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Abstract

A Fourier-integral method is developed to obtain transient solutions to potential wavemaker
problems. This method yields solutions that are uniformly valid for wavemaker velocities which
need not be given as powers of time. The results are compared with known small-time and local
solutions. Examples considered include ramp, step and harmonic wavemaker velocities. As time
becomes large, the behavior near the wave front is derived for the impulsive wavemaker, and for
the harmonic wavemaker it is shown that the steady-state solution is recovered. The solution for a

wavemaker velocity given as a Fourier cosine series compares favorably with the computational
and experimental results of Dommermuth et al. (1988). Capillary effects are included and

nonlinear effects are discussed.
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I 1 Introduction

3 The study of water waves associated with surface-piercing bodies has long been an interesting

and important area in fluid mechanics. In many cases, however, both analysis and computation

I run into difficulties near the intersection of a body with the free surface. To examine this problem,

a number of researchers have considered a vertical wavemaker moving horizontally in a fluid of

finite depth. Peregrine (1972) used a moving coordinate system attached to the wavemaker in his

small-time expansion, noted a singular behavior at the contact line, and explained the necessity

of a local solution. Chwang (1983) obtained a solution with a stationary coordinate system and

argued that the singularity lies outside of the physical domain. However, he did not properly

expand the moving wavemaker boundary conditions about the singular point. The logarithmic

singularity in the small-time solution was confirmed by Lin (1984) by a Lagrangian description

of the problem.

It was not until the work of Roberts (1987) that a successful local solution for the power-

law movement of the wavemaker was obtained for small time and small Froude number. He

found that for small time the solution varies significantly in the neighborhood of the contact line

and gave a self-similar formulation to describe this behavior. If the wavemaker starts to move

impulsively ("step velocity"), however, the neglected nonlinear effect becomes important close

to the wavemaker, since the linearized vertical velocity becomes infinitely large as time becomes

smaller.

The present study approaches the problem using inviscid-flow theory and develops a simple5 method to obtain solutions that are uniformly valid for wavemaker velocities which need not be

given as powers of time. It is also possible to include the effects of surface tension and initial3 free-surface elevation caused by non-zero static contact angle with little added effort. For viscous

fluids the unsteady motion of this contact line, with the no-slip condition incorporated at the

body, would require special consideration, as discussed in the review by Dussan V. (1979) and in

an application to water waves by Hocking (1987). We will not consider such complici_-,.; here.
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iThe singularity at the contact line can be shown to be a consequence of an improper expansion.

5l The small-time solution ceases to be a valid asymptotic series in time as the distance from the

contact line decreases because the higher-order terms do not remain small. A correct local

solution requires a new length scale that varies in time. In other words, very near the contact

line spatial variables are coupled with time, so that the small-time expansion does not yield a

well-behaved solution there. An alternative to the small-time expansion is an expansion for small

Froude number followed by a Laplace transformation, as used by Roberts (1987), or the Fourier

transformation used in the present work. Both of these methods can be applied to obtain a

solution, since neither requires separation of variables. However, the latter can be more powerful

3 and versatile in that the interpretation of the results and the extension to arbitrary wavemaker

velocities are accomplished more easily.

We begin in 12 by introducing the formulation of the vertical wavemaker problem. The

velocity of the wavemaker is given as a function of time, and the surface tension on the free

I surface is retained with non-zero static contact angle.

In §3 and §4 we consider two hypothetical wavemaker velocities, expressed by ramp and

step functions in time. The solutions for zero surface tension are shown to agree with the local

solutions of Roberts (1987) for small time near the contact line. Also, sufficiently far from the

contact line, they are shown to agree with the small-time solution of Peregrine (1972). The

nonlinear formulation and large-time behavior for the step velocity are also discussed.

More general types of wavemaker velocities are discussed in §5 and §6. One example is a

more realistic velocity that starts from zero and increases toward a finite constant value. It is

shown how the solutions for step and ramp velocities can be recovered as limiting cases. In §6,3 the present method allows a transient solution for a simple-harmonic wavemaker. Sufficiently far

from the contact line and in the limit as time approaches infinity, the solution agrees with that

3 of Havelock (1929), as cited by Yih (1979). As a final example in 16, we examine a wavemaker

velocity considered by Dommermuth et al. (1988) and compare our analytical solution with their

computationid and experimental results.
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U This study is prompted, in part, by computational difficulties caused by bodies intersect-

5 ing free surfaces. These include small-wavenumber oscillations close to the contact line that

may imply a physical or numerical instability. Normally, the spatial dependence is solved by a

boundary-integral approach, but these techniques are known to have difficulties with corners,

even when singular behavior is not present (Schults & Hong, 1988). The standard approach is to

3 separate the spatial and temporal behavior, thus introducing singular behavior into the problem

as mentioned above, and it is only the inability of the boundary-integral computations to model

this apparent singularity that allows the excellent agreement (at least for regions not too close

to the wavemaker) of previous computations (Dommermuth et al., 1988).

* 2 Formulation

3 We consider the fluid motion due to a, moving wall as shown in Fig. 1. If the fluid is inviscid

and incompressible, and the motion starts from rest. the flow will be irrotational according to

Kelvin's theorem and is described by the Laplace equation. In nondimensional variables

S.C + -O,, = 0 for X > a(t), -1 < V < (z,t), (1)

where 0(z,y,t) is the velocity potential, I(z, t) is the free-surface elevation measured from the

3 undisturbed level at infinity, and s(t) is the displacement of the wall from its initial location,

which, of course, is the time integral of the wavemaker velocity. The velocity, length, and time

3 scales are chosen to be 97j, h, V'/h7, where h is the undisturbed depth of the fluid and g is the

gravitational acceleration. The fluid velocity at the wavemaker is prescribed as

Io = &u) on z = 8(t), (2)

3 where a is the Froude number. For example, if the dimensional velocity, U, is given by

U -= C A t > 0, (3)

I where C and q are constants, we have

3C
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Thus, u(t) and a(t) in (2) become

I u(t) = ', *(t) = at,+(q + 1).

In particular, the cases for q = 0 and q I 1 correspond to a step velocity and a ramp velocity,

respectively.

The aforementioned u(t) describes a power-law movement of the wavemaker, which can ap-

proximate the earlier stages of a more general motion for small time and, thus, is frequently

used in small-time analyses. In the present work, however, the general expression for u(t) will

be maintained and a solution valid for all time will be sought.

In the presence of non-zero surface tension, the kinematic and dynamic boundary conditions

on the free surface become

I 4, = 1 + 0.71. on = (4)
10t + 1(0 + 02) + T11(+ , = 0 on y='7, (5)

(1+.2)3/2(5

where the nondimensonal surface tension T, the reciprocal of the Bond number, is defined by

U Here, a is the surface-tension constant, and p is the density of the fluid. On the bottom, the

vertical velocity component vanishes, so that

, = 0 on -. ()

I Since the motion starts from rest, the initial conditions are

3=0 t <0 (7)

i= Pv'Texp(- 7 ) t < 0. (8)

Here, K is a constant determined by ic = tan(s/2 - 0.), where 9. is the static contact angle.

I The initial free-surface elevation (8) satisfies the static linew equivalent of (5) for small Kc and

*5
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I becomes zero in the limit as the surface tension becomes zero or the initial contact angle becomes

Instead of introducing a small-time expansion, which is not uniformly valid near the contact

line, as explained in 11, we now use an expansion for small Froude number. The velocity potential

and the free-surface elevation are expanded as

I O(z,,t) = a(z,y)0+& 2 (z,,,0+." (9)

= i e+ )+ e (z, ) +... (10)II
Although T is typically very small, it is possible to retain T = 0(1) in much of the following

3 with very little added complexity.

Expanding the free-surface boundary conditions and the boundary condition on the wave-

maker about y = 0 and z = 0, respectively, gives the equations to leading order, 0(a), as

3 *i. + O, = 0 for z > O, -1 < Y < 0 (11)

Ol. = U) on z = 0 (12)

Oil = Fho on y = 0 (13)

Olt + th - Tfh-. = 0 on y = 0 (14)

Iil =0 on y=-l. (15)

3 The boundary condition (12) requires the distance a(t) to be small, so that a restriction should

be imposed on t, depending on the velocity u(t). For the step velocity, for example, the condition

5 is t - (l/a). This constraint could be relaxed by applying a simple coordinate transformation

e' = z- s(t) to fix the location of the wavemaker at z' = 0, which leaves the first-order equations

3 (11)-(15) unchanged. However, for large time it should be expected that the cumulative effect of

omitted nonlinear terms will no longer be negligible, and that rb and #2 will become large. For

3 example, since the nondimensional wave speed in shallow water is dz/dt = I + 0(a), we may

anti~~~ that the expansions (9) and (10) are valid for large t only if at is small.

* 6
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In solving (11)-(15), we first decompose #1 into two parts:

'3 *i 2 u() 2,72e msiky+#,;(z,), (6
n0O .

where k,. = (ni + I)'. The series on the right-hand side satisfies the Laplace equation and all the

boundary conditions except on the free surface, where it becomes sewo. The remaining term ,,

then, can be considered as a correction that enables the complete solution to satisfy appropriate

free-surface boundary conditions. Substitution of (16) into (1l)-(15) yields

*,+ -;,1v= ' for z >0, -1< Y<O0 (17)

049=0on z=O0 (18)Ir 2
-- u t) +9 f. on Y =O (29)

01,=0on Y= -l. (21)I The solution for 0* is sought as a Fourier cosine integral:

3* = JrA(k,) cosh k( + 1) cos kzdA, (22)

which already satisfies (17), (18), and (21). The solution for rh is then also a Fourier cosine3 integral:

T= JoB(k,t) cos kzdk. (23)

I Substituting the representations (22) and (23) into the free-surface conditions (19) and (20) sad

elmiatn B fcosh k +k( + Tk)A sinh k 2 u I + Tk) tanh k, (24)

dkk

Jo n k cc z!k ln(tanh "z (25)

(Gradshteyn & Rprhik, 1980). Equation (24) has a general solution

3A = Av(k, t) +cel(k) sint + c2(k) canst, (26)

* 7
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I where

0 = /k(l + Tk2)tanh k.

Here, Ap is a particular solution of (24) for a given u(t), and cl and c2 are to be determined from

the initial conditions.

The Laplace equation does not require any initial condition. Since the time derivatives appear

3 only in the free-surface boundary conditions, the initial conditions are applied on the free surface.

rhe initial condition for q, (8), is converted into a condition for 0 through (5). Using (9)-(10)

I again, we then obtain

01 = 0 and Oil=0

at y = 0 and t = 0. Since the series in (16) is always zero at y = 0, through (22)

A(k, 0) = At(k, 0) = 0. (27)

The solution (26), then, is completely determined, and so is .

Once 01 is obtained, the first-order free-surface elevation, rhj, is given either by (19) or by

3 (20). The vertical velocity,

--wa(t) ln(tanh i-) +'kA(k, )snh kcoo s A,*r 4 Jor

has a logarithmic singularity in the first term, which is canceiled by the same mingularity in

I the second term. This will be examined in greater detail for each specific cue in the following

sections.

The higher-order velocity potentials also satisfy the Laplace equation with a Neumann condi-

tion on the wavemaker, so that the same Fourier-integral method as for 01 can be used. However,

3 in most cans we do not evaluate the Fourier integral for 01 or 'l to obtain exact closed-form

solutions. Thus, the nonhomogeneos terms in the higher-order analysis contain some products

I of Fourier integrals, which makes numerical analysis inevitable except for certain cases.

U
1
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13 Rapvelocity

3 The power-law behavior of the wavemaker, as given by (3), deserves special attention, because

it can expose the initial evolution of the fluid motion without unnecessary complication. Due

to the obvious distinction between the ramp and step velocities, separate consideration will be

given to each case.

I The ramp velocity represents a wavemaker that starts from rest and increases in speed linearly

with time. It corresponds to the case when q = I in (3), so that the Froude number, a, and the

I dimensionless velocity, u(t), in (2) become

C and U() = t. (28)

Therefore, the expansions in (9)-(10) require small acceleration of the wavemaker.

I Application of the Fourier-integral method explained in the previous section yields (24) with

ult) = t. The solution satisfying (27) is

A(kt) = -1 1 1~ - sin O) (29)

3 Then, from (22) and (16), the first-order velocity potential is obtained as

COIf- (u int' cosh k(y +1) dk
1 = 2 " e-'" sin k - -cok- (30)

E k.Jr cosh

The vertical velocity of the fluid on the free surface, or the left-hand-side of (19), becomes

oil tanbcskz - , (31)

where the logarithmic term arising from the infinite series has been cancelled with the help of

(25). The free-surface elevation obtained by using (19) is

S11 'f( C T/ )  s !dk + O(2) (32)

when x = 0.

To recover the small-time solution, we can rewrite (32) as the sum of an integral from zero

I to K and an integral from K to infinity, with K chosen such that l < K 4C (1/t). For

I



0:5k <K, con t can be expanded in aTaylor series in time, whereas for K < k < we have

tanh k = 1 + O(e-k). Then, in the absence of surface tension (T =0), (32) can be expanded as

t - 0 with z fixed to give

17 *2ln(tanh !) + t4 Or + k(tanh5 k- 1) coo kzdk] +.. (33)
T 24 sinh 2 OU2 [- 2 1

The first term in (33) is consistent with the small-time solution of Peregrine (1972) and Chwang

3 (I98), and the additional terms can be obtained by extending the small-time expansion to

UIf both:z and t are small, with- Q(t2), the integral (32) can be simplified when T = 0 by

the addition and subtraction of I kt2 tanh k in the numerator of the integrand. The logarithmicI term is obtained explicitly by the use of (25), and the remaining integral is written in two parts

an before. It is found that

at2 rZ 201t2 I I( 1-coos~rt !k
7 W i 4 :Jo-\ kt2  co zk(4

3 (Joo et aL, 1988), where the integral is a funaction of :112. Using integration by parts, we find the

largest term to be 141(720:2) as Z/t2 - oo, which agrees with the expansion of (33) as r --+ 0.

3 The velocity components can be found in a&similar way. In complex form, with z = Z+iy = O(t2)

an t -~ 0,

*2Out ____z- e &dk] +...'
Ir [In4 of k- k/ 2 t )

This result can, of course, be obtained directly by replacing tanh(rz/4) with rz/4 in (19); the

I differential equation (24) for A then has cosh k replaced by 1 and sinh k by k.

The behavior of the local solution obtained as Z/t2 -_+ 0 is more complicated. Tb expand the

integral in (35) it is convenient to evaluate the following two integrals separately:

[ -i I)+ ( in vt dk

J10 7k10

Ik-
12 CWnI k
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1 both large and of the same order. This contribution is found by changing the integration contour

5 and choosing the path of steepest descent from k = t2/(4Z 2 ). Substituting these approximations

into (35) finally gives
40Y- , = at + 2-at (In--- -- t- [ + i.)

+-1-2()) +-.

+[_!t(_)312 expi(.- f- +...' (36)

for t -. 0 and z/t 2 - 0, where ? = 0.577.-. is the Euler constant. The corresponding local

solution for the surface elevation is

7 [ = + -t -3) (in +7 r - ) + 2(-E) + 16 .... )5 2 -(- 2  ) +. 0(2).

This result is identical to that of Roberts (1987) except that the term In(vt 2/4) replaces Int 2 .

This discrepancy is due to the difference in the problems: Roberts (1987) considered an infinitely

3 deep fluid with a finite-depth wavemaker, -I < p < 0

One important implication of (32) concerns the behavior of the dynamic contact angle between

3 the free surface and the moving wall. This is of particular interest for realistically small values

of the nondimensional re;rface tension T. As T - 0 it is obvious from (20) that a singular-

perturbation problem arises near the contact line. The solution to this problem can be recovered

from (32). Differentiation of (32) with respect to z and introduction of the transformation k = kz

yields (] inkdk
Ile 1 -- C]k~ + T 22) d

where the tanh k factor has been replaced by 1 for small x, as in (34). This form is useful for3 small T, in particular for T --* 0 and. = O(T 1 l'). Now if z/t -. 0 with z/T 1l ' fixed, the

cosine term in the integrand oscillates rapidly, and the contribution of this term to the integral

3 is small. The remaining term can be integrated to give

mq/. =(-) eXp(-_j_) __ & + O(&2), (38)

3 11
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i  as z/tx 2 - 0 and T --* 0 with z/T I/ 2 fixed. Thus, the dynamic contact angle approaches the static

5i contact angle in the limit of zero wavemaker acceleration. However, when the surface tension is

zero, (38) becomes rq = -a as z - 0 in agreement with (37). This also agrees with Roberts'

(1987) findings and implies a jump in the contact angle at t = 0 if T is neglected. For small but

nonzero T, the discrepancy is explained by the large curvature 7r = ic-/VT at z = 0, as shown

3 by (38).

The integral in (32) is evaluated numerically as the sum of integrals from zero to M and

SM to infinity. The value for M is choen to be as large as l05 for small z and t, and as small

as 10- 1 when either z or t is large. The integral from zero to M is evaluated using 10-point

i Gauss-Legendre and 21-point Kronrod formulas on both halves of the adaptive subintervals. The

selection of the subinterval is based on the maximum absolute error estimate of 10- 9 . Due to

3 the rapid oscillation of the integrand, the integral from M to infinity is obtained using Filon's

method.

Comparisons of (32) with the small-time solution and the local solution are illustrated in

Fig. 2. For small time (t = 0.1) and T = 0, (32) agrees with the local solution (37) near the wall

3 (z < t2), and with the small-time solution (33) sufficiently far from the wall. Fig. 3 shows the

free-surface configuration at small time for two different ncales when x is zero. A numerical value

I of the nondimensional surface tension, T, for pure water at 20*C with an undisturbed depth of

I m is about 0.74 x 10- , represented by T = 10- ' in Fig. 3. When the surface tension is zero,

small-scale waves (or wiggles) can be observed very near the wall, as also noted by Roberts (1987).

These wiggles are suppressed in the presence of surface tension, in which case the static contact

angle (90" in this case) is retained. At a given time, surface tension also decreases the contact-line

elevation. Far from the wavemaker the effect of surface tension becomes less important. These

effects become more obvious as we proceed to a step velocity.

* 12
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I 4 Step velocity

3 The wavemaker velocity given by (3) when q 0 0 is a step velocity, i.e., the wavemaker initially

at rest is suddenly set in motion at t = 0+ with a constant velocity.

When the velocity of the wall C is small compared with V,/#, the expansions in (9)-(10)

for small Froude number can be used as before. This time, the Froude number a and the

I dimensionless velocity u(t) are given as
C

0= and u(t) = 1. (39)

With u(t) = 1, the solution to (24) with the initial conditions in (27) is

I A(k,t) = 2 1 (1 - coo Pt). (40)r k2 cosh k

From (16) and (22),

1 =- r2 e- iky -  (1 - t) coohk k . (41)
*1=2~V 0sn~- cosh k k2

After cancellation oi" he logarithmic terms, The vertical velocity of the free surface becomes

2 coo Mtanh kco k k-42

Equation (19) then gives the fiee-surface elevation for x = 0 s

R L-*fo, s iTeoskzdk+O(a 2 ). (43)

T 01 - k2 1i+ Tk2'

It is interesting to note that, since the problem is linear, (42) and (43) can be derived directly

by differentiating (31) and (32) with respect to time. This procedure is equivalent to Roberts'

(1987) use of a convolution integral.

As in the came of a ramp velocity, (43) with T = 0 can be shown to agree with

I ___st n(tanh 4) + 0(as)

sufficiently far from the wall, for z > t2, and with

[i!Qn 2-+ -2) -2( X )2 .. + 4&kt (.E)6/ 2 Co.( g
V ( 4 ] 48t 2 4z 4

W+(.E)3/2s( - ) +... + 0(.2)

*13
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I near the contact line, for z < 2 . These equations, the small-time solution and the local solution,

can be obtained either by tedious analysis or by direct time-differentiation of (33) and (37).

Although the solution procedure differs only slightly from that for the ramp velocity, subtleties

arise in the interpretation of (42). If we hold x fixed and let t --. 0 in (42), and then let z -. 0,

the vertical velocity becomes infinitely large, as in the evaluation of (42) for z/t 2 > 1. If instead

3 we reverse the order in which these two limits are taken, the singular behavior disappears, as can

be seen if the expansion of 17 for z C t 2 is substituted in (27). The nonuniformity is discussed

3 below.

If (43) is rewritten in terms of & = kz, it can be shown that q. = O(a/VG') as t, z -. 0

3 with z/# 2 fixed. This behavior of q, is also implied by the expansions for large and small z/t 2 .

However, since the asymptotic representation requires I 'i IC 1, and therefore z > a2, a different

3 inner solution is needed for t = 0(a), z = Q(*2). The same conclusion can also be anticipated

from dimensional considerations. The relevant parameters for points near the contact line at

small time should be C and g rather than g and h, so that the proper reference length and time

are C2 /g = a2 h and C/g = a(h/#)1 /2 , respectively. The corresponding coordinates are t/a and

3 z/a2.

The correct formulation of an inner problem for small t and z can be shown to require the

full nonlinear free-surface conditions. The proper asymptotic form is inferred from the condition

that the inner solutions for q, 0,, OW match with expansions of the previous solutions obtained

from (41) and (43) as z,y,t -. 0. When (43) is replaced by a representation analogous to (34),

it is seen that the largest term in the inner solution for 17 must match with a term O(a In a).

The corresponding Y-coordinate should be measured from this first approximation to the surface

elevation. Matching the velocities implies that = O(a) and 01 = 0(a In a) in the small-scale

solution.

The above considerations suggest a solution of the form

= (= 9 In2 o)4,(k, , +9 ( n e_) (i, j, + e3 s(i, , ) + -• (44)

* 1
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1 ('na~d ,+a (fi+. (45)

3where z Y - (C"n 04),hi) 0 t
72 o , p=2 t =-

ITerms Q(a 2 In a) in the dynamic free-surface condition (5) give j2 j 0 ando ii(

Matching gives 4iw --+ 0 and 42ag -~ 2/r as it - cc; since the complex velocity 4w - i42# is

bounded everywhere, it is constant. Terms Q(a2 hn2 0) in (5) then give 4, - fhj-;62 + -2=0

where 4 2# = 2/1, and so 41 depends only on i; the kinematic condition (4) shows that 41 = 2/v.

Finally, it follows from (5) that 42 = -'ii. The expansions (44) and (45) therefore become

3 = (a 2 +(SIa(! )+3sil,+. (46)

= (e2 In a) V 2~(~)+. (47)

Conditions to be satified by 03 and ih at ibare determined from (4) and (5):

;%j + 42 + 1(.'+ 0 (48)

f4ae -'iv- fhqja . (49)

That in, the full nonlinear free-surface conditions are required for 43 and ifz and are to be

3 evaluated at the unknown location p = . The condition (2) at the wavemaker leads to

and is to be evaluated at the actual location of the wall i = i. Thus, the linearized formulation

3 for small Iroude numbler a fadls when t = 0(a) and r = 0(&2). Here, a full nonlinear problem

imust be solved, with some added terms involving In.

3 The large-time behavior of the fluid motion is also of interest. The free-surface configuration

for large time, but sti9 C (1/*), can be obtained by an asymptotic evaluation of (43). If 9 = 0

3 initially (x = 0), the free-surface elevation (43) can be written as

3= ~ ( -7 w~' ks(l Tk2)+Ja sin(t +kz)~-ji+* (50)

* 15
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As t - oo, the largest contribution to the integrals occurs for small k, at k = 0{1/(t - z)1. If

z is not close to t, it is sufficient for a first approximation to replace # by k in the integrand

'U and to omit Tk2 in the denominator. The result equals a for z < t and zero for x > t (recall

that dz/dt = I corresponds to the speed ,/jl of a shallow-water wave). This approximation,

however, neglects (k - O)t -C k t - zI and therefore fails near the wave front, z = t; i.e., since

k - 6 - (1 - 3T)k3 /6 and k = O{1/(t - z)), it has been assumed that It- z I13 < t. When

t - z = 0(tl/3), the cubic term in k must be retained, and the surface elevation becomes

3 ii= a1A Ai()d + --., (51)

where A = (1 - 3T)-1/3(2/t)1/3( - t) and Ai is the Airy function. For A > 0 and z - t > t1/3,

I Y is exponentially small; for A < 0 and t1/3 < t _ zC t,

17= o (j3 )1/4(i- )y3/4  [j( (: ) 1 2 t (+_ !)312 ] + '  (52)

Wheu t - z = 0(t) behind the wave front, the first integral in (50) has a stationary point at

3 k = 0(1) and contributes a term O(at - 1/2) that matches with (52). In the second integral there

is no stationary point when a > 0, and the integration contour can be deformed to lie somewhat

away from the real axis in the complex k-plane. The largest contribution is near k = 0, giving

the value r/2 with exponentially small error.

Therefore, as time becomes large, the contact-line elevation approaches a value equal to the

Froude number, and behind the wave front the free surface can be approximated by a wavetrain

superimposed on a fiat surface of the same height as the contact line. The amplitude of this

wavetrain is O(at-/2), increasing to 0(a) near the wave front. Surf -.. tension increases the

frequency and decreases the amplitude decay rate of the wavetrain. Beyond the wave front the3 free-surface elevation decream exponentially to the undisturbed value of sero. The width of the

wave front increases in proportion to t1/3, so that the slope of the free surface near z = t is
I O(t-/).

In Fig. 4, the free-surface elevation is shown at several different times for zero initial elevation

(M = U) and for three values of the nondimenuional surface tension. Near the wavemaker (z < 2),

18I
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I
the free surface is made up of an infinite number of wiggles, which can be approximated by a

3 local solution. Surface tension suppica;z. .hcse *igges, but the effects of surface tension are seen

to decrease as the distance from the wavemaker increases. This explains why the agreement with

3 experimental measurements (Dommermuth et al., 1988) is good even though surface tension is

neglected at moderate distances from the wavemaker. Also shown in Fig. 4e is the asymptotic

3 solution (51) evaluated using the Taylor series and the asymptotic representations in Abramowitz

? Stegun (1965), which is in good agreement with the numerical evaluation of the exact solution

(43) near the wave front.

The distance from the wavemaker occupied by the wiggles increases with time in agreement

3 with the local solution. The contact-line elevation increases to a maximum, and then oscillates

to converge to the Froude number at large time (Fig. 5). Fig. 4d shows that for certain values

I of time the surface tension actually makes the contact-line elevation higher, as also shown in

Fig. 5. The amplitude and frequency of the wiggles near the wavemaker decrease with time

until the free surface becomes fat, as indicated by the analysis (50)-(52). The extent of this flat

region increases with time, so that in the limit as t -. co the behavior of the free surface can be

approximated by a hydraulic jump, with the jump location at c = t. This corresponds to the

phase velocity in shallow water, as can also be seen by imposing conservation laws in a simple

control-volume analysis.

5 Exponential wavemaker velocity

3 As a general example that includes the step and ramp velocities as limiting case., we consider

a wavemaker velocity that has a finite jump in acceleration at t - 0 and approaches a constant

3 value Uo as t -- co. The exponential form

SU(t)= Uo -exp (53)

where r is a characteristic time, exhibits this behavior. The limits r - 0 and r -. co correspond

3 to the step velocity and the ramp velocity, respectively. The expansions for small Froude number,
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H (9)-(10), are applied with

S7= 7 and u()=1-e- , (54)

as the Froude number and nondimensional velocity, respectively. Here b = V/i7'il2). Now, (24)

and (27) give

A(,;= k*;.h - -Pe-" +b mnM-,6 cn
2 1 1 -o " (55)
r V~ cash k (P+0

Equations (16) and (22) then give the first-order velocity potential as

1 = 2(1- 0e-t GoIeh sin kW J coshk(i+ 1)coskz

*1. d .. d 2 rJ coshk k :s--2(-e") -Pe-"+sin It- cosh A 56

P +,02 (5)

I The vertical velocity on the free surface, after cancellation of the singular terms, becomes

oI if'cdk 2 f b'e-" - A sin Ot + 02 c os dk2 co. tanhkcoskz- -- ; tnkco z--

(57)

and the free-surface elevation becomes

F = 2a f-k -bcM - Pz -k +O(a 2).

T V k2(l + T2)cask d++ C (58)

With t fixed, if b -. 0, (58) approaches the solution (32) for the ramp velocity with a replaced

by ab; if b - co, it approaches the solution (43) for the step velocity. The first term in (58) is

identical to that for the step velocity, and the other term decays to zero as t --. oo. Consequently,

as t -- oo the behavior of the fluid eventually follows that of the step velocity regardless of the

3 startup proem. As - 0 a special case arises when b -. co such that bt becomes constant in

the limit-the solution then depends on the value of U. If be -. 0 or bt -. oo, m t -. O, the

3 small-time solution is recovered for the ramp and the step velocity, respectively.

We have shown in the previous sections that the contact angle of an inviscid fluid remains

3 unchanged from its initial static state in the presence of surface aasion. We now examin' the

* 1
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relationship between the acceleration of the wavemaker and the dynamic contact angle when the

'3 capillary effect is absent.

When the surface tension is zero (T = 0), differentiation of (58) with respect to x and the

transformation k = kz yield

= -- zb+ktanhf*J-(I [cit csV'i) Aah (

2ab F- ta n idiO 2 ).

S" [Z + anh

I When z -0 and z/t - 0, this can be evaluated as

3C = -obe- 't +.... (60)

Therefore, the slope of the free surface very near the contact line jump@ instantaneously to a

Ifinite value, which depends on the Froude number and the exponent b, and decays to zero again

as time becomes large. Since the decay rate increases with b, it is not surprising to observe tke

900 contact angle for the step velocity even at an infinitesimal time (Fig. 4). Since the limit b -- 0

corresponds to the ramp velocity for finite time, (60) can easily be shown to be consistent with

the previous result, if the difference in definition of the Froude numbers is taken into account.

As shown in the previous section, the linear solution for the step velocity is not valid for very

small time, and a fully nonlinear formulation is required. This can be more easily understood by

examining the limitation to be imposed on the time constant (or b) for the present wavemaker

if the linear solution is to be uniformly valid. As we proceed to the next order, O(e2), terms

proportional to abe- k will appear. Then, for b > 1 the expansions (9)-(10) are valid for all

time, including t < (11b) only when b C (1/a). If b = 0(1/a), nonlinear terns are required

3 when bi = 0(1). Therefore, the nonlinear effects cannot be neglected for a rapidly accelerated

wavemaker (r = O(U.1/)). This ia also consistent with (60) when it is combined with the

3 kinematic boundary condition on the free surface (4), which gives the same criterion for the

validity of linearisation as above.

3 The freesurface configurations for various values of b are shown in Fig. 6 when surface ten-
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I sion and initial free-surface elevation are absent. They resemble those for the ramp velocity

when b is small, and those for the step velocity when b is large. As the acceleration of the wave-

maker increases (as b becomes larger), the amplitude of the wiggles grows and the contact angle

approaches 90", which is consistent with the above analysis.

6 Harmonic wavemaker velocity

Simple-harnonic motion

A wavemaker motion of greater practical interest is the periodic oscillation, for which the

velocity of the wail is given as

IUQt) =Uo sin (y( 71b t>O, (61)

where (JO is the maximum velocity of the wall and ( in the frequency of the oscillation. The

well-known linear steady-state solution to this problem was obtained by Havelock (1929) and has

been extended by many others. The Fourier-integral method adopted in this study will lead to

a transient solution that agrees with the steady-state solution as t -, oo.

3 The Froude number is defined as in the previous section, and the normalization of the wave-

m aker velocity gives U(t) = sin wt (62)

where the nondimensional frequency of the wavemaker oscillation is W = CV/h--, so the solution

for (24) that satisfies (27) is now

i ~ 2 p #sinwt- wsin Bt (

A~k, t)(63)

Therefore, the complete first-order velocity potential is

sn I 5nt e-' sink . + I. #( 2-w n#9)csh k(y+I)cooz .k L. (64)

Again, the singular terms in the vertical velocity are cancelled to give

Oi* = -w2 _ P2 t, coo ki (65)

I20

I



I

I on the free surface. The free-surface elevation is then

3 2aw o cost - cost tah d & 2 (66)

U Far from the wavemaker, the asymptotic evaluation of (66) is possible in the limit as t - 0o.

As z and t become large, the largest contribution to the integral in (66) occurs in the neighborhood

of k = ko, where ko is the positive real root of

I ko(l + Tk0) taah ko = w2. (67)

Since this is just the dispersion relation, ko is the wavenumber that would be observed for waves

with the single frequency w. Therefore, (66) can be written as

2ow ' cookz- cos(kz+/Pt)- cos(kz-Bt)tanh ±= 1 - p_ tT+ " (68)

where e is a small number such that 1 - (1/e) C: z. The integrand in (68) can be expanded

about k = ho and the resulting equation can be easily simplified after setting (k - ko)z : k:

S tanh [-2 wt sin 0m

cisin( ho:+ +in(koCDF ( 1 + wC)t/z) + sin(koz - wt) sin(l -kCtlz)k d! +-... (69)

Here, C, is the group velocity of the gravity-capillary wave with wave number ko and is given by

cO = (I + 3Thk) + (l + Th s0ch2kO (70)2kow

I When : > Ct, the ,pprazimation (69) is uro; when : < Clt, (69) gives

q1= - to s in(k: - ) +..., (71)
= oC,

which describes the freesurface configuration in a region behind the wave front but far ahead of

the wavemaker. In the absence of surface tension (T = 0), the approimation (71) agrees with

the steady-state solution away from the wavemaker ob.ained by Havelock (1929). As for the step
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U velocity, the behavior of the fee surface near the wave front (z = Crt) could be obtained by

3 extending the above analysis to higher orders.

The behavior of the contact angle in the absence of surface tension is obtained by differenti-

ating (66) with respect to x and transforming k to i as before, which gives

2w [ - tah _ n +O(

This can be simplified to

I- - oe + -- -. (72)

as z/t 2 -. 0 and z -. 0. The discontinuity in the contact angle at t = 0 is consistent with the

previous results. It can be esily observed from (72) that the contact angle oscillates with a 900

phase shift from the wavemaker velocity.

Fig. 7 shows the fee-surface configuration at large time for two different wavemaker frequen-

cies. The harmxic wavetrein of Havelock (1929) is observed between the wavemaker and the

harmonic-wave front, z = Cot. The amplitude and fiequency of this wavetrain can be obtained

easily from (67) and (70)-(71). As the undisturbed fiee surface is approached, ahead of the

harmonic-wave front, we observe a second wave front that travels at the maximum phase velocity

dz/dt = 1, the value for shallow-water waves. The waves between these wave oants are een

to have decreasing amplitude and wavenumber. The largest change of amplitude occurs near

z = C#9 in both Fig. 7a and 7b.

Hartmonic ansaysis of a general wavemaker velocity

As a final example, the velocity of a wavemaker given by a Fourier cosine seriesI = N
a(t) = cos(Wt - 0.) (73)

al

3 is considered. A straightforward application of (27) gives

N
A a" jw.-sh _ sine,, sinM - 0com s cos+cos(jwt - On)]. (74)
Ik Pcobk Mal -.

2
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We then follow the same procedure as before to obtain

(@0 [ -. w , n(w ~t -0 )+ w . in 0. co osOf- co o9. in Ot] t n o c + ( r)
I F N -9.2 -n0k dk 2)

(75)

We take N = 72 and T = 0 and use the Fourier cosine coefficients of the wavemaker velocity

provided by Dommermuth et al. (1968). Fig. 8 compares the free-urface elevations against

time at three diffcrent locations to the results of Dommermuth et al. (1988) obtained by the

boundary-integral method with linearnied free-surface conditions. We have chosen to include only

the extremia of their figures for clarity. Also shown, when sufficiently different from the linear

computations, are their wave-probe measurements. For a moderate distance from the wavemaker

(x=3.17), the free-surface elevation (75) shows good agreement with the experimental measure-

ments. Farther away from the wavemaker (x=9.17), the nonlinear effects have accumulated, and

the agreement becomes les satisfictory. In all cases, very close agreement is observed between

the present Fourier-integral solution and the numerical solution of Dommermuth et a. (1988).

Since the hnear solution (75) is exact and can be evaluated as accurately as we choose, the

small difference between (75) and the numerical solution can he attributed to the difficulties in

the boundary-integral computation amociated with the contact line. As shown in the previous

sections, surface tension dfects the free-surface configuration primarily very near the wavemaker

(z C t2 ) and for small time, so it is neglected in thes comparisons.

I 7 Concluding remarks

To avoid an artificial singularity at the contact line between the free surface and the wavekaker

introduced by the small-time expmsion, a Fourier-integnl method is developed for small Froude

3numb... Thi method yields solutions that wre uniformly valid for general wavemakeir velocities

that need not be given a powen of time. It roso allows the study of the capillary effects with

little added efort.

In the absence of surface tension, an infinite number of sm&-sae wiggle is present near the

wavermake, as mown also in the local solution of Roberts (1987) for small time, and the contact
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angle has a jump at t = 0. Surface tension suppresses the wiggles and maintains the contact

angle at its initial static value. Far from the wavemaker, effects of surface tension become less

important. For consistent and realistic results, surface tension should be considered near the

contact line.

When the acceleration of the wavemaker is sufficiently large, the present linear solution is

not uniformly valid near the wavemaker for very small time. A correct inner solution for these

conditions requires a full nonlinear formulation.

The large-time behavior for the wavemaker moving with constant velocity is also obtained.

The contact-line elevation approaches a value equal to the Froude number, and the free surface

behind the wave front can be approximated by a wavetrain superimposed on a flat surface. Be-

yond the wave front, which moves with the phase velocity for shallow water, the free-surface

elevation decreases exponentially to the undisturbed value, zero. For the simple-harmonic wave-

maker, the large-time behavior agrees with the steady-state solution of Havelock (1929) behind

the wave front but far from the wavemaker.

A general wavemaker velocity given by a Fourier cosine series is considered, and the free-

I surface elevation is compared with the computational and experimental results of Dommermuth

et al. (1988). The present Fourier-integral solution agrees very well with the linear numerical

results. The agreement with the wave-probe measurements is excellent at moderate distances

from the wavemaker for all time and becomes less satisfactory farther away from the wavemaker

for large time, when the nonlinear effects have accumulated.
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I LIST OF FIGURES

5 Figure 1. Wavemaker configuration.

3 Figure 2. Free-surface elevations for the ramp velocity at t = 0.1 according to present method

(-) and compared to the small-time solution ( ....-) and the local solution ( ......I
Figure 3. Free-surface elevations for the ramp velocity at t = 0.1 when surface tension T = 0

( ), T = i0 - ( - ), and T = 10' ( ...... ): a) large z/t 2 ; b) small z/t2.

U Figure 4. Free-surface elevations for the step velocity when surface tension T = 0 (-),

T= 10"(-( . ),andT= 10 4 ( ...... ): a) t =0.1;b) t =0.1, z < 2 ;c) = 1;d) t= 1,

I z < t; e) t= 100 with the asymptotic solution near the wave front (- -.- ).

II Figure 5. Contact-line elevation for the step velocity when surface tension T = 0 (- ) and

T = 10-' ( ---- ).

3 Figure 6. Free-surface elevations for the exponential velocity at t = 0.1 when surface tension

T= 0- a) b= 1; b) b= 10; c) b =50.

Figure 7. Free-surface elevations for the simple-harmonic velocity at t = 60 when surface tension

3 T=0: &)w= 1;b) w=2.

3 Figure 8. Free-surface elevations according to present method (- ) and compared to ex-

perimental measurements (o) and computational results (e) of Dommermuth et al. (1988): a)

3z = 3.17; b) z = 5; c) z = 10.
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