uniform 

distribution of big cracks was used as the EIFS. 

c) The median of the baseline log normal was arbitrarily 

increased 10 percent with a  at baseline. 

d) The standard deviation of the baseline log normal was 

arbitrarily increased 10 percent with n  at baseline. 

e) The mixing percentage of big cracks was increased. 

In each of these cases, the equivalent repair crack size 

distribution was the same as the EIFS. 

The evaluations of PROF sensitivity to variations in the 

initial crack size distributions were primarily made on the basis 

of the calculated POF values.  However, the initiating crack size 
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distribution also influences the number of cracks detected at an 

inspection. This output of PROF is summarized in Table 6 for the 

various EIFS distributions.  As will be noted, the differences in 

percent detections are as would be expected and they correlated 

with differences in the POP values. 

Figure 28 compares the POP as a function of spectrum hours 

using the log normal and Weibull distributions to mix with the 

larger cracks of the uniform (0,0.050) as the models for the 

EIFS.  The log normal POF values are slightly larger at the start 

of the analysis reflecting the higher tail probabilities of the 

log normal distribution.  In general, the differences between the 

two curves are relatively minor (at least when compared to 

differences from other sources). 

The comparison using the log normal mixture versus only the 

log normal distribution for the EIFS is shown in Figure 29. 

There is a significant difference in the interval before the 

first inspection but the differences thereafter are minor. The 

early differences are due to the relatively few large cracks (1 

in 1000) introduced in the mixture. Apparently, these cracks 

were detected at the inspection as the baseline mixture 

containing the larger cracks had about 50 percent more detections 

at the first inspection.  Note that differences at the very small 

POF values are determined by the extreme tails of the input 

random variables. 

Increasing the median of the EIFS by 10 percent increased 

the POF by an order of magnitude during the first usage interval, 

but the differences were negligible thereafter, Figure 30. Forty 

percent more detections were predicted for the larger EIFS 

median.  Increasing the standard deviation by 10 percent, 

produced a minor change in POF even though a higher percentage of 

detections were mad>-* at the first inspection. 

Changing the percentage of big cracks by increasing the 

mixing proportion of the baseline log normal and uniform 

(0,0.050) cracks produced significant changes in POF during the 
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TABLE 6 
Percent Detections at Inspections for Initiating Crack 

Size Distributions 

INSPECTION TIMES IN SPECTRUM HOURS 

1100 2000 2900 3800 

Baseline (Log Normal Mix)    1.70    11.12 7.44 5.73 

Weibull Mix 1.70 11.00 7.41 5.93 

Log Normal Only 1.16 11.06 8.01 9.03 

Log Normal Mix - 

Larger Median 2.40 11.17 7.91 5.14 

Log Normal Mix - 

Larger Scatter 2.41 12.69 8.51 9.52 

Log Normal Mix - 
1% Mix Percentage 2.47 11.16 7.92 5.10 

Log Normal Mix - 
10% Mix Percentage 10.10 11.44 9 ,22 5.93 

Baseline mix - 99.9% log normal (median = 0.0008 in., a  • 0.63) 

and 0.1% uniform on 0 to 0.050 in. 
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Figure 28.  POP for Different Families of EIFS with Constant 
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Figure 30.  POP for 10% Changes in Median and a  of EIPS. 
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first usage period only.  Figure 31 displays POP as a function of 

spectrum hours for mixing percentages of 0.1% (baseline), 1%, and 

10%.  Again, a significantly larger number of crack detections 

were made at the first inspection. At subsequent inspections, 

the percentage of detections varied, but the resulting mixtures 

of crack size density functions did not produce significant 

effects on POP. 

The effect of the model chosen to describe the crack size 

distribution if larger cracks were used to initiate the analysis 

was also investigated.  A crack size distribution was assumed for 

the cracks that might be present in the population of details in 

an aging fleet.  This distribution, although arbitrary for the 

-29 wing, was representative of the cracks found in the original 

T-38 wing [6].  Weibull (scale of 0.010 in. and shape of 0.9) and 

log normal (median = 0.00665 in. and a  -  1.041) distributions 

were used to fit this distribution of larger initial cracks. The 

Weibull model was fit to the data and log normal parameters were 

determined to make the two distributions agree at the median and 

90th percentiles.  Because these distributions of larger cracks 

are representative of aging aircraft, the reference time to 

initiate the analysis is not zero flight hours.  The analyses 

were started with the first inspection at the reference time 

(T = 0), i.e., immediately after an inspection for the larger 

cracks which may be in the structure.  When using these 

distributions of larger initial cracks, the baseline equivalent 

initial crack size distribution was used to model the equivalent 

repair crack size distribution.  (These distributions will be 

used again in the analysis of PROF sensitivity to the equivalent 

repair quality distributions.) 

The model selected to represent the distribution of cracks 

in the "aging" aircraft produced differences in POF values that 

were relatively small when compared to differences from variation 

in other inputs. Figure 32.  The thicker tail of the log normal 

apparently led to higher POF values after four inspections (the 

first being at T = 0) , but the effect of mixing in the equivalent 
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Figure 31.   POP for Increased Proportions of Large EIFS. 
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repair size distributions Is the probable cause of this 

difference. 

For the log normal model, PROF predicts that cracks will be 

detected in 42% of the details at the 900 hour and 1800 hour 

inspections and in about 20% thereafter. After the first four 

inspections, a significant proportion of the larger initial 

cracks have been "repaired" and the crack distribution in the POF 

calculations is dominated by the equivalent repair crack size 

distribution.  For the Weibull model, a somewhat similar pattern 

of percent detections was predicted, 5 percent at 900 hour, 39 

percent at 1800 hours, 11 percent at 2700 hours, and about 7 

percent thereafter.  Since the percentages were smaller for the 

Weibull model, the equivalent repair crack sizes were apparently 

Introduced more slowly.  This may be the cause of the lower POF 

values for the Weibull model at high spectrum hours. 

4.2.2.2  a versus T 

The deterministic crack growth ("a versus T") relationship 

is driven by the sequence of stress peaks expected in usage, the 

stress intensity factor solution for the geometry of the detail, 

and the analytical models used to predict crack growth.  The 

effect of detail geometry on the "a versus T" relation was 

considered previously.  The stress sequence and model were 

determined by the manufacturer to be representative of the LIF 

usage and were not varied in this study.  To consider the 

sensitivity to stress levels, the stress peaks In the spectrum 

were scaled by factors of 90 and 110 percent.  The resulting "a 

versus T" curves are presented in Figure 33.  The distribution of 

maximum stress per flight was also altered in the PROF runs to 

reflect the changes in the distribution of maximum stress per 

flight.  To account for the change in stress levels, the location 

parameter of the Gumbel distribution of maximum stress per flight 

was scaled by 90 and 110 percent from the baseline. 

Figure 34 presents POF as a function of spectrum hours for 

the three stress magnitudes.  The 10 percent changes in stress 
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Figure 34.   POF for Different Stress Levels. 
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levels produce more than an order of magnitude difference in POF 

over much of the analysis interval.  It is interesting to note 

that after the third inspection, the baseline and 90 percent 

stress level POF values are approximately equal. This would 

imply that the earlier differences were more due to the rate of 

growth of the cracks rather than the change in the maximum stress 

per flight distribution. 

One other type of "a versus T" change was introduced into 

the analyses.  The baseline "a versus T" curve starts at a. » 

0.001 in.  This was the smallest value for which cracks would 

grow for the geometry and stress sequences of the baseline. 

Since most of the cracks in the baseline initial crack size 

distribution are less than 0.001 in., PROF immediately grows 

these cracks to 0.001 in.  To test if this fast extrapolation had 

any effect on the analysis, it was assumed that crack growth 

below 0.001 in. was exponential.  The parameters of the 

exponential fit were estimated over the range of small calculated 

"a versus T" values, which were well approximated by an 

exponential fit.  It was a0 = 0.0001 at T = 0. This 

extrapolation added about 70,000 hours to the "a versus T" curve. 

However, when this extended curve was run under the remaining 

baseline conditions, the differences in POF values were not 

visible on the POF plots, and the percentage of crack detections 

at the inspections were approximately equal.  It was concluded 

that the very small cracks do not significantly influence the POF 

analysis over a practical number of spectrum hours. 

4.2.2.3  Maximum Stress per Flight Distribution 

The Gumbel extreme value distribution is used as the basis 

for extrapolating the maximum stress per flight distribution to 

larger values than are present in the spectrum. The parameters 

of this distribution are easily estimated from maximum stress per 

flight data but the estimates are somewhat subjective.  The 

sensitivity of PROF to two approaches for fitting the data were 

tested by arbitrarily assigning different values to the 

parameters of the distribution. Figure 35. The baseline 
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parameters were estimated by a least squares fit to the highest 

four stress levels of the distribution of maximum stresses in 

each flight of the cycle-by-cycle spectrum (Subsection 3.1.2.3). 

In the first change, a steeper exceedance curve was generated 

which provided an acceptable fit at the largest stress levels but 

overpredicted the probability of exceeding smaller stress levels. 

The POF is dominated by the higher stress levels so the lack of 

fit at the lower levels does not significantly affect POF.  In 

the second change, the slope and location parameters were 

modified to produce an exceedance probability curve which was a 

conservative bound on all data points. 

Figure 36 presents the POF values for the baseline max 

stress per flight distribution and the two perturbations of the 

parameters of the Gumbel fit.  The steeper slope reduced the POF 

values by a factor of four to five.  The conservative bound 

produced essentially equivalent POF values, but the exceedance 

probability fit for this condition was also essentially 

equivalent to that of the baseline.  Differences in the fit can 

significantly influence the POF values, but since the POF curves 

are somewhat parallel, the fit should not have significant 

effects on results based on variation of other inputs to the 

model. 

4.2.2.4  Discussion - Variation in Aircraft/Usage 
Input 

Initiating Crack Size Distribution;  The crack size 

distribution at the start of the analysis is a driver of PROF 

output but is currently difficult to determine.  These 

sensitivity analyses are primarily based on the equivalent 

initial flaw size concept using a distribution found to be 

representative of quality in an attack/fighter/trainer airfraroe. 

Although the POF levels appear reasonable, the number of crack 

detections is far higher than could be tolerated.  When the aging 

aircraft crack size distribution was introduced, the number of 

crack detections at the inspections would certainly be indicative 

of noneconomical repair.  Relatively large percentages of crack 
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indications have been observed on most runs of PROF.  It is 

postulated that the large detection percentages are the result of 

assuming that all sites have a "crack" and that PROF cannot 

discriminate between a real crack and an "equivalent" crack. 

The examples of this report are based on two types of 

initial crack size distributions: equivalent initial flaw sizes 

and observed crack sizes in an aging aircraft.  The EIFS 

distribution is a concept being developed for characterizing 

initial quality, but the proposed method is based on data that 

were not available for the T-38 aircraft of this study.  The 

proposed method may not have projected the relatively large 

proportion of large crack sizes to the inspection interval. 

Since the proposed method is based on the distribution of time to 

initiate cracks of a known size, the proper data may have 

produced crack size distributions with fewer detectable real 

cracks at the end of the usage periods. 

The crack size distribution obtained from inspections in 

aging aircraft are based on crack sizes observed in some of the 

details from airframes that have experienced different numbers of 

spectrum hours.  To fit a distribution to these data, all crack 

sizes are first translated to a common number of spectrum hours 

using the appropriate "a versus T" relation.  A distribution is 

then fit to the translated crack sizes by assuming that the 

cracks at all sites in which no cracks were found were smaller 

than the minimum translated crack size.  This process may produce 

a model of the crack size distribution that is reasonable for the 

larger cracks which dominate the calculation of POF.  However, 

the distribution at the more central region of the distribution 

is subject to potentially significant errors from the method of 

accounting for the sites at which no cracks were found, i.e., in 

accounting for the equivalent cracks. 

In a teardown inspection, all cracks greater than a defined 

minimum will be found.  For example, in the T-38 teardown 

inspection which led to the aging aircraft crack size 

distribution of the above analysis, actual cracks as small as 
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0.001 in. were reported.  All cracks were then translated to the 

average number of spectrum hours experienced by the torn down 

wings.  Translating a 0.001 in. crack to a larger number of 

spectrum hours increases the minimum cutoff of the data and 

translating it to a smaller number of hours decreases the minimum 

cutoff.  At the common number of spectrum hours, the effect of 

the inspection sites at which no cracks were found has a mixed 

effect on the lower percentiles of the crack size distribution. 

Again, the method may produce an acceptable fit to the upper tail 

of the distribution which governs POF calculations for the early 

usage periods of the analysis. 

A better model is needed for separating the real cracks 

from the equivalent cracks.  Such a model could be expressed in 

terms of the proportion of crack sites which contain a real crack 

of a predefined size.  PROF can handle an arbitrary initial crack 

size distribution since this input is in a tabular format.  At a 

fixed number of hours if the proportion of uncracked sites is 

known, the PROF output can be reduced accordingly.  (POF and the 

percent crack detections would be multiplied by the proportion of 

sites that contain real cracks.)  However, PROF cannot currently 

handle a changing proportion of cracked sites that would be 

involved in a model of crack sizes that incorporates time to 

crack initiation and growth of initiated cracks. 

The methods of defining the initiating crack size 

distribution in this study cause a discrepancy between the 

predicted number of crack detections at inspections and the 

anticipated actual.  Until a better method can be implemented 

for modeling the initiating crack size distribution, evaluations 

of maintenance scenarios based on cost estimates do not have 

reasonable validity.  However, evaluations based on relative 

changes in POF for different maintenance scenarios still have 

meaning for at least the first couple of usage intervals. 

a versus T;  The "a versus T" relation used in the analysis 

is driven by the geometry at the crack site and the stress 
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sequences derived from the anticipated stress spectrum. No 

single aircraft will actually experience the sequences which 

drive the crack growth.  It is assumed that the sequences of the 

analysis will produce an "a versus T" relation that is 

representative of the average aircraft in the fleet being 

analyzed.  Under this assumption, the calculated POF values are 

representative of a randomly selected airframe in the fleet. 

If a sublet of the fleet is known to be consistently flown 

to a more severe stress spectrum, a separate analysis could be 

run for this subset.  The analysis would require the generation 

of a new stress sequence from the spectrum, new "a versus T" 

curve, and new distribution of maximum stress per flight.  (This 

procedure was done for the LIF usage of the T-38.)  The limits of 

the analyses and their interpretation will be dictated by the 

degree of detail that is reasonable to pursue.  PROF will be 

applicable to the same degree of detail that deterministic damage 

tolerance analyses are currently performed. 

Distribution of Maximum Stress per Flight;  In these 

sensitivity studies, the distribution of the maximum stress per 

flight was determined from the stress sequences of the crack 

growth analysis.  Strictly speaking, more or less severe maximum 

stress per flight distributions could be used for special purpose 

analyses, but the maximum stress should be consistent with the 

crack growth drivers over entire usage intervals.  Since this 

distribution is derived from the sequences which drive crack 

growth, the previous discussion also applies here. 

Different estimates of the parameters of the distribution 

of the maximum stress per flight can produce acceptable fits to 

the data.  Relatively small changes in these parameters can 

produce differences of a factor five or more in the calculation 

of POF. However, the relationship between the POF curves for the 

different sets of apparently equivalent parameters remains 

approximately constant.  Absolute interpretation of the POF 

values is clouded by this effect.  However, relative comparisons 
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under the same maximum stress per flight distribution should be 

valid. 

4.2.3  Variations in Inspection/Repair Input 

The PROF inspection and repair input are associated with 

the scheduling of inspections, the capability of the inspection 

system, and the quality of necessary repairs.  While the 

inspection schedule is the easiest to modify, alternative 

inspections with varying inspection costs are sometimes 

available.  Similarly, more expensive repairs could be performed 

which presumably produce a better quality repair as quantified by 

the equivalent repair flaw size distribution.  This subsection 

addresses the trade-offs that result from changes in the 

maintenance scenario as defined by the inspection schedule, the 

inspection capability, and the repair quality. 

4.2.3.1  Inspection Schedule Effects 

The effect of the inspection schedule on PROF output was 

analyzed by running the program at an array of inspection times 

about the baseline DTA schedule. Both the initial inspection, 

T , and the subsequent inspection increments were varied.  The 

sensitivity to the inspection schedule was addressed from the 

viewpoints of both fracture probability and cost of maintenance 

over a 5000 spectrum hour usage period.  Fracture probabilities 

will be considered first. 

4.2.3.1.1   Scheduling Effect on 
Fracture Probability 

PROF outputs fracture probabilities at increments of 

spectrum hours as determined by the inspection schedule.  The 

output from different inspection schedules are difficult to 

compare in the form of overlaying plots of POF versus spectrum 

hours as previously used.  For example, Figure 37 presents a plot 

of fracture probability for four inspection increments with the 

initial inspection being performed at 1100 hours.  To simplify 

comparisons for different inspection times, the fracture 

probability immediately prior to an inspection will be plotted at 
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the inspection times.  This simpler plot is an upper bound on the 

fracture probability over the entire analysis period since 

maximum fracture probability in any usage interval occurs 

immediately prior to an inspection. The maximum fracture 

probability would most likely also be used to characterize the 

risk in a usage interval between inspections or over an entire 

analysis period. 

Figure 38 presents single flight POF bounds for inspection 

schedules defined by an initial inspection at 1100 spectrum hours 

and increments of 450, 600, 750, 900, and 1050 hours thereafter. 

Shortening the inspection increment produces a distinct and 

somewhat consistent reduction in fracture probabilities.  They 

also tend to converge to an equilibrium value for each inspection 

increment. 

Figure 39 presents single flight POF bounds for inspection 

schedules defined by initial inspections at 500, 700, 900, and 

1100 hours with the repeat inspections at 750 hours thereafter. 

Over this range of initial inspection intervals, the fracture 

probabilities are approximately equivalent except, perhaps, at 

about 2000 spectrum hours.  After 2500 hours, all of the POF 

bounds tended to converge to a common equilibrium value as 

determined by the subsequent inspection intervals (and other 

conditions). 

Figure 40 presents a similar set of POF bounds for longer 

initial inspection intervals.  The effect of postponing the first 

inspection begins to be significant for initial inspection 

intervals greater than 1900 spectrum hours.  The fracture 

probabilities for these longer initial inspection intervals are 

also tending to converge to the same equilibrium level. 

To test for a joint effect of initial and subsequent 

inspection intervals, POF as a function of spectrum hours was 

calculated for all four combinations of 750 and 1500 hour initial 

inspection intervals and 450 and 1050 hour subsequent inspection 

intervals. Figure 41 presents the bounds on single flight POF 
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for the four combinations. These initial inspection intervals 

did not produce significant differences in the POP bounds but the 

effect of the 600 hour difference in subsequent inspections was 

larger than an order of magnitude after 2500 spectrum hours. 

4.2.3.1.2   Scheduling Effect on 
Expected Costs 

To consider the costs of the maintenance schedules, first 

recall that there are a total of 750 analysis sites in the fleet. 

PROF will provide estimates of the number of these analysis sites 

for which cracks will be detected in a 5000 spectrum hour period. 

Table 7 presents the sum of the percentages of crack detections 

for all inspections that occur before 5000 hours for the 

different schedules of the previous POP bound plots.  For 

example, under the baseline conditions of initial inspection at 

1100 hours and subsequent inspections at 900 hours, 33.1 percent 

of the total number of sites (750) will have undergone repair 

prior to 5000 spectrum hours.  As noted earlier, the initial 

crack size distribution and crack growth model of the baseline 

conditions result in an unrealistic distribution of crack sizes. 

However, for these comparative studies it is assumed that the 

relative effect would be the same for a more realistic model of 

crack sizes at the inspection intervals. 

The total number of detected cracks over the 5000 hour 

period is approximately the same for all of the maintenance 

schedules considered. The mechanisms for modelinq crack growth 

remain unchanged, and the inspection process tends to find the 

larger cracks.  The differences arise from the timing of the 

crack detections and the subsequent opportunities for the 

equivalent repair cracks to grow.  Table 7 indicates that the 

inspection schedule does not significantly affect the total 

number of detections under the baseline conditions. 

To determine if smaller cracks were being detected at the 

more frequent inspections of the shorter intervals, cumulative 

repair costs were calculated using the assumptions of Subsection 

4.1.3.  Incremental inspection costs are assumed to be $100 per 
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TABLE 7 
Total Percent of Sites at Which Cracks Are Detected In 

5000 Spectrum Hours 

INSPECTION INTERVAL AFTER FIRST INSPECTION (HOURS) 

FIRST    | 450    600   750    900    1050 

INSPECTION 
(HOURS) 

500 

700 

900 

1100 

1300 

1500 

1900 

2100 

2300 

2500 

36.3 

36.8 

34.7 

31.3 

32.2 

31.4 

34.3 

32.9' 

35.6 

35.1 

34.2 

37.3   33.6   34.6   33.1    29.0 

35.1 

32.4 

- Last Inspection at 4500 hours or less. 
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site per inspection.  The cost model assumes that cracks less 

than 0.100 in., i.e., not visible to the eye since they are 

hidden by the fastener head, can be repaired at a nominal 

additional cost of $1,000.  It is assumed that cracks larger than 

0.100 in. require major repair at a cost of $100,000.  If 

fracture occurs, the loss is assumed to be $10,000,000. 

For the first inspection at 1100 hours and subsequent 

inspections at 450, 600, 750, and 900 hours, the proportion of 

sites at which cracks greater and less than 0.100 in. was 

obtained at each inspection.  These percentages and the resulting 

incremental and total cost for the four inspection schedules are 

presented in Table 8.  Figure 42 presents the cumulative total 

costs as a function of spectrum hours.  For the assumptions of 

this analysis, although the total number of sites to be repaired 

is approximately the same for the different repeat inspection 

intervals, the shorter inspections are finding the cracks when 

they are smaller and cheaper to repair.  The expected costs due 

to fracture also increases as a function of the time between 

inspections. 

A similar cost analysis was performed varying the initial 

inspection interval while holding the subsequent inspection 

intervals constant.  Table 9 presents the detection percentages, 

incremental costs, and total costs for initial inspection times 

of 700 and 1500 hours with subsequent inspections at intervals of 

750 hours.  Table 8b contains data for an 1100 hour initial 

interval with 750 hour increments thereafter.  The expected total 

repair costs for these data are plotted in Figure 43.  Under the 

conditions of this analysis, starting the inspections sooner 

resulted in the smallest expected repair costs.  The savings 

resulted from both the expected repair cost and the expected 

costs of failures. 

The absolute magnitudes of the above expected costs are not 

realistic due to the arbitrary cost assumptions and inadequate 

initial crack size model. However, regardless of the relative 

repair costs for cracks of different sizes, the conclusion that 
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TABLE 8 
Expected Repair Costs 

EXPECTED REPAIR COSTS - VARIATIONS FROM BASELINE 

NUMBER OF A/C 125 Cl = 1000 
COST PER A/C 10000000 C2 = 100000 
HOLES PER A/C 6 
INS COST/AC 100 

(FOR a  <  0. 100  in. ) 
(FOR a  >  0.100  in.) 

BASELINE   INSPECTION SCHEDULE -  DTA DEFINED 
Tl  =  1100 HOURS WITH 900 HOUR  INTERVALS 

T 
INT 
POF 

EXP 
COST 

DUE TO 
FRACTURE 

PROP. DETECTED 
BY SIZE RANGE 

Cl    C2 

EXP 
COST 
OF 

MAINT. 

INCR 
TOTAL 
C  'S 

CUM 
TOTAL 
COSTS 

1100 
2000 
2900 
3800 
4700 

1. 
1. 
2 
1. 
1 

58E-05 
77E-03 
11E-03 
05E-03 
71E-03 

19750 
2213750 
2632500 
1307500 
2142500 

0.0164 0.0006 
0.0494 0.0618 
0.0280 0.0463 
0.0358 0.0215 
0.0481  0.023 

69800 
4684550 
350R000 
1651850 
1773575 

89550 
6898300 
6138500 
2959350 
3916075 

89550 
6987850 
13126350 
16085700 
20001775 

Tl  =  1100 HOURS WITH 450 HOUR  INTERVAL 

EXP PROP. DETECTED EXP INCR CUM 
COST BY SIZE RANGE COST TOTAL TOTAL 

INT DUE TO OF COSTS COSTS 
T POF FRACTURE Cl    C2 MAINT. 

1100 1. 58E-05 19750 0.0171 0.0008 85325 105075 105075 
1550 2. 22E-04 277375 0.0547 0.0043 376025 653400 758475 
1900 4. 73E-04 591000 0.0396 0.0187 1444700 2035700 2794175 
2450 3 73E-04 466750 0.0308 0.0133 1033100 1499850 4294025 
2900 2 69E-04 336750 0.0237 0.0099 772775 1109525 5403550 
3350 2 10E-04 262750 0.0225 0.0082 644375 907125 6310675 
3800 2. 53E-04 316250 0.0364 0.0083 662300 978550 7289225 
4250 3 56E-04 445000 0.0341 0.0125 975f"5 1420575 8709800 
4700 2. 98E-04 372125 0.0281 0.0101 791075 1163200 9873000 

(a) 900 and 450 Hour Inspection Increments 
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TABLE 8 
Expected Repair Costs   (concluded) 

EXPECTED REPAIR COSTS  - VARIATIONS FROM BASELINE 

NUMBER OF A/C 
COST PER A/C 
HOLES PER A/C 
INS COST/AC 

125 
100000OO 

6 
100 

Cl = 1000       (FOR a < 0.100 in.) 
C2 =    100000       (FOR a > 0.100 in.) 

Tl = 1100 HOURS WITH 600 HOUR INTERVAL 

EXP {PROP. DETECTED EXP 
COST IBY SIZE RANGE COST INCR CUM 

INT DUE TO OF TOTAL TOTAL 
T POF FRACTURE 1  Cl    C2 MAINT. COSTS COSTS 

1100 1.58E-05 19750 0.0173 0.0006 70475 90225 90226 
1700 5.27E-04 658625 0.0603 0.0168 1317725 1976360 2066676 
2300 8.99E-04 1123375 0.0417 0.0282 2158775 3282150 5348725 
2900 6.68E-04 835250 0.0309 0.0212 1625675 2460925 7809650 
3500 5.27E-04 658750 0.0164 0.0227 1727300 2386050 10195700 
4100 3.42E-04 427250 0.0306 0.0102 800450 1227700 11423400 
4700 5.83E-04 729125 0.0415 0.0176 1363625 2092750 13516150 

Tl = 1100 HOURS WITH 750 HOUR INTERVAL 

EXP PROP. DETECTED EXP   | INCR CUM 
COST BY SIZE RANGE COST   | TOTAL TOTAL 

INT DUE TO OF    | COSTS COSTS 
T POF FRACTURE Cl    C2 MAINT.  | 

1100 1.58E-06 19750 0.0172 0.0007 77900 i 97650 97660 
1850 1.04E-03 1301250 0.0540 0.0412 3143000 | 4444250 4541900 
2600 1.45E-03 1810000 0.0342 0.0383 2910650 | 4720660 9262660 
3350 9.32E-04 1164875 I 0.0336 0.0239 1830200 | 2995075 12257626 
4100 9.24E-04 1155375 | 0.0246 0.028 2130950 I 3286325 16543960 
4850 7.93E-04 991625 | 0.0145  0.024 1823375 I 2815000 18358960 

(b) 600 and 750 Hour Inspection Increments 
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TABLE 9 
Expected Repair Costs - 700 and 1500 Hour 

Initial Intervals 
EXPECTED REPAIR COSTS  - VARIATIONS FROM BASELINE 

NUMBER OF A/C 
COST PER A/C 
HOLES PER A/C 
INS COST/AC 

125 
10000000 

6 
100 

Cl  = 1000       (FOR a < 0.100  in.) 
C2 =       100000       (FOR a >  0.100  in.) 

BASELINE  INSPECTION SCHEDULE -  DTA DEFINED 
Tl = 1500 HOURS WITH  750 HOUR INTERVALS 

EXP PROP. DETECTED EXP 
COST BY SIZE RANGE COST INCR CUM 

INT DUE TO OF TOTAL TOTAL 
T POF FRACTURE Cl C2 MAINT. COSTS COSTS 

1500 2 75E-04 344000 0.0641 0.0641 4868075 5212075 5212075 
2250 1 53E-03 1916250 0.0359 0.0359 2731925 4648175 9860250 
3000 1 05E-03 1313750 0.0319 0.0319 2428925 3742675 13602925 
3750 9 68E-04 1209500 0.0285 0.0285 2171375 3380875 16983800 
4500 8 81E-04 1100750 0.0198 0.0198 1512350 2613100 19596900 

Tl  = 700 HOURS WITH 750 HOUR INTERVAL 

EXP PROP. DETECTED EXP INCR CUM 
COST BY SIZE RANGE COST TOTAL TOTAL 

INT DUE TO OF COSTS COSTS 
T POF FRACTURE Cl C2 MAINT. 

700 1 58E-05 19750 0.0019 0.0003 36425 56175 56175 
1450 2 22E-04 277375 0.0555 0.0016 174125 451500 507675 
2200 4 73E-04 591000 0.0369 0.0470 3565175 4156175 4663850 
2950 3 73E-04 466750 0.0333 0.0273 2084975 2551725 7215575 
3700 2 69E-04 336750 0.0294 0.0289 2202050 2538800 9754375 
4450 2 10E-04 262750 0.0241 0.0271 2063075 2325825 12080200 
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expected repair costs would be less at the shorter initial and 

subsequent inspection intervals would be valid.  This is due to 

the reduced expected costs associated with fracture at the 

shorter initial and subsequent inspection intervals. 

4.2.3.2  Inspection Capability Effects 

As noted in the previous subsection, the inspections play a 

critical role in controlling the POF.  The capability of the 

inspection systems are quantified in terms of the probability of 

crack detection as a function of crack size, POD(a) .  Different 

inspection systems (particular applications of a defined 

inspection method) have different capabilities, and the choice 

for a given detail is a force management decision.  In general, 

less automated systems have poorer POD (a) functions than more 

automated systems.  Further, less automated systems are not 

necessarily less expensive in a specific application. Given the 

inspection system to be used in an application, its capability 

must be characterized.  This can be done through NDE reliability 

experiments but more typically is inferred from past experience 

with the system. 

The trade-offs to be evaluated in terms of their effect on 

the POF will be defined in two contexts.  First, two different 

POD(a) capabilities will be introduced to quantify the effect of 

different, but potentially available, inspection systems. 

Second, the parameters of the POD(a) function will be varied over 

a range of values that would represent sampling variation from an 

experiment to evaluate the inspection capability of the baseline 

semiautomated eddy current system. 

The capabilities of the two different inspection systems 

are rationalized as follows.  For the first system, assume the 

inspections of the baseline structure were to be made by a visual 

inspection of the six holes in each aircraft without removing the 

fastener.  Visual inspections are not reliable for detecting 

small cracks, and they are incapable of detecting a crack less 

than 0.100 in. because such cracks are under the fastener head 
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(i.e. a .  = 0.100).  However, because of the focus of the 
mm 

inspections at only six locations on an air frame, it will be 

assumed that a 0.150 in. crack will be detected 50 percent of the 

time (ago=0.150) and a 0.200 in. crack will be detected 90 

percent of the time (ago=0.200). These three conditions are 

sufficient to calculate the parameters of the POD (a) function as 

shown in Figure 44.  Because of the reduced capability, the 

inspection interval for this capability will be set at 450 

spectrum hours. 

For the second, assume that an advanced system is under 

development which will be capable of obtaining two different 

objectives: a) it can be set to detect a 0.030 in. crack (under 

the fastener head) 50 percent of the time and a 0.075 in. crack 

90 percent of the time (a50= 0.030 and ag0= 0.075); or, b) it can 

be set to detect a 0.050 in. crack 50 percent of the time and a 

0.075 in. crack 90 percent of the time (a50= 0.050 and 

a- = 0.075).  That is, the system can be configured to detect 

either a higher percentage of small cracks or a higher percentage 

of large cracks, but not both.  Figure 44 displays the POD (a) 

functions for the two configurations as well as that of the 

baseline system.  Both configurations have the same ago value. 

The first configuration, when compared to the second, has higher 

detection probabilities for cracks less than 0.75 in. and lower 

detection probabilities for cracks greater than 0.75 in.  Both 

configurations are better than the baseline for cracks larger 

than 0.050 in. 

Figure 45 compares POF as a function of spectrum hours for 

the visual and baseline inspection systems.  The baseline is 

presented for inspection intervals of 450 and 900 spectrum hours. 

After the cracks have grown to detectable sizes, about 1500 - 

2000 hours for the baseline eddy current system, there is more 

than an order of magnitude difference in the bounds on POF over 

the inspection intervals when the same schedule is used for both 

inspection systems.  If the baseline (eddy current) system is 

used at the 900 hour schedule, the POF bound for the visual 
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system is about 2.5 to 3 times higher than that of the eddy 

current system.  Table 10 presents the percent of detections that 

were made during 900 hour increments. Over the entire 4700 hour 

period, approximately the same number of cracks were detected by 

the two inspection procedures, but the eddy current system was 

detecting much smaller cracks. 

Figure 46 compares the fracture probabilities for the 

"advanced" and baseline NDE systems.  The configuration of the 

advanced system which has a larger POD(a) at the larger crack 

sizes did not provide the expected lower POF values.  The 

configuration with the higher POD(a) values for cracks less than 

0.075 in. had lower POF values throughout the 4700 hour period. 

As expected, both configurations of the advanced system had lower 

POF values after the cracks reached detectable sizes.  The 

differences range up to a factor of about 2.5 for the 

configuration with the steeper POD(a) function (smaller a)   and 

about 3 for the configuration with the lower median detection 

capability.  The configuration with the lower median detection 

capability also had six percent more cracks detected over the 

4700 hour period, as seen in Table 10. 

Baseline variations to reflect potential errors in the 

characterization of inspection capability were introduced 

arbitrarily.  The POD(a) function of the baseline analyses had 

ac =0.050 in. and a  = 0.54.  For these parameter values, 
50 

a. =0.100 in. Three variations which lowered the capability were 

considered: a) the median detectability size was held at 0.050 

in. and a  was increased to 1.0 (a  =0.180 in.); b) the median 

detectability was increased to 0.070 in. for the baseline a 

(aQ =140 in.); and, c) both the median detectability and a  were 

increased to 0.60 in. and 0.70, respectively (ag =0.147 in.). 

Figure 47 presents the POD(a) function for the baseline and these 

variations. 

The different POF values resulting from the defined 

variations in capability are presented in Figure 48.  The three 

variations had guite similar effects on POF, increasing the POF 
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TABLE 10 
Percent Detections at Inspections for Different 

Inspection Capabilities 

1 
1 

INSPECTION TIMES (HOURS) 

1 
|1100 2000 2900 3800 4700 TOTAL 

a50 a a90 

BASELINE 0.050 0.54 0.100 1 1.7 11.1 7.4 5.7 7.1 33.0 

VISUAL 0.150 0.54 0.200 0.0 2.1 11.5 7.2 12.6 33.4 

CONFIG. 1 0.030 0.71 0.075 1 4.7 
1 

10.2 8.2 6.9 5.0 35.0 

CONFIG. 2 0.050 0.32 0.075 
1 
| 1.0 11.9 7.4 6.2 7.2 33.7 

VAR. 1 0.050 1.00 0.180 | 3.0 
I 

9.8 8.2 6.8 6.4 34.2 

VAR. 2 0.070 0.54 0.140 
1 
| 0.8 
1 

9.5 7.7 7.1 6.9 32.0 

VAR. 3 0.060 0.70 0.147 
1 
1.5 9.9 7.7 6.6 6.6 32.3 
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Figur« 46.      POF Conparlng Baseline to Potential Advanced NDE 
Systems. 
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values by factors of 3 to 6 over those of the baseline. Although 

the differences are small, the variation which had the lower 

detection probabilities over the range of larger cracks (greater 

than 0.100 in.) had higher POF values.  Approximately the same 

number of cracks were detected by all four inspection 

capabilities in the 4700 hour period. 

All of the variations in the characterization of the 

inspection capability produced POF functions which tended to be 

parallel. Although the inspection capability might not be 

precisely characterized for a particular application, relative 

comparisons due to variations in other PROF inputs would still be 

valid. 

It is interesting to note in the above analyses that the 

inspection capabilities with the lower ag0 values had the lower 

POF values.  To further investigate this observation, PROF runs 

were made at four sets of combinations of a50 and a  with 
a. egual to either 0.075 or 0.125 in.  Figure 49 presents the 

four POD (a) functions. Two of the POD (a) functions intersect at 

0.075 in. and two intersect at 0.125 in. The POD(a) functions 

with the higher a50 values also had higher detection 

probabilities for crack sizes larger than the a90 values.  Figure 

50 presents POF as a function of spectrum hours for the four 

inspection capabilities.  The capabilities with the lower a90 
values had lower fracture probabilities.  The capabilities with 

the lower atrt value for fixed a., value had the lower POF over so yu 
the period.  The larger detection probabilities for cracks 

greater than a90 did not offset the greater chances of detecting 

the smaller cracks. However,  It was not necessarily true that 

the inspection capabilities with the lower a50 values had lower 

POF values as can be seen by comparing the POF values for squares 

and diamonds of Figure 50.  Since two parameters determine the 

POD(a) function, combinations of a50 and ag0 can be found for 

which POF is not less for the smaller ago value.  However, the 

a  value, which tends to occur at about the "knee" of the POD(a) 
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functions, may well be a reasonable single value characterization 

of POD capability. 

4.2.3.3  Repair Crack Size Effects 

When a crack is detected at a site, it is assumed to be 

immediately repaired and the quality of the repair is 

characterized in terms of an equivalent repair crack size 

distribution.  The baseline analysis assumed that a repaired 

crack was as good as new, and the equivalent initial flaw size 

distribution was used to characterize repair quality.  That is, 

it was assumed that the equivalent repair flaw size distribution 

was a mixture with 99.9 percent of the repaired sites having a 

log normal distribution with a median of 0.008 in. and a standard 

deviation of 0.63 and 0.1 percent of the repaired sites having a 

uniform distribution between 0 and 0.050 in. (Subsection 4.1.2). 

There are no published studies on methods of characterizing 

repair quality in terms of an equivalent crack size distribution 

other than those for durability analysis of new structure. 

Rational choices of alternatives can be made based on engineering 

judgement. 

Three alternatives to the baseline equivalent initial flaw 

size distribution were evaluated.  It is assumed that every 

repair produces a flaw with a corresponding equivalent crack 

size. The alternatives were then formulated as follows: 

a)The equivalent repair cracks are equally likely to be any 

size between 0 and 0.050 in.  That is, the equivalent 

flaws are  characterized by a uniform distribution of 

cracks on the interval of 0 to 0.050 in. 

b)Smaller equivalent repair cracks are more likely than 

larger.  They are assumed to be exponentially distributed 

with a 0.001 chance of being greater than 0.050 in. 

c)The repair changes the structural detail to the extent 

that it cannot be considered to be from the original 

population of details.  A distribution of extremely small 

cracks is used for the equivalent repair crack size 
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distribution, viz., lognormal with median crack size of 

0.0001 in. and a  = 0.05. 

Figure 51 displays the cumulative distribution for the baseline, 

the uniform (0,0.050), and the exponential equivalent flaw size 

distribution.  The distribution of the third alternative could 

not be seen on this plot. 

Figure 52 compares the fracture probabilities for the four 

equivalent repair qualities. After the cracks have grown to 

detectable size, POF for the repair quality as characterized by 

the relatively large cracks of the uniform distribution is always 

greater than the others.  Considering the difference in the 

uniform, exponential, and initial quality distribution functions, 

larger differences were anticipated after three inspections. 

Table 11 presents the percentage of sites at which cracks would 

be detected at each inspection and the total over the 4700 hour 

period. Under the poorer repair quality represented by the 

uniform distribution, a significantly larger number of cracks 

were detected in the 4700 hour period.  This larger percentage of 

detections implies that cracks were being detected at sites that 

were previously repaired. 

The POF values for which the repaired detail is removed 

from analysis are very close to those of the baseline. These POF 

values represent the growth of only the original distribution 

with the large cracks being eliminated at the inspections.  From 

Table 11, about 29.5 percent of the sites had cracks which were 

detected in the 4700 hour period.  This implies that 4 percent of 

the total 33.1 percent of the detected cracks under the baseline 

conditions were from details that had previously been repaired. 

For the uniform and exponential repair quality, the percentages 

of multiple repairs at a site are much larger. 

Although the equivalent repair quality distribution does 

affect the absolute magnitude of POF, the relative magnitudes 

remain consistent.  Again, relative comparisons for other PROF 
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TABLE 11 
Percent Detections &t Inspections for Different 

Equivalent Repair Qualities 

1. 

INSPECTION TIMES   (HOURS) 

1100    2000     2900     3Ö00     4700    TOTAL 

BASELINE - SMALL CRACK 

MIXTURE 

1.7   11.1   7.4   5.7   7.1   33.0 

UNIFORM ON 0 TO 0.050 IN 

EXPONENTIAL - 

P(0.050) » 0.999 

REMOVED FROM ANALYSIS 

LOG NORMAL (0.0001,0.05) 

1.7   11.9  16.4  22.0  23.8   75.8 

1.7   11.4  11.5  17.3  17.1  59.0 

1.7  11.1   7.3   4.6   4.8   29.5 

132 



inputs would not be changed by selecting a different model for 

the equivalent repair quality distribution. 

4.2.3.4   Discussion - Inspection/Repair Data 

Since the input which defines the inspection schedule, NDE 

capability, and repair quality can be defined as part of the 

Force Management Plan, variations in these data can be viewed in 

terms of both trade-offs in planning decisions and sensitivity of 

PROF to input. 

Inspection Schedule;  The timing of the maintenance 

schedule (inspections, repairs, replacements, and retirement) is 

strictly a force management decision.  The guidelines from 

deterministic damage tolerance analyses are based on a 

conservative approach, but in the general application, the degree 

of conservativeness has not been quantified.  PROF provides a 

tool for comparing the relative degrees of risk for any proposed 

inspection schedule.  If representative crack size and cost of 

maintenance data become available, the impact of scheduling 

alternatives can also be quantified. 

From a safety of flight perspective, delaying the first 

inspection on a new structure had a deleterious effect on the 

chances of a fracture.  The increase in fracture probability was 

relatively minor until the upper tail of the initial crack size 

distribution grew to a critical size (as determined by the 

fracture toughness and maximum stress per flight distributions). 

Delaying the first inspection beyond this time (about 2000 hours 

for the baseline conditions of this analysis) caused a 

significant increase in fracture probability. However, from the 

expected repair cost perspective, there was significant advantage 

to earlier first inspections.  Although all inspection schedules 

produced about the same number of total crack detections in a 

5000 hour period, performing the first inspection earlier reduced 

the expected costs from potential fractures and apparently led to 

the repair of smaller cracks. 
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A similar set of conclusions can be drawn concerning the 

repeated inspection increments after the initial inspection. The 

fracture probabilities tend to converge to a level determined by 

the repeat increment.  For the baseline conditions, shorter 

inspection increments imply lower fracture probability and lower 

expected maintenance costs.  The POF values should only be 

interpreted in a comparative sense.  The choice between two 

repeat inspection increments would have to be made in terms of 

whether one is two, three, or whatever times safer than the 

other.  The expected cost data of this analysis were tainted by 

the inadequate initial crack size information and the inspection 

and repair cost data.  Therefore, no clear criterion for 

selecting a sufficiently short inspection increment was 

discerned. 

Tnapection capability;  Inspection capability as quantified 

by the probability of detection as a function of crack size was 

evaluated from two viewpoints: different inspection systems and 

perturbations of the parameters of a single system.  The 

different inspection capabilities usually produced POF 

differences in the anticipated direction but not necessarily in 

the anticipated magnitudes.  Relatively large apparent 

differences in the POD(a) function did not result in large 

differences in the fracture probabilities if the inspection 

increment is changed to reflect the a90 capability of the 

inspection systems. 

The POD(a) model is characterized by two parameters, 

a  and a.  aert locates the 50 percent detectable crack size and 

a  determines the "flatness" of the POD(a) function.  Smaller a 

for the same a50 produce a higher detection probability for 

larger cracks.  It was somewhat expected that steep POD(a) 

functions (small a)  would produce lower fracture probabilities 

over a period of several inspections since there would be a 

higher probability of detecting the larger cracks.  This did not 

prove to be the case.  In general, lower POF values resulted from 

POD(a) functions which tended to detect smaller cracks.  Although 
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not perfect, the 90 percent detectable crack size provided a 

reasonable discriminator between the effects of POD(a) functions 

on fracture probability. 

Over the usage period considered, all of the POD(a) 

characterizations resulted in about the same number of cracks 

being detected. The basic crack population continues to grow 

regardless of the inspection system, and all of the systems 

considered had a reasonable chance of detecting the cracks. 

Although no expected costs studies were performed, the better 

inspection systems were finding smaller cracks which are 

presumably less costly to repair.  Further, the factor of two to 

three reduction in POF can produce significant reductions in 

expected costs due to fracture. 

In all of the cases considered, the relative differences in 

fracture probabilities were somewhat consistent over the total 

usage period.  Thus, assuming a representative, but not 

necessarily exact, POD(a) function would lead to consistent 

results when comparing relative magnitudes of fracture 

probabilities obtained by varying other input factors. 

Repair Oualitv; The effects of repair on the population of 

details being analyzed must be accounted for in a risk model that 

encompasses inspections and repair.  In PROF, repaired details 

are assumed to have an equivalent repair flaw size distribution. 

This distribution is analogous to the equivalent initial flaw 

size distribution of durability analyses but, to date, has not 

been applied.  Three rationalizations were considered for this 

input parameter in the trade-off studies: a) repaired is as good 

as new, b) repairs leave an equivalent flaw whose size is 

distributed over the interval 0 to 0.050 in., and, c) the 

repaired detail is removed from further analysis.  Two 

distributions were assumed for the equivalent repair cracks on 

the 0 to 0.050 in. interval. 
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Although the above alternatives were quite distinct, the 

resulting fracture probabilities were consistent between 

inspections.  The differences in magnitude were less than those 

observed from some of the better characterized inputs, e.g., the 

fracture toughness. Therefore, as long as the equivalent repair 

crack size distribution is held constant throughout an analysis, 

relative comparisons on other input factors will be valid. 
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SECTION 5 

EXAMPLE APPLICATION 

To demonstrate the application of the risk analysis 

computer code, representative data for an aging military 

transport/bomber were used to evaluate the timing of inspections 

and the capability of the inspection method.  In particular, it 

was assumed that the objectives of the analyses were a) to seek 

the most cost effective inspection intervals for the population 

of structural details, and b) to determine the cost effectiveness 

of a better but more expensive inspection method.  It was assumed 

that there were 75 aircraft in the fleet which experience the 

same expected operational usage and that all of the aircraft will 

have undergone maintenance at a fixed reference number of flight 

hours.  The risk analyses will pertain to periods of operational 

usage (or inspection or maintenance intervals) after this 

reference age, whatever it might be. 

5.1   PROBLEM STATEMENT 

The assumed population of structural details comprises rows 

of fastener holes in a fail-safe zone of equivalent stress 

experience on the upper rear fuselage.  Figure 53 presents a 

schematic of the holes in the region and the stress intensity 

factor coefficient used for crack growth calculations.  The 

critical crack size is approximately 0.986 in.  Cracks that are 

detected before fracture can be repaired by a patch.  Assume that 

each airframe contains 50 separate regions such that the repair 

patch for any single crack in a region repairs all of the cracks 

in the region.  However, if fracture (uncontrolled rapid crack 

growth) occurs, the entire panel must be replaced.  The fracture 

toughness of the 7079-T6 aluminum alloy has an average value of 

88.4 KSI yliiT with a standard deviation of 4.4 KSI yin. 
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Figure 54 presents the projection of crack growth from a 

flight-by-flight spectrum of planned mission usage for the fleet. 

For the visual inspections of the region of interest, the 

reliably detected crack size was assumed to be 0.220 in.  The 

reliably detected crack size is usually interpreted to be the 

smallest crack size for which there is a 90 percent probability 

of detection.  Under Air Force guidelines for establishing 

inspection intervals, subsequent inspections would be set at one- 

half the time required for a crack of the reliably detectable 

size to grow to critical.  For the example application, the 

baseline damage tolerance reinspection interval was set at 7200 

flight hours.  The Gumbel fit to the maximum stress per flight of 

the flight-by-flight stress spectrum is presented in Figure 55. 

At the start of the analysis (reference time of zero), it 

was assumed that the distribution of the largest cracks in each 

region was described by a Weibull distribution with a scale 

parameter of 0.006 in. and a shape parameter of 0.768.  For this 

distribution, 1 ii. 1000 of the holes can be expected to have 

cracks larger than 0.075 in. and 3 in 10,000 can be expected to 

have cracks larger than 0.100 in.  Cracks are repaired by patches 

and it is assumed that the repair quality of a patch is described 

by a uniform distribution of equivalent crack sizes on the 

interval 0.050 in. That is, a patch replaces the largest crack 

in the patched region with an equivalent flaw that is equally 

likely to be any size between 0 and 0.050 in. 

For the baseline analysis, the reliably detected crack size 

of 0.220 in. is assumed to be the result of a close visual 

inspection.  This capability is interpreted as a 90 percent 

detection capability at 0.220 in.  Because of the fastener heads, 

no crack smaller than 0.100 in. could be detected, i.e., POD(a)=0 

for a < 0.100 in. To complete the definition of the POD(a) 

function, it was also assumed that a 0.150 in. crack would be 

detected half of the time. The cumulative log normal POD(a) 

function that meets these specifications is shown in Figure 56. 

Also shown in Figure 56 is the POD(a) function for a potential 
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eddy current inspection system with a smaller reliably detected 

crack size.  This will be discussed further in Subsection 5.3. 

Because of the comparative nature of the analysis 

objectives, inspection and repair costs need only be specified on 

a relative basis.  For baseline analyses, it was assumed that the 

cost of the visual inspection of each region is one, the cost of 

patching the region is 100 and the cost of replacing a fractured 

panel is 100,000.  Expected costs for different maintenance 

scenarios are normalized in terms of the total expected costs for 

the baseline inspection interval (7200 hours) and inspection 

capability. 

5.2   INSPECTION INTERVAL ANALYSIS 

The probability of fracture (POP) for any one of the 50 

panels on a fuselage under the baseline conditions is presented 

as a function of spectrum hours in Figure 57.  The solid line 

represents the fracture probability during a single flight, and 

the dashed line (circles) represents the probability of a fracture 

in any panel of an airframe at any time during the previous usage 

period.  The large changes in single flight probability result 

from the removal of large cracks at the inspection/repair 

maintenance cycles and the growth of the population of cracks 

during the usage periods. PROF does not output fracture 
— 12 

probabilities below 10   , so smaller POP values are plotted at 

this value.  Since the structure under analysis is fail-safe and 

the costs are driven by the fracture probability in the entire 

usage period and the costs of maintenance, the single flight 

fracture probabilities will not be considered further. 

To investigate the effect of a constant usage interval 

between inspections, a total analysis period of 36,000 hours was 

assumed.  Equally spaced inspection intervals were then defined 

to provide between 3 and 12 inspections in the 36,000 hour 

period.  Figure 58 presents the probability of fracture in each 

interval between maintenance (inspection and repair-if-necessary) 

actions for seven of the inspection intervals.  The fracture 
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probabilities display somewhat similar behavior in the early 

period during which the upper tail of the initial crack size 

distribution grows to potentially significant sizes.  Following 

this initial period, the interval fracture probabilities tend to 

stabilize at distinct levels - the shorter the inspection 

interval the lower the equilibrium fracture probability. 

Because of the equilibrium POF levels, the expected costs 

associated with the possibility of panel fractures at the longer 

inspection intervals will be greater than those of the shorter 

intervals.  On the other hand, the costs associated with the more 

frequent inspections may be greater than the expected costs of 

panel fracture.  To evaluate the trade-off, the total expected 

maintenance and fracture cost for each of the inspection 

intervals was calculated.  These expected costs are presented as 

a function of inspection interval in Figure 59.  As noted 

earlier, the costs are normalized by the total expected cost for 

the baseline inspection interval of 7200 hours.  (Inspection 

intervals of 9000 and 12,000 hours were also analyzed but the 

expected total costs were, respectively, 4.1 and 25.0 times 

greater than those of the 7200 hour increment.  These intervals 

were not included in Figure 59 to provide more resolution for the 

shorter intervals.) 

The expected total costs decrease with inspection interval 

down to about a 4000 hour interval and then tend to increase 

slightly.  The decrease is the result of the reduced chances of 

panel fracture at the shorter inspection intervals.  The 

equilibrium fracture probability for inspection intervals of 4500 

hours and less produce only minor additions to the total expected 

costs.  The costs due to the inspections and repairs increase for 

the shorter intervals but at a very slow rate.  From a practical 

viewpoint, any interval less than about 4500 hours would have 

essentially equivalent expected total costs. 

To investigate the potential for reducing total costs by 

extending the timing of the first inspection, various 

combinations of initial inspection interval and equal repeat 
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inspections thereafter were analyzed. Table 12 presents a 

summary of the expected normalized costs due to fracture, 

maintenance, and the total.  As noted earlier, the expected 

maintenance costs were approximately equal for all scenarios 

considered. The expected costs due to panel fracture varied 

somewhat depending on the particular combination. 1\.  is 

interesting to note that the minimum expected total cost was 

achieved at a 16,000 hour first inspection followed by 4000 hour 

intervals thereafter.  The expected cost for this combination was 

slightly less than that of inspecting every 4000 hours. 

For the assumed conditions, the above analyses imply that 

an inspection schedule with shorter intervals would provide 

significant savings in expected fracture and maintenance costs 

over those determined by the damage tolerance "rule."  Although a 

minimum was achieved under the equal interval analysis, once the 

inspection interval was sufficiently short, the expected costs 

did not change significantly.  This was true regardless of the 

timing of the first inspection.  This latitude in setting 

inspection intervals could be important as the actual schedule 

should be determined by considering the many different 

populations of structural details on an airframe, each of which 

may have different optimum schedules. 

5.3   INSPECTION CAPABILITY ANALYSIS 

The inspection assumed for the baseline analysis was a 

close visual inspection that is inexpensive.  The question might 

arise as to whether it would be cost effective to perform a more 

expensive inspection with an attendant increase in capability. 

Toward this end, it was assumed that an eddy current (EC) 

inspection could be used to inspect for cracks in the region and 

that the cost of the EC inspection is 10 times that of the 

visual.  However, the reliably detected crack size is reduced to 

0.150 in.  Because the eddy current probe can detect cracks under 

the fastener head, it was assumed that the minimum detectable 

crack size is 0.050 in.  The 50 percent detectable crack size 
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TABLE  12 

EXPECTED TOTAL FRACTURE AND MAINTENANCE COSTS 
AS A PERCENTAGE OF TOTAL COSTS FOR 7200  HOUR 

INSPECTION  INTERVALS 

First Inspection Fracture Maintenance Total 

Inspection Interval Cost Cost Cost 

(Hours) (Hours) % % % 

5143 5143 6.1 24.0 30.7 

6000 5000 4.8 24.8 29.6 

7200 4800 3.5 25.0 28.5 

8400 4600 2.4 25.2 27.6 

9000 5400 8.5 24.1 32.6 

12000 4800 3.5 24.8 28.3 

16000 4000 1.2 24.8 26.0 

16000 5000 6.0 23.9 29.9 

20000 4000 1   7.9 23.2 31.1 
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was assumed to be 0.075 in.  The cumulative log normal POD(a) 

function that meets these requirements is shown in Figure 56 

along with the POD (a) of the baseline analysis. 

The usage interval fracture probabilities for the two 

inspection capabilities at 4000 and 7200 hour inspection 

intervals are presented in Figure 60.  The eddy current 

inspection significantly reduces the chances of a panel fracture 

in the 36,000 hour period for both inspection intervals. 

However, when the total expected costs of inspections, repairs, 

and fractures are considered, the cost effectiveness of the eddy 

current inspection depends on the inspection interval.  Figure 61 

presents the normalized total expected costs in a 36.000 hour 

period for the two inspection systems and two inspection 

intervals. 

At the 4000 hour inspection interval, the inspection and 

repair costs associated with the eddy current inspection are 2.2 

times those of the visual inspection.  At this 4000 hour 

Inspection interval, the expected costs due to panel fracture are 

small (almost negligible) for both inspection methods.  However, 

the better (EC) inspection system apparently requires more cracks 

to be repaired at each of the inspections, and these cracks ate 

too small to be an imminent threat to the panel. 

When the two inspection capabilities were analyzed at the 

7200 hour inspection interval, the reverse conclusion was drawn. 

The chances of panel fracture at the longer usage interval was 

sufficiently great that the total expected costs over the 36,000 

hour period were significantly reduced by repairing the smaller 

cracks.  These results were tested for sensitivity to the assumed 

inspection and repair costs.  The expected total maintenance 

costs were obtained for ranges of cost per inspection and cost 

per patch.  The expected total costs were still significantly 

less when the EC inspection costs were 50 times greater than 

those of the visual and when the repair costs were 500 times 

greater than those of the baseline calculations. 
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Figure 60. Probability of Panel Fracture in an Airframe between 
Inspections for Inspection Methods and Inspection 

Intervals. 
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No clear conclusion can be drawn on the cost effectiveness 

of the EC inspection system as compared to the visual.  When the 

shorter and more cost effective intervals of this example are 

used, the visual inspection capability provides the more cost 

effective choice.  If the longer damage tolerance defined 

inspection interval were to be used, the additional costs 

associated with the eddy current inspections would be justified. 

5.4   EXAMPLE SUMMARY 

The example application pertained to a fail-safe panel on a 

transport/bomber fuselage.  In this application, a splice could 

be applied to repair a noncritical crack at a reasonably nominal 

cost.  If a crack grew to unstable size, however, the panel would 

fracture and the repair (panel replacement) would be orders of 

magnitude greater than splicing.  Applied stresses were not close 

to critical before the onset of unstable crack growth.  Trade- 

offs in inspection intervals and inspection capabilities were 

evaluated in terms of total expected costs of inspections, 

splices, and fractures over a long usage period.  For the data of 

this example application, the following conclusions could be 

drawn: 

a) The first inspection after the reference time can be 

delayed without a significant effect on expected 

maintenance costs.  This interval is a function of the 

flight time required for a significant proportion of the 

initial crack size distribution to grow close to the 

unstable size. 

b) Expected costs using the damage tolerance "rule" for 

determining repeat inspection intervals were about five 

times greater than those of the optimum repeat 

inspection interval. 

c) For a reasonable range of repeat inspection intervals 

around the optimum, expected total maintenance costs 

were essentially equivalent.  Once the repeat inspection 
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interval is sufficiently short, there is considerable 

freedom in acceptable choices. 

d) A more expensive and better inspection system produced 

significantly higher expected costs at the optimum 

inspection interval.  At the optimum interval, the 

contribution to expected costs from the chances of panel 

fracture is minimal, while the better inspection system 

finds significantly more cracks to be repaired.  Thus, 

the "better" inspection system leads to higher repair 

costs with no added fracture protection. 

e) The more expensive and better inspection system produced 

significantly lower expected maintenance costs at the 

longer repeat inspection intervals of the damage 

tolerance "rule."  Postponing the inspections 

significantly increases the risk of fracture so that 

repairing the smaller cracks is cost effective for the 

longer inspection intervals. 

These conclusions are highly dependent on the initial conditions 

assumed for the example application.  PROF should be exercised to 

test their applicability for different conditions. 
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SECTION 6 

SUMMARY AND CONCLUSIONS 

The structural risk analysis computer program, PRobability 

Of Fracture (PROF), was written to provide an additional tool in 

the management of aging aircraft fleets. PROF evaluates 

structural safety and life in terms of fracture probabilities of 

equivalent details in any airframe in a fleet. The fracture 

probabilities are calculated for single flights as a function of 

spectrum hours and for entire intervals between maintenance 

actions.  PROF evaluates durability by calculating the expected 

number of cracks to be detected at each inspection cycle. 

Expected costs of inspection, repair and fracture can then be 

calculated to estimate th cost effectiveness of planned 

maintenance scenarios. 

The methodology implemented in PROF builds on data known to 

be available in the Air Force because of the requirements of MIL- 

STD-1530A.  In essence, the growth of a population of cracks in 

like structural details is modelled using the crack size versus 

spectrum hour relationship derived to fulfill damage tolerance 

requirements.  At maintenance actions, uncertainty in the 

inspection system is accounted for, and all detected cracks are 

assumed to be repaired.  Fracture probability is calculated by 

combining the chances of the maximum stress in a flight exceeding 

the critical stress based on fracture mechanics calculations. 

The number and sizes of cracks to be detected are calculated from 

the probability distribution of crack sizes and the probability 

of crack detection as a function of crack size. 

PROF quantifies structural risk of a population of details 

in terms of the probability of an in-service fracture and the 

number and sizes of fatigue cracks which are expected to be found 

at inspections.  Fracture probability is synthesized from data 

which model the growth of a population of fatigue cracks in the 

details and which characterize the fracture resistance of the 

structural detail.  The expected number of crack detections and 
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repairs is determined from the population of growing cracks and 

the capability of the inspection system.  In realistic 

applications, fracture probabilities must be very small.  The 

synthesis of these small probabilities from the many factors 

known to significantly influence the calculation is inherently 

subject to potentially large errors. 

Seven of the nine types of input reguired by PROF are 

subject to error or uncertainty.  Two of the seven are 

deterministic and are input in the same form as used in more 

traditional damage tolerance analyses.  Four are stochastic and 

the tails of these distributions are critical in the calculation 

of fracture probability. The seventh is a stochastic 

characterization of the inspection process whose parameters are 

subject to sampling errors in the determination of the inspection 

capability. 

Sensitivity analyses were performed to evaluate the 

influence of uncertainty in the characterization of these inputs 

on the output of PROF. Trade-off studies were also performed on 

the factors which are controllable through planned inspection 

scenarios. The following are general conclusions drawn from the 

sensitivity and trade-off analyses that were performed using the 

best available data. 

1) Factors of two or more in fracture probability can 

result from commonly realized uncertainty in the characterization 

of any one of the PROF inputs.  Much larger differences are 

possible.  For example, order of magnitude differences can result 

from a ten percent error in maximum stress levels.  Absolute 

interpretations of PROF generated fracture probabilities should 

be treated with caution. (The same is true of any other risk 

analysis results.) 

2) Because of the consistency of the relative magnitudes of 

fracture probability when factors are varied, the PROF output can 

provide a basis for choices in the planning of maintenance 

actions.  For example, it is reasonable to compare the relative 
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effects of shortening or lengthening the increment between 

inspections. 

3) Although the best available data were used in the 

analyses, the number of predicted crack detections at inspections 

was unreasonably large.  The model for describing the sizes of 

the cracks in the population of details was judged to be 

inadeguate.  The stochastic description of the large cracks which 

influence the fracture probabilities may i.ave been adeguate. 

However, the growth of the middle of the population of crack 

sizes resulted in too many detectable cracks at the inspection 

times.  This may have been the result of an inadeguate 

characterization of the size and growth of the eguivalent initial 

flaw size distribution.  A flaw size distribution derived from 

teardown inspection results also produced too many cracks in the 

mid ranges of the distribution.  It is recommended that better 

methods for characterizing the sizes of the cracks in aging 

populations of details be developed.  Combining a distribution of 

time to crack initiation with crack growth would be one approach 

to having a model for which real cracks are not present in all of 

the details. 

4) In the attack/fighter/trainer aircraft application, 

shortening inspection intervals reduced both fracture 

probabilities and expected maintenance costs.  The timing of the 

initial inspection did not have an apparently large effect on 

fracture probabilities until the upper tail of the crack size 

distribution was sufficiently large.  However, the differences in 

fracture probability did show up as significant in the expected 

maintenance costs over an extended usage period.  Shortening the 

increment between subseguent inspections after the first produced 

reductions in both fracture probabilities and expected 

maintenance costs.  Determining inspection times can be based on 

a subjective interpretation of the magnitude of fracture 

probability differences until both a good characterization of the 

crack sizes and good cost data are available. 
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5) In the bomber/transport application to a fail-safe 

detail, shortening inspection intervals also reduced the fracture 

probabilities, but an optimum interval was achievable in terms of 

total expected costs due to inspection, repairs, and fractures of 

the detail. Although a minimum expected total cost was obtained, 

the expected costs were essentially equivalent for a broad range 

of inspection intervals. 

6) In terms of its effect on fracture probability in the 

attack/fighter/trainer application, inspection capability was 

reasonably characterized by the crack size which is detected with 

a probability of 90 percent.  Although two parameters are 

necessary to define the probability of detection function for an 

inspection system, the 90 percent detectable crack size occurs 

about the "knee" of the function.  Higher detection probabilities 

above the knee were generally not as important in the calculation 

of the fracture probabilities as higher detection probabilities 

below the knee. 

',)  The effect of inspection capability in the 

bomber/transport aircraft interacted with the effect of 

inspection interval.  Better inspection capability led to smaller 

fracture probabilities but not necessarily to lower expected 

total maintenance costs.  Since the reliably detected crack size 

was much smaller than the critical crack sizes for the expected 

usage, the cost of detecting and repairing very small cracks was 

not necessarily offset by the reduced chances of a non- 

catastrophic fracture.  For longer inspection intervals, the 

increased cost of a better inspection system was cost effective. 

For shorter inspection intervals, the increased cost of the 

better inspection system led to higher expected maintenance 

costs. 
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APPENDIX A 

CALCULATION DETAILS 

A.l   INTRODUCTION 

This appendix provides the mathematical details and 

justification for the risk calculations performed in PROF.  The 

assumptions and approximation methods that affect the probability 

of fracture calculations are covered in detail.  Procedures 

nonessential to the calculation of the probability of fracture, 

such as data handling and determining reporting Intervals, are 

described in the Software Manual. 

A functional flow chart of the basic steps used by PROF is 

given in Figure Al.  The main steps are a) perform probability of 

fracture (POP) integrations, b) Increment or grow the crack size 

distribution function, and, c) calculate effects of maintenance 

(repair of detected cracks) on the crack size distribution 

function.  The POF integrations Include both single flight PDF, 

which is calculated at ten intermediate times in each usage 

interval, and usage interval POF, which is calculated only at the 

end of each usage interval.  The crack size distribution is 

updated for each single flight POF calculation and is changed to 

reflect the effect of crack repairs at each maintenance cycle. 

The methods for modelling the crack size distribution will be 

presented first.  These will be followed by the methods used to 

calculate the single flight and interval fracture probabilities. 

A.2   CRACK GROWTH CALCULATIONS 

The crack growth calculations involve determining the 

effect of aging (fatigue crack growth) and maintenance 

(inspection and repair) on the crack size distribution function. 

The basis of these operations is the cumulative probability 

distribution function for crack sizes.  The first part of this 

section describes the methods used in PROF to interpolate and 

extrapolate the cumulative crack size distribution function at a 

fixed time.  The second part provides a mathematical description 
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of the procedures for updating the crack size distribution to 

reflect fatigue crack growth.  The third part describes the 

method for modifying the crack size distribution to account for 

the changes that result from repairing detected cracks at 

maintenance actions. 

A.2.1  Interpolation and Extrapolation Methods 

The PROF system uses a tabular cumulative distribution 

function as the core of the crack growth calculations. 

Specialized interpolation and extrapolation routines are used to 

evaluate the cumulative crack size distribution and the 

probability density function at arbitrary crack sizes.  The crack 

size distribution function is projected through time by 

incrementing each percentile in the cumulative distribution 

function table according to the master crack growth curve. 

The initial crack size distribution function is defined by 

the user and is read from a file by the PROF system as a table of 

crack length versus cumulative probability.  The tabular format 

was chosen as the most convenient form in which the crack size 

data would be available.  The tabular format also maintains 

generality since this format avoids the necessity of fitting (or 

assuming) a specific model (equation) whenever the crack size 

distribution is used in calculations. However, to use a tabular 

format for the crack size distribution function required 

establishing appropriate interpolation and extrapolation 

methods. 

The cumulative crack size distribution function is read in 

as two arrays. The crack sizes, a. (i=l,n); are contained in the 

first array while the second array contains the cumulative 

probability, F., for crack length a..  The relationship between 

a. and F. is expressed as: 

P{a < ai) = F., (Al) 
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and is read as the probability that the crack length is less than 

or equal to a. is F..  The only restriction on the table is that 

there should be at least two points greater than or equal to the 

99th percentile to implement the extrapolation algorithm. 

Linear interpolation is not appropriate through the entire 

range of the crack size distribution table.  The upper tail of 

most crack size distribution functions approaches one at an 

exponential rate and therefore systematic errors in probability 

of fracture calculations can result when linear interpolation is 

used.  To achieve consistent probability of fracture calculations 

with reasonable speed, three regions of the crack size 

distribution function were defined and different interpolation 

(or extrapolation) schemes were implemented in each region. 

A schematic illustration of the three interpolation zones 

is given in Figure A2. The points of a crack size distribution 

table are plotted as circles in the figure, and the solid lines 

connecting the points are the interpolation or extrapolation 

curves.  Linear interpolation provides a good fit in the first 

zone, F. < 0.95, where the rate of change of the cumulative 

distribution function is nearly constant between points in the 

table.  In the second zone, 0.95 < Fi < 0.99, the rate of change 

becomes exponential in character and the linear fit, shown by the 

dashed line, is no longer adequate.  (The interpolation curve and 

the linear fit are magnified in the lower portion of Figure A2 to 

illustrate the need for log-linear interpolation.)  In the second 

zone, an exponential function is fit to the two adjacent points 

to interpolate. The exponential fit is still used in the third 

zone, F. > 0.99; however, in this zone all points for which 

F. > 0.99 are grouped together to provide a trend that can be 

used to both interpolate inside the zone and extrapolate outside 

the maximum crack size in the table. 

The first zone consists of cracks up to the 95th percentile 

and uses simple linear interpolation.  The cumulative 

distribution is relatively linear in the first zone and the 

cracks in this range do not contribute significantly to the 
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overall probability of fracture.     The probability density 
function  is calculated as the slope of the cumulative 
distribution in the crack length  interval.     The symbol  ^   is used 
for the probability density between ai_1 and a^^ and the formula 

is: 

fi = (Wi) / ^i^i-i^ (A2) 

where F = a =0.  The resultant probability density function is 

a step function. 

A two-parameter cumulative exponential distribution 

function is fit to the data as the basis for interpolation and 

extrapolation in the second and third zones. The form of a two- 

parameter exponential cumulative distribution function is 

F(a) = 1 - exp(-A(a-7)), (A3) 

and the probability density  is given by 

f(a)   = A  exp(-A(a-7))• (A4) 

In the second zone, interpolation is accomplished by 

estimating the exponential parameters from the two adjacent 

points in the cumulative distribution table.  The interpolation 

parameters, A' and 7', are determined from the two bounding 

points by: 

A' = -(in(l-Fi) - -en(l-Fi_1)) / (ai - ai_1)  (A5) 

and 
7' = a. + in(l-Fi) / A'. (A6) 

The interpolation parameters, as determined by equations (A5) and 

(A6) are used in equations (A3) and (A4) to determine the 

cumulative probability and probability density at an arbitrary 

point between a. and a^.j« 
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ThG third zone is the extreme upper tail of the crack size 

distribution function.  The whole tail cannot be covered by a 

finite table, so that extrapolation of the table is necessary for 

the third zone.  The extrapolation is accomplished by fitting a 

two parameter exponential distribution function (equation (A3)) 

to the points in the table with cumulative probability greater 

than or equal to 0.99.  The exponential distribution function was 

chosen because it provides a reasonable fit to the tails of many 

common crack size distribution functions. 

The parameters for the exponential distribution function 

used in the extrapolation zone are given by: 

A" = (Za.inU-F.)) / (Sa?) (A7) 

7" = ae - in(l-Fe) / X", (A8) 

where the summation extends over all points greater than or equal 

to the 99th percentile, F  is the smallest percentile in the 

table that is greater than or equal to 0.99 and a  is the 

corresponding crack length.    The subscript e notation is used 

to cover crack size distribution tables that do not contain the 

99th percentile.  Equations (A3) and (A4) are used with the 

parameters determined by equations (A7) and (A8) to calculate the 

cumulative probability and probability density in Zone 3. 

The inverse CDF is used in the inspection and repair 

calculations to reestablish the percentiles for the crack size 

distribution table.  Simple linear interpolation is used in Zone 

1, while the inverse CDF is given by: 

a(F) = 7 + inil-F)/A (A9) 

in Zones 2 and 3. 
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A. 2.2  Crack Growth Calculations 

The basic PROF probabilistic model of crack growth requires 

that percentiles of the crack size distribution grow through time 

in accordance with a master crack growth curve.  The concept of 

constant percentile crack growth is shown in Figure A3, where the 

crack size distribution at ^ is derived from the crack size 

distribution at Tref by projecting each percentile at Tref to 

time T .  The master crack growth curve is determined during the 

damage tolerance analysis and is specific to the structural 

geometry and the applied stress history.  The PROF system 

requires a tabular input of crack length (a) versus time (T) for 

the master crack growth curve. 

The data for the crack growth curve table are read from a 

file containing the two dimensional array of (a,T) values.  After 

the table is read, the largest crack length in the table is 

compared to a, ¥;  which is the maximum crack length in the 

(a,K/ff) table of geometry corrections for the detail being 

analyzed.  Cracks larger than alast are assumed to exhibit 

unstable growth under typical (non-extreme) usage and are 

considered to lead to immediate fracture.  If the crack growth 

curve does not extend to alast» 
a point is added to include it in 

the table.  The new point is given by: 

a   = a (A10) an+l  alast 

Tn+1 = 
Tn + f (ac " V (Tn " Vl^ / (an " an-l)    (A11) 

where n is the number of points in the original crack growth 

table.  Equation (All) is basically a linear extrapolation with a 

50 percent greater slope than the last interval in the original 

crack growth table. 

Crack growth calculations are performed at nine or ten 

approximately equally spaced times in a usage interval. The 

length of the usage interval is supplied by the user and the 

exact number and spacing of subintervals depends on the length of 
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the usage interval.  At the end of a usage interval, the effect 

of inspections and repairs on the crack size distribution is 

determined and the adjusted crack size distribution is calculated 

and reset for the start of the next usage interval. 

The exact number and spacing of the points is a function of 

the length of the usage interval.  An attempt is made to ensure 

that the interval between single flight calculations is a 

multiple of 10.  The last interval might be shorter or longer 

than the rest to accommodate the multiple of ten requirement. 

Crack sizes are increased incrementally through a usage 

period.  At the end of a subinterval, the amount of incremental 

crack growth for each ; - -centile in the crack size distribution 

table is determined and e^-h percentile is increased accordingly. 

The extrapolation patameter;. are recalculated and the single 

flight probability of f.  tare is calculated. The process is 

continued until the end ol the usage interval is reached. 

Incremental crack growth is determined through log-lin«ar 

interpolation of the crack growth curve.  Crack growth curves 

typically increase at about the same rate as an exponential 

function.  That is, although an exponential function may not fit 

the crack growth curve exactly, over a short interval the rate of 

increase of the crack growth curve is nearly exponential.  Crack 

growth calculation errors can occur using linear interpolation 

even when a large number of points are included in the crack 

growth table. 

Incremental crack growth is determined in three steps. 

First, the crack size cumulative distribution is truncated, if 

necessary, to the maximum crack size that win grow to alast in 

the next time increment.  Truncation is required because the 

crack growth curve does not typically extend beyond alast so that 

crack growth calculations for percentiles that exceed the maximum 

crack length are unnecessary. 
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In the second step, the equivalent time on the crack growth 

curve is determined for each point in the current crack length 

distribution table.  The equivalent current time is given by: 

T e = Vl + (^W " ^i-i» ' (Wl) / 

(in(ai) - inCa.^)) (A12) 

where T  is the equivalent current time, a   is the current e cur 
crack length, a. , i a < a., and T. and T. . are the times i-l   cur   i      i     i—i 
corresponding to the crack lengths a. and a.  .  The time 

increment is added to the equivalent current time.  In the third 

step, the new crack length is determined using linear-log 

interpolation.  The formula for the natural log of the new crack 

length is 

in(aN) = in(a;._1) + (Te + AT - T^) • 

(inOj) - in(aj_1)) / (Tj - Tj_1) (A13) 

where aN  is the new crack length,  AT  is the time increment and 
T.   ,   <  T + AT <  T. . 

A.2.3       Inspection and Repair Calculations 

At the end of a usage interval,   the crack size distribution 
is modified to reflect maintenance actions.     The crack size 
distribution changes during maintenance because detected cracks 
are repaired.     Repaired details are modelled  by a distribution of 
equivalent  initial crack sizes that reflect the quality of the 
repairs. 

The cumulative dstribution function of  the crack size 
distribution after  inspection and repair  is given by: 

Fafter(a)   = P  *   FR(a)  + /(l-POD(x))fbefore(x)dx (A14) 
o 

All 



where P  is the proportion of cracks that are  found, 

P = /  POD(a)   fbefore(a)   da, 
0 

F is the equivalent crack size distribution for repaired 

structure, POD(a) is the probability of detecting a crack of size 

"a", and f^ ^   (a) is the crack size density function just prior 

to maintenance.  For computational purposes the integral In 

equation (A14) is separated to give: 

Fafter(a) = P * FR(a) + Fbefore^ " P(a) ' (A15) 

where 

P(a) = ;POD(x)fbefore(x)dx (M6) 

and F     (a) is the cumulative crack size distribution function 
beforex ' 

just prioi to maintenance. The form of equation {A14) 

facilitates computations because P is equal to the limit of P(a), 

as "a" tends to infinity. 

F    (a) is computed in three stages.  In the first stage 

a table is constructed that contains all the crack sizes in both 

the current crack size distribution table and the repair crack 

size distribution table.  The table includes the values of 

Fw ^  . F0, and fv,^« for each crack length in the table, 
before'  R'     before 

The second stage accumulates 

^l) = Fbefore'al' " P<ai) <A17> 

through an iterative scheme. The incremental integral part of 

P(a.) from a.  to a. is calculated numerically using Simpson's 

rule [Al] and added to the value of P(ai_1).  Then, P{ai) is 

subtracted from Fbefore(
ai) to 9et F*(ai)- After F*(a) has been 

determined for all crack lengths in the table, the tail integral 

part of P is computed using a 15-point Gauss-Laguerre quadrature 
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[Al] and added to the current value of P(a) to get the final 

value of P.  Gauss-Laguerre quadrature is an optimal 

approximation for an integral when the exponential density 

function is a factor in the integrand. 

In the final stage of calculating Fafter(
a)' p times FR is 

added to F*(a) to yield F ,.  (a).  At this point, the cumulative 
cir uGlT 

probabilities in the table of Fafter(
a) do not correspond to the 

original percentiles of the crack size distribution. The inverse 

cumulative distribution function is used to restore the original 

percentiles to the current crack size distribution table for the 

start of the next usage interval. 

The process of growing the crack size percentiles and 

resetting the crack size distribution to reflect inspection and 

repair is repeated for each subsequent usage interval. 

A. 3   PROBABILITY OF FRACTURE CALCULATIONS 

Probability of fracture calculations are performed at 

various times within each usage interval.  The single flight 

probability of fracture is calculated at the start and end of the 

usage interval and at approximately nine equally spaced points 

during the usage interval. The usage interval probability of 

fracture is calculated once for each usage interval.  This 

section describes how the single flight and interval fracture 

probabilities are calculated. 

In the PROF calculation, fracture is considered to result 

from either of two mutually exclusive events.  First, fracture is 

assumed to have occurred at all crack sites which will have a 

crack size larger than a, _. in an interval.  Second, fracture 

can occur if an applied stress at a site exceeds the critical 

stress as determined by the crack size (less than aiast) 
and 

fracture touqhness of the detail.  It was necessary to introduce 

two fracture events to have a well defined upper bound in the 

integration calculations.  The method of incorporating these two 
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factors depends on whether the calculations are for a single 

flight or the entire usage interval. 

The crack size distribution that the crack growth module 

maintains is an integral part of the probability of fracture 

calculations.  The POF calculation is performed through a double 

integral across crack size and across fracture toughness as given 

by: 

00    CO 

POF = j  f f(a) g(Kc) P0F(a,Kc) dKc da (A18) 

0  0 

The integrand is the product of the crack size density function, 

the fracture toughness density function and the conditional 

probability of fracture (POF) given the crack size and 

toughness. 

An illustration of the integration surface for a POF 

calculation is shown in Figure A4.  Figure A4-a shows the joint 

density of crack length and fracture toughness and Figure A4-b 

shows the conditional POF given the crack length and the fracture 

toughness.  The integrand for the unconditional POF integral is 

shown in Figure A4-c and is the product of the surfaces in 

Figures A4-a and A4-b. 

The basic difference in the calculations for the single 

flight POF and the interval POF is the form of the conditional 

POF function.  Tm- conditional POF for the single flight 

calculation is simply the probability that the peak stress in the 

flight is larger than the critical stress for the given crack 

length and toughness. The conditional POF for the usage interval 

is complicated by the fact that the cracks grow during the time 

period so that the critical stress is not a constant in the 

interval.  An iterated calculation across time is required for 

the conditional POF for the usage interval. 
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A.3.1  Single Flight Probability of Fracture 

It is assumed that cracks do not grow during a single 

flight so that the single flight probability of fracture does not 

include a component due to cracks growing larger than the 

critical crack length.  Some (very small) proportion of the 

cracks present at the start of the usage interval will, however, 

grow beyond a,  t prior to the time at which a single flight 

probability of fracture is made.  Since the population of cracks 

present at the start of a single flight is different from that 

present at the start of the usage interval, PROF calculates the 

conditional probability of fracture for a single flight given 

that the crack has not grown to alast prior to the flight. 

The equation for the single flight probability of fracture 

is: 

^last 
SFPOF(T)=[ J fT(a) Jg(Kc) H(ac(a,Kc)) dKc da] / FT(ac)   (A19) 

0        —oo 

where T is the time of the flight, fT(a) and FT(a) are the 

current crack size probability density and cumulative probability 

functions respectively, alast is the maximum crack length in tto« 

K/ff table, g(K ) is the fracture toughness probability density 

function, H(a) » 1 - H(a) is the exceedance probability 

distribution function for the peak stress in a single flight and 

a     (a.K ) is the critical stress for the given crack length and 
cr   c 
fracture toughness.  The double integral calculates the 

probability that a fracture will occur during the flight due to a 

stress cycle exceeding the critical stress for the current crack 

length and fracture toughness.  Dividing the integral by the 

probability that the crack length is less than the critical crack 

length normalizes the probability to the subpopulation of cracks 

that would not grow to the critical length prior to the flight. 

The integral with respect to a is approximated using CADRE 

[A2] which is an adaptive Rhomberg quadrature scheme.  The 
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algorithm used by CADRE is an iterative procedure that stops when 

the desired accuracy is achieved.  PROF requires a relative error 

of 0.001 which corresponds to three significant digits of 

accuracy. 

The integrand for the integral across crack length includes 

an integral across fracture toughness, which is approximated with 

a 16-point Gauss-Hermite summation.  Gauss-Hermite quadrature 

[Al] was specifically formulated for integrals involving the 

normal probability density function which is used for the 

distribution of K .  Gauss-Hermite quadrature approximates the 

expected value of a function of a normal random variable and 

utilizes a weighted sum of the target function evaluated at 

strategically selected points. 

The integral across K  is the expected value of the 

conditional probability that the maximum stress on a given flight 

exceeds the critical stress for the fracture toughness and the 

current crack length.  The critical stress is determined from the 

K/a versus crack length table that is supplied by the user. K/<7 

values for the numerical integration are linearly interpolated 

from the "K/a versus a" table.  The fracture toughness is divided 

by K/<T to get the critical stress. 

The Gumbel type 1 distribution is used to model the 

distribution of the maximum stress per flight and is given by: 

P(ff > s) = H{s) = 1 - exp(-exp{{s-^)/a))     (A20) 

where ß  and a are parameters that are supplied by the user and 

should be descriptive of the stress history used to generate the 

crack growth curve.  The results of the double integral 

approximation are then divided by the probability that the crack 

length is less than a.  , ; which is determined using the 

interpolation procedures described in the crack growth 

calculations section. 

A17 



A.3.2  Usage Interval Probability of Fracture 

The probability of fracture at any time during a usage 

interval is calculated from both the proportion of cracks that 

will grow to a size greater than alast during the interval and 

the probability of encountering a critical stress for crack sizes 

less than a,  ...  Because the crack growth curve monotonically last 
increases, a unique crack length, call it aF, exists that is the 

boundary between cracks that will grow to aiast within the usage 

interval and those that will not.  Crack lengths larger than aF 
will automatically result in a fracture within the usage interval 

while a sufficiently large stress is required to cause fracture 

within the usage interval for cracks shorter than aF.  The 

probability of fracture for the usage interval includes both the 

probability that the crack length is greater than aF and the 

probability that the crack length is smaller than aF, but a 

stress greater than the critical stress is encountered during the 

usage interval. 

The schematic of Figure A5 illustrates how aF is determined 

from the length of the usage interval and the crack growth curve. 

The start of a usage interval is labeled as T0 and the end of the 

usage interval as T...  The master crack growth curve is shifted 

left or right so that it intersects the point (TM, alast)•  The 

crack length at T- on the adjusted master crack growth curve is 

a .  The effect of this process is to 'grow' the crack backwards 
F 
from size a,  . at the end of the usage interval to determine aF 

at the start of the usage interval. 

The formula for the probability of fracture in the usage 

interval is: 

^F 
UI POP = 1 - F(aF) + | f(a) j g(Kc) PF(a,Kc) dKcda    (A21) 

where  F(a)   and  f(a)   are  the  crack  sizo cumulative distribution 
and  probability density  functions  at the  start  of  the usage 
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interval and PF(a,K ) is the probability that a large stress will 

cause a fracture within the usage interval given crack length, 

"a", and fracture toughness, Kc.  The term l-F(aF) is the 

proportion of cracks that will fracture by growing to alast 
within the usage interval and the double integral term is the 

probability that a crack will not exceed alast but will 

experience a critical stress within the usage interval. 

The conditional probability of fracture, given the starting 

crack length and the fracture toughness, is calculated by 

dividing the usage interval into a large number of subintervals. 

The endpoints of the subintervals are designated TQ,   T^ T2, ..., 

TM (the end of the usage interval) with 1^-T^ = AT for i=l 

through M-l.  (TM-
T
M_i 

wil1 not e£Jual AT if the usa,3e interval is 

not a multiple of AT.) 

The subinterval mesh spacing (AT) used in PROF is 10 

flights for usage intervals up to 1000 flights and 20 flights for 

usage intervals greater than 1000 flights and less than 2 000 

flights.  For larger usage intervals, the subinterval size 

increases by 10 flights for each increase of 1000 flights in the 

usage interval length.  The critical stress remains reasonably 

constant within the small subintervals of time defined by the 

spacing so that the probability of fracture within a subinterval 

is the probability that the peak stress exceeds the critical 

stress. 

The principle of complementary events is used to simplify 

the calculation of the probability of fracture in the usage 

interval by subtracting the probability of no fracture from one. 

The peak stress distribution is independent for disjoint 

intervals so that the probability of no fracture in the usage 

interval is the product of the probabilities of no fracture in 

the subintervals.  The function PF(a,Kc) is given by: 

M 
PF(a,K ) = 1 - n  HAT(0cr(ai(Kc)) (A22) 

i=l 
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where a. is the crack length at time T^  given that the crack was 

length "a" at T» and a      is determined as in the single flight 

POF calculation.  H „, the Gumbel type 1 distribution function 

adjusted for the subinterval of length AT, is derived from the 

peak stress per flight distribution and is given by: 

HAT(a) = exp[ -AT • exp[-((7-^)/a] ] (A23) 

where ß  and a are the single flight peak stress parameters and AT 

is the length of the subinterval measured in flights. 

The same numerical procedures that were used in the single 

flight POF calculation are used to evaluate the double integral 

in equation A21.  The cumulative probability of the crack length 

distribution at a^ is determined using the interpolation or 

extrapolation methods described in the crack growth calculation 

section.  The above procedure is performed for each usage 

interval in the analysis request. 

In addition to the probability of fracture for each usage 

interval, PROF reports the probability of fracture since the 

beginning of the analysis.  The probability of fracture for the 

total interval since time zero is determined with a strategy 

similar to the calculation of the PF function. The form for the 

total interval probability of fracture at the end of the n'th 

usage interval is: 

n 
TIPOF(T ) = 1 - n (1 - UIPOF.) (A24) 

n       i=l 1 

where UIPOF. is the probability of fracture in the ith usage 

interval. 

A. 4   APPLICATION TO MULTIPLE DETAILS AND THE FLEET 

The probability of fracture calculations described above 

apply to a single detail.  PROF also reports the POF for a single 

aircraft, POF., and the POF for a fleet of aircraft, POFp.  The 
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Single aircraft and fleet calculations are derived from the 

single detail results. Given that there are k equivalent details 

on a single airfraroe and N aircraft in the fleet, the single 

aircraft and fleet POF's are given by: 

POFA = 1 - [1 - POPE]
K (A25) 

and 
POFF = 1 - [1 - POFA]

N (A26) 

The single aircraft and fleetwide probabilities of fracture are 

calculated for the single flight, usage interval and total 

interval probabilities of fracture using equations (A25) and 

(A26). 
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APPENDIX B 

STOCHASTIC CRACK GROWTH 

PROF models the growing distribution of crack sizes for the 

population of structural elements by deterministically projecting 

the percentiles of the crack size distribution.  This method of 

modeling crack growth ignores the stochastic nature of the growth 

of cracks of fixed size when subjected to identical stress 

sequences.  Since an entire population of crack sizes is being 

projected, it can be anticipated that at least some of the 

stochastic effect will "average out" and the percentiles will 

remain relatively constant under the average crack growth model. 

This appendix presents a plausibility argument that ignoring the 

effect of stochastic crack growth has a second older effect on 

the projected crack size distribution and the analysis. 

Most of the published literature on stochastic analyses 

have been directed at quantifying the variability in the growth 

of cracks of the same initial size.  This concept is illustrated 

in the schematic of Figure Bl.  The dashed line represents the 

average growth of a crack of size "x" between T. and T- flight 

hours.  The "small" probability density function, gT (ajx), 

represents the distribution of crack sizes that would be obtained 

if a large number of cracks of size x were subjected to the same 

stress sequence between T. and T2.  In actuality, a population of 

cracks with density function, fT (a), is present at T. .  The 
1 

distribution of crack sizes at T- is a mixture of the different 

initial sizes at T. and the stochastic effect of the growth of 

cracks of any fixed size.  In particular, the distribution of 

crack sizes at T. is given by 

f  (a) = / fT (x) • g  (a|x) dx (Bl) 
2     0  1       2 

(i.e. the probability of having a crack in the interval "a" to 

a+da at time T- is the sum of the probabilities of having a crack 

Bl 



^^ 
X 
\ 
0 

>-J 

£ 
» \ \   A         y^" 

\ V         / 
\ K    / 

^^  \ \J   .     s 
P        ^ s^ ^f 

W ^^ Jf: 
»? >. V'     . 

••> 
^- -^^     x 

X \ 
■o ^ 

/«-> \ 
X » 

o \ 
s^ \ 
£ i 

at 
/-N 

• 

X i 
•s^ \ 
£ \ »^ 7 

I 

^ 

It 
> 

^^W 

^—N \                            / 
a \                        / "»-c \                      / 
K? \                   / 

H- 

■A     / 

M 
0 
IM 

x: 
§ 
0 
M 
o 
X 
u 

CO 10 

&L 
3 Ü 

O 
•y 10 

x: 
Ü 

1- 0   • 
X>  10 

31 

ng
 S

 
S

iz
e 

O 
-J 3* u. (a 0 

u id 
4J M 
to u 
3 
rH<W 
H   O 
H 

c 
0 0 
•H-H 
4J4J 
10 10 
S H 
0) 9 
A a 
0 0 
(0 cu 

HiGN31 MOVaO 

k 
& 

B2 



in the interval x to x+dx at T^ that will grow to size between 

••a" and a+da at T2) . 

To obtain an indication of the effect of the stochastic 

contribution to the crack size distribution at T2, an analysis 

was performed under the following assumptions: 

a) The crack size distribution at ^ is either log normal 

(e ^^ = 0.010 in. and a1 =  1.0) or Weibull (a^ = 1.0 and 

ß.   =  0.012).  These distributions are representative of 

the sizes of cracks detected in a teardown inspection of 

A/F/T aircraft. [6] 

b) Crack growth is reasonably modeled by the equation 

a(T) = a0 • exp(Q.T) (B2) 

The parameter Q was estimated from the moderate spectrum 

"a versus T" curve of Figure 7. 

c) The effect of stochastic crack growth on cracks of the 

same size produces either a log normal or a Weibull 

distribution.  For the log normal assumption for 

g_ (a|x), the median is given by x«exp(Q»T) and a  = 
T2 
0.05, 0.10, or 0.20.  (For the lognormal distribution, a 

approximates the coefficient of variation when a  is 

small.)  For the Weibull assumption for g« (ajx), the 
12 

scale parameter is given by x«exp(Q«T) and the shape 

parameter, a,   is 12.5 (i.e., coefficient of variation of 

0.10). 

d) T_ - T. = 3000 hours. A relatively long interval was 

selected to exacerbate the differences that may result. 

The percentiles of the initial distribution at T1 were 

projected to T? using the crack growth of Equation B2. Equation 

Bl was used to obtain the "true" distribution of the crack sizes 

at T- for selected combinations of the assumptions.  The 
4b 
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cumulative distributions of the resulting distributions were 

plotted to evaluate any differences.  The results are presented 

In Figures B2 and B3. 

Figure B2 presents a comparison of the estimated cumulative 

distributions at T, assuming a log normal initial crack size 

distribution and a log normal stochastic effect.  Three degrees 

of scatter, a,  were considered for the stochastic crack growth 

effect. Under the conditions of this analysis, there is no 

significant difference between the projections of the initial 

distribution percentiles and the distributions which account for 

stochastic crack growth. 

Figure 83 presents the cumulative distributions at T2 

assuming a Weibull initial crack size distribution and both 

Neibull and log normal stochastic effects.  The coefficient of 

variation of the stochastic effects was approximately 0.10 for 

both models.  Again the differences between the projected 

percentiles and the "true" distributions were not significant. 

While recognizing that the assumptions of this analysis at« 

not entirely realistic, the calculations do support the intuitive 

concept that the stochastic effect tends to "average out11 when an 

entire population of initial crack sizes are under consideration. 
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APPENDIX C 

CRACK SIZE DISTRIBUTIONS 

PROF requires that a cumulative distribution of crack sizes 

be identified at the beginning of the analysis.  There are 

several potential sources for obtaining the crack size 

distribution depending on available data and the frame of 

reference of the calculations.  If cracking problems have been 

observed during special teardown inspections to evaluate aging 

structures or during routine inspections, then real data would be 

available for estimating the crack size distribution.  If PROF is 

being exercised to evaluate inspection scenarios in the absence 

of known cracks, then the crack size distribution will have to be 

estimated from analyses, laboratory test results, experience, or 

combinations of all three.  Combinations of these data sources 

are also possible with inspection results being used to update 

any previous estimates of the crack size distribution. 

Approaches to estimating the crack size distribution are 

discussed in this appendix. 

C.l  MODELS 

The required PROF input for the population of crack sizes 

(initial or equivalent repair) is a file containing (a,F(a)) data 

pairs of the crack size cumulative distribution function at the 

start of the analysis.  Any valid cumulative distribution can be 

used, provided there are at least two points with F(a) > 0.99. 

This general format provides considerable flexibility in 

describing the crack sizes.  Although any standard distribution 

can easily be used, it is not necessary to fit a model to the 

available data. A table of the observed distribution function 

(with or without smoothing) could be used as input.  Further, the 

format readily accommodates the use of mixtures for describing 

the crack size distribution.  Examples of these concepts follow. 

Cl 



C.l.l  Theoretical Models 

If a theoretical model for the initial crack size 

distribution is desired (for example, from the log normal or 

Weibull families), a table of cumulative distribution values will 

have to be generated.  Computer programs for generating PROF 

input files of the log normal and Weibull families have been 

included as part of the PROF system. The programs request the 

median crack size and coefficient of variation (a) for the log 

normal distribution and the shape (a) and scale (ß)   parameters 

for the Weibull distribution.  Since the crack size data file 

must be available to PROF, the program for generating the crack 

size distribution file must be run before the start of a PROF 

analysis.  Any other family can also be used. As a rough guide, 

it is suggested that the table of cumulative distribution values 

should contain approximately 20 or more percentiles (with at 

least two greater than or equal to 0.99). 

C.1.2  Mixtures 

If a mixture of distributions is selected as the best 

method for describing the crack size distribution, the mixture 

will have to be constructed before the PROF analysis.  Mixtures 

of crack sizes can result from two or more modes of crack 

initiation for the same population of details. A mixture of 

crack sizes also results from the repair of detected cracks but 

PROF calculates this mixture. 

If the population of cracks is believed to be comprised (a 

mixture) of two (or more) subpopulations, the cumulative 

distribution of the total population can be constructed as 

follows. Let p., with Ip. = 1, represent the proportion of 

cracks from population i and let F^a) represent the cumulative 

distribution of the sizes of the cracks in population i. The 

cumulative distribution of the total population at each value of 

"a" in the (a,F(a)) array is then given by 

F(a) = I Pi • F^a) (C1) 
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Equation Cl was used to generate the initial crack size 

distribution of the example, Figure 10.  The example assumed that 

99.9 percent (p1 = 0.999) of the details were represented by an 

equivalent initial flaw size quality described by the log normal 

distribution with median size of 0.0008 in. and standard 

deviation of log size of 0.63.  The remaining 0.1 percent (p2 = 

0.001) of the details were assumed to contain "rogue" flaws whose 

sizes were uniformly distributed between 0 and 0.050 in.  The 

PROF input table for this mixture was generated using a 

spreadsheet program on a personal computer. 

C.2   CRACK SIZE DATA AVAILABLE 

If PROF analyses are to be run on an aircraft for which 

cracks have been detected in routine or teardown inspections of 

the population of details, these data provide the basis for 

estimating or updating the crack size distribution.  The 

cumulative distribution of the observed crack sizes is obtained 

as follows: 
a) Adjust the crack sizes.  To account for difforent 

airframe ages at the flight hours for which the cracks 

were detected, the crack size versus spectrum hours 

relation (Subsection 3.1.2.2) is used to translate the 

crack sizes to a common number of spectrum hours.  To 

minimize errors associated with the translation, the 

common reference age should be at the approximate median 

of the ages of the inspected airframes. 

b) Determine the total number of inspected crack sites. 

The sample cumulative distribution function must be 

based on the total number of details that were 

inspected, not just the number of cracks that were 

detected. 
c) Estimate the number and sizes of the cracks that were 

missed at the inspections.  In a complete teardown 

inspection, it is reasonable to assume that most (if not 

all) cracks were detected and that reasonable estimates 
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of the crack sizes were obtained.  In routine 

inspections, the numbor of cracks that are not detected 

depend on the POD(a) function and the sizes of detected 

cracks which may not have been recorded.  Each data set 

will have to be evaluated individually to determine any 

adjustments that need to be made to account for missed 

cracks.  At present, the adjustment will be made on the 

basis of the assumed POD(a) function and experience. 

Note that the proportion of cracks less than crack size 

a that are missed at an inspection, Q(a) , is given by 

Q(a) = Jo [! " POD(x)] • fbefore(x) • dx       (C2) 

where f,_ ^   (x) is the probability density function of 
beforev ' 

the crack sizes at the time of the inspection.  The 

proportion of inspection sites at which cracks are 

detected that are less than "a" is given by 1 - Q(a). 

Since f.. ^   (x) is unknown, Q(a) cannot be calculated, 
beforex ' 

However, a range of fbefore(
x) can be integrated (with 

the assumed POD(x) function) to determine the pre- 

inspection crack size density function that gives 

results that are consistent with observed values of 1 - 

Q(a)/ the proportion of inspection sites in which cracks 

were detected. This analysis provides a basis for the 

adjustment :>f the observed distribution of crack sizes. 

d) Smooth the observed cumulative distribution of crack 

sizes.  Smoothing can be accomplished either by fitting 

a family of distributions or faring a curve through a 

plot of the observed cumulative distribution function. 

e) Generate the input table of (a,F(a)) pairs. 

As an example of the process. Figure Cl presents the 

results of a teardown inspection of a lower wing location on an 

aging A/F/T aircraft.  These results are from 19 wings with 6 

equivalent sites in each wing.  Cracks were detected in 50 

percent (57) of the locations, and it was believed that all 
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cracks were detected.  After transforming the crack sizes to a 

common number of spectrum hours (10,000), the cumulative 

distribution of the crack sizes was obtained, Figure C2.  Since 

Figure C2 is plotted on Weibull probability paper, a straight 

line fit indicates that the data are from a Weibull population. 

The data of this example appear to be a mixture of Weibull 

distributions since there are distinct slopes for the larger and 

the smaller crack sizes.  The (a,F(a)) data pairs could be read 

directly from a fit (analytical or fared) of the straight lines 

to the data or calculated analytically from the parameters of the 

mixed Weibull distributions. 

C.3   CRACK SIZE DATA NOT AVAILABLE 

In the absence of inspection results, the crack size 

distribution to start a PROF analysis would be determined through 

analyses or experience.  There are two viable analytical 

approaches to estimating the initiation and growth of a crack 

size distribution. These are the equivalent initial flaw size 

distribution and the distribution of time to initiate a crack of 

a specified size. Note that in either of these approaches, 

cracks less that some defined size (say 0.005 or 0.010 in.) may 

not be considered to be real cracks.  If desired, such "cracks- 

can be eliminated as detectable cracks by starting the POD(a) 

function at the defined size, e.g., a^ = 0.005 or 0.010 in. 

C.3.1  Equivalent Initial Flaw Size Distribution 

The Equivalent Initial Flaw Size Distribution (EIFSD) is 

the basis of the recently developed stochastic approach to the 

characterization of structural durability [7].  The EIFSD is a 

description of the initial quality of the structure. It 

quantifies quality in terms of a distribution of "equivalent 

flaw" sizes which are assumed to be present at every critical 

location and are correctable with real flaws that will occur in 

the later life of the structure.  The EIFSD is obtained by 

conducting tests of representative structure subjected to a 

specified loading history and determining the distribution of 
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times for the cracks to initiate and propagate to a given 

reference size.  The Time To Crack Initiation (TTCI) distribution 

is then stochastically "grown" backwards in time to obtain the 

flaw size distribution at time zero (EIFSD).  The EIFSD is then 

grown forward in time (using the same stochastic model but with 

parameters determined from the spectrum of interest) to determine 

the flaw size distribution at any service time. A schematic of 

this approach is shown in Figure C3. 

Although the growth of the distribution of crack sizes is 

modeled differently in PROF, the equivalent initial flaw size 

distribution can be used as the initiating distribution.  The "a 

versus T" relation of PROF can be defined by the stochastic model 

up to the minimum crack size for fracture mechanics analyses and 

by standard crack growth models thereafter.  This essentially is 

the process that was used in the example of Sections 3.1.2.2.2 

and 3.1.2.4.2.  In the example, an equivalent initial crack size 

distribution was assumed that was representative of the initial 

quality of an A/F/T airframe. A modified Willenborg model was 

used to predict the growth of the percentiles of the crack 

size distribution which were greater than the threshold size for 

the A/F/T spectrum.  An exponential model was used to extrapolate 

to crack sizes below the threshold. 

C.3.2  Time to Crack Initiation 

A method for modeling the growth of a distribution of crack 

sizes has also been proposed by Walker [Cl].  In this model, it 

is assumed that a) time to initiate a crack of any fixed size has 

a log normal distribution, b) the standard deviation of log times 

to crack initiation is constant for all initiating crack sizes, 

i.e., a constant coefficient of variation, and, c) the median 

time to crack initiation is the "a versus T" relation modeled by 

standard fracture mechanics.  There is a historical data base 

which supports these general assumptions.  Further, for aluminum 

alloys a ~  0.15 [C2]. Under these assumptions and an estimate of 

the median time to initiate a fracture mechanics crack size, the 

C8 



ÜJ 

Lü 
O 
> 

ÜJ 

•p 
•H 

u 

u 
3 

■P 
0 

2 
■p 
CO 

■p 
(0 
10 

'S 
o 

■p 
w 

o 
ü • 

•H (0 
P-H 
(0 (0 
6 >i 
«H 
ß  10 
0 c 
(0 < 

O 

0) 

•H 

3ZIS >iDvao 

C9 



distribution of crack sizes at a  fixed time can be calculated as 

illustrated  in Figure C4. 

This model can also be used to obtain a crack size 
distribution to initiate a PROF analysis.     Given an estimate of 
the median time,   T0,   to  initiate a crack of  fixed size,   e.g. 
0.010 in.,   a reasonable estimate of the crack size distribution 

at T« can be calculated  from o 

F     (a)   =  !  _ *{[(in T0 -  in ^"1(a))/a]} (C3) 
T0 

where *(z) is the standard normal cumulative distribution 

function.  Since the "a versus T" relation may only be defined in 

tabular form, the implementation of Equation C3 may require a 

separate computer program. The (a,F(a)) table could also be 

manually calculated. 

It might be noted that the above approach could also be 

based on the Weibull distribution of time to initiate cracks of a 

defined size. 

FT (a) = expMTo/r^a))0] (C4) 

Under the Weibull assumption, it would be assumed that the shape 

parameter of the Weibull distribution is constant (a = 4) and the 

characteristic life, ß,   is modeled by the "a versus T" curve. 

These Weibull assumptions have also been shown to be reasonable 

[C2]. 

C.4   CRACK SIZE DISTRIBUTION UPDATE 

Regardless of the source of the crack size distribution 

originally used in an analysis, the availability of new data 

should be incorporated in a reevaluation of the crack size 

distribution.  New PROF runs would then be performed with the new 

initiating crack size distribution. 

CIO 
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Given crack sizes and spectrum hours obtained from routine 

or teardown inspections, the crack size distribution can be 

adjusted on the basis of either translation to a common number of 

spectrum hours or to a common crack size.  Translating the sizes 

to a common number of spectrum hours would be performed as 

described above.  The new distribution of crack sizes would be 

compared with the old.  Any adjustments judged necessary could 

then be made.  Translating to a common crack size would allow a 

reevaluation of the average time to crack initiation for the 

Walker approach to estimating the crack size distribution.  The 

latter approach may be more robust in that the coefficient of 

variation is fixed.  Adjustments would be made on the basis of 

changes in averages which tend to be less sensitive to sample 

size.  Again, some consideration must be given to the cracks 

which were not detected due to the limitations of the inspection 

process. 
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