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Abstract

SIMLAB, a software environment for creating simulators directly from computer-readable

physics models, is based on the following concept: creating physical systems simulators

should be as simple as describing the underlying physics to a colleague.

Rather than programming in a conventional programming language, a SIMLAB user

expresses physics models (and thus simulators) directly in terms of the concepts, quantities,

and equations familiar to a scientist or engineer.

The benefits of the SIMLAB approach include: 1) reducing the time and effort required to

create simulators, 2) providing more understandable and reliable simulators, and 3) support

for more sophisticated simulators, e.g., for multiple domain problems, which have proved

intractible in the past.
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1 Introduction

Since their introduction almost fifty years ago, electronic computers have been used to sim-

ulate and analyze physical systems. ENIAC, widely regarded as the first digital electronic

computer, was originally commissioned to generate ballistics tables[16], i.e., simulating the

dynamics of a rigid body in a fluid (a projectile moving through the air) in a gravitational

field (that of the earth). Since that beginning, the use of computers for simulating and

analyzing physical phenomena has grown to include nearly every domain of engineering and

science: fluid dynamics, rigid body dynamics, visco-elasticity, electrical circuits, etc.

Even though many physical systems simulators are conceptually very similar, and could

share algorithms, software components, and user interfaces, they do not. As an exam-

ple, most simulators use vector operatic i. But rather than using a general purpose Vec-

torSpace package, each implementer defines his or her own data structures and functions.

This has some obvious disadvantages: software having a given functionality is repeatedly

implemented, tested, and debugged; the result is a great loss in productivity. Also, such

software must remain isolated: it does not work well with other programs because it has its

own formats and conventions.

There are at least three reasons no shared software base has developed. First, simulator

implementers have often worked in isolation, mainly because they have tended to be practi-

tioners in their respective fields. Second, it is only recently that the software base capable of

providing the required functionality has matured. Functionally, software components such

as geometric modelers[3, 22, 18], ODE integrators[8], linear algebra packages[6], and sym-

bolic algebra systems[20, 11, 21, 231 are well developed. However, these components are

not constructed using a software architecture that supports closely coupled integration. Nu-

merical packages such as LINPACK are notable exceptions. LINPACK provides linear algebra

functionality at a variety of levels, using a variety of data structures. The third reason that

no common software base has developed is that there is currently no unified computational

model for physical objects and phenomena. While mathematical models of physics have

been steadily advancing since before the time of Newton, computational models of physics

have not been fully incorporated into simulation in any fundamental sense. For instance,
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there is currently no accepted way of specifying, for the purpose of computing, physical

domains, their behavior, and interactions among them. In contrast, geometric modeling has

various computational models of objects such as point sets(e.g., Boundary Representations

(Brep) and Constructive Solid Geometry (CSG), etc.) and operations on these objects (e.g.,

boolean operations, Minkowski sums, and Euler operations). (For an introduction to geo-

metric modeling and references see Hoffmann [9].) While much work remains in the process

of unifying and expanding the computational theory of geometric modeling, the beginnings

of a computational theory exist. This is not the case for physical systems simulation.

1.1 Constructing simulators by writing physics

Large physical systems simulators are currently specified at too low a level - they are

specified by writing a computer program in a conventional programming language. As a

result, creating a such a simulator can be a daunting task taking years to complete. This

causes a shortage of physical systems simulation and analysis software. In particular, there

is a significant time lag between development of hardware technology (such as new parallel

architectures) and its use for physical systems simulation and analysis.

Existing simulation languages[13, 1, 15] are typically a thin veneer over FORTRAN:

they are often, in fact, preprocessors for FORTRAN. In addition to providing a high-

level/FORTRAN syntax, such systems typically provide subroutines for performing a va-

riety of simulation operations, such as ODE integration. While these software systems are

an important advance over unenhanced conventional programming languages, we envisage

a more ambitious system: a simulator programming environment in which simulators are

specified more or less directly as they are understood by a scientist or engineer. Our proto-

type system, SIMLAB, is a first step towards this goal. The input to SIMLAB looks much

like Lhe models of physics described in textbooks. Section 2 develops a SIMLAB model of

particle dynamics by comparing the SIMLAB syntax with a typical textbook derivation.

Besides the simulation languages described above, the bond graph formalism, developed

by Paynter in the late 1950's[14], has engendered a number of simulation systems[17, 2].

Bond graphs are essentially a generalization of electrical circuits. Analogs to electrical com-

ponents, such as inductors, resistors, and capacitors are defined for various physical domains.
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As an example, in the mechanical domain, the spring is analogous to the capacitor, while the

dashpot (shock absorber) is analogous to the resistor. Physical interaction between compo-

nents is modeled by "power bonds," which model energy transfer between the components,

and guarantee conservation of energy.

Transducers may be used to relate phenomena in different physical domains. As an exam-

ple, a bond graph model of a hydraulic cylinder might include a transducer that transforms

the hydraulic pressure into mechanical pressure on the cylinder clevis. Another use of bond

graphs, which is of less interest in terms of simulation, is as a schematic formalism for spec-

ifying engineering systems. Bond graph systems are closer in spirit to the current SIMLAB

prototype than the simulation languages described above. Both SIMLAB and bond graph

systems support the notion of primitive objects with associated behavior (PRIMITIVESand

components, respectively), and interactions between them (CONNECTIONS and power bonds).

They differ mainly in that bond graph systems use a predefined class of equations and so-

lution method, emphasize building a model (instance, that is) using predefined components

rather than defining the model of physics, the objects, and their interactions. One might say

that a given bond graph modeler corresponds to a single SIMLAB model and formulation.

The system designer has chosen these; the user has no choice.

To see the value and implications of creating simulators directly from models of physics,

suppose a scientist has spent the last two years constructing a simulator for a diesel engine.

The resulting program is a combined rigid-body/fluid-dynamics/combustion simulator. It

simulates the pistons, connecting rods, and crankshaft as rigid bodies, and uses PDE models

of turbulent fluid flow and combustion.

The scientist has defined models of the interaction between these various models of phys-

ical phenomena. For example, the force that the expanding gases exert on the piston due to

combustion must be represented. Weeks have been spent defining and implementing data

structures, choosing algorithms, and incorporating pieces of various numerical packages such

as LINPACK and ODEPACK. The simulator has been carefully designed, coded, tested,

and debugged.

The result is a large body of intricate and carefully crafted simulation software. This is

used to tune the design parameters of a new diesel engine, and proves to be of great value.
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Although the author is convinced of its correctness, it is difficult to convince others that the

results may be relied on, because the simulator implementation itself is difficult for others

to understand.

Depending on the implementer's level of effort and foresight, it may be possible to change

a few parameters to modify the simulation to correspond to design changes such as larger

pistons, stroke, or improved models of phenomena. It may even be possible to accommodate a

change in the number of cylinders. The difficulty arises when the simulation must incorporate

a heat flow analysis of the piston and block. Because this requirement did not exist in

the original specification, it is very difficult to patch this additional phenomenon into the

simulator: software must be modified and augmented in a multitude of places distributed

throughout the program. In addition to requiring months of effort, the resulting program

is less elegant, and because it is now more difficult to understand, the level of confidence in

the results is reduced considerably.

Suppose, in contrast, that an implementer creates a simulator using the SIM LAB system.

The initial stage is identical: one determines a mathematical model of the physical phenom-

ena. In this case, however, the initial stage is much closer to the final stage: The input to

SIMLAB is the mathematical model, together with high level instructions for solving the re-

sulting systems of equations. From these, the system creates a simulator as well as an editor

(called the scene generator) for creating instances of the problem. Rather than requiring

the user to define data structures and algorithms, combine various numerical packages, and

write analysis and visualization routines, SIMLAB performs these steps automatically. This

means that changing the model, for instance adding heat transfer to a simulation, requires

only defining a heat transfer model, and defining the interactions between heat transfer and

the various other phenomena. Again the simulator and related modules are created directly

from the model. While the resulting simulator may be as intricate as a hand crafted one, the

time, effort, and cost required to create it is reduced by orders of magnitude. In addition,

the results are more credible, because the author has expressed the underlying mathematical

model explicitly. The simulator has been automatically constructed from that model, which

aids in convincingly defending the simulation results.

The process of creating a simulator is not the only aspect of simulation that is time
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consuming. In fact, the design process itself, i.e., creating the artifacts to be simulated, is

the major purpose of most engineering and design departments. In the previous example,

the design of the engine itself could easily require more effort than the design of the simulator

that analyses it. The ability to quickly create and modify simulators is of limited value if

it means that extant artifact designs must be discarded or laboriously re-created when a

simulator is modified. Fortunately, the explicit representation of the physical model allows

the simulator designer to specify translations directly in terms of the physical model itself.

1.1.1 A "simulation language" to think in

The goal in creating a computer language or environment is to provide the scientist with the

means to express the problem in a manner as close as possible to the way he or she thinks

about the problem. Specifying a simulator should be, as nearly as possible, like describing

the solution method to a colleague. Beyond providing semantics corresponding to the user's

current mode of understanding the phenomena, we believe that our environment will provide

an enhanced understanding of the engineering problems themselves. By way of comparison,

the goto statement encourages a low-level difficult-to-understand style of programming,

while the while loop construct encourages a structured style, which is more easily verified,

understood, and explained. In a analogous manner, we believe that the SIM LAB environment

for specifying simulators will make explicit the meaning and assumptions typically hidden

in simulation software. This in turn can provide engineers and scientists with an improved

model for understanding the process of creating software for physical systems modeling and

simulation.

Ultimately, we believe the benefits of SIMLAB approach will be:

1. Development of a high level means of expressing simulation problems.

2. Improved understanding of physical phenomena and interactions.

3. Quickly constructed, reliable, and understandable simulators.

4. Simulators that can be quickly and easily modified.

5. Retargeting simulators to take advantage of new machine architectures.
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The remainder of the paper investigates the means for realizing the vision of high-level

specification and automatic generation of simulators. Section 2 presents the language for

expressing mathematical models for physical systems simulators. Section 3 details the current

implementation of SIMLAB - the overall architecture of the system, the structure of the

packages comprising the system's mathematical substrate, and so forth. Clearly, an enormous

amount of research remains to be done before automatic generation of high-quality simulators

for complex physical phenomena becomes practical. Section 4 identifies and discusses a

number of these challenging problems. Finally, the appendices show how SIMLAB was used

to create simultors for simple particle dymanics, rigid body dynamics, and electrical circuits.
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2 Representing physics in SIMLAB

In this section we describe the means for specifying physical systems simulators in SIMLAB.

We introduce the concepts with a simple example: a model of Newtonian particle physics.

As we have stated, SIMLAB creates simulators directly from models of physics. In devel-

oping this example we, in addition to introducing the constructs of the model specification

language, compare the SIM LAB formulation of a mathematical model with the development

in a standard textbook[12]. The differences are not significant, and arise mainly in making

certain assumptions explicit. For instance, SIMLAB models specify mathematical domains of

quantities. Unlike human readers, SIMLAB does not infer the mathematical domains of quan-

tities. Also, SIMLAB constructs data structures for the primitive objects in a model (such

as the particle in this one). For this reason, the primitives and their quantities are explicitly

defined. Thus, a model contains the necessary information for automatically constructing a

simulator directly from the model, which is our goal.

2.1 Defining models of physics

In the modeling and simulation literature, "model" is generally used to describe a model of

a particular instance. In contrast, a SIMLAB model is a computer-readable representation of

the model of physics itself - a notion that has not until now been needed in the simulation

literature, since models of physics have not been explicitly represented. Particular instances

of a problem are referred to as scenes.

A SIMLAB model contains definitions of primitives, the basic entities in the model, to-

gether with connections, which are used to specify interactions between primitives. Primi-

tives may have quantities, which represent the state of the primitive. Constraints may also

be associated with primitives to constrain the values of their quantities. For example, the

particle primitive in particle-model contains the constraints

momentum = mass * velocity

and

force = deriv(momentum, time).
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Simple inheritance is provided: a primitive can be defined to be a "kind-of" some other

primitive, as when a "resistor" is defined to be a kind of "2-terminal" in the AC circuit in

Appendix C.

2.2 Operating on physics models

The formulation provides a global interpretation for the model: it specifies how to assemble a

set of equations from the primitives, connections, constraints, and laws. Once the model and

formulation have been defined, SIMLAB creates data structures (i.e., classes) and associated

methods for creating and operating on the primitives, connections, etc. From these it con-

structs a simulator and a scene generator for creating instances of the problem. A user may

then create an initial value problem (a scene), and invoke the simulator. The simulator uses

the model definitions and formulation to construct a set of equations and solution methods

that model that scene, performs the simulation, and displays the results of analysis.

2.3 Newtonian particle mechanics

We begin by describing Newtonian particle mechanics as stated in textbooks. Newton for-

mulated mechanics in terms of particles, together with the following three laws:

1. If there are no forces acting on a particle, its velocity is constant.

2. The momentum of a particle is defined to be the product of its mass and velocity.

(p = MV)

3. If A exerts a force on B, then B exerts a force of equal magnitude and opposite direction

on A. (FAB = -FBA)

In addition to these laws, we note that velocity is the time rate of change of position (v ="
and force is the time rate of change of momentum (f = 1E).

The mass of a particle is a scalar constant (for Newtonian, i.e., non-relativistic, mechan-

ics) that defines the relationship between the momentum and the velocity.
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In this model, the only interaction between particles is that of gravitation. The rravita-

tional force between particles pi and p2 is defined by

F2- Gm1 m2FP1P m - r 2  , (1)

where G is the gravitational constant, m is the mass of pl, M 2 is the mass of P2, and r is

the distance between pi and p2.

Note that this expression defines only the magnitude of the force between p, and p2. The

gravitational force is attractive, which means that the force of pi on P2 is directed from p2

to pl.

2.4 The SIMLAB model

Although the current implementation of SIMLAB is written in COMMON Lisp for reasons of

presentation we use a C-like syntax in this section. Appendix A contains the actual syntax

for this model, together with a scene containing two particles, and the result of running the

particle simulator on that scene.

In addition to formally expressing Newton's laws as described above, a SIMLAB model

of Newtonian particle mechanics adds definitions of what a particle is, what quantities are

associated with a particle, and the direction of the gravitational force. The process of defining

this model is carried out below:

The first step in defining a SIMLAB model is to name it:

DEFINE-MODEL Nevtonian-particle-mechanics

2.4.1 The primitive: the particle

Next, we define the only primitive in this model, the particle. In general, the components of a

primitive are its quantities, which characterize its state, and its constraints, which constrain

the values of these quantities. For the case at hand we have the following definition:

PRIMITIVE particle
QUANTITIES

mass in R
momentum in R-3

10



force in R'3
position in R^3
velocity in R^3

CONSTRAINTS
momentum = mass * velocity

force - deriv(momentum, time)
velocity a deriv(position, time)

A particle in this model is defined to have mass, momentum, force, velocity, and position.

The particle's constraints enforce Newton's first and second laws, as well as the relationship

between force and momentum, and that between velocity and position.

2.4.2 Gravity: the connection between particles

We now proceed to define the model's connections, which define the modes of interaction

between the primitives. For particle mechanics, the only interaction between particles is the

gravitational force between a pair of particles.

Thus, we define the connection for gravitation between two particles:

CONNECTION gravitation(pl, p2 : particle)

QUANTITIES force in R'3

CONSTRAINTS

force =

(6.672e-11 * mass(pl) * mass(p2) * (position(p2) - position(pl)))

/ DISTANCE(position(pl), position(p2))-3

This connection specifies the gravitational interaction between a pair of particles. It

defines the force that pl exerts on p2.

2.4.3 The formulation of the mathematical model

The final step in defining a model is to specify how the connections are to be applied to the

primitives to assemle the system of equations that model a given instance. In the case of

particle dynamics, each particle exerts a gravitational force on every other. Therefore, the

formulation for this model is as follows:
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FORMULATION
FOREACH p in particle-set(scene)

force(p) -
SUM c in gravitation-set(p)

IF (p -= pl-of(c)) /* force directed towards pi ,/

force-of(c)
ELSE /* force directed towards p2 */

- force-of(c)

The formulation specifies that the force of gravitation on p is the sum of all forces in

gravitation-set(p) (the set of gravitation constraints for which p is a primitive). The awkward

if-then-else form is currently used because gravitation is represented as a directed force.

This completes the model for Newtonian particle mechanics. From this model, SIMLAB

automatically constructs a simulator, as well as a scene generator for creating and editing

instances of the problem.

2.5 The scene generator

Given a mathematical model, SIMLAB creates data structures, mathematical domains, and

associated access functions for each of the primitives, quantities, constraints, and connec-

tions. These are used to create the scene generator and the simulator. In the present case,

the scene generator allows one to define a set of particles, and to then specify the mass of

each, as well as initial conditions on the position and velocity. As an example, we used the

scene generator to create the following scene, represented textually below:

time[0, 10)
PARTICLE /* at time a 0 */

name particle-1 /* name is optional for any SimLab entity */
mass 1.0

position <0.0, 0.0, 0.0>
velocity <1.0, 0.0, 0.0>

PARTICLE /* at time - 0 */
name particle-2
mass 1.0

position <0.0, 0.0, 10.0>
velocity <0.0, -10.0, 0.0>

FORALL UNORDERED-PAIRS (pl:particle, p2:particle) IN scene
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gravitation(pl,p2)

This scene specifies that a system of two particles should be simulated in the time in-

terval [0, 10]. The final two lines in the above scene specification declare that gravitational

interaction occurs between all distinct pairs of particles in the scene. Although the fact that

gravitation occurs between all pairs of particles could be specified in the model, we have

chosen in this case to specify the existence of gravitation a per-scene basis, which allows

creating scenes where gravity does not occur between all pairs of particles.

2.6 The simulator

The particle-mechanics simulator, when given such a scene as input, constructs a system of

ordinary differential equations that represents the behavior of the scene as defined by the

model from which the simulator was created. For each primitive in the scene, it creates

equations corresponding to the constraint applied to that primitive. In the case of the

instance described in the previous section, the constraints associated with primitives result

in the following set of equations:

force(pl) - deriv(momentum(pl), t)
velocity(pl) - deriv(position(pl), t)
momentum(pl) - mass(pl) * velocity(pl)
force(p2) = deriv(momentum(p2), t)
velocity(p2) - deriv(position(p2), t)
momentum(p2) - mass(p2) * velocity(p2)

To this, equations resulting from the formulation are added.

force(pl) - 6.672e-11 * mass(pl) * mass(p2)
* NORMALIZE(position(p2) - position(pl))

/ DISTANCE(position(p1), position(p2))-2)
force(p2) = 6.672e-11 * mass(p2) * mass(pl)

* NORMALIZE(position(pl) - position(p2))

/ DISTANCE(position(p2), position(pl))2)

Thus it is seen that a scene serves two purposes: defining an initial value problem (that

is, the set of primitives and the relationships between them), as well as defining initial
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conditions for that problem. Given a scene, the automatically generated simulator assembles

the set of equations, manipulates these equations into a "normal form" (either explicit form:

y = f(y, t), or implicit form: A(y, t)y' = f(y, t)), and simulates the motion of the particles

by integrating the resulting set of equations. These actions are described in the next section.
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3 The current implementation of SIMLAB

This section describes the current SIMLAB prototype. We first outline the process it uses

to create simulators. We then describe the software aspects of the implementation itself.

Section 3.3 describes the symbolic algebra component, which is implemented using WEYL.

We conclude by describing some of the implementation issues concerning the example appli-

cations.

The prototype implementation of SIMLAB is written using the Common Lisp Object

System (CLOS)[19]: the standard object-oriented version of COMMON LIsp. SIMLAB gen-

erates simulators in conventional programming languages (currently COMMON Lisp, C, and

FORTRAN). These simulators incorporate user interface and visualization tools based on

X-WINDOWS and CLM[7]. Once SIMLAB has created a simulator and scene generator for a

given model, the user interface tools are used to create scenes, display a scene's evolution,

and graph the results of analyses.

3.1 How SIMLAB creates simulators

SIMLAB, given a model expression, performs the following sequence of operations to create

a simulator:

1. CLOS classes and methods are defined for each PRIMITIVE and CONNECTION. In

addition, a class is defined for the model itself. The scene generator and simulator

created from the model will use these classes to create and interpret instances of the

problem.

2. The LAWS and DEFINITIONS associated with each PRIMITIVE and CONNECTION are

interpreted and code fragments are created for each. These code fragments, which

will later be assembled to create a simulator, create the necessary data structures and

equations for a given primitive or connection.

3. The FORMULATION is interpreted, and code is created to assemble the global set of

equations. This code incorporates the code segments described in 2.
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4. The classes and other software components are assembled to create a stand-alone sim-

ulator, which takes as input a scene satisfying the model definition. It also generates

a: scene editor for creating instances of the problem.

The FORMULATION is encoded into the stand-alone simulator, which is responsible for

interpreting a given scene, generating a system of ODE's, and performing the simulation.

This simulator, given a scene instance, performs the following operations:

1. For each primitive and connection, equations are added to the ODE system. These

equations are generated by applying the model's laws to the primitives and connections.

2. The set of equations is transformed into normal form: y' = f(y, t)), where y is the

state vector, f is a vector valued function, and t is time. Thus the state variables are

identified, and all time derivatives of state variables are moved to the left hand side of

the equations.

3. Since the symbolic algebraic manipulations are performed using the computer algebra

system WEYL[23], and the simulator itself is in FORTRAN[8], the resulting set of

equations (from 2) is mapped into a single vector equation, and translated into a

FORTRAN subroutine for computing the time derivative of the state vector.

4. The subroutine constructed in the previous step is loaded together with standard nu-

merical codes for integrating ODEs[8], as well as visualization code and user interface

components.

5. The resulting code is executed to perform the simulation, and the results are displayed

using the user interface tools.

3.2 The current state of SIMLAB

Our first steps toward automatic simulation generation have been to define the system archi-

tecture of SIMLAB and to implement the first prototype. Our architecture comprises three

levels:

1. A high level language for expressing and representing models of physics.
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2. An intermediate level algorithmic substrate which implements computational forms of

algebra, combinatorial topology, and control specification.

3. A meta-language for representing facts about code fragments and subroutines and

packages, which will allow algorithmic components to be automatically assembled.

We have implemented a prototype of the first, but have yet to begin implementation of

the second and third levels.

The "semantic gap" between SIMLAB'S model language and the conventional languages

it uses to create simulators, suggests the need for an an intermediate language and associated

software, which we refer to as the algorithmic substrate: a language in which to program

mathematics and algorithms. Because we currently lack such a in intermediate level, all

the simulators created so far contain some "hardwired" code fragments. These issues are

described in Section 4.1.

3.2.1 Lumped and distributed parameter systems

The current implementation supports "lumped parameter" models of physical phenomena.

That is, although we are modeling physical phenomena distributed continuously in space

and time, we are able to abstract the infinite number of parameter values into a single vector

or scalar parameter.

Because the combinatorial structure of lumped parameter systems is naturally repre-

sented by a graph, we have defined PRIMITIVES and CONNECTIONS (which correspond to

the nodes and edges of the graph) as the basic model entities for our first prototype. 'he

next SIMLAB prototype will support distributed parameter models in addition to lumped

models. Since distributed parameter systems have a richer combinatorial structure, this will

require additional basic model entities. Extension of SIMLAB to handle non-lumped systems

is discussed in Section 4.3.

3.3 Algebraic manipulation

In SIMLAB, the quantities associated with CONNECTIONS and PRIMITIVES contain, in addi-

tion to information for generating data structures and methods, a rich mathematical struc-
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ture. In particular, the mathematical domain of a QUANTITY is represented using the WEYL

computer algebra substrate.

WEYL offers significant advantages over the traditional symbolic mathematics systems

such as Macsyma[20], Maple[11] or Mathematica[211. While these are large stand-alone

programs, WEYL is an extensible toolbox for computational algebra, whose functionality is

accessible at a variety of levels. Furthermore, in contrast to previous systems, WEYL explic-

itly represents mathematical domains, elements of those domains, and morphisms between

domains. 1

SIMLAB uses, among others, the following WEYL domains: the rational integers, vector

spaces, and polynomial rings. It also uses morphisms: maps between domains. For instance,

the rigid body dynamics simulator defined in Appendix B uses the morphism operator to

define a homomorphism between unit quaternions and SO(3). This allows SIMLAB to au-

tomatically generate code that transforms elements of one representation to the other. For

more details on the use of WEYL, see Zippel[23].

WEYL provides an important step raising the semantic level of simulators: it allows the

mathematics to be specified using well-understood mathematical concepts and operations

rather than ad-hoc packages in conventional programming languages.

3.4 Example models of physics

To date we have constructed models (and hence simulators) for Newtonian particle dynamics,

rigid body dynamics, and electrical circuits composed of AC generators, capacitors, resistors,

etc. All of the examples described in the appendices are actual input files, and the resulting

simulators and scene generators have been run and used to analyze simple engineering prob-

lems in the their domain. The model specification, runs, and analyses are included together

in the respective appendices.

Domains can be viewed as sets of elements together with additional algebraic structure.
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4 The challenges

This section describes challenges that must be met to extend SIMLAB. These fall into two

classes: 1) extension of the model language to include distributed parameter physical models,

and 2) development of a software architecture that supports high performance simulation.

The first challenge, that of extending the language of physics models to include distributed

parameter systems, requires a computational theory of physics and engineering systems that

includes distributed phenomena. Such a theory will guide the addition of semantic constructs

(the equivalent of primitives and connections for lumped systems) to the physics model

language. Section 4.3 discusses these issues. The second class of challenges is described in

the following sections.

4.1 The algorithmic substrate

The goal of the algorithmic substrate is to provide mathematical functionality such as al-

gebra, topology, and geometry at an appropriate level: the level at which it is taught and

understood. Programming languages that directly implement a computational form of stan-

dard mathematics will have obvious benefits: they will be widely accessible and understood,

as well as sound.

4.1.1 Components of the algorithmic substrate

While some forms of computational mathematics are well developed and available as soft-

ware (e.g., linear and symbolic algebra, as well as geometry), other forms are not (e.g.,

point-set topology). Even those well developed technologies are not necessarily suitably

packaged for high performance simulation. Thus there are two challenges facing the de-

signer of computational mathematics software: suitable data structures and operations for

currently undefined computational mathematics, and an appropriate software architecture

that will serve the needs of high performance computing.

A computational form of geometry - geometric modeling - is a well developed computer

technology in the following sense: theory for computing with geometric objects (such as

data structures for representing geometric objects, and algorithms for performing boolean
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operations) has been developed and used to create computer codes for performing geometric

computation. The following example shows that current geometric modeling software does

satisfy our second criterion: its architecture is not sufficiently general.

4.1.2 Example: Collision detection in a rigid body dynamics simulation

The rigid body model of dynamics assumes that bodies do not intersect or deform. In a

given simulation, the topology of the contact relationships changes. Each different contact

topology gives rise to a (generally different) set of equations that model the dynamics of

the system. Thus, when contact topology changes, the continuous model must change as

well. The most general way to handle this problem is to use a geometric modeler to test for

interference at each time step.[5J

When a new contact relationship arises, the set of equations is reformulated. Thus, any

geometric modeler capable of representing the physical objects, and testing for intersection

in various configurations can be used. However, several factors combine to make this "naive"

interface impractical for all but scenes containing a few primitives having the simplest shapes.

Generally speaking, interference checking will take orders of magnitude longer than perform-

ing an integration step. Thus testing for intersection becomes the bottleneck. On the other

hand, the position of the primitives changes very little during a given time step. Define a

series of configurations having the property that each is very much like its predecessor to be

coherent. It is clear that a significant performance improvement can be gained by recogniz-

ing properties such as coherence: it is especially wasteful to perform a series of interference

checks that "know" nothing of the results of previous tests. Unfortunately, current single

level interface technology provides little choice. Usually, it is only possible to ask "Do A and

B intersect?", without any sense of history.

Suppose a more general interface to geometric modeling functionality were available.

How could this be used to improve the performance? Rather than request intersection "from

scratch" each time, the interface could provide a means of informing the modeler what results

should be kept between calls. For instance, the minimum distance between pairs of objects

could be kept, perhaps together with the closest pair of points on the objects. This would

allow the modeler to compare the positions with those of the next time step to determine
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whether there is any possibility of a change in contact topology. If not, the next integration

step could be taken while the new distances are computed. (That is, the integration and

intersection detection could be performed in parallel.) More ambitiously, the modeler could

use the current velocities to try to predict when contact topology changes, backing up the

computation when it "guesses" wrong.

4.2 A meta-language for algorithmic programming

A system that combines algorithmic components to create simulators without human inter-

vention must represent knowledge of the components themselves. As an example, the system

could "know" that the LSODA[81 routine solves ODEs represented in a particular format,

what parameters it requires, etc.

The key is to explicitly represent the software components purpose, data conventions,

and interfaces. This allows the system to reason about the code fragments it combines to

create a simulator.

Consider the following example:

MODULE ODE-SOLVER-1

DECLARE f: REAL[n] x REAL -> REALn];

y(t:REAL): REAL[n];

tO, t1: REAL;

GIVEN f, tO, t1, y(tO);

OPTIONALLY GIVEN JACOBIAN(fy)

SOLVES DERIVATIVE(y, t) m f(y, t) ON INTERVAL [tO, tl;

This specification defines the module ODE-SOLVER-1, which given function f, an inter-

val [to, t1], and a value for y at to, finds an approximate solution to the differential equation

= f(y, t). Once this specification (and the code that it describes) is added to the database,

it is possible to automatically generate code to solve ODE problems.
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4.3 Physical systems and PDEs

As stated previously, the current SIMLAB prototype supports only lumped parameter sys-

tems. While lumped systems are extensively used to model a variety of engineering design

and analysis problems, and in fact form the basis for computer simulation systems based on

bond graphs such as ENPORT[17], incorporation of distributed phenomena into SIMLAB will

allow it to fully support problem domains such as electrostatics, fluid flow and heat transfer.

Distributed parameter models are topologically more complex than lumped systems:

lumped systems are graphs, topologically, while distributed parameter systems are repre-

sented with higher dimensional cell complexes. This added complexity will require additional

language entities and operations to support, for instance, the discretization process.

In fact, the process of discretizing a PDE is, in essence, a lumping process. For instance,

although not usually described this way, a finite element discretization can be viewed as

substituting a system of interacting lumps (the finite elements) for the continuous model.

With traditional lumped systems, the lumping is done a priori for a class of objects (e.g.,

for all capacitors), while it must be done on a case-by-case basis for more difficult distributed

phenomena, such as fluid flow. The behavior of each element (the "laws" for that element,

in SIMLAB terms) is defined by unique geometric or other considerations. Thus, in contrast

to simulation systems that support only lumped systems, an environment that supports

distributed parameter must support the process of lumping itself.
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5 Conclusion

In this report, we have argued that it is both possible and practical to create physical

systems simulators directly from the underlying models of physics. We have proposed a

twofold approach: First, we need a computational theory to formalize algorithmic physics.

Such a theory will provide the basis for computing with physical systems in much the same

way that geometric modelers enable us to compute with geometry. Second, we need to

be able to specify the semantics of physics models at a higher level than that provided by

conventional programming languages. We propose that this specification language should

be, in essence, computational forms of standard mathematics.

We have defined, as a first step towards the goal of creating a computational theory

of physics, a language capable of representing models of physics for a large class of engi-

neering systems: the lumped parameter systems. Using this language, we have constructed

a prototype simulation generation environment, SIMLAB. We have used this prototype to

create a few simple simulators, which are described in the apendices. Although the cur-

rent implementation of SIMLAB is far from a production level software environment, we are

encouraged in our belief that scientists and engineers will presently "write" simulators by

explicitly defining the underlying physics.

To address the second issue, we propose a two part solution. First, an intermediate

level algorithmic substrate, a software architecture and environment supporting a variety of

computational mathematics functionality, such as symbolic and linear algebra, point-set and

combinatorial topology, and geometry. Second, we propose a meta-language for representing

knowledge about the software components that comprise a simulator. Such a system will

allow automatic assembly of software components.

Finally, we have examined some of the research issues that must be addressed to fully

realize the goal of creating simulators directly from physics models. These challenges include

language support for distributed parameter systems, developing the software architecture for

the algorithmic substrate, a meta-language for reasoning about algorithmic components, and

support for high performance parallel architectures.

Ultimately, we envisage an environment in which state-of-the-art simulators are con-
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structed and modified by defining the physical properties and interactions of physical objects.

In addition to making it easier to create simulators, making simulators easier to understand

and trust, and providing for automatic retargeting of simulators to rapidly advancing parallel

machine architectures, we believe that such an enviroiment will enable designers to analyze

a wider variety of problems, because they will be able to quickly create special purpose sim-

ulators for problems that would otherwise be too costly and time consuming to simulate.

In particular, it will aid in creating multiple-domain simulators, which are currently very

difficult to create, and hence scarce.
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A Particle-dynamics

A.1 The model

This appendix contains the actual syntax used by SIMLAB. While parts of the syntax are
reasonably acceptable, the formulation syntax is currently rather sad, being unadulterated
COMMON LISP that accesses lower level SIMLAB functionality directly. Once we have de-
veloped the intermediate level language (the algorithmic substrate) sufficiently, the users of

SIMLAB will not need to understand or access the low level implementation.

;;; -*- Syntax: Common-Lisp; Package: SIMLAB; Base: 10; Mode: LISP-*-

(in-package "SIMLAB")

(define-model particle-dynamics

(primitive particle
(quantities

(mass :domain R :constant)

(momentum :domain R3)
(force :domain R3)

(position :domain R3)
(velocity :domain R3))

(constraints
(s force (deriv momentum 'time))
(- velocity (deriv position 'time))

(- momentum (* mass velocity))))

(connection gravitation
(objects

(pl particle)
(p2 particle))

(quantities
(force :domain R3))

(constraints
(- force

( (* 6.672e-11 (mass pl) (mass p2)

(- (position p2) (position p1)))
(distance-cubed (position p1) (position p2))))))

(laws
(resultant-force

(for p in particle
(- (force p)

(+ (sum g in gravitation such that (- p (pl g))
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(force g))
(sum g in gravitation such that (- p (p2 g))

(- (force g))))))))

(formulation-scheme particle-dynamics-formulation
(let force-equations

(union
(mapover (particle (objects-of-type 'particle))

(apply-law 'resultant-force particle))
(mapover (connection (connections-of-type 'gravitation))

(constraint-equations-of-connection connection))))
(let constraints -

(mapover (particle (objects-of-type 'particle))
(constraint-equations-of-object particle)))))

A.2 A particle scene

This scene contains three particles. The simulator generated, together with a graph of the

trajectories of the particles for the first 300 seconds follows.

(define-scene
(primitive particle (name pl)

(quantities
(mass 1.Oe6)
(position 0.0 0.0 0.0)

(momentum 0.0 0.0 0.0)))
(Drimitive particle (name p2)

(quantities
(mass I.Oe6)
(position 1.0 0.0 0.0)

(momentum 0.0 5000.0 0.0)))
(primitive particle (name p3)

(quantities
(mass 1.Oe6)

(position 0.0 1.0 0.0)

(momentum 0.0 0.0 0.0)))
(connection gravitation
(objects (p1 p1) (p2 p2)))

(connection gravitation
(objects (pl p2) (p2 p3)))

(connection gravitation

(objects (p1 p3) (p2 p1))))
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A.3 The generated simulator

C ** Automatically generated fortran main program

C ** first the declarations

external ydot
integer NEQ
double precision Y(0:20)
double precision TIME
double precision TOUT
integer ITOL
double precision RTOL
double precision ATOL
integer ITASK
integer ISTATE
integer IOPT
double precision RWORK(0:507)
integer LRW
integer IWORK(0:37)
integer LIV
integer JT

C ** now perform the initial assignments
NEQ 18
Y(0) " 0.0
Y(1) " 0.0
Y(2) I 0.0
Y(3) 0.0

Y(4) = 0.0

Y(5) * 0.0
Y(6) * 0.0
Y(7) u 5000.0

Y(8) * 0.0

Y(9) = 0.0

Y(10) a 0.0
Y(11) " 1.0

Y(12) a 0.0

Y(13) a 0.0
Y(14) a 0.0
Y(15) a 0.0
Y(16) a 1.0

Y(17) a 0.0

Y(18) a 1000000.0
Y(19) = 1000000.0
Y(20) a 1000000.0
TIME a 0.0
TOUT - 0.3
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ITOL a 1
RTOL a I.0E-6
ATOL - 1.OE-6
ITASK a
ISTATE a I
IOPT *0
LRH 508
LIW *38

JT 2
print*, NEQ, Y, TIME, TOUT, ITOL, RTOL, ATOL, ITASK, ISTATE, IOPT,
c LRW, LIW, JT

C *snow execute the code
do 10 i-1,1000
call lsoda(YDOT,neq,y~time,tout ,itol ,rtol ,atol ,itask,istate, iopt~r

cwork,lrv, ivork,liw,YDOTjt)
call prntsv(tiue, neq, y)
tout-tout+ 0.3

10 continue

stop
and

C **Automatically generated subroutine

subroutine ydot (neq,time ,y yp)
double precision tiue~y(0:20) ,yp(0:17)
double precision dcubed

C **D~momentum-4<2>, timae) a ((6.672E-11 dcubed~position-6c2>, positio
C n-6<1>, position-6<0>, position-15<2>, position-i5<i), position-iS
C <0>) mass-3 position-24<2> + -6.672E-11 dcubed~position-6(2>, posi
C tion-6<1>, pouition-6<O), position-16<2>, position-isci). position
C -16<0) position-6(2> uass-3) mass-21 + ((6.672E-11 dcubedfpositio
C n-24<2>, position-24<1>, position-24<0>, position-6<2>. pohition-6
C <1>, position-6<O) mass-3 position-15<2> + -6.672E-11 dcubed~posi
C tion-24(2>, pouition-24-(1), pouition-24(0>, position-6<2>, positio
C n-6<1>, position-6'C0>) position-8(2> .ass-3) mass-12) )/(dcubedfpos
C ition-24<2>, position-24(1) * position-24(0), position-6(2>, positi
C on-6<1>, position-6<0) dcubed~position-6<2>, position-6(1>, posit
C ion-6<0>, position-1S(2>, position-iS<I>, position-15C))

yp(O)a(((( 6.672E-1i * (dcubedCY(3). Y(4). Y(S). Y(9). Y(1O), Y(i
ci))) * Y(18)) * YViS) + (( -6.672E-il1 (dcubedCY(3). Y(4), Y(S)
c, Y(9), Y(iO), Y(11)))) * Y(3)) * Y(i8)) T (19) + ((( 6.672K-i1
c(dcubed(Y(IS), Y(16). YC17) Y(3) Y(4), Y(S)))) *Y(18)) * Y(9)

c + ( -6.672E-li * (dcubed(Y(15). Y(16), Y(17), Y(3), Y(4), T(S))
c)) *Y(3)) * Y(18)) * Y(20)) * ((dcubed(Y(15), Y(16), Y(17), Y(3),
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c Y(4), Y(5)) * (dcubed(Y(3). Y(4). Y(5), Y(9). Y(1O), Y(l)))) *
C -l

C **D~momeltuZ-4(1>, time} a ((6.672E-li dcubed~pouitiont-6<2>, pouitio
C n-6<1>, position-6<O), pohition-lSC2>. position-lS<l>, position-iS
C <0>) mass-3 position-24<l) + -6.672E-il dcubed~position-6<2>, posi
c tion-6<l), position-6(O>, position-lS(2>, position-lS<i). position
c -16<0>) position-6<1> uass-3) mass-21 + ((6.672K-li dcubed~positio
c n-24<2>, position-24<l>, position-24<O>, position-6<2>, pouition-6
C <1>, position-6(O>} mass-3 position-i5<i) + -6.672K-li dcubed~posi
C tion-24<2>, position-24<l>, position-24<O>, pohitiorn-6<2>, positio
C n-6<1>, position-6(O>} position-6<l> mass-3) as-i2))/(dcubed~pos
C ition-24<2>, position-24<l>, pohition-24<0>, position-6<2>, positi
C on-6(i>, position-6<O>} dcubed~position-6<2>, position-6<l>. posit
C ion-6<O>, position-15<2>, position-i6<i>, pouition-15O>}))

yp(i)s(((( 6.672K-li * (dcubed(Y(3), Y(4), Y(S), Y(9). Y(10), Y(l
ci)))) * Y(18)) * Y(16) + (( -6.672K-il1 (dcubed(Y(3). Y(4), Y(S)
c, Y(9), Y(1O). Y(il)))) * Y(4)) * Y(18)) *Y(19) + ((( 6.672K-li
c* (dcubed(Y(i5), Y(16), Y(17), Y(3), Y(4), Y(S)))) * Y(18)) * Y(1O
c) + -6.672E-li * (dcubed(Y(l5), Y(16), Y(17), Y(3), Y(4), Y(5)
c)) Y(4) * Y(18)) * Y(20)) * ((dcubed(Y(lS). Y(16), Y(17), Y(3)
c. Y(4), Y(5)) * (dcubed(Y(3), Y(4), Y(S), Y(9), Y(10). MOiM))
C. -1

C **D~momentum-4(O>, tix.} a ((6.672E-11 dcubedfposition-6(2>. pouitio
C n-6<1>, position-6<O), position-15(2>, position-iS<i), position-is
C (O)} mass-3 position-24<O) + -6.872K-li dcubed~position-6<2>, poui
C tion-6(i>, position-6<O>, position-lSC2>, position-iS<i>, position
C -15<0>1 position-6<O> mass-3) mass-21 + ((6.672K-li dcubod~positio
C n-24<2>, position-24<1>. position-24CO>, position-6<2>, position-6
C <1>, position-6<0}) uass-3 position-15<O) + -6.672E-1l dcubed~posi
C tion-24<2>, position-24C 1), position-24<O>, position-6<2>, positio
C n-6<1>, position-6<0) position-6<O> uaass-3) mass-i2))/(dcubed~pos
C ition-24<2>, position-24<l>, position-24<O>, position-6<2>. positi
C on-6<l). position-6<0>} dcubed~positioi-6<2>, position-6<1>, posit
C ion-6(O),, position-l5C2>, position-l5<1>, position-15O>}))

yp(2)u(((( 6.672K-li1 (dcubed(Y(3). Y(4), Y(S), Y(9), Y(lO). Y(l
ci)))) * Y(18)) * Y(17) *(( -6.672K-li1 (dcubed(Y(3), Y(4), Y(5)
c, Y(9), Y(10), Y(Ii)))) *Y(5)) * Y(18)) *Y(19) + ((( 6.672E-1l
cs (dcubed(Y(IS). Y(16), Y(17). Y(3), Y(4), Y(S)) * Y(18)) * Y(Il
c) + (( -6.672K-li * (dcubed(Y(15), Y(16), Y(17), Y(3, Y(4), Y(5)
c))) * Y(S)) * Y(18)) * Y(20)) * ((dcubed(Y(l5), Y(16), Y(17), Y(3)
c, Y(4), Y(5)) * (dcubed(Y(3). Y(4), Y(S), Y(9), Y(iO), YVIl)))
C* -1

C **Diposition-6<2>, time) - (momentua-4<2>)/(mass-3)
yp(3)nY(O) * Y(18) ** -1
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C **D~position-6<i>, time) (momontuz-41l)/(mass-3)
yp(4)-Y(l) * Y(18) *-

C **D~position-6<O), time} (momentum-4cOW)(mass-3)
yp(S)uY(2) * Y(i8) ** -1

C **D~momentum-i3<2>, tima} c ((6.672K-i1 dcubed~position-6<2>, positi
C on-6<1>, position-6<O). position-iS'?>, position-iS<l), position-i
C 5<0>1 mass-i? position-24<2> + -6.672E-li dcub~dposition-6<2>, pa
C sition-6<1>, position-6(Q). position-lSC2>. position-iS<i), positi
C on-15(O)} position-16<2> mass-i?) mass-21 + ((-6.672E-il dcubed~po
C sition-lS(2>, position-l5(i>, position-iSCO>, position-24<2>, posi
C tion-24<1>, position-24<O>} mass-3 position-iS(2> + 6.672E-li dcub
C *d~position-iS<2>, position-iS<i>, position-iSCO>, position-24(2>,
C pouition-24<l). position-24<O>} position-6<2> mass-3) mass-i2))/(
C dcubod~position-15<2>, position-iS<i>, position-iSCO>, position-24
C <2>, position-24<i>, position-24<O>} dcubed~position-6<2>, positio
C n-6<1>, position-6<O), position-lS(2>, position-i5<i), position-i5
C o>}))

yp(6)=(((( 6.672E-il * (dcubed(Y(3), Y(4), Y(5), Y(9), Y(1O), TO.
ci)))) * Y(20)) * Y(i5) + (( -6.672K-il1 (dcubed(Y(3), Y(4), Y(S)
c, Y(9), Y(1O), Y(1l)))) * Y(9)) * Y(20)) *Y(19) + ((( -6.672E-il
c * (dcubed(Y(9), Y(1O), Y(ii), Y(15). Y(16), Y(17)))) * Y(18)) * Y
c(9) + ( 6.672K-li * (dcubed(Y(9), Y(1O), Y(ii), Y(15), Y(16), Y(
ci7)) Y(3) * Y(18)) * Y(20)) * ((dcubed(Y(9), Y(1O), Y(11), Y(
cIS), Y(16), Y(17))) * (dcubed(Y(3), Y(4), Y(S), Y(9), Y(lO), Y(ll)
CM) ** -i

C **D~momentum-13<1>, time) - ((6.672E-il dcubed~position-6<2>, positi
C on-6<i>, position-6<O>, position-15<2>, position-i5<i>. position-i
C 5(O>} mass-i? position-24<l) + -6.672K-il dcubed~position-6<2), pa
C sition-6<l>, position-6<O>, position-15<2>, position-lS<I>, pouiti
C on-l5CO>} position-i6<i) mans-i?) mass-21 + ((-6.672E-il dcubed~po
C sition-i5<2>, position-l5<1>, position-iSCO>, position-24<2>, posi
C tion-24<1>, position-24<O>} mass-3 position-iS<1> + 6.672E-li dcub
C *d~position-lSC2>, position-iS<i>, position-iSCO>, position-24<2>.
C position-24<i>, position-24(O)} pouition-6<i> mass-3) mass-12))/(
C dcubed~position-l5C2>, position-lS<l>, position-15<O>, position-24
C <2>, position-24<i>, position-24<O)} dcubod~position-6<2>, positia
C n-6<1>, position-6<O>, position-iSC2>, position-iS<l>, position-iS
C (0))

yp(7 )=(((( 6.672K-li * (dcubed(Y(3), Y(4). Y(S). Y(9), Y(l0), Y(l
ci)))) * Y(20)) * Y(16) + (( -6.672K-li * (dcubed(Y(3). Y(4). Y(S)
C, Y(9), Y(l0), Y(ii)))) * Y(10)) * Y(20)) * Y(19) + ((( -6.672K-li
c * (dcubed(Y(9). Y(10), Y(10), Y(15), Y(16), Y(17)))) * Y(18)) *
cY(l0) + ( 6.672K-il * (dcubed(Y(9), Y(i0), MO.i) Y(l5), Y(16),
cY(17)))) *Y(4)) * Y(18)) * Y(20)) * ((dcubed(YC9), Y(iO), Y(ll),
cY(IS), Y(16), Y(17))) * (dcubed(Y(3), Y(4), Y(S), Y(9). Y(l0), Y(i
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Ci))) ** -1

C **D~momentua-13<0>, tim.} a ((6.672E-11 dcubed~position-6<2>, pouiti
C on-6<1>, position-6<O), pouition-15<2>. position-15<1>, position-I
C 6<0>1 mauu-12 position-24<0Q) -6.672E-11 dcubed~position-6<2>, po
C sition-6<1>, position-6<0>, pouition-15<2>, position-15<1>, positi
C on-15<O>} position-iSCO) mass-12) mass-21 + ((-6.672E-11 dcubed~po
C hition-15<2>, position-15<1>, pohition-15<O>, pouition-24<2>, poui
c tion-24<1>, pohition-24<O)} mass-3 position-15cO0 + 6.672E-11 dcub
C *d~position-15<2>, pohition-15(1>, position-15CO0 * pohition-24(2>,
C pouition-24<1>', pouition-24<O)} position-6<O> uass-3) mass-12))/(
C dcubed~pohition-15<2>, pouition-i6<1>, pohition-15cO), position-24
C <2>, position-24<1>, pohition-24<0) dcubed~position-6<2>, poaitio
C n-6<1>, position-6<O), position-iSC2>, position-iSCI), position-iS
c <o>))

yp(S)u(((( 6.672E-11 * Cdcubed(Y(3), Y(4), Y(S), Y(9), Y(1O), Y(i
ci))) * Y(20)) * Y(17) + (( -6.672E-i1 * (dcubod(YC3), Y(4), Y(5)
c. Y(9), Y(1O). Y(1i)))) * Y(ii) * Y(20)) * Y(i9) + ((( -6.672E-11
c * (dcubed(Y(9), Y(iO), Y(ii0, Y(iS), Y(16), Y(17)))) * Y(18)) *
cY(i1) + (C6.672E-11 * (dcubed(Y(9), Y(iO), Y(II), Y(iS), Y(16),
cY(17)))) *Y(S)) * Y(18)) * Y(20)) * ((dcubed(Y(9), Y(iO), Y(ii),
cY(iS), Y(16), Y(17))) * (dcubed(Y(3). Y(4, Y(S). Y(9), Y(iO), Y(i
ci))) ** -1

C **D~pohition-i5<2>, time) = (momentum-i3C2>M/(ass-i2)
yp(9)-Y(6) * Y(20) ** -1

C **D~positiou-iS<i), time) a (mozentum-i3<i>)/(masu-12)
yp(iO).Y(7) * Y(20) ** -1

C **D~pouition-i5<O). time) = Cmomentu-30>)/(masu-12)
yp(ii)uY(S) * Y(20) ** -1

C **D~momentum-22<2>, time) a (((-6.672E-11 dcubed~pouition-24<2>, pos
C ition-24<1>, position-24<O), position-6<2>, position-6<i), positio
C n-6(O)} mass-i2 * -6.672E-11 dcubed~position-i5(2>, position-15<i)
C , position-i5<0>, pouition-242, position-24<i>, pohition-24<O>}
C mass-3) position-24<2> + (6.672E-11 dcubed~pohition-24<2>, positio
C n-24<1>. position-24<O). pohition-6<2>, position-6<i), pouition-6<
C O0} position-iS(2> uass-12 + 6.672E-i1 dcubod~poaition-i5C2>, posi
C tion-IS<i), position-15<Q), pouition-24<2>, position-24<i). pouiti
C on-24CO)} position-8(2> mass-3)) mass-21)/(dcubed~poaition-24<2>,
C pouition-24<1>, position-24(O), position-6<2>, pouition-6<1>, poui
C tion-6(O)} dcubed~position-i5(2>, pohition-iS(1), position-iSCO),
C position-24<2), position-24<i), position-24())

yp(i2 )=(((( -6.672E-1i * (dcubed(Y(15). Y(i6), Y(i7), Y(3), Y(4),
c Y(S)))) * Y(20) + -6.672E-il * Cdcubed(Y(9), Y(1O), Y(ll), Y(l
c5), Y(16), Y(17)))) *Y(18)) * Y(15) + (( 6.672K-1i * (dcubed(Y(l
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c5), Y(16), Y(17), Y(3, Y((4), '((5))) * '((9)) * Y((20) + (( 6.672K-
cii * (dcubed('((9), '((10), y(ii), Y((15), '((16), YO(7))) * Y((3)) *

C **D{.o..ntum-22(i), time) - (((-6.672E-11 dcubed~position-24(2>, po.
C ition-24(l>, position-24<0>, position-6<2>, position-6<l', positio

C n-6<0>1 mass-12 + -6.672E-li dcubed~position-lSC2>. position-l5<l>
c , position-iSCO>, position-24<2>, position-24<l), position-24(0>}

C maua-3) position-24<1> + (6. 672E-11 dcubed~position-24<2>, positio
C n-24<1>, position-24<O>, position-6(2>, position-6(i), position-6<
C 0>} position-iS<i> ms-12 + 6.672E-l1 dcubed~pohition-15(2>, pomi
C tion-iSCI>, position-i5<0>, pohition-24(2>, position-24<l>, positi
C on-24(O)} position-6<1> mass-3)) maas-21)/(dcubed~position-24<2>,
C position-24<l), position-24<0>, position-6<2>, position-6<l), posi
C tion-6<) dcubed~position-l5C2>, position-i5(i>, position-15(O),
C position-24<2>, pohition-24<l), pohition-24<)})

yp(13)=(((( -6.672E-11 * (dcubed(Y(i5), Y((16), Y((17), Y(3), Y(4),
c Y((5)))) * '((20) + -6.672E-11 * (dcubed('((9). '((10), M(I), Y(l
c5), '((16), '((17)))) Y '(18)) * '((16) + (( 6.672E-11 * (dcubed(Y(1

cS), '((16), '((17), Y(3), '((4), Y((S)))) * '((10)) * '((20) + ( 6.672E

c* '((18)) * '((19)) * ((dcubed(Y((5). '((16), '((17), '((3, '((4), Y((5)
c)) * (dcubed(Y(9), '((10), MO(1) '((15), '((16), '((7))) ** -1

C **D~uomotum-22<0>, time) a (((-6.672K-l dcubed~pohition-24<2>, porn

C ition-24<i), pouition-24<0, position-6<2>, pouition-6(1), positio
C n-6<0>1 uass-12 + -6.672K-li dcubed~position-15<2>, position-lS(1>
C , position-l5(0>, position-242', position-24<l), position-24(0>}

C mass-3) position-24<0 + (6.672K-li dcubed~position-24(2>, positio
C n-24<1>), position-24<0>, positiorL-6<2>, position-6C 1>, pohition-6<

C 0>} pohition-1SCO) masu-12 + 6.672E-li dcubed~position-15(2>, posi

C tion-i5<i), pohition-15(O>, position-24<2>, position-24<i), positi

C on-24(0)} position-6<0> mass-3)) uass-21)/(dcubed~position-24<2>,
C pohition-24C 1>, position-24<0, position-6<2>, position-6(i), posi
C tion-6<0) dcubod~position-15C2>, position-15<I), position-iSC0),

C pohition-24<2>, position-24<I), position-24<0>)
yp(14)n(((( -6.672E-1i * (dcubed(Y(6), '((16). '((17), '((3). '((4).

c '((5))) * '((20) + -6.672E-li * (dcubed('((9). '((10), Y(il), '((1
WS, '((16). '((17)))) Y '(18)) * '((17) + (( 6.672E-il * (dcubedC((i

cS), Y(16). '((1), Y(3). Y(4), Y((5)))) * V(IM) * Y(20) + ( 6.672E

c-li * (dcubed('((9). '((10), Y(11i), Y((15), '((16), '((17))) * (()

c* '((18)) * '((19)) * ((dcubedC((15), '((16), '((17), '((3, '((4), '((5)

c)) * (dcubed('((9). '((10), '((11), Y(15), Y(16), '((17)))) ** -1

C **D~poaition-24<2>, tiuie} - (momentuu-22<2>)/(mahu-21)
yp(iS)u'(l2) * '((19) ** -1
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C ** Dposition-24<1>, time) a (momentu-221)(M*...21)
yp(16)-Y(13) * Y(19) ** -j

C **Diposition-24cO), time) a (mo3.ntum-220>)/(mass- 21)
yp(17)*Y(14) * Y(19) *-

return
end
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A.4 The particle trajectories

three-2/particle.scene, 300 sec
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B Rigid body dynamics

Section 2 derives a SIMLAB model for particle mechanics, although it does not use the actual

SIMLAB syntax; this is given in Appendix A. This appendix shows, in explicit detail, how

SIM LAB is used to create a simulator for rigid body dynamics. The description in this section

is intended to provide a detailed account of how the model was created, and what decisions

were made in creating it.

In this model, the primitive object is generalized from a single particle to a rigid body,

which may be viewed as a set of particles whose relative position is constant though time.

For the model we derive here, the only interaction between rigid bodies is the ball-and-socket

hinge, which models connections such as the hip joint in a person, or a ball joint in a car.

The model specification, which is given in it's entirety at the end if this section, defires

a model named Rigid-body-dynamics. The model contains a single kind of primitive, the

rigid-body.

DEFINE-MODEL rigid-body-dynamics

We now proceed to define the quantities and laws that define the behavior of a rigid

body.

The position (and thus velocity and acceleration) of a rigid body is defined by six param-

eters. In addition to the three that define the position of a particle in space, three parameters

are required to define its orientation. This means that we must add quantities to account

for the additional degrees of freedom. Thus the analog of position in the particle model is

the pair:

(position :domain R3 :synonyms r)
(orientation :domain unit-quaternion :synonyms p)

Here we see that the (generalized) position of a rigid body is given by two vectors, the

position and orientation, which relate the position and orientation of the body to a global

coordinate frame. In this case, we have chosen to represent the orientation of a body with a

unit quaternion.
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Here we have specified synonyms for position and orientation, r and p respectively. This

allows the use of both descriptive names, such as position and traditional symbols, such as

7.

A natural consequence of partitioning the generalized position is that velocity and accel-

eration (as well as momentum and force) are similarly partitioned. Thus:

(velocity :domain R3 :synonyms v)
(angular-velocity : domain R3 : synonyms omega)
(acceleration :domain R3 :synonyms a)
(angular-acceleration :domain R3 :synonyms omega-dot)

In the case of particle mechanics, the momentum and velocity are related by a scalar

valued quantity, the mass. In the case of rigid bodies, the "mass properties" are again

partitioned into the translational and rotation parts. The density, which in this model is

assumed to be constant throughout a given rigid body, represents the mass per unit volume.

The mass and moment of inertia are computed by integrating over the geometry of the body,

as defined below in the laws.

(density R :synonyms rho :constant)
(mass :domain R :synonyms a :constant)
(moment-of-inertia :domain R3x3 :synonyms 3)

In the case of the translational momentum and velocity, the relationship is independent

of direction, and may be represented with a single scalar. On the other hand, the rotational

relation is more complicated. The moment of inertia relates the angular momentum to the

angular velocity. In this case it is represented by a three by three matrix, which specifies the

inertia tensor with respect to the global coordinate frame.

In addition to the forces of particle mechanics, rotational forces, or torques are included

in the model. Also, we have further divided the forces into applied and constraint forces,

foreshadowing the introductions of the two kinds of connections defined in this model. The

laws defined later will specify how they should be summed to form their respective resultants.

(applied-force :domain R3 : synonyms F.a)
(applied-torque :domain R3 :synonyms tau.a)
(constraint-force :domain R3 :synonyms Fc)
(constraint-torque :domain R3 :synonyms tau-c)
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Finally, the following quantities are included for computational convenience. We have

now departed from defining quantities necessary for specifying the semantics of a rigid body,

and are including quantities that are used below in the laws, but are redundant semantically.

They are included so that SIMLAB can associate data structures with the primitives in

the simulator it creates. In later versions of SIMLAB it is possible that the semantic and

computational quantities will be distinguished.

(E :domain R3z4)
(G :domain R3z4)
(local-coordinate-frame :domain S03 :synonyms lcf)

The matrices E and G are used in the laws below, and will be described when the laws

are introduced. The local-coordinate-frame is used to allow objects (points, vectors, etc) to

be represented in the coordinate frame of the rigid body. This means, for instance, that

a point defined with respect to this coordinate frame will move with the rigid body. This

matrix is used to define the hinge constraints below.

B.1 A rigid body's laws
(CONSTRAINTS

(a v (deriv r time))
(= a (deriv v time))
(= (dot-product p p) 1.0)

The first two constraints define the relationships v - and a = while the thirddt dt'

specifies that p, a quaternion, has unit length.

C. omega (* 2 E (deriv p )))
( omega-dot (deriv omega t))
(a a (e rho geosetry.volume))

( = J C rho
(* lcf (* volumetric-moment-of-inertia

(transpose lcf)))))
C= E (direct-sum (- (vector (ref p 1) (ref p 2) (ref p 3)))

(+ (tilde (vector (ref p 1) (ref p 2) (ref p 3)))
(* (ref p 0) (13z3)))))

(= lcf (coerce p (domain-of lcf)))
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B.2 The connections between rigid bodies

As in the case of particle dynamics, and indeed all lumped models of physics, the interac-

tions between rigid bodies are defined by defining connections between bodies. Connections

constrain the values that the quantities of a primitive. In this case, the primitive is the

rigid body, and the connections are kinematic constraints between the bodies. A kinematic

constraint constrains the relative positions of two rigid bodies. Examples of kinematic con-

straints include prismatic joints (sliding joints, such as hydraulic cylinders), and hinges.

In order to show the inheritance relationship for connections, we first define a general

kinematic constraint: the hk-constraint.2 We then define the a more specific kinematic

constraint, the ball-and-socket. The more specific connection inherits quantities and behavior

(laws) from the more general, in the manner of object oriented languages, such as CLOS.

(connection hk-constraint
(obj ects
(obj ectl rigid-body)
(obj ect2 rigid-body))
(quantities
(forcel :domain R3)
(force2 :domain R3)
(torque1 :domain R3)
(torque2 :domain R3))
(constraints))

This connection, like the gravitational constraint defined in the particle model, constrains

the quantities of two primitives, in this case two rigid bodies, objectl and object2. Associated

with each holonomic kinematic constraint is a set of quantities that represent the state of

the interaction between objectl and objectf. The quantities forcel and torquel represent the

force (and torque) applied by objectl on object2 by this connection. Conversely, forcee and

torqueO represent the force of objectO on objectl.

This connection has no constraints, but the empty (CONSTRAINTS) statement is included

to remind the reader that the purpose of connections is to constrain the values of primi-
2The Ac-coufrsist connections represent holonomic kinematic constraints - constraints which constrain

the positions of the primitives by functions which are integrable with respect to time, i.e., do not depend on

time derivatives of position such as velocity or acceleration.
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tives. In this case, the connection defines the behavior of the class of holonomic kinematic

constraints.

We next define the ball-and-socket connection. This connection inherits quantities from

hk-constraint connection described above. In addition, it defines the constraints between the

quantities of the objects it constrains.

(CONNECTION ball-and-socket (INHERITS-FROM hk-constraint)
(QUANTITIES

(cl :domain (lcf objecti))
(c2 :domain (lcf object2))
(lambda :domain R3))
(CONSTRAINTS
( ( Cr objecti) (* (lcf objecti) cl))

(+ (r object2) (* (Icf object2) c2)))))

This connection, in addition to the forces and torques (as well as objectl and object2) that

it inherits from ik-conutraint, this connection contains three quantities, cl, c2, and lambda.

lambda will contain the value of the Lagrange multiplier associated with the Lagrange mul-

tiplier method of solving holonomic constraints[10].

The quantities cl and c2 represent points on object) and object,, respectively. The domain

of cl is (lcf objecti), which is the local coordinate frame of objectl, as described above.

This means that if the coordinates of cl are constant, cl moves with objectl. Similarly, the

domain of c2 is (lcf object2).

Finally, the only constraint specified for ball and socket connections is the constraint (a

cl c2), which means that the points cl and c2 must be the same at all times. Since each

of these points is in a constant position with respect to the object on which it is defined,

this has the effect of constraining these points (cl on objectl and c2 on object2) to coincide.

This results in a ball and socket joint.

A third kind of constraint in this model is the applied-force constraint, which models

forces from outside the system (in SIMLAB terms, from outside the scene), such as the

gravitational force of earth.

(CONNECTION applied-force
(OBJECTS

(object rigid-body))
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(QUANTITIES
(force :domain R3)))

Simply stated, this connection specifies that a force is applied to object1. A similar

connection could be defined to represent a torque applied to an object.

At this point, we have defined all the primitives and connections in the rigid body model.

The next step is to define the laws that apply to systems of rigid bodies.

The first law defines the resultant of the constraint forces on a given rigid body, for each

rigid body in the scene.

(resultant-c
(FOR o IN rigid-body

C- (Fc o)
(+ (SUM h IN hk-constraint SUCH THAT (o o (objectl h))

(forcel h))
(SUM h IN hk-constraint SUCH THAT (= o (object2 h))

(force2 h))))))

That is, the law states that, for every rigid body o in the scene, the value of the resultant

F-c (the resultant of all constraint forces on o) should be the sum of all holonomic kinematic

constraints defined on o.

B.3 The rigid body dynamics model in its entirety

(define-model rigid-body-dynamics

(required-models (basic-3D-geometry))

(primitive rigid-body (inherits-from 3D-solid)

(quantities

(mass :domain R :synonyms m :constant)
(moment-of-inertia :domain R3x3 :synonyms 3)
(position :domain R3 :synonyms r)
(velocity :domain R3 :synonyms v)
(acceleration :domain R3 :synonyms a)
(orientation :domain unit-quaternion :synonyms p)
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(angular-velocity :domain R3 :synonyms omega)
(angular-acceleration :domain P,3 :synonyms omega-dot)
(E :domain PR3x4)
(G :domain R3x4)
(applied-force :domain R3 :synonyms Fa)

(applied-torque :domain R3 :synonyms tau-a)

(constraint-force :domain R3 :synonyme Fc)
(constraint-torque :domain R3 :synonyms tauc)
(density :domain R :synonyms rho :constant)
(local-coordinate-frame :domain S03 :synonyms lcf))

(constraints

v (deriv r 'time))
(u a (deriv v 'time))
( omega (* 2.0 E (deriv p 'time)))
(- omega-dot (deriv omega 'time))
(m * (* rho volume))
(- 3 (e rho

(s lcf (* volumetric-moment-of-inertia

(transpose lcf)))))
(a E (direct-sum (- (vector (ref p 1) (ref p 2) (ref p 3)))

(+ (tilde (vector (ref p 1) (ref p 2) (ref p 3)))

(* (ref p 0) (13x3)))))
(- G (direct-sum (- (vector (ref p 1) (ref p 2) (ref p 3)))

(+ (- (tilde (vector (ref p 1) (ref p 2) (ref p 3))))
(* (ref p 0) (13x3)))))

(l lcf (coerce p (domain-of lcf)))))

(connection hk-constraint

(objects
(objectl rigid-body)

(obj ect2 rigid-body))
(quantities
(forcel :domain R3)

(force2 :domain R3)
(torquel :domain R3)
(torque2 :domain R3))

(constraints))

(connection ball-and-socket

(inherits-from hk-constraint)
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(quantities
(ci. :domain R3)
(c2 :domain R.3)
(lambda :domain R3))
(constraints Cn (+ Cr objecti) ( (cf objecti) ci))

(+ Cr object2) ( (ct object2) c2)))))

(connect ion applied-force
(objects
(objeOct rigid-body))
(quantities
(force :domain R3)))

Claws
(resultant-.fc
(for o in rigid-body

C - c o)
(+ (sum h in bk-constraint

such that (s o Cobjecti h))
(forcel W)

(sun h in bk-constraint
such that (a o (object2 W)

Cforce2 W))

(resultant.tau-.c
(for o in rigid-body

(a tau.c o)
(+ (sun h in bk-constraint

such that (- o Cobjecti hW
(torquei h)

(sum h in bk-constraint
such that (- o (object2 h)

(torque2 h))))

(resultat.f a
(for o in rigid-body

(a (7.a 0)
(sun h in applied-force

such that (a o (object h)
(force h)))))

(newt on
(for o in rigid-body

Cm (a om) (a o)) (+ (F..c o) CF-.a o)))))
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(euler
(for o in rigid-body

(= (* (3 o) (omega-dot 0))
(cross-product (omega o) (* (J o) (omega o))))

(+ (tau.c o) (tau.a o)))))

(virtual-work

(for h in hk-constraint
(= (forcel h)

(* (transpose (jacobian (constraints h) (r (objecti h))))
(lambda h))))

(for h in hk-constraint
(a (force2 h)

C. (transpose (jacobian (constraints h) (r (object2 h))))
(lambda h))))

(for h in hk-constraint
C- (torquel h)

(* (* 0.5
(e (objectl h))

(transpose (jacobian (constraints h) (p (objectl h)))))

(lambda h))))
(for h in hk-constraint

(= (torque2 h)

(. (* 0.5
(e (object2 h))

(transpose (jacobian (constraints h) (p (object2 h)))))

(lambda h))))))

(formulation-scheme unreduced-newton-euler

(let motion-equations a

(union (mapover (rigid-body (objects-of-type 'rigid-body))

(apply-law 'newton rigid-body))

(mapover (rigid-body (objects-of-type 'rigid-body))
(apply-law 'euler rigid-body))

(mapover (rigid-body (objects-of-type 'rigid-body))

(apply-law 'resultant.fc rigid-body))

(mapover (rigid-body (objects-of-type 'rigid-body))

(apply-law 'resultant.tau.c rigid-body))

(mapover (rigid-body (objects-of-type 'rigid-body))

(apply-law 'resultant.fa rigid-body))

(mapover (connection (connections-of-type 'hk-constraint))

(apply-law 'virtual-work connect ion))))

(let kinematic-constraints
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(union
(napover (connect ion (connect ionh-of-type 'hk-constraint))

(cntau-qain-fcneto connection))))
(let other-constaits

(union
(mapover (object (objects-of-type 'rigid-body))

(constraint-equatiosof-o~bject object))))
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B.4 Sample output from automatically generated rigid body dy-namics simulator

B.4.1 A block falling under gravity

In this example gravity is the only force. The rotation seen is due an initial angular velocity,
as specified in the scene. The rotation axis then changes due to the Coriolis forces (w x Jw)
term in the dynamics equations.
Tiow 4.5

0
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B.4.2 A double pendulum

In this example we have two parallelepipeds, which are hinged together at the corners. In
addition, one is "hinged" to the "world," i.e., a point on it is fixed in space. The paral-
lelepipeds were hinged at their corners to induce the interesting spinning motion. The only
external force is gravity.

Time 6.0
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C An AC circuit model

Lest the reader be concerned that SIM LAB is suitable only for creating mechanics simulators,

we offer this simple model of an AC circuit. It's meaning is assumed to be more or less self

evident. In this model we have chosen to make the "components" - the capacitors, resistors,

etc. - connections, and the "nodes" primitives. Note that we could have as easily reversed

these roles and created a model dual to this.

(define-model dual-ac-circuit

(primitive node
(quantities

(voltage :domain R)))

(connection 2-terminal
(objects (n node)

(n2 node))
(quantities
(current :domain R)
(delta-V :domain R))
(constraints

(- delta-V (- (voltage ni) (voltage n2)))))

(connection capacitor (inherits-from 2-terminal)
(quantities

(capacitance :domain R)
(charge :domain R))

(constraints
(- current (deriv charge 'time))
(- delta-V ( charge capacitance))))

(connection resistor (inherits-from 2-terminal)
(quantities

(resistance :domain R))
(constraints

(- delta-V (* resistance current))))

(connection inductor (inherits-from 2-terminal)
(quantities

(inductance :domain R))
(constraints

(- delta-V (* inductance (deriv current 'time)))))
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(connection ac-generator (inherits-from 2-terminal)
(quantities

(E-max :domain R)
(omega :domain R))

(constraints
(u delta-V (* E-max (sin (* omega time))))))

(laws
(current-law

(for n in node

(I 0.0

(+ (sum terminal in 2-terminal
such that (a n (n2 terminal))
(current terminal))

(sum terminal in 2-terminal
such that (a n (nl terminal))
(- (current terminal)))))))

(formulation-scheme ac-circuit

(let equations
(union
(mapover (node (objects-of-type 'node))

(apply-law 'current-law node))
(mapover (connection (connections-of-type '2-terminal))

(constraint-equations-of-connection connection))))))

C.1 A circuit scene

This scene contains 4 nodes, an ac-generator, an inductor, a resistor, and two capacitors. A

graph of the charges on the capacitors and the current through the inductor follows.

(define-scene

(primitive node

(name nodel)
(properties
(voltage I.0)))

(primitive node
(name node2)
(properties))
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(primitive node
(name node3)

(properties))

(primitive node
(name node4)
(properties))

(connect ion ac-generator
(name generatorl)
(objects (nl nodel) (n2 node2))
(prope-ties
(E-mwt 120.0)
(omega 60.0)))

(connection capacitor
(name capacitori)
(objects (nl node2) (n2 node3))

(properties
(capacitance 0.001)))

(connection inductor
(name inductor1)
(objects (nl node3) (n2 node4))

(properties
(inductance 0.001)))

(connection capacitor (name cap2)
(objects (nl node3) (n2 node4))

(properties
(capacitance 0.01)))

(connection resistor

(name resistorl)
(objects (nl node) (n2 nodel))

(properties
(resistance 1000.0))))
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C.2 The charge and current graphs

ac2.scene
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