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Dexterous manipulation, which is the reorientation of objects inside robot hands, jAvalaud/
is an active area of robotics research, whose progress has been slow. In this paper Ist l jpaila

we present an algorithm for dexterous rotations of polygons by finger tracking. The Speia

algorithm involves simple finger motions, it can achieve arbitrarily large rotations,
and it is robust in the presence of computational uncertainties.

1 Introduction

Out of the need to increase the reliability and complexity of robots' task performances,
members of the robotics community have proposed multifinger articulated hands [MS85,
Jac86]. Articulated hands, also called dexterous hands, are anthropomorphic mechani-

cal hands, with an opposing thumb and independently moving fingers. They are more
versatile than conventional two stick grippers. The larger number of joints allows them

to adapt to different shapes and thus to grasp well a larger class of objects. The larger

number of fingers allows them to have more points of contact with a gripped object,
which results in more stable grasps. The extra fingers also allow greater flexibility in

constraining the number of degrees of freedom of a grasped object, to allow only certain
types of motion. They can also yield free fingers, not involved in the grasp, which can

be used to apply external forces inside the grasp, a common aspect of human manipu-
lation. Articulated hands can be used for fine manipulation through fine position and

force control, without necessitating the motion of the entire robot arm, thus adding to the

reliability and complexity of task performances. They have a wide range of applications,
which include industrial assembly, decontamination of nuclear plants, and exploration of

remote environments, such as ocean bottoms and space.
The effort to understand dexterous manipulation has, so far, been mostly concentrated

in the area of grasping. How to achieve a firm grip for arbitrarily shaped objects is

fundamental in the design and control of dexterous hands. Understanding grasping is

an essential precondition for progress in dexterous manipulation, because any interaction

between a robot hand and an object assumes that the object is held securely by the hand.

Grasps have been analyzed with respect to properties such as equilibrium, stability,

force closure, form closure, and positivity. Grasps have also been analyzed with respect to



three types of contacts between the fingers and the object: frictionless point contact, point

contact with friction, also known as hardfinger contact, and softfinger contact. Given
some contact type, an important problem is how many fingers are needed for a grasp
with certain properties [MNP90, JL87, MSS87J. Another area of focus is determining
where to place the fingers to synthesize a grasp with some desired property, for arbitrary
objects [Ngu86].

Work has also been done to study what a mechanical hand can do with an object.
Pushing was one of the first manipulation strategies to be identified [Mas82]. Steps have
also been taken in the direction of understanding what a hand could do with a securely
gripped object [Bro87, Li89], but progress is slow.

We are developing strategies for the autonomous manipulation of objects by multi-
finger hands. Our notion of manipulation refers to the reorientation of an object by a
mechanical hand by some degrees, about some axis. In the process, the hand never lets
go of the object. One way of doing such rotations is to use a hand with a revolving wrist.
Although this - a simple solution to the problem, it is far from being sufficient. The
main reason is Lhat a rotating wrist only gives us rotations about one axis. Therefore,
we focus on solutions that exploit the multifinger structure of mechanical hands. The
rotations are accomplished by finger motions rather than by a wrist motion.

Rotation algorithms are needed for robot tasks that involve the rotation of a gripped
object about variable axes. They are also necessary for tasks that require the adjustment
of the orientation of the grasped object inside the grip. Such algorithms have a wide
range of applications in automated assembly and the exploration of remote environments.
Consider, for example, the task of joining two parts with a screw. To do this, a robot
executes two operations: it picks up the screw and then it rotates the screw inside the
parts. The robot performing this task makes use of rotation algorithms twice. The first
use is in the pick-up phase, when the robot might have to do some adjustments to the
orientation of the screw inside the hand, to a configuration that permits easy rotations.
The second use is in the rotation phase, when the robot hand must rotate the screw
without letting go of it.

In this paper we develop and analyze an algorithm for reorientation in R . We assume
that we have a two dimensional environment and a polygonal object. The object is being
manipulated by a robot hand with three or four fingers. The contacts between the hand
and the fingers are modeled as frictionless point contacts.

An automated reorientation algorithm should satisfy several properties. First, it must
be able to accomplish arbitrarily large rotations. Second, since it must be implemented
on a real device it should involve simple finger motions that can be computed fast.
Third, since the application domain is characterized by uncertainties which manifest
themselves as imprecisions in calculations and inaccuracies in control, it must exhibit
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stability properties. These are the goals for our rotation algorithm. In addition, we ask
that the robot hand have a good grasp on the object at all time. The fingers have a good
grip on the object if they satisfy the force closure property [Ngu86]. A grasp is called
force closure if the fingers can resist any force applied on the object. The geometric
condition for a force closure grasp in the plane is that the force directions meet at a
point, which is contained inside the triangle determined by the three forces, when their
application point is at that particular point. The point of concurrency of the forces is
called the center of grip.

2 Rotating a triangle

For simplicity of exposition, we continue with the study of triangles that are being manip-
ulated by robot hands with three frictionless point contact fingers. In a later section, we
show how all the ideas and algorithms related to triangles generalize directly to arbitrary
polygons. We define the manipulation problem as a constrained system. At each point
in time, the triangle is being grasped by three fingers in a force closure grip. Each finger
is constrained to contact one of the triangular edges, and two of the fingers are fixed in
the plane.

2.1 Notation

Let 0 be the object to be manipulated. In this section, 0 is denoted by AABC, a
triangle with vertices A, B, C, and edges AB, BC, and AC. Let H be a robot hand with
three frictionless fingers fo, fl, f2. Each finger exerts a normal force on a different edge
of the triangle. Let M, P, and Q denote the finger contacts on edges BC, AB, and AC

respectively. P and Q stay fixed in the plane, but the triangle moves relative to them.
The center of grip is the common intersection of the directions of fo, fl, and f2 and it is
denoted by G.

We associate vectors with the points that have been defined so far. Denote the
vertices of the object to be manipulated by pi and the contact points of the fingers on

their edges by qi. In particular, let pl, p2 , p3, ql, q2 to the points C, B, A, P, Q in R2 , in
some coordinate system. If w = (w1, W2 ) is a vector in some system of coordinates,
we denote its expression in homogeneous coordinates by W. To pass to homogeneous
coordinated let - = (wI, w 2, 1).

2.2 Geometric insights

Insights into the geometric properties of classes of objects are useful for the design and
analysis of algorithms operating on them. In this section, we describe some geometric
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Figure 1: Construction for the following propositions

properties that are instrumental in defining the finger tracking manipulation algorithm
for planar objects. The class of objects we study is the class of triangles whose motion is
constrained by two fixed points in the plane. For the rest of the section, AABC is the
object being manipulated. The fixed contacts that are fixed in the plane are P and Q.

Proposition 2.1 AABC moves such that the vertex A and the center of grip G rotate
on the unique circle defined by A, P, G and Q. No other motion is possible for the triangle.

Proof: The quadrilateral APGQ can be inscribed in a circle, because APG =

AQG = 7r/2. Now consider displacing AABC to the arbitrary position AA 1B1 C1 subject
to the constraint P E AIB' and Q E AICI and let the new grip center be G'. We now

observe that circle(A, P, G,Q ) a circle(A1, P, G', Q), because A =PQ /2 = A' - This
says that if we look at an arbitrary position A'B'C' with P E A'B' and Q E A'C', the
Ai vertex is on some fixed circle and its position on the circle determines uniquely the
position of the triangle. The same argument says that the center of grip G' lives on the
same circle, and its position is diametrically opposed from Ai.Moreover, when vertex A

moves, it sweeps continuously an arc of this fixed circle and so does G. 0

4



Corollary 2.2 When vertex A sweeps an arc of length a, the final position of the triangle

is rotated by i with respect to its initial position.

Proof: Let 0 be the center of the above fixed circle. If AOA 1 = a, then A' PA =

a/2. Since P is a fixed point in the plane, it follows that the motion of the triangle
obtained by rotating A on its circle by a is equivalent to a rotation of the triangle about
O by a/2, composed with some fixed translation ( which depends on the position on A
and on a). But the composition of a rotation and a translation is a rotation through the
same angle as the first rotation, with a different and uniquely determined center. Thus
we can infer that the motion of AABC, from a start point to a final point, is equivalent
to a rotation by a/2 with respect to some uniquely determined point. Here, equivalence
means that there is such a rotation that takes the triangle from the same start position
to the same final position, but, perhaps, following a different path. 0

From Proposition 2.1 it follows that a planar object constrained at two fixed points
is a one degree of freedom system. Although the motion of one of the vertices is along a
simple curve, the motion of the system is more complicated, as shown by the following
result.

Proposition 2.3 The instantaneous center of rotation is the center of the grip.

Proof: The motion of the triangle from A to A' is equivalent to a rotation about
some point R , as observed above. Then RB = RB', RA = RCA' and RC = RC'.
Moreover, since the triangle is rigid and the amount of rotation is a/2 we have that
AR CA = BRcB' = CPCC' = a/2. So R, is the intersection of the perpendicular
bisectors of AA', BB' and CC'. If b is the perpendicular bisector of the chord AA',

then R, = circle(A, P, G, Q) n b, because AA'= a, and the amount of rotation is a/2.
When A' -- A the perpendicular bisector becomes a diameter, i.e. R, diametrically
opposes A. But we saw that the center of the grip diametrically opposes A in Lemma
2.1. Since G varies on the fixed circle, we can also say that the triangle moves such that
the instantaneous center of rotation sweeps an arc of the same circle. 0

Since the center of grip diametrically opposes vertex A, this proposition implies that
the instantaneous center of rotation changes continuously. This affects the curve of
motion of the triangle. The natural step in understanding further the system is to search
for an analytic description for the curve of motion. We call the set of all the orientations
of the triangle that maintain the two fixed point contact constraint the configuration
space of motion. For our particular one degree of freedom system, this is a curve, whose
analytic description is given next.
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Proposition 2.4 TI. configuration space for the motion of the constrained triangle is
given by

R.=((R u(R) ) det(Rq2,q2) det(Rqj,q,)
R uR det(q1 , q2) q2 + det(qi,q

Proof. Since the triangle undergoes a Euclidean motion between any two points in
time, there is a transformation matrix T, whose inverse is S, which captures this motion:

cosa sinO a

-sinO cosO b

0 0 1

Here, 0 is the angle of rotation and 7 = (a, b, 1)T is its corresponding translation.
The constraint that Q E AC and P E AB can now be phrased by saying that q, is

a linear combination of p3 and pi and q2 is a linear combination of p3 and P2, in other
words,

det(-, F,]) = 0 and det(, pi, pj) = 0

Then the constraint that Q and P are fixed in space and slide on the sides of the triangle
becomes:

det(y, 7 , p) = 0 and det(ij, TM, T"j) = 0

or, by multiplying by S = T-':

det(2, p5, j) = 0 and det(S-q , ) = 0

We can choose the center of the system of coordinates such that p3 = (0, 0), or j -

(0,0, 1)T = k. This implies that q2 = A2p1 and q, = Ajp2. With this notation, the
determinants become:

det(S q2, k, T) = 0 and det(S-q, k, T) = 0

By using block notation, observe that:

Now by using expansion by minors, as well as the above observation, we get:

det(Req 2 + u, q2) = 0 and det(Roql + u,q) = 0

and by bilinearity of determinants:
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det(Req2, q2) + det(u, q2) = 0 and det(Req1 , qj) + det(u, qj) = 0

Since q, and q2 are linearly independent, we can express u = aq, + q2. Then, det(u, qj) =

det(aql +3q2, qi) = idet(q2, qj) and similarly, by applying linearity, det(u, q2) = adet(qj, q2).
Then

det(Req2, q2)
a-- det(qj, q2)

det(Rgq1, q)

det(qj, q2 )

and so for each rotation angle 0, the corresponding translation is:

det(Req2 , q2) det(Reqj, qj) q
det(q, q2) det(q , q2)

The formula of Propositions 2.4 relates uniquely the translational and the rotational
components of the motion. It can be used to analyze velocity and acceleration properties.
In particular, it provides a quantification for the result in Proposition 2.3.

Proposition 2.5 The position of the instantaneous center of rotation of the triangle is
diametrically opposed to the A vertex of the triangle.

Proof: The same notational conventions as in Proposition 2.4 apply. The rota-
tions are clockwise rotation. The instantaneous center of rotation is the point with zero
velocity. Let S be a transformation matrix as in Proposition 2.4. Since

Rj'AR = i (0 6)= JwhereJ ( 0R°'/ -- -1 0 -1 0

the derivative of S is: is:

(Ae zi =(R# i)

So, if c is the vector denoting the instantaneous center of rotation, then Sc = 0, or
0ReJc + t! = 0, or =i/0 = -ReJc. In other words, S has encoded in it the instantaneous
center of rotation. Therefore, since the motion constraints are:

det(k, Sqj,qj) = 0 and det(k, Sq2,q 2 ) = 0,

by differentiating the motion constraints we obtain the condition on velocity:

det(k, Sqj, qi) = 0 and det(k, Sq 2, q2) = 0.
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By expanding by minors, we get

det(OJq2 + , q2) = 0 and det(OJql + it, qj) = 0,

and by linearity:

Odet(Jq2 , q2) + det(it, q2) = 0, or det(it, q2) - - 11 2 , and

Odet(Jq, qj) + det(ts, q) = 0, or det(?!, qj) = -ijqI1 2

Since det(J) = 1 and J 2 = -I, by multiplying by J and dividing by 0 in the above
equations, we get:

det(Jiz/O, Jqi) = -Iq, 2 and det(JiA/O, Jq2) = -1q211 2

At time 0, Re = I and so Jit/O is the center of rotation, c, as observed above. Now
because q, and q2 are linearly independent and Jq = q', c = Y(Jq) + b(Jq2), and by
replacing this expression for c and by applying the appropriate linearity properties, we
get that:

6det(Jq2,Jqi) = -11q, 112 and 7 det(Jqj,Jq2) = -11q 2112

or, by replacing -y and 6:

J

C det(q2, qi)(1q2112q, - jq 112q2)

Since in our equations p3 was chosen to be the origin of the system of coordinates, we
can conclude that:

J

C - P3 = S det(q2,q) (I!q2112q, - l1q 112q2 ),

which gives us the closed form equation for the motion of the instantaneous center of
rotation.

This formula is consistent and provides a further quantification of the result in Corol-
lary 2.2, because if we look at the length of c:

ilCl12 = IIIIq2112q -_ Ilql12q2 12 Ilqi - q2112

IIq11211q2112 sin 2 A = sin2 A

A simple trigonometric calculation involving the law of cosines gives that

Ilqi - q211 = 2r sin A



where r is the radius of circle(A, P, G, Q), and so

Icl = 2r, which is constant.

The distance from A to R,, is 2r, hence the instantaneous center of rotation moves so
that it diametrically opposes A. 0

So far, we have concentrated on the type of motion that is possible given the two fixed
point constraints. We have not taken into account the presence of the third finger, whose
location can be anywhere on edge BC. The presence of the third finger also affects the
orientation of the object. Each position of the moving finger combines with the position
of the fixed fingers, to give an orientation of the configuration space in which the object
is in a force closure grasp. For motion planning problems, this dependency is important.
What is, then, the locus of the moving finger for the given configuration space?

Proposition 2.6 Let hA be the altitude of the triangle and let D be the intersection of
the force direction f, with circle(A, P, G, Q). The locus of the moving finger M is a circle
of center D and radius equal to the length of hA.

Proof: Let D be the intersection circle(A, P, G, Q) nl GM. Notice that GDA

AQG =APG /2 and since GQIAC it follows that GDA = r/2, in other words that
MDJ±AD. Let AAh&BC be the altitude of the triangle at A. It now follows that ADMAh
is a rectangle, which implies AA h = DM = hA. This says that the length of the perpen-
dicular at M, between M and circle(A, P, G, Q) is constant. So in order to complete the
proof we have to show that for any position of the triangle, say A1B1 C' , subject to the
given constraint, M'G 1 n circle(A, P, G, Q) = D. In order to see that M', G' and D are
collinear, let us evaluate their angle. We have that M1 G1D = MfG1 P + PGID. But

PG1 D = PQjD = DGP =PAD /2. We now notice that since DGIBC and GPAB
we get that FQD - ABC. We also have that MIGIP = r - PBIM1 = r - ABC,

since the quadrilateral PB'M1 G' can be inscribed in a circle. By putting all the picces
together, we get that MIG1 D = r - ABC + ABC, hence M1 , G' and D are collinear,
thus concluding the proof. 0

Corollary 2.7 The motion of M on the given circle measures the rotation of the triangle
with respect to P and Q.

Proof: If MM 1= a, then BC, BIC1 is also a because DM 1 LBC and DMIBC.
0
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2.3 One-st-p rotations

In the previous section, we have analyzed some geometric properties of the motion of a
triangle grasped by three point fingers, two of which are fixed in the plane. We have
described the configuration space for this motion and we have shown how the change in
location for the various features of the system measures the change in orientation for the
triangle. The exact relation between the motion of the fixed finger and the motion of the
triangle is given next.

Proposition 2.8 Given a triangle gripped by three point fingers, two of which are fixed
in the plane, the motion of the triangle is unique and it is equivalent to the composition
of a translation and a rotation. If fl, f2, f3 are the respective force directions at the points

of contact, then

1. The triangle does not move if 3G = f, fn f2n f3.

2. The triangle moves clockwise if the contact f3 lies to the left of the perpendicu-
lar drawn from the intersection point of f, and f2 onto the respective edge, and
counterclockwise otherwise.

Proof: It is very easy to see that the triangle stays fixed in the first case, because
the given condition is precisely the condition of force closure. For the second case, we use
the result from [Mas82], which states that if the force is to the right of the instantaneous

center of rotation, i.e. G, then the rotations are counterclockwise, and if the force is to
the left of the instantaneous center of rotation, then the rotations are clockwise.

Since the vertex of the triangle and the intersection point of the force directions sweep
circular arcs continuously, the motion resulting from pushing with f3 at a fixed point X
on the edge is equivalent to the motion resulting from slowly sliding f3 towards X, until

f3 reaches X. 3

Proposition 2.8 suggests how to proceed about planning finger motions to generate
the reorientation of the triangle. This can be accomplished by controlling the amount

of slip of a finger on an edge. The object is grasped by a robot hand with three fingers.
The hand keeps two of its fingers fixed in the plane. The other grasping finger applies
a force. If this force does not pass through the center of grip, the triangle rotates until
all forces become concurrent. The direction of rotation is clockwise or counterclockwise,

depending upon the position of the force with respect to the center of grip. The amount
of rotation is controlled by the sliding of this finger on its edge.

For this scheme, the fixed fingers are passive and we call then fixed fingers. The

sliding finger is active and it is called the tracking finger. The process by which a finger
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applies a force while sliding on an edge, thus causing the grasped object to rotate, is
called one-step finger tracking.

Figure 2 shows the reorientation of a triangle where fingers fi and f2 are fixed and
finger fo tracks.

A A

fX2 f I f2 fA

B C B
fo f

Figure 2: The finger tracking of a triangle

2.4 Multi-step rotations

The amount of rotation possible by a one-step finger tracking is limited by the geometry
of the object and the initial grasp. During the rotation process, the triangle slides relative
to the fixed fingers and the tracking finger slides on its edge. At all time, the three finger

grasp on the object must be maintained and thus, the one-step process can continue only
until one of the fingers reaches a vertex. It is possible to increase the amount of rotation

for the object by changing the roles of the fixed and tracking fingers after a one-step
rotation, thus chaining several such steps. This yields a multi-step algorithm by finger
tracking, which is presented in Figure 3.

The termination of each one-step tracking (the first statement in the body of while) is
given by some chosen property, such as no finger should fall off its edge, no finger should
be any closer than e from the vertices of the object, no finger should move closer than

half of its current distance to a vertex, etc. Each termination condition yields a different
protocol for the finger tracking algorithm.

Proposition 2.9 The reorientation accomplished by Algorithm 2.1 is equivalent to the
reorientation accomplished by a revolving wrist.

Proof: Since each finger is fixed on an edge, when an edge has completed a 21r
rotation, so has its corresponding finger. Thus, the motion given by Algorithm 2.1 is
equivalent to the motion performed by a revolving wrist. 0
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Notation: T is the triangle and fo, f', f2 the fingers of the hand.
0 is the desired reorientation and r the accomplished rotation.
t denotes the index of the tracking finger.

Input: 0.

Initialization: Grasp T using fo, fl, f2, satisfying closure property.
r = O;t = O;n = 0

While r A 0 do
begin

track using finger ft, keeping fi, i # t fixed
update r; n = n + 1; t = (n + 1) mod 3

end

Figure 3: Algorithm 2.1 for Multi-step Finger Tracking

In order to bound the finger motions, we choose a different algorithm which involves
four fingers. At each point in time, three of the four fingers are holding the triangle
and of the three fingers, two are fixed and one is tracking. The fourth finger is free.
The rotation step proceeds as in Algorithm 2.1. When the termination condition of the
tracking step occurs, the free finger becomes a tracking finger and one of the previously
fixed fingers becomes free. This scheme limits the overall motion of the fingers. The
algorithm is given in Figure 3.

The selection of the new free finger in Algorithm 2.2 is done so as to preserve the
relative order of the fingers, in order to avoid collisions between the fingers. This means
that if, say, finger f2 starts between fi and f3, then f2 always stays between f, and f3
throughout the execution of the algorithm. Moreover, the old free finger has to push
on the edge of the new free finger, because there must be a finger on each edge of the
triangle. The termination of the tracking step is based on a condition compatible with
keeping the grasp, as discuss'i before.

Figure 4 shows a triangle undergoing several rotation steps following Algorithm 2.2.
Consider finger fl. Tracing its motion, we see that fi starts by being free for a step,
then it pushes on the edge BC, then it stays fixed on the edge BC for two steps, then
it becomes free for a step and then it pushes on the edge AC. After four more steps,
f, will be pushing on the edge AB. The finger moves on a circular arc for one step,
according to Proposition 2.6; then it stays in place for two steps; then it moves again to
reach for the new pushing location. The pushing motion and the reaching motion are in
different directions. The exact relationship between the reachability of fingers and the

12



Notation: T is the triangle and f0, fl, f2, f3 the fingers of the hand.
0 is the desired reorientation and r the accomplished rotation.
t denotes the index of the tracking finger.

Input: 0.

Initialization: Grasp T using fo, fi, f2, satisfying the force closure property.
r = 0; t = 0; n = 0;l = 3

While r $ 0 do
begin

track using finger ft, keeping fi, i # t, 1 fixed, and f, free
update r; n = n + 1; t = 1; 1 = (1 + 1) mod 3

end

Figure 4: Algorithm 2.2 for Multi-step Finger Tracking

total rotation of Algorithm 2.2 will not be discussed here..
A good algorithm for dexterous reorientations must allow for arbitrarily large rota-

tions. The ability of doing rotations larger than 27r is needed for assembly tasks such as
joining two parts together with a screw. In this section we show that there are finger
tracking protocols that can perform infinitely large rotations. We note that talking about
rotation relative to fixed fingers is equivalent to talking about how the finger contacts
move on their edges.

Theorem 2.10 Every triangle can be rotated arbitrarily by a finger tracking protocol.

We prove this theorem by showing the existence of a cycle of finger tracking steps.
We say that we have a cycle of n finger tracking steps if we start from some initial grip
and after n steps, the final grip coincides with the initial grip. Then the sequence of
rotations forms an n-cycle.

Lemma 2.11 For every triangle, there is a starting configuration that gives a 3-cycle.

Proof: Let M, P, and Q be the initial finger contacts, such that Z APQ is acute.
We would like to show that there exists a sequence of rotation angles a, 3, and -Y that
brings the finger contacts to the initial positions.

In the first step, we track with the finger at M to generate a rotation a > 0. Let
M1, P1 , and Q, be the new finger positions. Since APt > AP and BM > BM, it follows
that QM < Q1 M. Choose a so that PIMI > BM. This is always possible.

13



C C

01f2f3 f2 f3

A

A
B B

Initial configuration: After the first step:
fi is free; f4 pushes; f2 is free; f, pushes;

1 2 c f A f

0 C

13 fi

h B B O f l

After the second step: After the third step:
13 is free; f2 pushes; f4 is free; f3 pushes;

f3 A f3 0f2

f2 B A

A C A14
C 

After the fourth step: After the fifth step:

fI is free; f4 pushes; f2 is free; f pushes;

Figure 5: Example for Algorithm 2.2
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In the second step track with the finger at Q1 to generate a rotation 3 > 0. Let P2,
M2, and Q2 be the new finger positions. Since PiM1 > BM, it is always possible to to
choose 3 so that BM < BM2. It follows that Q2M2 <: QM, because for all locations Q2
and M2 that give Q2M2 > QM, P2 is off the boundary of the triangle. We thus have
QIMI > QM > Q2M2, which implies further that there exist rotations a and 3 for which
Q1M1 > QM = Q2M2.

In the third step, we have to track with the finger at Q2 to bring the fingers to their
initial locations. We have that the distance between the fixed fingers is Q2M2 = QM.
Furthermore, since AAPQ is acute, we have Q2M2C < QMC, Q2 can reach the position
of Q. The rotation angle -y of this step is the rotation that completes the 3-cycle. Observe
that each for each triangle there is an infinity of starting configurations that give 3-cycles.
0

A A

P, P2 AM C

B M 1 M C B Q1 M

Figure 6: The construction of a cycle

2.5 Robustness

For a given geometry and contact configuration, we can calculate the maximum rotation
for each one-step and the final grasp configuration. This could be used in defining
the termination condition for finger tracking protocols. Though the calculations are
easy, there are some difficulties. This approach requires exact a priori knowledge of the
geometry of the object, as well as exact arithmetic to carry out all the calculations. For
a concrete application, where an actual robot is manipulating an object, these are not
realistic assumptions. The uncertainties of the real world, which manifest themselves as
imprecisions in calculations and errors in control, must have an integral part in modelling
this problem. One strategy that reduces the exact knowledge requirements is to add
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sensing capabilities to the fingers of the robot and to replace the calculations by sensing.
Proposition 2.12 is a continuation in this direction.

Proposition 2.12 Let AABC be a triangle as before, with A acute and let f3 be the
finger pushing on BC. If P and Q are such that I PQ 1< hB and f3 causes clockwise
rotations, or if P and Q are such that I PQ 1< hc and f3 causes counterclockwise
rotations, then the triangle reaches a configuration in which it is blocked, i.e. f3 can no
longer cause motion by pushing.

Proof: Without loss of generality, assume that f3 slides towards B, thai is, it
causes a clockwise motion on the triangle. The fact that the triangle reaches a blocking
configuration means that the triangle reaches a state in which f3 can no longer cause any
clockwise motion by pushing. In other words, in order to continue the constraint motion,
a force component in the direction opposite to f3 is needed.

Since the contacts at P and Q are frictionless, f2 and f3 can cause no virtual work.
Now based on the given constraints, we can see that the motion of every point on the

segment BM is a portion of a lima~on. Furthermore, when PQ.LAC these points attain
a local extreme in the direction along fl. If the motion were to continue past this stage,
it would mean that fi has a negative virtual work (since the motion is in the opposite
direction of fl) which is impossible. Therefore, the blocking happens when PQ-LAC. 0

Corollary 2.13 If during the rotation step the position of the center of the grip becomes
identical the position of one of the fixed finger contacts, the triangle is in a blocked
configuration, i.e. the tracking finger can no longer cause motion by moving in the same

direction.

This result can be used to devise a termination condition that does not require any
calculations. The tracking finger moves until relative motion sensors or a vision system
detects that the object is jammed. We call this protocol a robust finger tracking protocol.
A natural problem is to decide for how long is the iteration of robust steps. In [RR91]
we show that:

Theorem 2.14 Any acute triangle can be rotated arbitrarily with a robust finger tracking
protocol.

3 Rotating a polygon

To extend the finger tracking rotation algorithm from the class of triangles to the class
of polygons, we observe immediately that any polygon (except for rectangles) can be
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Notation: P is the polygon and fo, fl, f2, f3 the fingers of the hand.
0 is the desired reorientation and r the accomplished rotation.
t denotes the index of the tracking finger.

S = (V, E) is the transition graph.
V = {(e , ej, ek)13 force closure grasp on polygonal edges ei, ej, ek).
E = {(vI,v 2)v 1 ,v2 E V share at least two edges }.

Input: 0.

Preprocessing; Calculate V as in [Ngu86].
Build S.

Initialization: Let v E V.
Assign fo to first(v), fi to second(v), f2 to third(v).
Grasp P using fo, fi, f2, satisfying the force closure property.
r = O;t = O;n = O;l = 3

While r A 0 do
begin

Track using finger ft, keeping fi, i # t, I fixed, and fj free.
Update r; n = n + 1; t = 1; 1 = ( -+ 1) mod 3.
v = select-adjacent(v); Assign ft to new edge of v.

end

Figure 7: Algorithm 3.1 for Polygons

included in a triangle by extending three of the polygonal edges. The finger tracking
algorithm developed in Section 2 can be applied to the including triangle to rotate the
polygon. The difficulty is in keeping the fingers on the polygonal segments of the triangle.

While there is only one set of grasping edges for triangles, for 'nolygons there are usually
more possibilities. The choice for grasping edges makes the p )lem of rotating polygons
more flexible than the problem of rotating triangles, but it also adds complexity. In
this section we are interested in developing and analyzing finger tracking algorithms for
polygons.

3.1 The rotation algorithm

Figure 7 describes the finger tracking algorithm for polygons. Algorithm 3.1 is dif-
ferent than Algorithm 2.2 in that the grasping edges may be chosen at each one-step.

The constraint is that there exists a force-closure grasp on the grasping edges. The set

of all polygonal edges satisfying this constraint can be calculated using the algorithm in
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[Ngu86]. This set is represented in the algorithm by V. The edges of graph S stand for

the feasibility of switching grasps between tracking steps. The graph contains at least an
edge from each vertex to itself. A natural problem is to find the optimal choice for the
sequence of grasping edges, but this will not be addressed here.

The termination condition for each one-step tracking is given by some chosen property,
as in the case of triangles. Each property defines a different rotation protocol. Of all the
protocols, of special interest are those that can achieve arbitrarily large rotations.

Theorem 3.1 There is a protocol that allows for arbitrary rotations of polygons.

Proof: The same construction as in Lemma 2.11 holds for polygons, where there is
no change in the grasping edges. 0

3.2 Robustness

The protocol for arbitrary rotations used in the construction of the previous theorem
uses a termination condition that is based on exact computations. These computations
depend on the choice of grasp and on the geometry of the object. It is not realistic to
assume a model in which these calculations are accurate. We address the problem of
uncertainty by searching for a condition the guarantees an infinite sequence of robust
rotation steps. Unlike in the triangular case, it is not enough to select grasping edges
that determine acute including triangles for the fingers to generate blocking, because
the blocked configuration might require that one of the fingers be on the extension of
the polygonal edge. Two polygonal edges that determine acute angles guarantee that a
rotation is possible, but they do not guarantee a robust rotation step. The fixed fingers
might slide off the edge before reaching a blocked configuration. However, for some

polygons it is possible to have robust rotation steps.
The robust rotation protocol for triangles was established by building a cycle of robust

rotation steps. The technique of building robust cycles can be applied to any polygon.

To use this method, the edges of the polygon that participate in the cycle are needed. In
general, not all the edges of the polygon are used for cycling, and not all polygons can be
rotated robustly. We need a decision procedure for determining whether a given polygon

admits a cycle of robust rotation steps and a method to build the cycle when it exists.
Let H be a polygon with edges e0 ,el,... ,e,,- and vertices v0 ,vl,...,v,- , where

ei = (vi, vi+1 ). Assume that the edges are numbered clockwise. Let eJ, ef denote the

perpendiculars on ei at vertex vi, respectively vi+1 . Let v - e n II and vP = elt n H.
If the angle of the polygon at vi is acute, eL n H = 0 and in this case we let vL = vi.

Similarly, if the angle of the polygon at vi 1 is acute, e0 H = € and v = . Thus, if
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Figure 8: A polygon and edge shadows

one of the fixed fingers grips the polygon on edge ej, the center of the grip for a blocked
configuration, which is also the position of the second fixed finger, is between vfI and vt.

The strategy we employ is to find a subgraph of S whose vertex set has all the triples

for which robust rotation steps are possible and whose edge set stands for the valid
transitions between robust rotation steps. This graph is not identical to the restriction of

S to the new vertex set, but it is contained in it, because the robustness condition depends
on the edges as well as on the location of the fixed fingers. The new polygonal vertices
divide the edges of the polygon into segments whose points are equivalent with respect

to the feasibility of any robust rotation step that has a fixed finger on that segment. This
construction gives a new polygon.

Definition 3.1 Given a polygon II, its extended shadow polygon .n is a polygon whose
vertex set is Vt = {vi, vf, vil I Vi}, and whose edges are the fragments of the edges of HI
connecting the vertices in Vt.

,6n corresponds to the same geometry as Hl, but it has extra vertices. The vertices 49

and v;' mark the range for the center of the grip of a blocked configuration, with a finger
on edge ej. The number of vertices and edges of 6n is at most 3n.

Definition 3.2 The shadow of an edge e, is the region delimited by ej, e, eR.

The shadow of an edge represents the locations of the center of grip for a blocked

configuration where one of the fixed fingers is on the given edge.
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Figure 9: The length range of mutual perpendiculars

Definition 3.3 Two edges, e, and e, can be paired if the shadow of e, intersects e3 and
the shadow of e, intersects ee.

If edges e, and ej can be paired, then there is a subset of ei with the property that
any perpendicular on e, raised at points in the subset intersects e,. A similar condition
holds for eF. The relevance of this definition can be seen as follows (see Figure 8.) The

polygon is in a blocked grip if the fingers fl, f2, f3 are on el, ej, ek, f2 is in the range of
v1 and v?, (fl, f2) I ej, and (f2, f3) I el,. The polygon can rotate to another blocked
configuration by keeping f2 and f3 fixed and pushing with f4 on another edge et, if
3f2 E ej, f3 E ek,(f2,f3) I ej, length(f2,f3) = length(f 2,f 3 ),and(f3,f 4 ) I el. So a
necessary condition to carry out this step of the algorithm is to be able to draw mutual
perpendiculars between ej and ek. The first perpendicular is between the the center
of the grip and the pushing finger. The second perpendicular is between the two fixed
fingers of the next iteration. These perpendiculars must be of equal length because f2
and f3 are fixed in space in the process.

Proposition 3.2 The condition of pairability yields ranges of two non parallel edges for
which mutual perpendiculars of equal length exist.

Proof:
Let ej and ej be not parallel, as shown in Figure 9. Since they are pairable, there

exist mutual perpendiculars between them and the angle AVB < . Draw the shadows
of the two edges. If any of the extreme shadow rays e ', 0 does not intersect the
other edge, shrink the shadow until it meets the other edge. Let the segments of the new
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extreme shadow rays and ei be of length a, c, and for ei let the lengths be b, d. Then
because AVB < z we have that a > c, a > d, b > c, b > d. Therefore, the range of
lengths for which mutual perpendiculars of equal length exist is given by the interval

[maz(c, d), min(a, b)]. o

Thus, when two edges can be paired, there is a sequence of two robust rotation steps
involving them. The original problem of building a robust cycle can be solved by finding
all the pairable edges and checking whether there is a cycle of them. This can be done
by building a graph.

Definition 3.4 The pairing graph of a convex polygon is a graph with a vertex for every
edge of the polygon and edges between vertices that correspond to edges of the polygon
that can be paired. Each edge of the pairing graph has weight equal to the range of the

mutual perpendiculars of equal length between the corresponding edges of the polygon.

Lemma 3.3 The size of the pairing graph for a convex polygon HI is linear in the number
of edges of H.

Proof:
We first show that each edge can be paired with at most six edges of greater or

equal length. Let L be the length of the edge ei to be paired. Every edge that can be
paired with ei must intersect its shadow. Among these edges, at most two are not fully
contained in the shadow, one on each side. Let us consider the edges in the shadow, as
pictured in Figure 10. Assume for now that there are three edges of length greater than
L, adjacent to each other and to ei, and all of them have positive slopes with respect to
ej = AB. Let AC be of length 11 > L, CD be of length 12 > L and DE of length 13 > L.
Since 11 > L, ABC > M. Then for the shadow of CD to intersect AB it must be that
BCD < l. If CC'IIABIIDD', then C'CD < E, which implies that the length of DD' is
smaller that 4. Then for 13 to be bigger than L it must be that D"DE > M. Notice that

since DD'IIAB, BDD > -. But this means that BDE > L, or that the shadow of DE
can not hit AB. If the long edges are not chained directly, then it is even harder to fit

them in the shadow. Thus, AB could be paired with at most four edges fully contained

in the shadow (two that have positive slopes, and two that have negative slopes.) Hence
each edge could be paired with at most six edges of greater length.

To complete the proof of the lemma we show that if each edge could paired with a
constant number c of edges of greater length, then there are at most cn pairings, where n
is the total number of edges. Consider a directed graph where each edge is represented by
a vertex. If two edges can be paired, there is an edge directed into the vertex representing
the edge of longer length. Resolve ties arbitrarily. The size of the graph is the sum of

the out-degrees of all vertices, or cn. 0
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Figure 10: An edge and its shadow

Let ei, ei be two edges, where e, is contained in the shadow of ei. The shadow of ej
either spills to the right of ej, which we denote by r, or it intersects ei, which we denote
by h, or it spills to the left of ej, which we denote by 1. Notice that for the shadow of ej
to spill to the right, it is necessary that it has a positive slope with respect to ej, and for
it to spill to the left, it is necessary that e2 has a negative slope with respect to ej.

Consider an edge e, and all the edges which are contained in its shadow. Then the
action of the shadows of these edges can be described by the regular expression (r+h+l)° .

Proposition 3.4 If e is the edge of smallest length in a convex polygon, and we consider
the edges in its shadow in a clockwise order, then the only valid sequences for the action
of their shadows on e are of the form h'r'h'l'h*.

Proof: Look at the edges in the shadow in a clockwise order (or equivalently, in a
decreasing order of their slopes.) If the shadow of edge ei spills to the left, the the shadow
of no edge ej with j > i can spill to the right, by convexity. Then no subsequences of
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Figure 11: The three types of shadows

the form lh'r are allowed, which is described by (r + h)*(l + h)*. Moreover, if ei spills
to the right and ei+ 1 hits, then Vj > i + 1, ei can not spill to the right. This is because
if v is the projection on Vi+2 on e, then length(vi., v) > length(v, v2.). Therefore, by
convexity, no other edge that forms an acute angle can fit in the shadow, so the next
edge either hits or spills to the left. This argument shows that no subsequences rh+r are
possible. Similarly, we can show that no subsequences lh+l are possible. Thls, the only
legal sequences are of the form horoh'l'h". 0

Proposition 3.5 If e is the edge of the smallest length of a convez polygon with n edges,
then we can find all the pairings for e in O(logn).

Proof: Look at the shadows of the edges that intersect the shadow of e in a clock-
wise order. By Proposition 3.4, the only possible sequences are of the form h'r'holoho.

Moreover, by Lemma 3.3 we know that there can be at most three pairings on each
side (one edge not fully contained in the shadow, and two edges fully contained in the
shadow.) Thus, we can check for these edges separately in the beginning. Then we only
need to discover the hits of sequences of the form r'h'l*. This can be done in O(logn)
by binary search, as follows:

1. If there are no edges, then we are done. Else, e, = middle edge.

2. If the shadow of e, spills to the right, discard the edges of bigger slope and continue
the search at step 1.

23



3. If the shadow of em spills to the left, discard the edges of smaller slope and continue
the search at step 1.

4. If the shadow of e,. hits e, then by Lemma 3.3 we only need to look at the two
edges to the right of e,m and the two edges to the left of em to find all the pairings.

0

Lemma 3.6 The pairing graph of a convex polygon can be built in O(nlogn). The pairing

graph of an arbitrary polygon can be built on 0(n 2) time.

Proof: The following algorithm is 0(nlogn) for convex polygons:

1. Sort all the edges according to length

2. While there are no more edges

* Let e = edge of smallest length.

" Find all the pairings of e as shown in Proposition 3.3.

" Remove e from the sorted list.

For arbitrary polygons, the naive algorithm which check every edge against every

other edge has complexity 0(n 2 ) 3

Definition 3.5 Let el, e2, e3 be the polygonal edges the correspond to two adjacent edges

e12 and e23 of the pairing graph. Let r, be the segment of e2 defined by the weight of e12

and let r2 be the segment of e2 defined by the weight of e23. We say that e1 2 and e23 are

compatible if r, n r2 3 0.

This definition captures the condition of being able to go from rotating robustly with

fixed fingers on edges el and e2 to rotating robustly with fixed fingers on edges e2 and
e3.

Definition 3.6 The restricted pairing graph of a polygon is a pairing graph with no edges

between parallel edges.

Theorem 3.7 A polygon can undergo a sequence of infinite robust rotations by finger

tracking if and only if the restricted pairing graph of its extended shadow polygon has a

compatible cycle.
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Proof: If there is a cycle, then the edges involved in the cycle are the edges on
which the polygon is gripped. The pushing finger traces the edges of the cycle, and the
other two fingers follow.

For the polygon to be rotated infinitely, there must be a cycle of edges on which the
pushing finger (and hence the others) acts. But this means that the edges involved in
this cycle can sequentially be paired, and thus the pairing graph has a compatible cycle.

To actually find the exact location of the cycle, let C0,..., c,,-. be the edges of the
candidate cycle. For each of these edges, let 1i denote the length of the segment obtained
by intersecting the line supporting e, with the line supporting its adjacent edges in the
cycle, e,-I and e(i+1)bnodn. The system that determines the initial conditions for the
actual cycle is:

x0 +l = 10
X1 + X2 = 11

XZn-I + Xo - ln-I

It follows that xi =1(,+,)dn + l(i-1).on, for j = 0,... , n - 1. If all these
values are positive, then we have an actual cycle. xo gives the initial configuration for
the grasping fingers that result in this cycle.

Since the size of the pairing graph is linear, and since determining whether a graph
has a cycle is linear, we can decide if a polygon can be rotated robustly for an infinite
number of steps in linear time. This algorithm necessitates O(nlogn) preprocessing time
for convex polygons and O(n2 ) preprocessing time for arbitrary polygons. 0

4 Conclusion

In this paper we have introduced the finger tracking algorithm for the dexterous manipu-
lation of polygons. This algorithm generates reorientations by requiring the robot fingers
to perform simple sliding motions. It can achieve arbitrarily large rotations and it is
robust in the presence of computational uncertainties. All acute triangles can be rotated
robustly for an infinite number of steps. For polygons that can be rotated robustly we
give a method to construct a rotation cycle. We do not know yet if the polygons for which
this construction fails can be rotated robustly by a different finger tracking protocol.
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