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1Abstract

"Direct Inference" was distinguished from "Inverse Inference" early in

the development of mathematical statistics. Direct inference was the form

of uncertain inference that took as premise a distribution in a population,

and yielded a (probable) conclusion about the composition of a sample from

that population. Inverse inference was to take as a premise the composition

of a sample, and to yield as a conclusion a (probable) conclusion about a

distribution in a population. Direct inference seemed uproblematic. But

inverse inference seemed to be needed to obtain the general premises needed

for direct inference. Inverse inference proper is based on Bayesian

principles. This paper argues that these principles are inconsistent with

direct inference. It is concluded that we should hold fast to direct

inference, and accept Bayesian procedures only when they can be put into the

framework of direct inference.
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If any distinction in the realm of statistics or inductive logic

deserves to be called "classical", the distinction between direct and inverse

inference does. In philosophy, it is the classic distinction between

inductive and deductive argument. Inferring that Socrates the man is mortal

from the premise that all men are mortal, is an instance of direct

inference. The corresponding inverse inference is that which proceeds from

premises, Socrates the man is mortal, Plato the man is mortal, ... Churchill

the man is mortal, to the general conclusion that all men are mortal.

Inverse inference proceeds from the particular to the general, direct

inference from the general to the particular. Inverse inference is

characterised by inductive logic; direct inference by deductive logic.

In statistics the distinction is even more straight-forward: it is the

distinction between inferences that take knowledge of a distribution in a

population as a premise, and infer the probable character of a particular

sample - this is direct inference -- and inferences that take knowledge of

a sample as a premise, and infer the probable character of the population

from which the sample comes -- this is inverse inference.

Inverse inference is characterized by what in artificial intelligence

is called non-monotonicity. This means that, in contrast to deductive

inference, an increase in the premises may undermine a conclusion already

reached. This was recognized explicitly by R. A. Fisher in 1936. He

writes, "rhere is one peculiarity of uncertain inference which often

presents a difficulty to mathematicians trained only in the technique of

rigorous deductive argument, namely that our conclusions are arbitrary, and

therefore invalid, unless all the data, exhaustively, are taken into

account. In rigorous deductive reasoning we may make any selection from the
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data, and any certain conclusions which may be deduced from this selection

will be valid, whatever additional data we have at our disposal."'

In general, whether in logic or in statistics, direct inference has

been regarded as relatively unproblematic. Basic, first order, deductive

logic is almost universally accepted as being all right as far as it goes,

though there are some people who think it does not go far enough. (It does

not capture modal arguments, for example.)

In a similar way, early on in the history of probability theory

agreement was achieved concerning the inferences that were warranted whose

premises concerned general distributions, and whose conclusions concerned

samples. Given as a premise that heads among coin tosses are distributed

binomially, with a parameter of 1/2, we all easily calculate that the

probability of four heads in succession is 1/16. There is no uncertainty in

the argument here. But there are also direct inferences that embody

uncertainty: We infer -- or, as Neyman2 for example might prefer to put it,

we behave as if -- the next ten tosses of this coin will not yield ten

heads.

Given as premises however, the distribution of heads in a quite large

sample of tosses, subjected to whatever constraints concerning randomness

you wish, there is inevitably controversy concerning what conclusion is

warranted and to what degree.

Note that in statistics both the direct and inverse inference may be

non-monotonic: to augment the premises may undermine direct uncertain

inference as well as the inverse inference. To learn that not only are the

ten tosses we are concerned with the next ten tosses, but that nine of them

have already yielded heads undermines our inference from the general J.i V -

distribution to the conclusion that we won't get ten heads in a row.

-D1t ac al
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Similarly, given the results of n tosses, the inference (whatever it may be)

to a general distribution of heads among tosses will be undermined (rendered

epistemically irrelevant) by knowledge of the outcomes of an additional m

tosses. This fact is of interest, particularly when it comes to

constructing a logic that will reflect the realities of uncertain inference.

But it is not essential to the distinction between direct and inverse

inference. What is essential is that in direct inference the movement is

from the population to an actual or hypothetical sample, while in inverse

inference the movement is from the sample to some statement concerning the

parent population.

II

What is special about inverse inference is not the use of Bayes'

theorem. When Neyman writes3 "...persons who would like to deal only with

classical probabilities, having their counterparts in the really observable

frequencies, are forced to look for a solution of the problem of estimation

other than by means of the theorem of Bayes," we must understand him to be

emphasizing the phrase "solution to the problem of estimation," since Bayes'

theorem is, after all, a theorem.

What this means is that, as L A. Fisher saw clearly, there are many

situations in which Bayes' theorem is applicable that can easily be

construed in terms of direct inference. In 19304 he notes that drawing from

a super-population in which the parameter of interest (say 0) has a

known distribution F9 and then getting a posterior distribution Go for 9

is "...a perfectly direct argument...", though of course it uses Bayes'

theorem. In the same way the famous example described by La Place,

concerning a + I urns, each containing n black and white balls in each
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possible combination involves Bayes' theorem, but makes no use of inverse

inference proper. (The application of this model to sampling does.)

For inverse inference proper -- that is, inference whose uncertainty is

not based on known frequencies -- Fisher has nothing but contempt5 :

"In fact, the argument runs somewhat as follows: a number of useful but

uncertain judgments can be expressed with exactitude in terms of

probability; our judgments respecting causes or hypotheses are uncertain,

therefore our rational attitude towards them is expressible in terms of

probability." Neyman's attitude is even less tolerant.

Fisher and Neyman were, of course, reacting against the use of the so-

called "axiom" of Bayes that gave uniform priors, against La Place's

principle of indifference, and the like. Since that time, however, inverse

inference has become respectable again. It gained respectability by

admitting what De Finetti called its "subjective sources" and claiming

nevertheless to provide a rationale for inferences from a sample to a

population, thus completing, in a sense, the theory of statistically

uncertain inference. Direct inference governs the inference from the

population to the sample; indirect inference, by means of Bayes' theorem,

governs the inference from the sample to the population.

I claim that there is a serious blunder involved here -- not quite so

obvious as the fallacy Fisher offers us, but a blunder nevertheless. It

lies in the fact that direct inference and inverse inference cannot coexist

happily. Historically, we were all confident and happy with the use of

direct inference. A number of people had philosophical qualms about its

application to specific objects and events: "the next toss," "the next

sample of a thousand balls to be drawn," etc. Nobody had formulated careful

rules of application for direct inference; but few people doubted that

direct inference was in principle sound: if you know that a coin is fair,
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you can infer that the probability that the next toss will yield heads is a

half, that the probability is a sixteenth that the next sample of four

consecutive tosses will have the structure HETH, etc. Those who had serious

qualms replaced talk of probability with talk of confidence, inductive

behavior, rules, etc.

What we wanted, and didn't have, was a generally acceptable rationale

for inverse inference. That is what Thomas Bayes sought, and what the

modern philosophical Bayesian seeks. But inverse inference proper

undermines direct inference. In order to have inverse inference, to

"complete" our theory of uncertain inference, we find we must abandon direct

inference in many, if not all, of its classical applications.

III

The most elementary example of this conflict can be seen in the case of

a simple binomial distribution. If we know that a coin is fair and ttat its

tosses are independent, we have no difficulty in calculating the probability

of, say, ten heads on the next fifteen trials. This is our old,

unproblematic, direct inference.

But where does this knowledge come from? Inverse inference, so the

story goes. That is, we suppose that the way we got our binomial hypothesis

was by looking at a lot of coin tosses. So let H be the hypothesis that the

coin is fair. If we "get" H by inverse inference, that cannot mean that we

assign it probability one: inverse inference via conditionalization can't

raise a probability to one that doesn't start there. But if the probability

of H is not one, then all our conventional direct inferences are undermined.

In particular, we can no longer regard the tosses as independent, since

every toss will change (by conditionalization) the probability we assign to
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that the tosses are independent, but this just means that any

3n of a specified sequence occurs just as often as that same

The dependence among tosses is epistemic, and depends on our

epistemic state with regard to H. We can no longer just say that

the probability of ten heads among 15 trials is 15 -- for (a) the
( 15) ~2fo (ath

very first head will change the probability we assign to H itself, and (b)

we must also take account of the alternative hypothesis not-H, and what it

assigns to ten heads.

IV

It has been claimed that both L A. Fisher's fiducial inference, in the

case of estimating the mean for a normal distribution, and Neyman's method

of confidence intervals for estimating the mean of a binomial distribution,

require a "flat" or "uninformative" prior distribution for their validity,

and therefore are merely special cases of Bayesian inverse inference.

As Fisher and Neyman, respectively, have pointed out, this is untrue.

Whatever be the mean P of the normal population, the quantity (x - 11 )/a

will be normally distributed with unit variance and mean 0. For confidence

interval estimation, whatever be the binomial parameter , the frequency

with which a sample will fall in the confidence region will be at least as

great as the confidence level.

The germ of falsehood -- or better, irrelevance -- in this observation

lies in the fact that if we had some prior distribution that was not the

flat or uninformative distribution, then the fiducial or confidence argument

would not be valid. But one should distinguish between knowing that is

uniformly distributed between 0 and 1, and knowing that 2 has some (totally

unknown) value in that interval. This is the classic -- but not always
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helpful -- distinction between an unknown constant and a random quantity.
6

To undermine the fiducial or confidence-interval inference, we must have

positive knowledge that the prior distribution is not the flat or

uniformative prior. Approaching the question from the other side, no matter

what prior distribution we feed into Bayes' theorem, we can worry that it

requires (presupposes) some corresponding frequency or propensity. But of

course no subjectivistic Bayesian would share these worries.

Now if the prior distribution is a frequency-like distribution in some

super-population, then it is merely that a different direct inference is

called for (as Fisher and Neyman both saw), and we aren't talking about

inverse inference proper. Direct inference will do just as well. But if

the prior distribution is a priori or subjective, as it must be for an

inverse inference proper, then there is conflict between the inverse

inference and the fiducial or confidence argument based on direct inference.

V

Inverse inference and direct inference will agree if the prior

distribution provided by the inverse inference happens to be the

uninformative prior. I have argued elsewhere that this fortunate situation

is relatively rare. In a previous paper I used a procedure of de Finetti to

show that it is very easy for general empirical hypotheses to achieve

impressively high probabilities in the absence of any evidence in their

favor (or any evidence at all). This generates just the sort of bias that

cannot be tolerated by arguments that depend on direct inference, as the

following example shows.

If the sequence Ti is a sequence of exchangeable trials (in fact all we

need stipulate is that the probability of a success followed by a failure is
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the same as the probability of a failure followed by a success -- much less

than full exchangeability) and the prior probability of a success is .01 and

the conditional probability of a success on a second trial, given a success

on the first trial is .02, then we must assign a probability of at least

. 9996 that no more than half the trials in the arbitrarily long run will

yield successes. Or, we can calculate that the probability that less than

80Z of the trials in the long run will yield successes is at least (this is

very conservative -- we use only Tchebycheff's inequality) .999844 - 1-

.000156.

Now let us perform 16 trials. Suppose they all yield successes.

Neyman has taught us that there is :requency information bearing on

hypotheses about the long-run frequency of success. Specifically, whatever

the actual frequency of success may be, at least 90% of the performances of

16 trials will yield results falling in what Neyman refers to as the

confidence belt, 7 and the bounds of the confidence belt in this case are .80

and 1.00.

Neyman would say that we can be 90Z confident that the long run success

rate is in the interval [.80,1.00]. This is not a probability for Neyman,

but it does correspond to a before trial relative frequency or probability.

In fact, he writes: "If the confidence belt is constructed we may affirm

that the point will I Neyman's emphasis.] lie inside the belt. This

statement may be erroneous, but the probability of error is either equal to

or less than 1 - e - thus is as small as desired."8

But the gap between a frequency in a general class and the probability

of a specific occurrence was exactly the gap that direct inference was

supposed to be capable of crossing. Leave aside sophisticated philosophical

doubts about the meaning of probability, and nothing could be more naturAl
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than for the holder of a specific ticket in a thousand ticket lottery to say

that the probability of his winning the first prize is 1/1000. Similarly,

holding a sample comprising sixteen successes, nothing could be more natural

than to say, since at least 90% of such trials yield Neyman-representative

results, that the probability is at least 0.9 that our trial yielded a

Neyman-representative result -- i.e., a result in the confidence belt. And

it did this if and only if the success rate in the population is in the

interval [.80,1.001.

Note that I haven't spelled out a principle of direct inference that

gives this result and doesn't lead to difficulties. This isn't easy, though

I think that after some 25 years, I've gotten close to it. But this is

exactly the sort of thing that everybody took for granted when the problems

of inverse inference were first raised. This is the sort of uncertain

inference that seemed unproblematic. It is furthermore a kind of uncertain

inference that even Bayesians seem to be rediscovering.9

Suppose the direct inference does go through. How does it relate to

the previous result? Writing the appropriate form of Bayes' theorem, we

have (where r is the long run relative frequency of success):

P(r > .8/E(16,16)) a

P(r > .8)*P(E(16,16)/r > .8)

P(r > .8)*P(E(16,16/r > .8) + P(r - .8)*P(E(16,16)/r - .8)

where E(16,16) is our evidence.

For consistency with direct inference, we require



P(r > .8/E(16,16)) < 0.9, or

P(r > .8)*P(E(16,16)/r > .8) > .9*(P(r > .8)*P(E(16,16)/r > .8)

+P(r <.8)*P(E(16,16)/r <.8))

Simplifying, and taking account of the fact that P(r > .8) < .000156 and

P(r < .8) > .999844, we require:

P(E(16,16)/r > .8) > 5.768* 104 P(E(16,16)/r < .8).

That is, it must be nearly six thousand times as probable that we will

observe E(16,16) given that r is greater than .8 than it is given that r is

less than or equal to .8. This doesn't seem very plausible, but perhaps it

could be argued that it just shows that our original intuitions about the

frequency of successes were not as plausible as they seemed.

VI

When we formulate a principle of direct inference that allows for

imprecise knowledge, even this sort of retroactive adjustment is impossible.

I assume that we want to apply direct inference even when we do not

know exactly the relevant frequencies in our reference classes. This is

obviously important pragmatically, but it raises a theoretical question.

Suppose that we know the relevant frequency in a large class quite

precisely, but that our knowledge concerning a subclass is rather vague. As

an extreme example, we might know that the relative frequency of heads in

coin tosses was very near 1/2; but what we know about the next tos is no

more than that the frequency of heads is either 0 or 1. There is ordinarily

a continuum of knowledge in between: tosses of U.S. coins, tosses of post-

1900 coins, tosses of quarters, tosses performed on Thursdays ... at each

step the size of the sample on which our knowledge might be based is

smaller, and ceteris paribus, our knowledge becomes less precise.
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On which of these various items of information vhould we base our

probabilities? I suggest that if there is no conflict between two items of

knowledge -- if the interval corresponding to the larger class is a

subinterval of the interval corresponding to the smaller class, it seems

appropriate to take the smaller interval, based on the larger class, as

legislative for probability.

For example, I know that very nearly a half of coin-tosses in general

yield heads. I know much less about the frequency with which this

particular 1980 quarter lands heads -- perhaps, by an inductive inference I

could say that I know that between 40% and 602 of its tosses yield heads.

But if you ask for the probability of heads on the next toss of this 1980

quarter, since there is no conflict between what I know of it and what I

know of tosses in general, I shall take the narrow interval corresponding to

my knowledge of tosses in general to give that probability.

This, in my systematic treatment of direct inference, is called "the

strength rule". I shall now describe an example that shows that direct

inference, if it incorporates the strength rule, is flatly inconsistent with

inverse inference. The example is due to Isaac Levi10  who draws the

conclusion that the strength rule is unacceptable. I shall alter the

example slightly, but I shall keep the numbers roughly the same. And I

shall draw the opposite conclusion: that we should hold fast to the strength

rule, and let inverse inference and the form of conditionalization that

it requires go hang.

VII

Suppose we measure lengths with one of three instruments, A, B and C.

Instrument of type A give results accurate within a margin of error m

. . . ... = u I im m n ii
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between 88.5% and 88.9% of the time; of type B between 90.5% and 90.9% of

the time; and of type C between 91.5% and 91.9% of the time. To fix our

ideas, suppose "within a margin of error m" amounts to having a reading

within .001 of the true value being measured. We may suppose that these

frequencies are reported by the manufacturer of the three types of

instrument. In general, though, we know that the combined results of all

three kinds of measurement are accurate within a margin of error m between

89.9% and 90.1% of the time. Put otherwise: we have a population of

measurements of which between 89.9% and 90.1% are accurate; this population

is partitioned into three sub-populations, A.L B, and C, characterized by the

error rates mentioned.

A particular measurement is made. We don't know what instrument was

used. It seems natural to say that the probability of its being accurate

within the margin of error m is (about) .90 -- more exactly, the interval

[.899,.901 ] seems to capture what we know.

We also know that an instrument yielding an error rate between 88.5%

(the minimum for instrument A) and 91.9% (the maximum for instrument C) was

used, so one might be tempted to think that the appropriate interval was

[.885,.919]. The strength principle argues against this; if we have more

accurate information we should use it. We should use the most exact

statistical knowledge we have for direct inference, provided that it is not

in conflict with other knowledge that we have.

But this position is in flat-out contradiction to inverse inference

construed as conditionalization on a prior probability -- i.e., as inverse

inference proper. To see this, suppose that B is a Bayesian belief

function, and that direct inference, as I have described it holds.

Following Levi, we show that this leads, in combination with other plausible

assumptions, to a contradiction.
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First off, if all we know is that the measurement we have made was made

with an instrument manufactured by the firm in question, we should accept

the general frequency of error as constraining our epistemic probability Prob:

*)Prob C'S E _ &" _UBVC ) E I.899,.9011

where S is the particular measurement at issue, Em is the set of

measurements accurate within a margin of error m, and EAVC is the body of

knowledge embodying merely the information that S was made with one of the

types of instrument A, B, or C.

Clearly, if we know which subset of the population of measurements we

are in, the error rate in that subset is indicated as the appropriate basis

for a direct inference.

Let A, B, .C be the sets of all trials, past, present, and future, with

instruments of types A, B, and C, respectively.

We are warranted in accepting

((,1)n c .885,.889]

(2) %(B,_) E [.905,.9091

(3) %(c,Gm) E (.915,.919]

Let - E U ".E A'I; B, KC similarly;

&V - E L' J "S E AJB"3; !WuC, !A,;C similarly.

From (1), (2), and (3) it follows that

(4) Z(AU BOm) c [.885,.909]

(5) V(A U C,Gm) c [.885,.919 1

(6) %(B U C,GM) E [.905,.9191

It may be the case that we have more precise knowledge of these disjunctive

reference sets, as we do of A V B U C -- but that need not be the case. We

may have lost the data; we may (reasonably) be depending on what the
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manufacturer tells us; in general ye cannot suppose that we know everything

that anybody else knows or ever knew.

For the same reason we have, by direct inference, using the strength

rule,

Prob ("SeGm"MK) e [.905,.909]

Prob ("SeGm",KC) E 1.915,.9191

Prob ("SescU",WB) E [.899'.901]

Pro (II~u",EA&C) c [.899,.9011

Prob C'em"E~ E: [.905,.9191

There is no function B that's a conditional belief function such that in

general

B ("S £~m"/Kx) E Prob("SCCM",K !X).

To see this, suppose that B is such a belief function. By

conditionalization and "total probability" we have

(7) B("SEm"/KM B("SF-AUB"/K) * B("SP :m"/KAuB) +' BC"Sec"/K) * B("SE~mIKC) F-

(.899,.901 1

Similarly,

(8) B("SE m"/K) B S AUC"/K) * B("SC-_."IAVC) + B(SE LB/K)) * B(Sc m"I)E

[.8999.901].

Let A - B("SeA'/K); p -E(ScB"'/K); Y' B("SE:C"/K).

From (7) and (8), together with the principle that beliefs should be

constrained by probabilities, we obtain:

/.3 + ("SE:&1n/jEj) E [.899, .9011

+ rB)seSc/K"/K 1 .899,.9011
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from which it follows that

2S 2 .1176

2(3 2 -. 2857

o .5967

Note that c , a , and r are not probabilities, based on known frequencies,

but mere degrees of belief, based on the principle of direct inference

together with the probability calculus.

Given these constraints on ot , and Y, we may derive a constraint on

-OS'SOM"//) •
BE("SeG 1/K) - B("SeA"IK) ' B("Sc 61/IA) +

-m -

B("sEB"/K) . s("ser-/KB) +

B("sCC/K) - B("SEc "m/Ki).

The maximum possible value for B("SEC./!) given these constraints is

Ami + B("SE".. Y.+
max-- -

+ tmax I (SEGM /KC) 4

.5967(.889) + .2857(.909) + .1176(.919) -

.5305 + .2597 + .1801 - .8982.

But this does not fall within the constraints imposed by the principle of

direct inference, viz., 1.899,.901].

It might be suggested that these are just not plausible statisti-s for

us to know. The response is, first, that these may just be the statistics

we have to work with. The second response is that even if we must get the

statistics from our own data, we can generate the problem.

Pick a level of acceptance -- e.g., 1 -'X-0.99. Look up a number n

such that a .99 confidence interval based on a sample of size n, with

observed relative frequency of Ga about 0.917, is included in 1915,.9191.
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Since the .99 confidence interval corresponds to about 2.575 standard

deviations (using a normal approximation and l/2-n as the upper bound of the

standard deviation, n is about 414414. Similarly, for A and for B, about

the same n will do. To obtain an overall confidence interval of [.899,.9011,

we may suppose a further, undifferentiated sample of 413395, of which

367498 are Gm. (Not all possible data is recorded; not all recorded data

is kept.)

Even if we try to be realistic about the data, we encounter the

conflict. But we have no reason to suppose we have the data -- the error

rates may just be reported in this form by the manufacturer.

VII

This just exhibits one more conflict between direct inference and

inverse inference. What do we do about it? One answer is to circumscribe

direct inference enough so that it can be reconciled with inverse inference.

One way to do this is to obtain probabilities from statistical knowledge

only when they concern objects (or events or whatever) that are random

members of their appropriate reference classes. This is Levi's suggestion.11

But to construe randomness in this way is, as I see it, to abandon direct

inference. We do not obtain the probability of accuracy of our measurement

from knowledge of the frequencies of error in A u B U C and its subsets A,

B, and C, but from that statistical knowledge combined with non-statistical

"probabilistic" knowledge about how the measurement was generated. (Clearly

if knowledge about how the measurement was generated is statistical, we face

no problem; but then all probabilities can come from direct inference.)

The most important philosophical counterargument to sacrificing

conditionalization to direct inference is the Dutch Book argument. Just as
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it is alleged that one's degrees of belief should satisfy the axioms of the

probability calculus, else one could have a book made against one, so, it is

argued, if conditional bets are allowed, one's conditional degrees of

belief must satisfy the principle of conditionalization. More explicitly,

suppose that the interval of probability for S is-1.3,.4] and that for

S & T is [.1,.2 J . Then the Bayesian conditional probability of T given S

should be constrained by the interval J.26,.67]. Every classical

probability function P such that P(S) E [.3,.4] and P(S & T) c 1.1,.21 is

such that P(T/S) c [.25,.671.

Clearly the interval 1.25,.67] should constrain the odds of conditional

bets on T given S. It is claimed that the same interval should constrain my

bets on T after I have added S to my body of kniwledge. This principle is

one that Levi has called "confirmational conditionalization". As was first

pointed out by him, and as we have just seen, confirmational

conditionalization is in conflict with at least some forms of direct

inference.

Suppose we abandon confirmational conditionalization, as I have

suggested. Then after observing S the (new) probability of T need not be the

interval [.25,.67I -- or any subinterval of it - but might be (say)

[.70,.80]. The cunning bettor, knowing that I will modify my probabilities

in this way, offers a bet at odds of 4 to 6 against S, and also a

conditional bet at even money on T given S for a stake of 11. Then, knowing

how I will modify my odds on learning S he plans to make a new bet after S

has occured (if it does) against T, at 6 units to 18. Here is what happens:

If S fails to occur, the bettor gains 6 units and no other bets are

activated.

If S does occur, there are two cases. If T occurs the bettor loses 4

from the first bet; gains 11 from the conditional bet and loses 6 from the
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third bet, for a net gain of 1. If T fails to occur, he loses 4 from the

first bet; loses 11 from the conditional bet, but gains 18 from the third

bet for a net gain of 3. In any case, the bettor wins. I have been Dutch

Booked!

By giving up confirmational conditionalization, have I not laid myself

open to a sure loss? Of course not. Even in the elementary case, I could

be willing to offer odds of 2 to I on S and 2 to 1 against S without being

willing to make both bets at once. But even if I must post odds, and must

take any bets consistent with that posting, so that the posted odds must be

coherent, on pain of sure loss, that is no argument that I cannot change my

posting. (In fact, the willingness to change the posted odds in the face of

new evidence might be one of the things that distinguishes successful

bookies!)

But we must be careful about the sort of changes that evidence can

warrant. The case at hand is not one that can actually happen. The clue to

this lies in the fact that the probabilities mentioned entail that P(S & -T)

- 0.2 exactly; the probability that I would assign to T after observing S can be

construed as a constraint on the prior probabilities of S & T and S & -T.

It is only where the strength rule is invoked that we can have a legitimate

violation of confirmational conditionalization. It is easy to see this in

the original example concerning the three measuring instruments A, B, and C.

If we hang on to the probabilities that are determined by direct inference,

there is NO adjustment of prior probabilities that will preserve coherence.

To regain coherence, at least one direct inference must go

The ideal Bayesian robot, to be sure, has no need of either direct

inference or interval-valued probabilities. But his probabilities are at

base a priori prejudices, compounded, to be sure, with observations.
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Alternatively, we may follow Fisher and Neyman in abandoning inverse

inference. Especially once we have liberalized our notion of probability to

accommodate intervals or sets of distributions, the loss of inverse

inference is no loss.

The basic Bayesian Blunder does not lie in the use of Bayes' theorem.

The use of Bayes' theorem is perfectly compatible with the principle that

all probabilities, without exception, are obtained by direct inference. The

blunder lies in the conviction that only by inverse inference proper can the

knowledge needed for direct inference be obtained. But we can't get

acceptance from inverse inference alone, so inverse probability doesn't

solve that problem. And, worse, inverse inference is seriously incompatible

with direct inference, which was where we started from. The whole idea of

inverse inference was to complete and complement an acceptable theory of

direct inference; what we find, when we develop inverse inference far enough

is that we have little or nothing left of direct inference. We have

undermined the foundation on which we tried to build.

Henry E. Kyburg, Jr.

University of Rochester
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