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Abstract

The advantages of solving two-dimensional potential problems using spectral

boundary integral methods are examined. Using fast Fourier transforms, we ex-

pand the spatial coordinates x and y using an arclength parameter s. This spectral

representation is very accurate when the geometry is smooth and nodal spacing

I is uniform. Two spectral formulations are outlined. One is based on Baker's [11]

integration scheme at every other node to avoid the kernel singularities, and the

other is based on the kernel desingularization of Roberts [12]. An error analysis

and convergence studies for several ,eometries are shown.
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* 1 Introduction

Boundary integral methods and spectral methods are two of the most powerful

techniques in computational mechanics. In this paper we combine these approaches

5to obtain a very accurate algorithm for potential problems. The governing equation

for potential problems is elliptic, requiring one condition on the enclosing bound-

ary. The boundary integral method only solves for an unknown on the boundary,

which reduces the effective dimension of the potential problem by one and signif-

icantly decreases the computational effort unless the contour is highly distorted.

I In addition, if we use spectral representation for the boundary values, we may get

exponentially accurate solutions.

3The solutions of two-dimensional potential problems can be described by a com-

plex analytic function. The boundary integral method can then be derived from

I Cauchy's integral theorem (Greenhow, Vinje, Brevig, and Taylor [1], Vinje and

3 Brevig [2], Lai and Hromadka [3]), rather than the more general method using a

free-space Green's function (Longuet-Higgins and Cokelet [41). Applying the real

3 and imaginary parts of the Cauchy integral theorem results in two real algebraic

systems. While Cauchy's integral and the Green's function formulations are not

directly compared here, Dold and Peregrine [5,6] indicate that the former method

[1,2,3] is dearly superior. Schultz [7,8] shows that the error of the complex formu-

lation can be reduced by solving these two systems of equations in a least-square

sense for nonlinear breaking wave simulations. Schultz and Hong [9] compare the

results for the overdetermined, strong, and weak systems using a piecewise-linear

4

I



I
I
3 method. They concluded that the overdetermined system is superior to others in

many cases.I
In general, an integral equation is solved by a numerical model that assumes

the boundary is composed of piecewise-polynomial curves (panels) and the known

and unknown boundary values are approximated as piecewise-continuous functions

along the boundary. Most complex variable boundary integral methods adopt

piecewise-linear representations of the complex functions. A linear interpolation

3then results in second-order accurate integration and typically gives second-order

accurate solutions for the boundary integral solution as well. To improve accuracy,

3 we expand the known and unknown boundary values and the boundary shape in a

global Fourier series using an arclength parameter. Spectral methods then result

in exponentially accurate integration and give exponentially accurate solutions.

I
In this paper, two spectral formulations are outlined. One is based on Baker's

I [11] integration at every other node point to avoid the kernel singularities, and the

other is based on the kernel desingularization of Roberts [12]. The advantages of

the spectral boundary integral method are discussed, and the error is analyzed and

compared to piecewise-linear method for several test cases. The test cases show

the effects of geometric curvature, nodal spacing, and local solution gradients on

I the solution error.
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*2 Problem Formulation

3 Figure 1 shows the problem domain with the bounding surface OR. Solutions

of potential problems q0 and i/ can be written as

O ,3(z) = + io . (1)

I Here, z = z + iy represents the two spatial coordinates. Cauchy's theorem then

g(z) dz = ia#(Ck) , (2)

I where a is 0 or 27r if the location of the kernel singularity, (k, is outside or inside

the boundary, respectively. If the kernel singularity is on the boundary (Ck E OR),

a is the included angle, and (2) is treated as a principal value integral.I
Our goal is to convert (2) into an algebraic system as in Schultz and Hong [9].

I The algebraic system is formed by discretizing the integral and letting the kernel

singularity approach each of the N nodal points, C, --- zk. A special limiting pro-

cess is then needed to evaluate the integration near (k.

I
3 2.1 Spectral Method I

3 Following the method outlined by Baker [11], exponential convergence can be

achieved by evaluating the principal value integral of (2) using the trapezoidal

3 rule. To obtain this convergence, the integral must be periodic and integrated

with respect to a real variable, in this case, an arclength parameter, s. The integral
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3 becomes dz

Z () - kdIs(s) -ci = i rf(zk) . (3)

I Baker [11] indicates this expression will give exponentially convergent results when

trapezoidal integration is used for a smooth, periodic integrand and the shape (and

hence dz/ds) is known exactly. In contour dynamics problems, for example, the

3 bounding surface OR must be calculated from evolution equations. However, if

the contour is known to be smooth, z(s) and hence dzlda can be determined with

exponential accuracy if spectral methods are used. We have performed these cal-

3 culations using a standard fast Fourier transform (FFT) routine for both x(s) and

y(s) to obtain exponential accuracy.U
In (3), the integrand is singular as z approaches zk. The singular part of the in-

tegral is avoided to smooth the integrand by evaluating the principal-value integral

3 at every other point. The algebraic equations can be written as

N
JL r1 fJ( 1" ) = 0 for k = 1...,N, (4)

where

whr = { !!;;' if jr-k is odd

r, = -i' if -- k (5)

0Iij - kj is even and j y k .

3 If 0 is given on the boundary, 0 can be calculated from (4) and (5). Since the

integration is carried out at every other point, unlike the piecewise-linear repre-

3 sentation of [9], many rj, are zero (nearly one-half). Obviously, this saves much

time (nearly one-half) in solving the algebraic system.
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I
2.2 Spectral Method II

Roberts [12] used a desingularized kernel in his vortex formulation. Generally, it

is difficult to find a suitable desingularized form of a kernel in an integral equation,

but in the complex formulation it is relatively simple. The Cauchy integral equation

(3) can be easily rewritten as

0(3) - #k(z) dzd - , (6)
fZ(S) -Z, ds

where the principal value integral can be replaced by the closed contour integral

since the integrand is no longer singular. When z approaches Zk, the integrand

approaches dp/ds at the kth node. Therefore, this kernel does not exhibit singular

behavior as z approaches zk. Integral equation (6) is converted to the followir,

sets of equations for k = 1 ... N:

I E fi-i(L)+ for k =1,...,N , (7)
,=l 4 #k Zi Zk; ds3

where N is the number of nodes. The desingularized algebraic system (7) requires

the derivative of # and hence effectively becomes a differential system. To evaluate

these derivatives spectrally, we use a trigonometric interpolation of 6 [13]:

N
P() = C()A, (8)

j=13 where

Ci= sin r(s - aj) cot j(s - sj), (9)

and the derivative of C is

dC " J *(-1)' + cot M(s - Sj) if i # (
(,'9) NN(10)

0 ifi =j
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Then, (7) becomes
N

Irk, = 0 for k =1,.,N, (1)

where the influence coefficients Fik are now

zI - ' ("j + .. dJJ- ",k if j 3 k (2
rik '% d do(12)- E-l=,i~k ',* ( dl)i if =k

jk-- ~ ~ z zi -- _do -

Unlike spectral method I, the desingularized kernel is evaluated at every nodal

I point, and hence the matrix is full.

I

I 3 Numerical Investigation

Comparisons of accuracy, convergence rate, and computing time are made for

spectral method I, spectral method II, and the piecewise-linear method. The ef-

fects of nonuniform nodal spacing, contour shape, and nearly singular solution

characteristics on the solution error are investigated.

I To solve the matrix problem, a conjugate gradient iterative technique is used.

This technique solves the problem in an order of UVL operations, where U is the

number of unknowns, V is the number of equations, and L is the number of itera-

3 tions. The computational savings of the iterative technique would be important if

time marching were desired, especially since a good initial guess is available from

I the previous time step. However, even with a homogeneous initial guess, a typical

solution for a nonsingular matrix requires less than 10 iterations.
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According to Schultz and Hong [9], the overdetermined system for the piecewise-

linear method is generally most accurate, and the convergence rate of the overdeter-

mined system can be twice that of the weak or strong algebraic systems. Similarly,

the real and imaginary parts of (5) for spectral I and (12) for spectral II can be

imposed as well. Although we find that for uniformly spaced nodes the conver-

gence rates of both spectral methods are nearly identical for all algebraic systems,

the overdetermined system gives more stable results for distorted contours and

I nonuniform nodal spacing [14]. We use an overdetermined system for all methods

unless otherwise indicated.

The test function is P = sin z unless otherwise stated. The real part of fl, i.e.,

, is prescribed at each node; 0 is then determined from the boundary integral

I method and compared to the known Im(,8). We perform all calculations on an

3 Apollo DN4000 Workstation using double precision (16 digits).

I
3.1 Rate of Convergence and Computing Time

The root mean square errors, E2 , evaluated at the nodal points and the cor-

responding computing times are examined as a function of the number of nodes

to determine convergence rates and computational efficiency. Figure 2 compares

I E2 for uniformly spaced nodes on a circular contour for three methods: spectral

I, spectral II, and piecewise-linear. The spectral methods are much more accurate

than the piecewise-linear method, and spectral II is slightly better than spectral I.

I
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The effect of the contour shape on the efficiency is examined for elliptic con-

tours with various eccentricities (e = 0.0 to 0.995). The diameter of the major

I axis is fixed at 2.0 and centered on the z axis. Figure 3 shows solutions for var-

ious elliptic contours when N is 16. Here, the arclength parameter spacing is

determined by As = rAO, where AO is constant. As the eccentricity increases,

3 the E2 of spectral I is nearly constant up to e = 0.7 and then increases rapidly;

that of spectral II also remains nearly constant for small e but decreases at e = 0.7.I
The nodal spacing s varies as the eccentricity increases, and the integration

near the singular point is not accurate using spectral I, which explains the increase

in E2 after e = 0.7. On the other hand, the integrand in spectral I has a limiting

form as z goes to zk. Therefore, E2 is independent of eccentricity. Both spectral

I methods are much more accurate than the piecewise-linear method except near e

= 1, where the piecewise-linear method is more accurate than spectral I.

In Figure 4, error vs. CPU time is shown for an elliptic contour (e = 0.866).

Generally the CPU time of spectral I is the smallest for a given N, although the

greater accuracy of spectral II makes it more computationally efficient. Figure 4

clearly shows that both spectral methods are more efficient than the piecewise-

linear method.

I
I

11

I
I



U
I

3.2 Nonuniform Nodal Spacing

Sometimes nonuniform nodal spacing is desirable, as when solution refinement

is needed due to large solution gradients. The nodal spacing also varies in problems

with convective nodes such as free surface flow problems. This can cause numerical

instabilities, requiring a filtering or a regriding scheme to maintain uniform spacing.I
In the previous section, we note that as e increases, the nodal spacing about

an arclength varies, but the accuracy remains good for spectral II. In those cases,

even though the nodal spacing about the arclength is nonuniform, its variation

is very smooth and the nodal spacing about 0 is uniform. However, if only one

I node is moved, the abrupt change in nodal spacing seriously affects the fast Fourier

3 transform accuracy. Here, two cases are considered: one when an abrupt change

occurs in nodal spacing, and the other when the nodal spacing varies slowly.I
The firstcase is shown in Figure 5 for a circular contour. When node 1 is moved

a fraction p of the uniform nodal spacing AO = 2r/N towards node 2, then the

accuracy decreases rapidly as p increases for all methods. Figure 5 compares the re-

sults of the three methods when p is 0.1. For N > 16, the piecewise-linear method

gives the most accurate solution, and for all N, spectral II gives more accurate

solutions than spectral I, as expected. Figure 6 compares the results for various p

I when N is 16. Near p = 0, the spectral methods give more accurate results than

the piecewise-linear method, and the accuracy increases rapidly for 0 _5 p 5 0.1.

But as p increases, the spectral methods become inaccurate. The accuracy of the

I
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piecewise-linear method does not degrade as significantly as p increases.

I We conclude that the piecewise-linear method is less succeptible to an abrupt

change of nodal spacing. The inaccuracies of the spectral methods are due to

integration errors as well as FFT routine errors. Integration errors affect the accu-

3 racy of spectral I more significantly than spectral II because singular contribution

on the integral doesn't cancel for uneven nodal spacing in spectral I, while FFT

routine errors affect the accuracy of both spectral methods. Hence spectral II can

tolerate larger nodal spacing irregularities than spectral I.

I The second case is shown in Figure 7, which compares the results of the three

methods for an elliptic contour of slowly varying nodal spacing. Here, AO varies

as a cosine function, b is the amplitude of the cosine function, and N = 32. Both

spectral methods are more accurate than the piecewise-linear method, and spectral

method II is significantly better than spectral I.I

I 3.3 Distorted Contours

The computational domain can become very distorted. For example, in wave

modulation problems, long waves are combined with short waves. After conformal

mapping, a contour similar to the following is obtained:

z = r(e) osG,

y = r(O) sin0,

13I
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U r(O) -= + a cos k.

In Figure 8, the domain geometry is shown when k is 8. Figure 9 compares the re-

sults of the three methods. In this case, spectral II gives the most accurate results,

and when N > 128, spectral I is more accurate than the piecewise-linear method.

Figures 10 and 11 show the results for different k using spectral I and spectral

III, respectively. As expected, as k increases, the accuracy decreases, because the

domain geometry is more contorted. Figure 12 compares the three methods for

varying a when k is 8 and N is 64. When a = 0 (circular contour), both spectral

methods are more accurate than the piecewise-linear method, as shown previously.

As a increases, £2 in spectral I increases rapidly, and when a > 0.1, the accuracy

Iof spectral I is worse than that of the piecewise-linear method. In spectral II, the

E2 also increases, but the accuracy is still better than the piecewise-linear method.

From these test cases, spectral II is shown to be the most efficient method for

distorted contours.

UThe boundary integral accuracy is known to deteriorate in the vicinity of con-

tour comers due to the infinite geometric curvature (Schultz and Hong [9]). With

spectral methods, since the FFT for z(s) and y(s) converges very slowly, our re-

l suits show very poor results. Therefore, we conclude that spectral methods offer

no advantages for contours with comers. The results are not shown here.

II
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3.4 Desingularization

We use the same strategy for the locating the kernel singularities outside the

contour as Schultz and Hong [9]. The strategy uses the perpendicular bisector

of the straight contour between adjacent nodes. This method has two potential

difficulties, as pointed out by Schultz and Hong [9]: if f is too small, the singular

I point may lie inside a convex contour, but if f is too large, the singular point may

lie inside the domain of a highly contorted contour.

Figure 13 shows the error computed for several values of f in spectral I, where

the nodes are placed evenly on a circular contour with P = sin z. Figure 14 shows

I the error computed for various values of f in spectral I where N is 16. In this case,

since the desingularized kernel is used, integration is carried out at every point.

Generally, the algebraic system becomes less diagonally dominant as f increases,

requiring more iterations and a tighter tolerance on the convergence parameter to

achieve the desired accuracy.

I
4 ConclusionsI

Our numerical investigation shows that the spectral II is the most efficient and

I accurate in almost all cases. For smooth contours with uniform nodal spacing,

both spectral methods are more accurate than the piecewise-linear method. The

piecewise-linear method is less succeptible to an abrupt change in the nodal spac-

1
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ing than spectral methods, but when the nodal spacing varies slowly, spectral II

is most accurate. For distorted contours, spectral II is the most efficient method,

U because it gives more accurate results for the same N. Both spectral methods

have difficulties handling contours with comers. As for efficiency, both spectral

methods need less computing time than the piecewise-linear method, and spectral

II is the fastest scheme. The accuracy of spectral II may be further improved by

filtering or a node redistribution scheme, especially when discontinuities in nodal

I spacing or contour shape are encountered.I
The spectral approach may be extended to periodic three-dimensional potential

problems using integral equations derived from Green's theorem or the normal

derivative of Green's theorem. Hence, the spectral boundary integral method may

yield greater efficiency and accuracy for three-dimensional problems as well.
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* LIST OF SYMBOLS

I
a : amplitude of cosine variation of r(O) in complicated contour

b : amplitude of cosine variation of AO

E2 : root mean square error

e : eccentricity of an ellipse, V/A - B/A, A = long axis, B = short axis

f : desingularization parameter for locating kernel singular point

Ik : discretized kernel

k : number of bumps in complicated contour

N : total number of nodes

p : amounts of uniform AO moving from node 1 to node 2

R domain of the problem

3 : curvilinear coordinate on the contour

U,V : row and column number of an overdetermined matrix

x(s), y(s) : x and y coordinate of the contour

z : complex coordinate of a point

zI : j node

Greek Letters

a : a constant (alpha)

S: complex potential (beta)

r, : integral equation influence coefficient (upper case Gamma)

Ck : k' control point (zeta)i
I
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1 0 :tangent angle of the contour with positive x-axis (theta)

I4' real part of / (phi)

p : imaginary part of (psi)

IOR :contour of computing domain
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