E200 996

PL-TR-92-2002

YIELDS OF UNDERGROUND NUCLEAR EXPLOSIONS AT AZGIR AND SHAGAN RIVER, USSR AND IMPLICATIONS FOR IDENTIFYING DECOUPLED NUCLEAR TESTING IN SALT

Lynn R. Sykes

Columbia University in the City of New York Box 20, Low Memorial Library New York, NY 10027

5 December 1991

أأتو ويربوه المتعاط فبنيا المالة المالية المتحافية ال

Scientific Report No. 1

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

PHILLIPS LABORATORY AIR FORCE SYSTEMS COMMAND HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731-5000

92 4 22 085

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Air Force or the U.S. Government.

This technical report has been reviewed and is approved for publication.

JAMES F. LEWKOWICZ Contract Manager Solid Earth Geophysics Branch Earth Sciences Division

JAMES F. LEWKO

Branch Chief Solid Earth Geophysics Branch Earth Sciencs Division

used & teklen a

DONALD H. ECKHARDT, Director Earth Sciences Division

This document has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify PL/IMA, Hanscom AFB MA 01731-5000. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

	CUMENTATION P	AGE		Form Approved OMB No 0704-0188
a dow rengiting purcen for this collection of infor	mation is instimated to average 1 hour per	response, including the time to	or reviewing instru	uctions year hing existing data source
Thermal and instruction of the state instruction and the instruction of information, including suggestions for objects that way, suite 1204, information, VA, 22202.43	r reducing this burden, to Washington Heal 102, and to the Office of Management and	dquarters Services, Directorati Budget, Pilberwork Reduction	e for information (Project (0704-318)	Operations and Reports, 1215 Jeffers B), Aastingtin, DC 20503
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 5 December 1991	3. REPORT TYPE Scientific	AND DATES (No. 1	COVERED
4. TITLE AND SUBTITLE			5. FUND	ING NUMBERS
Yields of Underground N Shagan River, USSR, and Decoupled Nuclear Testi	Nuclear Explosions and Implications for Indications for Indications for Indications for Indication (Indication) and the second s	t Azgir and dentifying	PE 62 PR 760	101F 10 TA 09 WU BK
6. AUTHOR(S)			Contra	ct F19628-90-K-00
Lynn R. Sykes				
7. PERFORMING ORGANIZATION NAM Columbia University in Box 20, Low Memorial Li New York, NY 10027	ME(S) AND ADDRESS(ES) the City of New Yor lbrary	k	8. PERFO REPOR	DRMING ORGANIZATION RT NUMBER
9. SPONSORING / MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)	10. SPON	SORING / MONITORING
Phillips Laboratory	100		AGEN	ICY REPORT NUMBER
nanscom Arb, na 01751-50			PI_TR-	-92-2002
				J 6- 6VV6
Contract Manager: James	Lewkowicz/GPEH			
12a. DISTRIBUTION / AVAILABILITY ST	ATEMENT	<u></u>	12b. DIS1	TRIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY ST APPROVED FOI	ATEMENT R PUBLIC RELEASE;		12b. DIST	RIBUTION CODE
12a. DISTRIBUTION / AVAILABILITY ST APPROVED FOI DISTRIBUTION	ATEMENT R PUBLIC RELEASE; UNLIMITED		12b. DIST	FRIBUTION CODE
 12a. DISTRIBUTION / AVAILABILITY ST APPROVED FOI DISTRIBUTION 13. ABSTRACT (Maximum 200 words) Bodywave magnitudes, my ground nuclear explosions a yield, Y, in various parts of to the SW part of the Shagar The resulting relationship, et al. (1989) for Shagan Riv Using magnitudes determine into three subareas. Yields more consistent for the same et al. for large explosions in culated by averaging determine cision at 95% confidence (no 193 kt is clearly the largest provide strong evidence of the subject terms 	ATEMENT R PUBLIC RELEASE; UNLIMITED b, are recomputed using s at Shagan River and Azging the world in either hard of n River testing area using $m_b = 4.48 + 0.79 \log Y$, for , differs very little from hed from Lg at NORSAR calculated from these rev the explosion; each agrees a 1971 and 1972 in the N minations from Lg and b mean value 1.14) for Y > t underground explosion clustering in the distribut	station corrections ir. The m_b values rock or below the previously publisl which includes yie a regression that as a standard, the vised m_b values a closely with the y E and SW parts of ody waves for 66 10 kt. The explo- at Shagan River.	12b. DIST a for all kno for explosi water table hed values elds publis does not ir Shagan Ri and from n ields publis f the testing explosions osion of 23 The newly oviet tests.	TRIBUTION CODE own Soviet under- ons of announced e were normalized of t* and m_b bias. hed by Bocharov nclude those data. wer site is divided n(Lg) are much shed by Bocharov g area. Yields cal- s have a high pre- July 1973 of Y = calculated values In a special study 15. NUMBER OF PAGES 46
 12a. DISTRIBUTION / AVAILABILITY ST APPROVED FOI DISTRIBUTION 13. ABSTRACT (Maximum 200 words) Bodywave magnitudes, my ground nuclear explosions a yield, Y, in various parts of to the SW part of the Shagan The resulting relationship, et al. (1989) for Shagan Riv Using magnitudes determin into three subareas. Yields more consistent for the sam et al. for large explosions in culated by averaging detern cision at 95% confidence (n 193 kt is clearly the largest provide strong evidence of 14. SUBJECT TERMS yields of Soviet nuclear ex 	ATEMENT R PUBLIC RELEASE; UNLIMITED b, are recomputed using s at Shagan River and Azg the world in either hard r n River testing area using $m_b = 4.48 + 0.79 \log Y$, for , differs very little from hed from Lg at NORSAR calculated from these rev the explosion; each agrees a 1971 and 1972 in the N minations from Lg and b mean value 1.14) for Y > t underground explosion clustering in the distribut splosions, nuclear tests in SECURITY CLASSIFICATION	station corrections ir. The m _b values previously publish which includes yie as a standard, the vised m _b values a closely with the y E and SW parts of ody waves for 66 10 kt. The explo- at Shagan River. ion of yields of Sc salt, decoupling,	for all kno for explosi water table hed values elds publis does not ir Shagan Ri and from n ields publis f the testing explosions osion of 23 The newly oviet tests.	FRIBUTION CODE Down Soviet under- ons of announced e were normalized of t* and m_b bias. hed by Bocharov nclude those data. Iver site is divided n(Lg) are much shed by Bocharov g area. Yields cal- shave a high pre- July 1973 of Y = calculated values In a special study 15. NUMBER OF PAGES 46 16. PRICE CODE
 12a. DISTRIBUTION / AVAILABILITY ST APPROVED FOI DISTRIBUTION 13. ABSTRACT (Maximum 200 words) Bodywave magnitudes, mg ground nuclear explosions a yield, Y, in various parts of to the SW part of the Shagan The resulting relationship, et al. (1989) for Shagan Riv Using magnitudes determine into three subareas. Yields more consistent for the same et al. for large explosions in culated by averaging determine cision at 95% confidence (1193 kt is clearly the largest provide strong evidence of 14. SUBJECT TERMS yields of Soviet nuclear ex 17. SECURITY CLASSIFICATION 18 	ATEMENT R PUBLIC RELEASE; UNLIMITED b, are recomputed using s at Shagan River and Azging the world in either hard in n River testing area using $m_b = 4.48 + 0.79 \log Y$, er, differs very little from hed from Lg at NORSAR calculated from these reviewers the explosion; each agrees in 1971 and 1972 in the N minations from Lg and b mean value 1.14) for Y > t underground explosion clustering in the distribut splosions, nuclear tests in SECURITY CLASSIFICATION OF THIS PAGE	station corrections in. The m_b values previously publish which includes yie in a regression that as a standard, the vised m_b values a closely with the y E and SW parts of ody waves for 66 10 kt. The explo- at Shagan River. ion of yields of Sco- salt, decoupling,	12b. DIST a for all kno for explosi water table hed values elds publis does not ir Shagan Ri and from n ields publis f the testing explosions osion of 23 The newly oviet tests.	FRIBUTION CODE own Soviet under- ons of announced were normalized of t* and m _b bias. hed by Bocharov nclude those data. wer site is divided n(Lg) are much shed by Bocharov g area. Yields cal- s have a high pre- July1973 of Y = calculated values In a special study 15. NUMBER OF PAGES 46 16. PRICE CODE 20. LIMITATION OF ABSTRA SA R

Presci bed hy with 113 739-18 299-152

made for the Azgir explosion of 1.1 kt of 1966, m_b was measured at 16 stations for which seismograms were available, giving $m_b = 4.52 \pm .06$. For purposes of appreciating the detection capability of a given seismic network, it is important to recognize that a fully-coupled explosion of 1 kt in salt in high-Q areas of the U.S.S.R. has an m_b of 4.46; fully decoupled events of 1 and 10 kt have m_b 's of 2.61 and 3.40 respectively. Yields are recalculated for past Soviet nuclear explosions at Azgir and in other areas of thick salt deposits through 1986. The yields of fully decoupled and nearly fully decoupled (Sterling conditions) nuclear explosions that could be detonated in the cavities produced by those events are calculated. Most of the "opportunities" for decoupled testing of those types are concentrated in the area to the north of the Caspian Sea. The "oppontunities" for the largest tests, up to a maximum of 7 to 8 kt, are largely confined to Azgir itself. Possibilities for decoupled testing are more restricted in the area of bedded salt to the northwest of lake Baikal.

CONTENTS

Introduction1
Research Accomplished
Improved Bodywave Magnitudes5
Small Azgir Explosions
Magnitude-Yield Relationships for Shagan River and Azgir6
Subdivision of Shagan River Testing Area for Yield Determination7
Precision and Accuracy of Yield Determinations for Shagan River Explosions9
Yields Determined from Surface Waves for Shagan River Explosions
Yields of Weapons Deployed on Soviet Strategic Delivery Systems
and Tested at Shagan River11
Clustering of Yields of Shagan River Explosions12
Soviet Compliance with the Threshold Test Ban Treaty12
Cavities Formed by Nuclear Explosions in Thick Salt Deposits that
Might be Usable for Future Clandestine Nuclear Testing
Conclusions and Recommendations
Implications for Identifying Small Decoupled Nuclear Explosions in Salt17
Precise Yield Estimates for Explosions at Shagan River17
References
Figures
Tables

INTRODUCTION

The detonation of nuclear explosions by the Soviet Union in large underground cavities under either a Low-Yield threshold test ban treaty (LYTTBT) or a comprehensive test ban treaty (CTBT) would constitute the greatest challenge to U.S. verification efforts.That evasion scenario sets the limit on how low a yield can be verified effectively. The recent OTA Report *Seismic Verification of Nuclear Testing Treaties* found that between 1 to 2 and 10 kilotons (kt) the only plausible method of evasion is that of nuclear testing in large cavities in salt domes. It concluded that no method of evading a good monitoring network is credible above 10 kt and that several evasion scenarios, including testing in cavities in bedded salt and in hard rocks, are possible below 1 to 2 kt.

Our work address a number of aspects of the problem of clandestine nuclear testing in large cavities in salt domes, bedded salt and hard rock--what types of evasion scenarios are plausable based on geological and engineering constraints, which ones are likely to escape detection by the U.S. and which ones are likely to be identified. We devote particular attention to the Soviet Union and to the critical yield regime from 1 to 10 kt, where scientific research over the next few years seems most likely to have a major impact on the verifiability of a LYTTBT and on what threshold can be verified effectively. Several important aspects of decoupling have received little study for more than 20 years. Since then a great deal of experience has been obtained by the U.S. and several European countries on the rheological properties of salt in conjunction with research on radioactive waste disposal in salt deposits and by industry on the construction and stability of large cavities in salt for petroleum storage and waste disposal. Experience with very large cavities in salt domes is available from the U.S. Strategic Petroleum Reserve and from the U.S.S.R. and U.S. on cavities in salt for gas storage.

Our major research objectives during the first year were:

1) Derive revised m_b values for Soviet underground nuclear explosions in salt and for small explosions at the main Soviet test sites; determine improved magnitude-yield relationships, especially for explosions of small yield;

2) Study numbers, magnitudes and spectral character of small earthquakes and large chemical explosions in and near areas of thick salt deposits in the U.S.S.R.;

3) Evaluate and synthesize data from engineering, rock mechanics and geological sources on the properties of salt, stability of large underground cavities in salt, and the use of cavities in salt for possible clandestine nuclear testing, especially in the yield range 1 to 10 kt;

4) Start work on maps of the U.S.S.R. showing locations suitable for possible decoupled testing of explosions of various yields in salt. Identify areas that have known salt deposits, those that are not known to but conceivably could be such sites, and areas that do not and cannot contain salt deposits of any appreciable thickness (such as old cratonic regions and young volcanic areas).

During the past year work has been done on all four of the above areas. The first topic has been completed and a paper on that work is being finished for journal submission. Most of this report is devoted to that topic and to the implications for detecting and identifying decoupled nuclear testing in the Soviet Union in the Azgir region and in adjacent areas to the north of the Caspian Sea where the world's most numerous salt domes are found.

There has been a long debate going back before the signing of the TTBT in 1974 about the yields of Soviet underground nuclear explosions at their various test sites and about the correct methodology for calculating explosion yield from the amplitudes of various seismic waves. The establishment of a threshold in terms of yield by the TTBT put a premium on accurate yield determination. After 1974 the debate in the United States focused upon the Shagan River portion of the Soviet testing area in Central Asia (eastern Kazakhstan) since the largest underground nuclear tests by the U.S.S.R. after the start date for that treaty (April 1, 1976) were conducted there. (The Shagan River area is called the Balapan testing area by Soviet workers.) Until three years ago when Bocharov et al. (1989) published yields of a number of underground explosions at the Central Asian test site for the period 1961 through 1972, an approximate yield had only been published or released by the Soviet Union for a single explosion in that area. The use of that data point for calibrating yields of fully contained underground nuclear explosions was difficult since that event, which occurred in January 1965, produced a large crater. Its m_b was probably smaller than that of a fully contained explosion of the same yield.

Underground nuclear explosions at the main Soviet test sites in Central Asia and Novaya Zemlya generate larger P waves at large (teleseismic) distances that U.S. explosions of the same yield at the Nevada Test Site (NTS). The difference in magnitude, often called the m_b bias, is + 0.3 to +0.4 magnitude units for either of those Soviet weapons testing sites with respect to NTS, providing the explosions are in the same rock type (Office of Technology Assessment, 1988). In practice, most U.S. underground explosions have been conducted in softer, less competent rocks than those at Shagan River, leading to an overall bias of about 0.4 to 0.5 with respect to NTS.

In 1988 the United States and the U.S.S.R. conducted nuclear explosions at NTS and Shagan River, respectively, that were stipulated by bi-lateral agreement to be in the yield range from 100 to 150 kt. Each country permitted the other to make on-site measurements of yield by hydrodynamic (Corrtex-type) and seismic methods. It is unfortunate that yield estimates and other pertinent data for those two Joint Verification Experiments (JVEs), as well as yield determinations for five previous nuclear tests at

each site that were communicated to the other country, remain classified and have not been announced publically. Nevertheless, a detailed technical report on the two JVEs in the New York Times for October 30, 1988 stated that the American and Soviet onsite measurements by the hydrodynamic method gave yields of 115 and 122 kt, respectively for the Soviet JVE of September 14, 1988.

In previous work my colleagues and I determined yields for Soviet explosions at Shagan River and Novaya Zemlya by using calibration curves for P waves that were based on underground explosions of announced yield for which their P-wave magnitudes were corrected for m_b bias between the actual test site of the explosion and the Soviet site in question. Sykes and Ekstrom (1989) showed that the reported hydrodynamic yields of 115 and 122 kt for the Soviet JVE were consistent with those m_b -yield relationships for Shagan River. They also obtained a maximum value of 145 kt for the yield of that explosion using surface waves.

In the last few years much progress has been made in using magnitudes derived from the short-period seismic phase Lg for precise determinations of yield of explosions at Shagan River (Ringdahl and Fyen, 1988; Ringdahl, 1989; Ringdahl and Marshall, 1989; Hansen et al., 1990). The precision of a single determination of magnitude from Lg waves is often comparable to that obtained after averaging values of m_b from 50 to 100 worldwide stations. Magnitude: determined from Lg waves, m(Lg), will probably become the single method of choice in the future as more data become available from digitally-recording stations in the Soviet Union at regional distances. Lg waves studied by Ringdahl and his co-workers were recorded digitally at Norsar and Graftenberg at distances of about 4000 km from Shagan River. Events of m_b less than about 5.5 (Hansen et al., 1990), that is for yields smaller than about 40 kt, typically have a small signal-to-noise ratio at those large distances. It appears possible to use data from high-quality stations in the U.S.S.R. to determined yield from Lg waves for tamped (well-coupled) explosions as small as 1 kt (Hansen et al., 1990).

Nevertheless, accurate determinations of yield from m_b continue to be essential for most past explosions of small to moderate yield at Shagan River and at other Soviet testing areas, explosions detonated in the 1960s before digital data of high quality became available from either Norsar or Graftenberg, Peaceful Nuclear Explosions (PNEs) in areas of the U.S.S.R. more distant from those arrays, and explosions in regions like Azgir where the propagation of Lg is poor to many stations. Yields determined from m_b become a valuable check on calculations from Lg and can be used to measure the precision of yield determinations by the two methods. I show later that more precise yields for Shagan River explosions can be obtained by suitably averaging determinations from m_b and m(Lg) than can be obtained from either of those wave types alone.

A major problem exists in converting relative yields from Lg into absolute yields, i.

e. in calibrating a given test site in an absolute sense. While yields for several explosions at Shagan River prior to 1973 have recently been published by Soviet workers (Bocharov et al., 1989) and yields of five other Soviet explosions have been turned over to the U. S. Government, the Soviet JVE of 1988 is the only event for which yield has been determined independently on-site by experts from outside the Soviet Union. As mentioned above, the yields measured on-site for the JVE and those five events have not been formally released or published by either the U. S. or Soviet governments. Thus, calibration of absolute yields for Shagan River from Lg alone must be based on either the single data point for the Soviet JVE or the unverified yields reported by Bocharov et al. (1989).

Body wave-yield relationships, however, have the advantage that data from many explosions of announced yield in other parts of the world can "transported" to the Shagan River site via relative bias values for m_b , such as those determined from attenuation. This has the advantage of relying on more than a single m_b -yield pair of values in constructing a magnitude-yield relationship for explosions at Shagan River. Ringdahl and Marshall (1989) calibrated a m_b -yield relationship for that site using the m_b value and approximate yield (111 kt) of the cratering explosion of January 15, 1965 and then making a correction (addition) to its m_b to account for its very shallow depth of burial, i. e. for the fact that, unlike almost other Shagan River explosions, it was not contained. Since Lg measurement were not available for that event from Norsar or Graftenberg, Ringdahl and Marshall (1989) regressed data on m(Lg) with those on m_b for many contained explosions to obtain a m(Lg)-yield relationship and thence to computed yields of other events from that expression. Their absolute values of yield are, of course, sensitive to the uncertainties in the values of m_b , yield and the m_b correction term for the 1965 event.

In this paper I compare my recalculated values of m_b with values of m(Lg) reported by Ringdahl and Fyen (1988) and Ringdahl (1989) for large numbers of explosions at Shagan River. The difference between those two magnitudes is shown to vary systematically from southwest to northeast across that testing area. That variation is attributed to systematic differences in m_b (and hence in m_b bias with respect to NTS), with Lg being generated uniformly throughout the entire Shagan River area. Subdividing the Shagan River area into three parts, corrections to m_b are then made as a function of location on the test site to form a corrected body wave magnitude, m_b ' The values are normalized to the southwestern part of the Shagan River area where $m_b = m_b$ '.

I then use m_b values for explosions of announced yield, Y, in various parts of the world and correct them to the southwestern part of the Shagan River testing area using the bias values determined from the relative attenuation of P waves by Der et al. (1985) for various testing areas. A regression of m_b upon log Y is obtained for those data but omitting the yields of Bocharov et al. (1989). Fortunately, the explosions with the

three largest yields in Bocharov et al. were located in the three different subareas of the test site that I define. When their m_b values are corrected for position on the testing area, the corrected values, m_b ', and their published yields fall very close to the m_b -yield relationship determined without recourse to those data points. This indicates that the Bocharov et al. yields must be nearly correct and that they are neither seriously biased nor unrepresentative. It also indicates that it is, in fact, m_b and not m(Lg) that varies systematically with position on the test site. (Consistent yields are not obtained if m_b is taken to be constant and m(Lg) varies over the testing area).

Thus, to obtain yield estimates for Shagan River explosions from m_b that are more accurate than a factor of 1.4, it is necessary to use somewhat different m_b -yield calibration curves for various parts of that test site. Values of m(Lg) are then regressed against m_b ' so that a new magnitude $m_b(Lg)$ can be calculated from Lg. In that way the m_b -yield relationship that was obtained for the southwest part of Shagan River (Fig. 1) can be used to obtain very accurate yield estimates of explosions at Shagan River from either m_b ', $m_b(Lg)$ or a weighted average of those two magnitudes. An advantage of this calibration procedure is that it does not rely on the magnitude or yield of a single event like the Soviet JVE or the 1965 cratering explosion; it also permits the yields published by Bocharov et al. (1989) to be verified.

The yields obtained herein by an equal weighting of data from P and Lg waves agree very closely, i. e. within about 15%, with those calculated by Ringdahl and Marshall (1989) using the 1965 cratering event for calibration. Seismology appears to be clearly capable of providing yields for large Shagan River explosions that are at least as good as and often better than those attributed to the Corrtex method (Office of Technology Assessment, 1988). For small explosions at that site, seismic methods have a clear advantage for yield determination compared to Corrtex (Office of Technology Assessment, 1988). For other less well calibrated test sites, like Novaya Zemlya, one to a few Corrtex measurements can be used to calibrate the site such that seismic waves can be used to estimate yields more accurately for past and possibly future explosions in that area.

RESEARCH ACCOMPLISHED

Improved Bodywave Magnitudes

Revised m_b values were recomputed using station corrections for all known Soviet underground nuclear explosions at the Shagan River testing area in Central Asia and in the Azgir region to the north of the Caspian Sea for which data were available from the International Seismological Center (ISC) and the United States Geological Survey (USGS) for the period January 1961 through May 1988. Station corrections for Shagan River events were derived for 9 large explosions and applied to all undergroud events for which data were available for that testing area. Similar previous work on magnitude and yield determination are described in Sykes and Cifuentes (1984), Sykes and Ruggi (1986, 1989), Sykes and Davis (1987) and Sykes and Ekstrom (1989). Stations used in the recalculations were confined to the distance range 25° to 95°.

A major object in our work has been to reduce the standard error of the mean for m_b to values as small as 0.015 to 0.03 by using large numbers of stations (80 to 100 for larger events) and by applying station corrections. Since individual stations typically record explosions from a given test site with amplitudes that are consistently either higher or lower than the mean for many stations, the application of station corrections considerably reduces the standard deviation of a single reading and avoids biases related to the inclusion or exclusion of individual readings from one event to another. It is particularly important to use station corrections since data from the many stations of countries like Canada or France were not available for some explosions but were available for many others. Similarly, station corrections were derived for the seven largest underground explosions at Azgir, where the testing medium is salt, and applied to other events at Azgir, including the PNE explosions of 1966 and 1968 for which the Soviet Union long ago announced yields of 1.1 and 25 kt respectively. Recomputed magnitudes for Azgir and Shagan River explosions, their standard errors of the mean, and other pertinent data are listed in Tables I and 2.

Small Azgir Explosions

In a special study made for the Azgir explosion of 1.1 kt of 1966, m_b was measured at 16 stations for which seismograms were openly available, giving $m_b = 4.524 \pm .056$. Although small in amplitude, P waves could be readily identified at many of the better WWSSN stations of higher gain and good signal-to-noise ratio. The ability to detect such a small event 25 years ago using analog records from mainly simple (non-array) stations reflects the high coupling of a tamped underground explosion in salt and the efficent propagation (high Q) for P waves from the Azgir area to stations worldwide A similar study for the 1968 Azgir PNE event gave $m_b = 5.529 \pm .027$.

Magnitude-Yield Relationships for Shagan River and Azgir

The m_b values for explosions of announced yield, Y, in various parts of the world in either hard rock or below the water table were normalized to the southwestern part of the Shagan River testing area and to Azgir using the published values of relative attenuation and m_b bias of Der et al. (1985). For example, a bias of 0.351 m_b units between the southwest part of the Shagan River testing area and NTS was used. Values of m_b in Fig. 1 for Soviet explosions are from Tables 1 and 2; those for other events are from Marshall et al. (1979).

An aim here has been to use as few Soviet announced yields as possible so as to permit the yields of Bocharov et al. (1989) and other yields recently turned over by the U.S.S.R to the U.S. to be verified. The resulting m_b -yield regression (dotted line in Fig. 1) for the southwest part of the Shagan River area,

 $m_{\rm b} = 4.483 + 0.787 \log Y \tag{1}$

which includes yields published by Bocharov et al. (1989) for Shagan River, in fact, differs very little from the other regression in Fig. 1 (solid line) that does not include those data but does include the yields of PNE explosions at Azgir in 1966 (1.1 kt) and 1968 (25 kt), which were made public many years ago as part of an exchange of data on peaceful uses of nuclear explosions. The inclusion or exclusion of the two Azgir events mainly affects the slope of the m_b -log Y relation and not the computed magnitudes for yields from 100 to 150 kt. A similar relationship,

$$m_{\rm b} = 4.456 + 0.787 \log Y \tag{2}$$

was obtained for Azgir using a bias of 0.324 with respect to NTS (Der et al., 1985). It can be seen that the two explosions in salt at Azgir couple as well as those in hard rock at Shagan River as do the three in granite in Nevada.

Subdivision of Shagan River Testing Area for Yield Determination

Magnitudes determined from Lg at Norsar, m(Lg), and our recalculated values of m_b are now available for large numbers of events at Shagan River. Fig. 2 shows that the difference between m(Lg) and m_b varies systematically across the Shagan testing area from low values in the southwest to high values in the northeastern part, much like that found previously by Ringdahl and Marshall (1989). In constructing Fig. 2 I used the locations of Marshall et al. (1984) as well as Marshall, written communication, for more recent events. Using m(Lg) as a standard, the Shagan River test site is divided into three subareas. The straight line boundaries between the subareas were drawn such as to minimize the number of misfitting data points and to be approximately parallel to structural features on and near the test site. A new magnitude m_b' is defined equal to m_b for the southwestern area, $m_b + 0.145$ for the northeastern area, and $m_b + 0.067$ for the transitional zone between them. Much less scatter is evident for the subregions and for the entire Shagan River area (Figs. 3 and 4) when m(Lg) is compared with m_b' rather than with m_b .

Yields for Shagan River Events from Lg and Bodywaves

A new magnitude,

$$m_b(Lg) = 1.090 m(Lg) - 0.440$$
 (3)

is defined from the regression of m_b ' and m(Lg) that is shown in Fig. 4. This permits yields for Shagan River events to be calculated from either m(Lg) or m_b ' using (1). This permits Lg observations to be used for yield determination using the much larger collection of m_b values that are available for explosions of announced yield on a worldwide basis. Its use also avoids using mainly unverified Soviet yields when calculating yield directly from observations of Lg. Yields calculated from those two magnitudes are much more consistent for the same explosion than those calculated from Lg and uncorrected body wave magnitudes. The same is true for the yields of the three largest explosions published by Bocharov et al. (1989)--125, 140 and 165 kt, which occurred at Shagan River in 1969 and 1972 in each of the subregions defined in Fig. 2.

The quantities m_b ', $m_b(Lg)$ and the average of those two magnitudes were each regressed against logY using the published yields for those three explosions and the average yield, 119 kt, determined from hydrodynamic measurements for the Soviet JVE as published in the New York Times (Sykes and Ekstrom, 1989). The slope of each magnitude-log Y relationship was held constant at 0.8 since the yields cover a very narrow range. Each of those magnitudes had the following standard deviations: m_b ', 0.046; $m_b(Lg)$, 0.035; average magnitude, 0.018 magnitude units. While a slightly better weighted average of the two computed values of log Y could be calculated, only a simple average seemed warranted at this time. Nevertheless, it is clear for these four events that the precision of yield estimates can be improved by using an average based on the magnitude determined from Lg and the corrected magnitude m_b ' rather than relying on yield estimates based on either of those magnitudes alone.

Close agreement is found between the yields published by Bocharov et al. (1989) and those calculated from the relationship in Fig. 1 that does not include those data or any other recently released Soviet data. Thus, the published of yields Bocharov et al. for Shagan River must be equal to or close to the actual yields. The inclusion of the four yields of Bocharov et al. for Shagan River explosions, in fact, leads to slightly larger computed yields than those obtained in Fig. 1 without those data. The yield computations based on m_b ' in Table 1 utilize the relationship that includes those data. Nevertheless, they do not differ significantly from those computed with the other relationship in Fig. 1. The close agreement between yields computed from m_b ' and $m_b(Lg)$ and those published by Bocharov et al. also argues that m_b , in fact, and not m(Lg) varies with position from southwest to northeast across the Shagan River testing area.

Precision and Accuracy of Yield Determinations for Shagan River Explosions

The values of log Y obtained by taking a simple average of the magnitudes obtained from Lg and bodywaves for 66 Shagan River explosions of $Y \ge 10$ kt (Table 1) have standard errors of the mean (SEM) between 0.00 and 0.08 and an average SEM of .029. These translate into yield determinations based on those two wave types with a precision at 95% confidence (R value) of a factor of 1.0 to 1.45 (mean value of 1.14) (Fig. 5). Only one explosion of yield greater than 62 kt, an event in 1969, has an R value greater than 1.28. The decrease in precision, i. e. increase in R values, for events smaller than about 60 kt probably mainly reflects the smaller signal-to-noise ratios of the Lg waves that were used to determine m(Lg) at large distances.

These uncertainties in yield estimation, of course, pertain to precision and not necessarily to accuracy. Nevertheless, it seems unlikely that the calibration curves used in Fig. 1 are more uncertain than either 0.07 in magnitude, 0.08 in log Y or a factor of 1.2 in yield. The greatest contribution to the uncertainty of the yields determined by averaging magnitudes from Lg and P waves for explosions with yields larger than about 60 kt comes from the uncertainty in the magnitude-yield calibration curve. Nonetheless, yields determined in this way for explosions larger than about 60 kt appear to have an accuracy at 95% confidence that is comparable to and perhaps better than the factor of 1.3 attributed to the Corrtex method for Shagan River explosions (Office of Technology Assessment, 1988). The published yield of 16 kt (Bocharov et al., 1989) for the explosion at Shagan River of February 10, 1972 agrees well with the yield of 18 kt (Table 1) obtained from m_b'. This indicates that the calibration relationship and yield estimates for that test site near 20 kt from P wave magnitudes probably are of comparable accuracy to those obtained from P waves alone for yields between 100 and 150 kt. At the present time the Corrtex method could not be used with confidence to determine yield for explosions smaller than several tens of kilotons (Office of Technology Assessment, 1988). Thus, seismic methods offer a clear advantage in monitoring compliance under a Low-Yield Threshold Test Ban Treaty. The availability of digital recordings of Lg from regional stations in the Soviet Union, such as stations operated in conjunction with the IRIS program, should result in greater precision in determining yield for tamped explosions as small as about 1 kt.

Yields Determined from Surface Waves for Shagan River Explosions

Yields were also determined in Table 1 from surface waves for all moderate to large nuclear explosions at Shagan River for which digital data were available through the

end of 1986. With one exception, data of that type were available only after late 1978. Rayleigh wave (LR) and Love wave (LQ) amplitudes with periods in the narrow band 18-21 s were measured on vertical and transverse component digital seismograms for long-period stations in Eurasia. Only data for pure or nearly pure continental paths were used so as to avoid complications resulting from surface wave propagation across continental margins. The method of analysis for computing the surface wave magnitude, Ms, and station corrections are described in Sykes and Cifuentes (1984) and Sykes and Ekstrom (1989).

It has been recognized for many years that many underground explosions at Shagan River trigger the release of natural tectonic stresses in the vicinity of the explosion shot point. Both the explosion source itself and the release of those stresses contribute to LR and Ms whereas only the latter contributes to LQ. Following our previous work on yield estimation from Ms, we sought to make a correction to Ms so as to largely remove the effect of tectonic release. This was done only for explosions with small to moderate tectonic release compared to the size of the pure explosion itself, i. e. for LQ / LR < 0.60, where that ratio was taken as an average over all stations used in the analysis. A full moment tensor solution is need for larger values of LQ/LR.

Yields were computed from

$$Ms + B(LR/LQ) = 2.16 + 0.97 \log Y$$
 (4)

using the measured values of Ms, where the second term is a linear correction to Ms for the effect of small to moderate tectonic release (Sykes and Cifuentes, 1984; Sykes and Ekstrom, 1989). The relationship Ms = 2.16 + 0.97 was determined by Sykes and Cifuentes (1984) using explosions of announced yield in various parts of the world for which either LO/LR was small or the mechanism of the tectonic release was such as to not significantly affect Ms as averaged over a range to azimuths from the event. Values of B were obtained for each explosion at Shagan River of LQ/LR < 0.60 for which Ms was available and Y had been determined from $m_{\rm b}$ and/or $m_{\rm b}(Lg)$. The average value, B = 0.45, is close to the value 0.43 obtained by Sykes and Cifuentes (1984) for a much smaller number of events at Shagan River for which moment tensor solutions were available at the time in the literature. That value is in accord with the hypothesis that tectonic release at that site involves predominantly thrust faulting and, hence, that the correction to Ms is positive. Also, the argument can be turned around taking B = 0.43from those moment tensor events to derive yields from surface waves that differ only slightly from those in Table 1. Those yields can then be used along with values of m_b' for those explosions to calculate the constant in the m_b-yield relationship for Shagan River. That constant is nearly identical to the two values obtained in Fig. 1 using a bias value of 0.35 m_b units for the southwestern part of the Shagan River area with respect to NTS.

The individual values of log Y calculated from Ms (Table 1), however, scatter much

more when plotted against log Y determined from either m_b ' or $m_b(Lg)$ than is the case when the latter two quantities are plotted against one another. Thus, surface wave estimates of yield are less precise and, hence, are not used in this paper to calculate average yields. They can be used, however, as a less accurate additional constraint on yield if an estimate from Lg waves is not available or the average yield from P and Lg is near or above the 150 kt threshold of the TTBT.

Yields of Weapons Deployed on Soviet Strategic Delivery Systems and Tested at Shagan River

In November and December 1972 and in July 1973 the Soviet Union detonated three nuclear explosions at Shagan River with yields between 140 and 200 kt. Those events occurred well before either the negotiations for the TTBT in July 1974 or the start date for that treaty in 1976. The U.S.S.R. did not test again in the yield range above 120 kt at Shagan River until June 1979. A number of much larger explosions with yields of 500 kt or greater were detonated at the two remote sites in Novaya Zemlya in the 20 months between the signing of the TTBT and its start date. Those three events at Shagan River were the only nuclear explosions detonated by the U.S.S.R. at any of their test sites in the yield range 120 to 400 kt from 1970 to June 1979, a period of a several years both before and after the signing of the TTBT (Sykes and Davis, 1987; Sykes and Ruggi, 1989).

The occurrence of three explosions at Shagan River in that yield range within 9 months of one another in 1972 and 1973 suggests that they represent the full yield or nearly full yield testing of important and distinct Soviet nuclear weapons. The use of precise methods of yield estimation from P and Lg waves permits an assessment to be made of the yields of those three events and to compare them with the published yields for the two events in 1972. The yields determined as an average of the log Y values from m_b' and m_b(Lg) are 154, 138 and 193 kt with associated R values (95% confidence on precision) of 1.14, 1.22 and 1.22 kt respectively (Tables 1 and 3). The calculated yields of the first two events agree closely with the announced yields (Bocharov et al., 1989) of 165 and 140 kt (Table 3). The explosion of July 23, 1973 of Y = 193 kt, for which the yield has not been released by the U.S.S.R., is clearly the largest underground explosion at Shagan River.

Those three explosions occurred a few years before the initial deployment (Table 4) by the Soviet Union of their first MIRVed (multiple independently targetable re-entry vehicles) intermediate-range ballistic missiles (IRBMs) and MIRVed submarine launched ballistic missiles (SLBMs) according to Sykes and Davis (1987). The throw-weights of the SS-20, (the IRBM), and SS-N-18 mod 1, (the SLBM), and the number of re-entry vehicles (three per missile) are consistent with warhead yields between 140 and 200 kt (Sykes and Davis, 1987). SS-20 missiles have been destroyed under the terms of the Intermediate Nuclear Forces treaty; a number of SS-N-18 systems are still oper-

ational as of late 1991. Thus, one or more of the three largest nuclear tests at Shagan River in 1972 and 1973 appears to have been for the weapons to be carried by these two important additions to the Soviet arsenal of strategic nuclear weapons.

Clustering of Yields of Shagan River Explosions

The newly calculated yields in Table 1 provide strong evidence of clustering in the distribution of yields of Soviet tests at Shagan River from the start of the TTBT in 1976 to mid 1988. The cumulative number of events at Shagan River during that interval with yields less than Y are plotted in Fig. 6 as a function of Y. The yield ranges centered on 40, 88 and 138 kt, where the slope is greatest in Fig. 6, are associated with the most frequent testing at Shagan River. Additional tests with yields between 30 and 100 kt during that period occurred at Novaya Zemlya as did a few others at the Degelen Mountain site in Central Asia. Most tests smaller than about 30 kt during that time interval took place at the Degelen Mountain portion of the Central Asian test site (Sykes and Ruggi, 1989).

The clustering of yields near 138 kt in Fig. 6 undoubtedly mainly reflects the artificial cutoff set by the 150 kt limit of the Threshold Treaty. Kidder (1985) shows a peak in testing by the United States from 1980 through 1984 at yields somewhat smaller than 150 kt that is quite similar to the Soviet peak near 138 kt. He states that the "accumulation of [U.S.] tests near 150 kt is partly the result of testing, at reduced yield, strategic weapons whose yield would otherwise exceed the TTBT limit." Presumably, a similar logic holds for at least some Soviet tests near 138 kt as well.

Soviet Compliance with the Threshold Test Ban Treaty

As yield estimates for Shagan River explosions have become more precise, the number of events since 1976 with a yield determined from either P waves, Lg or their average (Table 1) that exceeds 150 kt has become smaller. The maximum calculated yields of any of those explosions has decreased as well. For example, five events from 1976 through mid-1988 have average yields in excess of 150 kt: 157, 158, 162, 169 and 170 kt (Table 1). Each of those values is within a factor of 1.13 times 150 kt. Only the event of July 1973, which occurred before the TTBT became effective, has a yield that is greater than 150 kt at a high level of confidence. For two of those five explosions the average yield was based on m_b' alone since Lg magnitudes were not available. A more common situation in Table 1 is for one of the two yield estimates to be above 150 kt, another below and the average somewhat below 150 kt. For example, the event of December 10, 1972 had an announced yield of 140 kt, a yield from m_b of 125 kt, that from m_b(Lg) of 153 kt, and an average calculated yield of 138 kt.

Thus, all of the explosions at Shagan River from the start date of the TTBT through mid-1988 are consistent with Soviet compliance with that treaty. A similar conclusion was reached by the Office of Technology Assessment (1988). Nevertheless, the new estimates are still not accurate enough to ascertain a 10% or smaller exceedance of the threshold with high confidence. For example, the event of November 2, 1972 with an announced yield of 165 kt has an average yield of 154 kt and yields from P and Lg waves of 144 and 165 kt. If any events since 1976 were in excess of the threshold by small amounts, the most likely candidates are 169 kt on August 18, 1979 and 170 kt on October 27, 1984. The explosion of July 1973, on the other hand, is a good example of present capability to identify a past or future event with a yield in excess of about 190 kt as being significantly larger than 150 kt at a high level of confidence.

Cavities Formed by Nuclear Explosions in Thick Salt Deposits that Might be Usable for Future Clandestine Nuclear Testing

The U.S.S.R. has carried a number of nuclear explosions in salt near Azgir as well as conducting several other PNEs in regions known to contain salt. Cavities produced by nuclear explosions in salt, such as Salmon and Gnome in the United States, have remained standing for many years whereas cavities produced in other rock types usually collapse within short periods of time. Many investigators working on decoupled nuclear testing that might be conducted under either a CTBT or a LYTTBT have paid considerable attention to the possible use of cavities produced by nuclear explosions. I will show, however, that monitoring of the relative few areas of the Soviet Union in which cavities of that type could exist that could be used in the future for either the full or nearly full decoupling of explosions with yields larger than 1 kt is a tractable problem. Instead, more attention needs to be devoted to the feasibility of decoupled testing in the yield range from 1 to 10 kt in large cavities produced by solution mining. Many more potential sites are available in the U.S.S.R. for creating large cavities by solution mining than are available from past nuclear explosions in salt.

Table 2 lists Soviet underground nuclear explosions that were detonated through 1986 either in or in the general vicinity of thick salt deposits. As mentioned in earlier sections, yields for explosions at Azgir were determined using recalculated m_b values that included station corrections derived for that site. Applying those station corrections to events more than 100 km from Azgir, however, did not reduce the standard error of the mean of m_b values for those events. Hence, station corrections were not used in recomputing m_b for the other events in Table 2. The yields of all of the events in Table 2 were calculated from (2).

Nine of the explosions at Azgir have yields between 25 and 110 kt. All of those events occurred between July 1, 1968 and October 24, 1979 in the area of numerous salt domes to the north of the Caspian Sea, what Soviet workers call the Pri-Caspian region. I will now make estimates of the sizes of decoupled nuclear explosions that could be detonated in cavities created by those and other Soviet nuclear explosions located either in or in the general vicinity of thick salt deposits. The conservative assumption will be made that cavities, in fact, remain standing for all of those events and that they could be used for conducting small decoupled nuclear tests at some time in the future. First, information about the depths and dimensions of the cavities created by the U.S. explosion Salmon and two explosions at Azgir is used to calculate yields of nearly decoupled (Sterling conditions) and fully decoupled nuclear explosions that could be conducted in the cavities assumed to have been created by the Soviet events in Table 2.

Salmon, a fully-tamped explosion of 5.3 kt, was detonated in a salt dome in the state of Mississippi at a depth of 828 m in 1964. The Sterling nuclear explosion was a decoupled event of 0.38 kt detonated in the Salmon cavity at the same depth in 1966 (Denny and Goodman, 1990). The Salmon cavity, like that produced by the Gnome explosion in bedded salt in New Mexico and that produced by the tamped Soviet explosions of 1966 and 1968 in salt domes, was not perfectly spherical in shape. In each case a significant amount of rubble and molten salt accumulated at the bottom of the initially nearly spherical cavity. The cavity volume for the Sterling event was 19,400 m³, giving a mean radius 16.7 m (Denny and Goodman, 1990). The 1968 Azgir event of 25 kt was detonated at a depth of 590 m and produced a cavity with a volume of 140,000 m³, giving a mean radius of 32.2 m (Kedrovskiy, 1970). The 1966 Azgir explosion of 1.1 kt was detonated at a depth of about 165 m and generated a cavity with a volume of 10,000 m³ (mean radius of 13.4 m). Since that cavity filled with water (Kedrovskiy, 1970), it obviously could not be used for detonating decoupled explosions unless the water could be removed. The Soviet explosion at Orenburg of October 22, 1971 of 15 kt in bedded salt was used to produce a cavity for storing gas condensates at an unspecified depth. Its volume was 50,000 m³, giving a mean radius of 22.9 m (Izrael' and Grechushkina, 1978).

The requirement that a clandestine nuclear test in a large underground cavity in salt not produce a crater or other disturbance at the surface and that it be fully contained so as not to leak radioactive products to the surface set limits on the minimum depth of such a cavity. For a very weak material like salt, Latter et al. (1961) conclude that the pressure on the cavity wall for full decoupling must be less than or equal to one half the overburden pressure (i.e. the vertical stress, ρ gh) so as to prevent failure in tension of the surrounding salt material and, hence, to prevent leakage of radioactive gases from the cavity. The relationship between a step in cavity pressure, P, produced by an explosion of yield, Y, in a cavity of volume, V, and the requirement for containment that P be less than some constant, k, times the vertical stress can be written

$$P = (\gamma - 1)Y/V \le k \rho gh$$
(5)

where γ is the ratio of heat capacities taken to be 1.2 under the conditions of interest (Latter et al., 1961), ρ is the average density of the material from the surface down to depth, h, and g is the gravitational acceleration at the earth's surface. The average density in the following applications is taken to be that of salt at the Salmon site, 2200 kg / m³. For the Latter criterion mentioned above, k = 0.5.

Taking k = 0.5 and the relevant parameters for the cavities created by the Salmon and the 1966 and 1968 Azgir explosions, the maximum yields of fully decoupled explosions according to the Latter criterion that could be detonated in those cavities (after converting the energy in Joules, J, to kilotons, where 1 kt = 4.184×10^{12} J) are 0.21, 0.02 and 1.1 kt respectively. The ratios of the size of the tamped nuclear explosion that was used to create each of those cavities to the size of the largest fully decoupled event that could be detonated in them under the Latter criterion are 25, 55 and 23 for the Salmon, 1966 and 1968 events.

Sterling was almost, but not fully decoupled; P was a factor of 1.8 = 0.38 / 0.21 times larger than that calculated by way of the Latter criterion. The value k = 0.90 calculated for that event indicates that P still did not exceed the vertical stress (k = 1). Experience with cavities in salt used for gas storage indicates that leakage of the storage product may occur when the internal pressure in the cavity exceeds the vertical stress. If Sterling conditions, i. e. k = 0.90, apply rather than the Latter criterion to the 1966 and 1968 cavities at Azgir, maximum yields for explosions that could be detonated in those cavities are 0.04 and 2.0 kt. The ratio of the size of the tamped nuclear explosion that was used to create a cavity to the size of the largest decoupled event that could be detonated in them under what I will term Sterling conditions is 13.9 = 5.3 / 0.38 for the Salmon / Sterling pair and 27 and 12.5 for the 1966 and 1968 explosions at Azgir.

Thus, much larger (12 to 55 times larger) tamped explosions are needed to create cavities than the maximum sizes of either fully decoupled or nearly fully decoupled explosions that can be detonated in them. This is important since, even at the unclassified level, the United States knows of all past Soviet underground explosions down to a small yield that have been detonated either in or possibly in areas of thick salt deposits. The yields of fully decoupled and nearly fully decoupled explosions that could be detonated in cavities that may remain standing from those events is at least an order of magnitude smaller than the yields of the explosions that generated those cavities.

While the cavity volume produced by a tamped explosion undoubtedly varies with the depth of the event, it should be appreciated that fully decoupled and nearly fully decoupled nuclear explosions larger than 1 kt would have to be conducted in a fairly narrow range of depths. An air filled cavity in salt is likely to deform significantly at depths greater than 1000 m whereas an evader determined not to be caught testing at such yields, would use only cavities that are at least several hundred meters deep to insure that bomb-produced products did not escape from the cavity. There is a tradeoff between the fact that a shallower tamped explosion produces a larger cavity than a deeper one in the same material and the fact that a larger cavity at a shallower depth is needed to satisfy inequality (5) for a decoupled event of a given yield.

Since the depths of most of the explosions in Table 2 are not known, two estimates of the yields of fully decoupled and nearly fully decoupled nuclear explosions that could be detonated in cavities created by those events have been made in the last column of Table 2. The smaller value is derived by dividing the computed yield of each event in Table 2 by the yield ratio 5.3 / 0.21 = 25, where 5.3 is the yield of Salmon and 0.22 is the computed yield by the Latter criterion of the largest fully decoupled yield that could be tested in the Salmon cavity. The larger yield in the last column is computed by dividing the calculated yields of each event in the table by the yield ratio for the Salmon / Sterling pair = 5.3 / 0.38 = 13.9. Those simple calculations--1.0 and 1.8 kt--for the cavity produced by 1968 Azgir event of 25 kt are very close to the values obtained above using the published depth and volume for that cavity--1.1 and 2.0 kt. The simple calculations for the much smaller 1966 event overestimate the yields calculated above from the depth and volume of that cavity.

The yields of the various events in Table 2 divided by 13.9 (larger numbers in last column) are taken as a measure of the yields of nearly fully decoupled explosions that could be detonated in the cavities produced by those events. This, of course, assumes Salmon / Sterling conditions. Uncertainties in the yields of the events that produced those cavities and their depths can lead to uncertainties in the estimates of decoupled yields by a factor of 1.5. Our main concern here, however, is what are the "opportunities" that may be available to test weapons clandestinely of certain approximate sizes and not that exact size.

Table 5 summarizes the yields of nearly fully decoupled (Sterling conditions) nuclear explosions that could by detonated in the cavities of events in Table 2 both by area and yield range. Most of the "opportunities" for such testing are concentrated in the area to the north of the Caspian Sea. The "oppontunities" for the larger tests, up to a maximum of 7 to 8 kt, are mostly confined to Azgir itself. Possibilities for such decoupled testing are more restricted in the area of bedded salt to the northwest of lake Baikal. Some and perhaps all of those events may not have been conducted in salt but in other rocks in the strategraphic sequence or in rocks just outside the area of salt deposits. Once again, this list attempts to be conservative in its cataloguing of potential areas and sites for decoupled testing in the range 1 to 10 kt. For example, the single Bukhara event (Tables 2 and 5) was used to put out a fire in an oil well that had encountered an unanticipated fault that had provided pathways for escaping petroleum. It was also detonated at such a great depth (2.5 km) that closure of the salt cavity undoubtedly occurred soon after it was detonated. Thus, on both of those grounds it appears to be a poor and risky candidate site for conducting a clandestine decoupled nuclear explosion.

Thus, the number of cavities produced by past nucler explosions that potentially could be used for clandestine testing of nearly fully decoupled nuclear explosions under either a CTBT or a LYTTBT is limited. Those sites are confined to a few areas of the U.S.S.R. The question of using those cavities instead for partially decoupled events as described by Stevens et al. (1991) will be dealt with in a separate paper along with the feasibility of constructing and using cavities in hard rock for either the full or the partial decoupling of explosions with yields from 1 to 10 kt. Possibilities of clandestine testing in large cavities created by solution mining also will be dealt with in a separate paper.

CONCLUSIONS AND RECOMMENDATIONS

Implications for Identifying Small Decoupled Nuclear Explosions in Salt

For purposes of appreciating the detection capability of a given seismic network, it is important to recognize, using data from Azgir, that a fully-coupled (tamped) explosion of 1 kt in salt in high-Q areas of the U.S.S.R. has an m_b of 4.46; fully decoupled events of 1 and 10 kt have m_b 's of 2.61 and 3.40 respectively (assuming a decoupling factor of 70). These magnitudes are higher than has generally been thought previously. For example, chemical explosions of $m_b < 2.6$ in high Q areas containing salt need not be considered in monitoring a 1 kt threshold treaty. Most areas of thick salt deposits in the U.S.S.R. are typified by high Q (efficient transmission) for P waves and low natural seismic activity.

Past nuclear explosions conducted in salt by the Soviet Union for which cavities may remain standing that are large enough for the full decoupling of explosions larger than 1 kt are concentrated in only a few areas of that country. The existence of all cavities of that size or larger that have been created by past nuclear explosions is known (Table 3) since the explosions that created those cavities must be about 25 times larger in yield than the size of the fully decoupled event that can be detonated in them. (That ratio is 13.9 for the Salmon/Sterling pair where the yield of Sterling was about 1.8 times larger than that of a fully decoupled explosion in the Salmon cavity).

Hence, the monitoring of cavities of that size that may remain standing that were created by past nuclear explosions should be relatively easy under a Low-Yield Threshold Test Ban Treaty with a threshold of 1 kt, providing U.S. stations are allowed to operate under the treaty near the epicenters of those past explosions. Probably the greatest difficulty in monitoring such a LYTTBT involves cavities created, not by nuclear explosions, but by solution mining in other areas of thick salt deposits of the U.S.S.R.

Precise Yield Estimates for Explosions at Shagan River

Yield determinations for Shagan River explosions can be improved by subdividing

that testing area into three parts with different m_b -yield relationships and by combining those results with yields calculated from Lg. The calculated yields of many of those explosions since 1976 are clustered in a few specific ranges of yield.

REFERENCES

Bocharov, V.S., S.A. Zelentsov and V.N. Mikhailov (1989). The characteristics of 96 underground nuclear detonations at the Semipalatinsk test range, <u>Atomic Energy</u> 67, 210-214.

Denny, M.D. and D.M. Goodman (1990). A case study of the seismic source function: Salmon and Sterling reevaluated, J. Geophys. <u>Res.</u> 95, 19, 705-19, 723.

Der, Z., T. McElfresh, R. Wagner and J. Burnetti (1985). Spectral characteristics of P waves from nuclear explosions and yield estimation, Bull. Seismol. Soc. Amer. **75**, 379-390, 1222.

Hanson, R.A., F. Ringdahl and P. G. Richards (1990). The stability of RMS Lg measurements and their potential for accurate estimation of the yields of Soviet underground nuclear explosions, Bull. Seismol. Soc. Amer. 80, 2106-2126.

Izraehl, Yu. A. and M.P. Grechushkina (1978). The use of peaceful underground nuclear explosions with minimum radioactive contamination of the environment, Peaceful Nuclear Explosions V, International Atomic Energy Agency, Vienna, document IAEA-TC-81-5/7, pp. 167.

Kedrovshiy, O.L. (1970). Prospective applications of underground nuclear explosions in the national economy of the USSR, UCRL-Trans-10477, (Translation from Russian), Lawrence Radiation Laboratory, University of California, Livermore, CA, 1-47.

Kidder, R.E. (1985). Militarily significant nuclear explosive yields, F.A.S. Public Interest Report, (Journal of Federation of American Scientists) 38, no. 7, pp 1-3.

Latter, A.L., R.E. LeLevier, E.A. Martinelli and W.G. McMillan (1961). A method of concealing underground nuclear explosions, J. Geophys. Res. 66, 943-946.

Marshall, P.D., T.C. Bache and R.C. Lilwal (1984). Body wave magnitudes and locations of Soviet underground explosions at the Semipalatinsk test site, <u>Atomic Weapons Research Establishment</u> Report **0 16/84**, 1-87.

Marshall, P.D., D.L. Springer and H.C. Rodean (1979). Magnitude corrections for attenuation in the upper mantle, <u>Geophys. J.R.</u> <u>Astr. Soc.</u> 57, 609-638.

Office of Technology Assessment, Congress of the United States (1988). Seismic Verification of Nuclear Testing Treaties, OTA-ISC-361, U.S. Government Printing Office, Washington, DC, 139 pp.

Ringdal, R. and P.D. Marshall (1989). Yield determination of soviet underground nuclear explosions at the Shagan River test site, Semiannual Tech. Summary 1 October 1988-31 March 1989, NORSAR Sci. Rpt 2-88/89, Kjeller, Norway, pp. 36-67.

Ringdal, F. (1989). NORSAR P-wave detection and yield estimation of selected Semipalatinsk explosions, Semmiannual Tech. Summary 1 April-30 September 1989, NORSAR Sci. Rpt. 1-89/90, Kjeller, Norway, pp. 54-61.

Norway, pp. 54-61. Ringdal, F. and J. Fyen (1988). Comparative analysis of NORSAR and Grafenberg Lg magnitudes for shagan River explosions, Semiannual Tech. Summary 1 April-30 September 1988, NORSAR Sci Rpt. 1-88-89, Kjeller, Norway, pp. 88-106.

Stevens, J.L., J.R. Murphy and N. Rimer (1991). Seismic source characteristics of cavity decoupled explosions in salt and tuff, Bull. Seismol. Soc. Amer. 81, 1272-1291.

- Sykes, L.R. and I.L. Cifuentes (1984). Yields of Soviet underground nuclear explosions from seismic surface waves: compliance with the Threshold Test Ban Treaty, Proc. Natl. Acad. Sci. USA, 81, 1922-1925.
- Sykes, L.R. and D.M. Davis (1987). The yields of Soviet strategic weapons, <u>Sci. Amer.</u>, **256** 29-37.
- Sykes, L.R. and G. Ekstrom (1989). Comparison of seismic and hydrodynamic yield determinations for the Soviet joint verification experiment of 1988, Proc. Natl. Acad. Sci. USA, 86, 3456-3460.
- Sykes, L.R. and S. Ruggi (1986). Soviet underground nuclear testing: inferences from seismic observations and historical perspective, Working Paper NWD 86-4, Natural Resources Defense Council, Washington, DC, 88 pp.
- Sykes, L.R. and S. Ruggi (1989). Soviet nuclear testing, in <u>Soviet</u> <u>Nuclear Weapons, Nuclear Weapons Databook</u>, **IV**, T.B. Cochran et al (editors), Ballanger, New York, 332-382.

Fig. 1 Calibration curves used for yield estimation as normalized to southwestern portion of Shagan River testing area. Explosions at Degelen and Murzhik were not used in two regressions. Explosions used are those of published yield in either hard rock or below water table.

L_g magnitude minus body wave magnitude as a function of location within Shagan River testing area. Testing area is divided into three parts for better estimates of yield from body waves. Fig. 2

Fig. 3 L_g magnitude as a function of body wave magnitude for southwestern portion of Shagan River testing area. SD = standard deviation.

Fig. 4 L_g magnitude as a function of revised body wave magnitude, m_b'. SD = standard deviation.

 Table 1. Calculation of Yield and Other Pertinent Data for Underground Nuclear Explosions at Shagan River Testing Area,

 U.S.S.R. through June 1, 1989

-* 631 F.	20					с ў.					ч.'		5					•	3 15 1					÷,	Sec. 44			- 5			1.1.16		· 2			1 - 1 - 1							: «	୍ର୍ୟ	
Y(ann)	100-15	< 20	125	< 20	16	165	140	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•		•	•
<u>Y(ave)</u>	mined)	17	108	28	18	154	138	193	73	54	19	39	27	34	50	7.7	10	62	46	64	51	38	8.2	73	38	62	52	53	117	80	39	93	18	148	16	145	169	129	87	133	18	35	40	158	95
씸	ld deter		1.433	•		1.145	1.220	1.221	1.023	•	1.165	1.315	1.009	1.036	1.434	•	1.326	1.002	1.095	1.001	1.049	1.039	1.848	1.099	•	1.450	1.013	1.213	1.004	1.110	1.157	1.230	•	1.139	1.253	1.146	1.000	1.067	1.073	1.083	•	1.052	1.230	•	1.131
Y(mbl.g)	- no yie		130	•	•	165	153	213	74	•	17	45	27	35	é0		8.8	62	48	64	50	38	6	77	•	51	52	59	117	84	42	103		139	102	156	169	133	06	128		34	44	•	90
X(mb)	ing shot	17	90	28	18	144	125	174	73	54	20	34	27	33	42	7.7	12	62	44	63	52	39	11	70	39	75	52	48	117	76	36	84	18	159	81	135	169	125	84	139	18	36	36	158	102
<u>Y(Ms)</u>	(crater	•		•		81	•		•	•	•	•	•		•		•	•		•	•	•		•	•	•	•	•	62	80	5 5	•		141		133	•		144	80	•	•	•	•	125
LO/LR	•		•	•		0.20			•		•		•				•	•		•		•	•			•			0.57	0.38	0.59		•	0.56	1.73	0.37	1.08	0.74	0.38	0.51	•	0.63	1.03	0.86	0.22
<u>SM</u>	•		•	•	•	3.922	•	•		•		•	•		•	•		•	•	•	•		•	•	•	•	•	•	3.637	3.831	3.582		•	3.991	4.027	4.052	3.743	3.974	4.080	3.772	•	3.154	3.400	4.043	4.094
(gl) dm		•	6.147	•	•	6.228	6.203	6.317	5,956		5.458	5.781	5.606	5.695	5.883		5.227	5.893	5.809	5.902	5.817	5.724	5.094	5.968		5.830	5.833	5.875	6.111	5.999	5.762	6.068	•	6.169	6.063	6.209	6.237	6.155	6.022	6.142		5.693	5.779	•	6.020
Oli	6.050	5.444	6.021	5.628	5.473	6.181	6.134	6.247	5.948	5.849	5.511	5.686	5.609	5.683	5.757	5.181	5.325	5.892	5.777	5.902	5.834	5.737	5.308	5.935	5.733	5.960	5.837	5.808	6.112	5.963	5.711	5.996	5.471	6.215	5.984	6.161	6.237	6.135	5.998	6.170	5.468	5.711	5.707	6.213	6.063
rezion	NE	NE	72	NE (?)	TZ (?)	SW	NE	SW	NE	(¿) MS	T 2	NE	TZ	TZ (?)	ZT	MS	NE	TZ (?)	TZ (?)	NE	SW	SW	TZ	NE	NE	TZ	SW	MS	NE	(¿) MS	NE	MS	NE (?)	MS	NE	(¿) MS	TZ	NE	SW	MS	MS	NE	MS	MS	NE
윕	5.905	5.299	5.954	5.483	5.406	6.181	5.989	6.247	5.803	5.849	5.444	5.541	5.542	5.616	5.690	5.181	5.180	5.825	5.710	5.757	5.834	5.737	5.241	5.790	5.588	5.893	5.837	5.808	5.967	5.963	5.576	5.996	5.326	6.215	5.839	6.161	6.170	5.990	5.998	6.170	5.468	5.566	5.707	6.213	5.918
Day	15	19	30	30	10	0	10	23	14	31	16	27	27	29	25	21	б	4	28	23	7	29	29	ŝ	29	30	11	S	29	15	4	29	r-1	23	7	4	18	28	7	23	25	12	29	14	12
Month	ч	9	11	9	8	11	12	٢	12	ŝ	10	12	4	10	12	4	9	۲	8	11	12	ß	6	6	10	11	9	7	8	6	11	11	0	9	۲	8	8	10	12	12	4	બ	9	σ	10
Year	1965	1968	1969	1971	1972	1972	1972	1973	1973	1974	1974	1974	1975	1975	1975	1976	1976	1976	1976	1976	1976	1977	1977	1977	1977	1977	1978	1978	1978	1978	1978	1978	1979	1979	1979	1979	1979	1979	1979	1979	1980	1980	1980	1980	1980

Yeer	Month	Day	쇱	noigen	Ê	mb(Le)	N	IO/LR	Y(Ms)	(qm)X	Y(mbl.e)	~ 1	Y(ave)	Y(ann)
1980	12	14	5.953	72	6.020	6.030	3.934	0.35	9 6	06	92	1.029	16	•
1980	12	27	5.872	ZN	6.017	6.027	3.758	0.70		89	16	1.028	90	•
1981	e	29	5.573	NE	5.718	5.607	3.266	1.37	•	37	26	1.374	32	•
1981	4	22	5.954	SW	5.954	6.022	4.070	0.36	137	74	06	1.216	82	•
1981	ŝ	27	5.354	NE	5.499	5.507	•	•		19	20	1.042	20	•
1981	6	13	6.064	TZ (?)	6.131	6.217	4.206	0.32	182	124	160	1.281	141	•
1981	10	18	6.033	MS	6.033	6.079	4.094	0.28	133	93	107	1.141	100	•
1981	11	29	5.643	MS	5.643	5.642	3.555	0.46	45	30	30	1.003	30	•
1981	12	27	6.242	MS	6.242	6.181	4.106	0.41	158	172	144	1.190	157	٠
1982	4	25	6.089	TZ (?)	6.156	6.178	4.026	0.38	126	133	142	1.066	138	•
1982	-	4	6.222	MS	6.222	•	•	•	•	162	•	•	162	
1982	80	31	5.289	MS	5.289	•	•	•	•	11	•	•	11	•
1982	12	ŝ	6.132	MS	6.132	6.095	3.929	0.34	96	124	112	1.111	118	
1982	12	26	5.703	IN	5.848	5.724	•	•		54	38	1.428	45	•
1983	9	12	6.119	TZ (?)	6.186	6.178	3.978	0.33	107	146	142	1.023	144	•
1983	10	9	6.040	MO	6.040	5.956	3.904	0.43	100	95	74	1.273	84	•
1983	10	26	6.139	MS	6.139	6.117	4.045	0.32	124	127	119	1.065	123	•
1983	11	20	5.436	NE	5.581	5.456	•	•		25	17	1.433	21	•
1984	0	19	5.855	SW	5.855	5.800	3.734	0.29	57	55	47	1.171	51	•
1984	m	7	5.644	NE	5.789	5.751	3.350	0.58	32	46	41	1.115	4 3	•
1984	m	29	5.926	12	5.993	5.993	3.806	0.40	77	83	83	1.000	83	•
1984	4	25	5.975	SW (?)	5.975	5.955	3.929	0.28	06	79	74	1.060	76	•
1984	S	26	6.021	NE	6.166	6.186	•	•	•	137	146	1.058	141	•
1984	7	14	6.178	MO	6.178	6.159	4.035	0.50	147	142	134	1.057	138	
1984	10	27	6.272	MO	6.272	6.207	4.031	0.52	149	187	155	1.206	170	
1984	12	6	5.821	NE	5.966	5.969	3.525	2.28	•	77	77	1.008	77	•
1984	12	16	6.166	SW	6.166	6.147	3.988	0.51	133	137	130	1.057	134	•
1984	12	28	6.047	10.0	6.047	6.078	3.769	0.37	68	97	106	1.093	101	•
1985	0	10	5.937	SW	5.937	5.888	3.986	0.33	109	70	61	1.150	65	•
1985	4	25	5.923	TZ (?)	5.990	5.946	3.724	0.47	68	82	72	1.134	77	•
1985	9	15	6.107	SW	6.107	6.086	3.735	0.36	62	116	109	1.063	112	•
1985	9	30	6.018	SW	6.018	6.021	3.763	0.48	76	89	90	1.009	90	•
1985	٢	20	5.957	SW	5.957	5.953	3.748	0.39	66	75	74	1.013	74	•
1987	ო .	12	5.461	•	•	5.247	•	•	•	•	9.4	•	9.4	•
1987	4	μ, 	6.238	•	•	6.168		•	•	•	138	•	138	•
1987	4,	11	6.011	•	•	6.002	•		•	•	85	•	85	•
1987	9	20	6.123	•		6.068	•	•	•	•	103		103	•
1987	80	N	5.877	•	•	5.959	•		•	•	75	•	75	•
1987	11	15	6.062			6.072	•	•	•	•	105	•	105	•
1987	12	13	6.158	•	•	6.189	•	•	•	•	147	•	147	•
1987	12	27	6.089	•		6.150	•	•	•	•	131		131	
1988	2	13	6.118	•	•	6.145	•				129	•	129	•
1988	4	m	6.027	•	•	6.168	•	•			138	•	138	•
1988	ŝ	4	6.184	•	•	6.150	•	•	•		131	•	131	•
1988	9	4	4.900	•	•	•		•	•	•				•
1988	۲	80	5.612	•	•	•	•	•	•	•	•	•	•	•
1988	σ	14	6.115	•	6.115	6.066	4.106	0.36	149	118	102	1.151	011	611

<u>Y(avc)</u>			•	•																				
RI			•	•																				
Y(mbl.g)		2	•	•																				
X(mb)	•	•	•	•								ns of	ition	1.0899								l to	β	VE as
<u>X(Ms)</u>	•	•	•	•			aper	on zone				it location	mmunica	= (J, O, I))Q						bLg))	ts), equa	iean of lo	yield of]
<u>10/1R</u>	•		•				l for this p	st site: = transitio				using even	ersonal co	uation my			tudes				l log (Y(m	dence limi	error of m	sulq ,(680
<u>SN</u>	•	•	•	•			ulated	iver te		egions	lows:	0.145 1	nall pe	the ea			amplii		on (1)	on (4))) and	confie	ndard	: al. (19
<u>mb (Lg)</u>	•	5.883	•	•			e as re-calc	Shagan Ri = northeas	bregions	ler of subr	gion as foll	57; NE = +	and Mars	e). using	0	ude	eigh wave		ing equatic	ng equatic	log (Y(mb	(i.e., 95%	of the star	ocharov et
튑	•	•	•	•			agnitude	hin the est; NE	two su	the bord	y subre	c = +0.0(. (1984) subregi			magnit	to Rayle		ined usi	ined usi	average	ty factor	antilog	eld of B he text
region		•	•	•			wave ma	gion wit southwe	en these	is near	rrected b	+0.0; TZ	hall et al termine	erived fr	(1)4397	ce wave	of Love		s determ	s determ	g of the	ncertaint	imes the	unced yi ssed in t
ମ	.288	.901	.108	.866			body	subre SW =	betwe	event	mb co	SW =	marsi to de	m, d	m(Lg	Surfa	ratio		yields	yields	antilo	the u	1.96 t (ave)	annoi discu
=1	S	S	9	ŝ			11	H		H	11			H		18	11		IJ	H	11	11		11
Day	12	17	22	12				ion			•			(J. J.)	ò		/I.R	nb) and	(g.ldm	Ms)	ave)			ann)
Month	11	12		6			۹ш	reg		(¿)	чш			-1U		Ms	33	X(I	۲ (i)	Ϋ́(λ(R		Υ (
Year	1 388	1988	1989	1989		KEY:																		

<u>Y(ann)</u>

• .

s of U.S.S.R.
alt Deposits
ar Thick Se
ns in or Ne
r Explosio
nd Nuclea
Undergrou
Table 2.

Arca	Date Day Mon. Year	Origin Time Hr. Mn. Sec.	S P	Long. (E)	qu	F	Y (mb) in kt	Y (announced) in kt	Y (decroupled) in kt
Azgir	22 Apr 1966	02 58 04.0	47.93	47.69	4.524 ± .056	16	1.2	11	.0508
Bukhara ll (multiple explosion)	21 May 1968	03 59 10.0	38.89	65.10	5.4	135		40.	1.7-2.9
Azgir	01 July 1968	04 02 00.9	47.85	47.72	5.529 ± .027	20	23.	25.	1.0-1.8
Orenburg	22 Oct 1971	05 00 00.7	51.61	54.45	5.260 ± .043	33	11.	15.	0.6-1.1
Azgir (double explosion)	22 Dec 1971	06 59 56.5	47.90	48.07	6.064 ± .020	52	110.		4.6-7.9
Lake Aralsor	20 Aug 1972	02 59 57.8	49.40	48.06	5.750 ± .037	2	44.		1.8-3.2
Elista (in salt?)	(B Oct 1972	08 59 57.8	46.86	44.87	5.864 ± .050	21	62.		2.6-4.4
Orenburg	30 Sept 1973	04 59 57.8	51.66	54.54	5.213 ± .047	20	9.2		0.4-0.7
Ishinbay (in salt?)	14 Aug 1974	14 59 58.6	68.94	75.83	5.530 ± .031	30	23.		1.0-1.6
Azgir	25 Apr 1975	05 00 02.5	48.08	47.20	4.808 ± .088	5	2.8		0.1-0.2
Azgir	29 Jul 1976	04 59 58.0	47.81	48.10	5.884 ± .015	30	65.		2.7-4.7
Mirnyy	05 Nov 1976	03 59 56.9	61.52	112.73	5.100 ± .052	16	6.6		0.3-0.5
Azgir	30 Sept 1977	06 59 55.9	47.85	48.13	4.994 ± .029	25	4.8		0.2-0.3

•															
Y (decoupled in kt	1.3-2.2	0.3-0.5	0.4-0.6	2.4-4.2	3.6-6 .2	4.1-7.1	1.2-2.2	1.9-3.3	0.3-0.6	0.4-0.6	0.3-0.5	0.3-0.6	0.4-0.7	0.5-0.9	0.4-0.7
Y (announced) in kt															
Y (mb) in kt	31.	7.1	8.8	59.	86.	. 66	37.	46.	8.4	9.0	7.5	8.4	9.1	13.	9.6
Ę		42	39	63	65	58	59	69	4	40	48	8	41	40	33
Ąu	5.629 ± .023	5.124 ± .032	5.249 ± .034	5.851 ± .014	5.977 ± 012	6.027 ± .013	5.620 ± .012	5.762 ± .015	5.184 ± .038	5.208 ± .034	5.146 ± .035	5.183 ± .034	5.211 ± .034	5.323 ± .028	5.230 ± .033
Long. (TE)	125.34	86.26	112.87	48.09	48.14	48.06	48.07	48.11	48.29	97.57	48.28	48.27	91.80	112.86	48.22
S II	63.65	66.53	61.53	47.81	47.78	47.87	47.81	47.79	46.79	60.79	46.82	46.79	64.33	61.53	46.77
Origin Time Hr. Mn. Sec.	17 59 58.1	14 59 57.6	00 00 00	04 59 56.6	07 59 56.3	07 59 55.8	04 59 55.2	05 59 56.7	05 59 57.3	12 59 58.0	04 59 57.4	05 03 57.0	17 59 57.4	()4 59 56.9	05 59 57.4
Date Day Mon. Year	09 Aug 1978	21 Sept 1978	08 Oct 1978	17 Oct 1978	18 Dec 1978	17 Jan 1979	14 July 1979	24 Oct 1979	08 Oct 1980	01 Nov 1980	26 Sept 1981	26 Sept 1981	25 Sept 1982	10 Oct 1982	16 Oct 1982
Area	NW of Yakutsk (in salt?)	South of Igarka (in salt?)	Mirnyy	Azgir	Azgir	Azgir	Azgir	.\zgir	Astrakhan	Kuyumba	Astrakhan	Astrakhan	W. Tura	Mirnyy	Astrakhan

Area	Date Day Mon. Year	Origin Time Hr. Mn. Sec.	N)	Long. (TE)	фш	E	Y (mb) in kt	Y (announced) in kt	Y (decoupled) in kt
Astrakhan	16 Oct 1982	06 04 57.4	46.77	48.24	5.272 ± .031	38	10.9		0.5-0.8
Astrakhan	16 Oct 1982	06 09 57.4	46.77	48.22	5.255 ± .035	35	10.4		0.4-0.7
Astrakhan	16 Oct 1982	06 14 57.5	46.75	48.20	5.381 ± .034	42	15.0		0.6-1.1
Karachaganak	10 July 1983	(B 59 57.3	51.33	53.29	5.313 ± .029	48	12.		0.5-0.9
Karachaganak	10 July 1983	04 04 57.2	51.34	53.29	5.350 ± .031	48	14.		0.6-1.0
Karachaganak	10 July 1983	04 09 57.1	51.37	53.30	5.235 ± .027	4	9.8		0.4-0.7
Astrakhan	24 Sept 1983	04 59 57.1	46.82	48.29	5.159 ± .070	32	7.8		0.3-0.6
Astrakhan	24 Sept 1983	05 04 57.2	46.82	48.28	5.100 ± .046	31	6.6		0.3-0.5
Astrakhan	24 Sept 1983	05 09 57.5	46.86	48.27	4.996 ± .046	26	4.9		0.2-0.4
Astrakhan	24 Sept 1983	05 14 57.1	46.78	48.30	5.175 ± .040	24	8.2		0.3-0.6
Astrakhan	24 Sept 1983	05 19 57.1	46.80	48.30	5.342 <u>+</u> .033	31	13.4		0.6-1.0
Astrakhan	24 Sept 1983	05 24 57.0	46.80	48.29	5.267 ± .044	29	10.7		0.4-0.8
Karachaganak	21 July 1984	02 59 57.1	51.36	53.25	5.331 ± .028	52	13.		0.5-0.9
Karachaganak	21 July 1984	03 04 57.0	51.37	53.26	5.264 ± .026	52	11.		0.5-0.8
Karachaganak	21 July 1984	03 09 57.0	51.35	53.27	5.323 <u>+</u> .026	49	13.		0.5-0.9
Astrakhan	27 Oct 1984	05 59 57.1	46.86	48.10	5.018 ± .042	38	5.2		0.2-0.4
Astrakhan	27 Oct 1984	06 04 56.7	46.84	48.08	5.082 ± .046	38	6.2		0.3-0.4

Table 3: Largest Shagan River Underground Explosionsprior toJune 1979 of Yield > 125 kt

Date	Yield	<u>(kt)</u>
	Announced	Calculated
02 Nov. 1972	165	154
10 Dec. 1972 II	140	138
23 July 1973		193

Table 4: Major Soviet Missile Systems with Throw-weightsAppropriate to above Yields

System	First D	eployment	<u>#R\</u>	<u>/s</u>	Comn	nents	
SS-20		1977	3	First	Soviet	MIRVed	IRBM
SS-N-18	mod 1	1978	3	First	Soviet	MIRVed	I SLBM

Table 5. Number of cavities that may remain standing from Soviet Underground Nuclear Explosions form 1961 to 1986 within and near salt deposits that might be useful for conducting nearly fully decoupled nuclear explosions with yields greater than 0.5 kiloton. (Obtained from calculated yield of known explosion at site divided by yield ratio for Salmon/Sterling explosions = 5.3/0.38=13.9.)

Area of Known Salt Deposits		Ma	ximum l	Nearly F	ully Dec	oupled	l Yield	(kt)
	0.5-1	1-2	2-3	3-4	4-5	5-7	7-8	>8
 North Caspian Region Azgir Astrakhan Other 	9* 6	1 1 2	1	1	2 1	1	2	
 2. a. Central Siberian Platform (northwest of Lake Baikal) b. Within a few hundred kilometers of layered salt deposits 	4	1	1					
3. Bukhara II, Central Asia (explosion used to extinguish fire in oil well)			1					
Total	20	5	3	2	3	1	2	0

* Many small nuclear explosions at nearly the same location. Cavities conceivably could be interconnected to form a larger cavity

DISTRIBUTION LIST

Prof. Thomas Ahrens Seismological Lab, 252-21 Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Keiiti Aki Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Shelton Alexander Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Dr. Ralph Alewine, III DARPA/NMRO 3701 North Fairfax Drive Arlington, VA 22203-1714

Prof. Charles B. Archambeau CIRES University of Colorado Boulder, CO 80309

Dr. Thomas C. Bache, Jr. Science Applications Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121 (2 copies)

Prof. Muawia Barazangi Institute for the Study of the Continent Cornell University Ithaca, NY 14853

Dr. Jeff Barker Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

Dr. Douglas R. Baumgardt ENSCO, Inc 5400 Port Royal Road Springfield, VA 22151-2388

Dr. Susan Beck Department of Geosciences Building #77 University of Arizona Tuscon, AZ 85721 Dr. T.J. Bennett S-CUBED A Division of Maxwell Laboratories 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091

Dr. Robert Blandford AFTAC/TT, Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. G.A. Bollinger Department of Geological Sciences Virginia Polytechnical Institute 21044 Derring Hall Blacksburg, VA 24061

Dr. Stephen Bratt Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Lawrence Burdick Woodward-Clyde Consultants 566 El Dorado Street Pasadena, CA 91109-3245

Dr. Robert Burridge Schlumberger-Doll Research Center Old Quarry Road Ridgefield, CT 06877

Dr. Jerry Carter Center for Seismic Studies 1300 North 17th Street Suite 1450 Arlington, VA 22209-2308

Dr. Eric Chael Division 9241 Sandia Laboratory Albuquerque, NM 87185

Prof. Vernon F. Cormier Department of Geology & Geophysics U-45, Room 207 University of Connecticut Storrs, CT 06268

Prof. Steven Day Department of Geological Sciences San Diego State University San Diego, CA 92182 Marvin Denny U.S. Department of Energy Office of Arms Control Washington, DC 20585

Dr. Zoltan Der ENSCO, Inc. 5400 Port Royal Road Springfield, VA 22151-2388

Prof. Adam Dziewonski Hoffman Laboratory, Harvard University Dept. of Earth Atmos. & Planetary Sciences 20 Oxford Street Cambridge, MA 02138

Prof. John Ebel Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167

Eric Fielding SNEE Hall INSTOC Cornell University Ithaca, NY 14853

Dr. Mark D. Fisk Mission Research Corporation 735 State Street P.O. Drawer 719 Santa Barbara, CA 93102

Prof Stanley Flatte Applied Sciences Building University of California, Santa Cruz Santa Cruz, CA 95064

Dr. John Foley NER-Geo Sciences 1100 Crown Colony Drive Quincy, MA 02169

Prof. Donald Forsyth Department of Geological Sciences Brown University Providence, RI 02912

Dr. Art Frankel U.S. Geological Survey 922 National Center Reston, VA 22092 Dr. Cliff Frolich Institute of Geophysics 8701 North Mopac Austin, TX 78759

Dr. Holly Given IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Dr. Jeffrey W. Given SAIC 10260 Campus Point Drive San Diego, CA 92121

Dr. Dale Glover Defense Intelligence Agency ATTN: ODT-1B Washington, DC 20301

Dr. Indra Gupta Teledyne Geotech 314 Montgomery Street Alexanderia, VA 22314

Dan N. Hagedon Pacific Northwest Laboratories Battelle Boulevard Richland, WA 99352

Dr. James Hannon Lawrence Livermore National Laboratory P.O. Box 808 L-205 Livermore, CA 94550

Dr. Roger Hansen HQ AFTAC/TTR Patrick AFB, FL 32925-6001

Prof. David G. Harkrider Seismological Laboratory Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Danny Harvey CIRES University of Colorado Boulder, CO 80309 Prof. Donald V. Helmberger Seismological Laboratory Division of Geological & Planetary Sciences California Institute of Technology Pasadena, CA 91125

Prof. Eugene Herrin Institute for the Study of Earth and Man Geophysical Laboratory Southern Methodist University Dallas, TX 75275

Prof. Robert B. Herrmann Department of Earth & Atmospheric Sciences St. Louis University St. Louis, MO 63156

Prof. Lane R. Johnson Seismographic Station University of California Berkeley, CA 94720

Prof. Thomas H. Jordan Department of Earth, Atmospheric & Planetary Sciences Massachusetts Institute of Technology Cambridge, MA 02139

Prof. Alan Kafka Department of Geology & Geophysics Boston College Chestnut Hill, MA 02167

Robert C. Kemerait ENSCO, Inc. 445 Pineda Court Melbourne, FL 32940

Dr. Max Koontz U.S. Dept. of Energy/DP 5 Forrestal Building 1000 Independence Avenue Washington, DC 20585

Dr. Richard LaCoss MIT Lincoln Laboratory, M-200B P.O. Box 73 Lexington, MA 02173-0073

Dr. Fred K. Lamb University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801 Prof. Charles A. Langston Geosciences Department 403 Deike Building The Pennsylvania State University University Park, PA 16802

Jim Lawson, Chief Geophysicist Oklahoma Geological Survey Oklahoma Geophysical Observatory P.O. Box 8 Leonard, OK 74043-0008

Prof. Thorne Lay Institute of Tectonics Earth Science Board University of California, Santa Cruz Santa Cruz, CA 95064

Dr. William Leith U.S. Geological Survey Mail Stop 928 Reston, VA 22092

Mr. James F. Lewkowicz Phillips Laboratory/GPEH Hanscom AFB, MA 01731-5000(2 copies)

Mr. Alfred Lieberman ACDA/VI-OA State Department Building Room 5726 320-21st Street, NW Washington, DC 20451

Prof. L. Timothy Long School of Geophysical Sciences Georgia Institute of Technology Atlanta, GA 30332

Dr. Randolph Martin, III New England Research, Inc. 76 Olcott Drive White River Junction, VT 05001

Dr. Robert Masse Denver Federal Building Box 25046, Mail Stop 967 Denver, CO 80225

Dr. Gary McCartor Department of Physics Southern Methodist University Dallas, TX 75275 Prof. Thomas V. McEvilly Seismographic Station University of California Berkeley, CA 94720

Dr. Art McGarr U.S. Geological Survey Mail Stop 977 U.S. Geological Survey Menlo Park, CA 94025

Dr. Keith L. McLaughlin S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Stephen Miller & Dr. Alexander Florence SRI International 333 Ravenswood Avenue Box AF 116 Menlo Park, CA 94025-3493

Prof. Bernard Minster IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Brian J. Mitchell Department of Earth & Atmospheric Sciences St. Louis University St. Louis, MO 63156

Mr. Jack Murphy S-CUBED A Division of Maxwell Laboratory 11800 Sunrise Valley Drive, Suite 1212 Reston, VA 22091 (2 Copies)

Dr. Keith K. Nakanishi Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Carl Newton Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335, Group ESS-3 Los Alamos, NM 87545

Dr. Bao Nguyen HQ AFTAC/TTR Patrick AFB, FL 32925-6001 Prof. John A. Orcutt IGPP, A-025 Scripps Institute of Oceanography University of California, San Diego La Jolla, CA 92093

Prof. Jeffrey Park Kline Geology Laboratory P.O. Box 6666 New Haven, CT 06511-8130

Dr. Howard Patton Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Frank Pilotte HQ AFTAC/TT Patrick AFB, FL 32925-6001

Dr. Jay J. Pulli Radix Systems, Inc. 2 Taft Court, Suite 203 Rockville, MD 20850

Dr. Robert Reinke ATTN: FCTVTD Field Command Defense Nuclear Agency Kirtland AFB, NM 87115

Prof. Paul G. Richards Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Mr. Wilmer Rivers Teledyne Geotech 314 Montgomery Street Alexandria, VA 22314

Dr. George Rothe HQ AFTAC/TTR Patrick AFB, FL 32925-6001

Dr. Alan S. Ryall, Jr. DARPA/NMRO 3701 North Fairfax Drive Arlington, VA 22209-1714 Dr. Richard Sailor TASC, Inc. 55 Walkers Brook Drive Reading, MA 01867

Prof. Charles G. Sammis Center for Earth Sciences University of Southern California University Park Los Angeles, CA 90089-0741

Prof. Christopher H. Scholz Lamont-Doherty Geological Observatory of Columbia University Palisades, CA 10964

Dr. Susan Schwartz Institute of Tectonics 1156 High Street Santa Cruz, CA 95064

Secretary of the Air Force (SAFRD) Washington, DC 20330

Office of the Secretary of Defense DDR&E Washington, DC 20330

Thomas J. Sereno, Jr. Science Application Int'l Corp. 10260 Campus Point Drive San Diego, CA 92121

Dr. Michael Shore Defense Nuclear Agency/SPSS 6801 Telegraph Road Alexandria, VA 22310

Dr. Matthew Sibol Virginia Tech Seismological Observatory 4044 Derring Hall Blacksburg, VA 24061-0420

Prof. David G. Simpson IRIS, Inc. 1616 North Fort Myer Drive Suite 1440 Arlington, VA 22209 Donald L. Springer Lawrence Livermore National Laboratory L-025 P.O. Box 808 Livermore, CA 94550

Dr. Jeffrey Stevens S-CUBED A Division of Maxwell Laboratory P.O. Box 1620 La Jolla, CA 92038-1620

Lt. Col. Jim Stobie ATTN: AFOSR/NL Bolling AFB Washington, DC 20332-6448

Prof. Brian Stump Institute for the Study of Earth & Man Geophysical Laboratory Southern Methodist University Dallas, TX 75275

Prof. Jeremiah Sullivan University of Illinois at Urbana-Champaign Department of Physics 1110 West Green Street Urbana, IL 61801

Prof. L. Sykes Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Dr. David Taylor ENSCO, Inc. 445 Pineda Court Melbourne, FL 32940

Dr. Steven R. Taylor Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335 Los Alamos, NM 87545

Prof. Clifford Thurber University of Wisconsin-Madison Department of Geology & Geophysics 1215 West Dayton Street Madison, WS 53706

Prof. M. Nafi Toksoz Earth Resources Lab Massachusetts Institute of Technology 42 Carleton Street Cambridge, MA 02142

- 5

Dr. Larry Turnbull CIA-OSWR/NED Washington, DC 20505

Dr. Gregory van der Vink IRIS, Inc. 1616 North Fort Myer Drive Suite 1440 Arlington, VA 22209

Dr. Karl Veith EG&G 5211 Auth Road Suite 240 Suitland, MD 20746

Prof. Terry C. Wallace Department of Geosciences Building #77 University of Arizona Tuscon, AZ 85721

Dr. Thomas Weaver Los Alamos National Laboratory P.O. Box 1663 Mail Stop C335 Los Alamos, NM 87545

Dr. William Wortman Mission Research Corporation 8560 Cinderbed Road Suite 700 Newington, VA 22122

Prof. Francis T. Wu Department of Geological Sciences State University of New York at Binghamton Vestal, NY 13901

AFTAC/CA (STINFO) Patrick AFB, FL 32925-6001

DARPA/PM 3701 North Fairfax Drive Arlington, VA 22203-1714

DARPA/RMO/RETRIEVAL 3701 North Fairfax Drive Arlington, VA 22203-1714 DARPA/RMO/SECURITY OFFICE 3701 North Fairfax Drive Arlington, VA 22203-1714

HQ DNA ATTN: Technical Library Washington, DC 20305

Defense Intelligence Agency Directorate for Scientific & Technical Intelligence ATTN: DTIB Washington, DC 20340-6158

Defense Technical Information Center Cameron Station Alexandria, VA 22314 (2 Copies)

TACTEC Battelle Memorial Institute 505 King Avenue Columbus, OH 43201 (Final Report)

Phillips Laboratory ATTN: XPG Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: GPE Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: TSML Hanscom AFB, MA 01731-5000

Phillips Laboratory ATTN: SUL Kirtland, NM 87117 (2 copies)

Dr. Michel Bouchon I.R.I.G.M.-B.P. 68 38402 St. Martin D'Heres Cedex, FRANCE

Dr. Michel Campillo Observatoire de Grenoble I.R.I.G.M.-B.P. 53 38041 Grenoble, FRANCE

Dr. Kin Yip Chun Geophysics Division Physics Department University of Toronto Ontario, CANADA

Prof. Hans-Peter Harjes Institute for Geophysic Ruhr University/Bochum P.O. Box 102148 4630 Bochum 1, GERMANY

Prof. Eystein Husebye NTNF/NORSAR P.O. Box 51 N-2007 Kjeller, NORWAY

David Jepsen Acting Head, Nuclear Monitoring Section Bureau of Mineral Resources Geology and Geophysics G.P.O. Box 378, Canberra, AUSTRALIA

Ms. Eva Johannisson Senior Research Officer National Defense Research Inst. P.O. Box 27322 S-102 54 Stockholm, SWEDEN

Dr. Peter Marshall Procurement Executive Ministry of Defense Blacknest, Brimpton Reading FG7-FRS, UNITED KINGDOM

Dr. Bernard Massinon, Dr. Pierre Mechler Societe Radiomana 27 rue Claude Bernard 75005 Paris, FRANCE (2 Copies)

Dr. Svein Mykkeltveit NTNT/NORSAR P.O. Box 51 N-2007 Kjeller, NORWAY (3 Copies)

Prof. Keith Priestley University of Cambridge Bullard Labs, Dept. of Earth Sciences Madingley Rise, Madingley Road Cambridge CB3 OEZ, ENGLAND Dr. Jorg Schlittenhardt Federal Institute for Geosciences & Nat'l Res. Postfach 510153 D-3000 Hannover 51, GERMANY

Dr. Johannes Schweitzer Institute of Geophysics Ruhr University/Bochum P.O. Box 1102148 4360 Bochum 1, GERMANY