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ABSTRACT

This report describes a detailed investigation of the effects of computational accuracy on the prediction of shock
wave/boundary layer interaction. In particular, the result of inaccuracies in the computation of the shock and the
flow in its vicinity is studied. A new computational procedure computes all shocks as discontinuities whilc
including all viscous effects. This scheme is used as a standard against which the accuracy of widely used shock
capturing schemes is measured. The effect of the numerical error generated by spreading a shock over a few mesh
intervals (instead of a few mean free paths) is evaluated with regard to shock/boundary layer interaction. We consider
the spreading error, as well as the error produced by reducing ihe formal accuracy of these schemes near shocks (in
order to eliminate wiggles). In this report, we present the computational scheme and results for a number of flow
configurations.
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I. INTRODUCTION

Over the past two decades, computational fluid dynamics (CFD) has matured to the point that it contributes
significantly to the understanding of fluid flows. Now our main concem is the reliability of the predictions of CFD,
and therefore accuracy of CFD algorithms should be the main driver of our research. While advances in computer
technology may enable CFD researchers to resolve essentially smooth portions of complex flow fields, special
considerations will have to be paid to "singular regions” to ensure accuracy. Adaptive gridding/grid clustering will
heip resolve geometric singularitics (wing leading edge, for example), boundary layers, vortex sheets and vortex
centers, but to resolve shock waves may be too much to ask of any grid-adapting scheme. The shock wave is, in

fact, a discontinuity under the assumption of continuum flow (its thickness being on the order of a few mean free
paths) while boundary layers, contact sheeis and vortex centers spread as JRC, with x measured from their origin,

in laminar flow (turbulent mixing is faster). We offer the alternative of fitting the shocks in the flow field while
resolving all other "singularities” with grid adaptation. In this way very high degrees of accuracy can be achieved for
the shock system and the viscous regions as well (boundary layer, contact sheet and vortices).

With this approach, we feel that the accurate/reliable prediction of 3-D unsteady viscous flows is feasible, if
not yet with current supercompiuters, then using the next generation of multiple processor machines. The equations
to be solved are the Reynolds-averaged Navier-Stokes equations with an appropriate model for the turbulent shear
stresses. The computational procedure used in smooth portions of the flow will assure consistency between the
numerical and physical domains of dependence. Shock waves will be fit and the exact Rankine-Hugoniot jump
conditions satisfied across them. Grid adaptation can be used to resolve geometric singularities, boundary layers,
vortex sheets and vortex centers.

In the phase of our effort reported upon here, we were able to demonstrate the capability of our
computational procedure by applying our scheme to a number of unit problems. The ability to combine the
accuracy of fitting shock waves with a full Reynolds-averaged Navier-Stokes model was demonstrated for the first
time. We start with a detailed description of the computational procedure developed during this phase of our work,
followed by sample calculations and, finally, some concluding remarks and recommendations for future work.
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II. DETAILS OF THE COMPUTATIONAL PROCEDURE

1. NON-DIMENSIONALIZATION
Non-dimensional physical quantities are defined as follows:

Let $,75,&,T,S be dimensional values of pressure, density, speed of sound, temperature and entropy,
respectively, and let q be the dimensional velocity vector. Let &,,&, be the specific heats at constant pressure
and constant volume, respectively, and

R=b-8, 71=58/4, b6=(-1)/2 &§/R=1/2% (11)

Assuming the values of pressure, density and temperature at infinity as reference values, we define non-
dimensional pressures, densities and temperatures p,p and T as

P=ij/ﬁoo: P=ﬁ/ﬁ°°) T=T/Too (12)

Since
P=RAT, Poo = RhooToo (1.3)

the basic relation between p,p and T is written as:

p=pT (14)

Also, RTw, is assumed as the square of the reference velocity, gr; therefore, the non-dimensional speed of
sound, g, is -

a=(yT)"/? (1.5)

A suitable reference length, Zyr, having been assumed, the reference time, #rr, is assumed as the ratio of
the reference length and the reference velocity:

Tret = Zrer/Gret (1.6)

Finally, we assume the entropy at irfinity equal to zero, and we non-dimensionalize the entropy by the
formnla;

S =5/(vR) (1.7)

The Mach namber at infinity, Mo, is
Moo = §oo/Boo (1.8)

Additional definiti. - are needed for viscous flows. Let A be the divergence of §:
A=V4 (1.9)

§ the stress tensor minus the diagonal terms containing pressure, Q the heat-flux vector and & the dissipation
function. The stress tensu: {a rather complicated function of space derivatives of the velocity components)
depends lineasly on the viscesity, fi:

1.
& = 22[def 4 - 3AD) (1.10)

3




where D is the unit diagonal tensor and

1. -
def 4 = 5[Va+ (V@)T) (1.11)
(the apex T denotss the transpose of the tensor). The heat-flux vector is proportional to the gradient of the
temperature:
Q=-kVT (1.12)
The coefficient, k, is the thermal conductivity. We also define a “dissipation”, ®, as
® = 2j(def q - def g — %A’) (1.13)
We choose reference values for ji and k, for example fio, and ko, and define a Reysclds number,
R, = JeoPooteet (1.14)
Hoo
and a Prandtl number,
P, = b2 (1.15)
koo
The continuity equation, in dimensional form, is
Dp o .
The momentum equation, in dimensional form, is
Dg 1__ 1_ _
—=4+=Vp=-V: 3§ 117
ot 5 (1.17)
and the Lagrangian increment in entropy is:
DS 1
=T @®-Vv Q) (1.18)

The above definitions allow the three equations of motion to be recast in non-dimensional form. The

continuity equation remains formally the same, without the bars:

%te +pV.-q=0
The momertum equation becomes:
2Ly
where
Vv, = Mz VT % "

4

(1.19)

(1.20)

(1.21)
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(s is formally the same as § without the bars). The entropy equation becomes

Ds

=V (1.22)
with Mo 1 )
) Y
Ve —2 2 (-1 ___v. 1.23
s ‘ \/—Re r [ 5 - 1 Pr QJ ( )

where the non-dimensional dissipation and the non-dimensional heat-flux are formally the same as & and
Q, without the bars. We will consider the viscosity and the heat conduction coefficients as functions of the
temperature:
14 To/ Teo
=T —2= 1.24
# T+ To/Too (124)

(where T is an appropriate constant; for example 110° Kelvin), and

k= T5/4 (1.25)

2. UPWIND (¥A”) REFORMULATION OF THE EQUATIONS
The equations of motion (1.19), (1.20) and (1.22) can now be reformulated to emphasize the role of the
propagation of signals in the convective terms and the diffusive role of the viscous terms. The new basic
variables are a, S and q. From the definition of entropy in a perfect gas,

1 1, a* 1
S—2—‘ﬁ[inp—'rlnp]_2—ﬂ-ln7—:’-lnp (21)
it follows that, for any derivative, here denoted by a prime,
1 pl pl
§'=—[=-+E& 2.2
Brolp 7 p] ¢2)
14 1)/
Sz ———== 2.3
réa vp (23)
,_1d 1y
S = 57 " 7p (2.4)
Using (2.3), {1.19) becomes
1Da DS
s teVia=rgy (25)
Using (2.4), (1.4) and (1.5), (1.20) becomes:
Dq ¢
T t3Ve- a8 =V (2.6)

To make the computational technique for viscous flows compatible with the A-formulation for inviscid flows,
we split S in (2.5) into two terms:
26

S:(l-i-
Y 7

)S (2.7)

5




recasting (2.5) into the form:

1Da Ds
57 oV 4= o7 = v, 28)

At this point, (2.8), (2.6) and (1.22) can be treated by the general procedure exposed in [1], with the addition
of the source terms, 26aV,, V,,, and V,, respectively.

The flow is two-dimensional, and the computational grid is orthogonal. In the initial phase of the computa-
tion, the rigid walls and the computational frame move from right to left, accelerating from a state of rest

to the constant velocity,
Qoo = Moo /7 (2.9

. The equations of motion are recast for the general case of an accelerating frame. This changes only the
momentum equation (2.6}, to which a term, goo:I must be added in the right-hand side, with geo; being the
acceleration of the frame and I the unit vector of the z-axis.

We rewrite the equations of motion after splitting the Lagrangian derivatives into local derivatives and

convective terms:

18a Va as
z—at-+Q'T+aV-q-a(-z?T+q-VS)=25aV, (2.10)
%tg +(q-V)q+ %Va - a’V8 = qootI+ Vi (2.11)
%S+q-vs=v. (2.12)

These equations are the same as equations (1.2) in [1], with the addition of the source terms in the right-hand
sides.

We proceed as explained in Section § of {1]. Four equations are obtained containing two unit vectors,
orthogonal to each other, i and j, that we choose parallel to the coordinate lines at each point (these vectors
are a particular case of the unit vectors n and 7 of {1]). Using indices to denote partial derivatives and
calling u and v the components of q along the coordinate lines, the equations (similar to (2.1) of [1}, but
with right-hand sides), are:

a;/6 + u; — aS; + (q +ai) - [V(a/é + u) ~ aVS]+aj - Vv~ v+ F = 26V, + qoorl - i+ Vi -
a;/6—u —aS; +(q—ai)-[V(a/6— u) -~ aVS]+aj - Vo+ fv+ F =28aV, - gl -i =V -
a;/6+ v — aS; + (q+aj) - [V(a/§ +v) - aVS)+ai - Vu+ fu+ F =268V, 4 goos] - j+ Vi - j
a;/6 - v, —aS; +(q—aj) - [V(a/b —v) ~aVS]+4ai - Vu~fu+ F =26aV, = gootl 3=V -J

(2.13)
with
a=arccos(I-1), k=ix] (2.14)
B=q-Va, F=akxq-Va (2.15)
Adding the four equations (2.13), and subtracting (2.10) multiplied by 2, we obtain:
(2/6)as — 205+ 2aq - VS + Uy + Uz + Uz + Uy - (2/6)q - Va = 46aV, (2.16)

6
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Subtracting the second of (2.13) from the first, we obtain:

2 + Uy — Uz = 2opscosa+ 2V, -1 (2.17)
Subtracting the fourth of (2.13) from the third, we obtain:

20+ Us — Uy = 2¢oor sina + 2V, - § (2.18)

where
Ui = (q+ai)-[V(a/é + u) — vVa — aVS5]

Uz = (q - ai)-[V(a/6 — u) + vWa - aVS5]
Us = (q+aj)-[V(a/6 + v) + uVa - aVS] (2.19)
Us=(q-aj)-[V(a/6 - v) — uVa - aVSs]

These equations are the counterparts of (2.2), (2.3) and (2.4) in [1], with a different grouping of terms to
eliminate the explicit appearance of F and 3. Note that the first parenthesis in the right-hand sides of (2.19)
contain vectors. For example, in the first equation,

qtai=(u+a)i+yj

When expanding the expressions, the terms affected by u + @ must be approximated using differences taken
from the side originating the (u + a)-signal. Such terms cannot be simplified with similar terms in the
second equation, affected by the coefficient u — a. Contrariwise, the terms affected by the coefficient v
can be simplified between the first two equations, because both have the same domain of dependence. The
important simplifications that the above argument implies are shown in what follows, in the case of orthogonal
coordinates.

The physical plane is defined by a complex variable z = z+4iy and is conformally mapped onto another plane,
defined by a complex variable { = € + 1. The grid in the (-plane is Cartesian; therefore its counterpart
in the z-plane is orthogonal. It may be necessary to stretch the coordinate lines in the ¢-plane to obtain a
better resolution in the z-plane. In this case, the rectangular grid in the {-plane is non-conformally related
to another rectangular grid in a plane, defined by Cartesian coordinates X and Y, where X is a function of
€ alone and Y is a function of n alone; this does not impair the orthogonality of the final mesh. All gradients
appearing in the left-hand sides of (2.16), (2.17) and (2.18) are conveniently computed in the ¢-plane. With

9= G=lol, 6=di+ity = L8 (2.20)
we have:
Va = G(agi + ayj) = =G{¢2i + 41j) (2.21)
and

Ur = G(u-+a)[(a/6 + u)e — vag — aS¢] + Gv[(a/b + u), — va, — aSy]
Uz = G(u - a)[(a/6 — u)¢ + vag — aSe] + Gv[(a/é - u), + va, — aS,)
Us = Gu[(a/6 + v)¢ + vag — aSe] + G(v + a)|(a/6 + v), + ua, — aS,}
Us = Gui(a/§ — v)¢ ~ uag — aSe} + G(v - a){(a/6 — v)y — vay ~ al,)

(2.22)

7




q-[V(a/6) - aV5] = G[(uag/6 — auS¢) + (va,/6 — avS,)] (2.23)

The above mentioned simplifications occur in (2.16) because the second terms in U; and U; and the first
terms in U3 and U, cancel out the right-hand side of (2.23). On the other hand, the second terms of U; and
U, reduce to 2Gv(u, — vay), and the first terms of Us and Uy reduce to 2Gu(ve + ua,i) when computing
Uy — Uy and Us — Uy, respectively. For better clanty in coding, we define

M =Gu+a), M =Gu-a), A =Gu

N =G(v+a), A =G(v-a), A} =Gv (2.29)

R¥ =a/6+u, RX¥=a/6~u, RY =a/6+v, RY =af6~v

and
= -/\f(Rfe —vag —aSe), fX = —z\f(Rfe +vag —aSe), f& =~-22F(ve+ ua) (2.25)
fly = —z\}’(R}l’,, + uay —~ aSy), f;?' = —Ag(R%’,, - uay — aSy), = “2A§(“n ~ vay,)
and
=M, ==X (2:26)
The equations of motion are now:
Se=f¥+ff +Vi (2.27)
)
0= SUFF 41X+ fY + £ + 25, + 46aV)) (2.28)
1
up = -2-[jft — X + Y 4 201 co8 @+ 2V, -] (2.29)
1 ¢ .
w= E[f}’ — Y + £ ~ 2ossin a+ 2V, - j] (2.30)

We must now evaluate the viscous terms, V, and V,,. In orthogonal coordinates, generated by conformal
mapping,
G
en = Glug + véa), ez = G(vy — udy), e12= E—(vf + Uy — ug2 + véy) (2.31)

A= ey + €2 (232)

The two components of 7 - s are
1
2G{[p(en ~ §A)]€ + (He12)n + 2pe12é2 + p(ez — en1)é1]} (2.33)
1, .,
2G{(per2)e + [p(e22 — §A)],, ~ 2ue12¢) + pen — e2z)da]} (2.34)
Using a classical notation, we define:
. 1 1
™ = 2p{en — §A), Ti2 = 2pe12, Too = 2u(esn — 313) (2.35)

8
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Therefore, the two components of Vy,, can be written as:

=
V- i= M;;v‘y% [(r11)¢ + (T12)n + 211262 + (722 — T11) 1) (2.36)
V- j= M;ﬁ% [(T12)¢ + (T22)n — 271261 + (712 — T22)63] (2.37)

From its definition (1.13),using (2.31) and (2.32), ¢ can be written as:
1
Finally, the term V - Q is evaluated as
V.Q=-V.(kVT) = =G*[(kT¢)¢ + (kTp),)] (2.39)
Let uc and ve be the Cartesian components of q; thus,

% = Uuccos a+ vcsin a
. (2.40)
v = -—Ucsin o+ vc Cos «

and

uc=u cos o —v sin «
. (2.41)
Vc=1tuSsin a+ v cos «

A) Left computational boundary ~ The flow is generally considered inviscid to the left of the computa-
tional boundary. The observer moves with the rigid walls; at the end of the accelerating phase, the flow at
infinity appears as moving towards the observer at the speed defined by (2.9). If M, is greater than 1, a
is forced equal to \/7, tc to geo, vc and S to zero over the entire left computational boundary after each
updating defined by (2.27), (2.28), (2.29) and (2.30), and the values of fX, f¥ (i = 1,2,3,4) are all defined
using (2.40) before such updatings.

If My is less than 1, vuc is still assumed to vanish along the left computational boundary (this is
tantamount to directing the flow horizontally by means of an infinite cascade of vanes, and it is not a
disturbing assumption). The values of all f¥ s are defined accordingly. The steady flow conditions to the
left of the boundary are expressed by the constance of the stagnation speed of sound and by the vanishing
of the entropy. Such conditions are sufficient to determine the values of a and u, separately, when combined
with the value of RY, that is obtained correctly using inside information only. Specifically,

a = a® + 6(u® + v?) = a® + 6u?/ cos? a (2.42)
and
RY =a/6-u (2.43)
From (2.42) we obtain:
aa; /6 + uuy/ cos’a = 0 (2.44)
9




and using (2.28) and (2.29) without viscous, acceleration and entropy terms, X can be defined as foilows:
£ = v/ cos® a~a)fff —uf3 [cos® a— a(f} + f7))/(u/ cos’ @ +a) (2.45)

In particular, if the left boundary is versical,

u—a
u+ta

=——ff (2.46)
Reseiting — The above procedure is analytically correct; it may produce disturbing effects in a numerical
computation, if continued for thousands of steps. In fact, (2.45) provides a correct evaluation of the time
derivatives of a and u at the left boundary (that is, an evaluatior assuming that ay is constant in time and
space). The updating of a and u at the left boundary according to (2.45), however, is affected by truncation
errors and, in a long run, such errors may accurnulate resulting in minor, but not insignificant, variations
in the effective value of ag. The inconvenience can be overcome by resetiing agp to its exact value after each
updating, and recomputing a, u and v accordingly. From {2.42) and (2.43), u turns out to be defined by the

equation:
Au? +2Bu+C =0 (2.47)

with
A=606+1/cos’a), B=6RY, C=6%(RY)?-al

[the + sign must be used in front of the square root in solving (2.47)}; then, a follows from (2.43) and
v=—u tan « (2.48)

. When the flow is supersonic or resetting is applied, the derivatives computed on the left boundary are not
used to integrate the equations of motion on the left boundary, but the values of fX’s and fY¥’s must be
evaluated at the first level of & two-level scheme, because they are needed at the second level, as seen later
on.

B) Upper boundary - We distinguish two geometrical possibilities. If the upper computational is
horizontal, it will be considered as a rigid, inviscid wall, along which f¥ = f¥ = 0 and f} is given
by

=5 (249)
to satisfy the inviscid boundary condition, v = 0.

If the upper computational boundary is curved, with the concavity upwards, it is considered as an entry
boundary for the flow. Therefore, if the flow is supersonic, all values arc prescribed and kept invariant in
time at the end of the accelerating phase. If the flow is subsonic, a routine similar to the one explained for
the subsonic left boundary will be applied, interchanging the roles of u and v. Specifically,

Y =[(v+asin?e)fY +vf¥ + a(f¥ + £{)sin? a]/(v - asin? a) (2.50)
and, for resetting, (2.47) can be used, with
A=6(bsin’a+1), B=-8R] sin’a, C=[*(R})?- al]sin’a
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C) Lower boundary — The lower boundary is composed of two parts: a free-stream region to the left of
the leading edge of the wall, and the wall itself. The former is always a horizontal segment and it is consider
fully inviscid. Therefore, it acts as an inviscid rigid wall, with v vanishing identically, and the only numerical
condition is

= (2.51)

At any point on the wall, u = v = 0. If the wall is isothermal, its temperature, T,, is prescribed. If it is
adiabatic, T,, equals the computed value of T at the grid point just above. The pressure is also considered
equal on any wall point and the point above it, in any case. Therefore, if the wall is isothermal, a follows
from its definition (1.5) and S from the constance of p, using (2.4) and (1.5):

S, = ay/(6a) (2.52)

If the wall is adiabatic, S, = a, = 0. Thus, all quantities at the wall are easily known and no computation
of fX’s or viscous terms is necessary. In a two-level technique, fY, f¥ and f} at the wall are needed at
the second level for the grid row immediately above the wall to provide a second-order correction, since v is
normally positive. They may, however, be taken equal to their values on the row above the wall.

D) Right boundary — On the right boundary, a zero-th order extrapolation for all variables can be used.
In a supersonic zone, the extrapolation is obviously harmless, because no signal propagates upstream. Inside
the subsonic zone of a boundary layer, the approximation is acceptable since the flow is essentially parabolic.
The only dubious case occurs with a practically inviscid subsonic boundary, where X at points immediately
next to the boundary is affected by the values of a and u at the boundary itself. In the computation, however,
the error can be minimized by letting ff = 0 both at the boundary and on the grid column immediately
before it.

3. OUTLINE OF THE COMPUTATIONAL CODE, IN THE ABSENCE OF SHOCKS

In the absence of shock, the computational code is structured as follows:

The main program calls a subroutine ELDATA that reads the input data, necessary to define the geometry
of the rigid walls and to generate a proper grid, the value of M., and the Reynolds and Prandtl numbers
according to their definitions (1.14) and (1.15). Other data are parameters to define the coordinate stretchings
between { and X and between 5 and Y.

Then it calls a subroutine GRID that generates the grid and provides double arrays with the values of
G, ¢y, ¢2, cosa and sina, and single arrays with the values of X and Y;. The values of G are obtained
numerically as

G =1A(/Az| 3.1)

using centered differences. Similarly, o is obtained as
a = arctan(SAz/RA:) (3.2)
using centered differences. Finally, ¢, and ¢, are obtained as
$1 = G¢/G, é2=-Gy/G (3.3)
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and the derivatives of G are approximated numerically, using centered differences, evaluated on the (X,Y)-
plane and in‘erpreted in terms of £ and n via X¢ and Y.

The field is initialized as a gas at rest, with non-dimensionalized values of the thermodynamical pa-
rameters as mentioned above for the conditions at infinity (T = 1, a = /7, S = 0). Then the sequence cf
computational steps is started.

In it, goo¢ is computed; a subroutine VISC is called to compute V, and Vn; next, (2.25), (2.26), (2.27)
and (2.28) are integrated at the predictor level in a subroutine PRED. The entire procedure is repeated,
but PRED is replaced by a subroutine CORR for the integration at the corrector level. This completes one
computational step. Boundary conditions are enforced by calling a subroutine BOUND both from PRED and
from CORR.

We outline now the four subroutines used in each step.

PRED contains a loop to define AX,A\Y (i = 1,2,3), and RX, RY (i = 1,2). The time step size is evaluated
according to the CFL rule; if necessary, a stability coefficient, less than 1, is used to reduce it. A second
loop computes f¥X, fY (i = 1,2,3,4,5) using averaged values of )-s over two adjacent points and two-point
differences, both from the side from which the pertinent signal comes. In defining the f-s, each one is divided
by 8. A factor of 2 is due to averaging the A-s; another factor of 2 is the one in front of the brackets in
(2.26), (2.27) and (2.28); the third factor of 2 makes the updating take place over a half time step only.

Successively, the boundary conditions are enforced. Then, a third loop defines S, a:, u; and vy, in that
order, using the formulas:

Se= 8V, + fF+ 1§

ac = 6(f¥ + fX + fY + 1} +aSi + baV,)
u:-‘-fxx"f'zx +fg'+.5(q°°gcosa+vu) (3.4)
vi=fY = f) +ff = 5lgoorsine - V,)

and updates S, a, u and v. Resetting of all boundary values is made. In a final loop, all the f-s are stored
in “old” arrays, f{¥, etc. The fX of the left boundary are also stored in the “old” arrays for the extra row
to the left; similarly, the f¥ of the upper boundary are stored in the “old” arrays for the extra row above
it. Such values will be used in CORR to cor: <t values on the boundaries and are acceptable in all supersonic
cases on the left boundary. On the upper boundary, if curved, AY is generally positive; therefore, f¥ must
be corrected in BOUND. Similarly, X must be corrected in BOUND on the left boundary, if the flow is subsonic

CORR follows the general pattern of PRED. The time step, however, is no longer evaluated. All the f-s
are now divided by 4 only, and their “old” counterparts, computed in PRED, are ~ubtracted from them. Note
that such “old” values must be taken at the neighboring point, from the side frc»  which the signal proceeds
No storage of f-s into “old” arrays is now necessary.

VISC begins by defining T as a function of a at all grid points, and by linearly extrapolating u, v, a, T
and S at the grid column outside the computational field, to the right of the right boundary This is made
to enable centered differences to be taken at boundary points, using the same scheme as at interior points
For the same reason, u, a and T are defined symmetrically, and v is defined antisymmetrically at the lower
boundary in front of the wall. Along the wall, u and v are defined antisvmmetrically, whereas a, T and S
are extrapolated linearly.

12
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Then, at all poins except at the upper boundary, centered differences are used to approximate ug, v,
T¢, uy, vy and T; p is computed as a function of T' according to (1.24) and (2.31), (2.32), (2.35) and (2.38)
are evaluated. Using a function k(T) as defined in (1.25), Q1 = GkT; and Q; = GkT, are computed. Again,
T3, T12 and Q, are linearly extrapolated outside the right boundary, 7;; and @, aze made symmetric, and
712 i8 made antisymmetric across the wall.

Finally, at all points except on the lower and upper boundaries centered differences are used to evaluate
(r11)e, (nade, (@1)¢y (m12)n, (722)n and (Q2),. After this, ail the elements needed to build V, and V,, are
available. The viscous terms are made equal to zero at all grid points to the left of the grid line passing
through the leading edge of the wall.

BOUND redefines the f’s at the boundaries when necessary. As mentioned before, no correction is nec-
essary on the left boundary, if the flow is supersonic. If it is subsonic, f{¥ is redefined according to (2.45).
On the upper boundary, fY is always redefined according to (2.50), if the boundary is curved. Otherwise,
(2.49) is used. At the right boundary, fff is set equal to zero if the flow is subsonic. At the lower boundary,
to the left of the wall, (2.51) is used. On the wall, f} = fY — V,,, . j/2; this term is only used to produce a
value of f} to be used in CORR at the grid row above the wall.

4. COMPUTATION OF SHOCKS
Shocks are considered as sharp discontinuities. Each shock is, thus, a line separating a low-pressure region
from a high-pressure region. At each point on a shock, a normal to the shock can be characterized by a unit
vector, N. All values on the low-pressure side of a shock will be denoted by an index, A, all values on the
high-pressure side by an index, B.

In what follows, it is convenient ‘to consider three set of unit vectors at each shock point:
1) I and J, parallel to the Cartesian axes z and y,
2) i and j, parallel to the grid lines £ and 7,
3) N and T, normal and parallel to the shock.
According to (2.14),

Ii=cos a, I-j=-s8ina, J-izsina, J-j=cos a 4.1)
Let ¢ be the angle between N and I, 8 the angle between N and i. Then,
f=¢—a (4.2)
The two components of N along i and j will be called Ny and Ny, respectively:
Ni=N-i=cos 8, Ny=N.j=3sin 8 (4.3)

The velocity vector, q, can be decomposed along the three frames defined above:

q=uJl+v.J=ui+vj= aN + 3T (44)
Consequently,
ﬁ:uN,+ng. !.)="UN7+UNx (45)
13




and, conversely,
u=uN; — N3, v=1uNs+ Ny {4.6)

The motion of a shock is defined by the velocity (W) of each of its points along the local normal. The

expression:

g -W
Ga

is the normal, relative Mach number of the shock at each point; here it will be called the shock Mach number,

for brevity. The Rankine-Hugoniot conditions can be written in the form:

M= (47

S (7. ) B
B=0a 1+ 8)M
tp=tis4+a ——-——l = M
B=MAT U0+ oM (4.8)
ﬁg = !7“
_ 1, yM2-5 (1+6&6)M?
Sp=Sat g o~ e
We define
Y= (aa + 6|ﬁ5 - ﬁAl)/aA (4.9)
From these equations we obtain
1
—_—— 2. 2 2 _ .
L= TT oM [V(YM2 = 8)(1 + 6M3) + §(M? - 1)) (4.10)

which yields the basic relationship between T and M; consequently, if ¥ is known, M can be computed from
(4.10). For computational purposes, it is convenient to use a relationship between an increment in M and
the corresponding increment in L:

AM 296M? 4y — 62

AL = 26
T+ 8 A a5

-(l+6)%] (4.11)

In the framework of the computational technique exposed in Section 2, we cbserve:
a) once we have the basic variables, a, S, @ and ¢ on the low-pressure side of the shock, and the shock Mach
number, the shock problem is solved; in fact, (4.8) provide the values on the high-pressure side and (4.7)
provides the velocity of the shock;
b) the values of @, S, u and v on the low-pressure side of the shock depend only on upwind values and are
accurately defined using the A-scheme with upwind differences only:
¢) knowledge of the direction of the normal to the shock is imperative to get @ and © from u and v, and to
get u and v on the high-pressure side of the shock from @ und ¥; moreover, it is necessary t¢ move the shock
point correctly, once V¥ has been determined;
d) the shock Mach number is obtained from I, using (4.10) or (4.11), but £ must be obtained from the low-
and high-pressure side of the shock.
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By writing (4.9) in the form:

L= 6{03/6 -ipg+ &A}/aA (412)
and comparing with the last of (2.23), we see that (4.12) can be written as:
L = §(Rap + a)/aa (4.13)

where Rap is to be computed using downstream information, since the flow in the high-pressure side is
subsonic, relatively to the shock. The evaluation of I is thus feasible without using differences across the
shock.

Clearly, the most difficult step in fitting a shock consists of determining the direction of the normal.
When a shock point is detected, we consider the jump in q between the two points bracketing it, and define

the normal by its unit vector as
Abfq

1abfql

The same procedure has not been proven generally safe to evaluate the normal at a shock point that
is part of an existing link of shock points. In this case, we prefer to use a more cumbersome procedure.
For a given shock point, located on the m-th horizontal row to the right of the n-th vertical column, we
explore some intervals to the left and the right of it on both the m — 1 and the m 4 I row. If no points
are found, the shock point is considered isolated and it is dropped. If some point is found, the slope of the
shock is computed as the slope of the line joining the geometric center of the points on the lower row and
the geometric center of the points on the upper row, if the flow is subsonic downstream of the shock. If the

N= (4.14)

shock is supersonic downstream, the line is drawn between the shock point itself and the geometric center
of the points on the row that contains the “upstream” shock point.

The shock is computed only at the end of each computational step, after all the values at grid nodes
have been updated by predictor and corrector. The values at points A and B on the shock itself cannot
be updated; it is indeed in the nature of a numerical scheme on a discreet grid to let all points that are
not nodes remain undefined. A simple way to circumvent the difficulty is to assume that such values are
the same as the values at the nearest node on either side (0-th order extrapolation). The approximation
is generally sufficient for unsteady flows; it may prevent convergence of residuals to machine-zero in steady
flows asymptotically reached, if a shock point happens to lie too close to a grid node. The shock point may
periodically move from one grid cell to the next, and back again; at each transition, the extrapolated values
may be sufficiently different to create a local disturbance that propagates downstream in successive steps.
The difficulty is eliminated by using a more sophisticated extrapolation technique to define point A and
point B. For example, for point A, located to the right of grid puint n, we can define:

€= |z — zn|/lzn41 = zn]
€1 = |2 = zal/lz0 - 24y (4.15)
€2 = |2y = znal/|Tno) = 2a_2]

and then
ay =a, + (l(an - an-—l)

az = @ay + €2{an.y - an-?) (4.16)

ap =€ay + (1 - ¢)ay
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and similarly for S, u and v. It is easy to see that the values at A do not change if the shock point moves
from the right boundary of cell (=, n + 1), with € close to 1, to the left boundary of cell (n + 1,n + 2), with
¢ close to 0.

The values at A must now be considered as the final updated values for the computational step on
hand. The values at B still have to be updated after the shock itself has been upaated. Only the combined
quantity, R, is acceptable so far. We proceed, thus, to get

Aii = (up —uq)Ny + (v — va) N2 (4.17)

and
L = (ap + 6]Au])/aa (4.18)

Now, (4.11) may be applied to get the increment of M through the time-step from the increment of I; having
M, (4.8) are applied to get new values at B; up and vp will be decoded from iip and ¥ using (4.6). Final
values at the node next to B (n + 1, say) are obtained from formulas such as

Gn41 = ap + €3(an42 — 6B) (4.19)

with
€3 = |zn41 = 2sl/|zn42 = 2| (4.20)

The shock velocity is computed from (4.7). The displacement of the shock point along a £-line is obtained
as

Af = W%At (4.21)

In general, the formation of a shock by coalescence of characteristics is detected as follows:
On each §-line, the first difference of a and the second difference of A (briefly, A) are approximated at

each point n by
Aa=an4) = ap_1 +2an42 —an—2) (4.22)

and
AzA - ~A"l+l - A"_z - "‘ﬂ—l - An + 2(An,§'2 + '\n—S) (4-23)

respectively. These expressions have been obtained by replacing the data with their linear mean-square
approximations, to eliminate the influence of minor numerical irregularities. If the flow goes from supersonic
to subsonic (th~t is, if Ay > 0 and Ang; < 0) and —X,41/An > 1.1, the point on the X-line where the
interpolated A vanishes is marked. Other points marked are those where A\, < 0, Azl > 0 and
Aa > 0. If any of such points is found along the X-line, a tentative value of T is defined using ¢4, and ¢,
instead of tig and i, 2nd a, 4, an instead of ag, a4 The point is assumed as a new shork point, provided
that £ > 1.03 and no other shock points exist on the cells between n ~ 4 and n.

If a shock 1s genetated by a wedge or a sharp corner in a rigid wall, a third-degree equation is solved
iteratively to get the direction of the normal to the shock at its pownt of ongin With ¢ being the .quare of
the sine of the flow deflection, 7 the square of the cosine of the angle between the normal and the upstream
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direction of the flow, My = uy/v4,d;y = I/M}, ==1=-2d;,¢c1 = 2d1+d¥, 2 = (1+6)2 +26d;,dy =~ f,
the relation between the known ¢ and the unknown 7 is

_d+ifa+7(b+ 1)
d+ 7(—ca +97)

(4.24)

The equation has a meaningful solution only if the shock is attached, in which case all the jump conditions at
the shock point are evaluated analytically and kept frozen during the entire calculation. The absolute value
of the angle between the normal and the upstream direction of the flow is arctan /(1 — 7)/7 and its sign is
opposite to the sign of the deflection. Since the shock remains anchored to the corner, its velocity vanishes
identically. Therefore, the normal Mach number is M4, multiplied by ihe cosine of the angle between the
impinging velocity and the normal. All the downstream values follow as shown above. Otherwise, the shock
produced by the wedge is detached and it is evaluated using the same procedure as for any other shock point,
with the only constraint of the normal being parallel to the wall.

'
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III. SAMPLE COMPUTATIONAL RESULTS

5. FLOW OVER A WEDGE

The code is going to be tested for cases of increasing complexity, both for inviscid and viscous flows. In
principle, a single code may be used in all cases. Substantial changes, however, must be made to the initial
and boundary conditions, and it is convenient to use separate codes when the changes require more than a
few IF statements.

A E B

Fig. 5.1 - First wall geometry

For all cases, an orthogonal grid is used. We have used two simple definitions of the wall geometry:

First geometry (Fig. 5.1) — The lower boundary contains a rigid surface composed of three parts: a
straight, horizontal segment between a point E and a point B, a straight segment between point B and
point C, and an arc (almost straight and horizontal), between point C and point D. To the left of point
E, the boundary contains a straight segment, AE, that is considered permeable for viscous calculations and
impermeable for inviscid calculations. In the latter case, point E has no relevance and it is not considered
in the code. The orthogonal grid is obtained as follows. Let ¢ be the wedge angle, that is the angle between
BC and the horizontal z-axis. Inputs for the geometry are the abscissae of points B, C and D (24 being
assumed equal to zero) and the angle 4. Let z = z + iy be the complex coordinate of the physical plane,
B = exp(i), z = z + iy, 21 = 2, + iy,

p=7/(r=4¥), pr=n/(r+y) (5.1)

2 = [(z - zg)/ 81" (5.2)
The function defined by (5.2) maps the broken line ABC onto a straight portion of the z,-axis, with the
origin at B. Let { = £ + in and

¢ =1[B(zy - i)} (5.3)
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This function brings the origin tc point C and flattens the angle between BC and CD, leaving the segment
ABC on the §-axis. We define
o:=Ep—€a (54)

and introduce a computational variable, X, running from 0 to 1:
X =(§~¢a)/o: (5.5)

Along the n-axis, we apply a stretching, introducing a stretching parameter, o, and a computational variable
Y defined by:
tanhoy

n=Y[l1+ ] (5.6)

where Y; is a suitable value, to define the thickness of the physical region. Consequently,

tanh o,

Xe=1/0:, Y, = cosh?[g, (Y — 1)) (5.7)
A rectangle, 0 < X < 1,0 <Y <1, is then mapped onto a domain that has a lower boundary as shown in
Fig. 5.1, and the grid in the physical plane is orthogonal.

To have a {=constant grid line passing through point B, after the number of intervals along the X-axis
has been chosen, the value of Az is slightly modified, without changing o; consequently, the position of D
in the physical plane is slightly modified from the value initially chosen. No £=constant grid line is required
to pass through point C.

After corresponding values of z and ¢ have been determined, a, G, ¢; and ¢, are computed numerically,
using centered differences.

The particular case of a flat plate with a leading edge at E is trivial.

Second geometry — A second wall geometry is similar to the one described above, but the broken line,
BCD is replaced by a curve, obtained by a Karméan-Trefftz mapping:

(-1 _ (z-1\"
C+17 \z+1 (5:8)
after having moved the y-axis to pass through D and having rescaled the plane to let B be at z = —1.

No stretching is used on the z-direction, only a change of scale. Strong stretchings are used on the y-direction
to account for the presence of a boundary layer. So far, we have used the stretching defined by (5.6), with a
trial-and-error preliminary calculation to determine o, after prescribing the height of the first cells above the
wall in the (-plane (Af). A second way of defining the stretching is currently being tested. The object is to
prescribe a number of intervals covering the boundary layer, according to an educated guess of its maximum
height for a given Reynolds number, and to have such intervals all evenly spaced on the (-plane, using the
stretching only above that strip. Previous experience suggests a sensible reduction in computational time
being obtained by using such a device.

20
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6. INVISCID AND VISCOUS FLOW OVER A FLAT PLATE

Basic tests require calculations of inviscid and viscous flows under the simplest assumptions. In any test,
residuals are defined as mean square values of the time derivatives of u, v, a and S, as defined by (3.4).
Since the code has two levels, the second of which corrects the derivatives defined by the first level, the mean
square calculation is applied to the sum of the time derivatives ubtained in predictor and corrector at each
point; in this way, possible compensations of opposite contributions are accounted for. The logarithms (base
10) of the four residuals are plotted separately. Note that all values are reset according to the boundary
conditions over the boundaries of the computational region, except at the bottom line in front of the leading
edge, where the values, as updated in predictor and corrector, are accepted as valid. Therefore, no special
care is taken to obtain meaningful derivatives along such boundaries and their values are not accounted for
in evaluating the residuals.

We begin with a flat plate. Obviously, a test of inviscid flow starting from an exact solution would
be almost insignificant because all derivatives would vanish identically. A test of an inviscid flow starting
from rest, instead, is quite significant. On the flat plate the orthogonal grid is obviously Cartesian. We
may, however, use an unstretched grid or a highly stretched grid. The first test (Run 343) was made on an
unstretched grid with 60 intervals along § and 20 intervals along 5, with the leading edge of the plate at
€ = 1; the length and height of the computational region are 5 and 2, respectively. The final Mo, = 2.5 is
reached after an acceleration phase lasting till 1o = 0.5. “Machine-zero” values of the residuals are reached
after about 500 steps (Fig. 6.1).

In the second test (Run 346), the stretching is strong (An = 0.0066). It takes longer to bring the
residuals to machine-zero (Fig. 6.2) but a flow, uniform for all practical purposes, is reached in about 1000
steps. Use of a local Az (Run 347) brings in a remarkable reduction in the number of steps (Fig. 6.3). Note
that during the acceleration phase a global At is used, as it appears from the identity of residuals in Figs.
6.2 and 6.3 in the first phase (about 250 steps).

RUN-313

O n0 e 1308 IRy

Fig. 6 1 -- Residuals for run 343
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Fig. 3.3 ~ Residuals for run 347

For viscous flows, the most significant plots are comparisons of computed distribution of u at several
cross-sections normal to the plate with the theoretical Blasius profile. Since we are dealing with compressible
flows, we plot the computed values of u/V,, stretching the values of n not only by the factor R./(§ — €g)
(where €g is the value of € at the leading edge) but also by the factor 1/(1 + 64 » §M2), according to
Stewartson [2]. The coefficient, .64, was chosen according to Fig. 3.1 of [2]. The comparisons are generally
made at three stations, calied A, B and C, respectively, the first is close Lo the leading edge, the last 1s close

to the right computational boundary and the second is somewhere in between.

In the following tests, the grid is the same as in inviscid cases above. The Prandil ..amber 15 always
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equal to 1 and the plate is isothermal, with the wall temperature equal to the stagnation temperature at
cruising speed. The flow is always started impulsively. As basic parameters, we consider M, and R..

First, we make in experiment to decide whether a global At can be used. For this, we choose M = 0.2,
R. = 1000 and, accordingly, An = 0.0066 (run 348). We can see from Fig. 6.4 that the calculation converges,
but the rate of convergence is extremely low. Some differences in the u-distributions can be seen between
step 8000 and step 16000, not at station A but at stations B and C (Figs. 6. through 6.10). It seems that
the braking of the flow produced by the wall takes a long time to propagate upwards, due to the fineness
of the grid in the boundary layer. Therefore, the thicker the layer, the longer it takes u to reach its steady
value. We repeat the run using a local At (Run 349). The speed of convergence increases drastically (Fig.
6.11), and the comparison with the Blasius profile is as good as with the previous run (Figs. 6.12 through
6.14). Thus, we decide to use local At in all these test runs. We also decide not to attempt to fit shocks, to
avoid 'introducing new stability problems.

BRUN-348
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Fig. 6.4 - Residuals for run 348

Many other tests were made with different Mach numbers and higher Reynolds numbers, varying Ap
and Y] occasionally The resolution in the boundary layer seems to be sufficient, with An = 0.0066 for
R. = 1000, .001 for R, = 10000 and .0005 for R, = 10000C. A run made for the highest Reynolds number
and Ay = 001 showed no breaking effects propagated from the wall to the first grid hne above it!

The following table shows, for all the runs made so far, an approximate value of the order of magnitude
of the decrease in residuals in the first 6000 steps.

R. 1000 100600 100000

My

2 4 2 2
4

9 J 7 3

1.5 11

2 13 13

25 0 13 5
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Fig. 6.5 - run 348, Blasius comparison at A, step 8000

3a

Fig. 6.6 - run 348, Blasius comparison at B, step 8000

From such results, a definite trend cannot be obtained yet, although it seems that supersonic flows
converge faster than subsonic flows and runs with R, = 10000 converge better than others (perhaps, because
the resolution in the boundary layer is more appropriate?). Runs with high Reynolds number converge very
slowly and this may hamper studies of more complicated cases.

The comparison with Blasius’ solution is generally very good. See, for example, Fig. 6.15 (Mg = 2.5,
R. = 10000), Fig. 6.16 (Mo = 2, R. = 1000), Fig. 6.17 (Mo, = 2.5, R, = 100000).
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Fig. 6.7 - run 348, Blasius comparison at C, step 8000
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Fig. 6.8 - run 348, Blasius comparison at A, step 16000
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Fig. 6.9 — run 348, Blasius comparison at B, step 16000
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Fig. 6.10 - run 348, Blasius comparison at C, step 16000
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Fig. 6.11 -- Residuals for run 349

RkUb= 345

Fig 612 - run 349, Blasius comparison at 4, step 8000
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Fig. 6.13 - run 349, Blasius comparison at B, step 8000
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Fig. 6.14 - run 349, Blasius comparison at C, step §000
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Fig. 6.15 - run 334, Blasius comparison at A, step 4000
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Fig. 6.16 - run 353, Blasius comparison at C, step 6000
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Fig. 6.17 - run 339, Blasius comparison at C, step 4000
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7. INVISCID FLOW OVER A WEDGE, WITH AN EXACT SOLUTION AS INITIAL
CONDITION

The first experiment in shock-fitting computes an inviscid flow over a wedge. The initial conditions are
chosen to describe the exact solution. Two cases are considered, one with an unstretched grid, the other
with a strongly stretched grid (as the one needed for viscous flows). The unstretched grid is poorly suited
for a shock computation that uses only “z-type” shocks (that is, defined by intersections of the shocks with
n=zconstant lines), if the free streamn Mach number and the wedge angle are too high; that is because the
shock tends to become parallel to 5 = constant lines and is defined by too few points. In this case, “y-type”
shocks would be better suited.

To test the code with a stretched grid, we chose a case with M, = 6 and ¢ = 25° (Runs 123 and 124).
Run 123 (Fig. 7.1) cuts the computational domain before the upper corner; therefore, no expansion occurs.
Run 124 (Fig. 7.2) considers the entire domain. The results at step 2000 are reasonable in both runs, but
in run 124 there are signs of uncertainty at the right boundary, where the shock reaches it. This is probably
due to poor handling of the shock at the right boundary. The rest of the flow field seems to be OK in beth
cases. The residuals (Figs. 7.3 and 7.4) reflect the inaccuracies of run 124; they decrease very slowly, with
oscillations that seem to increase in amplitude. For run 123, the residuals reach machine zero in less than
2000 steps.

RUn- 123

LINE-2

h+ 2000

TINE- ) 2819700
NiIke -2 COOMO
XiRT= 4 0000000
HIN--2 Q00000
YHAL- 4.0000000
XQURe -0 SOXDI00
REFERONEESe
300004

6 0D

0 20000

e
- 30

S

Fig. 7.1 - Isomachs at step 2000 for run 123

8. VISCOUS FLC'W OVER A WEDGE, WITH AN IMPULSIVE START
To test the calculation of a viscous flow over a wedge, we focussed onr attention on the second geemetry,
considering a flow defined by M, = 2.5 and R, = 10000. We used 2 stretching defined by Anp = 0.001.
Some runs were made starting impulsively (¢, = 0) and running 2000 or 4000 steps using lucal At's and
capturing the shocks isentropically before introducing shock-fitting. Other runs were made again starting
impulsively and using shock fitting from the beginning. Interesting features were discovered during the
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Fig. 7.2 - Isomachs at step 2000 for run 124
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+ 1.3 = Residuals for run 123

debugging phase. Shock-capturing :uns converge to machine-zero residuals in less than 4000 steps When
shock-fitting is applied, some pulsations appear in the recizculation zone and affect the rest of the flow field,
interacting with the shocks that, in turn, oscillate near their origins. The upper parts of the shocks, instead,
are not affected by the oscillations. So far, the cause of the oscillations has not been found yet; we believe
that, most probably, it is purely numerical but a possible physical interpretation is not excluded Let us
make clear that the calculations are still carried on for not more than 10000 steps and that since we must
use a global At in the presence of shocks the physical time span actually covered is only of the order of a
few mullisecond. Some setthng of minor oscillations in a different time scale is not at all unusual It is not
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Fig. 7.4 ~ Residuals for run 124

considered proper, however, to try longer runs before making sure that the code is completely debugged; the
logic of shock-tracking and its interactions with viscous term calculations may contain some hard-to-detect
traps. Moreover, difficulties may arise if the computed region is not sufficiently high; shocks that reach the
upper boundary produce boundary conditions that are hard to implement; instabilities are easily produced
at the upper right corner.

Here are some results for a typical calculation. Fig. 8.1 shows a set of u=constant lines on the compu-
tational plane at step 6000. Note that the Y=constant lines are evenly spaced on the computational plane.
Because of the stretching, the boundary layer occupies almost one third of the region. Only lines defined
by u =0, 1, and 2 are shown in the figure. The u=0 line encloses a region of negative u, which are part of
the recirculation zone. Two major shocks are denoted by crosses; the one to the left is rather weak and it
is generated by the abrupt stop of the flow at the leading edge of the wall; the one at the right is stronger
and it is generated by the recompression at the end of the recirculation region. The other figures show some
of the features ir the physical plane. Fig. 8.2 shows a few u=constant lines on the entire computed region;
details of the recirculation zone are in Fig. 8.3; details of the pressure distribution in the same zone are
in Fig. 8.4; note the constance of pressure on normals to the wall and the coalescence of isobars into the
recompression shock.
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Fig. 8.1 - u=constant lines on computational plane
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Fig. 8.2 - u=constant lines and shocks
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Fig. 8.3 - Enlargement of Fig. 8.2
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Fig. 8.4 - Isobars in the physical plane
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9. SHOCK/BOUNDARY LAYER INTERACTION

‘The next flow considered was that produced by shock reflecting from a boundary layer, Only the steady
flow will be considered. The free stream Mach number is 2 and the Reynolds number is 2.96x105. A down running
shock is produccd by a small 3° deflection. Figure 9.1 shows the isobars computed with the shock fitting code and
fig. 9.2 shows the same computation with a upwind shock capturing code. The shock capturing code is state of the
art in that it uses Roc's flux differencing, for this case no limiter was required so that the computation was sccond
order everywhere, A comparison of figs. 9.1 and 9.2 indicates the amount of shock spreading in the capturing result.
Figurcs 9.3 and 9.4 show the pressure distributions at a number of heights above the plate. While on the surface of
the plate the pressures look the same off the plate the shock spreading is obvious. Figures 9.5 and 9.6 show details

in the scparation zone, Figure 9.5 shows the long thin separation scparation bubble and fig. 9.6 shows the isobars

and shocks in the same region,

1,304

0.00

0.00 0.12

Fig. 9.1 Isobars computed with shock fitting scheme
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Fig. 9.3 Pressurc distributions computed witih shock fitting
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Fig. 9.4 Pressure distribution computed with shock capturing.




Fig. 9.5 Strcamlines near scparation

W
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Fig. 9.6 Isobars near sepsration
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IV. CONCLUSIONS AND FUTURE WORK

The first phase of our work has demonstrated the feasibility of performing accurate computations of shocked
viscous flows. The computational scheme presented here is efficient enough for today's supercomputers, and it treats
shocks in such a way as to avoid inaccuracies due to pre- or post-oscillations, spreading and local increases in
numerical viscosity. The basic scheme has been demonstrated on model problems in order to prove its soundness.
Any future work in this area should continue to test the scheme on flows which would tax its capabilities. In
particular, the flows considered thus far were over somewhat simple geometries; future work would concentrate on
more complex 2-D flows, such as the flow about a SCRAM jet inlet.

Only steady flows have been considered thus far. The code that has been developed has a time accurate
capability built in so that time-dependent flows such as inlet unstart and buzz could be considered.

The impact of fitting shocks on the accuracies of the computation of shock wave/boundary layer interaction
may be the most important aspect of any future work. We have begun such an investigation in the first phase of
this work. An investigation of this type may uncover problems with the widely used shock capturing schemes that
may have broad implications.

Only laminar flows have been considered thus far. Any investigation of shock/boundary layer interaction
would be incomplete without the inclusion of turbulence effects. These investigations would start with simple
models, but they would eventually examine shock/boundary layer interactions using complex turbulence models.

The real advantage of the scheme presented here may be demonstrated when three-dimensional flows are
considered. While shock waves can be captured quite sharply (i.e., accurately) in one dimension, they are spread
significantly in two-dimensional flows. This problem becomes even worse in three dimensions. Grid adaptive
schemes can be used some what effectively to sharpen captured shocks in 2-D, but this has been not been proven in
3-D. The complexity of threc-dimensional flows may require grid adaptation to obtain reliable solutions. The grid
must be adapted to boundary layers, wakes, vortices, geometric irregularities (comers, etc.) and other singularities, If
the shocks are fit, then that is one system of singularities that does not need grid adaptation. This is the appropriate
system to fit since shocks remain discontinuous in the model we are considering. The shock is a few mean free

paths thick, which is infinitesimal if a continuum flow model is assumed.
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