
U AD- A250 960

The Free Surface Signature of Unsteady,

Two-Dimensional Vortex Flows

I Dequan Yu and Gre'tar Tryggvason
Department of Mechanical Engineering and Applied Mechanics

I Contract Number NO00&-86-K-0684
Technical Report No. 89-03 D TIC

IApril, 1989 ELECTE
r~Riuic;~STAT~~ifXJUN2 1992D

Approved for publIc release;
Distribution Unimitod

92U38
925I 0



THE UNIVERSITY OF MICHIGAN
PROGRAM IN SHIP HYDRODYNAMICS

C COLLEGE OF ENGINEERING

NAVAL ARCHITECTURE &
MARINE ENGINEERING

AEROSPACE ENGINEERING

MECHANICAL ENGINEERING &
APPLIED MECHANICS

SHIP HYDRODYNAMIC
LABORATORY

SPACE PHYSICS RESEARCH
LABORATORY



3 THE FREE SURFACE SIGNATURE OF UNSTEADY,

TWO-DIMENSIONAL VORTEX FLOWS

5Dequan Yu

Gritar Tryggvason

Department of Mechanical Engineering

and Applied Mechanics

I The University of Michigan

Ann Arbor, MI 48109

U Abstract. The interaction of two-dimensional vortex flows with a free surface is

studied numerically using a combined vortex/boundary integral technique. The vor-

ticity is modeled as point vortices, vortex sheets and finite area vortex regions. Two

3 problems are studied in considerable detail, the large amplitude Kelvin-Helmholtz

instability of a submerged shear-layer and the head-on collision of a vortex pair with

5 the free surface. The surface deformation is controlled by a Froude number, based on

the vortical motion, and the geometrical parameters describing the initial vortex con-

3 figuration. Large Froude numbers generally lead to strong interactions for sufficiently

shallow vortices.
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1. Introduction

The classical approximation in water wave theory is the assumption of irrotational

fluid motion. This assumption not only makes the problem much more tractable

but the results also account well for observations. While the motion of waves may

generally be irrotational, any observer of river flow or ship wakes knows that vortical

flow below the surface can generate considerable surface deformations. These surface

motions have recently been the subject of several investigations. The motivation

comes to a large extent from recent observations by remote sensing techniques, which

have led to an interest in the wake of objects moving on a free surface. The most

significant surface mark of a moving ship has been thought to be the wave pattern

I analyzed by Kelvin nearly a century ago. Observations by remote sensing devices

have changed that perception. Often a narrow mark that per-sists for several hours is

left by ships. The narrow angle rules out Kelvin wakes; although it is not completely

3clear whether subsurface motion or an alteration in the surface water composition

leaves the detectable mark, the cause is likely to be the fluid motion in the wake.

3- The wake consists of rotational, turbulent, high Reynolds number flow, and coherent

motion could last for a very long time.

3Sarpkaya (1986) studied the surface deformation due to the vortex system behind

a lifting surface experimentally. He has identified two types of surface disturbances

that he calls scars and striations. The scars are surface depressions that appear as

a pair behind the body parallel to the. direction of motion. These marks appear

to be directly related to the trailing vortices and may be rather two-dimensional in

a plane perpendicular to the motion (called the Trefftz plane by aerodynamicists).

The striations, on the other hand, are perpendicular to the direction of motion and3 have a more three-dimensional character. Similar experiments have been performed

by Willmarth and Hirsa (1988), who also studied the surface deformation due to

3 (essentially) two-dimensional vortex pairs. The two-dimensional vortex pair has also
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been studied by Sarpkaya, Elnitsky II, and Leeker (1988). Earlier work on the collision

of two-dimensional vortex pairs with a free surface was reported by Barker and Crow

3= (1977), but in that work the main emphasis was on the vortex motion, rather then

the surface deformations. Bernal and Madnia (1988) investigated the generation of

Ssurface waves due to a shear flow by considering a jet below a free surface, and Bernal

and Kwon (1989) studied the interaction of a vortex ring with a free surface. The

experimental observations suggest that many competing and interacting processes are

responsible for the observed wave pattern. Not only are surface waves generated by

the vortical flow, but the waves also radiate energy away from the disturbance region

and thereby affect the flow itself.

Analytical investigations are, of course, limited to rather simple situations. Lin-

earized solutions exist for a flow over a fixed vortex (e.g., Kochin, Kibel and Roze,

(1964)) and for a vortex moving freely under a free surface (Wehausen and Laitone3 (1960)), while Novikov (1981) discusses the wave generation due to a periodic array

of point vortices. For the full nonlinear solutions, however, it is necessary to turn toU numerical techniques. Tryggvason (1988a) presents a brief numerical study of surface

deformation due to roll-up of a submerged vortex sheet (a study extended in the

present work), and the motion of a point vortex pair toward a free surface has beenrn simulated by Sarpkaya, Elnitsky II, and Leeker (1988) and Telste (1989) using a gen-

eralized boundary integral/vortex method developed by Baker, Meir'on and Orszag

1 (1982). Marcus (1988) simulated the same problem by a finite difference technique.

The generation of wake vorticity by ships is reasonably well understood. Saunders

5 (1965) discusses the overall character of the vortices sheet by a ship, and Lugt (1981),

in his excellent survey of vortex motion in ship hydrodynamics (as well as in his more

general exposure of vortex motion, Lugt (1983)), gives several examples.

3 Considerable progress has been made in numerical simulations of the nonlinear

evolution of large-amplitude surface waves during the last decade. Among of the
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first calculations of large-amplitude surface waves by boundary integral methods is

Longuet-Higgins and Cokelet's (1976) calculations of the large-amplitude motion of

a breaking wave. These methods have now reached sufficient maturity that simula-

tions of two-dimensional large-amplitude surface waves are relatively routine, see, for

example, Vinje and Brevig (1981), Dold and Peregrine (1986), and Schultz (1987).

A general method for flows with arbitrary stratification and an efficient iterative so-

3lution technique are presented by Baker, Meiron and Orszag (1982). For a general

review of vortex methods for two-dimensional flows, see Leonard (1980) and Sarpkaya

I (1989).

In this paper, we study the generation of surface disturbances by a submerged

vortical flow and the effect of the free surface on the evolution of vortical flow. The

3 flow is assumed to be inviscid, incompressible, and two-dimensional, and a combined

vortex/boundary integral technique is used. The vorticity is modeled as point vortices,

3 vortex sheets, and finite area vortex regions. Two problems are studied in considerable

detail: the large-amplitude Kelvin-Helmholtz instability of a submerged shear-layer

I and the head-on collision of a vortex pair with the free surface. The evolution is

controlled by a Froude number, based on the vortical motion, and the geometrical

parameters describing the initial vortex configuration. We deal exclusively with free3 surface problems, but several of the same phenomena may be observed if the free

surface is replaced by a density interface. For a study of one such problem, see

I Dahm, Scheil, and Tryggvason (1989).

The rest of the paper is arranged as follows: Section 2 discusses the mathemat-

3 ical model, the numerical method, and the relevant dimensionless parameters. The

method is a straightforward extension of the method described by Baker, Meiron and

Orszag (1982); hence, we only give a brief description. In Section 3 we present our re-

3 sults, first for the large-amplitude Kelvin-Helmholtz instability of a shear layer, then

for the head-on collision of a vortex pair with the free surface. We show representative
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time evolution and discuss the accuracy and the effect of the numerical parameters.

The large-amplitude stage for several values of the control parameters is shown, and

3 various diagnostic quantities are discussed. Our conclusions and discussions of fu-

ture work appear in Section 4. A short account of some of the work reported here

3was presented at the American Physical Society, Division Qf Fluid Dynamics, annual

meeting at SUNY, Buffalo (Song, Yu and Tryggvason (1988)). A brief discussion of

3preliminary results can be found in Tryggvason (1988a, 1988b) and Willmarth et al.

(1989).
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2. Problem Formulation and Numerical Method

The formulation of inviscid, free-surface problems in terms of generalized vortex

sheets is well known, so only a brief discussion will be given here. For a fairly complete

discussion and the original developments, the reader is referred to Baker, Meiron, and

Orszag (1982).

In all our calculations we assume periodic horizontal boundary conditions. The

velocity of a (generalized) vortex sheet of strength - can then by calculated by

q*(s) = U - iv = 1 j -t(s') cot ,(z(s') - z(s))ds' + , (2.1)

where the integral is over both the free surface and the vortex sheet, and qt is the

velocity due to boundary conditions, or vorticity not confined to a vortex sheet. We3 generally follow Baker, Meiron, and Orszag's work (1982) and integrate the dipole

sheet strength, p = 01 - 0 2 (0 is velocity potentid), in time and find -y = Op/as.3 The evolution equation for y is found by subtracting the Bernoulli equation on each

side of the sheet, yielding

D-p-=A 2 .- -U.U + 2 +2gy+ (2.2)
Dt k Dt 4 P2-P1 (22

A is the Atwood ratio A = (pI - P2)/(P2 + pi) and 0 is the average of the velocity3 potential on either side of the integral. To find dC/dt, we take the Lagrangian time

derivative of the real part of Cauchy's integral formula for a periodic domain

w(1) = 0 + OF, = I f. ,(S') cot 7r(z' - z)dz' (2.3)

I and substitute the result into (2.2) to obtain an integro-differential equation for the

evolution of p.

To extract the appropriate nondimensional groups, we cast the above equations3 into nondimensional form. We construct our time scale from the characteristic length

of the rotational flow, L, and the characteristic velocity, F/L, where r is a circulation
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describing the total strength of the vorticity field. A time scale is then given by L2/r.
With the nondimensional variables defined as

(x,y) = L (i, t= L'/r , ( r,-t) /L (Uj), (2.4)

5the nondimensional form of the equation for the vortex sheet strength becomes (drop-

ping the tilde) D j D i 1 +

D - - - .U+ .y + 2 -y+ -e W ) (2.5)

I where Fr = y/lgL3 is a Froude number, and We = Apr 2/aL is a Weber number.

I The nondimensional groups specifying our problem are therefore the Froude num-

ber, Fr, the Weber number, We, and the geometric parameters describing the initial

3 condition. The Atwood number, A, is always equal to unity for the free-surface case

studied here, and in most of our calculations we assume infinite Weber number. This3 scaling essentially ignores the presence of the free surface, and same nondimensional

time therefore means that the vortex sheet roll-up has progressed equally far, inde-

pendent of the Fr. Obviously, this is not the only possible scaling. We could also base

our nondimensionalization solely on the free surface, in which the basic nondimen-

sional parameter would be a nondimensional vortex strength equivalent to the Froude

5number. The time scale would be different though. We feel that the current "vortex

scaling" is the reasonable one, since the vortical flow is what drives the motion. We

3 should note that in Tryggvason (1988a, 1988b), as well as in Dahm et al. (1988), the

basic nondimensional parameter is written as R = gL/ [2 = 1/Fr2 . Clearly there is

I a one-to-one correspondance with the current notation.

Notice the appearance of the vortex strength in the Weber number. Intense vor-

tices (large r, small L) can interact with the surface in a gravity-dominated way,

3 even if surface tension is large, and waves of length L would be capillary waves in the

absence of vorticity.

I
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The assumption of periodic boundary conditions is the usual one for shear layer

simulations in which many similar vortical structures are evolving in essentially the

3 same way; but for the collision of a vortex pair with the surface, an infinite domain

would be more natural since single pairs are usually generated experimentally. In the

case of the vortex pair, we have checked the effect of the period length and found that

the results are only minimally affected by changes in the length (compared with the

I separation of the vortex pair) once a minimum length is achieved.

In those calculations where the vorticity is modeled as vortex sheets we use a

vortex blob to prevent the vortex sheet from forming a singularity and to reduce the

3 growth of short-wave instability. Krasny (1986) shows that in contrast to simulations

that do not employ any regularization, vortex blob methods, for any finite blob size,

3produce smooth and well behaved solution, for sufficiently accurate calculations. The

evolution in the vortex center will depend on the blob size, but the effect on the large-

Iscale structure is minimal. (This will be demonstrated when we present our results.)

For further discussions of the vortex blob regularization, the reader is referred to

I Krasny (1986, 1988) and Tryggvason (1989).

I Occasionally, a saw-tooth instability on the free surface appears in our compu-

tations. This instability is common in boundary integral calculations, and can gen-

3 erally be controlled by slight smoothing, see Longuet-Higgins and Cokelet (1Q76).

The numerical filtering is employed rarely at the beginning of the calculation and

3 more frequently later. We have found that the dipole formulation, described above,

is more robust than the vorticity formulation, which was used for the calculations in

I Tryggvason (1988a, 1988b). The calculations generally had to be terminated when

the free surface formed a sharp corner and difficulties in obtaining rapid convergence

were experienced. Although we expect such regions of high curvature to indicate a

3 breakdown of our model (small-scale phenomena such as viscosity and surface ten-

sion have been ignored) there is not direct relation to loss of convergence and, say,
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wave breaking. For example, simulations of the Rayleigh-Taylor instability encounter

the same difficulty under somewhat different conditions. We generally terminate our

3 calculations when the number of iterations required for convergence is about ten or

fifteen. Occasional redistribution of the free-surface points was used in some of our

3 runs. The time integration was done by STEP from Shampine and Gordon (1965).

In some of our calculations we take the vorticity to be patches, or strips, of uni-

5 form vorticity, called Finite Area Vortex Regions (FAVR's) by Zabusky, Hughes and

Roberts (1979). Because of some mathematical difficulties in calculating D,,/Di in

eq. (2.3), we integrate the vortex sheet strength directly, as done by Tryggvason

5 (1988a), instead of using the dipole strength as in the other calculations presented

here. The evolution equation for the vortex sheet strength of the free surface is3 obtained either by differentiation of eq. (2.5) or by subtracting the tangential com-

ponent of the Euler equations on either side of the interface. This equation contains

I dU/dt, which is given by the Lagrangian time derivative of the Biot-Savat law and

the velocity contribution from the FAVR's:

= u + iv = (log I sin r(z - z')I)dz' (2.6)

the integral is over the boundary of the region containing uniform vorticity.

I9
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3. Results and Discussion

We have studied the surface deformation due to both the large-amplitude roll-up

of a shear layer below a free surface and the collision of a vortex pair with a free

surface. In both cases we have modeled the vortical flow in three ways, as point

vortices, vortex sheets, and finite area regions of uniform vorticity (vortex patches).

The results for the shear layer are presented in Section 3.1, and Section 3.2 contains

* the vortex pair study.

3.1 Shear Layer Under a Free Surface

We consider a periodic free surface with flow parallel to the surface. At depth d

3 there is a shear layer such that the velocity changes abruptly. Our frame of reference

moves with the average of the velocity above and below the shear layer, so that a vor-3 tex generated by a large-amplitude Kelvin-Helmholtz instability would be stationary

if the free surface was absent. The period length, L, is taken as a length scale, and

5 the evolution is governed by the Froude number, the relative depth of the shear layer,

d/L, and, possibly, the internal structure of the layer.

We first model the shear layer as a vortex sheet across which there is a discontinu-

ous change in tangential velocity. To regularize the vortex sheet and prevent both the

growth of a short-wave Kelvin-Helmholtz instability and the formation of a singular-

3 ity, we use vortex blobs to represent the sheet. We use the algebraic blob employed

by Krasny (1986) with blob size, 6 = 0.1. Several of our vortex sheet runs have been

3 repeated with different blob radii to check that the effect of finite 6 is minimal and

confined to the vortex cores.

Figure 1 shows the evolution of a vortex sheet perturbed by a single wave below

iLa free surface; Fr = 0.5 and d/L = 0.2. The free surface is represented by 200

computational elements, and the vortex sheet by 200 vortex blobs. The free surface is3 initially flat, but the vortex sheet is given a slight perturbation. As the vortex sheet

rolls up, the induced velocity causes a depression in the free surface that remains

I1
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relatively stationary slightly to the front (or left) of the vortex. As the amplitude

grows, the trough becomes steeper on its left side and eventually turns over.

To verify this run, it was repeated with different numbers of computational ele-

ments and different size of vortex blobs. A comparison between three different runs

at a late time is shown in figure 2. The nondimensional time is 1.25; figure 2a is the

last frame from figure 1, 2b is with same resolution but S = 0.2, and in 2c 6 = 0.2,

and 50 points are used to represent the free surface, and 50 blobs for the vortex sheet.

Except for a small difference in the region of highest curvature and in the core of the

vortex, the results are virtually identical.

Figure 3 shows the large-amplitude stages for several values of Fr and d/L. The

columns correspond to different relative depth (0.2, 0.3, and 0.4), and the rows to

different Froude number (1.0, 0.5, 0.354, and 0.25). The nondimensional time for the

first column is 1.25, for the next one, 1.6, and for the last one, 2.0. At these times,

generally one run in the column encounters numerical problems. Since the amplitude

of the free surface motion is too small to show up clearly in some of the frames in

I_ figure 3, we show several of the free surface profiles amplified five or ten times in

figure 4 (the letters correspond to those in figure 3). Many of these runs have been

checked by grid refinement and smaller 6, and are generally found to be insensitive3to the numerical resolution and blob size. As the parameters change there are clearly

identifiable trends. For fixed d/L, the overall amplitude increases with increasing Fr,

3and for fixed Fr, the amplitude decreases with increasing d/L. Hence, a strong, shallow

sheet (figure 3a) deforms the surface most while a deep, weak vortex sheet (figure 31)

- has the least effect. We cin identify a least three scenarios for the large-amplitude

evolution. For the strong, shallow vortex sheet, figure 3a, the vortex pulls the interface

down and will eventually entrain the top fluid (air). For weaker, deeper sheets, figure

33b to f, the free surface develops into a breaking wave whose character depends on

the parameters. (The wave in figure 3d is reminiscent of a plunging breaker, but in

.
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figure 3h would be classified as a spilling breaker.) For the weakest, deepest waves,

the long initial wave degenerates into several smaller waves. Other examples showing

these different flow regimes are discussed briefly by Tryggvason (1988a).

To quantify the evolution of the free surface in the runs in figure 3, we have plotted

a few parameters in figure 5 that might characterize the evolution. For clarity, the

figure is divided into three columns, according to the value of dIL: (i) is for d/L = 0.2,

(ii) for d/L = 0.3 and (iii) for d/L= 0.4. The letter identifying each line corresponds

to figure 3. The overall amplitude (from crest to trough) is plotted versus time in (a).

As stated before, the amplitude depends strongly on both Fr and d/L, and figure 5a

reflects this clearly: in each frame the growth rate decreases with decreasing Froude

number, and comparisons between the different frames show that the growth rate

3 decreases with d/L.

In figure 5b, the horizontal location of the minimum point (the maximum depres-

sion) is plotted versus time. Initially, when the amplitude is still infinitesimal, the

depression is slightly to the left of the vortex for all cases. For high Froude number

this depression moves further to the left, but for lower Froude numbers it moves to

the right, closer to the vortex. For shallow vortices, this motion eventually reverses

and the depression moves away from the vortex again, but for deeper vortices the

depression seems to stabilize close to the vortex (right above the vortex in the case

of the lowest Froude number). Notice that for a fixed time there is much greater

difference in the location of the depression for the deep vortices than for the shallow

ones. In some sense, the shallow vortices appear to attract the depression to a fixed

location independent of the Froude number. The slight oscillations for low Froude

number and deep vortex sheets are indicative of the generation of shorter, smaller

waves.

12



We have also expressed the free surface as

y(X) = a cos(2rnx - 0,,)

and in figure 5c the amplitude, a,, and in figure 5d the phase, 8,,, of the first mode

are shown versus time. Since some of the waves have broken and the y-coordinate is

U a double-valued function of x, the final part of some of the curves may give modest

I insight. The information in these figures closely relates to those in figures 5a and

b: the amplitude decreases with increased depth and decreasing Froude number, and

£the phase change depends on the parameters in similar way as the position of the

depression. Notice, in particular, that the initial development of the phase angle

(up to about nondimensional time 0.7) does not depend on d/L at all, even though

the amplitude does. The same independancy is also observed in the position of the

U maximum depression, figure 5b. We have investigated the higher modes, but we

5 generally find them less informative.

In the cases considered here, the free surface has only a minor effect on the evolu-

5 tion of the vortex sheet. Figure 6 illustrates the difference between the extreme cases,

run (a) and run (1) from figure 3. Figure 6a shows the position of the vortex center,

Sincluding both the x and the y coordinate. For run (1) the vortex center does not

move at all, but in run (a) the vortex center moves slightly down and to the right.

I While the surface deformation in (a) is quite substantial, the differences are relatively

minor. Figure 6b compares the evolution of the second moments, and again, for the

time shown here, the difference is quite small. All other cases fall between these two.

5 Although the effect of the vortex blob size was minimal in most cases so far,

the solution with a finite blob size is not exactly a solution to the Euler equation;

furthermore, there is no direct relation between the size of the blob and a physical

stabilization mechanism such as a finite thickness. To investigate the effect of finite

3 thickness we have repeated several of the simulations in figure 3 using a layer of

uniform vorticity, i.e., finite area vortex regions, (FAVR) to model the shear layer.

13



(For a study of roll-up of a iayer of uniform vorticity in the absence of a free surface

see e.g. Pozrikidis and Higdon (1985).)

Figure 7 shows the roll-up of the finite thickness vortex sheet for d/L = 0.2 and

Fr = 1. The depth, d, is taken to the centerline of the vortex layer, and the thickness

of the layer, t, is 0.1 times the length of the period, or t/L = 0.1. While the evolution

is similar to the corresponding vortex sheet run (figure 3a), the deformation rate is3 smaller for the finite layer. In figure 7b, the solution is shown at time 2.4 for the same

Froude number and depth, but t/L = 0.15. We note that finite thickness vorticity

layers have a most unstable wavelength (at t/L e 0.127) as opposed to vortex sheets,

which are more unstable at shorter disturbance lengths. Since the thickness in our

simulations is close to this value, the slower growth of the disturbances in figure 73 is presumably a more realistic prediction for a real shear layer. The solution at a

relatively long time is shown for Fr = 0.5 and d/L = 0.2 in figure 8 and for Fr -

0.354 and d/L = 0.3 in figure 9. In figure 8a, t/L - 0.1 and time = 1.75; in 8b, t/L

= 0.15 and time = 2.4; in 9a, t/L = 0.1 and time - 2.1; and in 9b, t/L = 0.15 and3 time = 3.0. In both cases the same behavior as was seen in figure 7 is observed: the

finite thickness slows down the evolution.

In figure 10 the amplitude and phase of the first mode are compared with the3 vortex sheet runs in figure 3; (a) depicts the runs in figures 7 and 3a, (b) the runs in

figures 8 and 3e, and (c) the runs in figures 9 and 3i. The amplitude growth obviously

I depends on the thickness, with the thinner layer in reasonable agreement with the

vortex sheet calculations for the lower Froude numbers. The phase, however, depends

I much less on the thickness and differs from the vortex sheet calculations in all cases.

The basic conclusion from this figure is that we may expect the free surface signature

to show some dependency on the internal structure of the shear layer.

I During the initial stage in all cases and for a long time when the vortex sheet

is deep and weak, the surface deformation is quite small. It is therefore natural to

1
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ask whether linear analysis is applicable under these circumstances. Unfortunately,

it is not. The vortex sheet propogates far into the nonlinear region, and analysis

for the linear stage of the roll-up would cover only a very short time interval with

respect to the surface evolution. We therefore propose a model based on the well-

known observation that roll-up is initially associated with the strong advection of

vorticity toward the vortex center, but once the vortex forms, it undergoes only

moderate changes. Our model simply assumes that the roll-up process corresponds to

an instantaneous creation of a point vortex. This, of course, is not completely correct.

Apart from the fact that the vortex forms in a finite time, not all the vorticity ends

up in the vortex. Therefore, the evolution should be faster according to this model,

and the best agreement might be between the model and the full simulations when

3 the point vortex contains only a part of the vortex sheet circulation.

Results from the numerical calculation with Fr = 1.0 and d/L = 0.2 are shown

5in figure 11. This selection of parameters corresponds to figure 3a. The free surface

and the position of the single point vortex are shown. The circulation of the point

5 vortex is relatively strong, and the free surface is pulled into the fluid. The evolution

is similar to figure 3a, but faster, as expected, since the circulation is immediately

confined to the point vortex. In figure 12, Fr = 0.5 and d/L = 0.3. Here the surface

5 wave becomes increasing steeper, eventually forming a sharp corner, which suggests

a breaking wave as in figure 3e. Again, the evolution is much faster than the vortex

£ sheet model. In figure 13, we show the evolution of the free surface (amplified 200

times) for a very low Froude number and shallow vortex (Fr - 10' d/L = 0.05). To

I resolve the short waves that appear, we use 200 points on the free surface. As the

vortex is started impusively, a wave appears on the free surface and propagates away

from the vortex. New waves are continual generated by the vortex, but the amplitude

3 decreases.

We do not present a detailed comparison of any of the quantitative measures for

1
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these flows and the previous simulations. It is sufficient to say that although the

main characteristics are captured by the point model (e.g., we observe entrainment,

breaking waves and short wave generation), the quantitative agreement is considerably

worse than between the two other models. As we pointed out already, this is to be

expected: the vortex is neither created instantaneously nor does it contain all the

initial circulation.

We will, however, use the point vortex model for another purpose. When a vortex

is relatively weak (that is, Froude number is low) the free surface motion is very small,

and our fully nonlinear solution should compare well with a linearized solution. The

plinearized solution for the problem at hand is given by Wehausen and Laitone (1960)

as linour nondimensional variables,
1 _' 1 1oo e-ikfz-E(,r)}I W(z, t) In .Ln(z-c)(Z-)}+~-jj fe -ik-() ri{/(-)d 31

I where W(z, t) is the complex velocity potential; z is the complex variable x + iy; and

c(t) is the location of the point vortex (a + ib). The bar on c denotes a complex

conjugate. The velocity of the point vortex is
I bft)-ib-i)= 1 1 1 f r)J" k

it4b(t) tr)-ro drJ Ve-ik0c(-E(} sinf{ (t - r)}dk (3.2)

and the surface elevation is

7(x,t) = - Im{fjdrj e- {-(T)}os{ /(t - r)}dk} (3.3)

Numerical evaluation of equations (3.2) and (3.3) has been done by Hong (1987),

3 who also approximated the equation for the wave elevation for small time as

TI(t) _L _- a(t) + - -a(O)(34

27r bfo+ (x - a(t)) +b -(x -a(0))2.

The linearized solution above is for an infinite domain, while our calculations are

I for a periodic domain. However, if the depth of the point vortex is very small com-p pared to the length of the domain, the effect of the finite period length is negligible. A

16



comparison of the small-time solution (equation (3.4)) with our calculation is shown

in figure 14 (a) and (b). The parameters are Fr = 1.22 x 10-9, d/L = 0.005, and

we have used 600 points to represent the surface (This large number is necessary

since the vortex is very shallow, and the depth d sets the resolution requirement.).

In figure 14a, the nondimensional time is equal to 0.0485, while in the figure 14b the

nondimensional time is equal to 0.095. At the earlier time there is almost perfect

agreement, but at the later time a slight deviation is observed. For a later time,

it is necessary to use the full linear solution (not the short time expression), and a

comparison of our calculation with equation 3.3 is given in figure 14c. The time is

0.42, and calculations for both 300 and 600 points are shown. Obviously, the overall

agreement is good, but the 600-point calculation is slightly closer to the linearized

solution.

The inviscid models studied here are all scale invariant and, thus, applicable to a

wide range of physical length scales. In a ship's wake, for example, we would generally

expect that while the results for small Froude number might describe the largest scales

I of the flow, the high Froude number results, where the vortical flow leads to rather

dramatic "splashes", would be more applicable to the small-scale turbulent motion

(such as the generation of "white water wakes" due to propellers). At small scales,Uhowever, the scale invariance of the inviscid model is broken by either viscosity or

surface tension. While viscosity is not easily incorporated into our model, surface

3tension is.

We have looked at how surface tension modifies our solution, but before we present

5 the full vortex/free surface case, in figure 15 we check how well our method follows

£, the propagation of a linear capillary wave (For a discussion of surface tension effects

on steep waves see, e.g., Hogan (1981). For implementation of surface tension in

3 a boundary integral methods see, for example, Pullin (1982).). In the linearized
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solutions the free surface amplitude is (e.g. Lamb (1932))

q = a sin(kx + at) (3.5)

and the dipole sheet strength is given by

-2- cos(kx + ot) (3.6)

- where

0.2 =gk + --k3 (3.7)
pI

so the wave speed is

c2  + T k (3.8)
Ic p

a is the initial (infinitesimal) amplitude, and k is the wave number. In figure 15a,

U the computed speed is compared with the theoretical speed for several values of

surface tension. Here, A is the wavelength, and Am is the wavelength with smallest

speed, A,. = (2r/k.) = 2r(T/pg)1 /2; our results are for A/AM, = 0.151, 0.302, 1.004,

3 1.92, and 3.33. In figure 15b, we show the free surface elevation after the wave has

propagated one-half wavelength for A/A,, = 0.302: (i) is the initial profile at time

3 zero, (ii) is the computed profile, and (iii) is the theoretical prediction. Obviously,

our numerical calculations (with 200 points per wavelength to resolve the free surface)

U compare rather well with the linear solution.

The effect of surface tension on the free surface deformations due to a vortex sheet

roll-up is shown in figure 16; Fr = 1, and d/L = 0.2 corresponding to figure 3a. The

I solid line indicates We = 0.33, the long dashed line is for We = 1.0, and the dashed

line is the infinite Weber number solution from figure 3a. The major effect of surface

tension is to reduce the surface deformation in regions of highest curvature.

We end this section with a simulation of a more complicated situation: the nair;ng

I of roll-up vortices under a free surface. In figure 17, Fr = 1.0, and d/L = 0.3, the

same as in figure 3c. The regularization parameter, however, has been taken somewhat
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larger (6 = 0.2) to limit the number of computational elements needed to represent

the inner part of the roll-up vortices. The vortex sheet is initially perturbed by two

sine waves, one with a wavelength equal to the period length, and the other half as

long and with three times the amplitude of the longer wave. First, the vortex sheet

rolls up into two distinct vortices, and the surface deformation is similar to what is

predicted for a single wave in half the domain (Fr = V2 and d/L = 0.3). Then the

vortices pair and drastically change the surface signature. We have run a few similar

cases and generally found that (a) for shallow vortices the pairing process quickly

leads to high curvature that inhibits further simulations, and (b) for deeper vortices

the surface deformation is generally dominated by the pairing process.

8.2 Vortex Pair Approaching a Free Surface

3 Here we discuss the head-on collision of a vortex pair with a free surface. The

surface is initially flat, and we use periodic boundary conditions in the horizontal

Idirection. The evolution is somewhat dependent on the length of the period and

slightly different from what would be observed in an infinite domain. However, our

domain is generally sufficiently large so that the overall scenario is not altered. The

£ initial vortex separation is taken as a length scale in the definition of the Froude

number and the Weber number is infinite, unless otherwise noted.3 Figures 18 to 20 show the collision for three different Froude numbers (11.2, 3.54,

1.58, respectively). The initial depth of the pair is 1.25 times the vortex separation,

3 and the period length is five times the separation. In figure 18, a rather severe surface

deformation occurs: as the vortex pair approaches the surface, it pushes the surface

upward; and subsiquently the pair propagates out of the main fluid region, carrying

if a considerable amount of fluid (a "blob") with it. At the same time, since the period

length is relatively small compared to the vortex separation, the level of the fluid

Sleft behind drops to conserve mass. The speed of the vortex pair is only minimally

affected by the presence of the free surface. Baroclinically generated vorticity at the
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free surface obviously opposes the point motion, but at the same time pushes them

slightly together, compensating for the effect of the surface. Shortly after the last

stage shown, the iterative procedure failed to converge, and the calculations were

terminated. Notice that the fluid in the "blob" remains almost constant at least for

the duration of this simulation (this is easily seen by plotting the profiles on the same

graph). Figure 19 shows the evolution for a smaller Froude number, 3.54. The initial

3 surface deformation is similar to the high Froude number case, but after the initial

bump forms, the vortices start to move apart and the rise of the fluid stops. At the

same time, the interface is rapidly pulled down outward of the vortices, leading to

entrainment of the top (zero density) fluid. For Fr = 1.58, in figure 20, the surface

deformation is reduced, and the vortices move outward much like the surface was a

3 solid wall. A small depression forms outward of the vortices eventually turning over

into a breaking wave.

SSeveral runs with other values of the Froude number confirm that the motion can

be classified two ways: the large Froude number case, where the vortices propagate

3 through the free surface, as in figure 18, and the small Froude number case where the

free surface acts as a rigid boundary, as in figure 20. The transition from one type of

motion to another takes place over a relatively small range of Froude numbers, and

3 once these limits are reached the motion is relatively weakly dependent on the actual

value of the Froude number.

3 In figure 21 we have plotted the solution at long time for several "high" Froude

numbers and several "low" Froude numbers. Frames a, b, c are at time 10, for Froude

m numbers 11.2 (figure 18), 15.8 and 22.4. It is obvious that doubling the Froude

number has rather minor effects. Frames d, e, f are for Froude numbers 0.5, 0.79,

1.58 at time 9.0. Although the overall shape of the surface deformation is similar,

I some changes occur as the Froude number decreases, in addition to the amplitude.

A closer inspection (substantiated by additional runs) shows that the position of the
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maximum surface depression is closer to the vortex for the lower Froude number, so

that in the limit of zero Froude number we would expect the depression to coincide

with the vortex position. This is in agreement with what we observed in the previous

section and with Novikov's (1981) analytical, small-amplitude prediction for a vortex

moving steadily below a free surface.

To quantify our results, we plot some quantitative information versus time in

figures 22 and 23 for the three runs in figure 18 to 20. The maximum and minimum

surface elevation is shown in figure 22a. The maximum surface elevation for the largest

Froude number increases continuously, while for the intermediate case, the upward A

motion stops. For the lowest Froude, number the elevation reaches a maximum at a

much lower level than in the other runs and changes only slightly during the last part

3 of the run. Initially, the minimum elevation is also the greatest for the high Froude

number case; at the later time, however, the surface in the other two cases continues

to be pulled down, while the high Froude number case levels off.

A plot of potential energy versus time, in figure 22b, reflects the amplitude of3 the surface motion seen in figures 18 to 20, and 22a. For the large Froude number

case, the potential energy increases continuously, reaching an approximately constant

growth rate at the end of the run. At the end of the run for the intermediate Froude3 number, the potential energy levels off and may decrease, and in the small Froude

number case, the growth is oscillatory and considerably smaller. (Notice that the

3 scale is different for the graphs.) The oscillations in the low Froude number case are

presumably partly due to transients set up by the impulsive generation of the point

3 vortices.

To show the effect of the surface on the vortical motion we plot the path of the

vortices in figure 23 for the runs in figures 18 to 20. Dots on the path at regular

3 time intervals, equal to 1.0, to give an indication of the speed. In the large Froude

number case, where the vortices penetrate the interface, the paths converge, and the
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reduction in distance between them more than compensates for the reaction from the

surface, so that their speed increases. The vortices in the weak case move outward

as if the surface was a solid wall. However, their path differs slightly from the solid

wall case, due to the surface deformations and a small rebounding is seen. The

intermediate path first diverges slightly and then turns inward. These calculations

could not be continued past the point shown, but we expect that the vortex would

eventually complete a loop and move outward. Such behavior is observed for vortices

encountering weak density interfaces, see Dahm et al. (1989).

To address the influence of the relatively short period length used in our calcula-

tions, we have repeated some of them for a different size domain. In figure 24, the

large-amplitude stage of three runs with the same Froude number (as in figure 18)

and nondimensional time, 9.3, but with different period lengths are plotted. The

main effect is that the fluid level below the blob vortex is lower for smaller periods,

and the vortex pair moves slightly slower in shorter boxes due to the influence of the

vortices in the neighboring periods. In the absence of a free surface the velocity of the

vortex pair in (a), (b), and (c) would be 0.685, 0.865, and 0.925, respectively, times

the velocity in an infinite domain. The relatively weak influence of the boundaries

is therefore somewhat unanticipated, but apparently the greater increase in potential

* energy for the short period case compensates partly for the influence of the neighbors.

For blobs of equal size, this lowering is larger, the shorter the period. In addition to3the length of the periodic box, we have also run several cases with different initial

vortex depth and found only minimal effects.

3We have repeated some of our calculations with a higher number of computational

elements and monitored the energy balance to access the accuracy of our methods.

IFor the range of computational elements used here, doubling the number of elements

3had virtually no effect. The accuracy of our calculations is also reflected by the almost

total conservation of energy, which is generally a rather sensitive measure of a solu-
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tion's quality. In figure 25, the potential energy, the finite part of the kinetic energy,

and the total energy are plotted versus time for the run in figure 18. Obviously, even

for the relatively modest number of points used (200), the energy is nearly completely

conserved. We have found this to be generally true; only at the end of our calcula-

tions, where the solution procedure fails to converge, does the energy conservation

deteriorate. Calculations similar to those discussed here have been reported by Telste

(1989). He uses a similar method but applies a damping layer at the edge of his

computational domain to model an infinite horizontal extent. His results for Froude

numbers 7.07, 2.24, and 0.5 and initial vortex depth five times the vortex separation,

agree well with what would be expected from the simulations presented here. Telste

generally found energy to be well conserved for the time he simulated.

As a model of real flows, point vortices have several well-known short-comings. To

account for a more realistic situation, we have repeated our calculations using both

finite area vortex regions and vortex sheets to represent the vortical flow. Calcula-

tions for the evolution of an initially flat vortex sheet with a vortex sheet strength3 corresponding to an elliptic lift distribution are shown in figures 26 to 28. The Froude

number is based on the separation that the vortices would have in the absence of aIfree surface, estimated by assuming that the sheet will become a pair of point vortices.3 The free surface and the vortex sheet are discretized by 200 points each, and we use

a relatively large vortex blob radius, 6 equal to 0.5 times the separation between the3vortices, for the vortex sheet (Several of our vortex sheet runs have been repeated

with different blob radii to check that the effect of finite 6 is minimal ani confined to

*the vortex cores.).

In figure 26, the Froude number is 11.2, the same as in figure 18. The vortex sheet

I rolls up quickly into two counter-rotating vortices that collide with the free surface

much in the same way as the point vortices did in figure 18. The vortex points are

connected by straight line segments, except when they have moved very far apart.
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Therefore, in figure 26 and subsequent figures, ( as well as in figure 17), the line is not

continuous in regions where the sheet undergoes large stretching. Vortices generated

from a vortex sheet with elliptic loading have a rather "peaked" vorticity distribution

(the vortex sheet strength is maximum at the ends of the sheet); therefore, it is not

3 surprising that the results are virtually identical to the point vortex case (figure 18).

Figure 27 shows the evolution for the same Froude number as figure 19, 3.54. The

3 evolution is clearly in the transition zone and is similar to figure 19. In figure 28 the

Froude number is 1.58, as in the point vortex case in figure 20. Again, the differences

are quite small. Simulations for smaller Froude number show the same behavior

3 as observed in the point vortex case, namely, the interaction pattern is relatively

unchanged, but the amplitude is decreases.

3 The vortex sheet strength distribution used here leads to a rather concentrated

vorticity distribution, once the roll-up is completed. To investigate a "flatter" vor-

3 ticity distribution we have repeated the calculations modeling the vortices as vortex

patches, or finite area vortex regions (FAVR's). There is now an additional geometric

Ilength scale, namely, the size of the vortex patch. In figure 27a, the vortices are ini-

tially circular regions with a diameter 0.45 times their separation distance and centers

at a depth equal to 1.25 their separation (the same as for the point vortices and the

3 vortex sheet). The free surface is discretized by 300 computational elements, and the

bounding curve of each vortex is discretized by 100 elements. As the vortices move

3 upward, they deform and acquire a somewhat elongated shape, as observed for a pair

of FAVR's moving in unbounded fluids (Overman and Zabusky (1982)). While the

I overall evolution is the same as in figures 18 and 26, the large-amplitude stage exhibits

some differences. The neck of the blob is narrower, and the blob is both wider and

taller. The same setup for a smaller patch diamter, 0.3, is shown in figure 29b. The

3 large-amplitude stage is now more like the point vortex and the vortex sheet cases.

In figure 30, Fr = 3.54, as in figures 19 and 27, and the diameter is 0.45 times the
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separation in (a) and 0.3 in (b). Relatively good correlation with the point vortex

and vortex sheet calculations is observed in both cases, in particularly for the smaller

patch radius. Figure 31 shows the evolution for Fr = 1.58 and the diameter is 0.45.

The surface deformation is similar to the point vortex and vortex sheet cases (figures

20 and 28), but the depth of the trough is slightly smaller.

To compare the three models quantitatively, we have monitored the same infor-

mation as was presented for the point vortex runs. In figure 32 we show the maximum

and minimum elevation versus time in (a), and the path of the vortices in (b). For the

vortex sheet and the FAVR model, the path of the center of vorticity is plotted. While

the run with the large FAVR's initial conditions (figure 31) shows a slight deviation,U(for example, making an earlier turn than the other vortices in figure 32), the results

3 for all models are in close agreement.

As in the previous section we investigated the effect of surface tension on a single3 case. Figure 33 compares the late time stage (t = 9.8) of two simulations with the

calculation in figure 18; for curve (a) Weber number is infinite, for (b) We = 0.33,

Iand for (c) We = 1.0. The increased amount of surface tension reduces the growth

of the surface deformation and leads to a larger separation of the vortices. For even

smaller Weber number, the surface deformation is largely inhibited, but several short

3waves appear on the surface. These waves could be capillary waves, but we have not

ruled out numerical difficulties as a cause. Large surface tension results in a very stiff

3 system, and minute time steps are necessary.

We conclude this section by examining the collision of a vortex pair generated by a3 vortex sheet initially inclined with respect to the free surface (figure 34). The vortices

collide now with the surface at an angle, and the main surface deformation is due to

the vortex that first encounters the surface. As the first vortex interacts with the

3 surface, the other continues to propagate, causing the line connecting the vortices to

become more aligned with the surface. The resulting deformation is similar to that of
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a single vortex interacting with the surface, observed in the previous section, and will

not be discussed in detail. In these particular calculations, the surface deformation

leads to a breaking wave and the calculation could not be continued. We expect

that at a later stage, both vortices would align with the surface, and the subsequent

development would be more like that in the head-on collision problem.

For most of the simulations discussed in this report we have monitored several

3 additional parameters, that might be of interest in detailed comparisons with experi-

mental data, such as the surface slopes, surface velocities, and upwelling of fluids with

i the vortex pairs. Generally, we find that while such data provides some additional

3 insight into the problem, the qualitative trend is obvious from the solution plots, and

the data we have presented. Thus, we will postpone the presentation of these diag-

nostics until experimental data is available for comparison. Preliminary comparisons

have been presented in Willmarth, Tryggvason, Hirsa and Yu (1989).
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4. Conclusions

For remote sensing, which provides the motivation for this study, the most im-

portant question is, How much can we tell about the submerged vortical flow from

observations of the free surface? Though it is likely that a complete solution to this

inverse problem does not exist, the Froude number obviously has a great influence on

the free surface and the vortex motion. In the vortex collision problem, the Froude

number was the main controlling parameter, and the geometric parameters such as

the initial relative depth and the core size appeared to play minor roles (at least for

the cases that we investigated). For the shear layer problem, there was an additional

controlling parameter, the relative depth. This parameter could have been elimi-

nated by considering an infinitely long domain; indeed for the relatively shallow flows

3the boundaries of the domain do not seem to influence the evolution significantly,

except for the largest Froude numbers. Generally, it appears that the free surface

U deformation is representative of the vortex motion only for large Froude numbers. In

that limit the vortices initially push the free surface as if it was a passive marker;

I however, the result is a large surface deformation that eventually affects the path

of the vortices. For the small Froude number limit, the vortices interact with the

surface much as if it was a rigid wall, the surface deformation is much smaller (and3 decreases rapidly with Froude number), more localized, and the length scale of the

surface deformation is much smaller than those of the vortical flow. In addition, at

3 low Froude numbers, there is considerable difference between the surface signature of

a transient vortical motion (for example, the impulsively started vortex) and that of

3 an essentially steady-state flows.

One purpose of our study was to investigate the dependence of surface deformation

on the detailed nature of the vortex modeling. As might be expected, in those cases

where the flow evolution is not sensitive to the model, the surface deformation is also

minimally affected, but when the vortex evolution depends strongly on the model, the
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surface deformation also relies on the model. Therefore, for the shear layer problem,

considerable dependence was observed, but the vortex collision problem was relatively

insensitive to whether we used points, sheets, or patches to model the vorticity.

This study presents our first step in an effort to develop a comprehensive under-

standing of the free surface. signature of submerged, unsteady vortical flows. The

flows considered here are therefore relatively simple, and we conclude with a few re-

marks about the limitations of this present study, and what we are doing about these

limitations.

I The most restrictive assumption, presumably, is that we have confined our at-

tention to two-dimensional models. While such models are of relevant to certain

experimental situations and produce considerable insight into some of the interaction

3mechanisms, most of the vortex interactions observed experimentally involve fully

three-dimensional motions. In Sarpkaya's (1988) and Willmarth and Hirsa's (1988)

3 experiments on the surface signature of trailing vortices, for example, the appearance

of striations is a three-dimensional phenomena. Furthermore, in Bernal's experi-

3 ments with sub-surface jets (Bernal and Madnia (1988)) and vortex rings (Bernal

and Kwon (1988)), the predominant wave-making mechanism is the "opening up"

of vortex rings colliding obliquely with the surface. We have recently completed a3 fully three-dimensional boundary integral method for free surface flows and have run

preliminary studies with simple vortex models such as a circular vortex filament. Al-

3 though these preliminary studies show promising correlation with the experimentally

observed phenomena, a considerable amount of refinement is still needed.

3 Another complication is the presence of surface contaminants on real free sur-

faces. Generally, the surface motion created by vortical flow results in an uneven

distribution of the contaminants and thus non-uniform surface tension. While the

effect of surface contaminants on the damping of surface waves is reasonably well un-

derstood, the effects on vortical structures below the free surface have received much
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less attention. Baker and Crow (1977) observed that a vortex pair colliding with the

surface produced secondary vortices and rebounded, as when vortices collide with a

rigid surface. Saffman (1979) pointed out that for inviscid flow and a flat boundary,

rebounding can not occur and suggested that the behavior might be due to surface

tension effects. On the basis of numerical simulations, Peace and Riley (1983) ar-

gued that even for stress-free boundaries viscosity would cause rebounding. However,

their calculation was for rather low Reynolds numbers, and with increasing Reynolds

number, the rebounding decreased significantly.

Willmarth and collaborators recently addressed surface tension effects on vortical

flow experimentally, and demonstrated a rather dramatic dependence on the cleanness

of the surface. For a clean surface, the vortical motion behaves as would be expected3 from an inviscid analysis (If the surface deforms, some rebounding is predicted, see

figure 32, but most of the experiments have been performed under conditions where3 surface deformation are minimal.). But in the presence of surface contamination,

the shear stress induced by uneven surface tension results in considerable vorticity

3 production, and subsequent boundary layer separation whereby this vorticity is swept

into the interior. As Willmarth notes, this injection of vorticity and its subsequent

interaction with the primary vorticity appears to be the leading effect of the surface

3 contaminants.

While our inviscid method is easily modified to account for constant surface tension

3 (figures 16 and 33) and can easily predict the redistribution of a surface contaminant,

the resulting shear stress is incompatible with the inviscid model. We have investi-

3 gated the possibility of coupling our method with a simple boundary layer model at

the surface, and while such modeling is relatively straightforward, it does not account

I for the injection of vorticity through separation. It is not obvious how such mecha-

nism can (or should!) be incorporated into a vortex model, and we (in collaboration

with Willmarth) as well as Dr. R. Leighton at the NRL (private communication)

2
29I



are currently conducting investigations using the full Navier-Stokes equation. Such

studies, although limited to relatively low Reynolds numbers, are expected to shed

5- more light on this matter.
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Figure Caption

Figure 1: The evolution of a free surface and a submerged vortex sheet with Fr = 0.5,

d/L = 0.2, 6 = 0.1, Nsrt a= = 200, N..,= = 200. The nondimensional times shown

are 0.0, 0.5, 1.00, 1.25, 1.4.

Figure 2: The large-amplitude stage of a free surface and a submerged vortex sheet

with Fr = 0.5, d/L = 0.2. The nondimensional time shown is 1.4. (a): 6 = 0.1,

Nsf act= 200, Nvorte = 200. (b): 6 = 0.2, N..,yo = 200, N,, = 200. (c): =

0.2, Ns,,fa, = 50, Nvore = 50.

Figure 3: A large-amplitude stage for various values of the nondimensional parameters

with Nsf,, = 200, Nwe. = 300. (a): Fr = 1.0, d/L = 0.2. (b): Fr = 1.0, d/L =

0.3. (c): Fr = 1.0, d/L = 0.4. (d): Fr = 0.5, d/L = 0.2. (e): Fr = 0.5, d/L = 0.3.

(f): Fr - 0.5, d/L = 0.4. (g): Fr = 0.354, d/L = 0.2. (h): Fr = 0.354, d/L = 0.3.

(i): Fr - 0.354, d/L = 0.4. (j): Fr = 0.25, d/L = 0.2. (k): Fr = 0.25, d/L = 0.3. (1):

Fr = 0.25, d/L = 0.4. The nondimensional times are approximately 1.25 for the first

column, 1.6 for the second one, and 2.0 for the third one..

3 Figure 4: The free surface profiles for a few cases from figure 3. Figures 3 g to i are

amplified 5 times and figures j to 1 are amplified 10 times in the vertical dimension.

The letters correspond to figure 3.

3 Figure 5 (a): The total amplitude, Y,,,.. - Y,,., versus time for the cases in figure 3.

(b): The location of the maximum surface depth, X,i,,, versus time for the runs in

I figure 3. (c): a, for the runs in figure 3 versus time. (d): 01 for the runs in figure 3

versus time.

Figure 6 (a): The position of the vortex center for the runs in figures 3a and 31 versus3 time. (b): The second moments of the vortex sheet for the runs in figures 3a and 31

versus time.
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Figure 7: The evolution of a free surface and a shear layer of the finite thickness,

Ns,,f 6 , = 200, Notee = 400. (a): d/L = 0.2, Fr = 1.0, and t/L = 0.1. The

nondimensional times are 0.0, 0.9, 1.5, 2.0. (b): d/L = 0.2, Fr = 1.0, and t/L = 0.15.

The nondimensional times are 0.0, 1.0, 1.5, 2.4.

Figure 8: The large-amplitude stage of a free surface and shear layer of finite thick-

ness, Nufaoe - 200, Nvote = 400. (a): d/L = 0.3, Fr = 0.5, and t/L = 0.1. The

nondimensional time is 1.75. (b): d/L = 0.3, Fr = 0.5, and t/L = 0.15. The nondi-

3 mensional time is 2.4

Figure 9: The large-amplitude stage of a free surface and shear layer of the finiteI thickness, Nuf,,B = 200, Nu, t = 400. (a): d/L = 0.4, Fr = 0.354, and t/L = 0.1.

3The nondimensional time is 2.1. (b): d/L = 0.4, Fr = 0.354, and t/L = 0.15. The

nondimensional time is 3.0.

UFigure 10 (a): a, for the runs in figures 4, 8, 9 and 10 versus time. (b): 01 for the

3 runs in figures 4, 8, 9 Lnd 10 versus time.

Figure 11: The evolution of a free surface for the point vortex model with d/L = 0.2,

U Fr = 1.0. The nondimensional times are 0.0, 0.17, 0.27, 0.4, 0.51.

3 Figure 12: The evolution of a free surface for the point vortex model with d/L = 0.3,

I Fr = 0.5. The nondimensional times are 0.0, 0.48, 0.69, 0.78.

Figure 13: The evolution of a free surface for the point vortex model with the d/L

3 = 0.05, Fr = 10- 4 . The nondimensional times are 0.0, 1.0, 2.0, 3.0, 4.0. The vertical

dimension is enlarged 200 times, except for the top frame.

Figure 14: A comparison of the linearized solution with our numerical calculation.

I Fr= 1.22 x 10- 9, d/L = 0.005. (a): N = 600, and nondimensional time equals 0.235.

(b): N = 300, and nondimensional time equals 0.295. (c): N = 600, and N = 300,
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and non-dimensional time is equal to 0.42. In (a) and (b) the short time solution, eq.

3.4, is used.

Figure 15: The propagation of a capillary wave. (a): Wave speed. Solid line is

the prediction by linear theory, the dots are numerical calculations with A/Am =

0.151, 0.302, 1.004, 1.92, 3.33. (b): Profile for A/A, = 1.92. Solid line is the initial

profile. Dashed line compares the profile at t = 1.25 as predicted by linear theory

and computations.

Figure 16: The effect of surface tension on the large-amplitude stage for d/L = 0.2,

and Fr = 1.0 at the nondimensional time 1.25. The solid line is for We = 0.33, long

dashed line is for We = 1, and the dashed line is the infinite Weber number solution

from figure 3a.

Figure 17: The surface signiture of vortex pairing. Fr = 1.0, and d/L = 0.3. The

nondimensional times are 0.0, 0.5, 1.0, 1.5, 2.0, 2.5.

Figure 18: Collision of a pair of point vortices with a free surface. d/L = 1.25, Fr =

11.2 and N.,,,.e = 200. The nondimensional times are 0.0, 3.0, 6.0, 9.0, and 10.5.

Figure 19: Collision of a pair of point vortices with a free surface. d/L = 1.25, Fr =

3.54 and Nurface = 200. The nondimensional times are 0.0, 3.0, 6.0, 9.0, and 10.5.

Figure 20: Collision of a pair of point vortices with a free surface. d/L = 1.25, Fr =

1.58 and N,,,wegt = 200. The nondimensional times are 0.0, 3.0, 6.0, and 9.0.

Figure 21: The late time for the interaction of a point vortex pair with a free surface,

3 d/L = 1.25, and Nu, = 200. (a): Fr = 11.2, (b): Fr = 15.8, (c): Fr = 22.4, (d):

Fr = 0.50, (e): Fr = 0.79, (f): Fr = 1.54. The nondimensional time is 10.0 in (a), (b),

I and (c) and 9.0 in (d), (e), and (f).
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Figure 22(a): The maximum and minimum of the amplitude of the free surface for

the runs in figures 18, 19, and 20 versus time. (b): The potential energy for the runs

in figures 18, 19, and 20 versus time. Lines a, b, and c represent the runs in figures

18, 19, and 20 respectively.

I Figure 23: The path of the point vortices for the runs in figures 18, 19, and 20 versus

l time. The distance between the dots on each line marks a time interval of 1. Lines

a, b, and c represent the runs in figures 18, 19, and 20 respectively.

I Figure 24: The dependancy of the solution on the box size at t = 9.25 for d/L =

1.25, and Fr = 11.2. The box sizes are 0.67, 1.0, and 1.34. The number of the points

on the free surface is 200.

l Figure 25: The potential energy, kinetic energy, and total energy versus time for d/L

= 1.25, Fr = 11.2 with Nnsurace = 200. The straight horizontal line is for refrence.

Figure 26: The collision of a vortex pair formed from a vortex sheet with a free surface.

I d/L = 1.25, Fr = 11.2 and Nur/fce = 200, Ntote. = 200. The nondimensional times

are 0.0, 3.0, 6.0, 9.0 and 10.5.

Figure 27: The collision of a vortex pair formed from a vortex sheet with a free surface.

l d/L = 1.25, Fr = 3.54 and NurfIace = 200, N,,ortex = 200. The nondimensional times

are 0.0, 3.0, 6.0, 9.0 and 10.5.

Figure 28: The collision of a vortex pair formed from a vortex sheet with a free surface.5 d/L = 1.25, Fr = 1.58 and Ns,,,ac = 200, Nvotez = 200. The nondimensional times

are 0.0, 3.0, 6.0, 9.0 and 10.5.

Figure 29: The collision of a finite area vortex pair with a free surface. (a): d/L =3 1.25, Fr =11.2, di/L = 0.45 and N,,,,te = 200, Nvoi tex = 200. The nondimensional

times are 0.0, 3.0, 6.0, 9.0 and 10.5. (b): d/L = 1.25, Fr = 11.2, di/L = 0.3 and
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Nsrice 2- 200, N,,wte =- 200. The nondimensional times are 0.0, 3.0, 6.0, 9.0 and

10.5.

I Figure 30: The collision of a finite area vortex pair with a free surface. (a): d/L =

1.25, Fr = 3.54, di/L = 0.45 and N,,,, = 200, N,,,t = 200. The nondimensional

times are 0.0, 3.0, 6.0, 9.0 and 10.5. (b): d/L = 1.25, Fr = 3.54, di/L = 0.3 and

3 NsuratJ = 200, Nvort = 200. The nondimensional times are 0.0, 3.0, 6.0, 9.0 and

10.5.

I Figure 31: The collision of a finite area vortex pair with a free surface. d/L = 1.25,

Fr = 1.58, di/L = 0.45 and Nurae = 200, Nvorte = 200. The nondimensional times

are 0.0, 3.0, 6.0 and 9.0.

I Figure 32: (a): The maximum and minimum elevation versus time: the first frame is

for the runs in figures 26 and 29, the second for the runs in figures 27 and 30, and the

third for the runs in figures 28 and 31. (b): The path of the center of vorticity versus

time: the first frame is for the runs in figures 26 and 29, the second for the runs in

figures 27 and 30, and the third for the runs in figures 28 and 31.

Figure 33: A comparison of the evolution of a free surface with We = 3.0, We = 1.0

3 and infinite Weber number for Fr = 11.2. Nondimensional time is 9.8.

Figure 34: The evolution of a free surface due to a collision of a vortex pair with

an angle of 450, average d/L = 0.88, Fr = 3.54, Nutrface = 200, Nahet = 200. The

3 nondimensional times are 0.0, 2.4, 4.3, 5.1, 6.7.
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