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ABSTRACT

The results of a one-year research effort addressing some fundamental scientific issues
relevant to particle diagnostics in optically-thick sprays are presented. The objective of this
research effort involved development and application of an experimental apparatus for studying
scattering in optically thick media. The important technical contributions of this project
included 1) development of a fluidized bed approach for creating controlled optically thick
media, and 2) characterization of performance of multi-element detectors and light-valve arrays.
With respect to the former, we have developed a binary-particle-phase fluidized bed concept
combined with refractive-index matching that will allow the bed to be fluid-dynamically very
dense (with interparticle spacings on the order of two diameters as required for stable operation)
but optically less thick (with interparticle spacings greater than five diameters where
independent, as opposed to dependent, multiple scattering is in effect). Conditions for stable
operation of the binary-particle-phase fluidized bed have been identified. Regarding detector
and light-valve arrays, the experimental results indicated that edge effects are important and that
current-generation Faraday-effect light valve arrays do not have the performance specifications
required for use in multi-angle interrogation schemes for diagnostics in optically thick sprays.

I. INTRODUCTION

Particle and droplet size distributions, being parameters of fundamental importance, should
be priority measurement objectives for intelligent sensors in next-generation propulsion systems.
Howev- -, the potential application of laser scattering systems as optical sensors introduces some
severe .cquirements on the measurement techniques. In particular, the presence of multiple
scattering in the near-field regions of sprays significantly complicate the application of optical
diagnostics. This research project involved experimental work related to measurements under
such conditions. In particular, a fluidized bed system with the potential for providing a stable
medium with controlled and continuously variable optical depth for a constant size-distribution
was proposed and studied. The present work was predicated on a preceding project as discussed
by Hirleman [1,2].

The long-term objective of this research is to understand the process of multiple scattering
as it might occur in future applications of intelligent particle size distribution sensors and
develop inversion schemes which can operate in such an environment. A minimum requirement
is that the presence of multiple scattering be diagnosed by the instrument to ensure that
erroneous data not be used in control algorithms, a situation which could result in a catastrophic
failure. Our goal was to surpass that and develop efficient and robust algorithms which can
actually extract useful particle size information from Fraunhofer diffraction measurements in
multiple scattering environments.

The laser diffraction particle sizing technique comprising the framework for this research
has been described in detail in the literature; for current references see [3]. In the sections
below, the results of this project are discussed. This final report is intended as an overview and
synthesis of the research results as opposed to an exhaustive restatement of what has appeared in
previous progress reports, annual reports, and published technical papers. Publications resulting
from this work are incorporated by way of references from the technical section. Finally, a
summary of personnel involved in the project is presented.

II. FLUIDIZED BED SYSTEM

The creation of a stable and well-characterized two-phase system such as a liquid droplet
spray (in a gas) or a dispersion of solid or liquid particles in a liquid is very difficult and has
escaped all efforts of standardization. Probably the most straightforward approach to obtain a
known calibration particle system for optical instruments is to disperse glass or polystyrene
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calibration microspheres available as certified reference materials in a liquid using stirred- or
flow-cells. Our early efforts in experimental verification utilized such an apparatus but questions
conceming uniform (spatial) dispersion, centrifugal separation (by size) of the particles in broad
size distributions, and the performance of the system at very high particle loadings (i.e. at or near
the dependent scattering limit) remained in question.

To solve some of the problems associated with cells such as segregation and deposition we
designed and constructed a fluidized bed system [4] as shown schematically in Fig. 1 and in a
photograph in Fig. 2. In theory, a fluidized bed should provide a uniform dispersion of the
particles and therefore a very simple means by which to control the particle concentration and, in
turn, the optical depth. The fluidized bed consists of the particles of interest placed in the test
section between two microsieves. A fluidizing liquid is pumped in a closed loop around the
system which includes a filter. When the fluid passes through the bed the resulting drag force on
the particles will, if the velocity is higher than some critical value, overcome gravity and lift the
particles. If the system is operating properly, for a given fluid velocity the bed of solid particles
will expand until the overall buoyancy and drag forces are balanced. The bed should expand and
contract as the flow rate is varied, and the concentration (#/cc) of particles will just depend on
the height of the expanded bed and the total number of particles originally placed in the
fluidizing section.

The fluidizing section in the bed developed here and shown in Figs. 1 and 2 is 7.62 x 2.54
cm (3 x 1 inch) inner dimensions with a height of 30.48 cm (12 inch). Optical access is provided
by two anti-reflection-coated quartz windows providing a 2.54 cm (1 inch) diameter clearance
near the bottom of the bed and a 7.62 cm (3 inch) path length for the laser beam. (The capacity
for similar windows on opposite sides of the shorter dimension is available). A plexiglass
window running the full height of the fluidizing section provides optical access to allow
measurement of the bed height for the independent determination of particle concentration.
With the two optical paths the system can theoretically allow a 10:1 variation in optical depth
while maintaining the same particle size distribution by merely adjusting the flow rate. The
absolute values of the optical depths are determined by the number (mass) of particles placed in
the fluidizing section of the bed when it is assembled.

We have successfully stabilized the operation of the fluidized bed under several
conditions. A photograph of the system in operation is given in Fig. 3. However, the stable
operating conditions we have found have been for void fractions (defined as liquid volume
divided by the total volume of the bed) too low for the multiple scattering models relevant here.
In particular, 90% void fraction is the highest value for which we have achieved stable operation.
At higher values of void fraction, the bed underwent the well-known "spouting” phenomenon
and the necessary uniform spatial distribution of the particle phase was lost. This level of void
fraction (90%) corresponds to an interparticle spacing of approximately 2.7 diameters, a value
which falls within the dependent scattering regime of Fig. 4. While dependent scattering is of
general interest, the objective of this project, based on multiple scattering models developed in
the grﬁe:l;qus work that apply only in the independent scattering regime, therefore requires higher
voi tions.

To overcome the problem of insufficient void fraction, we propose a binary-particle-
phase fluidized bed. This idea is original, and no reference to a similar concept has been found
to date. The solid phase of the bed will be comprised of two discrete modes, one which we
designate as the f! :idizing particle medium and the other as the scattering medium. These are
differentiated via the use of a refractive-index-matching fluid which renders the fluidizing
particle medium invisible. The scattering particles are of a different refractive index and are
therefore visible and scatter light passing through the bed. The scattering phase must have the
same fluid dynamic properties as the fluidizing particle phase so as to not be segregated by the
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Figure 1. Schematic of the ASU fluidized bed system.

Figure 2. Photograph of the ASU fluidized bed system.
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Figure 3. Photograph of the test-section of the ASU fluidized bed system in operation. The fluid
was water, and the particle phase was made up of glass beads in the 74 - 105 um diameter range
obtained from Cataphote Corp. The operation was stable at this condition, with a bed height of

3.8 cm (1.5 inch).
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Figure 4. Optical property map for a fluidized bed. Curves of constant physical path length 1 are
shown vs. inter-particle spacing and optical depth for 100 um spheres. The regimes of
dependent and independent scattering are shown as well.




fluidized bed. In this way the void fractions of the two solid particle phases are independently
variable, thereby allowing control of the optical depth of the medium independent of the total
void fraction. In this way the bed can be operated in a fluid-dynamically stable regime while
optically in the independent scattering regime as is required for this work.

The design problem basically then involves selection of the properties of the two particle
phases and the fluid. One critical constraint is that the fluidizing particle phase must be optically
homogeneous, i.e. no inclusions or other inhomogeneities inside the particles can be tolerated.
We have had difficulty obtaining particles of acceptable quality. In order to achieve refractive-
index matching, it is easier to obtain fluids to match the refractive index of a given particle rather
than vice-versa. To check for a refractive index match we developed a procedure based on the
Beck's Line method that uses refraction phenomena near the edge of a particle to qualitatively
ascertain the ratio of the refractive indices of the particles and the fluid. Figures 5 and 6 show
photographs taken through a microscope (40X objective) of glass beads in the 74-105 um
diameter range obtained from Cataphote Corporation immersed in Cargille fluids of refractive
index 1.51 and 1.52 respectively. In Fig. 5, the outline of the particles are quite visible
indicating that the specified nominal refractive index of the particles of 1.51 is off. Also clearly
visible in Fig. 5 are a number of impurities and inclusions within the spherical particles that
remain visible. These inclusions would scatter light in an experiment and therefore render these
particles unacceptable for the binary-particle-phase bed. Figure 6 is a similar photograph where
the particles have been immersed in a fluid of refractive index 1.52 where excellent matching has
occurred. The outlines of the particles are effectively invisible, though the inclusions within the
particle remain visible.

Due to the rather poor optical quality of these particles shown in Figs. 5 and 6, it was
necessary to look elsewhere for particles. Some example of spheres of better quality are shown
in Figs 7 and 8. Probably the best quality particles we have tested are the high-index spheres
from Duke Scientific Corp. shown in Fig. 8. The problem with these is the high refractive index
of 1.91, since the available refractive index fluids in that range are highly toxic (Arsenic
compounds) and certainly very difficult to use. Pyrex particles obtained from Mo-sci near the
end of the project have reasonably good quality and are shown in Fig. 9.

Our proposed design of the binary-particle-phase fluidized bed would involve Mo-sci
Pyrex or Yttrium-Alumina-Silica beads as the fluidizing particle medium matched with Cargille
fluids and the high density glass microspheres from Duke Scientific as the scattering medium.
For stable operation in the ASU fluidized bed for optical depths of 1 - 10 we propose 600 um
diameter particles for the fluidizing particle and 420 pm diameter for the scattering medium.

As of the conclusion of this project we have been unable to demonstrate the binary-
particle-phase fluidized bed concept. The particles and fluids required for our proposed design
are estimated (based on retail pricing at small quantity prices) of the order of $10,000.
Demonstration of our binary-particle-phase fluidized bed concept will be the subject of future
work.

II. CHARACTERIZATION OF DETECTOR AND LIGHT VALVE ARRAYS

In the previous project [1] we suggested a possible scheme for a general solution to
Fraunhofer diffraction particle size measurements in multiple scattering environments. The
experimental system to allow multi-angle interrogation of the particle field is shown in Fig. 10.
The key difference between Fig. 10 and conventional single scattering Fraunhofer instruments is
the presence of a programmable mask in the front focal plane of the transmitter lens. The
programmable mask has annular ring apertures which can be individually switched on
(transmitting) or off (absorbing or opaque). A ring of light in the front focal plane of an ideal




Figure 5. Photograph of particles in matching fluid taken through an optical microscope with a
40X objective and a red filter. The particles (of diameter nominally one-third of the field-of-
view) are glass beads in the diameter range 74-105 um obtained from Cataphote Corp. The glass
beads have a specified nominal refractive index of 1.51, and they are dispersed in a matching
fluid of refractive index 1.51 obtained from Cargille.

Figure 6. Photograph of particles in matching fluid taken through an optical microscope with a
40X objective and a red filter. The particles (of diameter nominally one-third of the field-of-
view) are glass beads in the diameter range 74-105 um obtained from Cataphote Corp. The glass
beads have a specified nominal refractive index of 1.51, and they are dispersed in a matching
fluid of refractive index 1.52 obtained from Cargille. The refractive index matching here is quite
good, and basically only the inhomogeneities inside the particles are visible.
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Figure 7. Photograph of particles in matching fluid taken through an optical microscope with a
40X objective and a red filter. The particles (of diameter nominally one-half of the field-of-
view) are Yttrium-Alumina-Silica beads of nominally 100 um diameter obtained from Mo-sci
Co. The YAS beads have a specified nominal refractive index of 1.69, and are dispersed in a
matching fluid of refractive index 1.69 obtained from Cargilie.

Figure 8. Photograph of particles in matching fluid taken through an optical microscope with a
40X objective and a red filter. The particles (of diameter nominally one-sixth of the field-of-
view) are high density glass microspheres obtained from Duke Scientific. The glass
microspheres have a specified nominal refractive index of 1.91, and are dispersed in a fluid of
refractive index 1.54 obtained from Cargille.




Figure 9. Photograph of particles in matching fluid taken through an optical microscope with a
40X objective and a red filter. The particles (of diameter nominally one-fourth of the field-of-
view) are Pyrex spheres obtained from Mo-sci Co. The spheres have a specified nominal

refractive index of 1.49, and are dispersed in a fluid of refractive index 1.54 obtained from
Cargille.
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Figure 10. Schematic of optical system for multi-angle interrogation of optically thick sprays.
The programmable mask on the input side transmits cylindrical shells of light which are
converted to hollow cones of light by a lens. / matched programmable mask at the transform
plane allows measurement of the redistribution matrix. The insert shows the actual geometry of
the 34-element ring-aperture light valve designed and fabricated according to the optimal scaling
law developed by Hirleman [5] in the preceding project.




transmitter lens produces a hollow cone of light of constant angle 0 passing through the spray or
particle samr.e volume. By switching open the various rings, a sequence of hollow cones of
probe rac .ution is created. The fraction of the incident energy in the cones which is not scattered
by the medium is redirected by the -unsform lens to a ring on the detection plane which matches
the ring in the programmable mask (assuming the focal lengths of the transmitting lens and the
transform lens are equal). Light which is scattered by particles in the spray leaves at some angle
different than the cone angle and ends up at another radial position (i.e. a different detector ring)
on the detector plane.

The method proposed for generating the cones of light necessary for implementing the
multi-angle interrogation scheme proposed by Hirleman [2] for deconvolution of the multiple
scattering effect involves the use of Faraday-effect light-valve-arrays. Three custom devices
have been fabricated based on the optimal scaling geometry of Hirleman [5]. Initial efforts at
experimental verification are reported by Kenney and Hirleman [4]. The success of the method
hinges on the performance of detector and light valve arrays. The contrast ratio must be such
that there is minimum cross-talk between elements. Our efforts at utilizing these devices have
basically been unsuccessful. The problem appears to involve the performance of the individual
elements. It was necessary to perform a careful characterization of the performance of these
devices in order to isolate and quantify the problem.

The experiments used in the portion of the work were similar to those reported by Kenney
and Hirleman [6,7,8]. A laser beam was focussed onto the light valve array and a photodetector
was placed in line with the beam behind the light valve to collect the transmitted light. The
results from a scan across two detector elements of the light-valve array are shown in Fig. 11 for
the light valves electronically switched on (open) and then off (closed). The contrast ratio
observed for this experiment is about 6, significantly less than that observed in work supported
during the previous project by Hirleman and Dellenback [9]. It appears that the performance of
the devices has degraded over the past year, and is now at a stage where the cones of light
generated by the device are not adequate for the application. Significant advances in the
technology will be required before Faraday-effect devices will be usable in the multi-angle
interrogation scheme proposed here.

Results of some additional characterization experiments on the arrays are shown in Fig. 12.
Here the focussed laser beam (nominally 30 pm diameter) was scanned across the entire array by
moving the array in 2.5 pm steps. Also shown in the lowest Fig. 12 are similar results indicating
the resolution of the experiment obtained by scanning beam across a knife edge. It is seen that
the edge definition on the light valve array is considerably better than that for photodiode array
as reported by Kenney and Hirleman [7,8]. The uniformity across the element, as indicated by
the fluctuations in transmitted energy at the tops of the waveforms in Figs. 11 and 12 is similar
to that we measured for photodiode arrays [7,8].

In summary, the performance of the light valve arrays fabricated for this project was not
adequate for incorporation into multi-angle interrogation schemes for diagnostics in optically
thick sprays. At present, until technology advances improve the performance of the light valves
significantly, other means must be used to generate the interrogation beams. Future work will
use axicons or reflexicons to this end
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Figure 12. Transmitted optical energy vs. position as a focussed HeNe laser beam was scanned
across the ASU light valve array from the center. A knife-edge scan of the beam (sec data
indicated by A on the left side of the lower figure) indicated a beam diameter (1/e2 intensity
points) of 30 pum . The edge definition of the light valves edges is much better than 30 um. The
transmission indicated through the inner rings (upper figure) does not saturate since the rings are
thinner than the laser beam.
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. SUMMARY OF IMPORTANT TECHNICAL CONTRIBUTIONS

Development of the binary particle-phase fluidized bed concept. This idea, combined with
refractive-index matching, will allow the bed to be fluid-dynamically very dense (with
interparticle spacings on the order of two diameters as required for stable operation) but
optically less thick (with interparticle spacings greater than five diameters where
independent, as opposed to dependent, multiple scattering is in effect).

Experimental characterization of the performance (edge effects, uniformity, and contrast

ratio) of programmable optical shutter arrays for use in multi-angle interrogation of
optically thick media. References [6,7, and 8].
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From Proceedings of the 2nd International Congress on Optical Particle
s' Sizing, March 5-8, 1990, Tempe, AZ.

. A GENERAL SOLUTION TO INVERSE FRAUNHOFER DIFFRACTION
PARTICLE SIZING IN MULTIPLE SCATTERING ENVIRONMENTS: EXPERIMENT

Steve B. Kenney and E, Dan Hirleman
Mechanical and Aerospace Engineering Department
Arizona State University
Tempe, AZ 85287-6106

One of the more difficult remaining challenges in the field of optical particle sizing is the characterization of particle size distributions
of optically thick, multiple scatiering media. In a previous paper {1}, a theoretical approach to solving the forward problem (i.c.
calculation of the scattering signature given the particle size distribution) for the case of near-forward scattering by particles lasge
compared to the wavelength in optically thick media was presented. A subsequent paper included in this Congress (2] is concemned
with the corresponding inverse problem, i.e. that of estimating tbe size distribution function of an ensemble of large particles using
mathematical inversion of the near-forward optical scatiering properties of the optically thick medium. In this paper we discuss the
experimental approach which will be used to verify the theoretical developments.

The inverse scattering problem for single scattering requires at least n measurements (which is equivalent to specifying n equations) to
solve for n unknowns, where the unknowns are the quantity of particles in n size classes. The n measurements are the amounts of
light scattered into various scattering angles. Conventional Fraunhofer diffraction systems use a collimated (incident angle of zero)
interrogation laser beam, but incident light at any near-forward angle could in fact be used. The optical system of Fig. | generates
incident (conical) beams of various angles, and for each incident cone n scattering measurements (i.e. at n detectors) could be made.
Thus, the system in Fig. | could theoretically provide enough measurements to support n independent solutions to the n by n single
scattering system. The optical system in Fig. 1 system uses transmission mode spatial light modulators as discussed by Dellenback
and Hirleman [3].

In optically thick media, the inverse problem is significantly complicated because the light which eventually reaches the detectors has,
in general, undergone more than one scattesing event. 1n other words, the single scattering signature (which can be modeled relatively
easily) is perturbed or altered by the additional (multiple) scattering events which occur after the light leaves the first scattering event
on its way to a detector. Additional unknowns are thereby introduced, specifically variables which determine or predict the expected
fate of light which would have reached each of the various detectors if not for the intervening thick medium. Now since ligit
originally iraveling at a scattering angle corresponding to say the jth detector could be rescatiered into n other detectors, one can
define n? unknowns necessary to model the n-angle scattering behavior of an optically thick medium. In contrast, the single
scattering medium required only n equations and n uuknowns. Clearlzy then additional measurements are needed to characterize a
multiple scattering medium, and the system in Fig. 1 can provide n“ independent measurements (each of n incident light cones
scattered 1o n detectors). After the n measurements are taken via Fig. 1, an n“ by n? system of equations must effectively be solved
10 determine the panticle size distribution.

Tt has been shown [2] that the inverse problem for multiple scattering, in the case of near-forward scattering, can involve the on-line
measurement of e multiple scattering redistribution matrix H ,, defined by:

Sm=Hm'So : 1)

where S is a vector defining the irradiance of incident light in n angles, and S, is a vector defining the angular distribution of
irradiance of the (multiple-scatiered) light exiting the medium. The scattering redistribution matrix H ,, such that the matrix element
in the ith row and the jth column H(i.j) is the gain or efficiency with which optical energy incident in the jth angle or direction is
redistributed by the medium into the ith direction. Now we also know [2]:

H,, 1 exp(-b) - exp(agb - H) 2

where ag and b are the forward-scattering albedo and the optical depth respectively and H is a n by n redistribution matrix valid for
single scattering. Now a conventional diffraction system under multiple scattering conditions will measure a signature proportional to
the first column of H py,, and only for small b are H and H ) equivalent. But H can be determined [rom measured H o using:

H = exp(b) / (agb) - In (H ;) 3)

The n? tems of 11, are measured using Eq. (1) by illuminating the medium using n different S¢ vectors (i.e. n different holiow cones
of incident illumination) and easuring the scattering signature on n different detectors for each incidence case. Then H is obtained
from Eq. (3) which in e(fect amounts 10 "reaching into the medium” and determining the scatiering signature that is present afier Just
one scattering event has taken place. Once the single scattering properties of the medium are known, the inverse problem can be
solved using an array of methods discussed in the lilerature; see Koo (4) for references.
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Experimental verification of the algorithm for inverse scattering under multiple scattering conditions requires an experimental
apparatus where the optical density and particle size distribution of the medium can be carefully controlied. In both the nut.nencd and
experimental studies performed here we use NBS standard reference material (SRM) 1003A as the particle size distribution. In the
first experiments we used a optical cell with a magnetic stirring system:, and dispersed the SRM 1003a particles in water in the cell
The theoretical optical density was proportional to particle concentration assuming that the particles were uniformly distributed in the
cell. Panticle concentration in the liquid was varied to produce particle fields of different optical thicknesses. Stirred cells do have
potential problems in that the centrifuge effect can cause both size and spatial segregation of the panticles.

The generation of hollow cones of illumination is performed using a spatial light modviator operated in the transmission mode. The
custom device has thisty-two semicircular ring-shaped apertures which can be individually addressed. The ring geometries follow the
optimal scaling law discussed by Hirleman [S]. Activaling any ring element causes that element to rotate the polarization vector of
the transmitted light relative to that of light passing through the unactivated elements. A polarizing element behind the ring window
arrny then preferentially blocks light which has not been rotated. This in effect produces conical shells of light passing through the
transmission mask, which in tum produce conical shells of light at the back focal plane of the lens. Cycling through the ring elements
produces a sequence of cones of light of different included angles. A matched device at the back focal plane of the collection lens
allows measurement of the n< elements of H.

Particle Flow System

A Nuidized bed was designed to create a sample volume in which the particle concentration could be easily varied. A schematic of
the experimental apparaws is shown in Fig. 2. Initially, the particles to be sized lie on a stainless steel mesh at the bottom of the
fluidizing tube. If a Nuid in laminar Now is passed upwards through the tube and past the particles a critical velocity will be reached
when the viscous frictional and drag forces equal the weight of the particles io the fluid stream. As the flow rate is increased the bed
expands. For beds of liquid-solid composition the bed expands uniformly and the concentration of solid particles is evenly distributed
throughout the bed |6]. Therefore, varying optical depths can be produced simply by changing the flow rate of the fluid.

A 0.2mm filter is placed in the line to keep unwanted foreign material from entering the fluidizing tube. To achieve a uniform flow
across the cross-sectional area a packed bed of glass beads (6.54mm diameter) was inserted before the fluidizing tube entrance.
Optical windows with anti-reflection coatings are mounted near the bottom of the fluidized tube on opposite sides. The incident laser
light is passed through the window and the light scattered by the suspended particles is focused and collected on the other side. A
rectangular window running the length of the fluidizing tube is used to determine the height of the bed from which the panticle
concentration can be calculated. Ta ensure uniform fow all windows are mounted flush to the inside surface.

Results

Experimental results obtained with the multiple scattering cell apparatus discussed above are shown in Fig. 3. Here the measured data
for two columns of the H,, matrix are plotted against the calculated (theoretical) signatures coupled with the successive order
multiple scatiering model. The data show reasonable agreement, and, based on the theoretical inversion studies in the presence of
noise | 1], it appears that reconstructions for reasonable numbers of degrees of freedom will be possible. Experiments (o characterize
the full Hy, matrix are underway,
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Edge effects in silicon photodiode arrays

S. B. Kemey and E. Dan Hirleman
Mechanical and Aerospace Engineering Department
Arizona State University
Tempe, AZ 85287-6106

ABSTRACT

Photodiode arrays used in laser diffraction particle sizing insiruments must be calibrated to account for detector-to-detector
varistions in sensitivity. We have calibrated an Insitec EPCS-P ring detector (planar-diffused, p on n silicon photodiode
array) by scanning a focussed laser beam across the detector surface. A deconvolution of the known intensity distribution of
the laser beam from the measured signal resulted in detector response as a function of position. Detector response was
spproximately constant over the region of the ideal active detector and it decreased exponentially in the region beyond the
ideal detector boundary. A diffusion length constant of SOpm gave the best fit to the measured data. Theoretical predictions
of calibration factors based on measured detector response agreed reasonably well with Malvern and Insitec calibration
factors obtained from the traditional uniform light illumination method. This indicates that edge effects in different ring
detectors are similar.

L INTRODUCTION

Many optical processing systems require an array of photodetectors to measure photon flux at the focal plane. We define a
detector as a device that converts electromagnetic radiation into an electrical signal. The magnitude of the electrical signal is
directly related to the photon flux incident on the device. Photodetectors have been commercially available for some time in
1-D and 2-D arrays of various element shapes. Future improvements in system performance, from a detector standpoint, will
hwhdehmmhaeuedspeed-ﬂdymicmge.mdlﬁghumolml Higher resolution transiates into smaller
elements, and their associsted problems such as (1) crosstalk, the generation of signals at elements other than the one being
illominated and (2) sensitivity, or the unequal response of elements to the same electromagnetic flux. Onaamlleucdei
differences in element to element sensitivity result directly from the spatial nonuniform response over each element area.
This response nonuniformity is due to conditions such as imperfections in the crystalline lattice, variations in doping density,
dominant modes of electron-hole transpost (diffusion or drift), and surface defects and contamination.

To account for nonuniformities, detector signals are often comrected by mulktiplying the signal by a predetermined constant,
These correction factors are determined empirically by exposing the detectors to one or more uniform imradiance levels.3
This procedure compensates for relative pixel to pixel sensitivity differences, but does not yield any information on spatial,
intra-pixel responsivity varistions. Generally, the most dramatic varistion in spetial respounsivity occurs near the edge or
boundary of the detector. As elements become smaller, the responsivity near the element edges has a more pronounced
effect on the overall sensitivity of the element. The "edge effect”, or responeivity near the element edge, is the topic of this
peper, particularly as to how the edge effect impacts log-scaled, annular, semi-circular shaped detector arrays.

An example of an applicstion of photodiode arrays is their use in particle sizing instraments4 based on nesr forward
scaftering signatures. Scattering signstures are collected by a detector array and are processed by a mathematical inversion
scheme to determine the size distribution. Embedded in the solution is an assumed detector armray response. y,
one of the limits on the accuracy of the size distribution solution is proper estimation of the detector array seusitivity.

In the ingtrument described above a system matrix is usually assembled assuming a step detector response defined by the
detector geometry. An improvement in the matrix accuracy, howeves, would include a more realistic detector response.
Through experiment we have measured the response of a detector st various spatial points with the aid of a focussed iaser
beam. From the experimental data we have defined a mathematical mode! that accurstely predicts detector response through
the boundary region. Also, we show how calibration factors sre highly dependent on edge response and that from a
theoretical model of the edge response characteristics it is possible to predict calibration factors.
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2. PHOTODIODE DETECTOR BACKGROUND

A photodiode detector is manufactured from a thin silicon wafer. One side of the wafer is doped with atoms from the third
column of the periodic table such as boron, while the other side is doped with atoms from the fifth column, such as
phosphorus. Silicon doped with Boron is minus an electron to balance the charge in the crystalline structure and the material
is called p-type silicon. This gives the material a slight positive charge, hence the symbol p is used. Likewise, silicon doped
with Phosphorus is termed n-type silicon because of the extra electron in the lattice, giving it a slight negative charge.

Between the p and n-type silicon regions exists the p-n junction. When the two types of silicon are brought together the extra
electrons from the n-type material diffuse to the p-type to fill up the holes near the Boron atoms. The junction has a width of
only a few atoms and a small potential is established due to the extra positive charge at the n boundary and the negative

charge at the p boundary.

Silicon atoms readily absorb photon energy. If the absorbed energy is greater than 1.1eV, an electron-hole pair will be
created. Pairs created in the depletion region or within a diffusion length constant will be separated by the electric field,
leading to current flow in the extemnal circuit. For a p-on-n semiconductor, holes will collect at the front ohmic contact,
while electrons will collect at the back ohmic contact. The resulting current is approximately proportional to the total
illumination and because of this relationship the photodiode can be used as a light measuring device. (For additional
information on the physics of photodiode detectors, see Sze).

3, SIZING INSTRUMENT MATHEMATICAL BACKGROUND

Scattering measurements in laser diffraction instruments are typically made with annular ring shaped detectors which cover a
finite range of scattering angles as determined by the detector apertures. It is convenient to assign a particular scattering
angle 6, to represent the range of scattering angles in the aperture. The detection process can be represented as:

I.(8;) = | wq(0,0;)i(6) dO ()]
0

where the weighting function wg(6,0;) describes the relative responsivity variations across the detector and 1,(6)) is
representative of the signal obtained from the ith discrete detector (the subscript w indicates a dependence on the weighting
function). The azimuthal, or ¢ dependence on the responsivity variations are significantly less important than the 0 effects,
and have been neglected. i(0) is the intensity (W/sr) scattered at near-forward scattering angles 0. The weighting function
wg is what is to be determined experimemntally. Itisq}sonotedthatthepuﬁcledisﬂibuﬁonshouldalsobedim&zedina
manner similar to that used for the scattering intensity./ In that case we obtain a system of m g equations in m 4 (c is the size
parameter) unknowns where mg is the number of discrete detectors and m , is the number of discrete size classes. The linear
system is written as:

I=K*'N 2

In Eq. (2) the mg elements of the vector I are 1,(0;) as given by Eq. (1); the mg elements of N contain the bth partial
moments of the number of particles in the size class; and K is the instrument or system matrix whereby element K;
represents the diffraction contribution of a unit measure of particles in the jth size class onto the ith detector. The elements
of K are given by:

K = J [ ky(0.8)) wo(o) we(0,9;) doc do 3)
00
where w,(a.0u) is a weighting function for the jth size class and kp(0.0,) is a general scattering function which gives the

scattering ribution of a unit quantity of particles of size a into angle 8. Now the solution or measured particle size
distribution indicated by N in Eq. (2) can in theory be obtained by inverting the matrix K.
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The experimental apparatus consisted of a laser d:ﬁncuon particle sizing instrument (Fig. 1). A laser beam is spatially
filtered, expanded and collimated to a few millimeter 1/e2 diameter. Particles within the collimated beam scatter light which
is collected by a receiving lens and refracted onto the detector plane. A commercially available Insitec detector and
associated electronics were used in the experiment. The layout of the Insitec detector is well-suited for examining desector
response, given its odd numbered rings on one half of the detector and even numbered rings on the other (Fig. 2). This
design has large non-responsive sections between adjacent rings, which provides good isolation between adjacent detectors.

The Insitec detector was mounted in a cantilevered position on a pro able x-y translation stage which moved in a plane
normal to the beam axis. A HeNe laser beam was focussed to a 1/e“ spot 25um in diameter and the spot was positioned in
the small hole in the center of the detector. (The hole allows the strong unscattered light at the center of the detector to pass
through, thereby reducing stray reflections and inner ring cross-talk). Coarse centering was performed by moving the
detector until the light reflecting off the region surrounding the hole disappeared (indicating the light was passing through the
hole). The beam power was adjusted so that when the laser was positioned in the middle of an active detector the resultant
signal was just below saturation level. Several runs were made by scanning across the entire detector on a line passing
through the center in one direction and then rotating the detector 90 degrees and repeating the scan in the other direction.
Signals were recorded at 1um increments and the entire experimental apparatus was shielded from stray room light.

Before scanning the detector, the rings were examined under a microscope. Three distinct regions were noticed which are
shown in Fig. 3 and ate labeled as follows: the ideal responsive or active region (R qjve). the transition region (gap), and the
non-active region (masked). The p-n junction within the active region is also shown, though not to scale. The non-active
region between each detector consists of a thin aluminum film which has been deposited to mask the area between detectors.
It is assumed that the metal helps block radiation so that masked regions are not responsive. Though Fig. 3 shows just one
detector, all detectors were examined and found to be similar.

To measure the gap width, the detector was placed on a two-axis translation stage that was coupled to LED displays showing
relative stage position. The resolution of the display was Ium. A camera connected to a 19-inch TV screen was mounted on
the microscope which allowed for easy visual inspection of the object. A small piece of tape was placed on the screen to
mark the starting and ending points for various features. An inner gap edge was visually lined up with an imaginary tangent
line on the edge that would be parallel to the tape. The stages were moved until the outer gap edge was reached and the
difference between stage positions was recorded. In this manner the width of each gap, (both inner and outer per detector)
was determined.

3. RESULTS AND DISCUSSION

The average gap width was approximately 8um (results from all detector rings can be found in Table 1). The largest
measured gap width was 10um while the smallest gap width was 6um, though most widths were 8um. The table begins with
detector 5 because the first four inner rings were damaged when a hole was laser drilled through the detector center. Also
included in Table 1 is the visual width of the Insitec detectors (from microscope).

Fig. 4 displays the individual ring signal vs. radial distance for the first five inner odd rings. The rectangular boxes represent
the specified width of the detectors and therefore the ideal top hat response distribution, while the curves represent the
measured signal. The measured signal is a convolution of the detector spatial response and the Gaussian intensity profile of
the laser beam. Since the measured curves are centered around the theoretical points, it was concluded that the laser beam
was approximately centered about the detector, which also confirms the accuracy of the stage motion. The maximum signal
is close to 8 volts, however this value is not quite reached on rings 4 and 5 because the width of these rings is less than twice
the beam width, (where twice the beam width represents more than 99% of the total beam energy). Also, overiap between
rings occurs because of the beam width and edge effects resulting from electron hole pair and photon diffusion. Note how
overlap decreases with increasing ring size, which is due to the larger regions of non-responsive area between rings. The
curves appear smooth except for the saturstion region where small deviations in signal are noticed. It should be mentioned
that 1000 signals are averaged at each position.
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Fig. 1. Schematic of laser diffraction particle sizing system.
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Fig. 2. Insitec detector geometry showing 32 ring photodiode array detector. Odd
numbered rings are found on the upper half of the detector and even nambered ones are
located on the lower balf.
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Fig. 3. Cross section of an Insitec photodiode detector showing the ideal responsive
region (R-active), the transition region (gap), and the non-active region (masked).
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Fig 4. Plot of desector signal vs. radial distance for five inner odd rings. The rectangles
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1jpm increments and the corresponding signal at each position is an average of 1000 data
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Table I

Insitec ideal detector width and gap width. Visual dimensions were acquired by viewing the detector under a microscope.

Detector Visual detector Visual gap width
width (jum) inner (um) outer (um)

5 27 7 7
6 29 8 8
7 33 7 8
8 47 7 6
9 55 8 8
10 65 7 8
I 77 7 8
12 92 8 8
13 108 7 7
14 127 7 7
15 149 8 9
16 177 8 9
17 209 8 6
18 244 7 7
19 285 7 8
20 333 10 6
21 392 7 8
22 455 9 10
23 532 8 10
24 625 8 8
25 730 7 8
26 855 8 7
27 997 8 9
28 1165 8 7
29 1361 10 8
30 1586 7 9
31 1855 7 8
average 8 8

In order to be able to calculse wg for use in Eq. (1) it is necessary to model the gap response. This response can be
estimated by deconvolving the measured signal from the known Gaussian intensity profile of the laser beam. Afier several
runs were taken of the inner odd rings (results of rings 11,13,15) an average response of the gap region was calculated by
first determining the average signal for each ring at each 1um position (over a 100um distance) and then superimposing the
profiles from the 3 outer edges (S runs for each edge) to calculme an overall average. This average gap response curve is
shownin Fig. 5.

Initial insight into a possible model for the gap response is found by looking for symmetry within the curve. Fig. 6 shows
two curves Isbeled upper and lower. The upper curve is the first SOum of the average edge response curve normalized to
one, while the lower curve is obtained by “inverting” the last 50um of the average edge curve. The lower curve is found by
subtracting 1 from each lower signal and superimposing the new curve onto the upper curve. It is apparent from Fig. 6 thet a
certain degree of symmetry exists. This is especially true for the signal values associated with a position between 30um and
30um. For radial positions less than 30um there is sligin discrepancy between curves which is most likely attributable to
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random noise or reflections from the mask affecting the ring output, aithough the background signal which contains most of
the noise has already been subtracted from the total signal. There is a residual signal obtained when the beam is illuminating
the mask even though we would expect no response.

The symmetry present in the curve points to a potential model based on a simple function, most likely exponential. A logical
model to predict the gap response would include uniform response over the idealized detector region, decaying exponential
response over the 8um gap width and no response in the masked or non-responsive region. Photons incident on the gap
region are absorbed by the silicon where they create electron-hole pairs. The electron-hole pairs begin diffusing through the
material until they either reach the p-n junction, where there is a possibility that they will contribute to the overall current, or,
they lose their energy through collisions and recombine. As far as this model is concemned only one parameter will need to
be determined, the "diffusion length constant” governing the decaying exponential.

However, it should be mentioned that when convolving the Gaussian beam with the gap response function the value of the
diffusion length constant has only a slight impact on the slope of the curve, thereby making it difficult to estimate the proper
value of the constant to match the measured data. Fig. 7 confirms this observation, where three curves representing the same
beam diameter, but different diffusion length constants are displayed. As can be imagined the gap response resulting from
different diffusion constants is highly variable, yet because the beam width is much greater than the gap width the slopes of
the curves are nearly equal. If the beam width was less than the edge width then the slopes of the three curves would be
much different. Furthermore, if the beam was reduced to a point source then the response would simply be the exponential
itself. However, even with large beam widths a difference exists between the curves. The results are sensitive to diffusion
length in that the curves expand with increasing diffusion length constant.

Since the specified width of each detector is known, a theoretical calculation could use diffusion constants as a means to
expand or contract the curve to fit the measured data and determine the diffusion length constant. First, the total laser power
in the Gaussian laser beam is normalized to one and the beam is moved in one micron increments over the ideal, gap, and
masked regions. At each position the expected signal is calculated by convolving the response function (assuming a
diffusion length ) with the Gaussian beam intensity. (As can be seen from Fig. 2 there are instances when the width of the
beam covers all three regions of the detector.) These values are then compared to the measured data to find the diffusion
length constant that provides the best fit.

Experimental data from ring 9 were compared to theoretical calculations based on different diffusion length constants.
Assumed values in the theoretical calculations include a 25um Gaussian intensity profile diameter laser beam, gap width of
8jam, and total detector width obtained from visual inspection. Results showed that a diffusion length constant of 50um gave
the best fit between experimental and theoretical values. A plot of ring 9 normalized signal vs. distance is found in Fig. 8,
and as can be seen from the graph the fit is quite good. Diffusion lengths are fundamental characteristics of semiconductor
devices and many of the techniques used to measure them are reviewed by Schroder.8 Our measured diffusion length of
50um + 10um is consistent with typical values for p-n junction devices. As a test for the model, comparisons were made
between experimental and measured results for many of the other rings and similar results were noted. Thus, it was
concluded that a simple exponential function appears to adequately predict the edge response of the Insitec ring detector.
The weighting function over the width of an edge can be written as:

Weedge = Plf = eX/xd @

where p(0) is the local responsivity, g is the maximum responsivity in the ideal active region of the detector, xd is the
diffusion length constant, and x is the position measured from the ideal edge into the gap. Now that the weighting function
wg has been determined a new instrument matrix K can be calculated by substituting the measured gap weighting function of
Eq. (4) into Eq. (3) in place of the usually assumed step function. To quantify the effect of the detector weighting function
on the instrument matrix, two matrices were calculated; one assuming a step detector response, the other the actual measured
response (and weighting values of 0 and 1 in the masked and idealized regions, respectively). A plot of the difference matrix
(element by element) between the two matrices is presented in Fig. 9. The matrices were calculated on a particle area basis
with rectangular weighting functions, uniform by volume within-class distributions, and a Fraunhofer diffraction
approximation. The surface plot shows almost no change on the outer rings, while the difference between elements increases
a8 ring dimensions decreases. This is expected, as the ratio of edge area 1o visual detector area is much greater for smaller
rings than larger ones.

SPIE Vol 1480 Sensors and Sensor Integration (1991) / 89




~x— =100 —v— nd=100.0

normalized signel

0 | 80 100 | 150
radial distance (rm)

Fig. 7. Plot of theoretical signal curves calculated by convolving a 25im beam diameter
with the theoretical detector response. The specified detector width is S5um which
corresponds to ring 9 of the Insitec detector. Calculations are mai.: with different
diffusion length constants as indicated. The ideal active, gap, and masked regions are
also indicated on the figure.
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Fig. 8. Comparison of theoretical and measured signal vs. relative distance for ring 9 of
the Insitec detector. The theoretical signal was calculated based on a 25um beam
diameter, 8um edge width, SOum diffusion length, and 55um detector width.
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It has already been mentioned that it is possible to predict calibration factors based on gap or transition region response as
opposed to systematic between-detector variations in the responsivity. The accuracy of the "gap" calculated factors is based
on the premise that the major contribution to calibration factors is from gap response. A predicted calibration factor is
defined here as the ratio of the ideal detector output to the actual detector output when illuminated with light of uniform
intensity. The ideal detector output is calculated by integrating the incident light intensity over the ideal, visual detector area
while assuming that the weighting function wg is constant and equal to one. The actual detector output is found in the same
manner except the area over which the integration is performed includes the gap region and the associated weighting function
Woedge: In equation form we have:

f1da [ dAigea) )

fwg1dA [ Woedge dA(gap) + | dAGideat)
where Cyreq i the predicted calibration factor and I i the intensity (W/m?)

Traditionally, calibration factors have been determined based on illuminating the detectors with uniform light intensity. We
determined two sets of calibration factors for the Insitec detector. One set of factors was calculated using Eq. (5), while the
other set was determined using the uniform light method. Results of the two methods are displayed in Fig. 10 along with
calibration factors from 3 different9+10:11 Malvern 2600 instruments determined empirically with the uniform light method.
Since the Insitec detector geometry differs slightly from the Malvern detector geometry, the calibration factors are plotted vs.
detector width. As is seen from the plot the curves are in reasonable agreement. Noticed trends are that all factors decrease
in value as detector area decreases. Consequently, the inner detectors over-respond relative to the outer detectors.
Calibration factors determined from Eq. (5) are limited by the fact that experimental data were collected along two lines
running through the center of the detector instead of scanning the entire detector surface. Additionally, in Eq. (5) it was
assumed that the weighting function equals a constant over the ideal detector region, however, Fig. 4 shows slight variation
in this region. One other area of uncertainty which we did not investigate is the ends of each detector. Though we accounted
for the end region in the calculations the region is different from the rest of the perimeter regions in that a masked area is not
found 8um from the ideal detector boundary. A drawback to the uniform light method is that linear detector response is
assumed with no cross-talk. If either of the above assumptions is not correct then errors in calibration factors will propagate
through the remaining factors that need to be determined. This results from the requirement that values acquired from
different light levels must be spliced together.3 Overall, it sppears that calibration factors calculated using Eq. (5) compare
reasonably well with factors determined with the uniform tight method, especially considering the fact that factors are for
different detectors from different laboratories.

6. CONCLUSIONS

In conclusion, the transition region response has been measured and modeled for an Insitec detector. A simple exponential
with a diffusion length constant of 50um accurately predicted the experimental data. The detector weighting function has
been caiculated and incorporated into the instrument matrix K. Calibration factors for the Insitec detector have been
predicted based on edge effects and were compared with calibration factors derived from the uniform light source technique.
Both methods indicated that the inner rings over-respond relative to the outer, larger rings. It is difficult to conclude which
method produces the more accurate results. The uniform light method has the disadvantage that detector signals resulting
from several light levels must be measured and the calibration curves spliced together. The gap response model has the
disadvantage that it is based on 2-dimensional results and it must be assumed that gap response is axisymmetric. Another
independent technique for calculating calibration factors could belp verify whether the gap or uniform light source is more
accurate. The effect of using the theoretical calibration factors instead of the uniform light source factors would, in general,
transiate into slightly larger particle sizes because of the higher signals on the inner rings.
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Fig. 9. Plot of the difference matrix between K ¢ based on a step response detector
weighting function and K obtained with theoretical detector response weighting function
(which accounts for detector response in the gap region between the mask and idealized

detector boundary).
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Fig. 10. Plot of calibration factors vs. detector width for various instruments and
calibration techniques. The numbers in the legend correspond to the following: 1)
Malvern 2600, instrument #1, uniform incoherent illumination.3:11 2) Malvern 2600,
instrument #2, factory supplied calibration factors.9 3) Malvern 2600, instrument #3,
uniform incoherent illumination. 10 4) Insitec, uniform incoberent illumination. 5)
Insitec, theoretical predictions based on gap response method.
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CALIBRATION FACTORS FOR LASER DIFFRACTION RING DETECTORS:
THEORETICAL MODELING

S.B. Kenney and E.D. Hirleman

Mechanical and Aerospace Engineering Department
Arizona State University
Tempe, AZ, U.S.A.

ABSTRACT

Photodiode arrays used in laser diffraction particle sizing instruments must be calibrated to account for detector-
to-detector variations in sensitivity,. We have calibrated an Insitec EPCS-P detector by scanning a small laser beam
across the detector surface. A deconvolution of the known intensity distribution of the laser beam from the
measured signal resulted in detector response as a function of position. Detector response was approximately
constant over the region of the ideal active detector and it decreased exponentially in the region beyond the ideal
detector boundary. A diffusion length constant of 50um gave the best fit to the measured data. Theoretical
predictions of calibration factors based on measured detector response agreed reasonably well with Malvern and
Insitec calibration factors obtained from the traditional uniform light illumination method. This indicates that edge
effects in ring detectors made by different sources are similar.

INTRODUCTION

Particle sizing instruments based on near forward scattering signatures are commonly used to measure droplet
size distributions in sprays [1]. Scattering signatures are collected by the instrument and are processed by a
mathematical inversion scheme to determine the size distribution. The equation which models the scattering
signature is a classical Predholm integral equation. This integrai equation is often approximated by a linear system
of discretized equations and the caiculated size distribution is only an approximation of the actual distribution. The
corresponding coefficient matrix resulting from discretization contains elements that must be estimated. Two of
these components are the distribution of pamcle size within each size class and detector response characteristics.
The ultimate accuracy of the calculated size distribution is hmnted by the accuracy to which these components are

properly estimated.

Since it is the particle size distribution that is sought, it is doubtful that any information on within class size
distributions would be known a priori. However, it is possible to experimentally probe the detector respoase.
Literature references [2-4] discuss calculation of the scattering matrix assuming an ideal step response at the
boundary of detector elements. Any deviation in the actual detector edge response characteristics from this assumed
ideal behavior would result in a bias error in the matrix, and hence, also in the calculated size distributions. Further,
all scattering matrix calculations reported to date have assumed no detector-to-detector variation in responsivity, the
ideal situation. However, since interlaboratory studies (5] highlighted the significant effect of between-detector
respousivity variations on the overall accuracy of laser diffraction instruments, calibration factors have been
introduced to correct for these between-detector effects. The process of calibrating a photodetector array using
uniform illumination [6] can experimentally correct for two effects, 1) spatial variations in the local responsivity
(amps/watts) either within or between detectors, and 2) edge effects. Clearly, details of these local effects are
masked by the averaging effect of uniform flood illuminstion. In this paper we are concerned with the details of
detector array characteristics on a spatial scale much smaller than the detector dimensions. In particular, we report
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measurements of local responsivity both within and at the boundaries of the detector elements. We
have used the results to develop a theoretical model for the edge effects and we therefore are able 10 theoretically

predict calibration factors.
MATH‘BMATICAL FORMULATION

Scattering measurements in laser diffraction instruments are typically made with annular ring :haped detectors
which cover a finite range of scattering angles as determined by the detector apertures. It is convenient to assign a
- particular scattering angle 6; to represent the range of scattering angles in the ith detector aperture. The detection
process can be represented as

1(6;) =] wg(6,6;)i(6) do (¢))
0

where the weighting function wg(6,0;) describes the relative responsivity variations across the detector and 1.(6)) is
representative of the signal obtained }rom the ith discrete detector (the subscript w indicates a dependence on the
weighting function). The azimuthal, or ¢ dependence on the responsivity variations are significantly less important
than the © effects, and have been neglected. i(0) is the intensity (W/sr) diffracted at near-forward scatiering angles
6. The weighting function wg is what is to be determined experimentally. It is also noted that the particle
distribution should also be discretized in a manner similar to that used for the scattering intensity [7). In that case
we obtain a system of mg equations in mg (a is the size parameter) unknowns where mg is the number of discrete
detectors and m,, is the number of discrete size classes. The linear system is written as:

I=K°N (2)

In Eq. (2) the mg elements of the vector I are 1,(6;) as given by Eq. (1); the my elements of N contain the bth
partial momeats of the number of particles in the size class; and K is the instrument or system matrix whereby
element K;; represents the diffraction contribution of a unit measure of particles in the jth size class ooto the ith
detector. The elements of K are given by:

Kyj = f [ k(0.8 wo(0o)) wg(8,6;) do. 00 - ®
00

where wa(a.a‘) is a weighting function for the Jth size class and ky,(0.,8;) is a general scattering function which
gives the mttenng contribution of a unit quantity of pamdes of size a.into angle 6. The solution or measured
particle size distribution indicated by N in Eq. (2) can in theory be obtained by inverting the matrix K.

EXPERIMENTAL PROCEDURE

Fig. 1 shows a schematic for a laser dxffmcuon particle sizing instrument. A laser beam is spatially filtered,
expanded and collimated to a few millimeter 1/e2 diameter. Panticles within the collimated beam scatter light which
is collected by a receiving lens and refracted onto the detector plane. A commercially available Insitec particle
sizing detector bead and electronics were used for the experiment . The layout of the Insitec detector is well-suited
for examining detector response, given its odd numbered rings on one half of the detector and even numbered rings
on the other. This design has large non-responsive sections betweea adjacent rings, which provides good isolation
between adjacent detectors.

The Insitec detector was mounted in a cantilevered position on a programmable x- 5 translation stage which
moved in a plane nommal to the beam axis. A HeNe laser beam was focussed to a 1/e“ spot 25um in diameter and
the spot was positioned in the small hole in the center of the detector. (The hole allows the strong unscattered light
at the center of the detector to pass through, thereby reducing stray reflections and inner ring cross-talk). Coarse
centering was performed by moving the detector until the light reflecting off the region surrounding the hole
disappeared (indicating the light was passing through the hole). The beam power was adjusted 50 that when the
laser was positioned in the middle of an active detector the resultant signal was just below the saturation level.

416




N

P IS poger T 3 T TV 4% i F [
O PRI S KPR 1. |

1ed o gt

ER

N ~
Laser \\@ oavsses been
\0‘ 7
Beam Expancer/ Ji 77\ \
Spatial Filter \:) “aa
\

Detection Piane
{Transiorm Piane ) .-~

hematic ention diffraction Fig. 2. Cross section of an Insitec photodiode detector showing the
ms: of conv ol laser perticle sizing id:‘d responsive region (R-active), the transition region (gap), and
the non-active region (masked).

Several runs were made by scanning across the entire detector on a line passing through the center in one direction
and then rotating the detector 90 degrees and repeating the scan in the otber direction. Signals were recorded at
Ium increments and the entire experimental apparatus was shielded from stray room light.

Before scanning the detector, the rings were examined under a microscope. Three distinct regions were noticed
which are shown in Fig. 2 and are labeled as follows: the ideal responsive or active region (Rycyjye): the transition
region (gap), and the non-active region (masked). Bounding each detector is a thin aluminum film, which has been
deposited to cover most of the area between detectors. It is assumed that the metal helps block radiation so that
masked regions ars not responsive. Though Fig. 2 shows just one detector, all detectors were examined and found
to be similar.

To measure the gap width, the detector was placed on a two-axis translation stage that was coupled to LED
displays ehowing relative stage position. The resolution of the display was Ium. A camera connected 10 a 19-inch
TV screen was mounted on the microscope which allowed for easy visual inspection of the object. A small piece of
tape was placed on the screen to mark the starting and ending points for various features. An inner gap edge was
visually lined up with an imaginary tangent line on the edge that would be parallel to the tape. The stages were
moved until the outer gap edge was reached and the difference between stage positions was recorded. In this
manner the width of each gap (both inner and outer per detector), was determined.

RESULTS AND DISCUSSION

The average gap width was approximately 8um (resuits from all detector rings can be found in Table 1). The
largest measured gap width was 10mm while the smallest gap width was 6mm, though most widths were 8mm. The
table begins with detector 5 because the first four inoer rings were damaged when a hole was laser drilled through
the detector center. Also included in Table 1 is the visual measured width of the Insitec detectors (from
microscope).

Fig. 3 displays the individual ring signal vs. radial distance for the first five inner odd-numbered rings. The
rectangular boxes represent the specified width of the detectors and therefore the ideal top hat response distribution,
while the curves represent the measured signal. The measured signal is a convolution of the detector spatial
response and the Gaussian intensity profile of the laser beam. Since the measured curves are centered around the
specified points, it was concluded that the laser beam was approximately centered about the detector. The
maximum signal is close to 8 volts, however this value is not quite reached on rings 4 and 5 because the width of the
rings is less than twice the beam width, (where twice the beam width represents more than 99% of the total beam
energy). Also, overiap between rings occurs because of the beam width and edge effects resulting from electron
hole pair and photoa diffusion. Note how overlap decreases with increasing ring size, which is due to the larger
regions of non-responsive area between rings. The curves appear smooth except for the saturation region where
small deviations in signal are noticed. It should be mentioned that 1000 signals are averaged at each position.

In order to be able to calculate wg for use in Eq. (1) it is necessary to model the gap response. This response can
be estimated by deconvolving the measured signal from the known Gaussian inteasity profile of the laser beam.
After several runs were taken of the inner odd rings (results of rings 11,13,15) an average response in the gap region
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was calculated by determining the average signal for each ring at each 1um position (over a 100um distance) and
then superimposing the data to calculate an overall average. This average gap response curve is shown in Fig. 4.

Initial insight into a possible model for the gap response is found by looking for symmetry within Fig. 4. The
symmetry present in the curve points to a potential mode! based on a simple function, most likely exponential. A
logical model to predict the gap response based on physical conditions would include uniform response over the
idealiuddetectonegion, decaying exponential response over the 8um gap width and no response in the masked or
non-responsive region.

Photons incident on the gap region are absorbed by the silicon where they create electron-hole pms The
electron-hole pairs begin diffusing through the material until they either reach the p-n junction where there is a
possibility that they will contribute to the overall current, or they lose their energy through collisions and recombine.
For an overview of the physics of photodiode operation see Sze [8]. As far as a mode! is concerned only one
parameter will need to be determined; the "diffusion length constant” governing the decaying exponential.

However, it should be mentioned that when convolving the Gaussian beam with the gap response function the
value of the diffusion length constant has only a slight impact on the slope of the curve, thereby making it difficult
to estimate the proper value of the coastant to match the measured data. Fig. 5 confirms this observation, where
three curves representing the same beam diameter, but different diffusion length constants are displayed. As can be
imagined the gap response resulting from different diffusion constants is highly variable, yet because the beam
width is much greater than the gap width the slopes of the curves are nearly equal. If the beam width was less than
the gap width then the slopes of the three curves would be much different. Furthermore, if the beam was reduced to
a point source then the response would simply be the exponential itself. However, even with large beam widths a
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difference exists between the curves. The results are sensitive to diffusion length in that the curves expand with
increasing diffusion length constant.

Since the specified width of each detector is known, a theoretical calculation could use diffusion constants as a
means to expand or contract the curve to match the measured data. First, the total laser power in the Gaussian beam
is normalized to one and the beam is moved in one micron increments over the idealized, gap, and masked regions.
At each position the expected signal is calculated by convolving the response function (assuming a diffusion length)
with the Gaussian beam intensity. (As can be seen from Fig. 2 there are instances when the width of the beam
covers all three regions of the detector.) These values are then compared to the measured data to find the diffusion
length constant that provides the best fit.

Experimental data from ring 9 were compared to theoretical data calculated based on different diffusion length
constants. Assumed values in the theoretical calculations include a 25um 1/eZ Gaussian intensity profile diameter
laser beam, gap width of 8um, and total detector width obtained from visual inspection. Results showed that a
diffusion length constant of 50;m+10um (which falls within observed measurements [8]) gave the best fit between
experimental and theoretical values. A plot of ring 9 normalized signal vs. distance is found in Fig. 6, and as can be
seen from the graph the fit is quite good. As a test for the model, comparisons were made between experimental
and measured results for many of the other rings and similar results were noted. Thus, it was concluded that a
simple exponential function appears to adequately predict the gap response of the Insitec ring detector. The
weighting function over the gap width can be written as:

Woedge = plp = ¢**d @

where p(0) is the local responsivity, p is the maximum responsivity in the ideal active region of the detector, xd is
the diffusion length constant, and x is the position measured from the ideal edge into the gap.

Now that the weighting function wg has been determined a new instrument matrix K can be calculated by
substituting the measured gap weighting function of Eq. (4) into Eq. (3) in place of the usually assumed step
function. To quantify the effect of the detector weighting function on the instrument matrix, two matrices were
calculated; one assuming a step detector response, the other the actual measured gap response (and weighting values
of 0 and 1 in the masked and idealized regions, respectively). A plot of the difference matrix (element by element)
between the two matrices is presented in Fig. 7. The matrices were calculated on an area basis with rectangular
weighting functions, uniform by volume within-class distributions, and a Fraunbofer diffraction approximation.
The surface plot shows almost no change on the outer rings, while the difference increases as ring geometry
decreases. This is expected, as the ratio of gap area to visual detector area is much greater for smaller rings than
larger ones.
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theorstical detector responss weighting fenction (which accounts
for detoctor response in the gap rogion between the mask and
idealized desector boundary).

It has already been mentioned that it is possible to predict calibration factors based on gap or transition region
response as opposed to systematic between-detector variations in the responsivity. The accuracy of the “gap”
calculated factors is based on the premise that the major contribution to calibration factors is from gap response. A
predicted calibration factor is defined bere as the ratio of the ideal detector output to the actual detector output when
illuminated with light of uniform intensity. The ideal detector output is calculated by integrating the incident light
intensity over the ideal, visual detector area while assuming that the weighting function wg is constant and equal to
one. The actual detector output is found in the same manner except the area over ~vhich the integration is performed
includes the gap region and the associated weighting function Wgeqge- In equation form we have:

f1da [ dAGdeaty

- - (5)
CPM ,ngdA IWwdA(w) + IdA(M)

where &M is the predicted calibration factor and I is the intensity (W/m?2).

Traditionally, calibration factors have been determined based on illuminating the detectors with uniform Light
intensity. We determined two sets of calibration factors for the Insitec detector. One 1 *t of factors was calculated
using Eq. (5), while the other set was determined using the uniform light method. Re _.its of the two methods are
displayed in Fig. 10 along with calibration factors from 3 different [9-11) Malvern 2600 instruments determined
empirically with the uniform light method. Since the Insitec detector geometry differs slightly from the Malvern
detector geometry, the calibration factors are plotted vs. detector width. As is seen from the plot the curves are in
reasonable agreement. Noticed trends are that all factors decrease in valve as detector area decreases.
Consequently, the inner detectors over-respond relative to the outer detectors. Calibration factors determined from
Eq. (5) are limited by the fact that experimental data were collected along two lines running through the center of
the detector instead of scanning the entire detector surface. Additionally, in Eq. (5) it was assumed that the
weighting function equals a constant over the ideal detector region, however, Fig. 4 shows slight variation in this
region. One other area of uncertainty which we did not investigate is the ends of each detector. Though we
accounted for the end region in the calculations the region is different from the rest of the perimeter regions in that a
masked area is not found 8jum from the ideal detector boundary. A drawback to the uniform light method is that
linear detector response is assumed with no cross-talk. If either of the above assumptions is not correct then errors
in calibration factors will propagate through the remaining factors that need to be determined. This results from the
requirement that values acquired from different light levels must be spliced together [3). Overall, it appears that
calibration factors calculated using Eq. (5) compare reasonably well with factors determined with the uniform light
method, especially considering the fact that factors are for different detectors from different laboratories.
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CONCLUSIONS

In conclusion, the transition region response has been measured and modeled for an Insitec detector. A simple
exponential with a diffusion length constant of 50um accurately predicted the experimental data. The detector
weighting function has been calculated and incorporated into the instrument matrix K. Calibration factors for the
Insitec detector have been predicted based on edge effects and were compared with calibration factors derived from
the uniform light source technique. Both methods indicated that the inner rings over-respond relative to the outer,
larger rings. It is difficult to conclude which method produces the more accurate results. The uniform light method
has the disadvantage that detector signals resulting from several light levels must be measured and the calibration
curves spliced together. The gap response model has the disadvantage that it is based on 2-dimensional results and
it must be assumed that gap response is axisymmetric. Another independent technique for calculating calibration
factors could help verify whether the gap or uniform light source is more accurate. The effect of using the
theoretical calibration factors instead of the uniform light source factors would, in general, translate into slightly
larger particle sizes because of the higher signals on the inner rings.
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General solution to the inverse
near-forward-scattering particle-sizing problem in

multiple-scattering environments:

E. Dan Hirleman

theory

A general solution to the problem of measuring the size distribution of large particles in optically thick
media by using small-angle light scattering is presented. The approach is general in the sense that no
assumption of the form of the particle-size distribution function is required, although the particles must
be distributed uniformly throughout the medium. The method is based on a successive order, discrete
ordinates approach for modeling multiple-scattering phenomena and requires that the particle field be
interrogated by using an array of near-forward input light angles. The scattering redistribution matrix is
thereby determined, which permits a numerical inversion of the problem to obtain the single-scattering
signature. Finally, conventional inverse scattering methods are used to reconstruct the particle-size
distribution from the near-forward (single-scattering) light-scattering pattern.

Introduction

The phenomenon of multiple scattering significantly
complicates the analysis of radiation transfer through
particulate-laden media. Nonintrusive diagnostics for
various flows depend on an understanding of light
scattering and propagation and for this reason can
unfortunately not be used in the many important
systems and applications that involve optically thick
media. We develop a general solution to the problem
of measuring the size distribution of large particles in
optically thick media using small-angle light scatter-
ing. Numerical experiments are used to demonstrate
the feasibility of the technique.

In a previous paper by Hirleman' a theoretical
approach to solving the direct problem (i.e., calcula-
tion of the scattering signature given the particle size
distribution) for the case of near-forward scattering
by particles that are large compared to the wave-
length in optically thick media was presented. While
other models exist for predicting the scattering prop-
erties of thick media, the discrete ordinates, succes-
sive order approach of this previous work' was devel-
oped specifically for incorporation into schemes for
solving the inverse problem. We present a general
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solution for the corresponding inverse problem, i.e.,
that of estimating the size distribution function of an
ensemble of large particles by using mathematical
inversion of the near-forward-optical-scattering prop-
erties of the optically thick medium.

Theory

Consider a particle-laden medium illuminated by a
planar electromagnetic wave at an arbitrary (but
small) angle 6, relative to the laboratory optical Z
axis. The coordinate system of interest is shown in
Fig. 1 with a single particle at the origin and for a
wave incident at ®,, = 0. Assume that the scattering
phenomenon is axisymmetric, i.e., with no azimuthal
® dependence of the scattered field as would be the
case for an effectively infinite medium of spherical
particles. If the incident field actually consisted of the
superposition of waves covering all possible values of
P, for a given 8, (i.e.,, a hollow cone of incident
light), the overall scattering characteristics of the
medium would be symmetric about the optical axis. If
nonspherical particles were present, so that the indi-
vidual scattering signatures were not axisymmetric,
the overall radiation transfer problem could still be
considered axisymmetric if there were a large number
of randomly oriented particles in the medium. It is
also assumed that the scattering processes involved
are linear (in the sense of a linear system). The linear
system assumption requires that, if the incident
optical power is multiplied by a constant, the scat-
tered energy leaving the medium in all directions 18




Incident
Photon

-
-----

Fig. 1. System for analysis of multiple scattering. The incident electromagnetic energy is shown as a photon passing through the origin of
the laboratory XYZ coordinate system traveling in a direction defined by angles ®,_and 6,,.. A plane wave traveling in the same direction
would be scattered by the spherical particle shown at the origin in a scattering pattern axisymmetric with respect to the Poynting vector,
i.e., axisymmetric about the 2’ axis. The scattered light, indicated as a scattered photon in the figure, is transformed back into the laboratory

coordinate system before analysis of the next scattering event.

similarly multiplied by the same factor. Finally, depen-
dent scattering is neglected; i.e., it is assumed that
scattered fields add incoherently (on an intensity
rather than amplitude basis). It is important to note
here that the total scattered energy that leaves the
medium in any direction is not necessarily propor-
tional to the number of particles in the system,; i.e.,
the energy scattered in a given direction by an
M-particle medium is not equal to M times the
scattering contribution of one isolated particle in
conditions of significant multiple scattering. How-
ever, the classical definition of a linear system in-
volves proportionality between input and output vari-
ables (in this case the incident and scattered energy)
but does not constrain the effects of changing, say,
the extent or population density of the medium.

The approach used hereisbasedon d*  retizing the
range of incident and scattering angle ato a finite
number of dir - :tions, each representing a finite range
of scattering angles. This term discrete ordinates has
been used by van de Hulst® and others to describe this
general method. For the axisymmetric problem of
interest here the discrete scattering-angle ranges are
independent of the azimuthal scattering angle ¢ and
subtend 2+ rad in @ for discrete values of 6. These
discrete values of incident and scattering cones repre-
sented by © are then the discrete ordinates of the
system. We define’ a scattering vector 8 so that the
ith element of 8 contains a measure of the radiant

energy proceeding in directions represented by the
angle 8,. The effect of a scattering medium then is to
operate on the incident light and redistribute the
radiant energy over the various 6,. (Some of the light
may also be absorbed in the medium, and this effect is
considered below.) It is convenient to define a scatter-
ing redistribution matrix H, so that the matrix
element in the ith row and the jth column H_(i, j) is
the gain or efficiency with which optical energy
incident in a direction represented by 6, is redistrib-
uted by the medium into direction 6,. The effect of the
linear medium can be written as

where 8, is a vector so that the jth element repre-
sents the optical energy incident on the medium in
direction 6, and S, is a vector so that the ith element
represents the amount of optical energy exiting the
medium in direction @, Note that S, and S, are
somewhat analogous to the Stokes vectors from the
electromagnetic scattering theory,* except that polar-
ization is not considered. The assumption that polar-
ization effects are negligible is reasonable for the
near-forward-scattering regime of interest here. The
subscripts m on H_ and 8, indicate that these apply
to the general multiple-scattering situation, i.e., H,,
represents the redistribution effect of a general me-
dium and 8, is the scattering signature that may
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include multiple-scattering effects. These are distinct
from a single-scattering redistribution matrix H, and
scattering-order vectors S, are defined below. H_ is a
function of the particle-size distribution and the
optical depth of the medium.

Selection of the appropriate number of and the
specific values of the discrete scattering angles ©, (i.e.,
the discrete ordinates) depends on the scattering
properties of the medium. The number of angles
considered is an important factor that controls the
accuracy with which the discrete approximation in
Eq. (1) approximates the actual radiation transfer
process that is actually continuous in ® and . We
select O, to be consistent with the photodetector
geometries used in our experimental work on particle
sizing. It has been shown by Hirleman® that the
optimal detector geometry for particle sizing in the
large-particle, small-scattering angle regime (where
Fraunhofer diffraction theory is valid) consists of
log-scaled rings. In the theoretical work reported here
we use collection aperture geometries corresponding
to the ring elements of the RSI ring/wedge detector*
for which dimensional data are available.®* We con-
sider optical energy proceeding nominally along the
optical axis as the first element of S, and S, so that
this element, defined by the representative angle 0,
subtends a range of scattering angles from zero to a
small angle corresponding to the central, circular
detector element used for measuring extinction. The
angle range considered, i.e., ®, > 0,, wheren + 1is
the number of discrete ordinates, must be sufficiently
large that only a negligible amount of optical energy
falls outside it. For that reason the value of ©,
required for a particular problem depends on the
scattering properties of the medium (i.e., through the
particle-size distribution) and the optical depth of the
medium.

The conventional method for particle sizing by
using near-forward light-scattering signatures in-
volves'*® interrogation of the medium with a colli-
mated input beam that defines an optical axis (® = 0)
that is centered in the ring detector. In this case the
normalized incident energy vector S, is given by

S..=(1,0,0,...01" @

Now from Eq. (1) we see that in the conventional
system, with the angular distribution of the incident
optical energy given by Eq. (2), the output scattering
signature 8, is just equal to the first column of H,..
The direct problem, i.e., calculation of the output
scattering signature given an input beam and a
medium defined by the particle-size distribution and
an optical depth b, can be viewed as determining H
and using Eq. (1) to predict S,. The inverse-
scattering particle-sizing problem is then a matter of
determining a particle-size distribution, which in
theory should have produced the observed scattering
signature 8_. To do this it is in turn necessary to be
able to calculate theoretically the matrix H,, valid for
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an arbitrary particle-size distribution and optical
depth.

If it is desired to extract n unique pieces of informa-
tion about the particle-size distribution in the me-
dium, it is necessary to make at least n measure-
ments. Often the n pieces of information (unknowns)
are the quantity of particles in n discrete size classes,
and the measurements of the light scattered at n
discrete angles provides n equations to produce an
n X n linear system. Now interrogation of a medium
with an incident field as indicated by Eq. (2) resulted
in an experiment that produced n measurements, i.e.,
the elements of S,. Further consideration reveals
that Eq. (1) can in fact support n independent experi-
ments, each consisting of scattering measurements at
n angles (i.e., n? total independent measurements).
Any of these experiments could be used to obtain an
estimate of the particle-size distribution function,
although conventional near-forward-scattering meth-
ods use only one. An 8, vector with the jth element
as the only nonzero element represents a hollow cone
of illumination with half-angle ©,. For an experiment
of this type only thejth column of H,, would enter the
problem. An optical system designed to produce hol-
low-cone illumination as discussed is shown in Fig. 2.
A programmable mask with an array of n annular
shutters is placed in the front focal plane of a
transmitting lens. This ring or cylinder of light
transmitted through the mask is transformed by the
lens to contain only a small range of angles in the
back focal plane of the lens; i.e., a hollow cone with
half-angle ©, where @ is related to the mean radius r
of the annular shutter and the lens focal length f by
© = r/f. A matched annular shutter array is used at

Fig. 2. Simplified schematic of an optical system that allows
multiangle interrogation and multiangle scattering measurements
of a spray or particle field. A programmable annular shutter or
mask in the front focal plane of the transmission lens creates an
annular ring or cylinder of light. This is then converted into a
hollow cone of light (all light traveling with nominally the same
angle 6, relative to the optical axis) by the Fourier transform
process of the lens. Light scattered by the medium is transformed
from an angular to a spatial pattern at the back focal plane of the
receiving lens. Light scattered into discrete ranges of 4 and © are
sampled by another annular shutter array at the detector plane
and transmitted to a detector (not shown) behind the shutter
array.




the back focal plane of the receiving lens, and for each
incident cone angle the system is cycled through all
rings at the detector plane.®

Theory for Determination of H,,

It has been pointed out that Eq. (1) can theoretically
be used to determine particle-size distributions in
arbitrary media, if we assume that the elements of H,,
can be theoretically expressed as a function of the
quantity of particles in » discrete size classes. How-
ever, the stability of the proposed inverse solution is
in question, and methods for calculating H  are not in
the literature. In this section a derivation of H,, is
presented.

Recall that H, is defined so that the element (i, j) is
related to the probablllty that light incident at 6, will
leave the medium in a direction specified by 0,. "This
probability in turn depends on the smgle-scattenng
phase function and the extent of the medium. If the
medium is optically thin, multiple scattering can be
neglected and the problem is relatively simple as the
phase function can be used directly. The successive
orders approach used here' effectively reduces the
problem to an analysis of a sequence of single-
scattering events, each of which is easily modeled. It
is in this context that the single-scattering redistribu-
tion matrix H is defined so that H; represents the
probability that a photon incident on a medium at an
angle representative of the jth detector will leave the
next scattering event in a direction corresponding to
the ith detector. Note that H depends on the detector
geometry and the scattering characteristics of the
medium, which is a function of the unknown particle-
size distribution but not on the optical depth or
extent of the medium. The matrix H is needed for use
in a recursive scattering-order equation:

8. =HS, 3

where S, _, and 8, are the scattering signature vectors
of light (photons) scattered exactly n — 1 and n times,
respectively. A special case of Eq. (3) is for unscat-
tered (incident) energy:

8, =HS_ = HS, (4)

Inspection of Eq. (4) indicates that the first column
of H is just the normalized scattering signature,
which would be obtained from an optically thin
aerosol illuminated with a collimated beam. Now H is
theoretically determined (for a given size distribu-
tion) by using an analysis that combines some trans-
formations that relate light-scattering and laboratory
coordinate systems with the calculation of scattering
phase functions. The development' requires a small-
angle approximation and therefore may be considered
to be valid for relatively large particles. The small-
angle assumption simplifies calculation of the proba-
bility distribution over the number of scattering
events that are related to the physical (as opposed to
optical) medium width through the optical depth b.

Now the composite scattering signature S, (super-
position over all scattering orders S, ) is given by'

8. = exp(-b)(1 + abH + (@b’ /2R + (a,b)’/6H’ + - - 18, (§)

where I is the identity matrix and a, is defined as a
forward-scattering albedo where @, = 0.5 in the
diffraction regime of interest here.

Using the definition for the logarithm of a matrix in
combination with Eq. (5) we obtain

8. = exp(-blexp(a bH)S,,, ®

and by comparing Egs. (1) and (6) we obtain
H,, = exp(—b)exp(a,bH), ¢))]

which provides a rather straightforward link between
the single-scattering redistribution matrix H and the
general medium matrix H,,. Use of the optical system
of Fig. 2 permits measurement of the n* elements of
H_ according to Eq. (1). Inverting Eq. (7) we obtain

H = In[exp®)H,,]/(a,b) ®)

which provides a link back to H if H, and b are
measured experimentally. Recall that the first col-
umn of H is just the single-scattering signature,
which would be obtained from collimated illumina-
tion of an optically thin medium. Conventional near-
forward-scattering instruments routinely use this
single-scattering signature for 8, = 0 in an inversion
process to obtain the particle-size distribution. There-
fore, if the first column of H can be determined,
conventional single-scattering inversion schemes can
be applied. The mathematical procedure given in Eq
(8) whereby operations are performed on an experi-
mentally measured H,, is, in a sense, equivalent to
reaching into the medium to collect photons that have
been scattered once and only once.

Relationship to the Inverse Single-Scattering Problem

The single-scattering inverse problem is generally
written® in a form

S=K-N, 9

where 8 is the scattering signature over the detec-
tors, N is the unknown size distribution vector so that
N represents the quantity of particles in the jth size
class, and K is the scattering matrix so that element
K, indicates the amount of energy that a unit quan-
txty of particles representative of the jth size class
would scatter into the ith detector assuming single
scattering. Now the elements of K can be determined
by using the Lorenz—Mie scattering theory or some
approximation such as the Fraunhofer diffraction
theory. The matrix is calculated by using weighting
functions for both the size classes and the detector
geometries.?

Now it would be useful to formulate the inverse
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multiple-scattering problem as a linear system of the

form:

S, =K\, 10)

where we must define (and determine) K, as the
scattering coefficient matrix that applies for a multi-
ple-scattering medium. The inverse multiple-scatter-
ing problem would then involve inversion of the
matrix K or, in the case of an ill-conditioned K ,
some other method for solving the linear system
given by Eq. (10) would be used. Now it has previ-
ously been noted that the matrix H depends on the
particle-size distribution through its effect on the
scattering signature, so we choose to define a dif-
ferent H for each size class of N. If we denote H as the
single-scattering redistribution matrix for particles
representative of the jth size class and H, as the
multiple-scattering redistribution matrix for a me-
dium containing only particles in size class j, Eq. (1)
becomes for this case

Sa = H,. 8. N, (11)

where 8, is the multiple-scattering signature pro-
duced by a quantity N, particles from size classj with
illumination specified by 8, . and where the multipli-
cation by the scalar N, is a scalar product but the
.S, product is a vector operation. When we ex-
pand Eq. (11), using the definition in Eq. (7), we
obtain:

S, = exp(~bexp(Hab, SN, (12)

where H is defined as the single-scattering redistribu-
tion matrix in a medium containing only particles
representative of the jth size class and b, in Eq. (12) is
defined by

b, = 0Cut = N/V)Cut 4, (13)

where p, and C,,; are the number density (number
per unit volume) and mean extinction cross section,
respectively, of particles in size classj,/is the physical
length of the medium, and V is the volume within
which the number quantity N, applies. Note that
taking the particle number density p, = (N,/V) re-
quires that N, be defined on a number basis (as
opposed to an area or volume basis). The quantities p,
and C,,; would be obtained by integrating over the
size range of the jth size class by using an appropriate
within-class weighting function.’

To return to a form such as in Eq. 1 it is tempting to
use a superimposition of the scattering signatures for
the size classes from Eq. (12). It is the case for which
the composite-scattering signature could be calcu-
lated as a linear combination of signatures from each
class, but unfortunately the correct scattering signa-
tures to be used in the summation are not given by
Eq. (12). Equation (12) applies to a medium contain-
ing only one size and does not apply in the general
case with particles from a multiplicity of size claszes.
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This nonlinearity or coupling of the equations would
come through the fact that the redistribution matrix
for a given size class in a polydisperse medium
depends on the populations of all the other size
classes. In other words the matrix K, in Eq. (10)
cannot be calculated independent of a knowledge of
the particle-size distribution N, and hence Eq. (10) is
not a linear system in the conventional sense. How-
ever, the matrix K, could be calculated for a given N,
and the predicted scattering signature S from Eq.
(10) could be compared with a measured one to
provide the basis for an iterative solution to deter-
mine a best fit N. In contrast the approach suggested
here is different. The rather involved calculations
that are required to account for a coupling of the
multiple scattering between size classes are replaced
here by a number of independent measurements that
serve to determine this coupling experimentally. The
results of numerical studies of the performance of the
new approach are discussed below.

Results of Numerical Experiments

To determine the feasibility of the proposed approach
numerical experiments were performed to simulate
the process of (1) measuring b and H,, by using
multiangle interrogation, (2) calculating an estimate
of the single-scattering redistribution matrix H by
using Eq. (8), and finally (3) reconstructing a particle-
size distribution function by inverting Eq. (9). To
calculate H | it is first necessary to obtain a theoreti-
cal H to use in Eq. (7). A plot of the calculated matrix
H for National Bureau of Standards SRM 1003a
using the RSI detector geometry within an optical
system with a receiving (transform) lens focal length
of 125 mm is given in Fig. 3. Note that the axis in the

e e e i
e S e i
a — T e
e e e

LG T
S S

&
(L9

Fig. 3. Plot showing the calculated single-scattering redistribu-
tion matrix H. The redistribution matrix H was calculated for the
particle-size distribution of National Bureau of Standards (U.S.)
SRM 1003A for a laser diffraction system that uses the RSI
detector geometry*® with a transform lens focal length of 125 mm
and the successive order, discrete ordinates multiple-scattering
model.’ The upper left element of H, i.e., H,, or H(0, 0), is shown on
the left and applies to light incident at the smallest angle 6, (8, = 0
or collimated input), which is scattered back into the same angle
(identically forward scattering) by the next scattering event. The
lower point in the foreground H(0, 31) represents collimated
incident light, which is scattered into the 31st ring detector, and
the axis in the left foreground is the single-scattering signature for
a conventional diffraction system (collimated input scattered over
31 rings). The ridge at the right of the figure culminating at
H(31, 31) is caused by the fact that the outer RSI ring detectors are
much larger than the inner ones.*




foreground, lower left, corresponds to the first col-
umn of H, i.e., the single-scattering signature that
would be obtained with collimated (®,,, = 0) incident
radiation as given by Eq. (2). For f = 125 mm and
Natl. Bur. Stand. (U.S.) SRM 1003a, the peak signal
occurs in the region of ring detectors 10 and 11. The
upper left element H (0,0) corresponds to light
incident at ® = 0, which is literally forward scattered
so that 6,, = 0. As one moves through columns of H
(i.e., moving toward the upper right background) the
matrix row at which the scattering maximum occurs
shifts toward the outer detectors (larger i for H).
Finally at H(31, 31) most of the energy incident at an
angle corresponding to the large 31st ring of the RSI
detector is rescattered into the same detector. Plots of
H,, matrices calculated made by using Eq. (7) for the
same particle-size distribution and optical system but
at several optical depths are shown in Fig. 4. The H
and H, matrices are identical in the limit of small
optical depth b, and the similarities are seen by
comparing Figs. 3 and 4(a). However, as b increases
the first columns of H,, (foreground) indicate the
scattering signatures that would be obtained for
collimated incident radiation as given by Eq. (2). The
shift of the scattered energy toward larger angles
(lower rows of the matrices) characteristic of multiple
scattering is apparent in the progression through
Figs. 4(a)-4(c). That this shift toward larger angles
resembles small particles to a conventional near-

{0,31)

©31

313y

©3n

(3131

31,31

forward-scattering instrument has been well docu-
mented.”®

The inverse scattering scheme proposed here re-
quires measurement of the matrix H,, and the optical
depth b and the numerical determination of H with
Eq. (8). For this work we first calculated H and then
H_, as shown in Figs. 3 and 4. A simulation of the
experimental measurement of H, was then made by
perturbing the calculated elements of H, with a
Gaussian random number generator. The random
noise added was multiplicative and was specified
whereby the standard deviation of the Gaussian
random noise was a fraction of the signal on each
detector.

Another experimental difficulty will be measure-
ment of the diagonal elements of H_,, which represent
light scattered into the same detector aperture as the
incident radiation. Since the scattering is often an
order of magnitude or more smaller than the unscat-
tered (transmitted) energy, the elements will be
difficult to measure accurately. In the simulation of
the experiment the diagonal elements were deter-
mined by averaging the adjacent off-diagonal ele-
ments. Implicit in this procedure is that optical and
electronic cross talk between detector apertures is
negligible.

After the H,, matrix was perturbed to simulate an
experimental measurement the inversion indicated
by Eq. (8) was performed. The results are presented

Fig. 4. Calculated multiple-scattering redistribution matrix H,.
The redistribution matrix H, was calculated for the particle-size
distribution of National Bureau of Standards (U.S.) SRM 1003A
for a laser diffraction system that uses using the RSI detector
geometry*® with a transform lens focal length of 125 mm and the
successive order, discrete ordinates multiple-scattering model.’
The plots correspond to three different values of the optical depth b
as indicated. The upper left element of H,, i.e., H, (0, 0), is shown
on the left and applies to light incident at the smallest angle 8,
(8, = 0 or collimated input), which is scattered back into the same
angle (identically forward scattering) after passing through the
entire medium. The lower point in the foreground of the figure
H,(0, 31) represents collimated incident light, which is scattered
into the 31st ring detector, and the axis in the left foreground
shows the scattering signature that would be obtained by a
conventional diffraction system (collimated input scattered over 31
rings). The progression through increasing values of b shows the
expected shift of scattered light to larger angles.
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Fig. 5. First columns of the single-scattering redistribution ma-
trix H reconstructed in numerical experiments by using an inver-
sion of synthetic scattering data given by Eq. (8). The assumed
optical system had an RSI ring detector® with f = 125-mm
transform lens, and the particle-size distribution assumed was
National Bureau of Standards (U.S.) SRM 1003a. The calculated
elements of the H,, matrix (shown in Fig. 4) were perturbed with
two different levels of simulated Gaussian (multiplicative) noise
with standard deviations of (a) 1% and (b) 5%.

in Fig. 5, which shows the first column of H as
obtained from Eq. (8). To review, the first column of
H is an estimate of the single-scattering signature,
which would be obtained by using collimated on-axis
incident radiation. In conventional particle-sizing
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Fig. 6. Results of the numerical inversion of the scattering
signatures of Fig. 5 Reconstructed particle-gize distributions are
shown. The sige distributions were obtained by solving® Eq. (9),
where the scattering signature 8 was taken as the first column of
the reconstructed H matrices as shown in Fig. 5.
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methods using near-forward scattering it is the first
column of H that is hopefully measured by the
detectors. For that reason, then, inversion schemes
used in conventional methods for optically thin aero-
sols can be used on the first column of the recon-
structed H matrix to obtain the particle-size distribu-
tion. The various schemes for performing the inverse
single-scattering problem are discussed elsewhere >’
The performance of the proposed method based on
the numerical studies is demonstrated in Fig. 6. Here
the actual and reconstructed size distributions for
SRM 1003a are shown for several optical depths and
for 5% simulated Gaussian random noise. Reasonable
reconstructions of the particle-size distribution are
feasible up to b = 6 for the conditions studied here.

Conclusions

A scheme for solving the inverse scattering problem
in optically thick media has been presented. Numeri-
cal experiments indicate that the method is feasible
for reconstructing particle-size distributions in realis-
tic measurement conditions.
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PARTICLE SIZING ERRORS ASSOCIATED WITH THE FRAUNHOFER DIFFRACTION ASSUMPTION IN THE
: ANOMALOUS DIFFRACTION REGIME
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INTRODUCTION

The optical measurement technique commonly known as the Fraunhofer diffraction particle sizing method involves
measuring the near forward scattering signature of an ensemble of large particles followed by a mathematical inversion
rocedure to determine the particle size distribution function. Of interest in this paper are errors introduced by a lack of
owledge of the particle relative refractive index. The near-forward scattering signature of an ensemble of particles will
change as the refractive index of the particles approaches that of the surrounding medium. Under these conditions (and
using a geometric optics model) the refracted light is increasingly directed into near-forward angles, interfering with the
diffracted light, thereby altering the near-forward scattering pattemn. A particle sizing instrument based entirely on
Fraunhofer diffraction formulas will give erroneous results when the refractive index of the particles is similar to that of the
surrounding medium. It is these changes in the near forward scattering signature as the refractive indices change, and their
effects on the size distribution which would be measured by such a particle sizing instrument, which are considered in this
paper.

MATHEMATICAL FORMULATION

The most general equation goveming Fraunhofer diffraction particle sizing is a Fredholm integral equation of first order
and first kind and can be formulated as:

i(0) = Iinc/k? | ky(0.8) ny(a) dox (N
/]

where: i(0) is the intensity (W/sr) diffracted at near-forward scattering angles 6; I;,,. is the irradiance (W/m?2) incident on
the particles (assumed constant); k is the wavenumber 25/A; A is the wavelength; o 1s the size paraméter aD/A where D is
the particle diameter; np(ax) = n(c)ab where n{c)da is number of particles in the laser beam with sizes between o and
o + da (n is an unnommalized probability density); b is a scaling parameter determined by the instrument designer which
represents the measure of the quantity of particles used as the solution basis (e.g. for number, area, or volume bases the
parameter b would equal 0, 2, or 3 respectively); and kg,(0.,0) is a general scattering function which gives the scattering
contribution of a unit quantity of particles of size a into angle 6. Particle sizing using Eq. (1) requires measurement of i(6)
foliowed by determining the np(a) which would produce a calculated i(6) signature (using Eq. (1)) which best fits in some
sense the measured i(8). Clearly, the function ky(,8) must be known to use Eq. (1) in the inversion process, and full
Lorenz-Mie expressions or approximations such as Fraunhofer diffraction theory may be used.

Equation (1) represents an infinite set of equations (one for each value of 8) in an infinite set of unknowns (ng(a) for all
possible a). In practice, however, it is impossible to make an infinite number of measurements of the scattered light
distribution, and therefore a finite number of measurements at a set of discrete angles is usually made. By discretizing the
equations we obtain a system of mg equations in m, unknowns where mg is the number of discrete detectors and my is the
number of discrete size classes. We write the linear system as:

I=K-'N 2)

In Eq. (2) the mg elements of the vector I represent the measured scattering signature; the my elements of N contain the bth
partial moments of the number of particles in the size class; and K is the instrument matrix whereby element K;; represents
the diffraction contribution of a unit measure of particles in the jth size class onto the ith detector. The elements of K are:

Kij= | ky(0.0;) walon0;) we(6,6;) da 6 -
0

where wq(0L0y) is a weighting function for the jth size class and we(,6;) is a weighting function describing the sampling
process of the detector apertures. Now the solution or measured particle size distribution indicated by N in Eq. (2) can in
theory be obtained by inverting the matrix K.

When the refractive index of the medium approaches that of the particles, the assumptions inherent in a kemnal based on
Fraunhofer diffraction are no longer valid. Calculations of near forward scattering signatures in this case are based on
theory presented by van de Hulst [1957) where the term anomalous diffraction was coined to describe the condition when
o is large and the refractive index denoted m approaches that of the surrounding medium. A parameter p is defined as:

p=2alm-1| 4

which physically represents the phase lag suffered by a ray that passes through a sphere along a full diameter relative to a
ray which passed undisturbed through the surrounding medium. The presence of the sphere does not alter the amplitude of
the field at some position beyond the sphere, but rather affects only the phase. The phase lag can be calculated at some
plane past the sphere and a direct application of Huygen's principle gives both the extinction and scattering diagrams. The
Intensity distribution is found by calculating the amplitude function A(p.z) where z = af. An angle 1 is defined as the
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angle between the perpendicular bisector of the incident ray and the radius of the particle drawn from the incident point of
- the ray on the sphere. The amplitude function is given by: '

=2 .
A(p2)= | (1-e7ipsint) Jo(zcost) cost sint dt )
0

which is derived by applying Huygen's principle to a plane just beyond the sphere. The following expansion of the integral
assumes that m is real and the absorption coefficient equals zero. The real and imaginary parts of the integral A(p,z) are
evaluaied separately. If the substitution y = (%/2)-7 is made, the imaginary part of the integral is transformed to Sonine's
second integral and is represented by:

ImA = (p/y2) (y2)!2 I3n(y),  where y2 = p2 + 22 (6)

The real part is expressed as series expansions. Two different expansions are necessary for small and large values of p,
For small p the first series expansion is:

ReA = p2(1/22)J2(z) - (p4/1*3)(1/23)J3(2) + (p8/1*3*5)X1/24))u(2) + ... )
The expansion for large values of p is given by:
ReA = (1/2)J4(2) + (p/y2X®y/2)V2Y 3po(y) + (1/pD)o(z) + (1*3/p4)2ds(2) + ... 8)

where Y is the Bessel function of the second kind. The first series converges for any combination of p and z while the
second converges only for p>z. Finally, the scattering function kg in Egs. (1) and (3) for the anomalous diffraction case is:

ky(x.8) = AY(aB)/(ab2) ®

where A2 = (ImA)2 + (ReA)2 as expressed by Eqgs. (6-8). To quantify the error of the Fraunhofer diffraction
approximation when anomalous diffraction conditions are present we have generated near forward scattering signatures
based on anomalous diffraction theory for NBS standard reference material (SRM) 1003a.

RESULTS

A plot of the intensity normalized over the angle range 0-2.7° is shown in Fig. 1 for NBS 1003a, which contains particle
sizes ranging from 5-63um. As expected when the value of the refractive indices approach unity, the intensity at larger
angles increases as the refracted light interferes with the diffracted light in this angle range. When the ratio of the
refractive indices is greater than 1.2 the anomalous diffraction results agree with Fraunhofer diffraction. It should also be
noted that the anomalous diffraction results in this angle range were verified by Lorenz-Mie theory.

Figure 2 is a plot of the relative detector output vs. detector number for the RSI ring detector. Results are found by
integrating the intensity distribution of Fig. 1 over each detector area. Refractive indices close to one show more energy on
the outer rings. Again, recall that results are for the same particle size distribution, the only variable is the refractive index.

If an instrument scattering matrix K is calculated using a Fraunhofer diffraction kemel ky, then sizing errors will result if
the actual scattering process is not accurately modeled by diffraction theory. The varying scattering signatures of Fig. 2
represent different I vectors in Eq. (2), which for the same K must give different measured size distributions represented by
N. Since small particles scatter light at relatively large angles, the anomalous diffraction (refractive scatter) contributions
on the outer detectors for small refractive indices in Fig. 2 appear to come from small particles to an instrument based on
Fraunhofer theory. This can be seen from the reconstructed size distributions shown in Fig. 3 where a small particle mode
(in the lower size classes) appears for the two lowest refractive indices. These resulting errors are quantified in terms of
representative size parameters as would be measured by an instrument based on Fraunhofer diffraction (Dv, is defined
accotdil;g to ASTM E799 such that the volume fraction of particles with diameters smaller than Dy, is x, and ay; =
®ADvy,).

The data of Fig. 4 show three regimes, two for the limiting cases of very small and very large relative refractive indices and
a third in the intermediate m range. For very large refractive indices, the refracted light is scattered into large angles
beyond the coliection aperture of the system (see Fig. 1). Here the Fraunhofer diffraction theory is applicable, and the
errors are small. For very small refractive indices, the scattering is very small because the contrast between the particle and
the medium is very weak Here, although the refracted light does mix with the near-forward diffracted light the refracted
contribution is weak and again diffraction theory is reasonable good as demonstrated by small errors. 1n the intermediate
refractive index range (from about 1.004 to 1.2 in this example), the refracted light contribution is significant and falls into
the collection aperture. This causes a dip in the curves of Fig. 4, i.e. the refracted light entering the near-forward angles
cause the instrument based on diffraction theory to undersize by as much as 70%. In summary, significant errors in particie
size distribution reconstructions based on Fraunhofer diffraction theory will occur when the ratio of the refractive indices is
in an intermediate range. Better approximations or the full Lorenz-Mie scattering theory should be used in instruments
operating in these refractive index ranges.
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